Mango leaf disease detection using image processing

by

Avizit Sarkar
19201113
Murshed Hasan
23141066
Nirnoy Chandra Sarker
24141132
Moin Nadim Srabon
20101140
Safwat Sufia
24141297

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University
Spring 2024

(©) 2024. Brac University
All rights reserved.



Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

il

Avizit Sarkar Murshed Hasan
19201113 23141066

%

Nin
Nirnoy Chandra Sarker Moin Nadim Srabon
24141132 20101140

Sufi
Safwat Sufia
19101293




Approval

The thesis titled “Mango leaf disease detection using image processing” submitted

by

4.
d.

. Avizit Sarkar(19201113)
. Murshed Hasan(23141066)

. Nirnoy Chandra Sarker(24141132)

Moin Nadim Srabon(20101140)
Safwat Sufia(24141297)

of Spring, 2024 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on July 05, 2024.

Examining Committee:

Supervisor: (Member) %

Dr. Md. Ashraful Alam
Associate Professor

Department of Computer Science and Engineering

Brac University

.

Co-Supervisor: (Member) Md Tanzim Reza

Lecturer

Department of Computer Science and Engineering

Brac University

Program Coordinator: (Member)

Md. Golam Rabiul Alam, PhD
Associate Professor

Department of Computer Science and Engineering

Brac University

i



Head of Department: (Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor
Department of Computer Science and Engineering
Brac University

il



Abstract

Bangladesh is an agricultural country and mango cultivation plays a significant role
in the economy of Bangladesh. Mango trees are at risk of different kinds of leaf
disease. As a result, it can be the reason for hindering food production and quality
substantially. So, it is very much important for the farmers to timely detection of
these diseases. As a result, farmers can ensure stable production and supply. So, in
this thesis, we have provided a custom convolutional neural network (CNN) archi-
tecture that was designed especially for mango leaf disease detection in Bangladesh.
Our dataset consists of over 7,535 images that show both affected and healthy mango
leaves, exposing nine different leaf classifications. We have trained our custom CNN
model through both healthy and sick images so that it can easily distinguish between
affected and non-affected mango leaves. We have compared our custom CNN model
with a few pre-trained models which are MobileNetV2, VGG16, DenseNet169, and
InceptionV3 to evaluate our model’s performance and accuracy. So, the main motive
of our thesis is to overcome the limitations of the previous research. Therefore, our
suggested work is very much determined to be very accurate and to solve critical
issues earlier researchers might have faced.

Keywords: Convolutional Neural Networks (CNN), Mango Leaf, Disease Detec-
tion, Deep Learning, Bangladesh, MobileNetV2, VGG16, DenseNet169 and Incep-
tionV3.

v



Acknowledgement

We would like to acknowledge and give our warmest thanks to our Supervisor, Dr.
Md. Ashraful Alam, and Co-supervisor, Md. Tanzim Reza, whose guidance and
advice were crucial throughout all stages of my thesis. Their expertise and support
have been invaluable in shaping this work. We also wish to express our heartfelt
gratitude to Horticulturist Sujit Mandal for his assistance in the creation of the
dataset and for doing the verification of it. His contributions significantly enhanced
the quality of this research.



Table of Contents

Declaration
Approval
Abstract
Acknowledgement
Table of Contents
Nomenclature

1 Introduction

1.1 Motivation . . . . . . . .
1.2 Research Problem . . . . . . . . . . . .,
1.3 Research Objective . . . . . . . . .. .. ... ...

2 Literature Review

3 Methodology

3.1 Proposed Methodology . . . . . .. .. ... ... ... ... ... .
3.2 Dataset . . . . . . .
3.3 Data Collection Methodology . . . . . . ... ... ... ... ....
3.3.1 Data Collection . . . . . ... ... ... .. .. ... ....
3.4 Data Pre-processing . . . . . . .. ...
3.4.1 Dataset Visualization . . . .. .. ... ... .. ... ....
3.4.2 Data Augmentation . . . . .. ... ... ...
3.4.3 Pre-processed Data . . . ... ... ... . L.
3.5 Model Specification . . . . . . ... ...
3.5.1 Convolutional Neural Network(CNN) . . . .. ... ... ..
3.5.2 MobileNet V2 . . . ...
353 VGG 16 . . . . . .
3.5.4 DenseNetl69 . . . . . . . . . . ...
3.5.5 InceptionV3 . . . .. ..o
4 Implementation
4.1 Workflow . . . . . ..
4.2 Setup for Experiment . . . . . . ... ...
4.2.1 'Training hardware and Software . . . . . . . . . ... ... ..
4.2.2 Library List . . . . . . . . ...

vi

ii

iv

vi

vii

11
11
13
13
13
13
13
14
16
17
17
20
21
22
23



4.2.3 Structural view of the code skeleton . . . . . . . . . ... ... 27

4.3 Model Selection . . . . . . . . .. 27
4.4 Hyperparameter Tuning . . . . . . . .. .. .. ... ... ... ... 28
4.5 Design and Compile the Models . . . . . . ... ... ... ... ... 29
4.5.1 ConvolutionNet-5 . . . . . . . . ... ... ... ... .. .. 29
4.5.2 ConvolutionNet-56MO . . . . . . . . ... ... ... ... ... 29
4.5.3 ConvolutionNet-5M1 . . . . . . . .. ... .. ... ...... 30
4.5.4 ConvolutionNet-4 . . . . . . . . ... ... ... 30
4.5.5 ConvolutionNet-4M1 . . . . . . . ... .. ... .. ... ... 30
4.5.6 ConvolutionNet-6 . . . . . . . .. ... .. ... ... ..... 31
4.5.7 ConvolutionNet-3 . . . . . . . .. .. ... ... ... ... 31
458 VGGI6 . . . .. .. 32
4.5.9 InceptionV3 . . . . .. 32
4.5.10 MobileNetV2 . . . . . . . .. 33
4.5.11 DenseNetl69 . . . . . . . . . . . ... 33
5 Result Analysis 34
5.1 Train and evaluate the Models . . . . . . . . . ... ... ... .... 34
5.1.1 ConvolutionNet-5 . . . . . .. ... ... ... ... . ... . 34
5.1.2 ConvolutionNet-3 . . . . . .. ... ... ... ... ... . 35
5.1.3 ConvolutionNet-4 . . . . . . . ... ... ... ... ... . 36
5.1.4 ConvolutionNet-4M1 . . . . .. ... ... ... ... ..... 36
5.1.5  ConvolutionNet-bMO . . . . . . . ... ... ... ... .... 38
5.1.6 ConvolutionNet-5M1 . . . . . . ... ... ... . ... .... 39
5.1.7 ConvolutionNet-6 . . . . . .. ... ... .. .. ... .... 40
51.8 VGGI6 . . . . . . . 41
5.1.9 MobileNetV2 . . . . . . ... 42
5.1.10 InceptionV3 . . . . . . . ..o 44
5.1.11 DenseNetl69 . . . . . . . . . . . . ... ... 44
5.2 Ablation Study of Custom Convolutional Neural Networks for Mango
Leaf Disease Classification . . . . . . . ... ... ... ... ..... 45
5.2.1 Model Architectures and Performance Metrics . . . . . . . .. 46
5.2.2 Analysis . . . . ... 47
5.3 Comparison between our custom model and the pre-trained models . 49
5.4 Class-wise study for the confusion matrix . . . . . .. ... ... ... 50
5.5 Output . . . . . .. 56
5.5.1  Analysing Our Design Model (ConvolutionNet-5) and the Pre-
Trained Model: . . . . . .. ... ... ... ... ... 56
5.5.2  Key Metrics Comparison for five different neural network models 59
5.6  Visual Representation and Analysis of the Result Implementation: . 60
6 Conclusion 62
6.1 Future Work . . . . . . . . ... 62
Bibliography 66

vil



Chapter 1

Introduction

1.1 Motivation

In Bangladesh, the agricultural sector plays a significant role and mango cultivation
is one of the great contributors. However, the quality and production of mangoes
can be greatly hampered by a number of dangerous leaf diseases such as root rot,
powdery mildew, bacterial black spot, and anthracnose. These diseases not only
degrade the trees’ visual appeal but also damage their capacity for effective photo-
synthetic processes, which in turn decreases fruit production and quality [9]. Hence,
early detection of these diseases is very much necessary for farmers to ensure the
healthiness and supply of mangoes according to the demand.

The condition of the environment in Bangladesh, such as the climate, soil com-
position, and agricultural methods creates further difficulties. Leaf diseases can
have a range of symptoms, and current detection techniques may not be fully de-
cent enough to detect diseases unique to a given area. These techniques further
complicate the process of detecting quickly and accurately, especially for farmers
who have limited knowledge and limited access to agricultural specialists.

Deep learning is one of the most powerful tools for picture recognition and clas-
sification in recent years, which is a subsection of machine learning. Convolutional
neural networks, or CNNs, have shown magnificent results in a large number of ap-
plications, such as pattern recognition, picture segmentation, and object detection
[8]. The drawbacks of conventional methods for detecting mango leaf disease can
easily be recognized by this technology.

The need for a workable environment, and an effective, smooth, and easily accessi-
ble method for detecting mango tree leaf disease in Bangladesh is the main focus
of our project. Our main objective is to create a customized model that can easily
and precisely distinguish between healthy and affected mango leaves by utilizing
deep learning architecture and CNNs. Hopefully, our customized model will highly
contribute to the distinct circumstances and disease detection that are unique to
the area. Our creative strategy could completely change the mango production in
Bangladesh. By using our easy interface tool farmers will be able to detect the
mango leaf disease at an early stage. At last, we can hope that our custom CNN
model can completely contribute to the enhancement of our economy and ensure



the food security as well.

1.2 Research Problem

The better production of mangoes in Bangladesh depends on the early detection
of affected mango leaves. Besides, there are a number of limitations and lacking
with the conventional methods of mango leaf disease detection that are used now
[8]. However, manual detection of mango leaf diseases is a time-consuming and la-
borious process that highly requires a deep understanding of affected leaf symptoms
and their various manifestations. But in rural and backdated areas, farmers don’t
have that luxury and knowledge about disease symptoms and also don’t have easy
access to disease detection instruments.

Bangladesh’s particular environmental circumstances made it more difficult for the
early detection of diseases. Accurately diagnosing the precise issue affecting the
mango trees can be challenging due to the influence of various factors such as soil
type, climate, and agricultural techniques. Poor productivity and lower fruit quality
can arise from improper care following a delayed or inaccurate disease detection.

Although conventional machine learning methods have been designed for the pur-
pose of detecting leaf diseases. But they aren’t specially designed for mango leaf
diseases in Bangladesh. Current technologies most frequently depend on manu-
ally created characteristics, which cannot translate well to newly acquired diverse
datasets. Furthermore, previous research may focus on other crops or other environ-
mental production that would have limited its application to Bangladesh’s particular
mango fruit production scenario.

Furthermore, diseases can easily be treated when they are detected in their early
stages, a time when traditional methods frequently fall short. These diseases may
already have seriously harmed the crop by the time symptoms become noticeable.
As a result of increasing treatment costs and decreasing effective detection mango
cultivation’s economic sustainability is hampered.

Thus, this thesis looks forward to addressing the creation of a precise, reliable,
and customized deep learning-based architecture for mango leaf disease detection
in Bangladesh. In order to overcome the limitations of conventional methods, our
thesis involves creating a comprehensive dataset that captures around 13200 images
along with both healthy and affected leaves using cutting-edge CNN architectures
to accomplish high accuracy classification.

1.3 Research Objective

Our research’s main goal is to create a cutting-edge, deep learning-based architecture
that can accurately identify and classify fresh mango leaves and affected leaves. The
custom CNN model will be specially designed to fit Bangladesh’s particular climatic
circumstances and disease verities. The goal of this project is to make the farmers



use modern technology in order to make mango production more efficient and risk-
free. To do this, these specific objectives need to be established:

e Develop Disease Detection and Management: Our main focus is to give farmers
a precise and user-friendly interface technology for disease detection systems
by creating an innovative deep-learning architecture. By doing so, the farmers
will be able to detect several leaf diseases at an early stage that impact mango
production. This will facilitate efficient management techniques and reduce
the possibility of fruit production and quality losses and farmers can reduce
their economic loss as well.

e Enhance Agricultural Sustainability: Through our custom CNN model, the
long-term viability of mango farming in Bangladesh will be enhanced. We
are hoping to improve the productivity and ensure better quality of mangoes
by tackling the problems caused by leaf diseases. This would guarantee that
farmers can reduce the loss and can make a steady supply of premium mangoes
for both home and foreign markets.

e Address Regional Specificities: The aim is to observe the distinct climatic
circumstances and disease varieties that are particular to Bangladesh. We
intend to create a system that is suited enough to fulfill the requirements of
local farmers, ensuring its easy applicability and efficacy in their particular
setting, by gathering a huge dataset of both fresh and affected leaves that
reflects various areas, seasons, and mango tree species.

e Boost Usability and Accessibility: We want to create a straightforward and
easy-to-use interface that works for farmers of all technological backgrounds.
Our goal is to develop a user-friendly tool that will make disease identification
as simple as uploading leaf photographs and receiving real-time updates. As
a result, farmers will be able to take proactive steps and raise yields.

e Educate and Raise Awareness: We mainly focus on educating farmers, other
relevant stakeholders, and the agricultural community at large about the ben-
efits of deep learning-based disease detection in addition to making the sys-
tem. We believe that educating farmers about innovations can lead to higher
yields, improved farming methods, and wider adoption. If they become enough
educated about using deep learning-based CNN architecture then a huge im-
provement will come not only in disease detection but also in making economic
profit.

e Promote Economic Growth: A big portion of Bangladesh’s economy is heavily
dependent on the cultivation of mangoes. By overcoming the problems caused
by leaf diseases, our project is hoping to boost the nation’s economy and ensure
food security as well. Mango production and quality growth have the potential
to improve export earnings and the agricultural sector, which would benefit
farmers’ livelihoods and the development of the country as a whole.

When combined, these described objectives show the importance and benefits that
this study is seeking to achieve. Our real objective is to develop a deep learning-
based system for identifying mango leaf disease in order to revolutionize the way



mangoes are farmed in Bangladesh and this will create a new movement about
mango leaf disease detection which we did not observe in the past. This will ensure
more strong mango cultivation profit, more harvests, and sustainable development.



Chapter 2

Literature Review

In order to accurately distinguish between mango leaves that are infested with the
devastating fungal disease anthracnose and those that are not, Singh et al. [21]
developed two datasets containing 2200 pictures. The datasets included leaves from
other plants that were infected with the same disease in addition to a mixed input
of mango leaves that were diseased and uninfected. utilising Multilayer Convolu-
tional Neural Network (MCNN) for classification, they got 97.16% accuracy instead
of utilising traditional approaches like PSO, SVM, or RBFNN.

With the goal of identifying and classifying mango diseases that are hard to di-
agnose with the naked eye, Srunitha et al. [13] have suggested a new strategy. In
this technique, diseases are classified using multiclass SVM and segmented data us-
ing k-means clustering with an accuracy of 96%.

For mango leaf disease identification, Mia et al. [24] suggested the neural network
and supported vector machine methods. The dataset contained four different forms
of diseased mango leaves such as, (Dag disease, Golmachi disease, Moiricha disease,
and Shutimold disease). A support Vector Machine (SVM), was used in the study
dataset containing both diseased and non-diseased mango leaves. Finally, the test
resulted in 80% accuracy.

Rahaman et al.[35] proposed a smartphone app that could not only identify mango
diseases by deep learning but also suggest appropriate pesticides to mitigate them.
Machine learning techniques like DenseNet 169, InceptionV3, and MobileNetV2 were
used by the app to detect mango diseases depending on pictures of infected as well
as healthy leaves and fruits. 97.81% accuracy was proven by this method for disease
detection.

