
End-to-End encrypted Peer to Peer Chat System with SSI

by

Razin Rayan Rahat
20101001

Shahriar Ahmed
22241145

Abrar Awsaf Talukder
23141077
Ilmy Islam
23141082

Mahpara Chowdhury
20101607

A thesis submitted to the Department of Computer Science and Engineering in
partial fulfillment of the requirements for the degree of B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
January 2024

© 2024. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Razin Rayan Rahat
20101001

Shahriar Ahmed
22241145

Abrar Awsaf
23141077

Ilmy Islam
23141082

Mahpara Chowdhury
20101607

i

Approval

The thesis titled “End-to-End encrypted Peer to Peer Chat system with SSI” sub-
mitted by

1. Razin Rayan Rahat (20101001)

2. Shahriar Ahmed (22241145)

3. Abrar Awsaf Talukder (23141077)

4. Ilmy Islam (23141082)

5. Mahpara Chowdhury (20101607)

Of Spring, 2024 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on May 2024.

Examining Committee:

Supervisor:
(Member)

Dr. Md Sadek Ferdous
Associate Professor

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Dr. Sadia Hamid Kazi
Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Ethics Statement

The paper is an honest work. The paper is a statement of our comprehensive
investigation and implementation. As the members hereby declare that, all of the
resources used to conduct the research are recorded and cited properly. Moreover,
the paper has never been published or submitted for granting of a degree or any
other reason to another university or institution.

iii

Abstract

Chat applications are among the most popular Internet applications and a huge
number of people use them on a regular basis. As their use has grown, different
security and privacy concerns have received attention from the users and the pro-
fessionals. Many users consider what they chat with their family and friends to be
extremely private and they want a certain amount of assurance that their chats are
securely exchanged and are not exposed to any unauthorized parties. Towards this
aim, many chat applications employ an End-to-End (E2E) Encryption mechanism.
This is to safeguard the encryption keys during key exchange as these keys are cru-
cial to ensure the security of the chat histories. Unfortunately, the existing key
exchange mechanisms for E2E encryption are prone to Man-in-the-Middle (MITM)
attacks. In addition, such mechanisms sometimes use a central server for exchanging
keys which raises privacy and security concerns as these central servers may not be
trustworthy. In this research, we would like to address these issues, by introducing
a novel SSI (Self-sovereign Identity) based End-to-End Chat System which supports
a Peer-to-Peer (P2P) key exchange mechanism.

Keywords: Self-sovereign identity (SSI); Peer-to-peer; End-to-end Encryption;
Verifiable credentials; Decentralized identity; DIDcomm; Trust Layer; Key Man-
agement.

iv

Dedication

We dedicate this research to all developers, cyber security experts and software
engineers who are working everyday to make the internet safe and secure for the
users; so that they can participate in the internet and do their task without any fear
of cyber attacks.

v

Acknowledgement

Firstly, all praise to the Almighty Allah for whom our thesis have been completed
without any major interruption. Secondly, to our supervisor Dr. Md Sadek Ferdous
sir for his kind support and advice in our work. He helped us whenever we needed
help. And finally to our parents without their support it may not be possible.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iii

Abstract iv

Dedication v

Acknowledgment vi

Table of Contents vii

List of Figures ix

Nomenclature x

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 2
1.3 Problem Statement . 2
1.4 Research Objective . 3
1.5 Report Structure . 3

2 Background 5
2.1 SSI . 5
2.2 Seven building blocks of SSI . 5

2.2.1 Verifiable Credentials . 5
2.2.2 The Trust Triangle . 6
2.2.3 Digital wallets . 6
2.2.4 Digital agents . 7
2.2.5 Decentralized identifiers . 7
2.2.6 Blockchain . 7
2.2.7 Trust Framework . 8

2.3 Hyperledger Aries . 8

3 Literature Review 9
3.1 Comparison . 13

vii

4 Proposal 16
4.1 Methodology . 16
4.2 Threat modeling . 18
4.3 Requirement analysis . 19

4.3.1 Functional Requirements . 19
4.3.2 Security Requirements . 19

5 Architecture 21
5.1 Use Case and Protocol Flow . 22

6 Discussion 38
6.1 Analysing Requirements . 38
6.2 Advantages . 39
6.3 Limitations . 39
6.4 Future Works . 40

7 Conclusion 41

Bibliography 43

viii

List of Figures

2.1 Trust Triangle . 6

4.1 Core Methodology and Work Plan . 17

5.1 SSI based chat system . 21
5.2 SSI based group chat system . 22
5.3 Sequence Diagram - Connection Establish 24
5.4 Sequence Diagram - Message Exchanging and File Transfer 25
5.5 Sequence Diagram - Group Members Selection 29
5.6 Sequence Diagram - Group Chat Connection Establishment 30
5.7 Sequence Diagram - Group Chat Messages Exchanging 30
5.8 Starting the Application . 31
5.9 Building the Connection between users 32
5.10 Accessing chats and Messages Exchanging between users 33
5.11 Images transfer between users - 1 . 35
5.12 Images transfer between users - 2 . 36
5.13 Selecting Users UI . 37

ix

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

DID Decentralized Identity

E2E End-to-End Encryption

P2P Peer-to-peer

PKI Public Key Infrastructure

SSI Self-sovereign Identity

V C Verifiable Credentials

x

Chapter 1

Introduction

1.1 Introduction

Self-Sovereign Identity (SSI) is a new identity model which focuses on decentral-
ization of internet infrastructure which is facilitated by modern technologies like
blockchain or distributed ledgers. Self-sovereign Identity (SSI) has arrived as a sym-
bol of hope for them because traditional mechanisms have failed to gain the trust of
its users. SSI is bringing a revolution on how identity should be managed by shifting
the center of the power of identity from an institution to its owner or user. But its
popularity and necessity emerged because of the failure of traditional centralized
systems. The internet has been prone to many types of attacks because it doesn’t
have an identity layer, most of the services are built on centralized client-server mod-
els which have crucial problems like single point of failure and data breach. Also the
users of the internet don’t feel safe about different companies owning sensitive data
about themselves. Identity theft is a very common problem users face when using
web services using login credentials. In the last few years, many big service providers
faced data breaches resulting in disclosure of sensitive user data. In a recent study,
it was found that more than 80 percent of USA’s IT companies have found that
their systems have been compromised in order to steal, change or make important
public information data [3]. That’s why it has become necessary to encrypt the user
data so that not only unauthorized access can be revoked but also to ensure that
the company or government can’t go through the sensitive information. WhatsApp
is using a very well established protocol called Signal which introduced End to end
encryption introduced by Signal. But still these protocols are used by centralized
services which can harm the user’s sovereignty. And in this era of this digitalized
world, where there are constant data and security breaches, users’ fear about their
sovereignty has risen to its peak. As a result, more and more people are becoming
interested in exploring new technologies like decentralized systems that give them
more freedom in terms of maintaining and managing their identity while countering
various threats that are very common in current systems and architectures. This
is why, to eradicate the issue of user sovereignty, we are suggesting a SSI based
E2EE peer to peer chat system which is built on one of the most famous tools of
Hyperledger called Hyperledger Aries. We will be using DIDs and VCs to establish
a secure channel between entities and work on the existing DIDcomm to develop
an enhanced chatting system. Not only will we try to mitigate current problems
faced by popular social media platforms by just building a SSI based E2EE peer

1

to peer chat system but also we will work on other domains apart from sending
peer to peer messages securely. Apart from building the peer to peer chat system,
we will try to integrate two more features that are so important for modern chat
systems. The first one is file transfer and sharing with other users and the second
one is a group messaging chat system with multiple users. The file sharing and
transferring system will enable the users to share various types of files in different
formats with their fellow users. The group messaging chat system will enable users
to make communities and chat with multiple users at the same time while creating
discussions and threads they want to do. These two features will enhance the user
experience greatly by adding convenience, efficiency, contextual communication and
enhanced collaboration while it will give the builders the scalability and a scope to
future expansions of the system.

1.2 Motivation

In the initial phase, the internet was built without an identity layer through which
we can know who we can connect with or what we are doing or may do with it.
Since we are unaware of these things, this little issue transformed into a greater
threat, exposing us to a great range of threats, security attacks and breaches. To il-
lustrate, popular social media platforms that adopt centralized servers have become
honeypots for attackers to steal personal information of those users. For instance, in
2019 security breaches on Facebook and Instagram exposed confidential information
associated with almost 49 million users. Similar breaches of security caused damage
to Myspace, Linked in, TikTok, Twitter, and exposed hundreds of millions of their
users’ login credentials, including profile name, phone number, age, location, real
name, activities, and so on [12]. Experts implemented End-to-End (E2E) encryp-
tion to solve this problem but the security and privacy concerns still remain as those
systems use centralized client-server systems for Key exchange mechanism which is
prone to attacks like Man-in-the-middle attack. It is proven that traditional central-
ized systems are unable to counter such attacks and this is where efforts should be
made to look out for possible alternative solutions, and one of them is the concept of
decentralized systems and a Nobel digital identity management called Self-sovereign
Identity (SSI). Using blockchain technology, SSI, decentralized systems, and infras-
tructures we can reduce the risks associated with centralized systems. So far, there
have been only a few attempts to create decentralized chat applications but their
work on file transfer and group chat systems feature is very limited. So we tried to
elevate those things by working on file sharing and group messaging on a decentral-
ized system. It is highly possible that both existing traditional and decentralized
applications will have positive impact and influence in terms of countering major
security threats and working on file sharing, transfer and group messaging systems.

