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Abstract

Black Swan events refer to hard-to-predict and rare events that have a low probabil-
ity of occurrence but have widespread impacts whenever they occur, be it positive
or negative. These events can either be in the form of natural disasters, political
events or even as catastrophic financial market crashes. From the stock market
crash in 1987 to the global financial crisis in 2008 and to the most recent COVID-
19 stock market crash in 2020 that has devastated the world economy, Black Swan
events in finance have severe consequences on global socio-economy due to which not
contemplating them for their rarity is no longer an option. The purpose of this re-
search study is to use machine learning tools and statistical tools in order to detect,
fit and predict such critically catastrophic financial market crashes in anticipation
of capturing black swan events in future. For this, we have used the concepts of
both crashes as “outliers” [4] as termed by the authors Didier Sornette and Anders
Johansen and also crashes characterized as “drawdowns” [4] by author Emilie Jacob-
sson as guidance and then analyzed and fitted major financial market crashes using
different statistical tools including an advanced non-linear generalized log-periodic
power law model proposed by Sornette and Johansen, and also different machine
learning tools including neural networks in order to predict the trend of financial
market indices. Due to complex time series of financial market index, we found
thresholds for different financial crash data exhibiting different behavior, based on
which we detected historical financial market crashes using statistical and machine
learning tools including neural networks. In order to find thresholds, we have con-
sidered the viewpoints of author Emilie Jacobsson and authors Didier Sornette and
Anders Johansen. Using data from six major global financial market indices, we
also cross validated our models in order to evaluate them. Using these thresholds,
any supervised machine learning model can learn about financial market crashes.

Keywords: Black Swan events; Log Periodic Power Law; LPPL; Machine Learning;
Prediction; Crashes; Financial Market Crash-trends; Decision tree; Linear Regres-
sion; Logistic regression; LSTM; Stateful LSTM; Stateless LSTM; Support Vector
Machine; Back Propagation; Adam Optimization Algorithm; k-fold Cross Valida-
tion; F-score; Fβ score
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Chapter 1

Introduction

Following the major effects of the 2008 global economic crisis, the forecasting of the
financial crisis has been one of the most common subjects in academic study over the
last few years. Forecasting financial variables using advanced mathematical models
has become one of the subjects most widely discussed in academic literature, indus-
try, and other sectors. In the early days of financial market trading, it was almost
impossible to predict financial market crashes. But through the growth and inter-
connection of the global socio-economy and due to technological advancements such
as enhancement of machine learning techniques, many researchers have attempted
to detect or model or to even predict these critical events using various approaches.
Bubble in financial market is defined as a period of time that, through a sustained
market acceleration, followed by a crash or a large decrease, goes from a very low
to a large high. The existence of price bubbles in the financial market has A major
influence on the market’s success or failure. The two phases found in the market are
Bull market which is when the financial market faces an upward trend in index price,
and Bear market which is when the market faces a downward trend in index price.
When the bear phase exceeds the norm limits, the markets crash. The main cause of
such financial Black Swan events is due to the herding behaviour of financial market
traders [15]. The possibility of all these events happening seems so unlikely as to be
unintelligible through normal statistical methods, but for a term that was used to
express impossibilities, ignoring makes them dangerous. Even with the regulators’
insistence of low default rates, and enhanced safety measures for the global financial
system, the risk is too great to simply dismiss the potential of another devastating
economic crisis happening in the near future[14]. Hence, it is imperative to assume
that these events have a possibility of occurring and plan accordingly using statistics
or empirical data, especially in dire cases of predictions for markets and investments.
The goal is to exploit the positive Black Swan Events while simultaneously preparing
for the aftermath of its negative counterparts.
According to Sornette [5], ”Financial Crashes are Outliers; the presence of outliers
is a general phenomenon”, large price losses are ”outliers” that show the stock
market’s underlying properties. Proposed by Didier Sornette and Anders Johansen,
one of the most successful approaches so far has been the ”Log Periodic Power Law”
model for detecting and capturing the trend of financial market indices. The main
focus of our research study is to use machine learning tools and statistical tools
to predict catastrophic stock market events based on the previous price pattern
of market indices. We will backtest users’ previous crash data of major financial
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markets from different regions. For this, we will use the concept of viewpoints
of author Emilie Jacobsson and authors Didier Sornette and Anders Johansen as
guidance in order to analyze and fit major financial market crashes using different
statistical tools including an advanced non-linear generalized log-periodic power law
model proposed by Sornette and Johansen, and also different machine learning tools
including neural networks in order to predict the trend of financial market indices.
Initially, we have analyzed major stock market failures through different statistical
methods. Then, we have gone through some working processes sequentially such
as data collection and processing, features selection, fitting into model, k-fold cross
validation, back testing, error measurement, comparing error with the output of
other models. At the end of our research, we have been able to successfully capture
and predict those failures using some machine learning algorithms as well as the
Log-Periodic Power Law.
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Chapter 2

Related Work

According to Taleb (2017), the Black Swan as an event that follows three criteria:
1. it is an outlier, since it lies far outside of the regular expectations, 2. It carries
a catastrophic impact when it does occur, 3. Despite its outlier position, human
behavior produces a desire to justify after the reality, making it explainable and
predictable(Taleb, 2017)[15]. To capture more value from such events, Taleb’s ad-
vice is to focus on potential consequences of the unexpected by crediting all aspects
rather than on the likelihood of the improbable happening, especially since making
mistakes in the stock market can have devastating consequences. Chowdhury, R.A.,
Mahdy, M., Alam, T.N., & Quaderi, G.D. (2018)[21] described in that, The market
collapse is directly attributed to the sudden immense rise in the volatility of 4 stocks.
If the uncertainty tends to rise at a considerable pace, month after month, along
with the increase in the stock price of companies on a border market such as the
Dhaka stock exchange, then it must be known that the market is likely to crush or
crash in the near future(Chowdhury & Mahdy, 2018).
Sornette. (2017) proposed in his book “Why Stock Markets Crash”[13] that, The
root cause of the crash can be found in the intervening months and years, in the
gradual build-up of industry co-operation, or in successful contacts between par-
ticipants, often converted into an exponential increase in market prices. A crash
happens when the economy has reached an uncertain stage and the volatility could
have been caused by some minor disruption or operation. The fall is primarily due
to the fragile situation.This book discusses the notion that a crash has an endoge-
nous/internal cause in nature and that exogenous/external shocks function merely
as key factors. As a result, the cause of the collapse is much more complicated
than is often believed to be, as the economy as a whole is increasingly built as
a self-organizing mechanism. In this way, the actual cause of a collapse may be
considered structural uncertainty. Stock market crashes are often unforeseen for
most people, even economists. There has never been a market crisis when the met-
rics look grim. In the opposite, asset markets and macro-economic flows (output,
wages, etc.) tend to increase and strengthen until the crisis. This explains why
most people, particularly economists, are taken completely by surprise by a crash.
(The Great Crash of October 1929/Wall Street collapsed Black Tuesday, October
29, 1929). These features have paved the way to reexamining evidence of bubble, a
“fad” or “herding” behavior by studying each stock returns. It is also compatible
with the possibility that fad or crowd psychology could have played a role in the
growth of the bubble, its decline, and following volatility. By local self-reinforcing

