
Single and Multi-View 2D Image Processing for Enhanced 3D
Object Reconstruction

by

Swapnil Ghosh
20301470

Md. Muhtasim Mahmud
20101524

Asrar Ahmed
20101522

Tashdid Al Shafi Turjo
20101311

Md. Shaeak Ibna Salim
20101044

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science

Department of Computer Science and Engineering
Brac University

May 2024

© 2024. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a third
party, except where this is appropriately cited through full and accurate referencing.

3. The thesis does not contain material which has been accepted, or submitted, for
any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Swapnil Ghosh
20301470

Md. Muhtasim Mahmud
20101524

Tashdid Al Shafi Turjo
20101311

Asrar Ahmed
20101522

Md. Shaeak Ibna Salim
20101044

i

Approval

The thesis/project titled “Single and Multi-View 2D Image Processing for Enhanced 3D
Object Reconstruction” submitted by

1. Swapnil Ghosh (20301470)

2. Md. Muhtasim Mahmud (20101524)

3. Asrar Ahmed (20101522)

4. Tashdid Al Shafi Turjo (20101311)

5. Md. Shaeak Ibna Salim (20101044)

Of Spring, 2024 has been accepted as satisfactory in partial fulfillment of the requirement
for the degree of B.Sc. in Computer Science on May 20, 2024.

Examining Committee:

Supervisor: (Member) Dr. Md. Ashraful Alam
Associate Professor

Department of Computer Science and Engineering
Brac University

Thesis Coordinator: (Member) Dr. Md. Golam Rabiul Alam
Professor

Department of Computer Science and Engineering
Brac University

Head of Department: (Chair) Dr. Sadia Hamid Kazi
Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Abstract

This paper presents an efficient approach for 3D object reconstruction using Single and
multi- view 2D image processing. In real-world scenarios, it also focuses on practical
applications. Our approach is about the advanced image processing techniques as well
as deep learning models which convert multiple 2D views of an object into a detailed 3D
model. Our method is a novel application of convolutional neural networks that merge
features from each view for ensuring consistent geometry and texture in the final model.
Additionally, we introduce a robust merging module based on CNN. It improves the
model’s fidelity by focusing on areas with significant detail variation across different views.
Our tests on lots of challenging datasets show that our method enhances computational
efficiency as well as it has significant potential for practical applications in areas such as
virtual reality, augmented reality, and automated quality control in manufacturing. This
research marks a significant step forward in digital imaging and computer vision, offering
new possibilities for industry and technology advancements.

Keywords: Convolutional Neural Networks, Depth Camera, three-dimensional geometry

iii

Acknowledgement

Firstly, we would like to express our utmost gratitude to the Almighty Allah, by the grace
of Allah, our thesis was finished without any significant setbacks.

Second, we would like to express our gratitude to Dr. Md. Ashraful Alam and Hamed
Efaz MD. Elahi Dad, our supervisor and mentor, for all of the helpful feedback and di-
rection they have given us. Whenever we needed assistance, they were there to help.

Lastly, to our parents: we would not have been able to do it without their unwavering
support. Thanks to their generous encouragement and prayers, we are almost ready to
graduate.

iv

Table of Contents

Declaration i

Approval ii

Ethics Statement iii

Abstract iii

Dedication iv

Acknowledgment iv

Table of Contents v

List of Figures viii

Nomenclature x

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Objective . 4

2 Literature review 5

3 Methodology 10
3.0.1 Models . 14
3.0.2 VGG16 . 14
3.0.3 DenseNet-201 . 14
3.0.4 Xception . 15
3.0.5 MobileNet-V3 . 15
3.0.6 EfficientNet-B0 . 15
3.0.7 ResNet50 . 17
3.0.8 ShuffleNet-V2 . 18
3.0.9 U-Net . 18

3.1 Framework . 18
3.1.1 PyTorch . 19
3.1.2 Dynamic Computational Graphs 19
3.1.3 Tensor Computation . 19
3.1.4 Autograd . 19
3.1.5 Neural Network Library . 19

v

3.1.6 GPU Acceleration . 20
3.1.7 Community and Ecosystem . 20
3.1.8 Model Deployment . 20
3.1.9 Interoperability . 20

3.2 Architecture . 20
3.2.1 Feature Extractor Module . 21
3.2.2 Ensembler Module . 22
3.2.3 3D Volume Generator Module . 22
3.2.4 Context-Aware Fusion Module(Contextual Integrator) 23
3.2.5 Refinement Network Module(Enhancer) 25

3.3 Loss Function . 26
3.4 Evaluation Metrics . 27
3.5 Implementation Details . 27
3.6 Reconstruction of 3D Volume . 27

4 Result Analysis 29
4.1 VGG16 . 29

4.1.1 Extractor-Generator Loss . 29
4.1.2 Refiner Loss . 30
4.1.3 IoU Score . 30

4.2 DenseNet-201 . 31
4.2.1 Extractor-Generator Loss . 31
4.2.2 Refiner Loss . 31
4.2.3 IoU Score . 32

4.3 Xception . 33
4.3.1 Extractor-Generator Loss . 33
4.3.2 Refiner Loss . 34
4.3.3 IoU Score . 34

4.4 MobileNet-V3 . 36
4.4.1 Extractor-Generator Loss . 36
4.4.2 Refiner Loss . 36
4.4.3 IoU Score . 37

4.5 EfficientNet-B0 . 37
4.5.1 Extractor-Generator Loss . 37
4.5.2 Refiner Loss . 39
4.5.3 IoU Score . 39

4.6 ResNet50 . 40
4.6.1 Extractor-Generator Loss . 40
4.6.2 Refiner Loss . 40
4.6.3 IoU Score . 41

4.7 ShuffleNet-V2 . 42
4.7.1 Extractor-Generator Loss . 42
4.7.2 Refiner Loss . 43
4.7.3 IoU Score . 43

4.8 SMATNet(ShapeNet Dataset) . 45
4.8.1 Extractor-Generator Loss . 45
4.8.2 Refiner Loss . 45
4.8.3 IoU Score . 46

vi

4.9 SMATNet(Our Dataset) . 46
4.9.1 Extractor-Generator Loss . 46
4.9.2 Refiner Loss . 47
4.9.3 IoU Score . 48

4.10 Ground Truth vs Reconstructed Volume 49
4.10.1 VGG16 . 49
4.10.2 DenseNet-201 . 50
4.10.3 Xception . 50
4.10.4 MobileNet-V3 . 51
4.10.5 EfficientNet-B0 . 51
4.10.6 ResNet50 . 52
4.10.7 ShuffleNet-V2 . 52
4.10.8 SMATNet(ShapeNet Dataset) . 53
4.10.9 SMATNet(Our Dataset) . 53