Prabu et al. [31] has succeeded in diagnosing mango leaf diseases by using con-
volutional neural networks. The dataset consists of five mango diseases including
Leaf burn of mango, Leaf Webber, Leaf Gall, Alternaria leaf spots and Anthrac-
nose. They used the CNN model for identification also classification purposes and
achieved 96.67% accuracy.

Igbal et al. [9] have introduced different methods for the identification and clas-
sification of citrus leaves’ diseases. The main concepts of the review paper were



methodologies, merits, demerits and obstacles while deep learning image processing
techniques to guarantee accurate disease detection.

Malao et al. [19] introduced a computer-based programme that utilises user re-
sponses for disease diagnosis. The system contains three primary parts which in-
clude an image analyzer, feature extraction and a classifier. An orderly procedure
was maintained in the system, starting from RGB image acquisition, conversion to
HSV colour space, masking and removal of green pixels, segmentation of the in-
fected region, extraction of useful segments, and ended with computation of texture
features using colour co-occurrence methodology.

In order to prevent a decrease in mango production, Veling and colleagues [22]
presented a method that employed the Gray Level Co-occurrence Matrix (GLCM)
in addition to SVM. The GLCM captured the vital texture features for disease
identification and the SVM classifier was used for disease classification. The overall
procedure has shown 90% accuracy in identifying diseases.

Arivazhagan et al.[7] have suggested a CNN model that has achieved 96.67% ac-
curacy in identifying mango leaf diseases. This study uses technology based on deep
learning to automatically identify leaf diseases in many varieties of mango plants.
They used five different leaf diseases, such as Anthracnose, Alternaria leaf spots,
Leaf Gall, Leaf Webber, and Leaf Burn, included in a dataset of 1200 images of
healthy and diseased mango leaves. Extraction and classification procedures were
executed using the Convolutional Neural Network (CNN) with 8 different layers.
Different poses, pixels etc were also taken into account in the image processing sys-
tem as they play a vital part in CNN. The proposed CNN model was trained using
100 images per class which is a total of 600 training photos. Each of the 600 photos
was tested and 96.67% accuracy was achieved.

With the goal of identifying leaf diseases in mango and grape crops, Sanath Rao
and colleagues [28] have proposed a deep-learning methodology. Their research has
used pre-trained neural networks including these steps of data collection, preprocess-
ing, transfer learning, and evaluation which have shown greater precision in disease
detection. This methodology is also very potent for practical application in farming.

With the aim of identifying surface irregularities in mangos, the use of colour com-
puter vision methods was introduced by Patel, Kar, and Khan [20]. They employed
a comparative analysis technique with existing ones, including image processing
methods like segmentation, feature extraction and classification algorithms. An ef-
ficiency of 93.3% followed by an accuracy of 88.6% was achieved from this strategy.

In Pham et al.’s studies, [25] a feed-forward neural network and a hybrid metaheuris-
tic feature selection algorithm were suggested where a feedforward neural network
(FFNN) was used as the classification model and a hybrid metaheuristic feature
selection algorithm that combines Particle Swarm Optimization (PSO) and Cuckoo
Search (CS) was used to determine the targeted features. The model had achieved
an impressive 89.41% accuracy which suppressed the other CNN models.



A competent model was suggested by Trongtorkid et al. [15] that can examine the
leaf symptoms to identify mango diseases. In order to develop the system, CLIPS
and MATLAB software were used, also, 100 images of both healthy and infected
mango leaves were used to assess it. The system achieved 89.92% of accuracy which
proved to be better than the existing methods.

Sutrodhor et al. [14] proposed a new strategy that combines Neural Network and
Support Vector Machine (SVM) to efficiently identify mango leaf diseases. This
methodology is not only an achievable solution for automated mango disease detec-

tion, but also a potent approach that has outperformed individual neural networks
and SVM classifiers.

In order to diagnose the mango leaf disease anthracnose, Wongsila, Chantrasri and
Sureephong [30] employed machine learning algorithms. For classification, various
machine learning techniques were tested such as Support Vector Machines (SVM),
K-nearest neighbours (KNN), Decision Trees and Random forests. Finally, the test
has achieved 70% accuracy in detecting mango leaf diseases.

Gulavnai et al. [18] provide new deep-learning models to recognize mango leaf
diseases and a cost-effective approach to image recognition. The study tackles the
essential and initial need for early identification of diseases such as Powdery Mildew,
Anthracnose, Red Rust, and Golmorich. Utilizing a dataset of 8,853 images across
from the Konkan area of India, the researchers trained their pre-trained model with
transfer learning and the ResNet architecture, reaching a remarkable 91% accuracy.
Their approach required preprocessing the images and improving the data to im-
prove their model accuracy. Different CNN architectures like ResNet18, ResNet34,
and ResNeth0, were used. Testing results indicate idea and actual accuracy across
different structures, with the ResNet50 model beating the others. The research high-
lights the value of deep learning models in agricultural applications that provide an
efficient and affordable solution for early disease detection in mango crops.

In order to highlight the automation of the detection of eight different mango leaf
diseases, Vijay et al. [36] have proposed a hybrid deep learning strategy. In this
research, the challenges faced in the initial stage of disease detection are mentioned
which is very crucial for enhancing the yield and quality of crops. A total of 4873
images containing both diseased and healthy leaves are included in the dataset.
Some of the diseases such as Anthracnose, Bacterial Canker, Cutting Weevil, Die
Back, Gall, Midge, Powdery Mildew, Red Rust, and Sooty Mould were included.
The methodology includes data analysis, preprocessing, image segmentation and fi-
nally data augmentation which is required to verify class imbalance. This study has
mentioned 4 models that are- Custom CNN, VGG-16, EfficientNetB4 and a hybrid
proposed model. 50 epochs are operated in order to evaluate the models and re-
sults have shown 84% accuracy by the Custom CNN model, 81.54% accuracy by the
VGG-16 and finally an increased accuracy by 3.15% over the earlier models by the
EfficientNetB4. On the other hand, 94.72% accuracy was observed in the proposed
hybrid model which is the highest acquired accuracy rate with practical estimation.
This technique has proven to be efficient for our farmers as it plays a vital role in
saving both time and money by minimising the quantity of farming equipment.



In order to accurately identify and classify the diseases found in mango leaves, Rabia
et al. [29] have proposed a model that can ensure increased production and return
from agricultural land. In their study, they have suggested a CNN-based model (
FrCNnet) for disease classification. Using the preprocessed data, the model directly
trains pixel-level features and 99.2% accuracy was achieved. Also, their proposed
model contains certain similarities with models like Vggl6, Vgg-19, and Unet. The
method consists of developing a dataset containing images of diseased and healthy
mango leaves, then preprocessing, data augmentation and many more. When traits,
textures, and other features are taken into account, their suggested CNN model ex-
hibits 98% accuracy, demonstrating its great potency for categorization. Therefore,
in order to efficiently detect the diseases in mango leaves, this research has demon-
strated the importance of automated models.

Sharma et al. [33] explain a Convolutional Neural Network (CNN)-based model
for the quick detection and classification of mango leaf diseases. The research in-
volves collecting pictures of mango leaves harmed with diseases such as anthracnose,
red rust, and powdery mildew. One of the data pre-processing techniques is Data
Augmentation that were used to improve the amount of data, and a CNN model was
trained on this vital data. The suggested algorithms detected mango leaf diseases
having an accuracy of 90.36%. The model modifications basically include different
layers for feature extraction and pooling layers to reduce the sampling size. The
accuracy of the model was determined by a number of factors, including the F1
Score and recall.

In the study conducted by Aditya et al. [27], transfer learning and convolutional
neural networks (CNN) were used to construct an automated system for disease
detection in mango leaves. The study inspected and compared different CNN ar-
chitectures, including DenseNet201, InceptionResNetV2, InceptionV3, ResNet50,
ResNet152V2, and Xception implementing measures like accuracy, F1 score, preci-
sion, and so on, false negative rate (FNR), and false positive rate (FPR). To solve
the imbalance in the dataset they had done data segmentation into training and
testing data. DenseNet201 had the best results, with an accuracy of 98.00%, an
F1 score of 98.33%, and precision, sensitivity, and specificity of 99.58%. ResNet50
came in second with a 97.00% accuracy, while InceptionResNetV2 and InceptionV3
both achieved 96.67%. The results show that DenseNet201 and ResNet50 improve
the accuracy.

The study by Sandhya S. et al. [32] aimed to identify diseases in mango leaves
using deep learning specifically focusing on the pre-trained ResNet-50 model. Com-
bining both healthy and diseased leaves of 435 images through scaling and Contrast
Limited Adaptive Histogram Equalization (CLAHE) to enhance contrast. Data aug-
mentation was used in order to address the problem of class imbalance. The features
extracted by the fine-tuned ResNet-50 model were classified based on machine learn-
ing classifiers such as Support Vector Machine (SVM) and Logistic Regression, which
caused an improvement in accuracies to 100% with those classifiers and 97.7% with
the approach based on tuned parameters of the ResNet-50 model. The results em-
phasised the robustness of multiple approaches such as incorporating CNN features



with ML classifiers, using transfer learning schemes in combination with different
model choices and additional perspective for accurate disease detection modules in
mango leaves to support the industry with crop management assistance and prompt
action recommendations.

This thesis, "Review on CNN applied to plant leaf disease classification,” thor-
oughly addresses the value of Deep Learning (DL) in plant disease detection and
identification, the classification method, problems and their solutions, and prospec-
tive future developments. Jiang [26] and the authors have been concerned about
the detection error of the models that can occur due to insufficient data and lack of
diversity. Transfer learning and data augmentation are some of the solutions they
have suggested in order to mitigate it. The researchers have also mentioned that one
of the reasons for the declining accuracy rate is insufficient robustness. Therefore,
to accelerate the robustness, the authors have come up with some solutions such as
Increasing dataset diversity, using a compressed model, utilising unsupervised Deep
Learning(DL) methods and multi-condition training. Distinct types of CNN models
such as AlexNet, GoogLeNet, and VGG were implemented by Ferentinos for the
detection and classification of plant diseases with the public dataset. Lastly, 99.35%
of high accuracy had been achieved. Therefore we can say that increased diversity
of datasets and robustness plays a crucial role in achieving a higher accuracy rate,
also for practical use, authors look forward to employing mobile and server-side ap-
plications.

The title of the thesis is ”Plant Leaf Disease Detection Using Machine Learning”
The Issue of plant disease in agriculture emphasizes the importance of early dis-
ease detection with high accuracy. The paper explores various machine learning
techniques and methodologies such as K-Nearest Neighbors (KNN), Support Vec-
tor Machines (SVM), Artificial Neural Networks (ANN) and Principal Component
Analysis (PCA) that can be used for better disease detection. Shima R. et al [12]
presented a method of image preprocessing, segmentation, and feature extraction
using the GLCM (Gray Level Co-occurrence Matrix) algorithm and KNN classifica-
tion and achieved Acc. The author’s survey previously- highlighted its limitations
and proposed some prospective modifications to the current methodology. The sys-
tem they proposed could detect 7 types of plant leaf diseases with 98.56% accuracy,
which demonstrates the potential of machine learning.

A Deep Convolutional Neural Network (CNN) model has been proposed by Geethara-
mani [17] and colleagues in order to successfully identify plant leaf diseases. A total
of 54,305 images including 13 types of plant leaves were collected from plant villages
for their dataset. Six data augmentation techniques that include image flipping,
gamma correction, noise injection, PCA colour augmentation, rotation, and scaling
have been utilised by the authors to achieve optimal results. Their dataset was
divided into 38 classes which were labelled as either infected or non-infected leaves.
The model has achieved a significant level of accuracy compared to other conven-
tional machine learning models such as ResNet and SVM, hence proving the model’s
potency in identifying plant diseases for practical implementation.

Luna et al. (2018) [10] research smart farming systems aimed at improving tomato



output by using deep learning (DL) and computer vision techniques to find and
detect disease in tomato plant leaves. The recommended technology includes an
image collection box to picture tomatoes from multiple angles, which makes it sim-
pler to recognize diseases including Diamante Max Breed, Phoma Rot, Leaf Miner,
and Target Spot. A total of 4923 pictures containing four types of leaf samples (
Healthy, Leaf Miner, Phoma Rot and Target Spot) were used in order to train the
author’s proposed models on the AlexNet architecture, which was specifically af-
fected by transfer learning and reconnecting the weights of the final fully connected
layer (fc8). A total of 91.6% accuracy was achieved with 36 sample tests proving
its capability of initialising a smart farming system by employing deep learning and
computer vision for maximum agricultural outputs.

The thesis “Attention Embedded Residual CNN for Disease Detection in Tomato
Leaves” has mentioned the importance of deep learning methods for automated
plant leaf disease detection. Here, the CNN model is suggested to overcome the
limitations of conventional methods. Residual Learning Architecture and Atten-
tion Mechanism Architecture are two Deep learning Architectures that were used
by the writers [23]. All of the tests were performed using a dataset from the plant
village and a high accuracy of 98% was obtained which proves the efficiency of the
5-fold cross-validation strategy. The result was evaluated with the TensorFlow Deep
Learning framework performed on an NVIDIA Tesla P100 GPU. The authors car-
ried out three experiments in total, including a baseline model for detection and
classification, integration of residual connections and finally corporating attention
and residual connection. Hence it is proven that advanced deep learning methods
play an essential role in disease diagnosis of plants which can provide agricultural
benefits.

10



Chapter 3

Methodology

3.1 Proposed Methodology

Figure 3.1 illustrates the overall system for detecting mango leaf diseases of several
phases. Raw images that we collected from various sources were first passed through
the pre-processing phase. Data augmentation was also done in the pre-processing
phase. The pre-processed data set was then divided into a training set, a testing
set, and a validation set. In phase 2, we used the training data to train the chosen
models. The confusion matrix, precision, accuracy, recall, and F1l-score were the
evaluation measures used to gauge the performance of our models.

11



Phase 1| Data Collection

Capture Image by Mobile phone Di d Image Data Collection

Phase 2 | Data Preprocessing

Data Data Preprocessed
Visualization Augmentation Data

Phase 3 | Model Selection

§ 1 P Data " Y

Designed Pre- Trained
Model Model
| |
' ' v v v v ¥ ! { ¥
CNN 1 CNN 2 CNN 3 CNN 4 CNN 5 CNN 6 CNN 7 VGG16 D 169 i V2

Phase 4(part 01) | Designed CNN Model Implementation

80% Train, 10% Validation & 10% Test

Implement rlmplem;m Implement
Ilmplerent ¢ e layer 2 & © layer 3 &
nput Layer i layer
P Y & Pooling layer 1 Pooling layer 2 Pooling layer 3
Compile,
train and [ output In';plemel:t Implement Implement
save the | Layer ropou Dense layer Flatten layer
best model layer
Phase 4(part 02) | Pre-trained Model
Load the Maintain the Add Global Add Dense
Pre-trained quil input ] Layer with 12s
model shape Pooling 2D Unit
Compile, "
train and Modify the o Add
save the Output :opout
best model Caven ayen

Figure 3.1: Top-level overview of the method

12




3.2 Dataset

Agriculture is a sector that has not yet fully benefited from the advancements in Deep
Learning. The significance of datasets in Deep Learning is immense, and the ab-
sence of standardized, publicly available agricultural datasets limits the potential of
these advanced computational techniques. To help bridge this gap, we have created
what we believe to be the first comprehensive, ready-to-use dataset of mango leaves.
This dataset includes 7,535 images of around 1,907 unique leaves, representing eight
different diseases, collected from various mango orchards in Bangladesh, one of the
world’s top mango producers. Although our dataset is based on mango leaves from
Bangladesh, the diseases it covers are prevalent in many countries, making it ap-
plicable for global use and potentially enhancing mango production worldwide. We
expect this dataset to garner significant interest from Deep Learning researchers and
practitioners focusing on automated agriculture.