3



imitation between merchants, a crash can be induced. A crash is not a particular
outcome of bubble, but can be specified by its risk intensity. In stock market predic-
tion scenarios, artificial neural networks have proven to be an effective method for
mapping complex and non-linear relationships. Yue-Gang Songa, Yu-Long Zhoub,
Ren-Jie Hanc (2018) at their paper “Neural networks for stock price prediction” [18]
have analyzed and compared the predictive power of 5 NN models (BPNN, RBFNN,
GRNN, SVMR, LS-SVMR) by making price prediction of 3 individual stocks (Bank
of China, Vanke A, Kweichou Moutai). Criteria for performance adopted here had
been the “mean-square error” (MSE) and the “mean average absolute percentage
error” (MAPE)[9] also reviewed several forecasting models from different papers.
Among all the reviewed model they found that the Black & Scholes option pricing
model, time series volatility forecasting model, support vector machine does a better
job. Chowdhury, R.A., Mahdy, M., Alam, T.N., & Quaderi, G.D. (2018)[21] also
successfully implemented Black & Scholes model with some modification.
From the above studies, it is very clear that catastrophic events also can be predicted
with modern machine learning techniques like neural networks due its non-linearity
and for the ability to handle large volume stock price data of financial market crashes.

4



Chapter 3

Data Collection and Feature
Selection

3.1 Data Preliminary Analysis

As an illustrative example of the log-periodic signatures we want the log-periodic
power law model to determine in stock indices during major financial market crash
events worldwide, below are shown the case of one of the two major indices of the
U.S stock market: DJI (Dow Jones Index) / DJIA (Dow Jones Index Average) :

Figure 3.1: Oct, 2008 market crash. The figure shows the two major index of US
stock market DJI and S&P 500. Data on the black boxes are from DJI.

According to the figure above, In October, 2008, Dow Jones Industrial Average fell
77.68 points on one day trading because of rejection of the bailout bill by congress
[20]. Eventually other major stock markets also faced a major fall.
At tmax, market price on its maximum before the crash happen and at tmin market
price in its lowest position after the occurrence of crash. From the figure shown
above, the market price achieves its maximum just before the incident of crash in
April 2007 with a closing price of 13895.63 points and then index points plum-
aged till October, 2008 with a closing price of only 7808.92 points, and then price
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rebounded. Now, in the following two box-plots shows the DJI index on a) before
staring 2020 financial market crash and b) October, 2008 financial market crash

Figure 3.2: Shows the pick point of DJI before starting 2020 market crash.

Figure 3.3: Shows the pick point of DJI before starting Oct, 2008 market crash.

In the chart we can see a Bearish Engulfing pattern in September, 2007. That
indicated that the market will move downward in near future. After that in October
2008, the market fell. Our goal is to find such candlestick patterns on the future
market which will help us to point out the market fall[24].
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3.2 Data exploration

In order to get the best result from our models, we have decided to consider the
least correlated datasets among the eleven large financial market indices from dif-
ferent locations of the world. Which are Dow Jones Index(DJI, USA), S& P 500
(United States), Nasdaq (USA), Shanghai Stock Exchange (SSE), Swiss Market In-
dex(SSI), BOVESPA Index (BVSP, Brazil), S&P BSE SENSEX (BSESN), India),
Dax Index(Europe), Nikkei 225 (NKY, Japan), Hang Seng Index (HSI, Hong Kong),
MXX(Mexico). Among these eleven indices, we have chosen the top six least corre-
lated datasets which will be used to develop our models and predict major crashes.
Seaborn heatmap is best to plot the correlation among datasets.

Figure 3.4: Correlation of daily returns of all eleven datasets

Figure 3.5: Least correlated datasets

The correlation matrices above indicates that S&P500, Nasdaq, DJI, and DAX,
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SMI, and MXX, BVSP are strongly correlated. We have avoided the correlation of
0.5 for any two datasets so that it does not overfit during the training.

Figure 3.6: Time series plot distribution of daily price returns over the last years.

Figure 3.7: Fluctuation of daily returns indicating volatility of the markets
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Figure 3.8: Auto-correlation plot, suggest that daily return can not be a strong
indicator for the price change in the next following days.

Figure 3.9: Distribution of daily returns. In SSE, there is fat tails indicating high
volatility compared to others.

9



Figure 3.10: Frequency log-distribution of daily returns indicating extreme posi-
tive(green) and extreme negative(red) occurrence of return. Extreme negative re-
turns less than -0.1 is more likely to contribute in a crash.

Figure 3.11: Duration of drawdowns.

On all six data-sets we have used, 50 per cent drawdowns hold out just a single day
which determine that even if price is dropped in a day, the next day price agin goes
up. It supports the low auto-correlation mentioned above. The longest drawdowns
take place about 10-12 business days.
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Figure 3.12: Frequency log-distribution of daily returns indicating extreme
drawdowns(>-1.5) occurrence of return. Such significant drawdowns have only hap-
pened two times in the S&P for nearly 70 years. These extreme drawdowns are
more likely associated with crashes.

Figure 3.13: Drawdowns ranked from 1 to n.
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The scale of each bubble corresponds to the length of each drawdown which indicates
that the biggest drawdowns are not always the longest. These plots offer more visual
proof of the presence of outliers as drawdowns which are greater than expected.

Figure 3.14: Weibull distribution by rank.

(Johansen, Sornette 2001) [4] have used y ∼ exp( x
χ
)z to match and rank the draw-

down. According to them, outliers are far away from the distribution which are
nothing but market crash.

In the diagram the losses over 15% are identified as crash.
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The Weibull fit plots below are the same as seen under 2. This time, though,
with the ”x”s defining outliers that cannot be clarified by the Weibull distribution.
Since Johansen and Sornette do not imply a clear threshold divergence from the
distribution that determines a crash, the detection of the above crashes was based
on a visual understanding.
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Identifying crashes on the basis of drawdown outliers results in a number of crashes
that do not actually correlate to the average number of drawdowns in a dataset. For
example, there are only three recorded crashes in the S&P over 68 years.