1.3 Problem Statement

The conventional way of communication involves centralization which involves servers
and other intermediaries. This client-to-server structure is prone to many vulnera-
bilities and attacks. The centralization of the chatting system can cause problems
like a single point of failure and can cause disclosure of data through multiple types

2

of attack. The conventional username and password login system is prone to fail.
Also these chatting systems often sell user data to different companies and also are
bound to disclose them to the government which defies user’s privacy. Also the
encryption models used in the centralized systems are often criticized by consumers.
The summary of the problems are given below:

• No privacy for user identity

• Centralized intermediaries

• Threats to user authentication and authorization

• No verification of received message or sender

• No user sovereignty

• Repetitive username-password login system

1.4 Research Objective

• RO1 - To understand modern centralized communication models, self-sovereign
identity, blockchain and existing decentralized communication systems.

• RO2 - To understand how SSI solves identity management and authentication.

• RO3 - To understand how DIDcomm transfers messages using existing proto-
cols.

• RO4 - Designing the architecture of the decentralized messaging system us-
ing numerous threat modeling and requirements analysis leveraging existing
DIDcomm protocol.

• RO5 - Defining the protocol of decentralized messaging system to detail the
interactions among various types of components, entities to ensure efficient
and error-free functioning.

• RO6 - Evaluating the performance of the decentralized system.

1.5 Report Structure

In Chapter 1, we give an introduction, where the problem statement is discussed
along with research objectives which focus on topics like SSI, Blockchain, P2P etc.
We try to elaborate why existing technologies have failed to satisfy users’ expecta-
tions and how using new technologies our system can achieve that as well as our
motivation to do it. After that, Chapter 2 states the background of our research that
tells us about the Seven Building Blocks of SSI as well as Hyperledger Aries which is
a major tool for the development of our system. Then Chapter 3, presents the details
about the previous works in this domain focusing on decentralized chat applications
in our literature review. Moreover, some comparisons are shown among our sys-
tem, traditional popular social media platforms and existing decentralized systems.
In Chapter 4, we display the proposal where we discussed topics like methodology,

3

threat modeling, and requirement analysis such as functional and security require-
ments. Following up, in Chapter 5, we have shown the implementation through some
visualizations and some detailed protocol flow with use case description to explain
the entire system and its process. Next in Chapter 6, we make a discussion about
analyzing the requirements, the advantages and limitations of our system and some
scopes for future development and work. Finally to conclude, Chapter 7 marks the
conclusion of our report.

4

Chapter 2

Background

2.1 SSI

The history of human communication has been forever changed by the groundbreak-
ing innovation known as the internet. But the developers were blind to a funda-
mental point. The identity layer was not present when the internet was created. To
be emphasized, the TCP/IP protocol was utilized in the early stages of the internet
and was believed to be a huge success. However, as the network has expanded to
include billions of users, an identification layer is no longer there. Except for the IP
address, people are unaware of the identity of their communication partners. This
is where SSI emerged as a game-changing technology that aided programmers in
creating the internet’s missing link. Self-sovereign Identity, or SSI, is an identity
that is independent of and not subject to any individual, authority, or government.
It offers Decentralization, Interoperability, Portability, and Reusability and boosts
confidence and security. SSI is a self-asserted and user-centric identity. These es-
sential components of SSI serve to build the identity layer that the Internet lacks,
enhancing the ecosystem’s safety, security, and dependability. [13]

2.2 Seven building blocks of SSI

2.2.1 Verifiable Credentials

Credentials are the documents that people keep in their wallets to demonstrate their
identification or position of authority. Credentials are tamper-resistant documents
that contain information on the subject of the credentials that a certain author-
ity claims to be authentic. These authenticated credentials are not just limited to
people or documents. Verifiable credentials [13] are the documents which are cryp-
tographically verified. These digitally signed verifiable credentials are issued by an
issuer, who then provides them to a holder who then uses them to validate their
identity to a verifier who checks the validity of the information and the issuer’s sig-
nature. In contrast to physical credentials, VC can instantly validate a claim using
the internet and cryptography.

5

2.2.2 The Trust Triangle

Issuers, Holders, and Verifiers, sometimes known as the Trust Triangle [13], are the
three basic responsibilities that are involved in venture capital. First off, since they
are the ones that give credentials to a holder or subject, Issuers are the primary
source of credentials. Governmental organizations, academic institutions, and fi-
nancial entities are all examples of issuers. Second, the Holders ask Issuers for VCs,
which they then save in their digital wallets in case they need to authenticate their
identity. Holders can be either a human, an animal, or a machine (IoT). The veri-
fiers then take VCs from holders and determine whether the Issuers and the set of
data or claims are true or not. Holder’s representative is in charge of presenting
claims to the verifiers for verification. Anyone can be verifier.; human, organization,
agencies or universities.

Issuer Verifier

Signs
Credentials

Verifies
Credentials

Holder
Credential Request

Credential

Presentation Request

Presentation

Decentralized Identifiers (DIDs)

Verifiable Data Registry (e.g. Blockchain)

Figure: SSI Components

Digital Wallet

Digital Agent

Figure 2.1: Trust Triangle

In the Fig. 2.1 it shows the trust triangle of holder, issuer and verifier. Verifier has
to trust the issuer or the system will not work as in real life. DIDs and verifiable
data registry(blockchain) will be used to verify the VC. Holder can request VC from
the issuer and will hold that onto his wallet and can present it to the verifier if
requested.

2.2.3 Digital wallets

Digital wallets [13] store VCs and digital credentials within them, just like how
people use real wallets to protect and control their physical credentials and assets.
The key motivations behind the development of digital wallets were to make VCs
easily accessible, available, and portable across all of a person’s devices, as well as to
protect the credentials from malicious hackers or eavesdroppers. Digital wallets are
used in real life in a variety of ways, including smartphone wallets and cryptocur-
rency wallets (edge wallet and cloud wallet). Open standards should be used by SSI
digital wallets, and they should cooperate with the digital agents. Because they have

6

open standards, digital wallets offer additional services, thus any VC that satisfies
the requirements of the VC should be approved. The wallets can be installed on all
the devices that a person uses frequently, and a backup can be made by transferring
the contents of the wallets to other digital wallets.

2.2.4 Digital agents

In real life, people handle and control physical wallets, but since they do not under-
stand binary language, they cannot manage digital wallets in the same way. The
”Digital Agent” [13] module in SSI infrastructures allows for this. The digital agents
hold the owner’s digital wallets and credentials and present them. Digital agents
communicate with one another to establish connections and exchange credentials
utilizing decentralized, secure messaging networks in addition to giving verifiable
credentials.n There are some existing digitals agents like Edge agents and Cloud
agents. Some cloud agents store and synchronize the credentials for their owners.

2.2.5 Decentralized identifiers

Decentralized identifiers (DIDs) [13] are a sort of verified decentralized digital iden-
tification. This kind of globally unique identifier is unique. A DIDs can be used to
refer to anything, including a person, group, object, data model, etc. DIDs support
decentralized registries, identity providers, and certificate authorities, which is the
primary distinction between DIDs and federated identifiers. It gives entities the abil-
ity to demonstrate their authority over them through the use of cryptographic proofs
like digital signatures. Decentralised Identifiers (DIDs) provide certain advantages,
including user control, improved privacy, and security. Contrary to other traditional
identity suppliers, DIDs allow people to own and control their own identities. DIDs
increase user autonomy by giving them more control. Additionally, users or people
have more control over their data and credentials as a result of power shifts, which
makes them feel safer and more secure. People have the option to revoke their
identification, and their data will be protected from additional dangers such data
breaches, unauthorized access, and exposure of sensitive information. DID-to-DID
relationships are also permanent, secure, regarded as trustworthy, expandable, and
end-to-end, while DIDs are permanent, manageable, cryptographically verifiable,
and decentralized.

2.2.6 Blockchain

Any type of verifiable data registry or decentralized networks can be used to trans-
port and store DIDs, but there is a reason that the creators chose Blockchain [13]
for the SSI infrastructures. Blockchain is essentially an extremely impenetrable dis-
tributed ledger that is not under the control of a single person or an authority. A
new block that has been added to the Blockchain cannot be altered once it has been
added. Blockchain is a good choice for this since it offers a reliable source of data
that any peer may trust without depending on a single centralized authority and
DIDs are tamper-resistant. Blockchain may trade off a number of database features,
such as performance and scalability, but also frees the hands of centralized author-
ities. Blockchain uses a module called “triple play of cryptography” to shift the

7

power from centralized servers to peers. In Blockchain, every transaction is digitally
signed, transactions are grouped into blocks and cryptographically hashed so that
it can be linked with the previous block, and every block is replicated across all of
the peer nodes. These kinds of factors are the reasons why Blockchain is used in
SSI infrastructures.

2.2.7 Trust Framework

The framework [13] for building trust between partners is essentially a collection of
rules, values, and procedures. The goal of SSI Infrastructure is to create a system
where two parties can communicate on the internet with a level of trust that is mu-
tually acceptable to both parties. However, establishing confidence in cryptography
is more difficult than it is in everyday life. For instance, when performing Bitcoin
financial transactions, we must be cautious of rules governing money transmission.
However, if the issuer has enough confidence in the agencies, then verifiers can check
the rules governing money transmission utilizing the VCs. Cryptographic trust can
therefore play an anchor function for Issuers of VCs using DID. Another kind of
trust triangles between parties are produced by this framework for trust. In this
triangle, in the case of trustworthy issuers, verifiers rely on governing authorities.
Trust frameworks, which are essentially the antithesis of VCs, establish the guide-
lines that must be followed when providing a VC to a holder. The verifiers can also
determine the basis for believing a VC to be a valid document.