3.3 Data Collection Methodology

3.3.1 Data Collection

The dataset collection procedure involved several critical steps: first, we acquired
background knowledge on common diseases affecting mango trees. We then selected
suitable mango orchards for data collection with the help of agricultural experts.
Images of both healthy and diseased mango leaves were captured directly from
the trees, focusing on eight specific diseases. Additionally, we sourced images from
various online platforms such as Krishi Batayon, Flickr, Mendeley, Google, and other
relevant websites. [1] [2] [34] Krishi Batayon, a government agricultural website in
Bangladesh, provided valuable insights into the symptoms of infected leaves, aiding
in dataset construction, while the Plantix agricultural platform further enhanced our
understanding of infected leaf images. Finally, we validated the dataset by manually
labeling the images with the assistance of human experts, ensuring the accuracy and
reliability of the collected data

3.4 Data Pre-processing

The data preprocessing has occurred in two stages, dataset visualization and data
augmentation. These two techniques are described below.

3.4.1 Dataset Visualization

In our research, we curated a dataset comprising approximately 1907 images depict-
ing both diseased and healthy mango leaves. In Figure 3.2, the number of images
for each class is displayed in a table. Figure 3.3 presents a bar chart illustrating the
distribution of images per class before augmentation. We observed that some im-
ages in our dataset were not sufficiently bright. To address this issue, we enhanced
the brightness of these images, with the enhancement range set between 1.2 to 2.
Additionally, we denoised some images to improve their quality. Figure 3.4 shows

13



the sample image before augmentation and Figure 3.5 shows the sample image after
augmentation.

Number of Images Before Augmentation (Orginal Dataset)
Diseases Name No. of images

Anthracnose_leaf 366
Bacterial_Canker_leaf 109
Die_Black_Leaf 216
Gall_Midge_Leaf 195
Leaf Cutting_Weevil_Leaf 142
Powdery_Mildew_Leaf 187
Red_Rust Leaf 212
Shoot_Mold 220
Normal_Leaf 260

Figure 3.2: Number of Images Table Before Augmentation (Original Dataset)

Number ol Images Belore Augmenlation {Original Dalasel)

260
216 22
83
=2 187
142
mn .

Dictaral Coalks i Brck Leaf Call micge Laat Leni Cufting We Normal Leat Povdery Milcew Rad Rust Laof
P leat il | Raf Teat

= um

Number of Images

Saoot. mold Leaf

Anthracrose Lea
f

Name of Diseases

Figure 3.3: Number of Images Before Augmentation (Original Dataset)

3.4.2 Data Augmentation

Data augmentation can significantly enhance the performance and outcomes of ma-
chine learning models by generating new and diverse examples for training datasets.
This is achieved using domain-specific strategies to create unique training examples
from the existing data. If the dataset used by the machine learning model is exten-
sive and sufficient, the model performs better and achieves higher accuracy. Image
data augmentation is the most well-known type of data augmentation, involving the
transformation of images from the training dataset into modified duplicates that be-
long to the same class as the original images. These transformations include shifts,
flips, zooms, and other operations.

Examples of conventional data augmentation techniques include geometric transfor-
mations, color adjustments, rotation, reflection, and noise injection. Various strate-

14



gies are commonly applied in model training. Numerous studies indicate that con-
ventional data augmentation techniques and other technologies can improve model
performance, with geometric transformations being particularly significant [6] [5].
In our research, we expanded our dataset using a TensorFlow-based data augmen-
tation approach, employing techniques such as rotation, and flipping. We only use
data augmentation on our training data.

Figure 3.4 represents the number of images after augmentation per class. Figure 3.3
and Figure 3.5 shows the distribution of the images Before Augmentation and After
Augmentation. Figure 3.6 and Figure 3.7 shows one sample image from the dataset
before augmentation and after augmentation respectively.

Number of Training Images After Augmentation
Diseases Name No. of images
Anthracnose_leaf 852
Bacterial_Canker_leaf 623
Die_Black_Leaf 870
Gall_Midge_Leaf 7585
Leaf_Cutting_Weevil_Leaf 684
Powdery_Mildew_Leaf 755
Red_Rust_Leaf 850
Shoot_Mold 880
Mormal_Leaf 832

Figure 3.4: Number of Traning Images Table After Augmentation

Number of Traning Images Aller Augmenlalion

Anrhre e e Da cmmu L ks Diig Dick Leaf Gall micgs Leut Lani r.‘ur ing e Prwe h-lry MA.I( aw

Number of Images

il

Saoot, mold Leaf

T\amp nt m:-aqpr.

Figure 3.5: Number of Traning Images After Augmentation

15



250

200
100
200 150
L
[1s]
300 3
400 100
500
50
0 200 400 600 800 1000
0
Figure 3.6: Before Augmentation
0 250
25
50 200
75
150
100 w
m
125 "
100
150
175 50
200

0 50 100 150 200

Figure 3.7: After Augmentation

3.4.3 Pre-processed Data

We successfully pre-processed our data, preparing it for effective model training and
reliable performance. Initially, our dataset comprised 1,907 original images. We
then split the dataset, allocating 80% for training, 10% for testing, and 10% for
validation. This resulted in 1,533 images for training, 187 for testing, and 187 for
validation. As previously mentioned, we only augmented our training data. After
augmentation, the total number of training images increased to 7,161. Figure 3.8
shows the distribution of the dataset after splitting.

16



1600 Dataset Split for Image Classification

1400

1200

[y
[=]
(=]
(=]

800

Number of Images

(wp]
=
=]

400

187 187

Training Testing Validation
Dataset Split

200

Figure 3.8: Dataset Split for Image Classification

3.5 Model Specification

3.5.1 Convolutional Neural Network(CNN)

Convolutional neural networks (CNNs) are a reliable neural network model, which
is used not only in computer vision but also for image identification. The structure
consists of three basic layers that are the convolutional layer, the pooling layer, and
the fully connected layer. The first stage of a CNN is the input layer where raw
data is inserted. It is called the convolution layer. It collects unprocessed pictures
built with units of pixels, where each pixel indicates its color or lighting.

17



Fully

Convolution Connected

PooIing___,..r-“"—‘.

\ L
%

Feature Extraction Classification

Figure 3.9: Architecture of CNN model

Convolution Layer: The convolutional layer is the most important part of The
CNN model structure. It is mostly used for separating necessary data from raw
input images. A dot product operation is executed by this layer between the input
image and a set of smaller kernels of filters. The filters help the convolution layer to
find various patterns such as edges, textures, and intricate structures. Essential vi-
sual features are captured and passed to subsequent layers for further examination.
A stride is the size at which a kernel slides.

For a black and white image with dimensions n*n*1 and filter size f*f*c:

Formula: (n-f4+1)*(n-f+1)*c ............ (1)

Here, 'n’ is the image size, 't’ is the filter size, and ¢’ represents the number of
filters.

For a color image in RGB format with dimensions n*n*3 and the kernel size f*{*3:
Formula: (n-f41)*(n-f+1)*1 ............ (2)

Here, 'n’ denotes the image size, ’f’ is the number of filters and we are calculating
the output size for a single channel.

Finally, a feature map is obtained from the convolution layer processing that gives
vital data about the input image, corners, and edges and serves as the input for
subsequent layers, promoting advanced features and patterns.

Pooling Layer: After the convolutional layer comes the pooling layer which is
used for minimising computational complexity. This layer performs the downsam-

18



pling of convolved feature maps which decreases the amount of input that needs to
be compiled in subsequent layers. Three common pooling operations are mentioned
here such as max pooling, sum pooling, and average pooling. Max pooling selects
the maximum values from the feature map for required calculations whereas avg
pooling takes the average of the values. However, sum pooling collects the total
added value present in the feature map. These methods act as a bridge between
the convolutional and fully connected layers by assisting in capturing the necessary
data and minimizing the dimensionality of the data. [3]

1 1 2 9

6 7 9
6 5 7 8 Max-Pool with 2x2 filter

6 7 8
3 2 1 2 3 5 9
2 1 5 9
1 1 2 9

3.25 375 6.5
6 5 7 8 Avg-Pool with 2x2 filter

4 (375 45
3 2 ! 2 2 1225|425
2 1 5 9

Figure 3.10: Example pooling

Therefore, the pooling layer is very important for generalising the separated fea-
tures from the convolution layer and reducing computational requirements within
the network. The pooling layer acts as the middle line between the convolution layer
and fully connected layer, that results in smoother data processing which makes the
model more potent in recognizing the important features.

Fully Connected Layers: In this layer, every neuron is interconnected with each
neuron present in the subsequent layer. This step involves transformation of the
input images into a flattened layer that is sent to the Fully Connected (FC) layer.
Because of the flattened feature, the classification process is more efficient. As two
connected layers result in a better model performance, a connection between tro FC
layers is established.

Figure 3.11: Fully connected layer

19



3.5.2 MobileNet V2

The MobileNetV2 model is a Convolutional Neural Network architecture that is
mostly designed for portable mobile and edge devices known for its efficiency and
performance. To begin with it has 53 convolutional layers and a single average pool-
ing layer which results in around 350 GFLOP that is Gigaflop operations. Moreover,
A key feature of MobileNetV2 is the implementation of depthwise independent con-
volutions layers that are divided into two operations- depthwise and pointwise meth-
ods. This model significantly reduces computation time by using individual spatial
filters for each input channel. Therefore, MobileNetV2 achieves a perfect balance
and equilibrium between computational precision and model performance that is
much more effective for image processing and different applications that use differ-
ent machine learning. The architecture consists of two key elements- effectiveness
and also efficiency. The blocks are:

e Inverted Residual block with Stride 1.
e Bottleneck Residual Block with stride 2.

Internal component of stride 1 and 2 blocks:

Add Conv 1x1, Linear

T T

Conv 1x1, Linear
Dwise 3x3,

T stride=2, Relué
Dwise 3x3, Relu6 T
T Conv 1x1, Relué
Conv 1x1, Relué T
input
input P
Stride=1 block Stride=2 block

Figure 3.12: Fully connected layer

There are three different layers for each block:

e 1x1 Convolution with Relu6.
e Depthwise Convolution.

e 1x1 Convolution without any non-linearity.

20



3.5.3 VGG 16

VGG16 is a well known and widely recognized convolutional neural network archi-
tecture proposed by the Visual Graphics Group (VGG) at the University of Oxford.
It is specially renowned for image classification because of its simplicity and uniform
architecture. The VGG16 architecture is characterised by its depth. In VGG16 the
“16” indicates the number of weight layers into the network, that is 13 convolutional
layers and 3 fully connected layers.

The key feature of VGG16 is that this architecture uses small 3x3 convolutional fil-
ters with a stride of 1 and padding of 1 to maintain the spatial resolution.Moreover
this model allows for the persistence of spatial information resulting in finer spatial
details. Normally VGG16 uses max pooling with a 2x2 filter and stride of 2 to
efficiently reduce the spatial dimensions from the input image.

VGG16 is designed in such a way that it can handle input images of size 224x224
pixels with three RGB colour channels ensuring that it can effectively capture and
process visual information. The model consists of 13 convolutional layers divided
into 5 blocks. A max-pooling layer is followed by each of the blocks. The architec-
ture further includes 18 fully connected layers with the first three fully connected
layers containing 4096 neurons each. The final output layer is a softmax layer that
gives output a probability distribution over the 1000 classes.

VGG16 is now widely used in various computer vision tasks, object detection, and
feature extraction and marked a significant improvement over previous configura-
tions showcasing the power of deep neural networks in computer vision. Besides
it is widely used for transfer learning due to its simplicity or uniform architecture
and strong feature extraction capabilities. At last, VGG16 is influencing practi-
cal applications in various fields including image recognition, object detection, and
more.

21



224x224%3 224x224x64

112x112x128
S6xS6%256
xxxxxxxxxxxxx 286
||||||||
11111 o 1x1x11
'; llU f e — (B
l olution+Rel.U
5 \|.u-.qu...
=9 Dense
= ooling2D

Conv 1.1
Pooling

Pooling

Conv 4.2
Conv4.3
oling

Pooling

Conv 2.1
Conv 2.2
Conv 3.1
Conv 3.2
Conv 3.3
Po

Conv 5.1
Conv 5.2
Conv5.3

Figure 3.13: VGG16 architecture

3.5.4 DenseNetl169

DenseNet169 is a kind of densely connected convolutional network with 169 layers;
this includes convolutional layers, pooling, dense blocks, transition layers, and final
layers. It utilizes a feed-forward system in such a way that each layer is connected
to all previous layers, therefore enhancing feature re-use and smoothness in the van-
ishing gradient problem.

Suitable for input images of size 224x224 pixels with RGB colour channels, DenseNet169
performs very well in image classification. Dense connectivity patterns are the cause

of its improved gradient flows and network efficiency compared with earlier archi-
tectures.

Exciting DenseNet169 is accomplished by the dense blocks, each made of some
convolutional layers set as an input of the previous layers. Transition layers in be-
tween dense blocks help in managing feature map sizes along with keeping network
complexity in check.

DenseNet169 was an advance important beyond prior DNNs, which showed its im-
pact on many applications of computer vision for academic research to practical
applications of image recognition and detection. Partly being more efficient at the
extraction and classification of features, it has contributed to actually obtaining

22



high-level analysis of visual data.
In general terms, DenseNet169 has shown the gains that the dense connections bring,

now setting benchmarks for both performance and efficiency in image-processing
tasks.

Flatten Layer
Layer

Softmax

A Activation

i B [E| B (2 B [& & |2 O\
x H H x & x A\

o | B |8 B 8§ |B O} B| g C-—0NpO —rner
g—bg—b i »>E— a —E— a3 — 5 a —b? e
S| I3 Z |- B ‘E § | § . s B+ Desia Tumos
e BN ERE R B ~ 1

a s - = = 1‘4{

Figure 3.14: DenseNet169 model architecture

3.5.5 InceptionV3

InceptionV3 is a widely used architecture in convolutional neural Networks, intro-
duced by Google. The motive behind launching InceptionV3 is to use multiple
convolution filters of different sizes to detect various characteristics from the in-
put image that helps in recognising different spatial features from the input image.
As InceptionV3 provides unique performance and efficiency that’s why this model
is particularly organised for image processing and classification tasks. The use of
1x1 convolutions has made this architecture more exceptional, which eventually im-
proves computational efficiency during dataset training and inference. [16]

InceptionV3 speeds up training and enhances the model’s robustness by normal-
ising the activations of the previous layer by using batch normalisation. Moreover,
this model provides more efficient grid sizes, and factorised convolutional layers.
Therefore, auxiliary classifiers are also included in InceptionV3, making its perfor-
mance more efficient and accurate. [4]

23



By breaking larger convolutions into smaller convolutions, InceptionV3 strikes a
brilliant balance between complexity and efficiency. As InceptionV3 architecture
provides auxiliary classifiers, it provides additional gradient signals and improves
convergence while dataset training. By using label smoothing InceptionV3 prevents
overfitting. InceptionV3 has not only pushed the boundaries of image processing
but also set a new milestone for future CNN architectures to aspire to. [11]

Stem l Reduction-A

Reduction-B

Figure 3.15: InceptionV3 architecture

24



Chapter 4

Implementation

4.1 Workflow

Our research journey started with the development of a dataset tailored for mango
leaf disease detection. We created our own extensive dataset, capturing leaf im-
ages from various mango gardens and trees in different regions of Bangladesh. This
involved a huge data collection and preprocessing phase, ensuring a diverse repre-
sentation of leaf condition and disease manifestation.