As there is no consensus about the precise concept of a financial collapse, both the
method adopted by Jacobsson (99.5 percent quantile of drawdowns) and the method
introduced by Johansen and Sornette (outliers found using the Weibull exponential
model) can be used as an alternative to defining the crashes.we have used the quantile
method as it has no manual interpretation of outliers required whereas we need to
find outliers manualy with the other theory.

14



Chapter 4

Model Description

4.1 Log Periodic Power Law

For the prediction of financial crises, we explain below how these theories can be
translated into concrete form. In the log-periodic oscillations leading to a collision,
the approach described here predicts the presence of a log-frequency shift over time.
The following non-linear log-periodic formula can be used to fit comparatively long
financial time-series (Sornette, D. 1997) [2]:

log[p(t)] = A+B
(tc − t)β√
1 + ( (tc−t)

δt
)2β

[1 + Ccos[ωlog(tc − t) +
δw
2β

log(1 + (
tc − t

δt
)2β)]]

(4.1)
A simple solution proposed by Johansen and Sornette is (Sornette, D. 1997) [1]

I(t) = A+B(tc − t)α[1 + C cos(ω log(tc − t)− φ)] (4.2)

Here, I(t) is the estimated log price at the bubble’s termination date, α is the super
exponential expansion, φ is the oscillations’ time scale. A is the expected log price
at the height when critical time is reached at the end of the bubble. B is the power
law acceleration amplitude. C is the log-periodic oscillations amplitude. The critical
time expected from the fit of each financial time series is tc. The critical time tc of
the power law is not the time of the accident, but rather its most likely value, that
is, the time at which the scaling ratio of the temporal oscillations hierarchy is the
asymmetric distribution of the potential periods of the crash peaks.
A skewed random phenomena that happens with a probability that increases as time
reaches critical time tc. The incidence of the accident. Therefore, we assume that
fits would give tc values which are usually similar to but symmetrically later than
the crash’s real-time.
The fit is executed up to the tmax time when the stock index hits its peak pre-crash
maximum. The tmin parameter is the time after the crash/rebound of the lowest
point of the economy, disregarding the smaller plateau phases.
It is a delicate problem to suit data with sufficiently complicated formulae with a
very large number of adjustable-parameters. We use the least-squares minimization
approach to determine them analytically for the realistic application of the fit of
a formula of some complex shape to a financial time sequence. This helps one to
focus the linear parameters A, B and C and then construct an objective function by
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plugging them into a focused objective function, which depends not only on tc, β,
ω, φ and, as in the case of a linear log-periodic formula, but also on two additional
parameters: Δt and Δω.
We want to remember that the non-linearity of the objective function will yield
several local minima due to the noisy existence of financial data and the fact that
we are doing a strongly non-linear 9 parametric fit. The fitting is then performed
in a very intricate way. The way:
In the beginning, by decreasing the objective equation with respect to the three
linear variables A, B, and C, the effective number of parameters is limited, thereby
clearly determining A, B, and C as a function of the six nonlinear variables β, tc,
δt, ω, δω, and φ.This procedure thus reduces the number of free variables in the fit
from 9 to 6.
The safest approach we assume is to do a provisional search or first grid search using
a number of appropriate values for tc, δt, ω, δω and fitting only β and φ. Due to
the chance of the minimization algorithm being stuck in one of the several possible
local minima. In fact, this will mean that δt does not have a value much greater
or much smaller than the data time interval, as it calculates the characteristic time
scale that governs the saturation and the crossover of the log frequency. In addition,
since we do not suit noise, meaning variations on very small time-scales, it is not
possible to consider very large values in our work for ω.
This is achieved in order to identify starting points for an optimizer, such as from
all the local optima of the grid, the Levenberg-Marquardt. Because the exponent β
must be between 0 and 1 for the price not just to accelerate but also to stay finite,
all minimum satisfying 0 ¡ β ¡ 1 will then be chosen after the search and taken as
the starting values of fits with equation (1) to the data for all six non-linear free
variables. Because the φ step is merely a time unit, however, which depends only
on whether or not we have opted to take days, months or years into account, the fit
is basically regulated by five non-linear parameters: β, tc, δt, ω, δω, and only the
best resulting convergence points will be taken as the best fit. In other words, the
solution with the nearest δt to the date time-interval will then be selected as the
best match.
Since the transition time between two regimes is δt, this transition can be observed
in a data set.Restrictions on parameter values are placed a priori, meaning that
they are plausible. The stronger criteria 0.2 ¡ β ¡ 0.8 was found to be useful in
preventing the pathologies associated with the interval endpoints 0 and 1. The
ratio of successive time-intervals between λ and successive time-intervals between
local maxima is calculated by the angular log-periodic frequency ω by the following
relationship:

λ = exp
2π
ω (4.3)

4.2 RNN LSTM (Statefull and Stateless)

The term “LSTM” stands for Long Short-Term Memory, meaning this neural net-
work manages short-term memory.

Modes of LSTM:
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For its optimal computation, there exist 2 main modes of LSTM; one is the stateful
mode and the other is the stateless mode.

In an LSTM neural network, cell state is the cell memory of LSTM layer and hidden
state is the state of the neurons in hidden layers of LSTM neural network. When, for
better training, large datasets are split into batches for LSTM neural networks, in
the stateless mode, LSTM updates parameters on first batch and then when the next
batch comes, it initiates hidden states and cell states (meaning-memory), usually
with zeros for the next batch. So, in the stateless LSTM mode, configuration starts
from the beginning from batch to batch. After passing one batch, computations are
going to be reset and initialized with zeros again before next batch starts and this
way the process continues. On the other hand, in a stateful mode, the last output of
the hidden state and the cell state from the first batch is used as the initial states or
input for the next batch. So, it memorizes what it has learned in the first batch and
then it takes it over to the next batch. It is these characteristics that differentiate
between stateless and stateful modes of LSTM.

When to use which mode of LSTM?
When sequences in batches are related to each other, such as in prices of financial
market indices, the stateful mode of LSTM could be the better choice in order to
propagate the state of the neurons to the next batch for training instead of resetting
it. As with large datasets for time series, there exists obvious dependency inside of
the data, hence in between different time steps or different batches as well. So, time
series are not independent in different batches and so, it is better to use stateful
mode. Since, here we are working with stock market indices, stateful LSTM is often
the recommended choice in order for the state to be propagated to the next batch.

For the other case, when one data sequence represents different complex structures
within data (sentences, for instance), the recommended choice is the stateless mode
of LSTM. With this stateless mode, the cell states for LSTM are reset at each
sequence. Here, with one sequence in one batch and then another sequence in
another batch, for two completely different sequences, they are completely unrelated
to each other, so stateless mode is needed more instead of the stateful mode.
In our model, the stateful LSTM is performing slightly better than the stateless
LSTM.