2.3 Hyperledger Aries

A common, reusable, interoperable toolkit is what Hyperledger Aries [13], an open
source project run by the Linux Foundation, utilises to build, transmit, and store
valid digital credentials. Aries offers shared, reusable components and standards
that help parties create a secure communication connection. Key elements like the
agent framework, verified credentials, DIDcomm, interoperability, decentralised key
management, etc. are provided by Hyperledger. It is well-liked because it enables
developers to construct a decentralised identity solution ecosystem in accordance
with their specifications and preferences.

8

Chapter 3

Literature Review

In 2013, Ibrahem et al. [1] offered a web-based messaging system that uses a new
Diffie-Hellman protocol iteration to support secure key exchange and mutual au-
thentication between client and server. Zero Knowledge Proof (ZKP) and password
authentication were used in the proposed system, together with Hmac for integrity
and AES for confidentiality. The limits of current messaging systems are highlighted,
along with the necessity for secure messaging services. Potential attacks on their
suggested system are discussed in the study, including man-in-the-middle, replay,
and brute force attacks, among others. There are no code implementations in the
paper. The paper’s benefits include increased security in online chat platforms. Due
to the usage of encryption methods, their suggested system may, nevertheless, de-
mand more processing resources than current messaging systems.

Unger et al. [4] published a paper that takes authentication, confidentiality, in-
tegrity, availability, usability, and adoption as some of the factors to evaluate and
systematize the current secure messaging solutions. It also proposes an evaluation
framework that evaluates the security, usability, and ease-of-adoption of secure mes-
saging solutions. The approach also considers the trade-offs between usability and
adoption and security. The trust establishment, conversation security, and trans-
port privacy are the three main difficulties in secure texting, according to the paper.
End-to-end encryption, forward secrecy, deniability, and perfect forward secrecy are
common security features found in secure messaging tools.

In 2017, Ali et al. [5] proposed a secure chatting application with end to end en-
cryption for android platform. The writer suggests an end-to-end encrypted secure
messaging app for Android devices that enables users to connect via text, voice,
and photo communications while maintaining the highest level of security. The pa-
per suggests employing public key cryptography methods and the Elliptic Curve as
solutions. Symmetric algorithm RC4 for voice and image security procedures, stan-
dard AES method with a 128-bit key, and Diffie Hellman Key Exchange algorithm
to produce and exchange keys for symmetric encryption of data. Threat modeling
or code implementations are not specifically mentioned in the study. The paper’s
advantages include a very secure chat program that enables communication between
users, but one potential disadvantage is that the symmetric method RC4 is known
to have significant weaknesses.

9

In 2017, Zupan et al. suggested a decentralized messaging system called Hyper-
PubSub [6] that provides a secure messaging for a multi federated, permissioned
environment.The paper also proposes about the challenges associated with the de-
centralized messaging system and how HyperPubSub addresses these challenges.
The paper basically proposes HyperPubsub as a reusable blockchain middleware.
Implementing decentralized messaging systems can bring challenges due to issues
like scalability, security and privacy. HyperPubsub addresses their challenges and
gives a safe and private messaging system that is examined using blockchains for
validation and monetization purposes. It also provides verifiability of past publish
subscribe operations through the use of smart contracts and blockchain records.
It is designed with several key features like verification, secure messaging. Unlike
other blockchain messaging systems it provides past pub/sub operations using Smart
Contracts and blockchain records.The Demonstration has been made implementing
Kafka and Hyperledger.

Another model was also proposed in 2018 which also used Ethereum blockchain
for decentralized secure messaging in a trustless environment . Abdulaziz et al. [7]
suggested Whisper, an Ethereum P2P communication protocol for decentralized ap-
plications which utilizes õξVp2p Wire Protocol. The messages are asymmetrically
encrypted using the Elliptic Curve Integrated Encryption Scheme (ECIES) together
with the SECP-256k1 public key or symmetrically encrypted using the Advanced
Encryption Standard Galois/Counter Mode (AES-GCM). Whisper protocol can be
interacted with using web3-shh package. The two major functions of the suggested
model are account management and messaging. This model also solves the problem
of encryption, DoS attack and network traffic analysis.

An approach to develop a secured peer-to-peer communication was written in 2019.
Khacef et al. [9] designed a new model with Ethereum to perform encrypted mes-
saging. In this proposed model, each user’s identity needs to be validated using a
smart contract which will ensure trust between them. Each interaction with the
smart contract is recorded as a transaction on the blockchain which is immutable.
It uses ECDSA algorithm to generate a public and a private key. The users keep
their respective private key safely and register their identity in the proposed model
using public key. After the smart contract verifies the registered identities a mu-
tual connection is established. ECDH algorithm is used to generate a shared secret
which is used to encrypt messages using a symmetric key algorithm. The advantage
of this model is it removes central authorities and uses blockchain and public key
for identity verification. Also the smart contract is Turing complete which helps it
to perform as it is expected. It also ensures confidentiality, message integrity, au-
thentication and reliability. The limitation of this model is that the smart contract
performs sequentially, resulting in performance issues and also the immutability of
smart contract after deployment.

In 2019, Schilinger et al. [10] discussed how important it is to have a secure online
social network (OSN) that forbids server-accessing hackers from reading user-private
messages. The lack of privacy and security in present OSNs, which can result in
sensitive information being accessed by unauthorized persons, is one of the issues
discussed in this study. A user-friendly approach is required since many users might

10

not be technically sophisticated enough to use encryption tools themselves. A threat
model is included in the study that lists prospective attackers (such OSN admin-
istrators, hackers, and government organizations) and their skills (like accessing
server data or intercepting network traffic). End-to-end encryption using the RSA
and AES algorithms is the suggested method. The study contains a JavaScript and
Web Cryptography API-based prototype implementation of their suggested solu-
tion. Increased privacy and security for OSN users as well as user-friendliness for
individuals who might not be familiar with encryption technologies are advantages
of this method. Due to the usage of cryptography based on JavaScript, there may
be speed issues as well as compatibility concerns with older web browsers.

In 2020, U. P. Ellewala et al. [11] suggested in a paper a blockchain based secure
messaging system instead of traditional centralized system. The paper mentions
different limitations of traditional system and how this lead to some big loss. The
authors proposed a instant messaging application based on blockchain technology.
The application contains different models for privacy like authentication model,
smart contracts and data loss prevention model and encrypting model. It also uses
cryptographic hash mode to verify integrity of messages and smart contracts. The
result of the paper is a open specification for a secure and private chat applica-
tion which uses blockchain. Because of blockchain it gets benefits like data tamper
immunity which will be helpful for forensic purposes. Also it gets confidentiality,
audibility, shared single source of truth etc. In conclusion the paper is a roadmap
for blockchain based chat application.

In 2021, Shi et al. [14] suggested another protocol Bitmessage. It is a blockchain
based decentralized encrypted peer to peer communication protocol to provide bet-
ter anonymity and privacy by using a stealth address as a destination of a delivered
message which is encrypting a message with a receiver’s public key, which is almost
impossible to identify except the intended receiver. This proposal also includes an
anti-spasm mechanism with proof of space which prevents accidental leakage of data;
this also reduces time and resource costs by eliminating computationally heavy hash
operations. Thus, Bitmessage achieves high anonymity, practicality, anti-spasticity
and efficiency. Bitmessage uses a Proof-Of-Work mechanism to reduce spam which
requires a high hash collision to send a message also wastes energy (a huge energy
consumption) and takes a huge time(an average of four minutes to complete).

In 2021, Singh et al. [15] proposed a blockchain-enabled end-to-end encryption for
instant messaging service. The writers suggested using Matrix, an open-source de-
centralized protocol and network for real-time communication. It uses Ethereum
blockchain’s secret store feature. Its new end-to-end encryption system fully sep-
arates the encryption of a message from its transport. Among other reasons, The
Secret Store was chosen because it offers an abstraction over the underlying crypto-
graphic fundamentals. Additionally, it enables the development of a sophisticated
control system to access the encryption keys, and hence the exchange. Like the pre-
vious papers, this also uses Solidity smart contracts. Tests such as varying length
of messages, varying threshold and access time to smart contract were performed to
evaluate the performance of the proposed system.

11

Again in 2022, Halder et al. [17] made another architecture fybrrChat, a trustless
network architecture that introduces a decentralized messaging system that ensures
impenetrable security for critical and sensitive use cases. The P2P architecture of
fybrrChat is much more scalable than existing platforms due to its serverless ar-
chitecture. The Distributed Hash Table (DHT) in fybrrChat is also decentralized
and uses the storage of devices using fybrrChat for intermediate message storage.
The paper then discusses the security features of fybrrChat, including end-to-end
encryption, which ensures that only the intended recipient can read the message.
The authors also discuss how fybrrChat uses cryptographic hash functions to ensure
message integrity and prevent tampering. The authors suggest implementing a hy-
brid approach that combines P2P technology with cloud-based storage to improve
scalability while maintaining security.

In 2023, Bigos et al. [18] published a security analysis of modern day chatting apps
such as Signal, WhatsApp and Telegram . His analysis focuses on the encryption
protocols used by each app and the security features they offer. The paper eval-
uates the strengths and weaknesses of each app and provides a summary of their
overall security posture. Additionally, the paper discusses other considerations such
as user base, data collection and usage policies, and other features that may im-
pact the security of the apps. The paper highlights that signal is the most secure
among those 3 while WhatsApp uses a modified version of the signal protocol and
Telegram offers two types of encryption: server-client encryption, and End-to-end
encryption. Also they found that all 3 of those apps collect user data and only
signal doesn’t store any data. In Experimental Results the authors describe how
they decrypted all HTTPS traffic using a tool from Fiddler. That created a fake
certificate that they allowed on their testing machine and were able to successfully
intercept and decrypt Signal’s HTTPS traffic. This allowed them to analyze the
data being transmitted and identify potential vulnerabilities in the app’s security
posture. They also analyzed WhatsApp and Telegram encryption protocols using
Wireshark to capture and analyze network traffic between two devices running those.