The dataset was carefully divided into segments allocated for training, validation,
and testing. Approximately 80% of the data was used for training the deep learn-
ing models, 10% for validating their performance, and the remaining 10% for final
testing to assess the model’s accuracy and generalization capabilities.

The model selection process was a critical step where we identified and evaluated
suitable models for leaf disease detection. Our chosen models fell into two categories:
custom models, in which we customized a model based on CNN architecture includ-
ing ConvolutionNet-5, ConvolutionNet-3, ConvolutionNet-4, ConvolutionNet-4M1,
ConvolutionNet-5M0, ConvolutionNet-5M1, ConvolutionNet-6). On the other hand,
pre-trained models, such as VGG16, MobileNetV2, InceptionV3, and DenseNet169,
offered a solid foundation due to their proven success in various image classification
tasks.

With the models selected, we proceeded to set up and fine-tune their hyperparam-
eters for optimal performance. This implementation phase involved training and
evaluating both our custom design model and the chosen pre-trained models on our
mango leaf disease dataset. The goal was to identify the most promising models
that could accurately detect and classify leaf diseases, providing a practical solution
for farmers to enhance mango cultivation practices.

Our research plan, as illustrated in Figure 4.1, showcases the evolution of our project,
from the creation of the specialized dataset to the selection and implementation of
models. It highlights our systematic and comprehensive approach ensuring the effec-
tive utilization of deep learning techniques for accurate mango leaf disease detection.

25



Image Data Collection

Il

Spliting

=

Image Classification
and Model Selection

|
Designed Model

[ CNN1 ‘ | CNN2 ‘ [ CNN3 ‘ [ CNN4 | ‘ CNNS ‘ l CNN6 ‘ ‘ CNN7 ‘
]
Design the model
\
\ \ |
‘ Input Layer ‘ Hidden Layer ‘ | Output Layer ‘

==l =)

Calculate different Performance Matrix

g

=

Figure 4.1: Workflow details for implementation

4.2 Setup for Experiment

4.2.1 Training hardware and Software

Modify the Model

Modify output layer for
our dataset

L

Experiments were conducted on a device with the following hardware specifications:

CPU Core i5 11th Gen

GPU NVIDIA GeForce GTX 1650 Ti
RAM 16GB

ROM 1TB

0s Windows 11

Figure 4.2: Summary of hardware characteristics

On this device, we used Google Colab to run the code.

26



4.2.2 Library List

Serial No Library Version
1 OpenCV 481

2 Numpy 1134

3 Matplotlib 370

4 Pandas 152

5 Scikit-learn 121

6 PIL 930

7 Keras 2150

8 Tensorflow 2150

Figure 4.3: Summary of Python library list

4.2.3 Structural view of the code skeleton

Step 1 Import the necessary libraries
Step 2 Load the data

Step 3 Prepare the data

Step 4 Visually represent the sample data
Step 5 Create model

Step 6 Compile the model

Step 7 Train and save the model

Step 8 Evaluate the model and make prediction
step 9 Visualize the Prediction

step 10 Calculate different performance matrix

Figure 4.4: Structural view of the code skeleton

4.3 Model Selection

For the concentration measurement task, we focused on selecting lightweight mod-
els to efficiently classify images. We employed a CNN-based architecture includ-
ing (ConvolutionNet-5, ConvolutionNet-3, ConvolutionNet-4, ConvolutionNet- 4M1,
ConvolutionNet-5M0, ConvolutionNet-5M1, ConvolutionNet-6), designing custom
model that strikes a balance between accuracy and computational efficiency. Our
designed model is very lightweight while delivering impressive accuracy.

27



In our project, we have chosen four pre-trained models which are known for their
lightweight architecture compared to other pre-trained models. These pre-trained
models are VGG16, MobileNetV2, InceptionV3, and DenseNet169, each of them

giving a unique combination of performance and accuracy.

While doing the model selection, we have given a strong emphasis on both ro-
bustness and unique performance. We have carefully handled the transfer learning
layer, which has ensured that the models can easily adapt to our specific measure-
ment task, despite not showing similar data previously. So the careful selection
and fine-tuning process will enhance the models’ performance and efficiency in our
workflow. Figure 4.5 shows the diagram of model selection.

Preprocessed
Data
Designed Pre- Trained
Model Model
CNN1 CNN2 CNN3 CNN4 CNN35 CNN6 CNN7 VGG16 DenseNet169 MobileNetV2 Inception V3

Figure 4.5: Diagram of model selection

4.4 Hyperparameter Tuning

Hyperparameters are those settings that we specify when calling a function or class.
These settings play a crucial role for the better performance of an algorithm. The
accurate values can significantly increase the algorithm’s efficiency and performance.
So for better performance of the models, proper hyperparameter selection is very
much necessary that directly influences better efficiency and performance. So, by
selecting appropriate hyperparameter values, essential success for any machine learn-
ing algorithm can be ensured.

For instance, when we trained our model, we initially used Adam as the optimizer
with a learning rate of 0.001, resulting in very low validation accuracy. By adjusting
the learning rate to 0.00001 to 0.000001, we observed a significant improvement in
validation accuracy. In another scenario, we set the steps per epoch value randomly
while training the model, which prevented the model from fully training because it
could only learn from a limited number of images ('steps per epoch * batch size’).
To ensure the model trained on the entire dataset, we adjusted ’steps per epoch’
to be the number of images in the training dataset divided by the batch size. This
adjustment led to the expected validation accuracy.

28



4.5 Design and Compile the Models

4.5.1 ConvolutionNet-5

The model consists of five convolutional layers, along with a max-pooling layer with
a 2x2 pool size in each convolutional layer. Max-pooling layer used for down sam-
pling. It reduces the image information. As a result, the computational cost gets
reduced. The first layer has 16 filters, the second has 32 filters, the third has 64
filters, the fourth has 128 filters, the fifth has 256 filters. We used ReLU as ac-
tivation function in every convolutional layer. Then we implement flatten layer.
The flattened output is passed through a densely connected layer with 256 and
512 neurons and a ReLU activation function. We use five BatchNormalization be-
fore every max-pooling layer and two after densely connected layer for stabilizes,
accelerates training, improves generalization. After that, we used a dropout layer
with a dropout rate of 0.5. This layer helps to allay from overfitting. Finally, we
implement the output layer that consists eleven neurons with a softmax activation
function. The softmax function is suitable for multiclass. The aim of this model is to
learn hierarchical features through convolution and pooling operations, dense layers
for classification, while dropout helps enhance generalization by preventing overfit-
ting during training. Then we compile the model using the Adam optimizer with a
learning rate of 0.00001. We choose spsres categorical crossentropy as loss function,
which is suitable for multiclass classification. Additionally, the accuracy metric is
specified for monitoring the model’s performance during training and evaluation.

4.5.2 ConvolutionNet-5MO0

The model consists of five convolutional layers, along with a max-pooling layer with
a 2x2 pool size in each convolutional layer. Max-pooling layer used for downsam-
pling. It reduces the image information. As a result, the computational cost gets
reduced. The first layer has 32 filters, the second has 64 filters, the third has 128
filters, the fourth has 256 filters, and the fifth has 512 filters. We used ReLU as
activation function in every convolutional layer. Then we implement flatten layer.
The flattened output is passed through a densely connected layer with 512 and
1024 neurons and a ReLU activation function. We use five BatchNormalization
before every max-pooling layer and two after densely connected layer to stabilize,
accelerates training, improves generalization. After that, we used a dropout layer
with a dropout rate of 0.5. This layer helps to allay from overfitting. Finally, we
implement the output layer that consists eleven neurons with a softmax activation
function. The softmax function is suitable for multiclass. The aim of this model is to
learn hierarchical features through convolution and pooling operations, dense layers
for classification, while dropout helps enhance generalization by preventing overfit-
ting during training. Then we compile the model using the Adam optimizer with a
learning rate of 0.0001. We choose sparse categorical crossentropy as loss function,
which is suitable for multiclass classification. Additionally, the accuracy metric is
specified for monitoring the model’s performance during training and evaluation.

29



4.5.3 ConvolutionNet-5M1

The model consists of five convolutional layers, along with a max-pooling layer with a
2x2 pool size in each convolutional layer. Max-pooling layer used for down sampling.
It reduces the image information. As a result, the computational cost gets reduced.
The first layer has 16 filters, the second has 32 filters, the third has 64 filters, the
fourth has 128 filters, the fifth has 256 filters. We used ReLU as activation function
in every convolutional layer. Then we implement flatten layer. The flattened output
is passed through a densely connected layer with 256 and 512 neurons and a ReLLU
activation function. We use five BatchNormalization before every max-pooling layer
and two after densely connected layer for stabilizes, accelerates training, improves
generalization. After that, we used a dropout layer with a dropout rate of 0.4. This
layer helps to allay from overfitting. Finally, we implement the output layer that
consists eleven neurons with a softmax activation function. The softmax function is
suitable for multiclass. The aim of this model is to learn hierarchical features through
convolution and pooling operations, dense layers for classification, while dropout
helps enhance generalization by preventing overfitting during training. Then we
compile the model using the AdamW optimizer with a learning rate of 0.00001.
We choose sparse categorical crossentropy as loss function, which is suitable for
multiclass classification. Additionally, the accuracy metric is specified for monitoring
the model’s performance during training and evaluation.

4.5.4 ConvolutionNet-4

The model consists of four convolutional layers, along with a max-pooling layer
with a 2x2 pool size in each convolutional layer. Max-pooling layer used for down
sampling. It reduces the image information. As a result, the computational cost
gets reduced. The first layer has 32 filters, the second has 64 filters, the third has
128 filters and the fourth has 256 filters. We used ReLU as activation function in
every convolutional layer. Then we implement flatten layer. The flattened output
is passed through a densely connected layer with 512 and 256 neurons and a ReLLU
activation function. We use four BatchNormalization before every max- pooling
layer and two after densely connected layer for stabilizes, accelerates training, im-
proves generalization. After that, we used a dropout layer with a dropout rate of
0.5. This layer helps to allay from overfitting. Finally, we implement the output
layer that consists eleven neurons with a softmax activation function. The softmax
function is suitable for multiclass. The aim of this model is to learn hierarchical
features through convolution and pooling operations, dense layers for classification,
while dropout helps enhance generalization by preventing overfitting during train-
ing. Then we compile the model using the Adam optimizer with a learning rate of
0.00001. We choose sparse categorical crossentropy as loss function, which is suit-
able for multiclass classification. Additionally, the accuracy metric is specified for
monitoring the model’s performance during training and evaluation.

4.5.5 ConvolutionNet-4M1

The model consists of four convolutional layers, along with a max-pooling layer
with a 2x2 pool size in each convolutional layer. Max-pooling layer used for down
sampling. It reduces the image information. As a result, the computational cost

30



gets reduced. The first layer has 16 filters, the second has 32 filters, the third has
64 filters and the fourth has 256 filters. We used ReLU as activation function in
every convolutional layer. Then we implement flatten layer. The flattened output
is passed through a densely connected layer with 256 and 512 neurons and a ReLLU
activation function. We use four BatchNormalization before every max- pooling
layer and two after densely connected layer to stabilize, accelerates training, im-
proves generalization. After that, we used a dropout layer with a dropout rate of
0.5. This layer helps to allay from overfitting. Finally, we implement the output
layer that consists eleven neurons with a softmax activation function. The softmax
function is suitable for multiclass. The aim of this model is to learn hierarchical
features through convolution and pooling operations, dense layers for classification,
while dropout helps enhance generalization by preventing overfitting during train-
ing. Then we compile the model using the Adam optimizer with a learning rate of
0.00001. We choose sparse categorical crossentropy as loss function, which is suit-
able for multiclass classification. Additionally, the accuracy metric is specified for
monitoring the model’s performance during training and evaluation.

4.5.6 ConvolutionNet-6

The model consists of four convolutional layers, along with a max-pooling layer
with a 2x2 pool size in each convolutional layer. Max-pooling layer used for down
sampling. It reduces the image information. As a result, the computational cost
gets reduced. The first layer has 16 filters, the second has 32 filters, the third has
64 filters, the fourth has 128 filters, the fifth has 256 filters and the fifth has 512
filters. We used ReLU as activation function in every convolutional layer. Then we
implement flatten layer. The flattened output is passed through a densely connected
layer with 256 and 256 neurons and a ReLLU activation function. We use six Batch-
Normalization before every max-pooling layer and two after densely connected layer
for stabilizes, accelerates training, improves generalization. After that, we used a
dropout layer with a dropout rate of 0.5. This layer helps to allay from overfitting.
Finally, we implement the output layer that consists eleven neurons with a softmax
activation function. The softmax function is suitable for multiclass. The aim of
this model is to learn hierarchical features through convolution and pooling opera-
tions, dense layers for classification, while dropout helps enhance generalization by
preventing overfitting during training. Then we compile the model using the Adam
optimizer with a learning rate of 0.00001. We choose sparse categorical crossentropy
as loss function, which is suitable for multiclass classification. Additionally, the ac-
curacy metric is specified for monitoring the model’s performance during training
and evaluation.

4.5.7 ConvolutionNet-3

The model consists of three convolutional layers, along with a max-pooling layer
with a 2x2 pool size in each convolutional layer. Max-pooling layer used for down
sampling. It reduces the image information. As a result, the computational cost
gets reduced. The first layer has 16 filters, the second has 32 filters and the third
has 64 filters. We used ReLLU as activation function in every convolutional layer.
Then we implement flatten layer. The flattened output is passed through a densely

31



connected layer with 256 neurons and a ReLU activation function. We use three
BatchNormalization before every max-pooling layer and one after densely connected
layer for stabilizes, accelerates training, improves generalization. After that, we used
a dropout layer with a dropout rate of 0.2. This layer helps to allay from overfit-
ting. Finally, we implement the output layer that consists eleven neurons with a
softmax activation function. The softmax function is suitable for multiclass. The
aim of this model is to learn hierarchical features through convolution and pooling
operations, dense layers for classification, while dropout helps enhance generaliza-
tion by preventing overfitting during training. Then we compile the model using
the Adam optimizer with a learning rate of 0.000001. We choose sparse categorical
crossentropy as loss function, which is suitable for multiclass classification. Addi-
tionally, the accuracy metric is specified for monitoring the model’s performance
during training and evaluation.

4.5.8 VGG16

The VGG16 is one of the pre-trained models that trained on a large amount of
dataset.At first, we loaded the model and removed its original fully connected lay-
ers. Secondly , we have modified it by adding a global average pooling layer to the
output of the VGG16 model. After this, by using ReLU as the activation function
we added a densely connected layer with 512 and 256 neurons. We have used a
dropout layer with a rate of 0.5. The final output layer is a dense layer with three
neurons. We have employed the softmax activation function, which is appropriate
for multi-class classification.By retaining only the weights of the mode we freeze the
top layer and the base model. This process can be considered as feature extraction.
Through this setup, the pre-trained VGG16 features can be leveraged for accurate
image feature extraction.

Then we can compile the model using the Adam optimizer with a learning rate of
0.00001. During the time of compilation, we can use sparse categorical crossentropy
that is considered as the loss function, which is suitable for multi-class classification.
Finally, we specified the accuracy metric for monitoring the model’s performance
during training and evaluation.