4.11 Comparison . 53
4.12 Limitations . 54

5 Conclusion 56

Bibliography

vii

57

List of Figures

3.1 The Workflow chart of 3D model reconstruction 10
3.2 Workflow for converting an image to its corresponding binvox file. This

process starts with taking a RGB depth image of a particular subject,
converts it into a point cloud(PLY), then into an 3D Object(OBJ) file,
and finally into a binvox file(.binvox). 12

3.3 VGG16 model architecture[44] . 14
3.4 DenseNet-201 model architecture[37] . 15
3.5 Xception model architecture[36] . 16
3.6 MobileNet-V3 model architecture[22] . 16
3.7 EfficientNet-B0 model architecture[29] 17
3.8 ResNet50 model architecture[42] . 17
3.9 ShuffleNet-V2 model architecture[18] . 18
3.10 U-Net moddel architecture[43] . 19
3.11 SMATNet workflow . 21
3.12 Feature Extractor Module architecture 22
3.13 Ensembler Module architecture . 23
3.14 3D Vlume Generator Module architecture 24
3.15 Context-Aware Fusion Module(Contextual Integrator) architecture 25
3.16 Refinement Network Module(Enhancer) architecture 26
3.17 SMATNet architecture . 26

4.1 VGG16 Extractor-Generator Loss . 29
4.2 VGG16 Refinement Network Loss . 30
4.3 VGG16 IoU Score . 31
4.4 DenseNet-201 Extractor-Generator Loss 32
4.5 DenseNet-201 Refinement Network Loss 32
4.6 DenseNet-201 IoU Score . 33
4.7 Xception Extractor-Generator Loss . 34
4.8 Xception Refinement Network Loss . 35
4.9 Xception IoU Score . 35
4.10 MobileNet-V3 Extractor-Generator Loss 36
4.11 MobileNet-V3 Refinement Network Loss 37
4.12 MobileNet-V3 IoU Score . 38
4.13 EfficientNet-B0 Extractor-Generator Loss 38
4.14 EfficientNet-B0 Refinement Network Loss 39
4.15 EfficientNet-B0 IoU Score . 40
4.16 ResNet50 Extractor-Generator Loss . 41
4.17 ResNet50 Refinement Network Loss . 41

viii

4.18 ResNet50 IoU Score . 42
4.19 ShuffleNet-V2 Extractor-Generator Loss 43
4.20 ShuffleNet-V2 Refinement Network Loss 44
4.21 ShuffleNet-V2 IoU Score . 44
4.22 SMATNet Extractor-Generator Loss . 45
4.23 SMATNet Refinement Network Loss . 46
4.24 SMATNet IoU Score . 47
4.25 SMATNet Extractor-Generator Loss . 47
4.26 SMATNet Refinement Network Loss . 48
4.27 SMATNet IoU Score . 49
4.28 Comparison of Ground Truth and Reconstructed Model 49
4.29 Comparison of Ground Truth and Reconstructed Model 50
4.30 Comparison of Ground Truth and Reconstructed Model 50
4.31 Comparison of Ground Truth and Reconstructed Model 51
4.32 Comparison of Ground Truth and Reconstructed Model 51
4.33 Comparison of Ground Truth and Reconstructed Model 52
4.34 Comparison of Ground Truth and Reconstructed Model 52
4.35 Comparison of Ground Truth and Reconstructed Model 53
4.36 Comparison of Ground Truth and Reconstructed Model 53

ix

Nomenclature

The next list describes several symbols & abbreviation that will be later used within the
body of the document

3D Three Dimensional

BoW Bag of Words

CNN Convolutional Neural Networks

CSI Crime scene investigation

DCP Deep Closest Point

LSS Latent Support Surface

R− CNN Region-based Convolutional Neural Networks

ResNet Residual Network

V GG Visual Geometry Group

Y OLO You Only Look Once

x

Chapter 1

Introduction

Deep learning has spearheaded the development of 3D reconstruction and enable the de-
velopment of 3D models from 2D environments such as pictures and equivalent. Though
there has been significant improvements in image processing models but the task of con-
verting from 2D to 3D model remains one of the most challenging due to inherent nature
of 2D environments such as the complex shapes of the 2D objects and other associated
obstacles. In order to deal with such challenge and minimize and simplify the task we
introduce SMATNet, a computationally heavy yet effective framework that is successful
in constructing 3D models from both single and multiple 2D models.

Our proposed SMATNet architecture has 5 modules: Feature Extractor Module, 3D
Volume Generator, Context-aware Fusion Module(Contextual integrator), Refinement
Network(Enhancer) and lastly Ensemble Module. The first module, Feature Extractor
Module has 2 different variations, one consisting of the ResNet-50 (Encoder1) and the
other one consisting one ShuffleNetV2 (Encoder 2). This encoders are used to extract
2D feature maps from inputs. The 3D Volume Generator module consist of sequences of
3D transposed convolutions to convert the feature maps into bigger yet less detailed 3D
volumes. In order to integrate various 3D volumes the Context-Aware Fusion module is
used, which leverages the contextual information to adjust the weights for each unit of
volume and finally combining them into a united and cohesive volume. This approach
puts priority on the most dependable sections for each unit volume which creates more
accurate reconstructions.

The Refinement Network followed by fusion process improves the resolution of the 3D
volume and also improves the level of intricate details of the 3D volumes. This module
leverages 3D convolutional layers to improve the volume in each iteration which results
in accurate and precise 3D model representations. The Ensemble module ensures dura-
bility and accuracy of the rebuilt models by using forecast from both the encoders. This
module consist of 2 parts :Stacked encoder and Meta-Model. The Stacked Encoder takes
the features from both the encoders and combines them and applies them through the
Meta-Model part and finally generates the ultimate feature set.

In our SMATNet architecture, we used PyTorch as our framework which is versatile, well
documented, allows abstraction of low level details. The model is trained using Adam op-
timized which is state of the art technique to allow accelerated convergence and improve
performance. The SMATNet architecture shows incredible precision in managing the

1

intricate details, shapes and overcoming the obstacles possessed by 2D environment, Al-
lowing the creation of 3D models from even a single 2D picture. SMATNet can be applied
to Computer vision and related fields where there is need of 3D model reconstruction.
SMATNet can be considered as a Remarkable architect for 2D to 3D regeneration model
because of its modular nature which makes it adaptable. The stack ensemble along with
context aware fusion module expands the limitations and beyond in the field of 3D model
generation.

As a result of our research, we have made a number of significant contributions. Through
the implementation of ensemble learning, we were able to successfully combine predictions
from multiple models in order to improve effectiveness. Through the process of experi-
menting with various architectures, such as VGG, DenseNet, and Xception, we were able
to determine which models were the most successful. By developing a fresh dataset that
was specifically customized to a certain industry, we were able to improve the performance
and relevance of our models. The ensemble model that we developed displayed higher
accuracy and efficiency, outperforming individual models such as VGG, ResNet50, Shuf-
fleNet, DenseNet, and Xception. This was accomplished despite the increased complexity
and resource usage.