In 2019, M. Chase et al. [8] in their paper tried to improve the privacy and scalabil-
ity of End-to-End Encrypted messaging by building SEAMless, a Privacy-Preserving
Verifiable Key Directory (VKD) system. It provides users with the ability to verify
their keys without any service provider interference with this system and key update
techniques crucial for dynamic messaging security, empowers users to monitor and
verify their key history, data integrity and security by enforcing Verifiable Random
Functions (VRFs) and Merkle Trees. This approach has proven to have positive
impact as the SEAMless provides efficient server updates and low computational
times and it signifies a remarkable achievement in messaging applications.

In 2022 A. H. Enge et al. [16] in their paper tried to propose an architecture for
secure decentralized P2P messaging. In their paper they first talk about problems
with traditional systems where you always need the internet to do something, then
they give the benefit of a messaging system which can operate without the inter-
net. In their motivation they talk about how new technologies like ssi and didcomm
with BLE(Bluetooth Low Energy) have opened a new door to enable communi-
cation or establish connection without the internetBluetooth Low Energy. Then

12

they gave an architecture and explained how connections should be established and
encrypted messages should be sent. Though this is a very fascinating idea there are
still few limitations. First of all, a lot of functional and nonfunctional requirements
are needed for any kind of connection establishment or message exchange. Then the
system was not implemented and the authors themselves have doubts whether it is
possible to implement it with current SSI available to the public.

3.1 Comparison

Social Media Platforms vs E2EE P2P Chat System with SSI: So far we
have shown the extensive literature review of fourteen papers that emphasizes on the
previous works which has been done in the domain and in future we will also show
methodology, architecture and implementation of our system, but before that let’s
compare our system denoted as ’E2EE P2P Chat’ with existing chat systems that
are growing popular or already popular among the people in Table 3.1. In the table,
Black dot represents, ’Yes’ meaning that this system has satisfied certain criteria or
do have this particular feature within their system. while the White dot represents
’No’ meaning they do not fulfill the criteria; and lastly Half filled fot represents
’Partially Yes’ meaning they or may not have this attribute in their system.

Based on statistics, Messenger, WhatsApp, Telegram and Signal are four of the
most popular chat systems around the world right now.If we compare a few im-
portant features of our End to End Encrypted Peer to Peer Chat System with SSI
with those existing chat systems, we can see few differences and advantages of our
systems. First of all, the biggest advantage this system has is that it is a peer to
peer decentralized system. Unlike those existing centralized systems, which can face
many issues such as single point of failures, system crash and disruptions. Similar
things can be seen in terms of storage, this system uses local storage while other
popular systems use servers to store data which is prone to several attacks and
breaches. Similar to other popular chat applications, it has chat features where
users can build connections with each other and have chat with each other by ex-
changing messages. Those systems can share and transfer all types of files such as
PDF, Text file, Images, Excel Sheet, Powerpoint Slides etc. Our system is also ca-
pable of transferring files but till now it only supports Images to share and transfer.
In Chapter 2, we have already discussed Verifiable Credentials, what it does and
why it is so important. Now, one of the biggest advantages this system possesses is
it supports Verifiable Credentials which can be further used in future works while
talking about traditional centralized chat applications, they don’t support VCs.

Decentralized Chat applications vs E2EE P2P Chat System with SSI:As
we have seen a comparison between our proposed system and popular social media
platforms right now in the world, let’s dive into our domain and then compare our
proposed system denoted as ’E2EE P2P Chat’ with existing decentralized systems
that has already been built. In the Table 3.2 apart from our proposed system, we
have chosen 4 different decentralized system, and those are A Decentralized system
using Bluetooth LE and DIDcomm denoted as System-1, mentioned in [16], A Se-
cure Messaging Platform based on Blockchain denoted as System-2, mentioned in

13

Table 3.1: Comparison of popular chat applications with the proposed system

Traditional Chat Applications vs Proposed System

Features Messenger Telegram WhatsApp Signal E2EE P2P Chat

Centralization Server Server Server Server Peer-to-Peer
Storage Server Server Server Server Local

Chat System

File Transfer

VC Support

E2EEP2PChat ≡ Represents ’The proposed system in this paper’

≡ Represents ’Yes’
≡ Represents ’No’

≡ Represents ’Partially Yes (Image Only)’

Table 3.2: Comparison of decentralized chat applications with the proposed system

Systems

D
ecentralized

Im
plem

ented

File
Sharing

G
roup

Chat

A
rchitecture

Storage

Protocol

System-1[16] B
System-2[11] H B

Bitmessage Plus ∪
FybrrChat ∪ ∪ H B

E2EE P2P Chat H ⊕

E2EEP2PChat ≡ The proposed system in this paper

System− 1 ≡ A Decentralized system using Bluetooth LE and DIDcomm
[16]’

System− 2 ≡ A Secure Messaging Platform based on Blockchain [11]

≡ Represents ’Yes’
≡ Represents ’No’

≡ Represents ’Partially Yes’
H ≡ Represents ’High Level’
B ≡ Represents ’Blockchain’

⊕ ≡ Represents ’Local Storage’
∪ ≡ Represents ’Not Mentioned’

14

[11], Bitmessage Plus mentioned in [14] and finally, FybrrChat mentioned in [17].

In the table, Black dot represents, ’Yes’ meaning that this system has satisfied cer-
tain criteria or do have this particular feature within their system. while the White
dot represents ’No’ meaning they do not fulfill the criteria; and lastly Half filled fot
represents ’Partially Yes’ meaning they or may not have this attribute in their sys-

tem. H represents High level architecture design where the architecture has been

explained using entities and components rather than in low level details, B repre-
sents the system has either used Blockchain, or Distributed System respectively; and
⊕ represents instead of using any leverage or server the system used Local Storage
for data storage and queuing. Lastly, ∪ represents a particular concepts or matter
not mentioned or discussed in that paper.

All of these 5 systems that are mentioned in the table are decentralized but only
FybrrChat and our propose system are the two only systems that has been im-
plemented so far. Our system End to End Encrypted Peer to Peer Chat System
with SSI is the only system among these 5 that has File Sharing and Transfer, and
still working on integrating the Group Messaging Chat feature. In case of architec-
ture, three of them including our system has High level architecture mentioned in
the paper, while System-1 has a detailed exploration about their architecture, but
Bitmessage Plus has no architecture mentioned in their paper. Three of the systems
have used Blockchain for storage function, while our system has used Local storage
for storing and queuing messages and file, but Bitmessage Plus didn’t mentioned
about storage. In case of defining a protocol flow or using any existing protocol flow,
FybrrChat used a protocol called webRTC which is a very famous protocol for peer
to peer systems. Our propose system has introduced protocol flow for connection
establishment, messaging exchanging, file transfer and group messaging. The rest
of three systems has no protocol flow.

15

Chapter 4

Proposal

We want to develop a chat system where individuals can chat with each-other with-
out any central institution, thus achieving decentralization of the system. Our goal
is to introduce a SSI (Self-sovereign Identity) based End-to-End Chat System which
supports a Peer-to-Peer (P2P) key exchange mechanism. Because of SSI (Self-
sovereign Identity) our user identities will also be decentralized which will be man-
aged by verifiable credentials(VC) giving users extra control over their identity and
credentials. This will also enhance the systems security.

4.1 Methodology

This is a security-based proposal so it is important to follow a systematic method-
ology to ensure a rigorous and comprehensive study. In this paper we will follow a
systematic approach.
At the beginning we select a topic in phase 1 (Fig. 4.1). Then in phase 2 (Fig. 4.1)
we try to identify an existing problem in the current situation. For this we looked
at the current situation of the existing chat system and did some literature search
& review. We find that all current chat systems/applications are centralized for
providing service and identifying a user. In phase 3 Fig.4.1 we decide our objective
which is building a non-centralized system. The purpose of this study is to present
an alternative system where a user will get identified in a decentralized way with
the help of SSI and the system will be P2P for decentralized service and E2EE for
security. In phase 4 (Fig.4.1) to review information our core motive was to look
for the works of others which are peer reviewed and published in reputed venues.To
gather the papers our process was to follow the reference in promising research
papers and also aiming in the keywords of our research like : SSI, Blockchain, P2P,
end to end encryption etc which helped us to find the relevant work.We followed
a thorough search method in which we reviewed the information in the following
manner:

1. Read each paper’s abstract and literature review.

2. Made an effort to comprehend the problems the authors have highlighted.

3. Searched for the possible solutions that the authors have suggested.

4. Looked for threat modeling and code implementations in the paper.

16

Topic select Problem
Indentification

Research
Objective

Literature
Review

Threat
Modelling

Requirements
Analysis

Architecture
Design

TestingAnalysis DevelopmentConclusion

if not feasible
to develop

if not feasible, significant, researchable
or not possible in current

technology or out of capability

phase 1 phase 2 phase 3 phase 4 phase 5

phase 6

phase 7

phase 8phase 9phase 10phase 11phase 12

Protocol
Design

Figure 4.1: Core Methodology and Work Plan

5. Searched for the benefits and drawbacks that they have demonstrated.

These methods helped us to gain precise knowledge about earlier research and work
in our research in a well prepared way. Now we enter into core methodology and to
build the system we try to follow the following steps one after another. The steps
are:

1. Threat Modeling

2. Requirement Analysis

3. Architecture Design

4. Protocol Flow

5. Development

6. Test

In threat modeling phase 5 (Fig.4.1) we identify the threats or attacks our system
will be immune to. For that we used the STRIDE [2] model. But we also address
some more vulnerabilities that will be tackled in our system which will be obtained
by decentralization using DIDComm [13] protocol and VC technology.
After that, in phase 6 (Fig.4.1) we did the requirement analysis and focused on
2 things, Core functionality and security functionality. In core functionality we

17

address the functional requirements the system needs to have to function properly.
In the non functional requirements we highlight security features which will mitigate
threats. We also mention some internal functions to maintain privacy. In the next
phase 7 (Fig. 4.1)we did the architecture design. Our architecture is based on SSI.
In the architecture we showed how components will connect with each other and
what will be in between the connections. The DIDComm protocol will be used by
a mediator in the middle to establish connection.
In phase 8 (Fig. 4.1) we showed the protocol which will be maintained while sending
messages from one wallet to another. Finally, in phase 9 we will develop the system
using AFJ(Arice Javascript Framework), SSI, didcomm, mediator, mobile wallets
etc. our system will support decentralized P2P, E2EE messaging. The system will
identify users in a decentralized way. After developing In phase 10 (Fig. 4.1)we
need to test the system to check its scalability, performance, speed. We also need
to check its security under the mentioned attacks. In phase 11 (Fig. 4.1)we will
analyze the requirements and evaluate requirements, performance, security Finally
in phase 12 (Fig. 4.1) we will give our conclusion about the whole system. We have
done up-to phase 9 which is some implementation. And in subsequent semesters
we will focus on enhancing the system’s features and will follow all the phases from
phase 9 to upwards to complete our task properly.

4.2 Threat modeling

For the suggested system, it is very important to find out potential threats and ana-
lyze them before building and deploying it. For this purpose we have used STRIDE,
a well-established methodology used for identifying threats and ensuring a system
meets the security requirements. The security threats that we have considered for
the system are given below:

• T1: Spoofing: An attacker can pretend to be a user of the system and can use
it for malicious intentions.

• T2: Tampering: An attacker can modify important information such as chat
data, receiver’s DID, routing data, verifiable credential etc.

• T3: Repudiation: This threat can occur if a user of the system denies sending
or receiving important data through the chat system.

• T4: Information Disclosure: The system can lose its anonymity which can
result in disclosure of important information such as chat data, verifiable cre-
dentials etc.

• T5: Denial of Service: The system can be targeted for DoS attack, making it
unavailable for the verified users

• T6: Elevation of Privilege: An attacker can use other attack vectors to elevate
their privilege in the system. Apart from these threats we have also considered
additional threats which are important for secured chat service. These are –

• T7: Replay attack: An attacker can eavesdrop a message transfer, capture it
and resend or delay the transfer which can result in miscommunication between
entities.

18

• T8: Lack of consent: A message can be sent without the consent of the sender
which can contain sensitive information.

• T9: Lack of control: Sensitive data which is supposed to be accessed by only
the sender and the receiver can be accessed by any third party.

4.3 Requirement analysis

In this section, we present a set of functional, security and privacy requirements.
The functional requirements focus on the core functionalities of the system. The
security and privacy requirements ensure they mitigate the threats we identified.

4.3.1 Functional Requirements

• F1: The system must integrate SSI mechanisms into its services so that the
end users can communicate only after following SSI steps.

• F2: The system must include a mobile agent or wallet for the end users which
will facilitate data transfer between entities.

• F3: The system must use verifiable credentials and DID for each entity to
create a channel or route for communication.

• F4: The system should support transferring plain texts after encrypting it
through mobile agents owned by end users.

• F5: The system must ensure that there is local storage to store sensitive data.

• F6: The users should be able to access the previous chats they had with the
other entity.

• F7: The users should be able to upload files and send it to the other users
within the system.

• F8: The users should be able to download files sent by another user.

• F9: The users should be able to create new group by selecting and adding new
members.

• F10: The users should be able send messages all members of a group simulta-
neously.

4.3.2 Security Requirements

• S1: The system must ensure that the users are authenticated using verifiable
credentials based on SSI and only after that they can access chat service. This
will mitigate the T1 and T6 threat.

• S2: The system must ensure the verifiable credential or chat information is
not modified by an unauthorized entity which will mitigate T2 threat.

19

• S3: The system must use digital signature from issuers in verifiable credential
to make it tamper-evident. This will mitigate the T3 threat.

• S4: The system must ensure the chat data is encrypted from the end device
and only can be decrypted from the receiver’s end device so that the T4 threat
can be mitigated.

• S5: The system should use already available measures to avoid DoS attack to
mitigate T5 threat.

• S6: The system must take necessary measures against replay attacks to miti-
gate the T7 threat

20

Chapter 5

Architecture

The fundamental purpose of the system is to verify a user in a decentralized way.
But a user cannot communicate with others directly. So, they need a wallet to get
the functionalities and an agent for mobile end-point by which they participate in
the whole process. In the Fig. 5.1 shows a high level architecture of SSI based chat
system that has 2 users Alice and Bob and both of them hold a mobile wallet which
contains an agent.

Alice Bob

Wallet/SSI Agent Wallet/SSI Agent

Mediator

Blockchain

Figure 5.1: SSI based chat system

Two wallets cannot communicate with one another without a central server. So, the
connection is established using a mediator. Mediators can send and route messages
globally to other mediators and they can also communicate locally with the wallet
agent. Apart from routing messages, Mediators also can create secure communi-
cation channel, verifying credentials, and provides privacy and anonymity. At first
the communication between two wallets are established physically by scanning a qr
code. In Fig. 5.1 the straight solid arrow indicates the user holds an agent or wallet
while the dotted bidirectional arrow means there is a connection or communication
and it points towards the network dependent entitites. A user first creates a link of
his wallet agent and converts that into a qr code with some additional information.If
Alice wants to send a message to Bob first she needs to establish a connection by

21

mediator. DIDcomm protocol will be used here. Finally Alice can send a text to
Bob. This architecture is high level design of a simple SSI based chat system using
which 2 users can communicate through messages exchanging, file sharing and trans-
ferring. Blockchain in both of these architectures can be used to provide immutable
records, trust and verification as well as decentralization. Although in both of these
diagrams, Blockchain is used only for leveraging the public DIDs.

Alice Bob

Wallet/SSI Agent Wallet/SSI Agent

Mediator

Blockchain

Wallet/SSI Agent
Carol

Figure 5.2: SSI based group chat system

In the Fig. 5.2 a high level architecture of a SSI based group chat system has
been shown among three users, Alice, Bob and Carol. This architecture is pretty
similar compared to Fig. 5.1 in terms of functionality and processes. In both
of these architecture, Mediators, Blockchain together with Wallets or SSI agents
provides the system with identity creation and management, secure communication
and messaging, credentials issuing, verifying and sharing and privacy maintenance
as well.

5.1 Use Case and Protocol Flow

Now in this section, we will present a use case scenario with protocol flows and visual
representation of how two different users can establish connection between them and
send messages or files to each other using this system. First in the Table 5.1, we
will describe some of the mathematical notations which will be used to describe the
Data Model, Protocol Flows of Connection Establishment, Messages Exchanging

22

Table 5.1: Cryptographic Notation - One-to-One Chat

Notations Descriptions
U1 User-1
U2 User-2
M Mediator

Kcek Symmetric or Content Encryption Key
KU1

U2 Public Key of U2 to be used with U1

K
−1|U1
U2 Private Key of U2 to be used with U1
KU2

U1 Public Key of U1 to be used with U2

K
−1|U2
U1 Private Key of U2 to be used with U1
KU1

M Public Key of Mediator M to be used with U1

K
−1|U1
M Private Key of Mediator M to be used with U1
KM

U1 Public Key of U1 to be used with Mediator M

K
−1|M
U1 Private Key of U1 to be used with Mediator M
KU2

M Public Key of Mediator M to be used with U2

K
−1|U2
M Private Key of Mediator M to be used with U2
KM

U2 Public Key of U2 to be used with Mediator M

K
−1|M
U2 Public Key of U2 to be used with Mediator M
{}K Encryption using a public or symmetric key

{}K−1 Digital Signature using a private key
{K,K−1} Sender’s Key Pairs

msg Textual Messages send between Users
DIDU1

U2 Decentralized Identifiers of U2 for U1
DIDU2

U1 Decentralized Identifiers of U1 for U2
V CU2

U1 Verifiable Credential issued by U1 to U2
[.....]K Communication over an encrypted channel using key K
[.....] Communication over an unencrypted channel

()base64enc Base-64 encoding of image
()base64dec Base-64 decoding of image

()resize Resize of Image

and Image Transfer showed in Table 5.2, 5.3, 5.4 and 5.5 respectively.

Data Model: Then comes the Table 5.2, Data Model which gives a detailed de-
scription of the types of requests and responses this system makes and the types of
data this system uses and what they contain. First inviteReq contains url, recK-
eys and routKeys which are Recipient Keys and Routing Keys (optional in most
cases) of the request service respectively. For inviteReq there are two correspond-
ing responses, inviteRes-1 and inviteRes-2. The first one contains the Decentralized
Identifiers (DID) of U2 to be used with U1, DIDU1

U2; while the later one contains
the Decentralized Identifiers (DID) of U1 for U2, DIDU2

U1. Next, we have packMsg
which contains walletHandle, basically key pairs of sender, Message encrypted with
content encryption key which is the text that is sent by the user, senVerKeys and
recVerKeys which are verification keys of sender and recipients respetively, and lastly
content encryption key encrypted with recVerKeys.

