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Abstract

In today’s world of information and communication tools, data security is critical
for information diffusion. With the growth of extensive multimedia sharing and
secret discussions, data concealment has become increasingly vital. Steganography
encompasses various types, including image steganography, audio steganography,
video steganography, text steganography, network steganography, and digital water-
marking. Traditionally, image steganography involves concealing an image within
the least significant pixels of a cover image. However, recent advancements have
leveraged neural networks to encode and decode secret images within cover images.
Our objective is to utilize neural networks especially convolutional neural network to
hide multiple images within a single cover image while maximizing payload capacity
and minimizing errors in the encoding and decoding processes.

Keywords: Steganography; Image Steganography; Neural Network; Convolutional
Neural Network
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Chapter 1

Introduction

Steganography is a captivating field that involves the core concepts of information
hiding and cryptography. It offers an array of techniques and computational pro-
tocols to veil confidential data, allowing its dissemination or retention without any
suspicion. Whereas cryptography mainly focuses on obscuring the substance of a
communication, steganography centers on hiding the very existence of a message.
Steganography is an effective and important technique for secret communication and
protecting data in different fields. The historical significance of this may be traced
back to ancient civilizations. This civilization used complicated techniques example
wise invisible ink, microdots as well as secret compartments to send classified in-
formation. In this modern era of tech advancement, steganography has made huge
progress. It applies the vast and flexible information included in digital documents.
This has made it a crucial tool for secretly sharing and protecting data. The in-
ability to conceal information in a conspicuous manner without generating suspicion
makes steganography an insignificant tool for intelligence agencies, businesses, and
individuals aiming to protect their sensitive information.

In steganography, a questionable approach is used where information is concealed by
replacing the least significant bit LSB of a pixel in a picture with a bit that contains
the hidden data. This technique provides a straightforward approach for transmit-
ting secret data. However, LSB steganography is restrained by its constrained em-
bedding capacity, which curtails the amount of data that can be concealed within
the least significant bits of the cover media. Additionally, LSB steganography is
susceptible to detection and can be easily compromised through basic statistical
analysis or image processing methods. [21].

The security and robustness of steganographic systems can be greatly improved
through the use of deep learning, as researchers have increasingly recognized in re-
cent years. Due to the outcome, they have started exploring the implementation of
neural networks, especially CNN , for the purpose of image steganography. Neural
steganography endeavors to heighten the security and efficiency of steganographic
systems by exploiting the capabilities of CNN ’s to learn intricate features and pat-
terns from images. This ability enables the more sophisticated and secure embedding
of hidden data while preserving the visual quality of the cover media. Thus, cog-
nitive steganography reveals incredible potential in the domain of data safety and
can pave the way for even more sophisticated and secure transmission of sensitive
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information [21].

1.1 Research Problem

In the current digital era, the transfer of multimedia data has become so rampant
that securing and preserving the privacy of shared data has become a crucial issue.As
encryption is used to protect data alongside standard steganography methods also
protects the data during transmission there is still a chance of flaws as well as the
risk of being detected. It is crucial to investigate new methods. Because by new
methods the security of multimedia data transport protocol improves. There exists
an urgent necessity to enhance the measures pertaining to security. The initial strat-
egy employed in the realm of image steganography is known as the Least Significant
Bit, denoted as the LSB methodology. However, it possesses a few shortcomings.
One of them is the incapability of this particular system to withstand visual inci-
dents and steganalysis algorithms, thereby constituting a significant vulnerability.
Additionally, the LSB approach demonstrates a limited capacity for embedding,
thereby allowing for the concealment of only a minimal quantity of data within an
image. In addition, it is vulnerable for the compression of lossy in order to alter or
deteriorate the concealed data as it is being compressed. Experts have suggested us-
ing advanced steganography techniques. Example wise deep learning . This address
has these issues and boost the system’s resilience as well as security. But further
research is required to develop steganography methods that are both secure and
efficient enabling us to overcome the constraints of the LSB methodology. In the
future, novel methodologies may arise that will allow us to hide extensive quantities
of data within photos without being detectable to visual attacks or the steganalysis
algorithms. Till then scientists must continue to enhance and refine steganography
techniques in order to enhance security and resilience.

In recent works the researcher introduces a novel technique in neural image steganog-
raphy that overcomes many of the limitations of previous works. This trailblazing
endeavor establishes a novel trajectory for steganography, employing the prowess of
neural networks to cloak hidden messages within images. Despite its effectiveness,
the method does have some limitations, such as its inability to handle images with
a lot of text or sharp edges, which are more susceptible to visual artifacts. The
deficiency of the approach is its susceptibility to compression, as compressed images
might lose some of the concealed data. Additionally, the work fails to tackle the
problem of steganalysis, the detection of covert messages within images.

In another scholarly work the researchers delved into the topic of how CNNs out-
perform other architectures like DenseNets, FC-DenseNets, and R-CNN . However,
the study did not extensively touch on the crucial aspect of security evaluation in
the context of CNN -based steganography. Security should be a top priority in
steganography to guarantee that our confidential data remains hidden within our
secret image and is not accessible to unauthorized parties. Therefore, scrutinizing
the safety implications of CNN -based camouflage tactics is a crucial domain of
study that necessitates further scrutiny.

As we are working with multi-image steganography which can be compared with the
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work described above. Their main focus was to store a maximum number of secret
images in a single cover image with minimal error. While doing this, their image
after the encoding was blurry so we can assume there was a bit too much error and
they did not talk about the size of the image after the encoding phase.

Our research focuses on making secret images easier to decode accurately, as well as
enhancing the quality of the original images used to hide them.

1.2 Research Objectives

The primary objective of this research is to formulate an innovative steganography
approach by utilizing deep neural networks to allow for the concealment of a maximal
number of covert images within a single cover image with minimal errors throughout
the encoding and decoding stages. LSB steganography, a traditional technique, has
limitations in terms of embedding capacity and vulnerability to detection, which are
also true for neural image steganography due to the computational complexity linked
with training and utilizing deep neural networks. The preparation of artificial intelli-
gence systems necessitates a substantial quantity of information and computational
resources and may be time-consuming. Therefore, the objective of this research is to
apply the capabilities of deep neural networks, specifically CNN , to conquer these
restrictions and enhance the efficacy and protection of image concealment. Hence,
this research endeavors to confront the complications correlated with standard and
neural image steganography by introducing a modern methodology that utilizes deep
neural networks to accomplish efficient and secure image hiding. The recommended
steganography procedure will be assessed regarding its effectiveness and safety using
diverse datasets and performance criteria. The research objectives include:

1. Acquiring a complete comprehension of the art of steganography requires a
thorough exploration of its basic principles and complexities, encompassing
traditional techniques and the newest deep learning-based methodologies.

2. To venture into the depths of CNNs’ potential within the realm of steganog-
raphy and ascertain the optimal network structures and approaches to train
for concealing images.

3. We aim to enhance the effectiveness of an already existing model of [15] for
concealing and revealing images, making the process more efficient.

4. To offer illuminations and suggestions for future enhancements in the suggested
steganography approach, which may involve possible advancements in network
design, instructional techniques, or supplementary security measures.

1.3 Why Using CNN

CNNs with autoencoders for steganography, instead of depending only on LSB
or other neural network architectures, we have the opportunity to get the best of
the two worlds, security and efficiency. However, similar models like DenseNets,
R-CNNs or FC-DenseNets can be used in their place although they might not be
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that effective for use in steganography. For instance, DenseNets might be great
for the purpose of image classification, but it will still need a lot of computational
resources that can be hard to provide to real-time applications. R-CNNs and
FC-DenseNets, although effective for object detection and segmentation, do not
necessarily preserve the exact pixel data of input images which is very important
for steganography where even a slight change can make the hidden data detectable
or corrupt. CNNs are particularly skilled to capture and learn hierarchical image
features, which are key to ensuring output images quality without disturbing the
embedded secret message’s perceptibility. Autoencoders, by learning optimal data
representations and compressions, are a great tool for the encoder and decoder parts
of steganography. This combination makes it possible to have a more advanced
data embedding that is inherently more immune to common steganalysis techniques
than LSB, which just changes the least significant bits and is prone to detection
through simple statistical analysis. This technique not only strengthens the system
against detection but also expands the embeddable data and answers some of the
key limitations of the LSB method and others in the field of steganography. What
is more, CNN with autoencoder is the best choice because they can carry and keep
the encoded data safely and at the same time do not change the look of the initial
image.

1.4 Thesis structure

Our thesis, titled ”Enhanced CNN Approaches for Multi-Image Embedding in Im-
age Steganography”, is intelligently designed as follows: It starts with Chapter 1:
Introduction, where it outlines the main idea of the research, clarifies the research
challenge and the objective of the study and introduces the reasons for relying on
Convolutional Neural Networks (CNN) approach, among others, to solve the prob-
lem. Chapter 2: In the section Literature Review, there is a complete overview of
steganography with image and neural network steganography which are pointed out
in academic works referred in various languages. Chapter 3: Dataset details Data
sets used, such as ImageNet and Cifar10, may be applied. Chapter 4: Method-
ology follows, describing methods we use for our development of our architecture,
including encoder, decoder, and full model. Chapter 5: Result Analysis states a
summary of results for both of the two and three imagery applications. Finally,
Chapter 6: Finally, the conclusions reveal what we found, the importance of our
research, and what possible additional work is to be done.
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Chapter 2

Literature Review

2.1 Background

2.1.1 Image Steganography

Images are frequently employed in steganography as both cover and secret objects.
A vast array of image file formats are present in the digital image domain, each
having its own unique use case. Various steganographic algorithms are available for
these diverse image file formats [2].

Figure 2.1: Simple Classification of Image Steganography Methods Proposed by [2]

Steganographic approaches for images may be separated into two primary groups:
those that function in the Image Domain and those that function in the Transform
Domain. In the Image Domain techniques, also referred to as spatial techniques,
messages are hidden within the pixel intensity directly. On the other hand, Trans-
form Domain techniques, also referred to as frequency techniques, first transform
the images before embedding the message in them [2]. The messages can be any
kind of data like text, image, audio, or video.

Although the work referenced in [2] did not explore neural image steganography, we
can still make assumptions based on the definitions of image domain and transform
domain. It is possible for neural image steganography to incorporate both tech-
niques. One approach is to use neural networks to learn the mapping between cover
images and stego images, embedding hidden information directly within pixel val-
ues. Another option is to utilize neural networks to manipulate transform domain
coefficients, concealing information within the image.
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According to [3], steganography methods that alter image files to conceal data com-
prise the subsequent techniques,

• Spatial domain steganography: Spatial domain steganographic technique in-
volves a collection of uncomplicated strategies that generate a secret communi-
cation channel within the sections of the original image that are less susceptible
to detection by the HV S [3].