1.1 Problem Statement

Computer vision is not a new concept in the new era of technology. Our technology is
advancing with the passing days, and technological agents regarding our daily lives are
becoming more intelligent and robust. Nowadays, people are more and more attracted
to the concept of automated, autonomous gadgets. One of the best ways to do this is
through 3D reconstruction, which can be used in many different ways.

The paper [7] by Maier et al. says that autonomous robots are made to help people
with delivery, healthcare, construction, and many other complex tasks. To do these tasks
quickly and reliably, you need to be able to construct, find and identify objects in complex
environments in real-time. An effective 3D reconstruction system is a must to solve this
problem.

Besides humanoid robots, 3D reconstruction can be used for treatments, phenotyping,
construction, criminal investigation, Factory-usage and aviation industry, etc. To begin
with, 3D reconstruction can be applied to the health sector to increase treatment accu-
racy. For example, according to [16], computer vision and 3D reconstruction systems can
create an accurate heart model from X-ray images of a patient’s body’s right and left
sides. As a result, a patient’s diagnosis can be easily done by limiting patient exposure
to X-rays. Moreover, a detailed model of a defective organ can help physicians provide
the best treatment form and bring out the most efficient diagnostic accuracy and surgical
success.

Phenotyping is a process of assessing different traits of plants, including nitrogen con-
sumption, dimensions, yield etc. According to [3], phenotyping is one of the most impor-
tant aspects of agriculture and has been done manually by farmers based on ”Farmer’s
Intuition” for hundreds of years. In this matter, 3D reconstruction and computer vision

2

can help the agriculture sector by accurately assessing the plants’ dimensions and accu-
rate nitrogen consumption based on the color of the leaves and fruits. As a result, the
computer vision system and 3D reconstruction can open the door toward a new era of
agriculture.

Construction is the base for advancement, and in the present day, construction has be-
come more complex and becoming enormous and time-consuming day by day. Computer
vision applications in this sector can add a new dimension to it. According to [24], about
745,000 employers and over 7.6 million employees construct structures worth nearly 1.4
trillion dollars annually in the United States. Moreover, construction requires various
complex calculations regarding height, weight, and quantity measurements. Computer
vision can quickly solve these issues through 3D reconstruction and dimension calculation.
Zhou [33] suggests that a 3D reconstruction framework can create novel architectures of
any kind of structure. Moreover, 3D dimension calculation can help measure height and
width. Therefore, these calculations can help the architects calculate the required amount
of cement, rod, and other necessary construction elements.

Criminology, the field of behavioral and social sciences, which includes the study of crime
along with irrational parts of human nature is a relevant topic for research. Crime scene
investigation, also known as CSI in short, is a branch of Criminology. The investigation
follows a systematic process of acquiring evidence and making sound decisions. According
to Gazi[11], Computer Vision techniques and 3D models can aid crime scene investigation
by reconstructing a near original picture of the crime scene which can then be used for
deeper analysis without missing substantial detail.

Production line or in manufacturing, 3D reconstruction methods are used in quality con-
trol by cross matching which can find defects, compare dimensions and inspect labeling.
Computer Vision can monitor factory operations, detect safety hazards, and improve se-
curity in the manufacturing field. According to [31] computer Vision can also be used
to detect anomalies, find potential failures, and overall make all manufacturing processes
more efficient and cut a lot of costs.

The aviation sector, in which computer vision technology can be used to enhance safety
mechanics, increase performance and cut costs by automating some part of the process.
During flight the vital flight components can be monitored using computer vision with a
potential point of failure detection mechanism which can greatly increase safety.

Nowadays, we primarily acquire 2D concepts from any vision-related technology (camera).
But 3D reconstruction requires depth data that cannot be acquired from the usual image
capturing devices. So, extracting 3D information from 2D images or perceptions becomes
difficult. So, the concept of depth sensors was introduced to solve this issue. However,
though depth sensors can provide depth data of an object, it is often quite noisy and price
inefficient. Therefore, in this paper, we try to find the answers to the question- ”Single and
Multi-View 2D Image Processing for Enhanced 3D Object Reconstruction.” Therefore,
we analyze numerous research papers and try to come up with an efficient implementation
of 3D reconstruction techniques using multiple good datasets and combine it with Deep
Learning to make it more robust.

3

1.2 Research Objective

This research aims to develop a method that utilizes Deep Learning technology for the
reconstruction of 3D objects. Therefore, we have used CNN as our primary deep learning
model and depth cameras as our peripherals. The objectives of this research are:

1. To implement a minimal and efficient method for obtaining the 3D reconstruction of
an object.
2. To deeply understand the mechanisms of Deep Neural Networks
3. To construct an efficient Dataset for obtaining better results in specific domains.
4. To Improve Resolution and Detail of 3D Models.
5. To Integrate Ensemble Learning for Enhanced Accuracy.

4

Chapter 2

Literature review

Related Works

People are used to seeing depth cameras used in 3D modeling and structure reconstruc-
tion. With Kinectfusion, a user can make a geometrically accurate 3D model of an object
by holding and moving the depth camera toward the object. In the paper [6], by Izadi et
al., this process is explained in more detail. According to their claim, the Kinect depth
camera constructs an inherently noisy depth map of the target object using a depth ray
sensor, which can be modified using a novel GPU pipeline-based system. According to
the authors, after generating the depth map, the GPU implementation goes through four
steps: (i) depth map conversion; (ii) camera tracking; (iii) volumetric integration; and
(iv) raycasting. After that, in real-world physics, ICP outliers are segmented and sim-
ulated to dynamically reconstruct the indoor scene in an AR. According to their claim,
the described system can show a high level of user interaction directly in the indoor scene.

While the previous paper discussed the use of the Microsoft Kinect depth camera, Maier
et al.’s paper [7], looks at the Asus Xtion depth camera. In this paper, the authors elab-
orate on creating a 3D map for a humanoid robot to perform collision-free movement in
a complex indoor environment. In this paper, the authors mainly focused on recognizing
the surroundings and localizing objects through the depth data gained from the depth
camera. To do that, they discussed some procedures: i) environment representation; ii)
probabilistic map update; iii) localization; and iv) path planning. Unfortunately, the
proposed framework has range limitations, as it fails to recognize any object within a
range of 50 cm. But moving back a little solves the issue. As a result, using the Asus
Xtion RGB-D depth camera, an accurate local 3D map and localization of objects can
be reconstructed for any autonomous moving agent.

The paper [5], by Geiger et al. proposes a novel real-time approach to creating 3D maps
from stereo sequences. According to their claim, the reconstruction pipeline is combined
with stereo matching and multi-view linking techniques and, therefore, an odometry
method (an algorithm running at 25 frames per second) to generate consistent 3D cloud
points (depth maps at 3–4 fps). Some of the proposed procedures are (i) feature matching;
(ii) egomotion estimation; (iii) stereo matching; and (iv) 3D reconstruction. According
to the authors, their work is highly suitable for any kind of computer vision for intelligent
agents.