23

Table 5.2: Data Model

Request/Response Contents of Request or Response
inviteReq (url, recKeys, routKeys)

inviteRes-1 (DIDU1
U2)

inviteRes-2 (DIDU2
U1)

walletHandle (Sender’s Key Pairs)
senVerKeys (Public key of Sender to be used with Recipients)
recVerKeys (Public keys of Recipients to be used with Sender)

packMsg (walletHandle, {{msg}Kcek
,

{Kcek}recV erKeys}, senVerKeys, recVerKeys)

Table 5.3: Protocol Flow - Connection Establish

Request or Response Contents of Request or Response
1. U2 → U1 [newInviteGen]http
2. U1 → U2 [inviteReq]http
3. U2 → M [U1, {inviteRes− 1}KU2

U1
]KU2

M

4. M → U1 [{inviteRes− 1}KU2
U1
]KM

U1

5. U1 → M [U2, {inviteRes− 2}KU1
U2
]KU1

M

6. M → U2 [{inviteRes− 2}KU1
U2
]KM

U2

U1 U2

[newInviteGen]https

[inviteReq]https

M

[{inviteRes-1}
KU2 M]

KU1 U1

[U2, {inviteRes - 2}
KU1 U1]

KU2 M

[{inviteRes-2}
KU1 M]

KU2 U2

[U1, {inviteRes-1}
KU2]

KU1
U2
M

Figure 5.3: Sequence Diagram - Connection Establish

Protocol Flow - Connection Establish: Now we will demonstrate how this
system helps two users to establish a fully secure and encrypted connection between
them in Table 5.3.

24

Table 5.4: Protocol Flow - Messages Exchanging

Request or Response Contents of Request or Response
1. U2 → M [U1, {packMsg}KU2

U1
]KU2

M

2. M → U1 [{packMsg}KU2
U1
]KM

U1

3. U1 → M [U2, {packMsg}KU1
U2
]KU1

M

4. M → U2 [{packMsg}KU1
U2
]KM

U2

U1 U2 M

[{packMsg}
KU2 M]

KU1 U1

[U2, {packMsg} KU1 U1]KU2 M

[{packMsg}KU1 M]KU2 U2

[U1, {packMsg}
KU2]

KU1
U2
M

[U1, {((image)
KU2]

KU1
U2
M

resize)base64enc}

[{((image)
KU2]

KU1
M
U1

resize)base64enc}

Figure 5.4: Sequence Diagram - Message Exchanging and File Transfer

• In the step 1, U2 submits a request to U1 to generate invitation request via
Bifold Wallet.

• Then in the step 2, U1 generates an Invitation which is encoded as QR code
and returns the inviteReq to the U2.

• At step 3 and step 4, U2 scans the QR code and generates a key pair of public
and private key and a DID of U2 for U1, DIDU1

U2. The U2 then uses the wallet
to create inviteRes-1 using the DID and encrypts it with the public key of
the U1 to be used with U2, KU2

U1 ; and sends it to the mediator, M in order to
forward it to the U1 over an encrypted channel that is encrypted with KU2

M .
The mediator then at first decrypts it with its private key, encrypts it with
U1’s public key to be used with M, KM

U1 and then send it to U1. The overall
process will be carried on an encrypted channel. U1 will then receive the data
from Mediator and in this overall process the data is always encrypted with
KU2

U1 .

25

• Similarly at step 5 and step 6, U1 first uses the wallet to create another
invitation, inviteRes-2 using the DID, encrypts it with the public key of the
U2 to be used with U1 and sends it to the Mediator in order to forward it
to the U2; the Mediator then decrypts it and sends it to U2 after encrypting
with the public key of U2 to be used with M.

• In this way, both U1 and U2, using their user wallet retrieves and stores the
DID, required connection data from both of the inviteRes-1 and inviteRes-2,
integrate and stores them to save the connection in the wallet and establish a
secure and encrypted connection between them.

• The Sequence Diagram at the Figure 5.3 shows the flow of the process of con-
nection establishing.

Protocol Flow - Messages Exchanging: After successfully establishing the con-
nection between U1 and U2; it’s time for both of the user to send messages to each
other in the Table 5.4.

• In the step 1, U2 first encrypts the packMsg with the public key of U1 to
be used with U2, KU2

U1 ; and instructs the Mediator to forward the encrypted
message to U1. Then before sending it to the Mediator, U2 encrypts the entire
channel that passes message with the public key of Mediator to be used with
U1, KU1

M which indicates that the channel from where the messages are passing
through is secure and encrypted.

• In the step 2; Mediator at first decrypts the message and see the instruction
that tells it to forward the message to U1; so, the Mediator then forwards the
message to the U1.

• Similarly in the above manner in setp 3 and 4, U1 then send the packMsg
to the Mediator by encrypting with the public key of U2 for U1, KU1

U2 and
then the channel with public key of the Mediator for U1, KU1

M ; instructing
it to forward to the U2. The Mediator then decrypts it with its private key,
reads the instruction, send it to the U2. Thus both of the user completes the
process of exchanging messages between them. Again, the channel is securely
encrypted.

• The Sequence Diagram at the Figure 5.4 shows the flow of the process of mes-
sages exchanging.

Table 5.5: Protocol Flow - File Transfer

Request or Response Contents of Request or Response
1. U2 → M [U1, {((image)resize)base64enc}KU2

U1
]KU2

M

2. M → U1 [{((image)resize)base64enc}KU2
U1
]KM

U1

Protocol Flow - File Transfer: It’s time for both users to send images to each
other in the Table 5.5.

26

• First U1 will select the image from mobile storage and then press the send
button. After pressing the send button in the backend of the app the image
will first get resized and then the resized image will be encoded into a base64
string and the string will be sent through mediator to the another user. Into
the backend of the U2’s app the base64 encoded string will be decoded into a
image which U2 can derictly see into his/her inbox. The Sequence Diagram
at the Figure 5.4 shows the flow of the process of file transfer.

Table 5.6: Cryptographic Notations - Group Chat

Notations Descriptions
A User A (Alice - group member)
B User B (Bob - group member)
C User C (Carol - group member)

DIDX Decentralized Identifier (DID) of User X
H(DIDX , DIDY , DIDZ) Hash of concatenation of DIDs of group

members X, Y, Z
KM

A Public Key of A to be used with M

K
−1|M
A Private Key of A to be used with M
KM

B Public Key of B to be used with M

K
−1|M
B Private Key of B to be used with M
KM

C Public Key of C to be used with M

K
−1|M
C Private Key of C to be used with M
KA

M Public Key of M to be used with A

K
−1|A
M Private Key of M to be used with A
KB

M Public Key M to be used with B

K
−1|B
M Private Key of M to be used with B
KC

M Public Key of M to be used with C

K
−1|C
M Private Key of M to be used with C
KB

A Public Key of A to be used with B

K
−1|B
A Private Key of A to be used with B
KC

A Public Key of A to be used with C

K
−1|C
A Private Key of A to be used with C
KA

B Public Key of B to be used with A

K
−1|A
B Private Key of B to be used with A
KC

B Public Key of B to be used with C

K
−1|C
B Private Key of B to be used with C
KA

C Public Key of C to be used with A

K
−1|A
C Private Key of C to be used with A
KB

C Public Key of C to be used with B

K
−1|B
C Private Key of C to be used with B
msg Messages exchanged between users

notify A group chat joining notification
[.....]K Communication over an encrypted channel using K

27

Protocol Flow - Group Establish and Message Exchanging: Table 5.6 simi-
larly discusses some cryptographic notations which includes cryptographic notations
for users, their public keys, DIDs, messages and notifications.

• Table-5.6 is the protocol flow that describes the process of sending and receiv-
ing messages by users in group chat discussions. In the step-1, A (User-A),
selects B (User-B) and C (User-C) as group members, creates a chat win-
dow with them and uses the hash of the catenation of all of the users’ DIDs,
H(DIDA, DIDB, DIDC) as the label to create a group chat. For now, this
protocol will assume that in order to create a group all of the members of the
group have to connected with each other. If all of them are connected with each
other, then the users will be able to create a group with their selected members
and start their discussions. In step-2 and step-3, B and C follow the same pro-
cess by selecting the other two users, use the hash, H(DIDA, DIDB, DIDC)
as labels and create a group chat from their end.

Table 5.7: Protocol Flow - Group Chat Creation

1. A selects B, C, creates chat window, use H(DIDA, DIDB, DIDC) as label.
2. B selects A, C, creates chat window, use H(DIDA, DIDB, DIDC) as label.
3. C selects A, B, creates chat window, use H(DIDA, DIDB, DIDC) as label.
4. A → M : [{B, {notify}KA

B
}]KA

M

5. M → B : [{notify}KA
B
]KM

B

6. A → M : [{C, {notify}KA
C
}]KA

M

7. M → C : [{notify}KA
C
]KM

C

8. B → M : [{A, {notify}KB
A
}]KB

M

9. M → A : [{notify}KB
A
]KM

A

10. B → M : [{C, {notify}KB
C
}]KB

M

11. M → C : [{notify}KB
C
]KM

C

12. C → M : [{A, {notify}KC
A
}]KC

M

13. M → A : [{notify}KC
A
]KM

A

14. C → M : [{B, {notify}KC
B
}]KC

M

15. M → B : [{notify}KC
B
]KM

B

16. A → M : [{B, {msg}KA
B
}]KA

M

17. M → B : [{msg}KA
B
]KM

B

18. A → M : [{C, {msg}KA
C
}]KA

M

19. M → C : [{msg}KA
C
]KM

C

20. B → M : [{A, {msg}KB
A
}]KB

M

21. M → A : [{msg}KB
A
]KM

A

22. C → M : [{A, {msg}KC
A
}]KC

M

23. M → A : [{msg}KC
A
]KM

C

• From step step-4 to step-7, A instructs the Mediator, M to send B and C a
simple notifications that confirms that he (A) joined the group that has been
created by them individually from their end, and instruct them to send it in an
encrypted channel that is encrypted with KA

M , with encrypting the data with

28

public key of respective users, KA
B and KA

C . Mediator, M then sends those
notifications to B and C as per the instructions. This channel is encrypted too
making it a secured communication among the Mediator M, B and C.