4.3 Decision Tree

Decision tree is a supervised machine learning algorithm that performs a series of
sequential decisions at each node centered on a collection of features for data until
a conclusion has been reached. Decision trees in supervised machine learning can
handle both categorical and numerical data and so, both classification and regres-
sion models are used for the development of it. This algorithm can not only learn
complex patterns from data but is also robust to noisy data. It non-linearly maps
independent variables to dependent variable and is generally used for classifying
non-linearly separable data. Unlike linear and logistic regression models, decision
tree algorithm is more flexible for handling situations where the relationship between
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features and outcome is nonlinear or, where features interact with each other.

Components of a decision tree:
Regression or classification models are built as tree-like constructs by the decision
tree. The composition of a decision tree consists of a root node, internal or bro-
ken nodes, and nodes of a decision or leaf. Each tree node represents an instance
attribute, and one of the possible values of that attribute is indicated by branches
descending from that node. The root node corresponds to the top-level node lead-
ing to the best indicator in a tree. According to a set parameters, each test node
then divides the data into further divisions from this node. In order to decide the
best attribute to start with and divide the training data set, the discrete splitting
function uses those parameters (Information gain, Gini index etc.). The attribute
that better distinguishes ambiguity from target function information is known to
be the most insightful. Different subsets of the data set are generated by slicing,
with each instance belonging to a subset. The final subsets are called leaf nodes and
broken nodes are called the intermediate subsets. A decision tree’s key concept is to
classify the features that provide the most information about the target feature and
then divide the data several times according to such cut-off values in the features,
making the target feature values as pure as possible for the resulting nodes. For
most details, this search process proceeds until a tree with decision nodes and leaf
nodes with leaf nodes representing a classification or a decision is the final outcome.

Information Gain
The measure through which the informativeness of features is given in order for the
feature with the most information to be then used to split the data on is referred to as
information gain. For finding the best feature in terms of information gain to use as
root node, the data set is split along the values by using each descriptive feature right
after entropy of the data set is calculated. By splitting data set along the feature
values, remaining entropy is obtained and added proportionally for total entropy for
split which is then subtracted from the calculated entropy of data set. This process is
done in order to measure the original entropy reduced by this feature splitting, thus
providing the information gain of a feature. The feature with maximum information
gain is then chosen as root node to build the decision tree. The data set us divided by
the branches of this root node and the same process is repeated on each branch (with
entropy greater than zero) till leave nodes (with entropy zero). Hence, information
gain is based on entropy reduction from splitting data set based on a descriptive
feature and a decision tree construction is nothing but finding attribute returning
maximum information gain.

InformationGain(feature) = Entropy(dataset)− Entropy(feature) (4.4)

Entropy
Entropy, which acts as a basis for the measurement of knowledge gain, is used to
calculate a data set’s impurity or randomness. To test the homogeneity of a sam-
ple, the ID3 learning-algorithm uses entropy. For the totally homogeneous sample,
entropy is zero, but if the sample has homogeneous elements evenly separated, then
entropy is one. As per the increase of impurity, thus purity decreases, entropy also
increases. If a target function includes several element types, it is considered useful
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to add up the entropy of each potential target value and then weigh it by the chance
of having those values, given a random draw.

Entropy(x) =
∑

(P (x = k)) ∗ log2(P (x = k)) (4.5)

Gini Index
The Classification and Regression Trees (CART) algorithm uses the Gini index
for the construction of decision trees, which, unlike knowledge gain, prefers larger
partitions and is simple to enforce. In order to compute this index, the sum of the
squared percentages of each class is subtracted from one. The function with a lower
Gini index is selected during splits. However, a wider range of results are obtained
using Information Gain since entropy is used as its base calculation, whereas the
Gini index simply caps at one.

GiniIndex = 1−
∑

(P (x = k))2 (4.6)

(Chien, TW. 2018) [16]
This is how a decision tree is created, which can be used in machine learning to
forecast stock market patterns.

In order to accurately predict financial market index movements using decision trees
in supervised machine learning using historical data and technical indicators of stock
(after preventing look-ahead bias by lagging values of the technical indicator), a
class column is added to data signifying daily returns based on adjusted close price
of index. This class feature contains binary values for “up” and “down” denoting
positive return and negative return, respectively. The data collection is first divided
into two sections for training and checking the data in order to forecast the everyday
shift in movements using these technical measures by adding a machine learning
decision tree algorithm to the data set. The training data is then used to obtain
information gain of features. After training, this decision tree algorithm is used on
test data set to acquire probabilistic trend knowledge.

4.4 Linear Regression

Linear regression is a statistical learning method which determines the relationship
between independent covariates and the dependent output variable.

How Linear Regression Works:
Simple linear regression model is used for showing or predicting relationship between
two factors or variables, one dependent factor (the variable that is being predicted)
and another is independent variable. A straight line is represented as the relation-
ship between the two factors. When there are two or more variables, the model is
called multiple regression.

Linear parametric regression models take the general form y to be equal to f(x) +
epsilon, where y is the predicted output variable, f(x) is an unknown function and
epsilon is the error term that is independent of the covariates.

y = f(x) + ε (4.7)
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Now, different regression models use different forms of this function f.In Linear
regression,

y = β0 + β1x (4.8)

This parametric form thus reduces the problem of finding a relationship between the
covariates or independent variable X and the response variable y to only determining
2 coefficients which are β0 and β1. Linear regression makes an estimate of these
coefficients where such estimates are represented with a “hat” on the variable:

ŷ = β̂0 + ˆβ1x (4.9)

Using this method, the values of these coefficients are determined based on given
data.
It is to be noted that, the epsilon term is not a part of this particular equation
because epsilon is independent of the covariate X and so, it cannot be determined
by regression analysis. So, even if we make a perfect linear regression model, the
model would still have some error epsilon which is also known as “irreducible error”.
Now, in order to estimate these coefficients, we want to minimize the difference
between the actual output value y and the predicted output valueŷ by the model
for every sample X. This difference is called the “residual error” –

e = y − ŷ

So,

e = β0 + β1.X + ε− (β̂0 + ˆβ1.X) (4.10)

So, by definition, epsilon is part of the residual error. This regression method is used
when prediction of an outcome variable is needed based on the value of covariates.

4.5 Logistic Regression

Logistic Regression model is a predictive algorithm that uses independent factors
to predict the dependent factor. Logistic regression in machine learning aims is
to find probabilities for some actions rather than adjustments in simple regression
case.The basic regression methods and the logistic regression methods both seek to
find the best fitting line for the given data - or curve in the case of logistic regression.