5

Also, the paper [8], by Baak et al. discusses efficient techniques (a generative and dis-
criminative framework) to generate a full body pose estimation from noisy depth data
image streams. Here the authors propose an efficient and robust sparse Hausdorff dis-
tance for fusing local optimization and a database lookup technique for detecting the
features accurately. The pose reconstruction framework consists of some necessary pro-
cedures: (i) local optimization; (ii) feature computation; (iii) database lookup; and (iv)
hypothesis voting. The authors have demonstrated significant success in entire body pose
reconstruction, though there were 45-degree range limitations and capturing limitations
for fast-moving objects.

Overall, these papers show different types of efficient techniques for measuring the 3D
data of an object using a depth camera. Although depth data has high noise, some ro-
bust and optimized techniques are introduced and discussed. Therefore, 3D mapping and
reconstruction have become significantly more efficient and accurate.

Stereo vision systems, which use two or more cameras to estimate the distance to objects
in a scene, have been widely used for object distance and size measurement. Yahya et al.’s
paper [9], describes one such system. The authors suggest using a stereo-vision system
made up of two cameras mounted on a pan-tilt unit, to measure the distance and size of
things. At first, to measure how far the object is, the triangulation system is used in this
system. This system also takes different angles of a specific object by taking pictures of
that object. For measuring the distance as well as measuring the size, the average error
is 2 percent and 5 percent respectively. Thus, the authors claimed that it’s a good result.

Image classification is used to estimate the depth of an object. This method is described
in the paper [4], by Chen et al. The authors claimed that, for classifying a picture’s
depth, convolutional neural network (CNN) is trained. These pictures are classified into
three categories, such as- near, mid-range, far. By training CNN, it can be able to classify
if it is near or mid-range or far. By training, CNN’s output gives a depth map of that
picture. For estimating the depth, the average error is less than 2 percent. Thus, the
author claims that it’s a good result.

Kinect RGB-D sensor is used to estimate the object’s dimension. It is described in the
paper [10], by Lee et al. It is necessary to raise the accurate result of this dimension
estimation problem. For that, the authors said that, using this Kinect RGB-D sensor’s
dynamic resolution, we can be able to increase the accurate result of this dimension esti-
mation. As the average error for estimating the object’s dimension is less than 2 percent,
the authors said that it’s a good result as well.

Generative adversarial networks (GANs) are used for creating 2D pictures into 3D pic-
tures. This topic is described by Wu et al.[38]. In GAN, It is necessary to compete
between these three, such as- two neural networks, a generator network and a discrimi-
nator network. Competing with these three makes them a kind of deep learning model.
While the generator network makes synthetic data, the discriminator network differen-
tiates this synthetic data. That is how GAN can be able to learn to create synthetic
data by training the discriminator network and generator network. This synthetic data
is almost inseparable from the actual data. That is how the authors showed how to use
GAN for 2D into 3D models. The authors also claimed that this model works well.

6

Overall, these papers are able to show how effective it is to use different approaches for
estimating an object’s distance, object’s size, object’s dimension as well as how to create
2D pictures into 3D pictures. Thus, we can finally say that- image classification is used
to estimate an object’s distance and object’s size while GAN is here to raise the accurate
results of estimating it.

Complex-YOLO is to detect an object in a point cloud. It was described and suggested
by Liu et al. in [23]. In the KITTI dataset, it shows that Complex-YOLO can be able to
win against 3D object identification. When running at a quicker frame rate, Complex-
YOLO’s result doesn’t give a bad result, rather it gives a very good result. Thus, for
finding 3D objects in the point cloud, Complex-YOLO can be a dependable approach.

To display an object’s three-dimensional form and to forecast its three-dimensional loca-
tion and orientation, 3D Object Detection using Latent Support Surfaces use a collection
of latent support surfaces. Chen et al. offer a latent support surface (LSS) model for 3D
object identification in their work [21]. On the widely-used KITTI dataset—used to as-
sess 3D object identification methods—their studies show that LSS-based models attain
state-of-the-art performance. As a whole, LSS shows promise as a 3D object detection
technology with many possible uses.

A 3D convolutional neural network (CNN) for real-time object recognition was proposed
by Maturana and Scherer in 2015 [12]. Using a 3D CNN that learns features from 3D
voxel data and a novel network architecture that is efficient for real-time object recog-
nition, the proposed model addresses the challenges of real-time object recognition in
3D scenes. On the ModelNet40 dataset, the model outperforms cutting-edge 3D object
recognition techniques while remaining computationally efficient. VoxNet is a promising
method for 3D object recognition, and its architecture has inspired other research in the
field.

Computer vision applications like self-driving cars, robotics, and surveillance depend on
object detection. Object detection requires real-time performance and tolerance for object
appearance, scale, and viewpoint. The well-known R-CNN (Regions with CNN Features)
family of algorithms combines a region proposal approach with a CNN-based object
classifier to solve this problem. The paper [14] by Redmon et al. introduced YOLO
(You Only Look Once), which uses a single CNN to predict item positions and class
probabilities in a forward pass. YOLO’s architecture is optimized for real-time object
identification, achieving high frame rates and great accuracy. Unfortunately, computer
vision’s robust real-time object detection is difficult. The R-CNN family of algorithms
and YOLO, optimized for real-time detection with high frame rates and good accuracy,
have been proposed to overcome this difficulty.

Computer graphics, robotics, and medical imaging require 3D shape registration to align
two or more 3D shapes. ICP, feature-based, and deep learning algorithms can register
3D forms. Wang et al. [40] suggested a ”Deep Closest Point” (DCP) in 2018. This deep
learning-based registration method aligns shapes based on CNN predictions of dense cor-
respondences. 3D CNN is used to find a feature representation and loss function that
captures local fine-grained geometric aspects of forms. This solution outperformed cur-

7

rent registration methods’ accuracy and processing efficiency on public datasets. DCP
uses CNN to predict dense correspondences between 3D shapes and gets the best results
on many datasets.

Computer vision and graphics research has extensively exploited photographs to compre-
hend and evaluate 3D shape features. Photometric stereo uses numerous photos of an ob-
ject under different lighting conditions to recover its shape and surface reflectance.”What
Do Photographs Tell Us About 3D Shape?” by Srinivasan et al. (2010) reviews that, for
recovering 3D shapes from a lot of pictures, the authors present a Bayesian framework.
Srinivasan et al’s [1] 2010 Bayesian framework is able to overcome photometric stereo’s
lacking.