• From step-8 to step-15, both B and C will follow similar processes where they
will instruct the Mediator , M to pass their data to their group chat members;
M will follow the same instructions for B and C and forward it to their fellow
group users.

• From step-16 to step-19, A instructs the Mediator, M to send B and C some
data that he sends to the group in an encrypted channel, encrypted with KA

M .
This time instead of sending a notification, A will send a textual message
to start a communication or discussion between the users. Mediator M then
sends those messages to B and C, KA

B and KA
C as per the instructions in step-

14 and step-15, encrypting the data using the public key of respective users
and sending it within an encrypted channel to make it more secure. From
step-16 to step-21, both B and C will follow similar processes to continue their
discussion and Mediator M will follow the same instructions for B and C. Thus,
completing the entire process of group communication among multiple users.

Figure 5.5: Sequence Diagram - Group Members Selection

The Sequence Diagram at the Figure 5.5, 5.6, 5.7 shows the flow of the process of
group chat features.

Use case and Protocol through Visualization: Now that we have already un-
derstand the protocol flow and its use case descriptions, it’s time to see the visual
representation of the app, how it functions and how a user will operate through the
application, make a connection and have a discussion with their other connected
users. In the protocol flow, we have mentioned two users, U1 and U2; let’s say, U1
wants to make a connection with U2 and have some discussion. Below, through
visual images we will present how user U1 will communicate with user U2.

29

A B MC

B
M]

K

A

B

M

[{notify}

]

K

K

A

CK C
[{notify}

[{C, { notify }
K A]

KC
A
M

B M]
KCK C

[{notify}

B B]
KCK M

[{C, {notify}

[{ notify }

[{ A, { notify }

K

K

A

A

]

]

K

K

B

B

A

B

M

M

]

}]

}

}

[{B, { notify }
K A }] KB

A
M

Figure 5.6: Sequence Diagram - Group Chat Connection Establishment

A B MC

[{B, { msg }
K A]

KB
A
M

[{ msg }
K A]

KB
M
B

[{C, { msg }
K A]

KC
A
M

[{ msg }
K A]

KC
M
C

}

}

Figure 5.7: Sequence Diagram - Group Chat Messages Exchanging

30

1. Starting the Aries Bifold Wallet Application:
- Aries Bifold is a mobile application which is installed on U1’s mobile device. To
start the application first U1 taps the application to open it. A window appeared in
front of U1 asking to enter a pin to get inside the app. This is for the security reason
that even if someone gets physical access to U1’s phone still they may not access
the application. After giving the correct pin U1 press a button called ‘Unlock’ to
get inside the application (In the Figure: 5.8a). It will the U1 to the home screen
of the Bifold Wallet Application (In the Figure: 5.8b).

(a) Aries Bifold - Entering the PIN and
unlocking the application

(b) Aries Bifold - Home Screen

Figure 5.8: Starting the Application

2. U1 Building the connection with U2:
- Inside the application there is a QR code like button at the top right (In the
Figure 5.8b). To generate a QR code U1 press on the button, a new window opens
with a QR code on it (In the Figure 5.9b). This OR code is being used to make a
connection. This OR code contains information like an invitation URL. To establish
connection between U1 and U2, U2 needs to follow the same process to get inside
the application on his/her device.

- Inside the application, U2 will find a button called ‘Scan’ at the bottom middle
(In the Figure 5.8b). U2 presses the ‘Scan’ button and opens a scanner inside the

31

app (In the Figure 5.9a). Now from his/her device with the help of that scanner
U2 scans the QR code (In the Figure 5.9b) which is being generated in U1’s device.
After scanning, a connection was established between U1 and U2 with the help of a
mediator.

(a) Aries Bifold - Scanning Screen (b) Aries Bifold - Generated QR Code

Figure 5.9: Building the Connection between users

3. Accesing the contacts and sending messages:
- There is a button which looks like 3 horizontal lines symbol at the top left corner
(In the Figure 5.8b). U1 presses the button and comes to a page named Settings.
In Settings there is Contacts (In the Figure 5.10a). U1 taps into the Contacts. This
will let U1 get inside Contacts where U1 will find all his/her connections (In the
Figure 5.10a). From there U1 selects the connection which is with U2 and gets
inside a chat window (In the Figure 5.12b and Figure 5.10b).

- There U1 writes his/her msg and presses the send button to send the message to
U2. U2 can see the message U1 has sent him/her in a chat window inside his/her
contacts. And can send messages to U1 from that chat window (In the Figure 5.12b
and Figure 5.10b). React Native uses TCP Socket to transfer messages. TCP socket
is mainly used to transfer small size data which is very useful here as there is no
centralized database.
4. Sending Image files to other users:

32

(a) Aries Bifold - Accessing Chats (b) Aries Bifold - Sending Messages-1

(c) Aries Bifold - Sending Messages-2

Figure 5.10: Accessing chats and Messages Exchanging between users

33

- To send image U1 select the image icon which is at the bottom of the chat window
(In the Figure 5.12b). After pressing the image icon a floating window pops up
where U1 can select images from his/her gallery (In the Figure 5.11a). After select-
ing, the image is encoded to base64 and checked if the size is less than a specific
threshold. If yes, the image is being passed with react conditional rendering. If not
the image is being resized and encoded. Then U1 can find the image floating beside
the text box inside the chat window (In the Figure 5.11b). The floating image has
a copy button and a cross button (In the Figure 5.11b). Cross button will remove
the image. U1 can copy the encoded base64 string using that copy button over the
image and paste it in the text box (In the Figure 5.11c and Figure 5.12a). Then U1
can send that image by pressing the send button (In the Figure 5.12a). If a base64
string is passed through the react image tag it will render the image (In the Figure
5.12b and Figure 5.12c). Because U2’s device will receive the same string it will
render the same image. This is why messages and images are synchronized in the
app.

5. Group messaging chat among multiple users:
- So far, the messaging, file sending and receiving between two users have been com-
pleted; the only part of the implementation that is yet to be done is group messaging
feature where more than two users who are all connected with each other, send mes-
sages and have a discussion among them. Although, we have already designed a
protocol for group messaging among multiple users by following good design princi-
ples, but we have fully completed the implementation yet.

- Till now, we have been able to design a UI screen where we will be able see the
users from contact list and select them for the group creation (In the Figure 5.13).

- But we are facing some issue from here. At first, we had to build a UI where a
user can select other users with whom that user wants to create a group. For that
we created a floating action button in the contacts screen UI (In the Figure 5.13).

- By clicking that action button, the application will show the user a contact list
of the users that are connected with him/her. But we are facing some problems to
build the logic of the coding implementation for that.

- First of all, our primary approach was to bring the entire contact list, store it into
the application and bring it into the state of the application. But the problem in
this approach is we were facing decision making difficulties in handling the data of
multiple users, whether we should use react state to do that or shift to SQLite.

- To illustrate, if we use SQLite, we are here facing the problem of mapping the data
using SQLite due to problems; the problems were basically regarding the permission
to read SQLite existing database as it was under the Aries Aksar, so it was not
permissible to read or edit it.

- On the other hand, as the application has already been implemented, accessing

34

(a) Aries Bifold - Pressing Image Op-
tion

(b) Aries Bifold - Selecting the image

(c) Aries Bifold - Copying it to the
clipboard

Figure 5.11: Images transfer between users - 1

35

(a) Aries Bifold - Pasting the image
URL

(b) Aries Bifold - Image-1 Send

(c) Aries Bifold - Image-2 Send

Figure 5.12: Images transfer between users - 2

36

Figure 5.13: Selecting Users UI

the state using react state is causing several problems. The only possible solution
remains to use a separate state to handle but there is another issue as it will make
the application too heavy to handle and it may crash.
- For these kinds of diificulties, the implementation part of group messaging chat
feature is not fully completed till now.

37

Chapter 6

Discussion

6.1 Analysing Requirements

The proposed system has several functional and security requirements to guide the
development process while meeting the end product’s expectations. Let’s analyze
those requirements:

Functional requirements:

• The system is built on the top of Hyperledger Aries, which is a robust frame-
work providing tools and libraries designed to develop and support Self-sovereign
Identity (SSI) systems. So, incorporating the Hyperledger Aries has integrated
the SSI mechanisms into the chat’s services fulfilling the F1.

• In order to manage and present credentials to verifiers, managing DIDs, estab-
lishing connections and secure communication, providing authentication and
authorization, and providing user interface for the ease of users, a mobile agent
or wallet is a must. We use an application called Aries Mobile Agent React
Native aka Aries Bifold Wallet to provide all the facilities mentioned above,
thus ensuring the F2.

• The system satisfies F3 by sending DIDs while establishing connection. DIDs
are used within the VC framework to ensure that credentials are not dependent
on any centralized registry or authority.