How Logistic Regression Works:
When the dependent variable is binary, the logistic regression model is the best
regression analysis model to use. In order to interpret data and illustrate the re-
lationship between one dependent binary variable and one or more variables that
may be nominal, ordinal, interval or independent ratio level, logistic regression is
performed. (Gasso, 2019) [19].
The logistic regression model is derived by –

Y = b0 + b1 ∗X
P =

1

1 + e−Y
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ln(
P

1− P
) = b0 + b1 ∗X

Here, P - probability of a 1 (proportion of 1s, mean of Y), e - e base of natural log
which value is 2.718) and a and b are the parameters. The relationship between P
and X is non-linear.

Loss Function:
Loss function calculates the fit between real data and data from a mathematical
model. The parameters are chosen in a way so that the model minimizes the inac-
curacy or maximizes the accuracy to the data. With least squares which is denoted
as SSres which is called the sum of squares residual. In logistic regression a math-
ematical solution exists that will minimize the sum of squares to maximize the
accuracy of the model, that is,

b = (X ′X)−1X ′y (4.11)

When To Use Logistic Regression:
Logistic regression should be used when there are model multiple independent vari-
ables, continuous and categorical variables or polynomial terms to model curvature.
To assess interaction terms in determining if the effect of one independent variable
depends on the value of another variable, logistic regression model is used.

4.6 Back Propagation

The back propagation is a multi-layered, feed-forward artificial neural network,
which is the most commonly used by far. Let us explain the whole process of
the algorithm by a simple 1-1-1 network at figure [11] with one input layer (L-2),
one hidden layer (L-1) and one output layer (L). Each neuron at hidden layer and
output layer has three basic parts shown in figure [3]. We denoted weighted sum or
input function by ’z’ and output function by ’y’. We have used the sigmoid function
as activation here. The reason behind using sigmoid function will be discussed later.

Figure 4.1: Simple neural network
Figure 4.2: Basic structure of a neuron

Forward pass:
Weighted sum: To get the weighted sum, z(L−1)(n) of the neuron in (L-1) layer,
we have multiplied output, y(L− 2)(n) of the (L-2) layer and corresponding weight,
ω(L−2)(n) connected from (L-2) layer to (L-1) layer. After that, we have added the
bias term, b(L−2)(n) of the layer (L-2). Here (n) is the iteration number.

z(L−1)(n) = ω(L−2)(n) ∗ y(L−2)(n) + b(L−2)(n) (4.12)
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Activation Function: In multilayer perceptron differentiability is the require-
ment that an activation function must satisfy in order to propagate easily [14].
The most commonly used differentiable non-linear activation function is sigmoidal
function [14].

σ(z(L−1)(n)) =
1

1 + e(−z(L−1)(n))
(4.13)

Output Function: In equation 1.2, the weighted sum calculated on the eqn. 1.1
passed through a non linear activation function in order to get the output function
which will be the input for the next layer.

y(L−1)()n = σ(z(L−1)(n)) (4.14)

Now the similar method will be applied to calculate weighted sum, z(L)(n) and
output function, y(L)(n) of the final layer (L).

zL(n) = ω(L−1)(n) ∗ y(L−1)(n) + b(L−1)(n) (4.15)

σ(z(L−)(n)) =
1

1 + e(−z(L−)(n))
(4.16)

yL(n) = σ(zL(n)) (4.17)

Now we have the final or the predicted output, y(L)(n) and we need to compare it
with the desire output, dL to calculate the cost function also known as loss function
C(d(L), y(L)(n)) . It may be noted, we did not put (n) with the desired output.
The reason behind is, in supervised learning, the desire output always remains the
same, it does not change in every iteration like the predicted output, y(L)(n).
The cost function, C measures how well the model is. The two most common cost
functions are Mean-Square-Error (MSE) and Cross-entropy loss (log loss). We have
used MSE for our back-propagation algorithm. The general formula of Mean Square
Error (MSE) is:

C(dL, yL) =
1

N

N∑
(i=1)

(dL − yL)2 (4.18)

Here, N=number of sample or number of neurons at the final layer
In our simple 1-1-1 network the cost function is:

C(dL, yL(n)) =
1

2
(dL − yL)2 (4.19)

Back Propagation:
Now the weights will be updated in order to get closer to the desired output, dL based
on the cost value. The chain rule will be used here to compute the gradient descent
of the cost function with respect to the weights. In machine learning, Gradient
descent is used for optimization. The equation [1.9] calculates the gradient descent
of the cost w.r.t the weights of the final layer(L). Similarly, equation [2.0] calculates
the gradient descent of the bias of the final layer (L).

δC(n)

δw(L−1)(n)
=

(
δC(n)

δyL(n)
)∗δyL)(n))

δzL(n)
) ∗ δzL(N)

δw(L−1)(n)
(4.20)
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δC(n)

δb(L−1)(n)
=

(
δC(n)

δyL(n)
)∗δyL)(n))

δzL(n)
) ∗ δzL(N)

δb(L−1)(n)
(4.21)

The new updated weight and bias of the layer (L-1) to layer (L) is:

ω
′(L−1)(n) = w(L−1)(n)− η(

δC(n)

δw(L−1)(n)
) (4.22)

b
′(L−1)(n) = w(L−1)(n)− η(

δC(n)

δb(L−1)(n)
) (4.23)

There is a problem with the above two updated formulas [2.1] and [2.2]. We have
introduced a new term, η which is called learning rate. Learning rate decides how
faster or slower the network will be trained. The learning rate normally lies between
0.1 to 0.9. The problem here is, how to decide the value of learning rate? If we
choose η small, the changes in the weights will be smaller. On the other hand if
we choose η large, the network may become unstable (oscillatory) [1]. Although it
depends largely on the application, Haykin (2010)[10], suggests a simple method of
increasing the rate of learning by avoiding the danger of instability is to modify the
delta rule by including a momentum constant, α (a positive number).
The delta rule is,

Δw(n) = −η
δC(n)

δw(n)
(4.24)

Here Δw(n) is the change of weight at the present iteration. The use of minus (-)
is to account for gradient descent in weight space.
The new delta rule is,

Δw(n) = αΔw(n− 1) + η
δC(n)

δw(n)
(4.25)

Here, Δw(n− 1) is the change of weight at the previous iteration.
After applying the generalized delta rule in our equation [2.1] and [2.2]

ω
′(L−1)(n) = w(L−1)(n) + Δw(L−1)(n) (4.26)

b
′(L−1)(n) = b(L−1)(n) + Δb(L−1)(n) (4.27)

Now let us apply the same method for the layer (L-2),
Gradient descent of cost w.r.t weight,

δC(n)

δw(L−2)(n)
=

(
δC(n)