Xie et al’s[27] study says that, for reconstructing 3D objects from one or more RGB
photos, Pix2Vox is a unique framework. This technology overcomes the drawbacks of
previous approaches, including the inconsistent results and memory loss problems related
to Recurrent Neural Networks (RNNs), such as 3D-R2N2. Pix2Vox takes input photos
and uses an encoder-decoder technique to create crude 3D volumes. An important step
forward is the context-aware fusion module, which merges these volumes selectively to
improve reconstruction quality. The framework outperforms the state-of-the-art methods
in both the ShapeNet and Pix3D benchmarks, especially when compared to the state-of-
the-art methods for 3D reconstruction. As evidence of its efficacy, Pix2Vox’s backward
inference time is 24 times lower than 3D-R2N2. The study also demonstrates Pix2Vox’s
better generalization performance on ShapeNet’s untested 3D categories.

Computer vision and computer graphics need to rebuild 3D bilaterally symmetric sur-
faces. Nature’s bilateral symmetry can reveal an object’s shape. There are several ways
to determine bilateral symmetry in 3D shapes. T. R. S. Walsh and E. K. Wong published
[2] in 2006. They suggest fitting a cylindrical or spherical model to symmetric locations
along the symmetry axis to recreate a 3D, bilaterally symmetric surface. They demon-
strate that the proposed method can accurately reconstruct symmetric 3D objects using
a dataset.

So, shape reconstruction of 3D bilaterally symmetric surfaces is an essential problem in
computer vision and computer graphics. T. R. S. Walsh and E. K. Wong’s 2006 method
uses cylindrical or spherical models to detect bilateral symmetry in 3D shapes.
Use LiDAR point clouds for 3D perception, autonomous driving, robotics, and other
applications [17]. Real-time LiDAR point cloud multi-object classification and identifi-
cation, however, is challenging. A new approach for real-time multi-object detection and
classification using LiDAR point clouds is YOLO4D, a spatiotemporal technique. Zhang
et al. created YOLO4D in 2021 as an improvement to the well-known YOLO object de-
tector that makes better use of the spatial and temporal data from LiDAR point clouds.
On the Waymo Open Dataset, YOLO4D outperforms cutting-edge LiDAR-based object
identification algorithms in terms of accuracy and speed. So, for real-time spatiotempo-
ral multi-object detection and classification, YOLO4D makes advantage of LiDAR point
clouds. It enhances the popular YOLO object detector’s speed and accuracy in the iden-
tification and categorization of objects by adding spatial and temporal information from
LiDAR point clouds.

8

Computer vision applications like self-driving cars, robotics, and surveillance depend on
object detection [13]. Deep learning-based object detection systems are new. These al-
gorithms excel at object detection. Redmon et al.’s (2016) deep learning-based object
identification algorithm, YOLO (You Only Look Once), is significant. Using a CNN,
YOLO predicts item positions and class probabilities in a single forward pass. Its ar-
chitecture enables real-time performance and accurate identification. Faster R-CNN,
developed by Ren et al. in 2015, combines region proposal with CNN-based object classi-
fier to improve object detection. In conclusion, YOLO and Faster-RCNN algorithms are
deep learning-based object detection which are good to give accurate results.

Multi sensors help to improve 3D objects by combining data from many sensors. [39] The
limitation of each and every sensor can be surpassed and we can raise the accuracy of the
object recognition result by combining data from other sensor modalities. For instance,
radar, LiDAR, cameras. ”F- PointNet: 3D Multi-Sensor Fusion for Accurate and Efficient
Object Detection” by Qi et al. is an approach which can be able to do 3D object detection.
”Deep Sensor Fusion for 3D Object Detection” by Weng et al. in 2020, the authors used
a feature pyramid architecture to extract features. Multi-sensor fusion is a method that
can improve 3D object recognition. It takes data from lots of sensors and then combines
it into a single database. F-PointNet and Deep Sensor Fusion for 3D Object identification
are two of the methods to increase the accuracy of object identification. Egocentric vision
is for object detection and manipulation in robotic manipulation. 3D CNN uses RGB and
depth data from a multi-view method and encodes object properties. In summary, the
current topic of research is revisiting 3D object detection from an egocentric perspective.
The study by Noury et al.[30] in 2020 said a strategy which blends multi-view with 3D
CNN.

9

Chapter 3

Methodology

The workflow of research has been divided into two parts:
(i) 3D model reconstruction using existing acclaimed and popular dataset.
(ii) Developing new datasets for domain specific research.

Workflow

Our research workflow is elaborated in figure 3.1.

Figure 3.1: The Workflow chart of 3D model reconstruction

10

Dataset

In our research purpose,We have utilized a dataset that is already extensively applied
to the domain of 3D models and also developed a new one .The dataset that we used
is the ShapeNet dataset that includes objects ranging from Aeroplane to sofa and many
more.The dataset that we constructed is a human based dataset .A brief descriptions
about the dataset is given below.

ShapeNet dataset

The ShapeNet dataset is a large and well documented dataset containing a large collection
of annotated 3D model form of various different objects and associated model. Each
category is detailed with information and contains large sample size. ShapeNet is widely
used in fields such as computer vision, Image processing domains etc. Due to its extensive
library of 3D models, it is an invaluable tool for testing and training algorithms related
to these fields. For our research purpose, we have used a specific segment of the dataset.
This section includes artificial imagery of things from 13 primary categories, totaling
43,783 3D models.

Our dataset

We tried to create a human based dataset following the formats of ShapeNet dataset, due
to resource limitations, our dataset was not as precise as the existing ShapeNet dataset.
Our human based 3D Dataset is a resource designed for research purposes in computer
vision and 3D modeling domain. This dataset includes images of multiple human subjects
along with corresponding 3D object files, encompassing a total of approximately around
1200 entries. Each entry in the dataset provides annotations of human subjects captured
from various angles, ensuring a representation of 3D spatial information. The accompa-
nying 3D object files almost accurately reflect the geometry and posture of the subjects,
enabling modeling and analysis. This dataset is particularly valuable for tasks such as
3D human pose estimation, multi-view object recognition, and human-object interaction
modeling.

Dataset Construction

To construct the dataset, we employed the Intel RealSense D435 depth camera, a well
known RGB-D sensor, to record pictures and their corresponding depth information.
Subsequently, this data was correlated with a comprehensive three-dimensional model.

Initially, we established a connection between our depth sensor, namely the Intel Re-
alSense D435 depth camera, and our laptop. Subsequently, we performed the necessary
calibration of the sensor to guarantee the utmost precision in depth estimation. In or-
der to initialize the Realsense depth camera we have written a custom python script to
generate the point cloud files(.ply).In this python script we have used external libraries
notably pyrealsense2, open3d. In a nutshell The pyrealsense2 l does the job of connecting
the Realsense depth camera and open3d does the job of generating the point clouds.In

11

addition to this,We have also added a time delay to position the respective object prop-
erly ,In our case to stabilize the posture of the human i.e front facing, back facing, left
side facing, right side facing etc. After executing the code we get the desired point cloud
file(.ply).Now in order to get a perfect point cloud file we have to merge the associated
point cloud files of the same object together such that for humans all the different point
clouds are taken from different angles. Furthermore,We have modified the custom script
such that it takes a RGB image at the same time as the depth image, the main reason
for taking the RGB image is to compare with the ground truth and to generate our final
output which is a .binbox file.