• The system allows users to send plaintext messages, send or download images
to other users which are encrypted using a series of Symmetric Key Cryptogra-
phy and Public-Key Cryptography methods by mobile agents of the end users
before transferring the messages to targeted users to ensure the F4, F7 and
F8.

• All the messages and images are saved in the local storage of the user and can
be retrieved from there fulfilling F5 and F6.

Security requirements:

• To provide safe, passwordless authentication, our system authenticates and
gives access to its users by verifying them using Verifiable Credentials based

38

on SSI. It also provides authorization as it mitigates chat or information mod-
ification by an unauthorized person satisfying S1 and S2.

• Aries Bifold Wallet provided by Hyperledger Aries provides Verifiable Creden-
tials with digital signature to make it tamper-evident, thus making it safe,
secure and handling S3.

• Our system follows a protocol that is made by using the existing DIDcomm
protocol, it ensures that data or files which are being sent by the users are
encrypted from the sender’s end and only being decrypted from the receiver’s
end. Thus providing integrity and confidentiality of the data and images en-
suring S4.

• The SSI mechanisms provided by the Hyperledger Aries and Aries Bifold Wal-
let help the proposed system against attacks like DoS attack, Replay attack.
As our system is built on the top of these frameworks and wallets, our system
is also capable of dealing and countering these attacks satisfying S5 and S6.

6.2 Advantages

The advantages of the End-to-End Encrypted Peer-to-Peer Chat System with SSI
are:

• The system is decentralized, so it is more secure than existing centralized
systems.

• The system uses SSI, making the system more user-centric and giving the user
the authority of managing identity.

• Unlike the existing decentralized systems, our proposed system is capable of
sending and receiving files.

• The proposed system has well defined protocol for connection establishment,
messaging, file sharing, and group messaging.

• The messages and credentials are saved in the local storage, making it harder
to attack or steal.

6.3 Limitations

The limitations of the End-to-End Encrypted Peer-to-Peer Chat System with SSI
are:

• Till now, the system can share image files, but it is still incapable of sending
many other types of files like PDF, Word or Excel.

• The protocol and design of the group messaging feature is completed, but it
is yet to be implemented and integrated in the system.

• In the protocol, we have assumed that group members are all connected with
each other for group messaging.

39

• As the system is yet to be fully implemented, we haven’t done any usability
or performance testing even though it has followed good design principles.

6.4 Future Works

• To enhance the file sharing feature of the system in the future, the system
should be capable of sending different types of files.

• To make the communications and discussion more enthusiastic, in future, a
fully functional group messaging feature could be implemented.

• As we haven’t tasted the image sharing, it can be tested in future for its speed,
scalability, interoperability, robustness etc.

40

Chapter 7

Conclusion

In conclusion, we have presented a decentralized messaging system built upon Arise
Bifold. The Use of HyperLedger Arise makes it a SSI using decentralized system
which supports passwordless entry and VC framework. The system supports im-
age sharing and also have a protocol for establishing group messaging feature. The
motivation was to improve the existing decentralized systems so that they can com-
pare with regular centralized messaging systems and give more security to its users.
There is a high level architecture for how messages will be sent. We have given
threat modeling, requirement analysis and security analysis. We hope this will help
researchers and developers in future to create a better decentralized messaging sys-
tem with all the features we can find in centralized messaging systems and even
more.

41

Bibliography

[1] M. K. Ibrahem and T. A. M. Ali, “Secure messaging system using zkp,” 2013.

[2] A. Shostack, Threat Modeling, Designing for Security. 2014.

[3] J. Graham, New cfo survey: More than 80 percent of firms say they’ve been
hacked, Duke Today, Jun. 2015. [Online]. Available: https://today.duke.edu/
2015/06/ cfohacking# :∼ : text=These%20are%20some%20of%20the , or%
20make%20public%20important%20data.

[4] N. Unger, S. Dechand, J. Bonneau, et al., “Sok: Secure messaging,” in 2015
IEEE Symposium on Security and Privacy, 2015, pp. 232–249. doi: 10.1109/
SP.2015.22.

[5] A. Ali and A. Sagheer, “Design of secure chatting application with end to end
encryption for android platform,” Iraqi Journal for Computers and Informatics
(IJCI), vol. 43, p. 6, Jun. 2017. doi: 10.25195/2017/4315.

[6] N. Zupan, K. Zhang, and H.-A. Jacobsen, “Hyperpubsub: A decentralized, per-
missioned, publish/subscribe service using blockchains: Demo,” in Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference: Posters and Demos,
ser. Middleware ’17, Las Vegas, Nevada: Association for Computing Machin-
ery, 2017, pp. 15–16, isbn: 9781450352017. doi: 10.1145/3155016.3155018.
[Online]. Available: https://doi.org/10.1145/3155016.3155018.

[7] M. Abdulaziz, D. Çulha, and A. Yazici, “A decentralized application for se-
cure messaging in a trustless environment,” in 2018 International Congress on
Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), 2018,
pp. 1–5. doi: 10.1109/IBIGDELFT.2018.8625362.

[8] M. Chase, A. Deshpande, E. Ghosh, and H. Malvai, “Seemless: Secure end-
to-end encrypted messaging with less trust,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, ACM, Lon-
don, United Kingdom, Nov. 2019.

[9] K. Khacef and G. Pujolle, “Secure peer-to-peer communication based on blockchain,”
in Web, Artificial Intelligence and Network Applications, L. Barolli, M. Tak-
izawa, F. Xhafa, and T. Enokido, Eds., Cham: Springer International Publish-
ing, 2019, pp. 662–672, isbn: 978-3-030-15035-8.

[10] F. Schillinger and C. Schindelhauer, “End-to-end encryption schemes for on-
line social networks,” in Security, Privacy, and Anonymity in Computation,
Communication, and Storage, G. Wang, J. Feng, M. Z. A. Bhuiyan, and R.
Lu, Eds., Cham: Springer International Publishing, 2019, pp. 133–146.

42

https://today.duke.edu/2015/06/cfohacking#:~:text=These%20are%20some%20of%20the,or%20make%20public%20important%20data
https://today.duke.edu/2015/06/cfohacking#:~:text=These%20are%20some%20of%20the,or%20make%20public%20important%20data
https://today.duke.edu/2015/06/cfohacking#:~:text=These%20are%20some%20of%20the,or%20make%20public%20important%20data
https://doi.org/10.1109/SP.2015.22
https://doi.org/10.1109/SP.2015.22
https://doi.org/10.25195/2017/4315
https://doi.org/10.1145/3155016.3155018
https://doi.org/10.1145/3155016.3155018
https://doi.org/10.1109/IBIGDELFT.2018.8625362

[11] U. P. Ellewala, W. Amarasena, H. S. Lakmali, L. Senanayaka, and A. Senarathne,
“Secure messaging platform based on blockchain,” in 2020 2nd International
Conference on Advancements in Computing (ICAC), vol. 1, 2020, pp. 317–322.
doi: 10.1109/ICAC51239.2020.9357306.

[12] L. Olivo, 7 social media sites and their data breaches, They say your data is
protected, but how have they measured up? Human ID, Oct. 2020. [Online].
Available: https://human-id.org/blog/biggest social media breach history/.

[13] D. Reed, Self-Sovereign Identity, Decentralized digital identity and verifiable
credentials. Manning Publications, 2021.

[14] L. Shi, Z. Guo, and M. Xu, “Bitmessage plus: A blockchain-based communica-
tion protocol with high practicality,” IEEE Access, vol. 9, pp. 21 618–21 626,
2021. doi: 10.1109/ACCESS.2021.3056135.

[15] R. Singh, A. N. S. Chauhan, and H. Tewari, Blockchain-enabled end-to-end en-
cryption for instant messaging applications, 2021. arXiv: 2104.08494 [cs.CR].

[16] A. H. Enge, A. Satybaldy, and M. Nowostawski, An architectural framework
for enabling secure decentralized p2p messaging using didcomm and bluetooth
low energy, 2022.

[17] D. Halder, S. Bhushan, G. Shreya, and P. Kumar, Fybrrchat: A distributed
chat application for secure p2p messaging, 2022. arXiv: 2207.02487 [cs.SI].

[18] C.-E. Bogos, R. Mocanu, and E. Simion, A security analysis comparison be-
tween signal, whatsapp and telegram, Cryptology ePrint Archive, Paper 2023/071,
https://eprint.iacr.org/2023/071, 2023. [Online]. Available: https://eprint.
iacr.org/2023/071.

43

https://doi.org/10.1109/ICAC51239.2020.9357306
https://human-id.org/blog/biggest_social_media_breach_history/
https://doi.org/10.1109/ACCESS.2021.3056135
https://arxiv.org/abs/2104.08494
https://arxiv.org/abs/2207.02487
https://eprint.iacr.org/2023/071
https://eprint.iacr.org/2023/071
https://eprint.iacr.org/2023/071

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	Nomenclature
	Introduction
	Introduction
	Motivation
	Problem Statement
	Research Objective
	Report Structure

	Background
	SSI
	Seven building blocks of SSI
	Verifiable Credentials
	The Trust Triangle
	Digital wallets
	Digital agents
	Decentralized identifiers
	Blockchain
	Trust Framework

	Hyperledger Aries

	Literature Review
	Comparison

	Proposal
	Methodology
	Threat modeling
	Requirement analysis
	Functional Requirements
	Security Requirements

	Architecture
	Use Case and Protocol Flow

	Discussion
	Analysing Requirements
	Advantages
	Limitations
	Future Works

	Conclusion
	Bibliography