δy(L−1)(n)
)∗δy(L−1)(n))

δz(L−1)(n)
) ∗ δz(L−1)(N)

δw(L−2)(n)
(4.28)

δC(n)

δb(L−2)(n)
=

(
δC(n)

δy(L−1)(n)
)∗δy(L−1)(n))

δz(L−1)(n)
) ∗ δz(L−1)(N)

δb(L−2)(n)
(4.29)

The updated weight and bias,

ω
′(L−2)(n) = w(L−2)(n) + Δw(L−2)(n) (4.30)

b
′(L−2)(n) = b(L−2)(n) + Δb(L−2)(n) (4.31)
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After adjusting all the weights and biases of the network, the forward and backward
pass will repeat in the same way until the model gets closer to the desired output.
So far, we know how the back propagation works for a 1-1-1 network. Now we have
demonstrated the whole process again shortly for an arbitrarily large network for
better understanding. We have also generalized all the required formulas so that
they work for all kinds of topology.
As an example, for our demonstration, let us consider a network of 3 layers where
each layer consists of m number of nodes.
Forward Pass:

Figure 4.3: calculation of weighted sum and activation of layer (L-1)

In the network at 4.3, the weighted sum and the output function of layer (L-1) are,

z
(L−1)
j (n) =

m∑
(i=1)

ω
(L−2)
ji (n) ∗ y(L−2)

j (n) + b
(L−2)
j (n) (4.32)

y
(L−1)
j (n) = σz

(L−1)
j (n) (4.33)
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Figure 4.4: calculating weighted sum and activation of final layer (L). After that
calculating the cost function

the weighted sum and the output function of layer (L) are,

zLk (n) =
m∑

(j=1)

ω
(L−1)
kj (n) ∗ y(L−1)

j (n) + b
(L−1)
k (n) (4.34)

yLk (n) = σzLk (n) (4.35)

Now, the formula for calculating the cost function is,

C(dL, yLk ) =
1

N

N∑
(k=1)

(dL − yLk )
2 (4.36)

Backward pass:

Figure 4.5: error signal from the layer (L) to the layer (L-1)
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calculate the gradient descent of the cost w.r.t the weights and bias of the final
layer(L),

δC(n)

δw
(L−1)
kj (n)

=

(
δC(n)

δyL
k
(n)

)∗δyLk (n))

δzLk (n)
) ∗ δzLk (N)

δw
(L−1)
kj (n)

(4.37)

δC(n)

δb
(L−1)
kj (n)

=

(
δC(n)

δyL
k
(n)

)∗δyLk (n))

δzLk (n)
) ∗ δzLk (N)

δb
(L−1)
kj (n)

(4.38)

Change of weight and bias according to the generalized delta rule,

Δw
(L−1)
kj (n) = αΔw

(L−1)
kj (n) + η(

δC(n)

δw
(L−1)
kj (n)

) (4.39)

Δb
(L−1)
k (n) = αΔb

(L−1)
k (n) + η(

δC(n)

δb
(L−1)
k (n)

) (4.40)

New updated weight and bias of the layer (L-1),

ω
′(L−1)
kj (n) = w

(L−1)
kj (n)− η(

C(n)

δw
(L−1)
kj (n)

) (4.41)

b
′(L−1)
k (n) = b

(L−1)
k (n) + Δb

(L−1)
k (n)) (4.42)

Figure 4.6: error signal from the layer (L-1) to the layer (L-2)

calculating the gradient descent of the cost w.r.t the weights and bias of the final
layer(L-1),

δC(n)

δw
(L−2)
ji (n)

=

(
δC(n)

δy
(L−1)
j

(n)
)∗δy(L−1)

j (n))

δz
(L−1)
j (n)

) ∗ δz(L−1)
j (N)

δw
(L−2)
ji (n)

(4.43)
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δC(n)

δb
(L−2)
j (n)

=

(
δC(n)

δy
(L−1)
k

(n)
)∗δy(L−1)

k (n))

δz
(L−1)
k (n)

) ∗ δz(L−1)
k (N)

δb
(L−2)
j (n)

(4.44)

Change of weight and bias according to the generalized delta rule,

Δw
(L−2)
ji (n) = αΔw

(L−2)
ji (n− 1) + η(

δC(n)

δw
(L−2)
ji (n)

) (4.45)

Δb
(L−2)
j (n) = αΔb

(L−2)
j (n− 1) + η(

δC(n)

δb
(L−2)
j (n)

) (4.46)

New updated weight and bias of the layer (L-2),

ω
′(L−2)
ji (n) = w

(L−2)
ji (n)− η(

C(n)

δw
(L−2
ji (n)

) (4.47)

b
′(L−2)
j (n) = b

(L−2)
j (n) + Δb

(L−2)
j (n)) (4.48)

We have updated all the weights and bias of the network successfully for one iteration
only. The process will continue until the model reaches the sufficient small amount
of error.

4.7 Support Vector machine

”A support vector machine (SVM) is a supervised machine learning algorithm that
does data analyzing which is used for classification the most as well as for regression
analysis” (Patil,S. 2016) [12]. It uses the kernel technique for data transformation.
Then, according to the transformed data, An optimal boundary is prepared by SVM
between the probable outputs. In order to categorize data points, SVM maps data
to a higher dimensional feature space because it is necessary even when the data set
is linearly not separable. ”In order to transform the data, a category separator is
to be found to be drawn as a hyper-plane” (Henrique,S. 2018) )[17]. Initially each
data item is plotted as a point in n-dimensional space. n denotes as the number of
features present. Then a hyper-plane is to be found to classify the data points such
that it differentiates the classes with as much accuracy as possible. The dimension
of the hyper-plane is n-1. SVM algorithm finds a plane that separates the positive
and negative points in the most accurate way. The distance between the planes is
called margin which should be maximum.
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Here, we can see there are two different classes and the circle selected points are
called support vectors. ”Support vectors are data points closer to the hyper-plane.
Support vectors can influence the position and orientation of the hyper-plane”
(Patil,S. 2016) [12]. Support vectors can maximize the margin (which is the distance
between the hyper-planes) of the classifier. There are multiple hyper-planes, one pos-
itive hyper-plane W T ∗ X = 1 and one negative hyper-plane W T ∗ X = −1. The
hyper-plane between the positive and negative hyper-plane is the decision boundary
where W T ∗ X = 0. In order to reduce generalization error the decision boundary
with larger margins should be chosen because smaller margins may cause over-fitting
(outlier data).
Maximization of Margin:

W T ∗Xpos + b = 1 (4.49)

W T ∗Xneg + b = −1 (4.50)

Here are two equations of positive and negative hyper-planes where b is a new
addition. b is the y-intercept. Now, subtracting equation (2) from equation (1),

W T ∗ (Xpos −Xneg) = 2 (4.51)

Normalizing by the length of W,

||W || =
√∑

W 2
j (4.52)

The final equation is,
W T (Xpos −Xneg)

||W || =
2

||W || (4.53)

Here, the left side of the equation is the margin.