4.5.9 InceptionV3

The InceptionV3 is one of the pre-trained models that trained on a large amount
of dataset.At first, we loaded the model and removed its original fully connected
layers. Secondly , we have modified it by adding a global average pooling layer to
the output of the InceptionV3 model. After this, by using ReLLU as the activation
function we added a densely connected layer with 128 and 512 neurons. We have
used a dropout layer with a rate of 0.5. The final output layer is a dense layer
with three neurons. We have employed the softmax activation function, which is
appropriate for multi-class classification.By retaining only the weights of the mode
we freeze the top layer and the base model. This process can be considered as fea-
ture extraction. Through this setup, the pretrained InceptionV3 features can be
leveraged for accurate image feature extraction.

32



Then we can compile the model using the Adam optimizer with a learning rate of
0.00001. During the time of compilation, we can use sparse categorical crossentropy
that is considered as the loss function, which is suitable for multi-class classification.
Finally, we specified the accuracy metric for monitoring the model’s performance
during training and evaluation.

4.5.10 MobileNetV2

The MobileNetv2 is one of the pre-trained models that trained on a large amount
of dataset.At first, we loaded the model and removed its original fully connected
layers. Secondly , we have modified it by adding a global average pooling layer to
the output of the MobileNetv2 model. After this, by using ReLLU as the activation
function we added a densely connected layer with 128 and 512 neurons. We have
used a dropout layer with a rate of 0.5. The final output layer is a dense layer
with three neurons. We have employed the softmax activation function, which is
appropriate for multi-class classification.By retaining only the weights of the mode
we freeze the top layer and the base model. This process can be considered as fea-
ture extraction. Through this setup, the pretrained MobileNetv2 features can be
leveraged for accurate image feature extraction.

Then we can compile the model using the Adam optimizer with a learning rate of
0.00001. During the time of compilation, we can use sparse categorical cross-entropy
that is considered as the loss function, which is suitable for multi-class classification.
Finally, we specified the accuracy metric for monitoring the model’s performance
during training and evaluation.

4.5.11 DenseNet169

The DenseNet169 is one of the pre-trained models that trained on a large amount
of dataset. At first, we loaded the model and removed its original fully connected
layers. Secondly, we have modified it by adding a global average pooling layer to
the output of the DenseNet169 model. After this, by using ReLLU as the activation
function we added a densely connected layer with 128 and 512 neurons. We have
used a dropout layer with a rate of 0.5. The final output layer is a dense layer
with three neurons. We have employed the softmax activation function, which is
appropriate for multi-class classification. By retaining only the weights of the mode
we freeze the top layer and the base model. This process can be considered as fea-
ture extraction. Through this setup, the pre-trained DenseNet169 features can be
leveraged for accurate image feature extraction.

Then we can compile the model using the Adam optimizer with a learning rate
of 0.00001. During the time of compilation, we can use sparse categorical cross
entropy which is considered as the loss function, which is suitable for multi-class
classification. Finally, we specified the accuracy metric for monitoring the model’s
performance during training and evaluation.

33



Chapter 5

Result Analysis

5.1 Train and evaluate the Models

5.1.1 ConvolutionNet-5

We train this model by providing the train and validation dataset. The batch size
is 8. So, steps per epoch = number of training samples/batch size. Which means
that the training process will iterate a number of steps that is equal to one eight of
the total number of samples in the training dataset during each epoch. The training
will be executed for 50 epochs as we set epochs = 50. We also use callbacks. Which
will monitor the validation accuracy and save the model which is responsible for
maximum validation accuracy. We also store the training history in a variable and
visualize it on a graph. This model’s test accuracy is 0.9411 and validation accuracy
is 0.9130. Figures 4.6 and 4.7 represent two graphs one is training accuracy Vs
validation accuracy and the other one is training loss Vs validation loss.

ConvolutionNet-5 Model Accuracy

0.9 4 = T

0.37 —— Accuracy (Train)
Accuracy (Validation)

T
0 10 20 30 40 50
Epoch

Figure 5.1: Training_accuracy Vs Validation_accuracy of ConvolutionNet-5

34



ConvolutionNet-5 Model Loss

3.0 1 —— Loss (Train)
Loss (Validation)
2.5
2.0
%]
n
3 1.5
1.0 A
0.5
T T T T T T
0 10 20 30 40 50
Epoch

Figure 5.2: Training loss Vs Validation_loss of ConvolutionNet-5

5.1.2 ConvolutionNet-3

We train this model by providing the train and validation dataset. The batch size
is 8. So, steps per epoch = number of training samples/batch size. Which means
that the training process will iterate a number of steps that is equal to one eight of
the total number of samples in the training dataset during each epoch. The training
will be executed for 50 epochs as we set epochs = 50. We also use callbacks. Which
will monitor the validation accuracy and save the model which is responsible for
maximum validation accuracy. We also store the training history in a variable and
visualize it on a graph. This model’s test accuracy is 0.8877 and validation accuracy
is 0.8478. Figures 4.8 and 4.9 represent two graphs one is training accuracy Vs
validation accuracy and the other one is training loss Vs validation loss.

ConvolutionNet-3 Model Accuracy

0.8 1
>
@ 0.7
o |
o
2 0.6
0.5
0.4 —— Accuracy (Train)
’ Accuracy (Validation)
T T T T T T
0 10 20 30 40 50
Epoch

Figure 5.3: Training accuracy Vs Validation_accuracy of ConvolutionNet-3

35



ConvolutionNet-3 Model Loss

2007 —— Loss (Train)
1.75 Loss (Validation)
1.50
1.25 A
B
g 1.00 4
0.75 4 ;
0.50 .
0.25
0.00 +— . , ‘ : :
0 10 20 30 40 50
Epoch

Figure 5.4: Training loss Vs Validation_loss of ConvolutionNet-3

5.1.3 ConvolutionNet-4

We train this model by providing the train and validation dataset. The batch size
is 8. So, steps per epoch = number of training samples/batch size. Which means
that the training process will iterate a number of steps that is equal to one eight of
the total number of samples in the training dataset during each epoch. The training
will be executed for 50 epochs as we set epochs = 50. We also use callbacks. Which
will monitor the validation accuracy and save the model which is responsible for
maximum validation accuracy. We also store the training history in a variable and
visualize it on a graph. This model’s test accuracy is 0.9144 and validation accuracy
is 0.8804. Figures 4.10 and 4.11 represent two graphs one is training accuracy Vs
validation accuracy and the other one is training loss Vs validation loss.

ConvolutionNet-4 Model Accuracy

1.0
0.9 1 __.,-_/—"’_/v‘/_w
0.8 1
3 0.7 7
s
2 0.6
go
0.5
0.4+ —— Accuracy (Train)
Accuracy (Validation)
0.3 1 T T T T T T
0 10 20 30 40 50
Epoch

Figure 5.5: Training_accuracy Vs Validation_accuracy of ConvolutionNet-4

5.1.4 ConvolutionNet-4M1

We train this model by providing the train and validation dataset. The batch size
is 8. So, steps per epoch = number of training samples/batch size. Which means
that the training process will iterate a number of steps that is equal to one eight of
the total number of samples in the training dataset during each epoch. The training

36



Loss

ConvolutionNet-4 Model Loss

2.5

2.04

1.5 4

1.0 A

0.5 A

—— Loss (Train)
Loss (Validation)

Epoch

Figure 5.6: Training loss Vs Validation_loss of ConvolutionNet-4

will be executed for 50 epochs as we set epochs = 50. We also use callbacks. Which
will monitor the validation accuracy and save the model which is responsible for
maximum validation accuracy. We also store the training history in a variable and
visualize it on a graph. This model’s test accuracy is 0.8983 and validation accuracy
is 0.8967. Figures 4.12 and 4.13 represent two graphs one is training accuracy Vs
validation accuracy and the other one is training loss Vs validation loss.

ConvolutionNet-4M1 Model Accuracy

—— Accuracy (Train)
Accuracy (Validation)

T
10

T T T T
20 30 40 50
Epoch

Figure 5.7: Training_accuracy Vs Validation_accuracy of ConvolutionNet-4M1

37



Loss

2.25 1

2.00 1

1.75 A

1.50 A

1.25 A

1.00 4

0.75 4

0.50 4

0.25 4

ConvolutionNet-4M1 Model Loss

—— Loss (Train)
Loss (Validation)

10 20 30 40 50
Epoch

Figure 5.8: Training_loss Vs Validation_loss of ConvolutionNet-4M1

5.1.5 ConvolutionNet-5M0

We train this model by providing the train and validation dataset. The batch size
is 8. So, steps per epoch = number of training samples/batch size. Which means
that the training process will iterate a number of steps that is equal to one eight of
the total number of samples in the training dataset during each epoch. The training
will be executed for 50 epochs as we set epochs = 50. We also use callbacks. Which
will monitor the validation accuracy and save the model which is responsible for
maximum validation accuracy. We also store the training history in a variable and
visualize it on a graph. This model’s test accuracy is 0.8823 and validation accuracy
is 0.9022. Figures 4.14 and 4.15 represent two graphs one is training accuracy Vs
validation accuracy and the other one is training loss Vs validation loss.

ConvolutionNet-5M0 Model Accuracy

=] W
0.9 /'-\\/ /.-/""
» /’_ |
0.8 /_/_,--/
0.7
0.6
0.5
—— Accuracy (Train)
0.4 Accuracy (Validation)
T T T T T
10 20 30 40 50

Epoch

Figure 5.9: Training accuracy Vs Validation _accuracy of ConvolutionNet-5M0

38



Loss

ConvolutionNet-5M0 Model Loss

23] —— Loss (Train)
Loss (Validation)
2.0
154
1.0 1
\_\_\_
057 P TN, . : \
T ]
e e M ML oL
0.0 T T T T T
10 20 30 40 50
Epoch

Figure 5.10: Training loss Vs Validation_loss of ConvolutionNet-5M0

5.1.6 ConvolutionNet-5M1

We train this model by providing the train and validation dataset. The batch size
is 16. So, steps per epoch = number of training samples/batch size. Which means
that the training process will iterate a number of steps that is equal to one Sixteen of
the total number of samples in the training dataset during each epoch. The training
will be executed for 50 epochs as we set epochs = 50. We also use callbacks. Which
will monitor the validation accuracy and save the model which is responsible for
maximum validation accuracy. We also store the training history in a variable and
visualize it on a graph. This model’s test accuracy is 0.9144 and validation accuracy
is 0.8920. Figures 4.16 and 4.17 represent two graphs one is training accuracy Vs
validation accuracy and the other one is training loss Vs validation loss.

ConvolutionNet-5M1 Model Accuracy

e

—— Accuracy (Train)
Accuracy (Validation)

T T T T T
10 20 30 40 50
Epoch

Figure 5.11: Training_accuracy Vs Validation_accuracy of ConvolutionNet-5M1

39



ConvolutionNet-5M1 Model Loss

—— Loss (Train)
817 Loss (Validation)

4 T T T T T T
0 10 20 30 40 50

Epoch

Figure 5.12: Training loss Vs Validation_loss of ConvolutionNet-5M1

5.1.7 ConvolutionNet-6

We train this model by providing the train and validation dataset. The batch size
is 8. So, steps per epoch = number of training samples/batch size. Which means
that the training process will iterate a number of steps that is equal to one eight of
the total number of samples in the training dataset during each epoch. The training
will be executed for 50 epochs as we set epochs = 50. We also use callbacks. Which
will monitor the validation accuracy and save the model which is responsible for
maximum validation accuracy. We also store the training history in a variable and
visualize it on a graph. This model’s test accuracy is 0.8823 and validation accuracy
is 0.8587. Figures 4.18 and 4.19 represent two graphs one is training accuracy Vs
validation accuracy and the other one is training loss Vs validation loss.

ConvolutionNet-6 Model Accuracy

0.8 1 w il
0.7
>
E 0.6 1
o |
o
£ 054
0.4
0.3 —— Accuracy (Train)
Accuracy (Validation)
T T T T T T
0 10 20 30 40 50

Epoch

Figure 5.13: Training accuracy Vs Validation_accuracy of ConvolutionNet-6

40



ConvolutionNet-6 Model Loss

3.0 1 -
—— Loss (Train)
Loss (Validation)
2.5
2.0 1
%]
n
8
154
1.0
. BV VAW
0-5 - & \—_\_-_\_.__
T T T T T T
0 10 20 30 40 50

Epoch

Figure 5.14: Training_loss Vs Validation_loss of ConvolutionNet-6

5.1.8 VGG16

We train this model by providing the train and validation dataset. The batch size
is 8. So, steps per epoch = number of training samples/batch size. Which means
that the training process will iterate a number of steps that is equal to one eight of
the total number of samples in the training dataset during each epoch. The training
will be executed for 50 epochs as we set epochs = 50. We also use callbacks. Which
will monitor the validation accuracy and save the model which is responsible for
maximum validation accuracy. We also store the training history in a variable and
visualize it on a graph. This model’s test accuracy is 0.8770 and validation accuracy
is 0.8261. Figures 4.20 and 4.21 represent two graphs one is training accuracy Vs
validation accuracy and the other one is training loss Vs validation loss.

VGG16 Model Accuracy

0.8

0.7 A

0.6

0.5

Accuracy

0.4 4

0.3

—— Accuracy (Train)
Accuracy (Validation)

0.2+

T T T T T T
0 10 20 30 40 50
Epoch

Figure 5.15: Training accuracy Vs Validation_accuracy of VGG16

41



VGG16 Model Loss

—— Loss (Train)
3.0 Loss [Validation)
2.5
v 2.0
8
151
1.0 1
0.5 1
T T T T T T
0 10 20 30 40 50
Epoch

Figure 5.16: Training loss Vs Validation_loss of VGG16

5.1.9 MobileNetV2

We train this model by providing the train and validation dataset. The batch size
is 8. So, steps per epoch = number of training samples/batch size. Which means
that the training process will iterate a number of steps that is equal to one eight of
the total number of samples in the training dataset during each epoch. The training
will be executed for 50 epochs as we set epochs = 50. We also use callbacks. Which
will monitor the validation accuracy and save the model which is responsible for
maximum validation accuracy. We also store the training history in a variable and
visualize it on a graph. This model’s test accuracy is 0.8021 and validation accuracy
is 0.8152. Figures 4.22 and 4.23 represent two graphs one is training accuracy Vs
validation accuracy and the other one is training loss Vs validation loss.

MobileNetV2 Model Accuracy

go4 Accuracy (Train)
Accuracy (Validation)

0.8 4

0.7 A

0.6

0.5

Accuracy

0.4 4

0.3 1

0.2 4

T T T T T T
0 10 20 30 40 50
Epoch

Figure 5.17: Training accuracy Vs Validation_accuracy of MobileNetV2

42



MobileNetV2 Model Loss

—— Loss (Train)
2.54 Loss [Validation)
2.0 1
i
S 1-5 -
1.0
0.5 T T T T T T
0 10 20 30 40 50
Epoch
Figure 5.18: Training_loss Vs Validation_loss of MobileNetV2

43



5.1.10 InceptionV3

We train this model by providing the train and validation dataset. The batch size
is 8. So, steps per epoch = number of training samples/batch size. Which means
that the training process will iterate a number of steps that is equal to one eight of
the total number of samples in the training dataset during each epoch. The training
will be executed for 50 epochs as we set epochs = 50. We also use callbacks. Which
will monitor the validation accuracy and save the model which is responsible for
maximum validation accuracy. We also store the training history in a variable and
visualize it on a graph. This model’s test accuracy is 0.8823 and validation accuracy
is 0.8533. Figures 4.24 and 4.25 represent two graphs one is training accuracy Vs
validation accuracy and the other one is training loss Vs validation loss.