• Transform Domain Techniques: While working in the time domain may be
effective in some cases, utilizing the frequency domain to embed data in sig-
nals is typically more robust. It’s worth mentioning that a lot of the most
efficient steganographic systems currently being employed function within the
transform domain.

• Spread spectrum: The technique of spread spectrum transmission is utilized in
radio communications for transmitting messages at frequencies that are lower
than the ambient noise level. Introducing pseudo-noise into cover images or
treating them as noise can both be achieved by using spread spectrum in
combination with steganography.

• Statistical methods: These techniques, also referred to as model-based tech-
niques, have a tendency to alter the statistical characteristics of an image while
still preserving them during the embedding process. This alteration is usually
minor, allowing it to exploit the human tendency to overlook small changes in
brightness.

• Distortion techniques: During the decoding process of distortion techniques,
it is necessary to have knowledge of the original cover image. The decoder’s
role is to compare the distorted cover image with the original one and detect
any differences to recover the secret message. Conversely, the encoder adds a
series of modifications to the cover image. As a result, information is conveyed
through signal distortion.

Neural network-based steganography utilizes a range of techniques including
Transform Domain Techniques, Spread Spectrum, Statistical Methods, and
Distortion Techniques, depending on the approach employed.

2.1.2 Neural Networks

A neural network is a computational model that tries to mimic the human brain’s
structure and functionality by using interconnected processing units called neurons
to process and analyze complex data which are fed into the neurons as input. The
firing pattern of neurons is learned through training, where the network adjusts the
strengths of connections between neurons based on example data. A neural net-
work is organized with layers, beginning with an information layer that gets crude
information, trailed by at least one concealed layer for halfway handling, and a yield
layer that conveys the last outcomes. The neuron connections, which are gener-
ally depicted as weights, are fundamental in determining the network’s outcome.
The network is trained so that it can regulate these weights and reduce the variance
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between the projected and desired output. The backpropagation algorithm is imple-
mented to perform this optimization process, which calculates the gradients of the
network’s error with respect to each weight. Neural networks possess the capability
to grasp intricate patterns and deliver precise predictions or classifications from in-
put data, which is the fundamental core of their strength. They display exceptional
proficiency across several domains like image and speech recognition, natural lan-
guage processing, and recommendation systems. With their revolutionary impact,
they have transformed many sectors, including computer vision, machine transla-
tion, and medical diagnosis, among others [1] [19].

Figure 2.2: Simple Neural Network Structure [24]

2.2 Related Works

In this segment, we will be concentrating on performing a crucial evaluation of past
significant research in the area of image steganography, with a particular emphasis
on utilizing neural networks. We will scrutinize the different techniques applied,
the architectural blueprints employed, and the outcomes achieved. Additionally, we
will appraise the limitations of these investigations, accentuating the predicaments
encountered in the image steganography field with neural networks, such as main-
taining image quality, robustness against detection algorithms, image size, security,
and computational intricacy.

According to [10], in our modern world, security of our data is probably one of the
most important thing to us. The cover image is the one where the secret message
is encoded. After encoding the final output is the stego-image. There are two types
of steganalysis which are specific steganalysis and universal steganalysis. Specific
steganalysis is only used with JPEG formats and the universal one is used for any
formats. Steganography cover image formats are also discussed in this paper . JPEG
format is the most commonly used image format in the world.Lossy compression is
used in this format which doesn’t allow anyone to edit the image repeatedly. BMP
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format is found in compressed and uncompressed format. A 8 bit bitmap has upto
256 colors per pixel. RGB is also present here in other bit formats. PNG format
is used when we need the image to stay at its original size and quality. This is
normally used all over the internet and it retains its quality. TIFF format can hold
a number of images in a single file. The image will not change its resolution when
it’s compressed in this format .It is perfect if you need to edit a digital image.Apart
from this, Different types of color models for image formats. Some methods of im-
age steganography are mentioned in this paper. Distortion method is mostly used
in JPEG format.The secret data is encoded into the distortion of the image.LSB
method is the most commonly used method. It changes the LSB of a pixel of an
image to encode the secret data into the cover image. Other known methods are
also included in this paper which can be helpful.

According to [14] development of CNNs boosted both image steganography security
and multi-image embedding effectiveness. This kind of method is flawed besides
other techniques such as the least significant bit (LSB) approach to steganography,
but with the help of deep learning techniques, novel steganographic systems can
be developed capable of withstanding steganalysis and the like. Their techniques
allow the integration of a large number of clandestine images into an equally covert
base picture while providing high visualization fidelity and accurate identification
of the concealed pictures. The main problems stay in the area of balancing payload
capability with concealment, but research here is continuing apace in general, and
justifiably claiming better security in future comm technologies.
According to [23] a type of steganography is the data hiding in the image where
it is very difficult for the hackers to go through the images and find out the hid-
den information. This method is very effective, especially in protecting sensitive
data, something that forever addresses some of the holder’s major issues on data
protection. As the need for enhanced security of information under transmission
increases, researchers have looked forward to finding a secure method of transmit-
ting information without leakage and steganography is among the most important
solutions. In this paper, they aim to present two methods for data hiding in the
image domain. The first mechanism is the LSB technique which helps embed infor-
mation bits within the said digital images. This is an insecure method because the
attackers can easily guess the position and retrieve the hidden data which makes
image steganography insecure even though it is well known. To enhance security, we
propose a second technique: The R-Color Channel encoding that is enhanced with
the RSA algorithm. This method utilizes the red color channel to conceal the infor-
mation bits and other following bits are encoded for the RGB pixel of the original
image to enhance the security. Based on the findings of this particular paper, it is
evident that LSB and RSA qualified as two of the most popular algorithms used in
image steganography have been shown to be effective in the process of protecting
hidden data.
This study presents [5] a technique for safely concealing sensitive information in an
image. The Arnold Transformation and the Mid Position Value Technique are the
two main methods of operation. The first method, known as the Arnold Transforma-
tion, disrupts the way that pixels are typically arranged by jumbling up the image’s
data bits. Because of this, it is harder for someone to understand the secret data.
The secret image is embedded within the main image using the second technique,
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known as the Mid Position Value Technique. Additionally, it assists in creating the
key needed to decode the hidden data. The inverse Arnold Transformation is used
to undo the scrambling process. The pixels are put back in their original order
by this method. The trial results are encouraging because the stego images closely
resemble the original cover images and the image quality has been kept. With the
use of this technique, more secret data can be concealed more effectively.

In the research work [9], the scholars put forth a novel approach to image steganog-
raphy through the employment of a U-Net architecture that leverages deep learning.
This method entails compressing and disseminating the information pertaining to
the concealed image across all available bits in the cover image, thereby effectively
addressing the issue of conspicuous visual cues. Furthermore, this technique also
enhances the embedding capacity. With this method, they could achieve less error
and higher accuracy, and higher payload capacity than LSB methods. However,
the aforementioned model lacks the ability to exhibit any form of concealment that
is competent in concealing multiple images within a singular cover image. Further-
more, the usage of u-Net is prone to various types of attacks, including adversarial
and steganalysis attacks. The ramifications of such vulnerabilities could potentially
jeopardize the security of the steganographic system and ultimately lead to a breach
of confidentiality pertaining to the concealed data.

The intellectuals behind the publication [13] put forth a universal mechanism of
image steganography that employs the framework of auto-encoding networks based
on end-to-end trained deep Convolutional Neural Networks in order to guarantee
the process of concealment and extraction. The educated network comprises two
sub-networks, one for hiding deployed by the sender to encode a color image in an-
other of the same size. The other network is used for extraction and is operated by
the receiver to retrieve the secret image from the received stego image. The decoder
network has been formulated as a complex network that takes the cover image and
the secret image as input, both of which are separated into a 6-channel tensor. It
is comprised of a duo of steps. The revealed network takes the stego image created
by the encoding network as input. To create the confidential image result, a set of
3 x 3 convolutions were employed on the image, with each convolution accompanied
by a BN operation for training acceleration and a ReLU activation function. In
the final convolutional layer, a Sigmoid activation function was utilized to compress
the convoluted feature channels into 3-channel features. The authors’ inability to
test their method on large images did not hinder satisfactory experimental results
in terms of image imperceptibility and similarity to the original images.

The paper [7], introduces StegNet, a novel method that combines deep convolutional
neural network techniques with image-into-image steganography. It establishes end-
to-end mappings between the cover image and the embedded image, as well as
between the hidden image and the decoded image. The proposed approach achieves
a decoding rate of 98.2% or 23.57 bpp by modifying just 0.76% of the cover image on
average, demonstrating a high payload capacity. The embedded image remains ro-
bust against statistical analysis. However, the paper lacks a comparison with other
state-of-the-art steganography methods and fails to address the computational com-
plexity and training time required for their approach.
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In the proposed methodology by [18], they modified the CNN structure and a gain
function of [4] based on multiple image similarity metrics was employed to maximize
the undetectability between the cover and steganographic images. The proposed ap-
proach was assessed for its effectiveness by using commonly used image metrics such
as SSIM , MSE, and PSNR, which makes it improbable for an AI detection tool
to generate. The outcomes suggest that the steganographic images produced utiliz-
ing the suggested method are inconceivable to identify by the unaided eye, yet they
still preserve a substantial amount of recoverability. The network they proposed has
performed similarly to other steganography methods that exist and has shown a sig-
nificant improvement in terms of SSIM as compared to the original [4]’s approach.
The current research [18], as referenced by the scholarly [20] publication, did not
delve into the aspect of steganalysis nor did it bring to light the crucial matter of
the potentially larger size of secret images in comparison to regular images, posing
a significant threat to the integrity of the secret image and the entire steganography
procedure.

The paper [6] addresses the problem of image steganography, aiming to hide infor-
mation within a cover image while maximizing payload capacity and maintaining
robustness. It proposes a method that combines deep convolutional neural net-
work techniques with image-into-image steganography. The encoding and decoding
processes involve two nearly identical neural network structures, enabling effective
modeling of high-level features in the latent space. The proposed method achieves a
payload capacity of up to 23.57 bits per pixel by modifying only 0.76% of the cover
image. Evaluation against traditional steganography analysis algorithms demon-
strates its robustness. However, the paper has limitations, such as the evaluation
being limited to a few datasets and lacking a comparison with other state-of-the-art
methods in terms of both capacity and robustness.

The steganographic scheme suggested in [12] employs the Fully Convolutional Dense
Connection Network (FC-DenseNet) to address the limited steganographic capac-
ity of conventional methods that modify the carrier image. It hides a secret image
within the carrier image, resulting in a stego-image that can be reconstructed to re-
veal the secret image. The scheme demonstrates a high PSNR and SSIM , enabling
large-capacity image steganography with an average payload capacity of 23.96 bits
per pixel. However, it’s worth noting that the scheme relies on FC-DenseNet, a deep
learning model, which may necessitate significant computational resources and time
for training and implementation. Moreover, due to the encoding and decoding time
involved, the proposed scheme may not be suitable for real-time applications.