Optimization Function:
Argmax(2/||W ||) for all i such that Y (W T ∗ Xi + b) >= 1. This indicates all the
data points of being separable linearly.
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This is the hard-margin SVM, hardly used in real life problems.
Soft-Margin SVM:
The soft-margin SVM equation is:

Argmin(
||W ||
2

) + C ∗ 1

n
∗

n∑
(i=1)

ζi (4.54)

Here, ||W ||/2 is used instead of 2/||W ||. As the value is inverted, argmin is used
instead of argmax. n resembles the number of datapoints, C denotes as a hyper-
parameter and ζ (Zeta) is the distance between points that are not classified cor-
rectly.
Understanding ζ (Zeta):

For point x1, distance between x1 and plane II is 0.5.
Y (W T ∗X + b) = −0.5 (Minus indicates it is towards negative plane)
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Y (W T ∗X + b) = 1− 1.5

Y (W T ∗X + b) = 1− ζ(Zeta)

Understanding C:
As hyperparameter C increases, overfit increases. Similarly, as C decreases, underfit
increases. ”Overfitting is a modeling error that happens when a function matches
too closely to a small number of data points. On the other hand, underfitting is a
modeling error that occurs when unable to capture the trend of data which means
the model or algorithm is not well fitted to the data” (Kecman,V. 2005) [6].
Why Use +1 and -1:

Π+ : W T ∗Xpos + b = k

Π− : W T ∗Xneg + b = −k

Here, k > 0. It is not mandatory to use +1 and -1 as the value of k. But distinct
values for the planes (i.e.: +k1 and -k2) cannot be chosen because The goal is for
the planes to be equally remote. So the updated margin is, 2 ∗ k/Π. So the new
margin is, 2 ∗ k/||W ||. For k = 5, the margin is, 10/||W ||. Since k is a constant, it
will not affect the optimization of the problem. This is why +1 and -1 values are
used for the simplification of the calculation.
Loss Function:
In Support Vector Machines, the loss function used is called hinge loss.

Figure 4.7: calculating weighted sum and activation of final layer (L). After that
calculating the cost function

Hinge loss is a function of non-zero value till a certain point (let, the certain point
is z). ”A hinge failure is used by SVM since it highlights the boundary points
conceptually” (Noble,D. 2006) [7].Because of the ”hinge” (the max) in the function,
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something further than the closest points adds little to the loss. It then reduces to
choosing a boundary that yields the greatest margin (distance to closest point).
The equation for soft-margin SVM,

Argmin(
||W ||
2

) + C ∗ 1

n
∗

n∑
(i=1)

ζi (4.55)

Here, the second term C ∗ 1
n
∗∑n

(i=1) ζi is called a loss term.

Y (W T ∗X + b) = Z.
If Z ≥ 1 the classification is correct, but if Z < 1, the argument is incorrectly
classified,.
Let, there are two points, x1 (positive) and x2 (negative). x1 lies in the positive
plane and x2 in the negative. For point x1, W T ∗ X + b is a positive value and
Y (classlabel) = +1.
So, Y (W T ∗X + b) = +1 ∗ (+vevalue) = +vevalue
Similarly, for x2, Y (W T ∗X + b) = −1 ∗ (−vevalue) = +vevalue
Now, Y (W T ∗X + b) = +1 ∗ (−vevalue) = −vevalue
So, it is assumed that only if the argument is properly classified can Y (W T ∗X + b)
be positive.
Loss function:

Max(0, 1− Zi)

Now, there are two cases, i. Z ≥ 1 and ii. Z < 1.
If Z ≥ 1, then Max(0, 1− Z) = 0.
It means the point has been correctly classified and therefore the loss is 0.
If Z < 1, then Max(0, 1− Z) = 1− Z.
Final step:

Y (W T ∗X + b) = 1− ζ

1− Y (W T ∗X + b) = ζ

1− Z = ζ

Therefore, Z is the term that needs to be minimized.
Primal form of SVM:

Argmin(
||W ||
2

) + C ∗ 1

n
∗

n∑
(i=1)

ζi (4.56)

Dual form of SVM:
Dual form of SVM is used to leverage the power of kernels which is a key feature of
SVM.

Max
n∑

(i=1)

αi − 1

2

n∑
(i=1)

n∑
(j=1)

αiαjγiγjX
T
i Xj (4.57)

Here, α �= 0 and equation (8) is equivalent to equation (9).
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Final equation:

Max
n∑

(i=1)

αi − 1

2

n∑
(i=1)

n∑
(j=1)

αiαjγiγjK(Xi, Xj) (4.58)

Kernel & Its Types:
There are several types of kernels. Two most popular among them
are:
i. Polynomial Kernel
ii. Radial Basis Function or RBF Kernel
nu-SVM:
nu is a hyper-parameter that can be used to define the acceptable
percentage error where 0 ≤ nu ≤ 1. The parameter nu is the upper
limit of the margin error fraction and the lower bound of the support
vector fraction proportional to the total number of data-set training
cases.
With nu hyper-parameter, two things can be done:
i. It can control the percentage of error of a model.
ii. It is unable to control but determines the number of support vec-
tors.

4.8 Adam Optimizer

A stochastic gradient descent extension that can be used as a substi-
tute to update iterative network weights based on training data for
deep learning model training is called Adam optimizer (Brownlee, J.
2017)[23]. This algorithm can manage sparse gradients on a noisy
topic and is also easy to customize and the default configuration pa-
rameters which perform well in problem solving most of the time. It
works with momentum, as a combination of RMSprop and stochastic
gradient descent. To adjust the learning rate Adam optimizer uses
the squared gradients like RMSprop, hence it gets the advantage of
momentum because it uses moving average like SGD.
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4.9 K-Fold Cross Validation

Figure 4.8: 6-fold cross validation

To avoid over fitting we have used k-fold CV(cross validation) where
the data set is divided into k smaller sets, and then we trained a trained
a model using k − 1 of the sets as train data where the remaining
set is used as test set.[25]. The iteration is continued for k times
where each time the testing set has been changed. Finally, the average
performance of each step is considered as the final performance.
In our case, we have used 6-fold CV. This means that in each iteration,
5 data sets have been used for training and remaining 1 data set for
testing.

4.10 F-score

”The F-score is the harmonic mean of precision (P) and recall (R)”[8].