The final result of this workflow is a point cloud file formed by merging associated .ply
files , each representing a point cloud of the human body from different angles.Now this
merged point cloud file is later converted to .obj file and from there it is finally converted
to a binbox file which is again done by a custom python script.

Original Image Point Cloud OBJ File Binvox File

Figure 3.2: Workflow for converting an image to its corresponding binvox file. This pro-
cess starts with taking a RGB depth image of a particular subject, converts it into a point
cloud(PLY), then into an 3D Object(OBJ) file, and finally into a binvox file(.binvox).

Tools and Peripherals

The mechanism of Intel RealSense depth camera has three distinct sensors: a standard
RGB, an infrared (IR), and an infrared laser projector. These lenses work together to
allow the cameras to determine depth by detecting infrared light that is reflected from
objects in front of them. The acquired visual data, in conjunction with the RealSense
software, produces a depth picture. This picture can undergo further processing to serve
different purposes, like monitoring movement, developing interactive interfaces that react
to movements or facial expressions, and taking colour photographs even in dim lighting
situations. RealSense cameras employ stereovision to compute depth, utilising a pair
of sensors (left and right cameras) and an infrared projector. The infrared projector
generates imperceptible infrared photons that enhance depth accuracy in situations with
low roughness. The scene is captured by both the left and right cameras, and the depth
for each pixel is calculated by the processor through the correlation of points between

12

the two pictures. This procedure generates a depth frame, which, when merged with
successive frames, produces a depth video stream. The depth of each pixel is determined
with respect to a parallel plane of the recording camera, rather than the actual distance
from the camera. The RealSense D4 processor is essential for processing these pictures,
since it has the capability to handle 36 million depth points per second. These cameras
are well-suited for devices that require fast data processing due to their high processing
speed.[26]

Preprocessing

As we mentioned earlier, two different datasets have been used in our research. Though
all the datasets were regarding object images, annotations and models, some of the file
formats and data were incompatible for our model training purpose. Therefore, we had to
convert some of the files into required formats. In our dataset, there were model files with
“.obj” extension, therefore, we have used our custom built python scripts to modify the
data according to our requirements. For training purposes, our model requires a file with
“.binvox” extensions in order to get the 3D model related data. So we preprocessed our
datasets according to the requirements which required an extensive and time consuming
computation that included heavy GPU memory consumption. It is worth mentioning
that our Shapenet dataset file formats were already in the desired file formats and thus
did not require any extensions related preprocessing. Later on, we performed further
preprocessing on the images by adapting an efficient preprocessing method.

The adapted method systematically performs a series of alterations to pictures, with the
purpose of preparing them for neural network training. This is achieved by increasing the
diversity of the data and guaranteeing the resilience of the model. Firstly, the photos are
transformed into PyTorch tensors, which involves modifying their format to align with
PyTorch’s required input. Normalisation is the subsequent stage, when pixel values are
modified to match a certain mean and standard deviation, guaranteeing conformity with
pre-trained models.

In order to introduce unpredictability, the preprocessing pipeline incorporates random
permutations of the colour channels, central and random cropping to modify image size,
and horizontal flipping. The adjustments of brightness, contrast, and saturation are ap-
plied in a random manner to imitate various lighting situations, while the addition of noise
replicates real-world variances such as sensor noise or compression artefacts. Moreover,
the photos’ backgrounds may be substituted with arbitrary colours or designated back-
grounds, which is very advantageous for segmentation assignments. These modifications
jointly enhance the dataset, increasing the trained model’s resilience and ability to gen-
eralise well to new, unseen pictures. This ultimately improves the model’s performance
and accuracy.

Dataset Splitting

Our whole dataset consists of two different 3D model reconstruction related datasets.
Between the two datasets, ShapeNet is the largest in size. So, we utilised 70 percent
of the ShapeNet dataset for training, while the remaining 30 percent was allocated for

13

testing and validation. We followed the same splitting scheme in our newly developed
dataset.

Model Architecture

3.0.1 Models

In our research, we have used pretrained VGG16, DenseNet-201, Xception, MobileNet-V3,
EfficientNet-B0, ResNet50 and ShuffleNet-V2 models for our Feature Extractor Module
and conducted a detailed study about the computational speed and accuracy of each
models. Moreover, we have used U-Net architecture in our Refinement Network Module.

3.0.2 VGG16

A deep convolutional neural network model called VGG16 is renowned for its depth and
application of tiny convolutional filters. It has 16 layers total—3 fully linked layers at
the end and 13 convolutional layers made with 3x3 filters. The model does spatial down-
sampling using max pooling layers. Because of its consistent design and depth, VGG16
was a breakthrough model that outperformed earlier models in image recognition tests.
Particularly in computer vision applications, its architecture is now used as a benchmark
for CNN systems. The model’s performance in the ImageNet competition demonstrated
how well it works for tasks involving picture categorization and localization.[20]

Figure 3.3: VGG16 model architecture[44]

3.0.3 DenseNet-201

DenseNet-201 is a deep convolutional neural network renowned for its Dense Convolu-
tional Network design. In DenseNet-201, each layer is interconnected with all other layers
in a feed-forward manner. This network comprises a total of 201 levels, which encompass
many dense blocks that are joined by transition layers. DenseNet-201 is distinguished by
its capacity to enhance the transmission of features, promote the reuse of features, and
decrease the parameter count. DenseNet-201 achieves improved performance in picture
classification tasks and optimizes the use of computing resources by establishing connec-
tions between every layer, enabling efficient gradient flow and maximizing information
exchange between layers.[28]

14

Figure 3.4: DenseNet-201 model architecture[37]

3.0.4 Xception

The Xception architecture, proposed by François Chollet, is a deep convolutional neural
network based entirely on depthwise separable convolutions. This architecture extends
the idea underlying the Inception model by completely decoupling the learning of cross-
channel and spatial correlations. In Xception, each module consists of depthwise sep-
arable convolutions followed by pointwise convolutions, which significantly reduces the
computational cost while maintaining high accuracy. The network has 36 convolutional
layers organized into 14 modules, with residual connections around each module except
the first and last. This architecture inspired from InceptionV3 outclassed its predecessor
by being much more efficient to train and also showing better performance on tasks such
as image segmentation,classification on ImageNet dataset.[15]