The work [20], delves into three distinct deep-learning network architectures (CNN ,
U-Net structure, and Swin Transformer structure) that address the image embedding
and extraction issue in image steganography. By using the same dataset to validate
the efficacy of the three networks, the authors illustrate the seamless integration of
secret information with cover images but in the revealed images some noise points
can be seen in the smooth areas. However, the Swin Transformer has exhibited
inferior performance in reducing noise and preserving high and low-frequency infor-
mation, indicating unpromising results for concealing secret information in images.
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When implementing vividly colored images, the U-Net network proved to be the
superior choice in terms of producing visually appealing stego images. Conversely,
in the case of white cover images, the Swin network architecture outperformed the
other two structures and achieved the most fulfilling outcomes. It is worth noting
that this research work neglected to divulge any insights into the realm of steganal-
ysis or the resulting dimensions of the image post-encoding with the secret image.

According to [8] The method of placing the data into one single picture has its own
problems with steganography and its security. That is why to overcome with such
problems the method of steganography that allows several images to hide informa-
tion is improved. They suggested a new method of slicing secret data and spreading
it among the nominees and cover pictures, thus increasing the level of file protec-
tion. What this means is that by being able to use many cover images for an image,
we are essentially trying to safeguard data that is very crucial by making it almost
impossible for intruders to decode the information without the keys to decryption.
This work made the following contributions: A new payload distribution method
in conjunction with image metadata as well as an authentication key technique; A
method for image-based steganography for more practical purposes, namely towards
secure data transmission. To this end, we use a batch steganography technique for
sequential data hashing, making it more secure than if performed individually, as
it minimises the chances of identifying hidden information. Moreover, in terms of
usability and deployment, the HIs are expanded in order to achieve a more effi-
cient user interface design. This involves encoding and decoding of the data to be
transmitted for security, the retrieval of cover and payload image files payload files
compression using the zip tool and division of bits to every image by the hashing
algorithm. We use a value generator in storing the payload bits where each bit is
stored in a specific serial number of an image, and image hashing with passwords
as a way of making the distribution of the bits random thus making it difficult to
decipher the images. This form of encryption and decryption ensures that the secret
data being transferred from the source is safe and when decrypted at the destination
the cover images are safely recovered.
This paper [17] discusses image steganography methods based on deep learning
and highlights traditional, CNN-based, and GAN-based techniques. The review is
conducted on methodologies, trends, and challenges for understanding researchers
based on the current landscape; the methods in the first and second categories get
their underpinnings from substitution techniques of LSB and deep convolutional
networks, respectively. On the other hand, the third one, the GAN-based way,
capitalizes on Generative Adversarial Networks for more security and capacity to
hide information. The paper has highlighted the superior performance of GAN-
based methods, especially CycleGAN. Some of the drawbacks include no benchmark
datasets. The paper would be helpful in updating the knowledge base of and guiding
scholars through these complexities of image steganography by compiling the present
trends and future directions.
Another research work [16], which focuses on the difficulty of enhancing the ability
to conceal information without raising suspicion is the main topic of the study. To do
this, the authors suggest a cutting-edge strategy known as ISN . They want to hide
additional information from observers in a way that doesn’t stand out. The ISN
framework views steganography and the recovery of hidden images as inverse prob-
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lems in which the goal is to accurately retrieve information that has been accurately
embedded into images. Within the same network, the authors present both forward
and backward propagation processes. Backward propagation is used to adjust the
network’s weights depending on the prediction error, whereas forward propagation
includes feeding input data through the network to make predictions. The authors
effectively produce both the hidden images and the revealed photos with good qual-
ity by sharing all the parameters within the ISN network. By adding more channels
to the hidden image branch, the ISN design increases steganography’s capability.
The findings show that using the ISN technique, 3-5 images may be successfully
hidden and revealed while still having satisfactory container image quality. The
concealed photos are successfully and faithfully restored. This demonstrates how
well the suggested ISN approach works to increase the payload capacity of image
steganography.

In [11] the authors proposed a new Steganography Convolution Neural Network
model, which solves the problem of two images embedded in a carrier image and
can effectively reconstruct two secret images. In this model, the preparation net-
work is removed, and three different hidden networks ordinary CNN , Unet, and
FCDenseNert are used to train the entire network. Before training the network,
they uniformly adjusted the images input to the network to a size of 256 × 256. A
9-channel feature map is obtained after the carrier image and two secret images are
concatenated. They output the stego image from this after a series of operations
such as convolution, pooling, and concatenation through the hidden network. To
reconstruct the two secret images in the extraction network they used convolution
and batch normalization operations. They also compared the three hidden networks
through different methods and found that FCDenseNert had the best outcome fol-
lowed by Unet and then ordinary CNN . The experiments show that they were
successful and also their model was suitable for almost all color image steganogra-
phy, including remote-sensing images and aerial images.

The research work [15] describes a revolutionary method of ”Multi-Image Steganog-
raphy Using Deep Neural Networks” that makes use of neural networks to encrypt
and decrypt a number of hidden images. This strategy uses CONV2D and ReLU
layers to capture intricate visual patterns and characteristics as opposed to conven-
tional methods, which rely on the LSB for encoding lower-resolution images. The
prep network, hidden network, and reveal network are the three networks that make
up the proposed architecture. Each network specializes in encoding or decoding a
certain type of image. The Adam optimizer method is used by researchers to op-
timize the neural network. They use the TinyImageDataset, a collection of images
with a 64x64 pixel size, for their studies. The Keras library was used to create
the prep and hiding networks’ shared architecture, which uses the same technique.
The loss connected to the hidden image components is taken into account during
training. The experimental findings show that three hidden photos were successfully
concealed. However, a little less loss is seen when attempting to conceal two images.
They discovered that the loss grows as more photos are obscured. The number of
photos that must be concealed in cover images in order to get the desired results is
not a criterion that the researchers set.
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Based on the findings of [4] and [15], [25] has developed a superior model that outper-
forms in every metric, including SSIM and PSNR. This new methodology has the
capability to hide four secret images within a single cover image. Although [15] used
[4]’s methodology, they were only able to conceal three secret images. To attain such
an outcome, a DeepCNN-based autoencoder was utilized to extract spatiotemporal
characteristics from images and conceal four images within a solitary image, while
ensuring size parity. The achievement of such a feat was made possible through this
methodology. However, this research did not take into account steganalysis or the
size of the hidden image, like many other previous works.

From the above discussion, it is observed that most of the image steganography
techniques focused on error minimization or prevention from steganalysis or maxi-
mizing the number of secret images that can be embedded in the cover image. While
doing it they only focused on one aspect. So in our work, we endeavour to tackle the
distinct challenges that pertain to steganography, with the aim of augmenting its
efficacy and security. We are aware of the importance of minimizing errors during
image encoding and decoding, as well as the necessity of reducing the cover image
size while concealing secret images. Our final goal is to develop a steganography
technique that is secure and resistant to steganalysis methods. By concentrating on
these aspects, we seek to establish an innovative and strong approach to steganog-
raphy.
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Chapter 3

Dataset Desccription

3.1 Description of the Data

3.1.1 ImageNet

In our comprehensive exploration of the Tiny ImageNet dataset, our primary goal
was to augment the versatility of our model by strategically selecting 10,000 sam-
ples across 200 distinct classes of data. This deliberate sampling aimed to ensure
a diverse and representative dataset. The dataset was meticulously divided into
training and testing sets, comprising 70% and 30%, respectively, of the overall data.
Each image was initially standardized to a resolution of 64x64 pixels, providing a
consistent input format for our model.

To facilitate effective training, we further organized the data into three distinct sub-
sets: S1, S2, and C. Each subset contained 1,750 images and represented batches for
secret image 1, secret image 2, and cover image, respectively. During training, this
segmentation helped our model to identify as well as understand the characteristics
of each group.We used the same methodology while testing as well. This actually
generates three subsets which are Test S1, Test S2, and Test C alongside each with
750 photos. These subsets served as critical evaluation benchmarks, assessing the
model’s proficiency in accurately encoding the secret images into the cover image
and decoding the secret images from the cover images.

Throughout the experimentation phase, we systematically varied the data counts
where we range it from 1,000 to 5,000 samples. However, the observed results
fell short of our expectations, prompting a meticulous reevaluation of our dataset
strategy. Subsequently, we made the strategic decision to utilize 10,000 data points
for both the training and testing phases. This revision was driven by the need to
improve the whole model’s performance and effectiveness in the complicated tasks of
encoding and decoding hidden images within the cover images. The rational choice of
this big dataset size was to get the right balance between the model complexity and
the richness of the training data, which in the end led to the improved capabilities
of our neural network in dealing with various and unknown image situations.
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3.1.2 Cifar10

The CIFAR-10 is a widely used dataset in computer vision and machine learning
research studies. It is a data set that comprises of 60,000 colour images of size 32x32
pixels which are divided into 10 classes with each class having 6000 images. The
dataset is composed of 50,000 training images and 10,000 test images. The categories
are aeroplanes, cars, birds, cats, deer, dogs, frogs, horses, ships and trucks, thus, they
provide the required diversity of shapes and subjects for the identification purposes.
Our model which was the first to be trained with the ImageNet dataset—a bigger
collection of images that is used to improve deep learning methods, was tested with
the CIFAR-10 dataset as test data. Specifically, we applied 10,000 images from the
test part of CIFAR-10 to measure the model’s generalization skills over different
types of visual content, therefore, making it robust and precise in the real world.
This way allows us not to get stuck in one experiment but to do a large number of
experiments under different scenarios while at the same time considering CIFAR-10’s
compactness and difficulty to correctly validating the model.
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Chapter 4

Methodology

4.1 Working Process

The inclusion of Convolutional Neural Networks (CNN) is a key part of our neural
network structure in the proposed approach. CNN has shown great mastery in
the field of image processing, which makes them the perfect fit for our upcoming
project. These very specialized neural networks are very good at recognizing the
complex structures and the spatial arrangements in images, thus they can easily
identify the tiny details which are very important for steganography. Our model
largely depends on Convolutional Neural Networks (CNN) to do both the encoding
and decoding processes. CNN ’s are utilised for their ability to effectively capture
and represent complex visual information. The convolutional layers in the network
aid in extracting and abstracting features, which helps in hiding information within
the cover image and later reconstructing it during the decoding phase. The in-
tentional incorporation of CNN ’s highlights our commitment to utilizing advanced
deep learning methods to enhance the robustness and effectiveness of our proposed
steganographic approach.