InceptionV3 Model Accuracy

094 Accuracy (Train)
: Accuracy (Validation) ;

0.8 T et
=

0.7 A

0.6

Accuracy

0.5

0.4

0.3 4

0.2

T T T T
20 30 40 50
Epoch

o
=
o

Figure 5.19: Training_accuracy Vs Validation_accuracy of InceptionV3

InceptionV3 Model Loss

2.5 —— Loss (Train)
: Loss (Validation)
2.0 1
]
8 15
] i x
0.5 i T T T T T
0 10 20 30 40 50
Epoch

Figure 5.20: Training loss Vs Validation_loss of InceptionV3

5.1.11 DenseNet169

We train this model by providing the train and validation dataset. The batch size
is 8. So, steps per epoch = number of training samples/batch size. Which means
that the training process will iterate a number of steps that is equal to one eight of
the total number of samples in the training dataset during each epoch. The training
will be executed for 50 epochs as we set epochs = 50. We also use callbacks. Which

44



will monitor the validation accuracy and save the model which is responsible for
maximum validation accuracy. We also store the training history in a variable and
visualize it on a graph. This model’s test accuracy is 0.8342 and validation accuracy
is 0.8696. Figures 4.26 and 4.27 represent two graphs one is training accuracy Vs
validation accuracy and the other one is training loss Vs validation loss.

DenseNet169 Model Accuracy

0.2 —— Accuracy (Train)
Accuracy (Validation)

T T T T T T
0 10 20 30 40 50
Epoch

Figure 5.21: Training_accuracy Vs Validation_accuracy of DenseNet169

DenseNet169 Model Loss

—— Loss (Train)
3.5 Loss (Validation)

3.0 1

2.5

Loss

2.01

154

1.0+

Epoch

Figure 5.22: Training_loss Vs Validation_loss of DenseNet169

5.2 Ablation Study of Custom Convolutional Neu-
ral Networks for Mango Leaf Disease Classi-
fication

In this section, we have observed and compared the performance and accuracy of
seven custom (CNNs) architecture designed for the variation or classification of
various mango leaf diseases. These models are different in their architectures and
characteristics, including the number of convolutional layers, dense layers, filter
sizes, optimizers, learning rates, batch sizes, and dropout rates. The main goal of
this study is to critically analyze the performance of these architectures on model
performance in terms of accuracy, loss, precision, recall, and F1-score.

45



5.2.1 Model Architectures and Performance Metrics

ConvolutionNet-5: ConvolutionNet-5 has 5 Conv2D layers with 16, 32, 64, 128,
and 256 filters, along with 2 dense layers with 256 and 512 neurons. Here the
architecture is using Adam optimizer with a learning rate of 0.00001. Along with
a batch size and a dropout rate of 8 and 0.5 after each dense layer. This model
has Test Accuracy: 0.9411 and Validation Accuracy: 0.9130 with a loss of 0.4533
and a validation loss of 0.3590. The following classification report indicates high
precisions, recalls, and F1-scores across most classes, except for small and higher
averages of 0.94.

ConvolutionNet-3: This is a Conv2D layer having 16, 32, and 64 filters with a
dense layer composed of 512 neurons. This setup was made with the learning rate
of the Adam optimizer equal to 0.000001; the batch size is 8, and the use of a 0.2
dropout rate. Test accuracy from this model was 0.8877 and validation accuracy was
0.8478, and the loss and validation loss are equal to 0.1629 and 0.3984. Furthermore,
contrary to ConvolutionNet-5, for this architecture, precision, recall, and F1-score
are lower, with averages of 0.88 and 0.89, respectively.

ConvolutionNet-4: ConvolutionNet-4 consists of 4 Conv2D layers with 32, 64,
128, and 256 filters, and 2 dense layers with 512 and 256 neurons. It uses the
Adam optimizer, with a learning rate set to 0.00001, along with a batch size and
a dropout rate set to 8 and 0.5, respectively, after each dense layer. This model
has given a test accuracy of 0.9144 and validation accuracy of 0.8804 with a loss of
0.4024 and validation loss of 0.3213. The model has turned in really nice perfor-
mance, with precisions, recalls, and F1-scores smaller and weighted averages of 0.91.
ConvolutionNet-4M1: ConvolutionNet-4M1 features 4 Conv2D layers with 16,
32, 64, and 256 filters, and 2 dense layers with 256 and 512 neurons. The Adam
optimizer has been used with an effective learning rate set to 0.00001, and batch
size is 8 with a dropout of 0.5 after every dense layer. This architecture showed a
test accuracy of 0.8983 and a validation one of 0.8967, with a loss and validation
loss including 0.2676 and 0.3974, which indicates only a bit better performance with
ConvolutionNet-4 than ConvolutionNet-4 in terms of validation accuracy but with
the smaller weighted average precision-recall F1-score of 0.90.
ConvolutionNet-5M1: ConvolutionNet-5M1 comprises 5 Conv2D layers with 16,
32, 64, 128, and 256 filters, and 2 dense layers with 256 and 512 neurons. The Adam
optimizer is used in this architecture, assuming the learning rate of 0.00001, and with
a batch size of 16 and a dropout rate of 0.4 after each dense layer. Obviously, this
creates the test accuracy of 0.9144 and validation accuracy of 0.8920, but with a loss
and validation loss of 5.0719 and 5.1669, respectively. Even though the accuracy
is high in the benchmark, the loss values are at a high, showing problems with
potential overfitting. The smaller weighted average precision, recall, and F1 score
are all at 0.91 and 0.92, respectively.

ConvolutionNet-5MO0: ConvolutionNet-5M0 includes 5 Conv2D layers with 32,
64, 128, 256, and 512 filters, and 2 dense layers with 512 and 1024 neurons. The
model has applied the Adam optimizer as a learning rate of 0.0001 and including
a batch size and dropout rate of 8, and 0.5 after each dense layer. This model
has achieved d a test and validation accuracy of 0.8823 and 0.9022, with a loss
of 0.1101 and a loss of validation which is 0.3636. Because of high variance this
model’s performance is hindered, as indicated by its spiky loss graphs, with macro
and higher averages for precision, recall, and F1-score of 0.89 and 0.88, respectively.

46



ConvolutionNet-6: ConvolutionNet-6 has 6 Conv2D layers with 16, 32, 64, 128,
256, and 512 filters, and 2 dense layers with 256 and 512 neurons. It is using a
learning rate of 0.00001 as Adam optimizer. This model also has a batch size of 8,
and a dropout rate of 0.5 after each dense layer. This architecture has shown a test
and validation accuracy of 0.8823 and 0.8587, with a loss of 0.6757 and a validation
loss of 0.5820. This model is suffering from higher variance and instability just
similar to ConvolutionNet-5MO0, with precision, recall, and F1-score averages of 0.88
for both smaller and weighted metrics.

5.2.2 Analysis

Figure 5.1 and Figure 5.2 results are indicating that the architectural differences sig-
nificantly impact the models’ performance and accuracy. By achieving the highest
test and validation accuracies with relatively low loss values, ConvolutionNet-5 will
be considered as the best-performing model. Less spiking in the loss graphs reflects
Its stability that also suggests its architecture effectively balancing complexity and
generalization. This architecture’s robustness is highlighted by its consistent high
precision, recall, and F1-scores across all classes.

With fewer layers and a lower dropout rate ConvolutionNet-3 has demonstrated
decent performance but falls short in comparison with more complicated models,
most importantly in terms of precision and recall for certain classes like Powdery
Mildew Leaf. This result is completely suggesting that with a fewer convolutional
layers and a lower dropout rate might not be able to capture the necessary features
for accurate and efficient classification.

ConvolutionNet-4 and ConvolutionNet-4M1 are showing more improved and im-
pressive performance compared to ConvolutionNet-3 that highlights the positive
impact of having additional convolutional layers and higher dropout rates on model
generalization. However, despite of having mixed filter sizes ConvolutionNet-4M1’s
architecture could not outplayed ConvolutionNet-4 significantly, indicating that the
distribution of filters across layers which plays a critical role in model effectiveness
and efficiency. Despite of achieving high accuracies ConvolutionNet-5M1 is present-
ing high loss values, indicating at potential issues with overfitting or lack of suitable
optimizer. The using of Adam optimizer and higher batch size might focus to these
issues, suggesting that by doing these changes, can improve certain metrics, that
might also reflect the instability in model training.

Though ConvolutionNet-5M0 and ConvolutionNet-6 both are having more complex
architectures but showing higher variance and instability. The increase of convolu-
tional layers and filters does not necessarily provide better performance and might
lead to overfitting, as evidenced from the spiky loss graphs. These models are
showing that an overly complex architecture can hugely impact model stability and
generalization that decreases the overall performance.

Finally, our study underscores the importance of balancing model complexity with

generalization capability. So, it can be understandable that adding layers and in-
creasing dropout rates can improve the model’s performance. Besides, it is very

47



important to carefully tune these hyperparameters to avoid overfitting and instabil-
ity. ConvolutionNet-5, with its balanced architecture, serves as a unique example of
achieving high performance and efficiency through optimal architectural choices.

Model Architecture Optimizer Learning Batch | Test Validation
. ropout
Rate Size Accuracy Accuracy

5 Conv2D (16, Adam 8 0.5

32, 64, 128, 256),
2 Dense (256, 0.00001 0.9411 0.9130

512)

ConvolutionNet-5

3 Conv2D (16, Adam 8 0.2
ConvolutionNet-3 32, 64), 1 Dense 0.000001 0.8877 0.8478
(512)

Adam 8 0.5
4 Conv2D (32,

ConvolutionNet-4 64, 128, 256), 2 0.00001 0.9144 0.8804
Dense (512, 256)

Adam 8 0.5
4 Conv2D (16,

ConvolutionNet-4M 1 32, 64, 256), 2 0.00001 0.8983 0.8967
Dense (256, 512)

5 Conv2D (16, AdamW 16 0.4

32, 64, 128, 256), i
2 Dense (256, 0.00001 0.9144 0.8920

512)

ConvolutionNet-5M 1

5 Conv2D (32, Adam 8 05

i
ConvolutionNet-5M0 .64’ 128, 256, 0.0001 0.8823 0.9022
512), 2 Dense

(512, 1024)

6 Conv2D (16, Adam 8 0.5

2
ConvolutionNet-6 3?:‘ 64, 128, 256, 0.00001 0.8823 0.8587
512), 2 Dense

(256,512)

Figure 5.23: Ablation Study Summary Table 1

48



Model Precision |Recall F1-Score
C lutionNet-
50nvou ionNe 0.94 0.04 004
ConvolutionNet-
3 0.88 0.88 0.88
ConvolutionNet-
1 0.91 0.91 0.91
ConvolutionNet-|0-90

0.89 0.89
AM1
ConvolutionNet-|0-92

0.91 0.91
5M1
ConvolutionNet- | 0-20 0.89 0.88
5M0O
ConvolutionNet. | 0-20 0.88 0.88
6

Figure 5.24: Ablation Study Summary Table 2

5.3 Comparison between our custom model and
the pre-trained models

Using precision, accuracy, recall, and fl-score, we evaluate our proposed CNN model
and the pre-trained model named VGG16, InceptionV3, DenseNet169, and Mo-
bileNetV2. The results are shown in the table 5.3.

49



Class ConvolutionNet.5 | ConvolutionNet.5 | ConvolutionNet.5 | VGG16 | VGGI6 | VGGI6 | MobileNetv2 | MobileNetV2 | MobileNetV2 | InceptionV3 | laceptionV3 | InceptionV3 | DenseNetl69 | DemseNetl69 | DenseNetl69
(Precision) (Recall) (F1-Score) (Precision) | (Recall) gFE:“ (Precision) | (Recall) (F1-Score) | (Precision) | (Recall) (F1-Score) | (Precision) | (Recall) (F1-Score)
Anthracnose Leaf 095 1.00 087 051 086 088 084 089 086 088 087 092 087 094 091
Bacterial Canker_Leaf 1.00 1.00 1.00 050 050 030 100 100 1.00 100 100 100 031 100 035
Die_Back Leaf 100 100 100 0.93 093 03 01 100 085 100 100 100 095 100 0.98
Gall_midge Leaf 085 0383 087 064 08a 073 0.50 089 064 058 078 065 048 074 058
Leaf Cutting Weevil Leaf | 0.92 0386 0583 093 083 093 100 093 096 100 073 0388 1.00 079 0.88
Normal_Leaf 053 036 034 053 100 035 | 031 077 083 053 100 036 036 056 051
Powdery Mildew Leaf 0.89 094 092 054 0.89 091 085 094 0.89 093 072 081 085 094 089
Red Rust Leal 085 030 093 076 062 068 0.50 014 022 100 062 076 086 029 043
Shoot_mold Leaf 100 086 093 095 0.88 0.80 081 077 079 085 100 0.92 085 082 0.88

Figure 5.25: Classification Report of our custom CNN model

This table 5.4 summarizes the performance metrics including accuracy, macro-
average, and weighted-average precision, recall, and F1-score for ConvolutionNet-5,
VGG16, MobileNetV2, InceptionV3, and DenseNet169 models

e Macro-average treats all classes equally, regardless of their distribution in the
dataset.

o Weighted-average takes into account the imbalance in the dataset by weighting
each class’s contribution by its support.

Model Accuracy |Macro Macro | Macro | Weighted | Weighted | Weighted
Avg Avg |AvgFl- Avg Avg AvgFl-
Precision | Recall score | Precision Recall score
ConvolutionNet-5 0.94 0.94 0.94 0.94 0.94 0.94 0.94
VGGLé6 0.88 0.88 0.88 0.87 0.88 0.88 0.88
MobileNetVv2 0.80 0.81 0.82 0.80 0.80 0.80 0.78
InceptionV3 0.88 0.91 0.87 0.88 0.90 0.88 0.88
DenseNet169 0.83 0.86 0.83 0.82 0.86 0.83 0.82

Figure 5.26: Classification Report of our custom CNN model

Based on this Figure 5.4,
e ConvolutionNet-5 shows the highest performance across all metrics.

e VGG16 and InceptionV3 also perform well, with similar macro and weighted
average scores.

e MobileNetV2 and DenseNet169 have slightly lower overall performance com-
pared to the other models.

5.4 Class-wise study for the confusion matrix

Class-wise study for the confusion matrix A confusion matrix evaluates the per-
formance of a machine learning model on test data by displaying the number of

20



correct and incorrect predictions. It is particularly useful for classification models
and breaks down predictions into four categories:

e TP (True Positive): The model correctly predicts positive instances as positive.
For example, predicting an apple when it is actually an apple.

e TN (True Negative): The model correctly predicts negative instances as neg-
ative. For example, predicting not an apple when it is not an apple.

e F'P (False Positive): The model incorrectly predicts negative instances as pos-
itive. For example, predicting an apple when it is not an apple.

e FN (False Negative): The model incorrectly predicts positive instances as
negative. For example, predicting not an apple when it is actually an apple.

In our research, we categorize the confusion matrix outcomes into two main groups:
True and False values. Let’s delve into understanding the confusion matrices below.
ConvolutionNet-5:

ConvolutionNet-5 Confusion Matrix

Anthracnose_Leaf 0 0 0 0 0 0 0 0

Bacterial_Canker_Leaf 0 10 0 0 0 0 0 0 0

Die_Back_Leaf 0 0 n 0 0 0 0 0 0

Gall_midge_Leaf 0 0 0 17 0 0 2 0 0
0
@
L0

9 Leaf _Cutting_Weevil_Leaf 1 0 0 0 12 1 0 0 0
s
=

Normal_Leaf 0 0 0 0 1 25 0 0 0

Powdery_Mildew_Leaf 0 0 0 0 0 0 17 1 0

Red_Rust_Leaf 0 0 0 2 0 0 0 0

Shoot_mold_Leaf 1 0 0 1 0 1 0 0

g § § & § § § 3§ B

| { { | 1 1 [ { 1

3 5 3§ 8% 3 @ P 5 3

e & & ¢ § E & & B

o o | | = % = 'UI -

£ o 8 = o ! & g

g B 8 £ g &

& 5 ]
E: ] &
]
5

Predicted Labels

Figure 5.27: Confusion Matrix of ConvolutionNet-5

Let’s explain the values in the confusion matrix. Vertically, we have ’Actual Class’,
and horizontally, "Predicted Class’. In Figure 5.5, the first row shows that there are
36 instances of Anthracnose_Leaf. In the first column, the model correctly predicted
all 36 instances of Anthracnose_Leaf and misclassified 1 instance of Shoot_mold_Leaf
as Anthracnose_Leaf.