3.0.5 MobileNet-V3

MobileNetV3 learns from its previous versions MobileNetV2, MobileNetV1 and greatly
improvises on Neural Architecture search(NAS) and platform-aware optimization.
This architecture combines hardware compatible components and also stream lined layer
processes that are especially used to enhance the performance on mobile devices and also
embedded devices.It also takes into consideration such h-swish function and uses squeeze-
excitation modules to improve the data representation power of the architecture.This
allows the architecture to provide cutting-edge precision given its embedded size and
limited resources ,Makes it an ideal form of architecture for image processing and related
task on mobile and embedded devices.[25]

3.0.6 EfficientNet-B0

EfficientNet-B0 is neural network architecture that is successful in achieving a great
trade-off between accuracy and computing resource by implementing a technique called
compound scaling.In this compound scaling technique a predetermined set of scaling

15

Figure 3.5: Xception model architecture[36]

Figure 3.6: MobileNet-V3 model architecture[22]

16

factors is used to consistently adjust the depth,breadth and also the resolution of the
network.EfficientNet-B0 is the first model in EfficientNet series and is inspired by Mo-
bileNet architecture having similarities such as squeeze and excitation optimization and
also the depth wise separable convolutions.This architecture is able to leverage limited
resources but maintaining an excellent accuracy compared the typical CNNs.This archi-
tecture is applicable to mobile and embedded devices having limited processing unit.[41]

Figure 3.7: EfficientNet-B0 model architecture[29]

3.0.7 ResNet50

ResNet50(Residual Network 50),Is a sophisticated CNN composed of 50 layers and was
specifically developed to tackle the problem of vanishing gradients in extremely deep
neural networks which causes lack in performance .This architecture employs residual
learning where there exists skip connections also know as shortcut connections which
passes through one or more levels.The ResNet50 compromises of 48 conv-layers and one
MaxPolling layer and one AveragePolling layer.This architecture also has a special block
called Residual block which consist of identifying mappings to the stacked layer out-
puts.This clever design allows the smooth flow of gradient and improves the learning
process by tackling the vanishing gradient problem. Furthermore,The ResNet50 also uses
a bottleneck architecture to improve both the performance and efficiency which is com-
bined made by 1x1 convolution layer to reduce dimension , 3x3 convolution layer and 1x1
layer to restore dimensions.[34]

Figure 3.8: ResNet50 model architecture[42]

17

3.0.8 ShuffleNet-V2

ShuffleNet-V2 is mainly established to create realistic endorsements for building the effi-
cient convolutional neural network (CNN) architectures. It is built on ideas of its ancestor
(ShuffleNet-V1), gathering the numerous improvements to enhance the speed and accu-
racy for portable and low-power machines. The major modernization of SuffleNet-V2 is
its own improved channel shuffle mechanism and channel split operation, which mainly
efficient the computing accuracy. To reduce computational complexity, its architecture
handles point by point the set of convolutions and also depth by depth dissociable con-
volutions. Moreover, the layers are ordered in the direction of ShuffleNet-V2 blocks, in
order to improve the gradient flow and speed up merging, also combining batch normal-
ization and residual connections. By separating the input channels within two branches
and also the channel split operation allows the network to handle the limited channels at
once. As a result, performance is increased and the memory access costs are reduced.[19]

Figure 3.9: ShuffleNet-V2 model architecture[18]

3.0.9 U-Net

The main reason for developing the U-Net architecture was to segment biological im-
ages using cnn.The network composes of a U-shaped configuration which contains a
encoder(Downsampling layer) and a decoder(Upsampling layer).In this architecture,The
encoder preserves the contextual information by using combining the conv-layer and max-
pooling layer ,On the other hand the decoder captures the spatial intricacies by using
transposed convolution.By creating skip links between the layers in encoder and decoder
pathways,This architecture is able to gain and preserve high-resolution characteristics
which leads to impressive image segmentation capability.[35]

3.1 Framework

As PyTorch extensively utilized, thus we used it for our research work. PyTorch is a
dynamic computational network. By using PyTorch, users are able to adjust models in

18

Figure 3.10: U-Net moddel architecture[43]

real time.

3.1.1 PyTorch

PyTorch is a deep learning framework. It improves the ease of model creation. Tensor
calculation is necessary to train deep learning models. Here, Pytorch gives robust GPU
acceleration. This framework gives benefits by constructing many model types. This also
gives benefits to a vast community. It also provides lots of materials which are good for
every person. Here are some of its features:

3.1.2 Dynamic Computational Graphs

In PyTorch, Dynamic graphs allow runtime alterations. For intricate topologies, it is
beneficial.

3.1.3 Tensor Computation

Both Pytorch and NumPy have strong tensor computing capabilities. But using GPU
acceleration, where substantial increase occurs in calculating the performance, is an im-
portant aspect for deep learning workloads.

3.1.4 Autograd

Autograd functionality is able to calculate gradients automatically. Autograd also makes
the backpropagation procedure easier. It can also show a high level of efficiency.

3.1.5 Neural Network Library

The torch.nn module surrounds a diverse array of loss functions, and optimizers. Using
this approach, to build a neural network is more simple.

19

3.1.6 GPU Acceleration

For lenient purposes, PyTorch uses GPU for tensor computations. It is necessary to
decrease the computing time and it is for training large-scale models.

3.1.7 Community and Ecosystem

PyTorch has a diverse range of libraries and tools. Thus, it boasts an engaged commu-
nity. These libraries encompass TorchVision for computer vision, TorchText for natural
language processing, and TorchAudio for audio processing.

3.1.8 Model Deployment

PyTorch facilitates a smooth transition from research to production by offering tools
such as TorchScript. This tool enables the optimisation and deployment of models in
production contexts.

3.1.9 Interoperability

PyTorch seamlessly interfaces with popular Python libraries like NumPy, SciPy, and
scikit-learn, facilitating its utilisation inside pre-existing workflows.

PyTorch is a robust and versatile framework that simplifies the whole deep learning
process, including model construction, training, and deployment. It is known for its
user-friendly interface and is backed by a supportive community and many resources.[32]

3.2 Architecture

To fulfil our research objectives, we developed SMATNet as the fundamental architecture.
The architecture has five distinct components, each operating on separate principles.
The five modules are as follows: i) Feature Extractor, ii) Ensembler, iii) 3D Volume
Generator, iv) Context-Aware Fusion Module, and v) Refinement Network. Each of these
components is built using separate Convolutional Neural Network (CNN) architectures.
The Feature Extractor is tasked with obtaining a collection of features from input photos,
using either a modified ResNet-50 or ShuffleNetV2 structure, to analyse the images and
generate intermediate feature tensors. The Ensembler integrates the features obtained
from the several Feature Extractors. It employs a MetaModel to enhance and combine
these features into a unified and complete feature tensor, hence improving the resilience
and precision of the reconstruction.
The 3D Volume Generator utilises the ensembled features and employs a sequence of
transposed convolutional layers to produce a rudimentary 3D volume depiction of the
item. The Context-Aware Fusion Module improves these features by merging them and
utilising a series of 3D convolutions and Leaky ReLU activations to enhance the accuracy
and consistency of the reconstructed volumes. The Refinement Network use a mix of 3D
convolutions, fully linked layers, and transposed convolutions to improve the resolution
and level of detail in the 3D volumes. This process guarantees that the resulting output
is a high-quality 3D reconstruction.