Figure 4.1: Working Process of Our Full Model for 2 Image Steganography
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Figure 4.2: Working Process of Our Full Model for 3 Image Steganography

4.2 Description of the Model

Our model architecture consists of two essential components: the Hiding Network
(Encoder Model) and the Reveal Network (Decoder 1 Model, Decoder 2 Model
for 2 Image Steganography, Decoder 1 Model, Decoder 2 Model, and Decoder 3
Model for 3 Image Steganography) as seen in figure 4.1 and 4.2. The primary
goal of this model is to encode the information pertaining to the secret images,
which are S1, S2 and S3 (only for 3 Image Steganography), into the cover image C,
which results in a modified cover image called C’. The encoded image C’ is precisely
constructed to resemble the original cover image C, as it provides the undetectability
of the embedded information. The Reveal Network utilises the data. It creates the
decoded secret images S1’, S2’, and S3’ (only for 3 Image Steganography) from C’.
The goal is to decode the process and then produce S1’, S2’ and S3’ (only for 3 Image
Steganography) which accurately represent the original secret images S1, S2 and S3
(only for 3 Image Steganography). The model’s approach includes both encoding
and decoding, which forms the foundation of our steganographic technique. This
shows the seamless integration of hiding and retrieving data while maintaining the
visual integrity of the source photos.

4.2.1 Encoder Model

4.2.1.1 For Two Image Steganography

The encoder model utilizes a structure of a convolutional network at multiple scales.
It initiates with three parallel input layers, each undergoing separate initial convolu-
tions with varying kernel sizes of 3x3, 4x4, and 5x5. These kernel sizes facilitate the
extraction of features at different scales, with smaller kernels capturing finer details
and larger ones encapsulating broader features. The outcomes of these convolutions
are then combined to merge the diverse feature maps into a cohesive representation.
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This process is repeated in a second preparatory phase, augmenting the complex-
ity of the feature extraction. Consequently, the outcomes derived from these two
stages, in conjunction with an additional input which is the real cover image C, are
subsequently merged and propagated through a sequence of supplementary convo-
lutional layers. The network augments its filter count to 128, indicating a deepening
to capture more intricate and abstract representations of the input data. The final
combined output is then fed into a final convolutional layer to generate the encoded
output, which is a condensed representation of the original input, ready for further
processing in subsequent components of the model.

Our model demonstrates improvements when compared to the approach presented
by [15], particularly in the encoder, where the architecture can be seen in 4.3. These
enhancements can be attributed to the augmented architecture, which integrates
additional convolutional layers and increased complexity. There are multiple con-
volutional layers in this preparation network in case of the both hidden photos. In
addition, the dimensions of the filters are 3x3, 4x4, and 5x5 which enables the ac-
quisition of a wide spectrum of hierarchical data. These highly improvements allow
the model to extract more complex spatial information and patterns from the input
photos. Also, the hiding system shows improved complexity and depth by using
many convolutional layers with various filter sizes such as 3x3, 4x4, and 5x5. The
augmented depth, coupled with higher kernel sizes, enables the retrieval of more
complex and comprehensive contextual characteristics, so increasing the model’s
efficacy in multi-image steganography assignments.

Figure 4.3: Encoder Model for 2 Image Steganography

4.2.1.2 For Three Image Steganography

In our exploration of 3 Image Steganography, we initially extended the 2-image en-
coder model by integrating an additional input and preparatory layer for a third
secret image, employing the same convolutional approach with varying kernel sizes
(3x3, 4x4, and 5x5) for nuanced feature extraction as we can see in figure 4.4. This
setup was modified from our original architecture, which combined these features

18



with a real cover image and processed them through an augmented series of convo-
lutional layers with increased depth and filter counts up to 128, aimed at capturing
more intricate representations.

Figure 4.4: Encoder Model for Three Image Steganography, Similar to Two Image
Steganography

The new encoder, as seen in figure 4.5, for steganography with 3-image, is designed
modularly with the conv block function serving as its core that facilitates the build-
ing of convolutional layers using a standard format. Thus, the approach leads to
a more mobile and scalable architecture, hence ignorance of the specificity of the
old encoder architecture’s individual layers where all construction needs to be done
manually. In particular, the new encoder consists of 9 preparation layers (three lay-
ers per secret image) and 12 hiding layers, settled in the framework of loops which
provide the model with flexibility and scalability. Every conv block will appear
twice, in both the preparation and hiding layers, and is composed of 3x3, 4x4, and
5x5 kernels to ensure feature extraction is done. The lean code approach, which
incorporates data on-demand smart interfaces, reduces maintenance time, speeds
up change, and makes DataType agnostic. On the other hand, the old encoder has
33 layers (18 in preparation and 15 in hiding) which makes it less efficient. The mul-
tiplicity of layer count has been significantly reduced, and the specific architectural
structure of Encoder 2 leads to less computation enabling efficient learning, which is
especially important for the variety of datasets. This layout does, however, result in
the improvement of model performance by the fact of performance being faster and
the errors which are more likely to be the source of complex configurations being
reduced.
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Figure 4.5: Final Encoder Model for Three Image Steganography

Encoder Algorithm Overview

1. Parallel Input Processing:

• The encoder starts with three input layers that are running in parallel,
each of them getting one of the secret images (S1, S2, S3). Thus, the
processing of each image is carried out at the same time and indepen-
dently, thereby, the features from one image will not contaminate the
initial stages of processing for the other images.

2. Multi-Scale Convolutional Layers:

• For each secret image, a series of convolutional layers with different kernel
sizes (3×3, 4×4, and 5×5) is used. This strategy is designed to capture
a diverse range of features. This strategy is designed to capture a diverse
range of features:

– 3x3 Convolutional Layers: These layers try to gather the smallest
and the most intricate details and the most exact features of the
images.

– 4x4 Convolutional Layers: These thus represent the equilibrium
between the extreme resolutions and the high-level structures since
the former preserves the medium-scale features which are of utmost
importance for keeping the image data as a whole.

– 5x5 Convolutional Layers: The spotlight should be on the general
characteristics of an image, thus the model will be able to understand
the overall context and the bigger patterns in each picture.

3. Feature Integration and Augmentation:
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• Through iterative attention of various convolutional layers for each image,
the outputs are combined into one, complete feature map. This integra-
tion allows the mixing of fine and contextual information, thus, making
the data depth more advanced and useful for embedding.

• The integrated feature maps for each image go through a second iteration
of similar multi-scale convolutions, thus, the complexity of the feature
maps increases and the robustness of the extracted features takes its
form.

4. Concatenation with Cover Image:

• Moreover, the cover image is examined through its own set of convolu-
tional layers for the purpose of joining it with the secret images. This
procedure guarantees that the cover image is able of effectively include
and hide the feature maps of the secret images.

• The feature maps that are the result of the processing of the three secret
images and the cover image are then merged, thus forming a complex and
multifaceted feature representation.

5. Deep Convolutional Network:

• The concatenated feature maps are finally sent to a more advanced system
of convolutional layers with an increasing number of filters (from 50 to
128). These layers are intended to filter the combined data, to abstract
the higher-level features and to even more hide the information that is
embedded in the intricate patterns of the cover image.

6. Encoded Output Generation:

• At the end of the encoding process, there is a set of convolutional layers
that gradually squeeze the data into a single encoded image. This hidden
image with the encoded information is the cover picture of the innocuous
image, and this makes the hidden data invisible and will not be noticed
easily if there is not a lot of computation to decode it.

4.2.2 Decoder Model

The architecture model of Decoder 1, Decoder 2 and Decoder 3 is the same as seen
in the figure 4.6, that is, they have the same architecture version. The purpose
of Decoder 1 is to show S1’, which code is image 1 (S1’). However, Decoder 2 is
assigned to making S2 the image that is not apparent while also translating S2 as
the hidden image. Equally, Decoder 3 has derived the same architectural blueprint
as the other decoders, namely, Decoder 1 and Decoder 2, with the sole function of
extracting the hidden image 3 for the 3-image steganography (S3’), which is based
on the same input structure as the other two decoders. The design of constructive
methods assures simultaneous stylistic working in both frameworks. The start of
the decoder model’s architecture is an input layer that carries Gaussian noise along
with it, and it is believed that the noise will enhance the capability of the net-
work to manage small variations in the input data or noise in the input data. The
architecture is based on multi-scale convolution with filters of 3x3, 4x4, and 5x5,
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each of which is used with the input data, including noise. The main purpose of
these convolutions is to highlight a wide range of features that are already present
in the image. Instead of depending on filters with one specific dimension to detect
or get information about the patterns and complexities, the network becomes able
of capturing them at various scales. Past the first confusion layer and concatena-
tion, the network further includes an additional 64 filters to reach the final output
layer. This is a more compact version (as compared to the work of [15]) that has
fewer layers and a pathway for input to directly reach output. In [15] they suggest
a more intricate design of the decoder which includes an interweaving of different
filter sizes in a convolution and concatenation process. Complicatedness cannot
raise performance, only heightens the level and number of difficulties. Some happen
when a model achieves a good architecture and is simple enough to stand a chance
of running as effectively as other models that do not explore new data. Our decoder
model’s architecture limits the amount of features that may be extracted at each
layer, which reduces the possibility of overfitting. This could potentially result in
better results in terms of kernel and filter sizes. Overfitting is a common problem in
complex models where the network becomes excessively customized to the training
data, thus hindering its capacity to generalize to unfamiliar data. All three models
utilize the multi-scale convolution technique to capture features at different levels
of abstraction. However, our model achieves this more effectively by processing the
input through a shorter sequence of transformations. This results in a more resilient
feature extraction procedure, as each layer just enhances the features without intro-
ducing unnecessary intricacy that might obscure the fundamental patterns in the
data.
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Figure 4.6: Decoder Model

Decoder Algorithm Overview

• Input Reception:

– The decoder gets the cover image C ′ which is redesigned to hide the
information within its pixel structure during the encoding process.

• Gaussian Noise Application:

– The Gaussian noise is introduced into the encoded image at the beginning
of the decoding process. This stage is designed to mimic the environmen-
tal changes and the subsequent perturbations as well as to check the
robustness of the decoder, thus, confirming the stability and reliability of
the decoder in different situations.

• Multi-Scale Convolutional Processing:

– The noise image is at the same time processed through three different
convolutional layers, each using a different kernel size, which are 3 × 3,
4× 4, and 5× 5.

– 3 × 3 Convolutional Layer: The process concentrates on the outing of
the very small details and the high-frequency components which are the
basis of the precise image features.

– 4× 4 Convolutional Layer: The medium-scale features are captured and
the integration of these features are made easier so that more features
can be integrated.

– 5×5 Convolutional Layer: The layer is designed to analyze the larger im-
age patterns and the broader features which are necessary to understand
the general image context and the structure.

• Feature Map Concatenation:

– The three convolutional layers produce outputs which are then merged
to create one feature map. This aggregation of varied feature scales thus
combines different feature scales and thus adds to the features that are
used for the decoding stages.

• Deep Convolutional Refinement:

– The feature map formed by the consecutive (concatenated) 3× 3 convo-
lutional layers goes through another round of processing. This sequential
deep convolutional method’s filters and details the features in a way that
produces more accuracy than the previous method of spying on people,
on the other hand, what the hidden content is by a feature.