F1 =
2

P−1 +R−1

= 2
P.R

P +R
(1)

Precision or Confidence is the proportion of relevant instances among
all retrieved instances[22].

Precision = tpa =
tp

tp+ fp

Recall or Sensitivity is the proportion of retrieved instances among all
relevant instances[22].
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Recall = tpr =
tp

tp+ fn

The general equation of F-score is,

Fβ =
(1 + β2)PR

β2P +R
(0 ≤ β ≤ +∞) (2)

In equation (2) β is a positive factor. which maintain balance between
precision and recall. when β = 1, F-score also called as F1 score (1)
where P and R has same priority. If β > 1, R is more prioritized
and if β < 1, P is more prioritized. In our case, we assume that, a
crash which is undetected but occurred is harmful than a crash which
is predicted but not occurred. Hence, recall gets more weight than
precision in our case.

tpa = true positive accuracy tpr = true positive Rate
tp = true positive fp = false positive fn = false negative
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Chapter 5

Result Analysis

Here, the test results are based on dataset of S&P 500 index, because
the maximum number of crashes since 1950 has been reflected in the
S&P 500 market index. Among the six datasets, five has been used to
train and validation and remaining one (S&P 500) has been used for
testing.

5.1 Log Periodic Power Law

Figure 5.1: LPPL fit on S&P 500 market index from year of 2008 up to 2010

Log periodic power law is a highly non-linear function hence it is tricky
to determine the parameters. Here the above LPPL-fitted diagram
captures the major crash of 2008.
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Figure 5.2: : LPPL prediction on S&P 500 market index from year of 2008 to 2010

For the COVID-19 market crash in year 2020:

Figure 5.3: LPPL fit on S&P 500 market index from year of 2018 up to 2021

5.2 RNN LSTM

5.2.1 Stateful & Stateless LSTM

The recurrent neural networks can learn a sequence of data that other
machine learning algorithms can not. However, when the sequence is
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too large they might not be able to learn anything because of long-term
dependencies. To prevent that problem, LSTM has been introduced
where the entire cell state also passes into the next cell along with
output.

Figure 5.4: Finding the most accurate threshold for the test data set.
(LSTM Stateless)

Figure 5.5: Finding the best best threshold for the test data set.
(LSTM Stateful)

From the figure 5.14 and 5.15 we have decided to took threshold 0.07
for both stateless and stateful LSTM. Although this is not the exact
threshold. We have tested with multiple threshold near to 0.07 and
found the best recall value for the selected threshold. This threshold
is strongly related with the test data set. If the data set get change,
threshold might change also.
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Figure 5.6: LSTM - Stateful Figure 5.7: LSTM - Stateless

Test results:

Figure 5.8: Test result: Stateful Figure 5.9: Test result: Stateless

Statefull LSTM has slightly higher accuracy than the stateless LSTM.
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Figure 5.10: LSTM stateful test case
2004 to 2016

Figure 5.11: LSTM stateless test case
2004 to 2016

Figure 5.12: LSTM stateful test case
during Covid-19

Figure 5.13: LSTM stateless test case
during Covid-19
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5.3 Back Propagation

Number of layer layer: 5 (including input and output layer) Activation
function: Relu, Sigmoid. Optimizer: Adam Epoch: 200 Loss in first
Epoch: 9.6601e-04 Loss in last Epoch: 3.0428e-04 Mean squared error:
67.62911121142531

5.4 Regression

5.4.1 Linear & Logistic

Figure 5.14: Finding the best best threshold for the test data set.(Linear regression)

Here in the regression case, the best beta score we have found is 0.075.
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Figure 5.15: Finding the best best threshold for the test data set.(Logistic regression)

Figure 5.16: Lin. Regression Figure 5.17: Log. Regression
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Test results:

Figure 5.18: Test result: Linear Figure 5.19: Test result:Logistic

Figure 5.20: Lin. regression test case
2004 to 2016

Figure 5.21: Log. regression test case
2004 to 2016

Figure 5.22: Lin. Regression test case
during Covid-19

Figure 5.23: Log. Regression test case
during Covid-19
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Prediction results:

Figure 5.24: Prediction: Linear Figure 5.25: Prediction: Logistic

5.5 Decision Tree

Figure 5.26: Finding best parameters

Among all the machine learning model we have applied, the perfor-
mance of decision tree was very poor compared to other models. We
have got average recall value of 0.12 for the validation set and 0.07 for
the testing set.
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Figure 5.27: Decision tree model overview

Test result:
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Figure 5.28: Decision Tree test case from 2004 to 2016

Figure 5.29: Decision Tree test case during Covid-19
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5.6 Support Vector Machine

Figure 5.30: Support vecto machine model overview

Test result:

Figure 5.31: Test result of SVM on S&P 500 data set
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Figure 5.32: SVM from the year 2004 to year 2016

Figure 5.33: SVM test case during Covid-19
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Predicted result:

5.7 Result Overview

From the above analysis, we have found that, among the regression,
SVM and decision tree, the best score obtained from SVM models is
almost similar to the results obtained from regression models. This
makes regression models more preferable because regression models
can be trained much faster than the SVM model. The decision trees
have not been able to produce satisfactory result as any of the other
tested models. The RNN with LSTM is capable of learn complex
price structure which regression models are not. In practice, tuning
the parameter fro RNN is much difficult compared to others. The best
score we have got with a sequential layer followed two LSTM layers.
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Chapter 6

Conclusion and Motivation for
Future work

In brief, in this research, we have focused on the extreme events of
stock markets, meaning financial crashes and have used Neural Net-
works as a new means to determine speculative bubbles. Specifically,
we have described the stock market behaviour before and after a crash.
We have also exploited the positive Black Swan Events while handling
the negative after-effects of stock market crashes. We have studied Ma-
chine Learning and Neural Networks and used the Risk-Driven Model
to attain our goal. In order to make our project fruitful, we have stud-
ied the history of several previous stock market crashes and also the
similarities and differences among them. Besides, we have researched
deep learning techniques regarding every aspect of the problem. We
have fit crash data as per our target with the knowledge we have
attained using the mathematical model of Log-Periodic Power Law.
We have used best neural network techniques for stock price fitting
which are back propagation and support vector machines. We have
conducted analysis of data sets of large markets of the stock exchange
and online financial data servers about various incidents of crash of
mainly the U.S. financial markets and will be learning more about
this aspect. We have implemented the back propagation algorithm of
Neural Networks for the prediction of stock market crashes and severe
changes of price in general and obtained robust results. Our results
are still not perfect, as the price patterns of stock market are so very
complex, but there are still a lot of scopes to work on the complex
price patterns. So, in the near future we plan on continuing our work
and research and also want to test and use several other models to
achieve our goal.
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