51



The second row indicates 10 instances of Bacterial_Canker_Leaf. In the second
column, the model correctly predicted all 10 instances of Bacterial_Canker_Leaf.

The third row shows 21 instances of Die_Back_Leaf. In the third column, the model
correctly predicted all 21 instances of Die_Back_Leaf without any errors.

Moving to the fourth row, there are 19 instances of Gall.midge_Leaf. 1742 = 19.
In the fourth column, the model correctly predicted 17 instances of Gall_ midge_Leaf
and misclassified 2 instances of Red_Rust_Leaf and 1 instance of Shoot_mold_Leaf
as Gall_midge_Leaf.

The fifth row indicates that 14 instances of Leaf_Cutting_Weevil_Leaf were found.
1242 = 14. On the other hand, column five indicates that the model had 12 cor-
rectly predicted cases of class Leaf Cutting_Weevil _Leaf and misclassified 1 instance
of Normal_Leaf as Leaf_Cutting_Weevil _Leaf.

Sixth row 26 examples of Normal _Leaf. 25+1 =26. Sixth column 25 examples of Nor-
mal_Leaf were correctly predicted, while 1 example each of Leaf Cutting_ Weevil_Leaf
and Shot_mold_Leaf was misclassified as Normal _Leaf.

The seventh row shows 18 examples of Powdery Mildew_Leaf. 1741 = 18. The
seventh column has rightly predicted 17 instances of Powdery_Mildew_Leaf and mis-
classified 2 instances of Gall midge_Leaf as Powdery_Mildew _Leaf.

Eighth row contains 21 test examples of class Red_Rust_Leaf, 19+2 = 21. In column
eight, the model was found to have correctly predicted 19 examples from the class

Red_Rust_Leaf and misclassified 1 of the Powdery_Mildew_Leaf as Red_Rust_Leaf.

Finally, the ninth row displays 22 instances of Shoot_mold_Leaf. 194+1+1+41 = 22.
In the ninth column, the model correctly predicted 19 instances of Shoot_mold_Leaf.

In summary, all diagonal values in this confusion matrix represent correct predic-
tions, while off-diagonal values indicate misclassification.

52



VGG16:

VGG16 Model Confusion Matrix

Anthracnose_Leaf 1 1 1 0 0 1 1 0

Bacterial_Canker_Leaf 0 9 0 1 0 0 0 0 0

Die_Back_Leaf 0 0 0 0 0 0 0 0

Gall_midge_Leaf 0 0 0 1 1 0 1 0
o]
©
L

5 Leaf_Cutting_Weevil_Leaf 0 0 0 0 13 1 0 0 0
S
'—

Normal_Leaf 0 0 0 0 0 0 0 0

Powdery_Mildew_| eaf 1 0 0 1 0 0 0 0

Red Rust Leaf 0 0 1 6 0 0 0 13 1

Shoot_mold_Leaf 0 0 0 0 0 1 0 2 19

g ® T m T ® k= ® k=

3I 3| BI 3| BI B\ Ej| 3| 3|

4] i— — -_— '

i & ¢ & 3 ® i : 3

5 3 @ E 2 = b §

E OI _gl = §| 2 EI E §

: ¥ - &8 g g &

3 3 E
|
8 < g
5

Predicted Labels

Figure 5.28: Confusion Matrix of VGG16

Likewise, in this confusion matrix (Figure 5.6), all the diagonal values are True pre-
dictions and others are False predictions of the model.

e True predictions: 36,9,21,16,13,26,16,13,19(Diagonal Dark light boxes)

e False predictions: 1,1,1,1,1,1,1,1,1,1,1,1,1,6,1,1,2 (Row-wise-All the bottle white
boxes)

23



MobileNetV2:

MobileNetV2 Model Confusion Matrix

Anthracnose_Leaf 0 1 1 0 0 1 1 0

Bacterial_Canker_Leaf 0 10 0 0 0 0 0 0 0

Die_Back_Leaf 0 0 0 0 0 0 0 0

Gall_midge_Leaf 2 0 0 0 0 0 0 0
o]
©
L

5 Leaf_Cutting_Weevil_Leaf 0 0 0 0 13 0 0 1 0
S
'—

Normal_Leaf 2 0 0 4 0 0 0 0

Powdery_Mildew_| eaf 1 0 0 0 0 0 0 0

Red Rust Leaf 1 0 1 12 0 0 0 3 4

Shoot_mold_Leaf 0 0 0 0 0 2 2 1 5 M

g ® T m T ® w ® k=

3I 3| BI gl BI B\ ‘ajl 3| BI

@ — = — -

i & ¢ & 3 ® i : 3

5 . m € o} = rxl £

@ o, o al = 2 = E 5

£ = 8 = o 3

& f 8 ¢ £ g

] o =
|
8 < g
b

Predicted Labels

Figure 5.29: Confusion Matrix of MobileNetV2

Similarly, in this confusion matrix (Figure 5.7), all the diagonal values are True
predictions and others are False predictions of the model.

e True predictions: 32,10,21,17,13,20,17,3,17(Diagonal Dark light boxes)

e False predictions: 1,1,1,1,2,1,2,4,1,1,1,12,4,2,2,1 (Row-wise-All the bottle white
boxes)

o4



InceptionV3

InceptionV3 Model Confusion Matrix

Anthracnose_Leaf 0 0 0 0 0 1 0 0
Bacterial_Canker_Leaf 0 10 0 0 0 0 0 0 0
Die_Back_Leaf 0 0 21 0 0 0 0 0 0
Gall_midge Leaf 3 0 0 14 0 0 0 0 2
]
7]
0
8 Leaf _Cutting_Weevil_Leaf 0 0 0 0 1 2 0 0 1
s
=
MNormal_Leaf 0 0 0 0 0 26 0 0 0
Powdery_Mildew_Leaf 1 0 0 3 0 0 13 0 1
Red_Rust_Leaf 1 0 0 7 0 0 0 13 0
Shoot_mold_Leaf 0 0 0 0 0 0 0 0 22
g 5 ® T ‘T 5 ] ® k]
3I 3| 5| BI 5| S\ 3| 3| 3|
© - o = - -
g gl o E = 2 z, g !
ES] e [s] o o Q
Z 2 8 £ g &
3 3 z
I
8 . 8
b

Predicted Labels

Figure 5.30: Confusion Matrix of InceptionV3

Moreover, in this confusion matrix (Figure 5.8), all the diagonal values are True
predictions and others are False predictions of the model.

e True predictions: 36,10,21,14,11,26,13,13,22(Diagonal Dark light boxes)

e False predictions: 1,3,2,2,1,1,3,1,1,7 (Row-wise-All the bottle white boxes)

95



DenseNet169

DenseNet169 Confusion Matrix

Anthracnose_Leaf 1 0 0 0 0 1 0 0

Bacterial_Canker_Leaf 0 10 0 0 0 0 0 0 0
Die_Back_Leaf 0 0 - 0 0 0 0 0 0
Gall_midge_Leaf 3 0 0 14 0 0 1 0 1
1)
@
L
5 Leaf_Cutting_Weevil_Leaf 0 0 0 0 1 3 0 0 0
5
'—
Normal_Leaf 0 0 0 1 0 0 0 0
Powdery_Mildew_| eaf 1 0 0 0 0 0 17 0 0
Red Rust Leaf 1 0 0 12 0 0 1 6 0

Shoot_mold_Leaf 0 0 1 1 0 1 0 1
g . H E H & g E s
= = 7 - 7 - 7 ] o
[+ = 1
2 k) g S : 3 3 B 3
g H @ 2 @ £ e} € E;
o S o = gl 2 2 B kS
= i o (=]
i ¢ - 8 £ 5 ¢ 4
o £
=]
o =] =
8 o £
'
L
-

Predicted Labels

Figure 5.31: Confusion Matrix of DenseNet169

However, in this confusion matrix (Figure 5.9), all the diagonal values are True pre-
dictions and others are False predictions of the model.

e True predictions: 34,10,21,14,11,25,17,6,18(Diagonal Dark light boxes)

e False predictions: 1,1,3,1,1,3,1,1,1,13,1,1,1,1,1 (Row-wise-All the bottle white
boxes)

5.5 QOutput

5.5.1 Analysing Our Design Model (ConvolutionNet-5) and
the Pre-Trained Model:

Pre-trained models: In this research paper, we utilized VGG16, InceptionV3,
DenseNet169, and MobileNetV2 as pre-trained models. Compared to our model
(ConvolutionNet-5), these pre-trained models have lower accuracy. However,

26



their Precision, Recall, F1 score values are decent. The downside is their high
computational cost due to the large number of neurons and dense layers. The for-
mulas we used to calculate these metrics are as follows:

1. Accuracy = TP / (TP + FP + FN + TN)

2. Precision = TP / (TP + FP)

3. Recall = TP / (TP + FN)

4. F1 Score = 2 x (Precision x Recall) / (Precision + Recall)

Here, TP stands for True Positive, TN for True Negative, FN for False Negative,
and FP for False Positive.

Our Proposed CNN model: We created a custom model for our research
purpose. This model is based on the CNN-architecture and is lightweight and the
computational cost is also low. Because it has fewer neurons and a smaller number
of dense layers. This model has higher accuracy rate than pre-trained models. It in-
dicates that our model’s performance is very good. So, the model is very preferable.
Figure 5.10 shows the summary of our proposed model ConvolutionNet-5.

o7



Layer(type) Qutput Shape Param #
conv2d (Conv2D) (Mone, 224, 224, 16) 448
batch_normalization (Mone, 224, 224, 16) 64
|BatchNormalization)

max_pooling2d (MaxPooling2D) | (Mone, 112, 112, 16) 0
conv2d_1 (ConvaD) (Mone, 112, 112, 32) 4,640
batch_normalization_1 (Mone, 112, 112, 32) 128
{BatchNormalization)

max_pooling2d_1 (Mone, 56, 56, 32) o
[MaxPooling2D)

conv2d_2 (ConvaD) (Mone, 56, 56, 64) 18,496
batch_normalization_2 (Mone, 56, 58, 64) 256
|BatchNormalization)

max_pooling2d_2 (Mone, 28, 28, 64) 0
[MaxPooling2D)

conv2d_3 (Conv2D) (Mone, 28, 28, 128) 73,856
batch_normalization_3 (Mone, 28, 28, 128) 512
|BatchNormalization)

max_pooling2d_3 (Mone, 14, 14, 128) 0
[MaxPooling2D)

conv2d_4 (ConvZD) (Mone, 14, 14, 256) 295,168
batch_normalization_4 (Mone, 14, 14, 256) 1,024
{BatchNormalization)

max_pooling2d_4 (Mone, 7, 7, 256) 1]
{MaxPooling2D)

flatten (Flatten) (None, 12544) 1]

dense (Denze) (Mone, 256) 3,211,520
batch_normalization_5 (Mone, 256) 1,024
[BatchNormalization)

dropout {Dropout) (Mone, 256) o
dense_1 (Dense) (Mone, 512) 131,584
batch_normalization_6 (Mone, 512) 2,048
{BatchMormalization)

dropout_1 (Dropout) (Mone, 512) 1]
dense_2 (Dense) (Mone, ) 4,617

Total params: 7,488,244 (28.57 MB)

Trainable params: 3,742,857 (14.28 MB)

Non-trainable params: 2,528 (9.88 KB)

Optimizer params: 3,742,859 (14.28)

Figure 5.32: The Summary Of Our Proposed Model ConvolutionNet-5

o8




5.5.2 Key Metrics Comparison for five different neural net-
work models

Model Total Parameters Maodel Size (MB) Inference Time (seconds)
ConvolutionNet-5 7,488 244 2857 023
MobileMetV2 2,727,252 10.40 113
DenseMet169 13,214,292 50.41 479
InceptionV3 22,468,660 B5.71 2.10
VGGE16 15,511,892 59.17 0.51

Figure 5.33: Key Metrics Comparison of five different models

The comparison Figure 5.11 highlights the key metrics for five different neural net-
work models. ConvolutionNet-5, MobileNetV2, DenseNet169, InceptionV3, and
VGG16. ConvolutionNet-5 has 7,488,244 parameters, a model size of 28.57 MB,
and an inference time of 0.23 seconds, making it moderately sized with a fast in-
ference time and superior accuracy compared to the other models. MobileNetV2,
with 2,727,252 parameters and a model size of 10.40 MB, offers the smallest storage
footprint but has a relatively slower inference time of 1.13 seconds. DenseNet169,
having 13,214,292 parameters and a model size of 50.41 MB, results in the longest
inference time of 4.79 seconds due to its large parameter count and size.

InceptionV3 stands out with the highest number of parameters (22,468,660) and
the largest model size (85.71 MB), yet it has a faster inference time of 2.10 seconds
compared to DenseNet169. VGG16, with 15,511,892 parameters and a model size
of 59.17 MB, balances a significant parameter count and size with a relatively quick
inference time of 0.51 seconds.

In summary, each model has distinct characteristics: ConvolutionNet-5 excels in
both inference speed and accuracy, MobileNetV2 in storage efficiency, DenseNet169
in depth and capacity, InceptionV3 in complexity, and VGG16 in balancing speed
and size.

29



5.6  Visual Representation and Analysis of the
Result Implementation:

Performance Comparison of Deep Learning Models

ConvulationNet-5
DenseNet169
InceptionVv3
MobileNetv2
VGG16

35 1

True Positives

- - - - - - - - —
-] ] o ] -] ] -] ] o
BI 3| 2| 3| gl 3| sl ﬂ| 3|
2 5 ¥ & 3 ® 3 % 3
=] - i - 7] E 3 a
£ [ @ = o = = = E
] ] | E = S = 1 |
© v w 1 | = EI k=1 %
£ ! =i = o al & o
g o 3 €
g T B o &
& £ °
& = =
u ¥]
@ o &
o
.
Class Name

Figure 5.34: Performance Comparison of Deep Learning Models

Class ConvolutionMet-5 | DenseMet169 InceptionV3 MobileNetV2 | VGG16
Anthracnose_Leaf 36/36 5436 535/36 32/36 31/36
Bacterial Canker Leaf 10/10 10710 10/10 10/10 9/10
Die Back Leaf 2121 21121 2121 21 21
Gall midge Leaf 17/12 1419 14/19 17119 16/19
Leaf Cutting Weevil Leaf | 12/14 11714 11/14 13/14 13/14
Normal Leaf 2526 25126 2626 2026 26/26
Powdery_Mildew Leaf 17/18 17718 13/18 17/18 16/18
Red Rust Leaf 19/21 621 1321 321 1321
Shoot_mold Leaf 19722 1822 2222 1722 1922

Figure 5.35: Number of True Predition of Deep Learning Models

60



The Figure 5.12 and Figure 5.13 provides a comparative analysis of the performance
of five deep learning models (ConvulationNet-5, DenseNet169, InceptionV3, Mo-
bileNetV2, VGG16) across nine different leaf categories used in classification tasks.
Here’s a description of the table:

1. Performance Consistency Across Models:

e 0 Anthracnose_Leaf: All models perform reasonably well, with ConvulationNet-
5, DenseNet169, and InceptionV3 achieving very high accuracy (around 94-
97%), while MobileNetV2 and VGG16 are slightly lower (around 86-89%).

e Bacterial_Canker_Leaf: All models achieve perfect accuracy (100%) except for
VGG16, which is slightly lower (90%).

e Die_Back_Leaf: Consistent perfect accuracy (100%) across all models.

e Gall.midge Leaf: ConvulationNet-5 and MobileNetV2 perform better (89-
94%), while DenseNet169, InceptionV3, and VGG16 are slightly lower (74-
84%).

e Leaf Cutting_ Weevil Leaf: ConvulationNet-5 performs the best (86%), fol-
lowed closely by DenseNet169, InceptionV3, MobileNetV2, and VGG16 (79-
93%).

e Normal Leaf: All models achieve near-perfect accuracy (96-100%).

e Powdery Mildew Leaf: InceptionV3 performs the best (72%), followed by
ConvulationNet-5, DenseNet169, MobileNetV2, and VGG16 (61-94%).

e Red Rust_Leaf: ConvulationNet-5 and InceptionV3 achieve similar perfor-
mance (90-100%), while DenseNet169, MobileNetV2, and VGG16 are notably
lower (14-62%).

e Shoot_mold_Leaf: InceptionV3 achieves the highest accuracy (100%), followed
by DenseNet169, VGG16, ConvulationNet-5, and MobileNetV2 (77-86%).