– These layers successively modify the features, thereby, the model is able
to restore the original images with the accuracy of the encoded data from
the iterations.

• Final Image Reconstruction:
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– The processed feature map is finally passed to the last convolutional layer,
which reforms the decoded image. This picture aims to be a replica of the
original images before encoding, thus, it succeeds in showing the hidden
data with high quality.

4.2.3 Full Model

Our full model is a complex neural network architecture comprising an encoder and
two decoders. This structure suggests a multi-task learning framework where the en-
coder learns to encode input data into a condensed representation, and each decoder
is responsible for reconstructing the secret images S1’, S2’ and S3’ respectively.
The data flow can be described as follows:

1. Input Preparation: The model takes three separate inputs, input S1, input S2,
input S3, and input C. These represent different images for secret images 1,
2, 3 and cover.

2. Encoding: These inputs are fed into the make encoder function which con-
structs the encoder part of the model. The encoder processes the inputs and
generates a new representation of the cover image, denoted as output Cprime.
This encoded output is expected to contain the essential information from all
three inputs, compressed into a more efficient form.

3. Decoding: The encoded representation output Cprime is then passed to
two separate decoders constructed by make decoder1 , make decoder2 and
make decoder3. These decoders are designed to reconstruct the original in-
puts(S1 , S2 and S3) from the encoded representation. decoder1, decoder2
and decoder3 are set to non-trainable, suggesting that they have been pre-
trained and are now being used in a fixed manner, to guide the encoder’s
training by providing a stable target.

4. Loss Functions: The loss functions used in the model are crucial for guiding
the training process. Two main components are considered:

(a) Reveal Network Loss (rev loss):

The reveal network loss measures the dissimilarity between the true secret
image (S) and the predicted secret image (S ′) generated by the reveal
network. It is calculated using the mean squared error term multiplied
by a hyperparameter β:

rev loss(strue, spred) = β · ∥S − S ′∥2

Here, β controls the importance of the reconstruction error in the overall
loss.

(b) Full Model Loss (full loss):

The full model loss comprises three components:

i. Cover Image Reconstruction Loss:
This term measures the difference between the true cover image (C)
and the predicted cover image (C ′). It aims to ensure accurate re-
construction of the cover image.
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ii. Secret 1 Reconstruction Loss:
This term assesses the dissimilarity between the true secret 1 image
(S1) and its predicted counterpart (S ′

1). Similar to the reveal network
loss, it uses the mean squared error term multiplied by β.

iii. Secret 2 Reconstruction Loss:
This term quantifies the difference between the true secret 2 image
(S2) and its predicted counterpart (S ′

2), employing the mean squared
error multiplied by β.

iv. Secret 3 Reconstruction Loss:
This term quantifies the difference between the true secret 3 image
(S3) and its predicted counterpart (S ′

3), employing the mean squared
error multiplied by β.

The overall full model loss is a combination of these three components:

full loss(ytrue, ypred) = ∥C−C ′∥2+β·∥S1−S ′
1∥2+β·∥S2−S ′

2∥2+β·∥S3−S ′
3∥2

The loss guides the training process, driving the model to minimize dis-
crepancies between the true and predicted values for cover and secret
images while considering the importance of secrets through the β param-
eter.

5. Model Compilation: The decoders are compiled with adam optimizer and
a loss function named rev loss.

6. Autoencoder Construction: The outputs from all decoders, along with
the encoded representation, are concatenated into a single tensor and used as
the output of a new model, autoencoder. This model is then compiled with
an optimizer and a loss function, full loss, which is designed to measure
the performance of the full architecture, likely considering both the quality of
reconstruction and the efficiency of encoding.

The training process for such a model typically proceeds in batches as follows:

1. Batch Processing: A batch of data is prepared for each of the three inputs.
The size of these batches must be consistent across all inputs since they are
processed in parallel through the encoder.

2. Forward Pass: During each training iteration, a forward pass is performed
where the batched data is fed through the encoder and then through each
decoder. This generates a set of outputs that can be compared against targets
to compute loss.

3. Backpropagation: The loss computed from the output of the autoencoder
is backpropagated through the network to update the weights of the encoder.
Since the decoders are frozen (non-trainable), their weights remain unchanged,
and only the encoder is updated. This means the encoder learns to produce
representations that allow the fixed decoders to reconstruct the data accu-
rately.
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The autoencoder model is a type of neural network that aims to learn a compressed
representation of the data, which can then be used to reconstruct the original data.
It has two main parts:

• Encoder: Maps the input data to a compressed representation.

• Decoder: Attempts to reconstruct the input data from the compressed rep-
resentation.

In training an autoencoder, the goal is to minimize the difference between the orig-
inal data and the reconstructed data, thereby forcing the encoder to learn a useful
representation. The combination of encoder and decoder parts allows the model to
be trained end-to-end. In this specific setup, like figure 4.7 and 4.8, the encoders
and decoders may be trained separately first, with the encoders fine-tuned later in
the context of the full autoencoder model, using the outputs of the fixed decoders
as a guide for reconstruction accuracy.

Figure 4.7: Full Model
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Figure 4.8: Full Model Workflow
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Chapter 5

Result Analysis

In our preliminary analysis, we extensively explored various architectural configura-
tions and layer setups for our encoder-decoder model. Through systematic exper-
imentation, we identified the current architecture as the most effective, achieving
superior performance compared to numerous alternatives. Notably, our approach in-
volved training the model with different activation functions, such as ReLU, Leaky
ReLU, and Tanh, revealing that a diverse set of activation functions contributes to
the model’s flexibility and overall effectiveness. This stands in contrast to previous
work, which predominantly utilized ReLU in all their models. The mathematical
equations of ReLU, Leaky ReLU, and Tanh are,

• ReLU:
f(x) = max(0, x) (5.1)

• Leaky ReLU:

f(x) =

{
x if x ≥ 0

αx if x < 0
(5.2)

• Tanh:
f(x) = tanh(x) (5.3)

5.1 Two Image Steganography

Table 5.1: Error Per Pixel

Activation Model S1’ S2’ C’

Relu
Training [15]’s Model 12.1705885 10.796396 17.404426
Testing [15]’s Model 11.944164 10.54237 17.170265
Training (Proposed Model) 11.1674385 12.168935 18.223452
Testing (Proposed Model) 11.0192995 12.344757 18.069624

TanH
Training (Proposed Model) 69.883194 72.48468 160.75792
Testing (Proposed Model) 67.62504 73.122055 163.91539

Lrelu
Training (Proposed Model) 10.181644 9.602057 16.44105
Testing (Proposed Model) 10.266071 9.496834 16.29391
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Table 5.2: Accuracy Per Pixel

Activation Model S1’ S2’ C’

Relu
Training [15]’s Model 94.42 94.79 94.42
Testing [15]’s Model 94.48 94.86 94.47
Training (Proposed Model) 96.84 96.52 94.59
Testing (Proposed Model) 96.88 96.54 94.63

TanH
Training (Proposed Model) 76.98 75.80 43.36
Testing (Proposed Model) 77.77 75.43 42.22

Lrelu
Training (Proposed Model) 97.18 97.26 95.12
Testing (Proposed Model) 97.16 97.28 95.16

The performance metrics of the CNN model trained with different activation func-
tions reveal interesting insights. When comparing the results of the Relu, TanH, and
Leaky Relu activation functions, it becomes evident that the Leaky Relu (Lrelu) con-
sistently outperforms the others across various aspects. In both training and testing
phases, Lrelu exhibits lower errors per pixel for all three components (S1’, S2’, and
C’) compared to Relu and TanH and it also outperforms the previous model of [15]
that solely relied on the Relu activation function. Moreover, Lrelu achieves higher
accuracy per pixel, indicating better pixel-wise predictions. The robust performance
of Lrelu can be attributed to its ability to handle vanishing gradient problems during
training, which can be crucial in the convergence and learning processes. The Leaky
Relu’s slight slope for negative inputs allows for the flow of a small gradient during
backpropagation, preventing dead neurons and promoting better learning. This flex-
ibility seems to contribute to Lrelu’s superior performance, making it a favourable
choice for the given neural network architecture and dataset. It is worth noting that
the Leaky Relu was implemented with an alpha value of 0.01 for both the encoder
and decoder models. In the midst of our experimentation, we implemented L1 and
L2 regularization techniques to mitigate overfitting in our model. Despite applying a
regularization value of 0.01 for both L1 and L2 in the Leaky ReLU (Lrelu) model, the
results were suboptimal. Consequently, we made an informed decision to retain the
Lrelu model, as it consistently outperformed other alternatives even when subjected
to regularization measures. This highlights the nuanced nature of model develop-
ment, where a combination of architecture, activation functions, and regularization
techniques must be carefully considered to achieve optimal performance.

Figure 5.1: Distribution of Errors in Cover and Secret Images using Lrelu Activation

The histograms in 5.1 display the error distributions for a Cover image and two
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Secret images. All distributions are left-skewed, indicating that most errors are
small, with the Cover image showing a higher peak, suggesting fewer errors. Secret
Images have broader error distributions, implying a slightly higher average error,
but still, the majority of errors remain near zero, indicating an overall low error
rate and effective encoding. Now, transitioning to the visual representation of our
results, we will showcase images that further illustrate the performance and quality
of our model’s reconstructions.

Figure 5.2: Result of Concealing Two Secret Images.

Figure 5.2 shows the results of our steganography model and the result image is
arranged in a series of columns, each serving a specific purpose in the context of
encoding and decoding images, presumably for a steganographic application.
The difference images (Diff Cover, Diff Secret1, and Diff Secret2) are generated using
the equation:

diff S1 = |decoded S1− input S1| ,
diff S2 = |decoded S2− input S2| ,
diff C = |decoded C− input C| .

(5.4)
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Table 5.3: Performance Metrics of figure 5.2, Result of Concealing Two Secret Im-
ages and Comparison with [15]

Model Image Accuracy EPP SSIM PSNR MSE RMSE

[15]’s Model

Cover 85.99 20.95 0.87 19.63 0.1079 0.3285
S1 86.83 25.58 0.84 22.36 0.1780 0.4219
S2 87.59 28.85 0.79 38.20 0.1257 0.3545

Proposed Model

Cover 95.93 12.90 0.94 29.69 0.00107 0.033
S1 96.83 11.97 0.96 27.49 0.00178 0.042
S2 97.51 8.27 0.99 32.46 0.00057 0.024

[15]’s Model

Cover 86.03 22.45 0.85 19.58 0.4107 0.6409
S1 91.06 21.83 0.85 25.65 0.3108 0.5574
S2 85.05 18.52 0.89 20.25 0.8956 0.9462

Proposed Model

Cover 95.48 14.28 0.84 28.28 0.00149 0.038
S1 97.02 10.04 0.97 30.44 0.00090 0.030
S2 97.74 7.33 0.99 32.14 0.00061 0.024

[15]’s Model

Cover 91.05 29.02 0.85 18.58 0.4586 0.6772
S1 89.25 16.52 0.91 30.85 0.5823 0.7631
S2 87.79 18.24 0.88 29.80 0.1285 0.3854

Proposed Model

Cover 95.28 15.23 0.97 28.87 0.00130 0.036
S1 97.99 6.53 0.98 33.53 0.00044 0.0209
S2 97.53 8.05 0.96 32.62 0.00055 0.023

[15]’s Model

Cover 89.48 25.80 0.87 20.85 0.2048 0.4525
S1 88.40 27.77 0.82 29.87 0.1789 0.4229
S2 87.99 16.85 0.88 31.02 0.5849 0.7649

Proposed Model

Cover 93.49 20.52 0.91 26.91 0.00204 0.045
S1 97.96 7.08 0.98 32.97 0.00051 0.022
S2 96.95 10.27 0.98 31.87 0.00065 0.025

[15]’s Model

Cover 84.80 25.58 0.79 17.52 0.8851 0.9408
S1 89.66 20.85 0.77 28.58 0.8548 0.9245
S2 91.58 10.58 0.95 30.58 0.5784 0.4605

Proposed Model

Cover 96.48 11.42 0.95 30.17 0.00096 0.031
S1 97.60 7.99 0.98 31.90 0.00065 0.025
S2 98.03 6.58 0.98 34.21 0.00038 0.019

[15]’s Model

Cover 91.52 11.52 0.93 21.25 0.9985 0.9992
S1 89.98 9.25 0.89 30.78 0.0254 0.1593
S2 93.89 11.95 0.89 29.25 0.0025 0.05

Proposed Model

Cover 94.39 18.75 0.96 26.24 0.00238 0.049
S1 98.04 6.34 0.98 35.20 0.00030 0.017
S2 97.52 8.17 0.96 31.19 0.00076 0.027

Table 5.3 represents performance metrics for images encoded and decoded with our
steganographic technique figure 5.2 and compare the results with [15]. Each row
corresponds to a specific image category (Cover, S1, S2), and the columns present
various evaluation metrics. In the following paragraphs, we will provide a detailed
explanation of the metrics for the first three rows of the table, which corresponds to
a batch of steganography processes. Our proposed model consistently outperforms
the referenced model in terms of accuracy, SSIM, PSNR, MSE, and RMSE across
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all tested images (Cover, S1, and S2). Notably, the proposed model achieves higher
accuracy and SSIM, indicating better image quality and similarity, while maintaining
lower MSE and RMSE values, demonstrating improved error performance.

Table 5.4: Overall Performance Comparison of Proposed Model With and Without
Gaussian Noise

Model Dataset S1 Ac-
curacy
(%)

S1
EPP

S2 Ac-
curacy
(%)

S2
EPP

Cover
Accu-
racy
(%)

Cover
EPP

Proposed
Model
with
Noise

ImageNet 97.16 10.26 97.28 9.49 95.16 16.29

Proposed
Model
without
Noise

ImageNet 97.28 10.06 98.09 6.72 94.30 21.04

Figure 5.3: Result of Concealing Two Secret Images (Without Noise)
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Table 5.5: Performance Metrics of figure 5.3, Result of Concealing Two Secret Im-
ages (Without Noise)

Image Accuracy EPP SSIM PSNR MSE RMSE
Cover 96.90 10.50 0.99 34.85 0.0003 0.0181
S1 97.70 7.58 0.98 33.24 0.0004 0.0218
S2 98.49 4.93 0.99 37.25 0.00057 0.0137

Cover 97.17 8.71 0.99 35.80 0.0002 0.0162
S1 97.56 8.12 0.98 32.60 0.0005 0.0234
S2 98.65 4.39 0.98 38.35 0.0001 0.0121

Cover 96.56 10.34 0.98 35.78 0.0002 0.0162
S1 98.73 4.21 0.95 36.27 0.0002 0.0154
S2 98.42 5.37 0.99 37.14 0.0001 0.0139

Cover 93.91 18.51 0.98 29.04 0.0012 0.0353
S1 92.99 21.88 0.95 28.47 0.0014 0.0377
S2 98.32 5.72 0.98 35.53 0.0002 0.0167

Cover 92.44 29.77 0.98 28.83 0.0013 0.0362
S1 95.41 14.98 0.97 28.26 0.0019 0.0386
S2 97.58 8.26 0.98 33.75 0.0004 0.0205

Cover 94.89 19.01 0.99 35.55 0.0002 0.0167
S1 96.91 10.19 0.96 31.48 0.00071 0.0266
S2 98.50 4.97 0.98 37.33 0.0001 0.0136

The observed discrepancies in the model’s performance with and without Gaussian
noise can be elucidated by examining the respective impact on decoding and encod-
ing phases, as highlighted by the results in the table 5.4. When Gaussian noise is
included during decoding, we see slightly higher error rates (EPP) for secret images
(S1 and S2) and the cover image in the model with noise compared to the one with-
out. Specifically, for the model with noise, the S1 accuracy is 97.16% with an EPP
of 10.26, S2 accuracy is 97.28% with an EPP of 9.49, and cover accuracy is 95.16%
with an EPP of 16.29. Conversely, the model without noise shows improvements in
these metrics with S1 accuracy at 97.28% and EPP at 10.06, S2 accuracy at 98.09%
and EPP at 6.72, and cover accuracy at 94.30% but with a higher EPP of 21.04.
From these findings, it can be concluded that when the Gaussian noise is filtered
out, the decoded images in the decoding process are more precise and clear, sup-
ported by EPP which represents the error per pixel needed for proper decoding. It
is because induced noise disturbances are not present during the decoding process
which helps in getting the secret information with more accuracy and without any
change. At the same time, this remains detrimental to redundancy and the model’s
generalization ability in the encoding phase: When there is no noise, the EPP for
the cover image is greatly increased. The reasons could be attributed to the fact that
the addition of Gaussian noise during training causes the encoder network to adapt
to variations of the data similar to the real world. Thus, while the raw decoding
rate might be tweaked to appear superior when noise is not included, the overall
steganographic capability of the embedding algorithm, especially in terms of cover’s
EPP and concealment, suffers badly. This highlights the fact that steganographic
systems always have a trade off between the decoded content and the ability of the
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organization or the individual encoding the information to go unnoticed while at
the same time ensuring that the contents of the ‘hidden’ information are not lost.

5.2 Three Image Steganography

Table 5.6: Performance Metrics for Concealing Multiple Secret Images

Model Dataset S1 Ac-
curacy
(%)

S1
EPP

S2 Ac-
curacy
(%)

S2
EPP

S3 Ac-
curacy
(%)

S3
EPP

Cover
Accu-
racy
(%)

Cover
EPP

[15]’s
Model

ImageNet 90.01 34.40 89.02 36.92 91.35 30.39 89.39 35.64

Initial
Model

ImageNet 93.53 20.98 95.67 14.99 94.81 17.63 92.85 24.18

Proposed
Model

ImageNet 96.21 12.96 96.16 13.11 95.64 15.04 93.53 21.73

Proposed
Model

Cifer10 96.45 12.11 96.66 11.31 96.29 12.55 93.84 20.82

Proposed
Model
(With-
out
Gaus-
sian
noise
in De-
coder)

ImageNet 96.39 12.33 94.82 17.16 94.76 17.76 92.84 25.65

Table 5.6 shows performance metrics for three models with steganography tasks
which are measured in accuracy and error per pixel (EPP), on the three different
secret images(S1,S2, S3) in relation to the cover image. Our First Model is a clear
illustration of the fact that the secret images are processed with higher accuracy and
much lower EPP than the model of [15]. Regardless, Our Final Model for the image
net dataset continue this process and improves the accuracy and increase it from
all metrics. For example, the accuracy for S1 is 96.45%, initially. 90.01% in [15].
Moreover, the upcoming sequential applications S2 through S3 indicate that our
modified technique indeed enhances the image quality by minimizing the pixel level
misplacement while still safeguarding the high-level concealment accuracy. This
is a very significant achievement as it is very useful in applications that require
robust steganography with minimal distortion and the images that are concealed
remain both secure and intact after the encoding process. The sum of squared
errors per pixel (SSE) or we are calling error per pixel (EPP) for an image I and its
corresponding decoded image D can be calculated as:
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EPP =

√√√√ 1

N

N∑
i=1

(255 · (I[i]−D[i]))2

Where:

• N is the total number of pixels in the image.

• I[i] represents the pixel value at position i in the original image.

• D[i] represents the pixel value at position i in the decoded image.

Figure 5.4: Distribution of Errors in Cover and Secret Images

We can see from the histogram 5.4 that the cover image (red) has a much wider
dispersion of errors, but the density peaks sharply at the lower error values and
quickly decreases, which means most of the pixels have minor errors. Secret Image
1 displayed a pattern with the nearest probability of a nature in the error application
but with a few broader areas that create steeper peaks. Secret Image 3 showed the
same behaviour, but its spread was narrow and steeper than the first one. The
gravitational curve (magenta) provides a much more normal distribution, however,
the distribution has the steepest slope close to zero error, thus, Secret Image 2 has
the least error dispersion and the smallest error scale among all the secret images.
These distributions demonstrate that the steganographic embedding and extraction
processes are very effective for Secret Image 2 comparatively, which means that the
encoding technique might be more efficient or the image content is less complex
and so it is easier to retain the quality during the process. On the other hand,
it is worth noting that encrypted images and respective secret images have higher
and more stretched-out error distributions, which may be the reason that they have
significant transformations from the original material. The effect could be that
visual or data integrity is impacted.
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Figure 5.5: Result of Concealing Three Secret Images.