2. Model-specific Observations:

e 0 ConvulationNet-5: Generally, shows competitive performance across most
leaf categories, often achieving high accuracy.

e DenseNet169: Performs consistently well, especially in categories with higher
sample sizes, but shows variability in categories with fewer instances.

e InceptionV3: Often excels in categories where others struggle, demonstrating
robustness in varied leaf conditions.

e MobileNetV2: Shows a mixed performance, sometimes matching the top per-
formers but occasionally falling short in certain categories.

e VGG16: Performs adequately but tends to lag behind in categories requiring
finer distinctions or with smaller sample sizes.

61



Chapter 6

Conclusion

In this paper, we developed Convolutional Neural Network based models for the task
of mango leaf disease detection. Understanding the critical compliance requirement
to detect diseases as quickly and accurately as possible to ensure the best quality
and quantity of mangoes we have trained a few CNN models especially for this task.
The results are pretty close to multiple famous pre-trained models such as VGG16,
InceptionV3, Densenet169, and MobileNetV2.

Finally, our findings have shown that the custom CNN models could outperform
the pre-trained models in some aspects because of their better-optimized architec-
ture and parameters when utilized for identifying mango leaf disease. Although, in
general, picture classification activities and tasks, the pre-trained models mentioned
above are more dependable and effective, the models established by us are also very
adaptable to the problems related to the mango leaf images because of the unique
alterations and optimization and independent changes we had to complete in the
model training performed by us which further contribute to enhancing the precision
and reliability of the disease detection process.

Overall, our custom models also showed significant potential for practical appli-
cation in real-world agricultural settings. By providing farmers with a reliable tool
for early disease detection, our models can help mitigate the spread of diseases,
reduce crop loss, and improve overall productivity.

6.1 Future Work

Despite the encouraging outcomes of our customized CNN models, there are still a
number of areas for improvement:

e Model Optimization: By further optimizing the models to lower computational
complexity, real-time field applications will be made possible and the model
will be more appropriate for deployment on mobile and edge devices.

e Dataset Expansion: Adding more photographs from a different location and
environmental circumstances into the dataset will further improve the robust-

62



ness of the models. More classification of illnesses and stages of infection will
be able to increase the ability to diagnose.

[0T Integration: By integrating the CNN models with Internet of Things (IoT)
devices, continuous monitoring of crops is made possible, giving farmers access
to real-time data collection and instant response.

User-Friendly Interfaces: Making easy-to-navigate online or mobile applica-
tions can democratize the use of technology and make it intuitive; it really
opens up when offering suggestions and insights derived from model output.

Cross-Crop Generalisability: The need to further extend the model into general
applicability that predicts well for various crops and their diseases substanti-
ates the model to cover a wider region of agricultural diagnostics.

63



Bibliography

N =

EES

[11]

[12]

S. C. Nelson, Mango powdery mildew, 2008.

S. Nelson, Mango powdery mildew caused by oidium mangiferae, Retrieved
from: https://www.flickr.com/photos/scotnelson/9808512885, Sep. 2013.

N. Rusk, “Deep learning,” Nature Methods, vol. 13, no. 1, pp. 35-35, 2016.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818-
2826.

L. Perez and J. Wang, The effectiveness of data augmentation in image clas-
sification using deep learning, arXiv preprint arXiv:1712.04621, 2017.

J. Shijie, W. Ping, J. Peiyi, and H. Siping, “Research on data augmentation for
image classification based on convolution neural networks,” in 2017 Chinese
Automation Congress (CAC), IEEE, 2017, pp. 4165-4170.

S. Arivazhagan and S. V. Ligi, “Mango leaf diseases identification using con-
volutional neural network,” International Journal of Pure and Applied Math-
ematics, vol. 120, no. 6, pp. 11067-11079, 2018.

J. G. A. Barbedo, “Impact of dataset size and variety on the effectiveness of
deep learning and transfer learning for plant disease classification,” Computers
and Electronics in Agriculture, vol. 153, pp. 4653, 2018.

Z. Igbal, M. A. Khan, M. Sharif, J. H. Shah, M. H. ur Rehman, and K. Javed,
“An automated detection and classification of citrus plant diseases using image

processing techniques: A review,” Computers and FElectronics in Agriculture,
vol. 153, pp. 12-32, 2018.

R. G. D. Luna, E. P. Dadios, and A. A. Bandala, “Automated image cap-
turing system for deep learning-based tomato plant leaf disease detection and
recognition,” in TENCON 2018-2018 IEEE Region 10 Conference, IEEE, Oct.
2018, pp. 1414-1419.

L. D. Nguyen, D. Lin, Z. Lin, and J. Cao, “Deep cnns for microscopic image
classification by exploiting transfer learning and feature concatenation,” in
2018 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE,
2018, pp. 1-5.

S. Ramesh, R. Hebbar, M. Niveditha, R. Pooja, N. Shashank, and P. V.
Vinod, “Plant disease detection using machine learning,” in 2018 International

Conference on Design Innovations for 3Cs Compute Communicate Control
(ICDI3C), IEEE, Apr. 2018, pp. 41-45.

64


https://www.flickr.com/photos/scotnelson/9808512885

[13]

[14]

[15]

[16]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

K. Srunitha and D. Bharathi, “Mango leaf unhealthy region detection and clas-
sification,” in Computational Vision and Bio Inspired Computing, Springer,
2018, pp. 422-436.

N. Sutrodhor, M. Hussein, M. Mridha, P. Karmokar, and T. Nur, “Mango leaf
ailment detection using neural network ensemble and support vector machine,”
International Journal of Computer Applications, vol. 181, pp. 31-36, 2018.

C. Trongtorkid and P. Pramokchon, “Expert system for diagnosis mango dis-

eases using leaf symptoms analysis,” in 2018 international conference on digital
arts, media and technology (ICDAMT), IEEE, 2018, pp. 59-64.

T. Binoy and K. Lakshmi, “Comparative analysis of vehicle make and model
recognition using deep learning techniques,” in 2019 2nd International Con-
ference on Intelligent Computing, Instrumentation and Control Technologies
(ICICICT), vol. 1, IEEE, 2019, pp. 1298-1305.

G. Geetharamani and A. Pandian, “Identification of plant leaf diseases us-
ing a nine-layer deep convolutional neural network,” Computers € FElectrical
Engineering, vol. 76, pp. 323-338, 2019.

M. S. Gulavnai and M. R. Patil, “Deep learning for image based mango leaf dis-
ease detection,” International Journal of Recent Technology and Engineering
(IJRTE), vol. X, no. X, Oct. 2019, Retrieved from: https://www.researchgate.

net /publication/362536693_Deep_Learning_for Image Based_Mango_Leaf Disease_

Detection.

S. Malao, P. Gaikwad, P. Palve, R. Suryawanshi, and N. Suthar, Disease di-
agnosis of mango leaf, 2019.

K. K. Patel, A. Kar, and M. Khan, “Common external defect detection of
mangoes using color computer vision,” Journal of the Institution of Engineers
(India): Series A, vol. 100, pp. 559-568, 2019.

U. P. Singh, S. S. Chouhan, S. Jain, and S. Jain, “Multilayer convolution
neural network for the classification of mango leaves infected by anthracnose
disease,” IEEE Access, vol. 7, pp. 43 721-43 729, 2019.

S. Veling, “Mango disease detection by using image processing,” International
Journal for Research in Applied Science and Engineering Technology, vol. 7,
pp. 37173726, Apr. 2019.

R. Karthik, M. Hariharan, S. Anand, P. Mathikshara, A. Johnson, and R. .
Menaka, “Attention embedded residual cnn for disease detection in tomato
leaves,” Applied Soft Computing, vol. 86, p. 105933, 2020.

M. R. Mia, S. Roy, S. K. Das, and M. A. Rahman, “Mango leaf disease recog-
nition using neural network and support vector machine,” Iran Journal of
Computer Science, vol. 3, pp. 185-193, 2020.

T. N. Pham, L. V. Tran, and S. V. T. Dao, “Early disease classification of
mango leaves using feed-forward neural network and hybrid metaheuristic fea-
ture selection,” IEEE Access, vol. 8, pp. 189 960-189 973, 2020.

J. Lu, L. Tan, and H. Jiang, “Review on convolutional neural network (cnn)
applied to plant leaf disease classification,” Agriculture, vol. 11, no. 8, p. 707,
2021.

65


https://www.researchgate.net/publication/362536693_Deep_Learning_for_Image_Based_Mango_Leaf_Disease_Detection
https://www.researchgate.net/publication/362536693_Deep_Learning_for_Image_Based_Mango_Leaf_Disease_Detection
https://www.researchgate.net/publication/362536693_Deep_Learning_for_Image_Based_Mango_Leaf_Disease_Detection

[27]

[28]

[31]

[32]

[33]

[34]

[35]

A. Rajbongshi, T. Khan, M. M. R. A. Pramanik, S. M. Tanvir, and N. R. C.
Siddiquee, “Recognition of mango leaf disease using convolutional neural net-
work models: A transfer learning approach,” Indonesian Journal of Electrical
Engineering and Computer Science, vol. 23, no. 3, pp. 1681-1688, 2021.

U. S. Rao, R. Swathi, V. Sanjana, et al., “Deep learning precision farming:
Grapes and mango leaf disease detection by transfer learning,” Global Tran-
sitions Proceedings, vol. 2, no. 2, pp. 535-544, 2021, International Conference
on Computing System and its Applications (ICCSA- 2021), 1SSN: 2666-285X.
DOL: https://doi.org/10.1016/j.gltp.2021.08.002. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2666285X21000303.

e. a. Saleem Rabia, Mango leaf disease identification using fully resolution con-
volutional network, Retrieved from: https://www.researchgate.net /publication/

354145514 _Mango_Leaf Disease_Identification_Using_Fully Resolution_Convolutional -

Network, https://doi.org/10.32604/cmc.2021.017700, Jan. 2021.

S. Wongsila, P. Chantrasri, and P. Sureephong, “Machine learning algorithm
development for detection of mango infected by anthracnose disease,” in 2021
Joint International Conference on Digital Arts, Media and Technology with
ECTI Northern Section Conference on Electrical, Electronics, Computer and
Telecommunication Engineering, IEEE, 2021, pp. 249-252.

M. Prabu and B. J. Chelliah, “Mango leaf disease identification and clas-
sification using a cnn architecture optimized by crossover-based levy flight
distribution algorithm,” Neural Computing and Applications, vol. 34, no. 9,
pp. 7311-7324, 2022.

S. Sandhya, A. Balasundaram, and S. Arunkumar, “Deep learning and com-
puter vision based model for detection of diseased mango leaves,” International
Journal on Recent and Innovation Trends in Computing and Communication,
vol. 10, no. 6, pp. 70-79, 2022.

A. Sharma, R. K. Bijral, J. Manhas, and V. Sharma, “Mango leaf diseases de-
tection using deep learning,” International Journal of Knowledge Based Com-
puter Systems, vol. 10, no. 1, 2022.

S. I. Ahmed, M. Ibrahim, and e. a. M. Nadim, “Mangoleafbd: A comprehensive
image dataset to classify diseased and healthy mango leaves,” Data in Brief,
vol. 47, p. 108941, 2023.

M. Rahaman, M. Chowdhury, and e. a. M. A. Rahman, “A deep learning
based smartphone application for detecting mango diseases and pesticide sug-
gestions,” International Journal of Computing and Digital Systems, vol. 13,
no. 1, pp. 1-1, 2023.

C. Vijay and K. Pushpalatha, “Dv-pso-net: A novel deep mutual learning
model with heuristic search using particle swarm optimization for mango leaf
disease detection,” Journal of Integrated Science and Technology, vol. 12, no. 5,
pp. 804-804, 2024.

66


https://doi.org/https://doi.org/10.1016/j.gltp.2021.08.002
https://www.sciencedirect.com/science/article/pii/S2666285X21000303
https://www.sciencedirect.com/science/article/pii/S2666285X21000303
https://www.researchgate.net/publication/354145514_Mango_Leaf_Disease_Identification_Using_Fully_Resolution_Convolutional_Network
https://www.researchgate.net/publication/354145514_Mango_Leaf_Disease_Identification_Using_Fully_Resolution_Convolutional_Network
https://www.researchgate.net/publication/354145514_Mango_Leaf_Disease_Identification_Using_Fully_Resolution_Convolutional_Network
https://doi.org/10.32604/cmc.2021.017700

	Declaration
	Approval
	Abstract
	Acknowledgement
	Table of Contents
	Nomenclature
	Introduction
	Motivation
	Research Problem
	Research Objective

	Literature Review
	Methodology
	Proposed Methodology
	Dataset
	Data Collection Methodology 
	Data Collection 

	Data Pre-processing 
	Dataset Visualization 
	Data Augmentation 
	Pre-processed Data 

	Model Specification
	Convolutional Neural Network(CNN) 
	MobileNet V2 
	VGG 16
	DenseNet169
	InceptionV3 


	Implementation
	Workflow
	Setup for Experiment
	Training hardware and Software
	Library List
	Structural view of the code skeleton

	Model Selection
	Hyperparameter Tuning
	Design and Compile the Models 
	ConvolutionNet-5
	ConvolutionNet-5M0
	ConvolutionNet-5M1
	ConvolutionNet-4
	ConvolutionNet-4M1
	ConvolutionNet-6
	ConvolutionNet-3
	VGG16
	InceptionV3 
	MobileNetV2
	DenseNet169 


	Result Analysis
	Train and evaluate the Models
	ConvolutionNet-5 
	ConvolutionNet-3 
	ConvolutionNet-4 
	ConvolutionNet-4M1 
	ConvolutionNet-5M0 
	ConvolutionNet-5M1 
	ConvolutionNet-6 
	VGG16
	MobileNetV2
	InceptionV3
	DenseNet169

	Ablation Study of Custom Convolutional Neural Networks for Mango Leaf Disease Classification
	Model Architectures and Performance Metrics
	Analysis

	Comparison between our custom model and the pre-trained models 
	Class-wise study for the confusion matrix
	Output
	Analysing Our Design Model (ConvolutionNet-5) and the Pre-Trained Model:
	Key Metrics Comparison for five different neural network models

	 Visual Representation and Analysis of the Result Implementation: 

	Conclusion
	Future Work

	Bibliography