Figure 5.5 shows the results of our new steganography model with an enhanced
encoder and the resulting image is arranged in a series of columns, each serving a
specific purpose in the context of encoding and decoding images, presumably for a
steganographic application.
Table 5.7 meanwhile, the metrics of the covering performance for hiding three secret
images on top of a cover image, which are illustrated in figure 5.3, are listed in the
table as follows. The metrics assessed include Accuracy(%), Error per pixel (EPP),
Structural similarity index (SSIM), Peak signal-to-noise ratio (PSNR) and Mean
squared error (MSE). Accuracy is a measure of the accuracy of prediction of total
correctly predicted data points compared to the total. EPP quantifies the average
error in pixels that help in finding the magnitude of the simulated concealment
error. SSIM is a metric of visual impact that measures the extent to which the
errors are structural information changes, with the higher values being the fewer
errors and more similarity to the original. PSNR requires the next quality of images
obtained after reconstruction relative to the initial one, which is measured by the
ratio of maximum possible signal power to the power of corruption noise. The
higher the value is the better the quality. Following this, MSE calculates the mean
squared difference between original and encoded pictures serving as an accurate
reconstruction error indicator. Taking an example from the table, for the ’Cover’
image in the first row, the metrics are as follows: It is 94.11% accuracy, EPP is
19.60, SSIM is 0.93, PSNR is 27.79 and 0.00166 MSE. This demonstrates a decent
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quality of concealment and quite a low level of palpability of the error. The balance
in the image quality between the concealed image and the distortion and the noise
of the image after the hidden stage is what characterizes the result as being good.
The fact that the steganographic method can maintain image integrity while hiding
the secret data shows its effectiveness. The table 5.7 also compares the performance
of the images with our proposed model and with the work of [15] where our model
is performing better in most of the metrics significantly specially SSIM.
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Table 5.7: Performance Metrics for Concealing Three Secret Images

Model Image Accuracy (%) EPP SSIM PSNR MSE RMSE

[15]’s Model

Cover 93.73 20.64 0.82 24.12 0.0038 0.0616
S1 94.14 9.98 0.86 30.61 0.0008 0.0283
S2 93.11 16.23 0.86 24.37 0.0036 0.06
S3 95.42 12.12 0.84 27.50 0.0017 0.0412

Proposed Model

Cover 94.11 19.60 0.93 27.79 0.00166 0.0407
S1 97.02 9.73 0.89 28.04 0.00148 0.0384
S2 96.48 11.78 0.96 27.12 0.00194 0.0440
S3 96.42 11.78 0.96 27.12 0.00194 0.0440

[15]’s Model

Cover 92.31 15.23 0.91 27.62 0.0017 0.0412
S1 94.01 9.94 0.85 30.61 0.0008 0.0283
S2 96.81 11.62 0.91 27.64 0.0017 0.0412
S3 96.16 12.54 0.82 26.90 0.0020 0.0447

Proposed Model

Cover 94.09 12.76 0.96 27.26 0.001662 0.0407
S1 94.02 12.74 0.93 26.95 0.00202 0.0449
S2 96.46 12.30 0.86 26.40 0.00281 0.0530
S3 96.24 12.30 0.86 26.40 0.00281 0.0530

[15]’s Model

Cover 94.26 18.78 0.88 24.91 0.0032 0.0566
S1 93.47 14.83 0.85 28.77 0.0013 0.0361
S2 94.10 19.45 0.92 23.17 0.0048 0.0693
S3 93.55 15.49 0.83 26.16 0.0024 0.0490

Proposed Model

Cover 97.03 21.50 0.96 26.79 0.00210 0.0458
S1 96.15 19.01 0.94 27.46 0.00182 0.0426
S2 96.93 11.17 0.92 27.66 0.00172 0.0414
S3 96.94 11.17 0.92 27.66 0.00172 0.0414

[15]’s Model

Cover 90.73 20.64 0.82 24.12 0.0038 0.0616
S1 91.14 9.98 0.82 30.60 0.0008 0.0283
S2 95.11 16.23 0.86 24.37 0.0036 0.06
S3 96.42 12.12 0.84 27.50 0.0017 0.0413

Proposed Model

Cover 93.69 23.53 0.94 26.65 0.00229 0.0478
S1 96.24 11.87 0.93 27.42 0.00183 0.0427
S2 96.54 11.87 0.93 27.42 0.00183 0.0427
S3 97.24 9.28 0.95 29.69 0.00107 0.0327

[15]’s Model

Cover 94.26 18.78 0.88 24.91 0.0032 0.0567
S1 95.47 14.83 0.84 28.77 0.0013 0.0361
S2 94.10 19.45 0.92 23.17 0.0048 0.0693
S3 95.55 15.49 0.83 26.16 0.0024 0.0490

Proposed Model

Cover 94.11 19.60 0.93 27.79 0.01662 0.1289
S1 97.00 9.73 0.89 30.09 0.00980 0.0989
S2 97.13 10.30 0.83 28.48 0.01418 0.1190
S3 96.49 11.78 0.96 27.12 0.01941 0.1393

[15]’s Model

Cover 93.01 24.00 0.80 24.70 0.0033 0.2089
S1 95.70 14.45 0.84 26.6 0.0021 0.0458
S2 94.93 17.33 0.84 23.94 0.0040 0.0632
S3 95.14 16.65 0.83 24.99 0.0031 0.0556

Proposed Model

Cover 93.81 20.17 0.88 27.00 0.0019 0.0436
S1 95.70 10.09 0.95 31.94 0.0006 0.0244
S2 94.07 19.53 0.93 24.49 0.0035 0.0592
S3 95.38 15.90 0.91 24.50 0.0035 0.0592
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Figure 5.6: Result of Concealing Three Secret Images (Without Gaussian noise in
the Decoder).
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Table 5.8: Performance Metrics for Concealing Three Secret Images (Without Gaus-
sian noise in the Decoder)

Image Accuracy (%) EPP SSIM PSNR MSE RMSE
Cover 91.17 30.29 0.85 25.45 0.002 0.044
S1 95.67 14.15 0.92 28.33 0.001 0.0316
S2 95.22 15.41 0.94 26.0 0.002 0.0447
S3 96.14 13.19 0.92 26.24 0.002 0.044

Cover 95.69 14.20 0.98 28.05 0.0015 0.0387
S1 95.20 15.18 0.94 28.23 0.0015 0.0387
S2 95.15 15.73 0.88 26.58 0.0021 0.0458
S3 94.10 19.91 0.88 24.2 0.0037 0.0608

Cover 93.81 20.17 0.88 27.00 0.001 0.0321
S1 97.07 10.09 0.95 31.94 0.0006 0.0245
S2 94.07 19.53 0.93 24.49 0.0035 0.1934
S3 95.38 15.90 0.91 24.51 0.0035 0.1934

Cover 92.50 24.33 0.89 26.51 0.0022 0.0469
S1 97.53 8.12 0.97 32.12 0.0006 0.0245
S2 95.62 14.13 0.93 26.91 0.0020 0.0447
S3 93.38 20.98 0.92 23.46 0.004 0.0632

Cover 90.41 38.89 0.89 29.06 0.0013 0.0361
S1 96.74 10.77 0.96 30.23 0.0009 0.03
S2 96.2 12.48 0.95 28.33 0.0014 0.0374
S3 95.62 14.23 0.86 27.01 0.0019 0.0436

Cover 94.08 18.91 0.94 25.11 0.0038 0.0617
S1 96.66 11.31 0.94 28.74 0.0013 0.0361
S2 93.43 20.76 0.90 23.07 0.0049 0.07
S3 92.84 23.43 0.85 23.13 0.0048 0.06928

By removing the Gaussian noise in the decoder of a steganography system, one
observes that steganography especially when decoding is slightly decreased, as illus-
trated by the experiment that was done with the ImageNet dataset. For the model
with Gaussian noise, we observe an accuracy of 96.21%, SSIM of 96.16%, PSNR
of 15.04 dB, and an MSE of 93.53. In contrast, the model without Gaussian noise
shows decreased performance with an accuracy of 96.39%, SSIM of 94.82%, PSNR
of 17.76 dB, and an MSE of 92.84, along with a deterioration in a miscellaneous
metric from 21.73 to 25.65. It is due to the various reasons indicated below that
worsen and lead to this degradation. Gaussian noise acts as a type of regularization
to limit the model’s amplification of noise-free conditions that were observed during
training, which should improve the model’s performance in the new unseen data
that may contain distortions. Furthermore, it also mimics some realistic circum-
stance where data can be slightly off which prepares the model on how it is going to
handle and rectify it in the most efficient manner possible. Without this noise, the
decoder may fail to learn robust features which are needed in reconstructing the se-
cret image, thereby reducing its usability in real life situations where variations and
degradations of the image are possible. This conclusion is supported visually and
numerically in the table 5.8 and figure 5.6, showing a deteriorating of the model’s
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stability and the ability to reconstruct the images when Gaussian noise is removed.
The addition of Gaussian noise to the training process is an essential step because
it helps the model not to be too rigid and unfavourable to a range of minor changes
in data inputs during regular operation.
It should be noted that the research included situations like corner cases. In the
example shown in figure 5.7 the cover frame is white and S1 is all-black, while S2
is a randomly generated image. Another edge case as displayed in figure 5.8, has
a totally white cover page and S1 and S2 are all black. Even though the human
eye will never be able to discern changes between the two covered layers, the model
portrays outstanding accuracy of reading and interpreting such complex tasks.

Figure 5.7: Result of Concealing Two Secret Images in Plain White Cover Image.

Figure 5.8: Result of Concealing Two Full Black Secret Image in Plain White Cover
Image.
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Chapter 6

Implementation and Analysis of
Security Measures

Steganography has a functional difference from cryptography. In cryptography, there
is always something hidden, which is the secret, and what follows is to ensure that no
one gains access to the content of the secret. While steganography conceals the very
presence of the secret by placing it within the context of ‘gathering of harmless or
visible data’. Therefore even if an adversary gets a hold of the decoder architecture,
it is still almost impossible for him to extract the hidden message. The image with
the secret is transmitted over the internet, and it only takes a split second to post
millions of images over the internet. This huge number means that anybody else
could not single out and decipher the concealed message, even though full or partial
decoder information is available. Let’s assume the adversary knows which image has
some secret on it. Then, the generation of the encoder and decoder networks with
different sizes of the convolution layer using Leaky ReLU activation makes it hard
to establish patterns by observing the images through other network architectures.
Furthermore, the encoder has to encode and integrate several secret images all at
once, each of which passes through convolutions and concatenations in a sequence.
If an adversary gets a partial part of the decoder architecture, they will work in par-
tial knowledge of layers and parameters without trained weights and biases, missing
customised loss functions, and training methodologies; nothing would be said about
the context that the image underwent and the preprocessing steps it was subjected
to, how it integrates multiple secret images, and the presence of Gaussian noise and
robustness schemes. These factors, in a cumulative way, create significant difficul-
ties in the attempts to reverse the steganographic process and decode the hidden
images. As pointed out by [22], inherent security in steganographic methods mainly
stems from the least obvious and most distinguished aspects of specialized imple-
mentations; thus, it is unlikely that an opponent will be able to penetrate without
inside information. Moreover, the direct reliance on the encoder’s outputs as well
as the importance of adaptive learning rates and training techniques in establishing
network performance complicate the adversary’s job. It is therefore through these
complex mechanisms and the impossibility of reproducing the original network, that
the multi-image steganography system’s solid and secure basis against such attacks
is provided. Based on our experiments, even if the adversary shares up to 75%
similarities with the decoder network, he cannot access the secret images. Figure
6.1 shows the output of the up to 75% similarity with the decoder network after
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removing the last two convolutional layers.

Figure 6.1: Result of Removing the Last Two Convolutional Layers from Decoder

6.1 Implementation of Cryptographic Algorithms

in Our Model

We further implemented AES (Advanced Encryption Standard) and ChaCha20, in
the sense that the images used for training the encoder and the decoder population
are encrypted before the training exercise is initiated. The AES is one of the most
famous symmetric cryptography algorithms because of its high operating speed and
security levels, which requires and processes the keys with a length of 128 bits and
works only with the fixed amount of data blocks. ChaCha20 – Another fast-stream
cypher designed by Daniel J. Bernstein to provide high security when encrypting
data using a pseudorandom keystream. The workflow, as illustrated in the figure
?? encompassing cover images C and secret images S1, S2, and S3, encrypts these
images through AES or ChaCha20 encryption before passing to the encoder. The
encoder combines the secret images with the cover image to produce the encoded
image (C’), is then required to pass through three decoders. Every decoder obtains
one or more of the secret images (S1’, S2’, S3’) and each of the images is decrypted
to reconstruct the original S1, S2, and S3. The additional layer mentioned above
greatly increases the overall resistance against adversarial attacks as it incorporates
the advantages of both cryptography and steganography methods to secure and
encrypt the data successfully.
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Figure 6.2: Workflow of Our Model with Encryption and Decryption

In our multi-image steganography model, we compared AES and ChaCha20 encryp-
tion algorithms using error per pixel and accuracy per pixel metrics. Table 6.1 shows
the results numerically, and Figures 6.3 and 6.4 illustrate them visually. For AES,
the errors per pixel for S1, S2, S3, and the cover image (C) were 15.66, 17.60, 19.17,
and 28.56, respectively, with accuracies of 95.49%, 94.82%, 94.42%, and 91.70%.
ChaCha20 showed errors of 18.59 for S1, 18.27 for S2, 16.93 for S3, and 28.01 for C,
with accuracies of 94.63%, 94.64%, 95.10%, and 91.82%. Additionally, AES SSIM
values were 0.9249 for S1, 0.9415 for S2, 0.9163 for S3, and 0.8821 for C, while
ChaCha20 SSIM values were 0.9069 for S1, 0.8886 for S2, 0.9087 for S3, and 0.9224
for C. The PSNR for AES was 26.00 for S1, 26.35 for S2, 26.11 for S3, and 26.27 for
C, compared to ChaCha20’s PSNR of 24.61 for S1, 27.15 for S2, 23.76 for S3, and
27.11 for C. These results highlight slight differences in performance metrics that
could influence the choice of encryption based on specific use cases.

Figure 6.3: Result of Using AES
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Table 6.1: Comparison of AES and ChaCha20 Performance Metrics

S1 Error S2 Error S3 Error C Error
AES 15.661552 17.604502 19.167444 28.555323

ChaCha20 18.585484 18.273357 16.934305 28.00647
S1 Accuracy S2 Accuracy S3 Accuracy C Accuracy

AES 95.4895% 94.8156% 94.4182% 91.6977%
ChaCha20 94.6343% 94.6384% 95.0981% 91.8197%

S1 SSIM S2 SSIM S3 SSIM C SSIM
AES 0.924867 0.941468 0.916292 0.882083

ChaCha20 0.9069 0.8886 0.9087 0.9224
S1 PSNR S2 PSNR S3 PSNR C PSNR

AES 26.0043 26.34675 26.1133 26.2715
ChaCha20 24.6121 27.1450 23.7635 27.1071

Figure 6.4: Result of Using ChaCha20

In our study, we have also implemented the case that is if an attacker got a partial
key by writing only the last byte of the key for both AES and ChaCha20. This
experiment sought to classify the effectiveness of our encryption in countering such
attacks. It emerged that irrespective of the utilization of the modified key, the
operation of the decoder yielded errors; in this instance, padding errors with regard
to AES. This is because AES and ChaCha20 use the sandboxing process while exact
key matching is the decryption step employed by the two ciphers. If one single byte
is changed the decryption will not work and the padding will be off if not the whole
output might be rendered completely unreadable. This confirms the stability of
these algorithms, meaning if one possesses only a part of a key, he will not be able
to decrypt the rest parts, thus maintaining the confidentiality and integrity of the
concealed images in the steganography context of our model.

6.2 Architectural Key Integration for Enhanced

Security

In the context of the above-mentioned work, with an aim to introduce the security
measures in our multi-image steganography model, we have come up with a new idea
of implementing a random key in the architecture of the model. Using this method
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also goes beyond image-level security, where encryption is applied to the images and
uses the key directly in the encoding and decoding processes. The random key in
our model plays a vital role in boosting the security of the encoding and decoding
functions by using an architectural level of security. The space of the key is added
to the tensor of the combined features of the cover and secret image during the
encoding process, therefore resulting in a new transformation of the encoded image
with respect to the key introduced. This transformation helps to increase the level
of safety of the given image, which is illustrated by the visual embedding of the
secret images. During decoding, the same key is subtracted from the tensor in order
to gain back the secret images because the reverse process of the above operation
is applicable. This architectural approach makes it certain that in the absence of
the right key the decoding process will not work and the secret images will remain
undecidable. The result of this implementation can be seen in Figure 6.5 and Table
6.2. The results of our multi-image steganography model with architectural key
integration are shown in the table below. The error per pixel for secret images S1,
S2, and S3 were 38.009476, 34.709866, and 37.02981, respectively, while the cover
image (C) had an error of 43.255707. The accuracy per pixel for S1, S2, and S3
were 88.5501%, 89.8921%, and 88.9344%, respectively, and the cover image had an
accuracy of 86.8260%. These results demonstrate that incorporating the key directly
into the architecture maintains a high level of accuracy and provides robust security
by integrating the key into the encoding and decoding processes.

Figure 6.5: Result of Using Architectural Key Integration

S1 Error S2 Error S3 Error C Error
38.009476 34.709866 37.02981 43.255707

S1 Accuracy S2 Accuracy S3 Accuracy C Accuracy
88.5501% 89.8921% 88.9344% 86.8260%

Table 6.2: Architectural Key Integration Performance Metrics

When we introduced an incorrect key into the decoder, the results deteriorated
significantly, highlighting the critical importance of using the correct key for de-
cryption in our steganography model. The error per pixel for secret images S1, S2,
and S3 increased dramatically to 66.10025, 73.168816, and 51.99589, respectively,
with the cover image (C) having an error of 37.371273. Correspondingly, the accu-
racy per pixel dropped to 79.4211% for S1, 76.5632% for S2, 85.5282% for S3, and
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88.2822% for the cover image. These degraded results underscore that the architec-
tural key integration not only secures the encoding and decoding processes but also
ensures that any deviation from the correct key renders the extracted images signif-
icantly inaccurate and unusable, thereby enhancing the robustness and security of
the steganography system against unauthorised access. These results can be seen in
Table 6.3 and Figure 6.6

Table 6.3: Performance Metrics with Incorrect Key in Decoder

S1 Error S2 Error S3 Error C Error
Error per pixel [0, 255] 66.10025 73.168816 51.99589 37.371273

S1 Accuracy S2 Accuracy S3 Accuracy C Accuracy
Accuracy per pixel [0, 255] 79.4211% 76.5632% 85.5282% 88.2822%

Figure 6.6: Result of Using Architectural Key Integration

Table 6.4: Comparison of AES and ChaCha20 Performance Metrics

S1 Error S2 Error S3 Error C Error
AES 15.661552 17.604502 19.167444 28.555323

ChaCha20 18.585484 18.273357 16.934305 28.00647
Architectural Key Integration 38.0094 34.7099 37.0298 43.2258

S1 Accuracy S2 Accuracy S3 Accuracy C Accuracy
AES 95.4895% 94.8156% 94.4182% 91.6977%

ChaCha20 94.6343% 94.6384% 95.0981% 91.8197%
Architectural Key Integration 88.55% 89.89% 88.93% 86.82%

S1 SSIM S2 SSIM S3 SSIM C SSIM
AES 0.924867 0.941468 0.916292 0.882083

ChaCha20 0.9069 0.8886 0.9087 0.9224
Architectural Key Integration 0.7680 0.7559 0.7879 0.7863

S1 PSNR S2 PSNR S3 PSNR C PSNR
AES 26.0043 26.34675 26.1133 26.2715

ChaCha20 24.6121 27.1450 23.7635 27.1071
Architectural Key Integration 20.8587 21.9042 20.5512 22.6594

When we attempted to feed an incorrect key into the decoder, we saw the per-
formance decrease drastically, indicating the significance of using the right key for
decrypting messages in the steganography model. The number of errors rose signif-
icantly, while the levels of accuracy lowered down to a significant measure for all
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images. This serves to suggest that the architectural key integration not only safe-
guards the encoding and decoding processes but also guarantees that any distortion
of the correct key makes the extracted images grossly erroneous and useless, all of
which can effectively preserve the steganography system from invasion by unautho-
rised third parties, implying a high level of robustness and security. This is why, with
the correct functioning of the key at the architectural level, the model presented a
smaller number of errors and higher accuracy, which proves the effectiveness of the
presented architectural key solution. AES and ChaCha20 outperform Architectural
Key Integration in terms of lower error per pixel, higher accuracy, better SSIM,
and higher PSNR, indicating superior image quality and accuracy as seen from ta-
ble 6.4. AES is preferable for better image quality, while ChaCha20 is suitable for
faster processing. This architectural key integration is in its infancy, and less com-
plex than previous studies; however, it has the potential to be applied practically
to comparable steganalysis scenarios, providing improved mechanisms for the ad-
ditional layer of security against duplication attacks in the context of multi-visible
image steganography. Contingent research will strive further to describe additional
cases of using and developing this methodology.
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Chapter 7

Conclusion

In conclusion, our steganographic model derived from CNN has enhanced the field
of multi-image steganography and can be considered as a novelty. The encoder
has a multi-scale convolutional architecture which showed outstanding results the
decoder also works rather well, which indicates the effectiveness of our model. As
expected, the Lrelu activation function displayed superior performance over ReLU
and Tanh functions, where lower error per pixel (EPP) and higher accuracy per
pixel were achieved. Also, in the architectural key integration; an improvement of
the layer of security is achieved as the key is actually incorporated in the encoding
and decoding step. This helps to make sure that if the decryption key is not keyed
in properly, then decryption will not proceed, hence offering adequate security to
the hidden images. The usage of more cryptographic algorithms such as AES as
well as ChaCha20 creates a stronger model for security. Our approach can bring in
the real-world scenario while keeping up an excellent and extremely secure accuracy.
Further development will involve the encoding of more imagery data and increasing
the accuracy of the algorithm, as well as the usage of steganalysis methods to improve
the anti-protecting method. The future work intends to focus on the enhancement
of the model, empowering and increasing its use in the Field of Secure Data and
Information Hiding. In the end, out of the three experiments we’ve conducted, AES
yielded better results compared to the other two methods. We assumed that adding
a key would enhance security further, but it resulted in lower accuracy. Therefore,
future work involves incorporating a key to achieve better results and combining the
key with AES encryption.
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