20

Figure 3.11: SMATNet workflow

3.2.1 Feature Extractor Module

The main purpose of the Feature Extractor Module is to gain a collection of features that
will be given as input to the 3D volume Generator module.Through this input the 3D
Volume Generator module will be able to generate 3D coarse volume.

The architecture is divided into 2 different Extractors,Extractor-1 which is developed
using a customized ResNet50 architecture ,The input 2D models having dimension of
224x224x3 is handled by this ResNet50 up to layer3.This convolution layers contains
batch normalization, Relu activation function and also MaxPolling layer.The output of
this Extractor-1 is an intermediate feature tensor.In addition to this,Three sets of 2D
convolutional layers were further used to improvise accordingly.The first set consist of
3x3 convolutional layers having an output channel 512 which is again followed by batch
normalization and Relu Activation function.The second set consist of 3x3 convolutional
layers with an output channel of 256 and similarly followed by batch normalization , Relu
activation and a 2x2 max pooling layer.This layer is primarily used to reduce the spatial
dimensions.The third layer is completely similar to the second layer.And the final output
is a feature tensor having dimension of 256x7x7 which contains the semantic information.

The Extractor-2 module uses a customized ShuffleNetV2 architecture to achieve a com-
parable objective using a distinct approach.In the feature layers of the modified Shuf-
fleNetV2 the 2D inputs having dimension of 224x224x3 are processed.This processing
continues till the last feature layer which compromises of convolutional and batch nor-
malization layers.Similarly,The intermediate feature tensor goes through three further
iterations of 2D convolutional layers .The first set consist of 3x3 convolutional layers
each having output of 512 channels followed by batch normalization including ELU ac-
tivation.The second set is similar to first set,The only difference being the 256 channels
instead of 512 channels. The third set replicates the second set by including a 3x3 convolu-
tional layer, 256 output channels, batch normalization, and ELU activation. The output
feature tensor obtained using Extractor2 is similarly of dimensions 256 x 7 x 7. Both
Feature Extractors utilize distinct designs and processing processes to guarantee that the
resulting feature vectors include abundant semantic information, which is crucial for the
3D Volume Generator to produce precise 3D reconstructions.

21

Figure 3.12: Feature Extractor Module architecture

3.2.2 Ensembler Module

The Ensembler module inside the SMATNet model combines two Feature Extractors
(Extractor1 and Extractor2) and a MetaModel to analyse rendering pictures and produce
a full feature tensor. The MetaModel is composed of a solitary linear layer, which requires
the input dimension and output dimension as parameters. During the forward pass, the
MetaModel performs a process where it converts the input tensor into a flat structure
and then applies a linear transformation to it, resulting in the production of an output
vector. Ensembler module is combined with instances of Extractor1, Extractor2, the
Meta- Model, and extra parameters. This controls the size, height of the feature and
width of the output tensor. While using the forward technique, processing by Extractor1
and Extractor2, input rendering pictures undergoes. After that, it generates two sets of
feature tensors which are separable. Then, these tensors are combined together, these
characteristics provides the ultimate feature representation. Subsequently, the resultant
vector is reconfigured to its original shape, as defined by the desired feature size, height,
and breadth. Furthermore, an extra singleton dimension is appended to account for the
depth. This guarantees compatibility with following levels in the network. The Ensembler
utilises a process that capitalises on the capabilities of both Extractors, merging and
improving features to optimise the overall performance of the SMATNet model.

3.2.3 3D Volume Generator Module

The 3D Volume Generator module inside the SMATNet model is specifically designed
to create three-dimensional volumes using the characteristics that have been retrieved
by the Ensembler. The 3D Volume Generator comprises a sequence of transposed con-
volutional layers that increase the resolution of the input feature tensor to generate the
ultimate 3D volume. The setup settings decide whether biases are utilised in the trans-
posed convolutional layers. The initial layer of the 3D Volume Generator consists of a
3D transposed convolutional layer. It has 1568 input channels and 512 output channels.
The kernel size is 4, the stride is 2, and the padding is 1. This layer is then followed
by batch normalisation and a ReLU activation function. The next levels have a similar
layout, except each layer decreases the number of output channels: the second layer has

22

Figure 3.13: Ensembler Module architecture

512 input channels and 128 output channels, the third layer has 128 input channels and
32 output channels, and the fourth layer has 32 input channels and 8 output channels.
The last layer consists of a 3D transposed convolutional layer with 8 input channels and 1
output channel. It has a kernel size of 1 and is followed by a sigmoid activation function,
which guarantees that the output values are scaled between 0 and 1.

The forward technique initially permutes the input feature tensor and then divides it into
separate views. Subsequently, each perspective is systematically analysed by the layers of
the 3D Volume Generator. The initial view is resized to match the input size of the first
layer, which is 1568 x 2 x 2 x 2. As it traverses each layer, the spatial dimensions undergo
a doubling, but the number of channels is decreased based on the layer’s structure. The
intermediate output sizes are as follows: after the first layer, the size is 512 x 4 x 4 x 4;
after the second layer, the size is 128 x 8 x 8 x 8; after the third layer, the size is 32 x 16
x 16 x 16; and after the fourth layer, the size is 8 x 32 x 32 x 32. The last layer produces
a volume with dimensions of 1 x 32 x 32 x 32. This volume is then combined with
the original characteristics. The processed volumes are gathered into lists and arranged
in a stacked manner to create the final output tensors. The meticulous and organised
methodology guarantees that the 3D Volume Generator efficiently enhances and improves
the input characteristics to produce precise 3D volumes.

3.2.4 Context-Aware Fusion Module(Contextual Integrator)

The Context-Aware Fusion Module in the SMATNet model is tasked with enhancing the
unprocessed characteristics and rough quantities produced by the 3D Volume Generator.
The system employs a sequence of 3D convolutional layers to analyse and merge these
characteristics into a unified volume. The configuration settings (cfg) determine the value
of the negative slope for the Leaky ReLU activation function. The first four layers of the
Context-Aware Fusion Module comprise 3D convolutional layers with 9 input and output
channels. Each layer has a kernel size of 3 and padding of 1. Following each convolutional
layer, there is batch normalisation and a Leaky ReLU activation. The layers in this pro-
cess repeatedly improve the input characteristics by maintaining their spatial dimensions
and performing non-linear modifications. The fifth layer distinguishes itself by combining

23

Figure 3.14: 3D Vlume Generator Module architecture

the outputs from the preceding four layers along the channel dimension, resulting in an
input size of 36 channels and producing 9 channels by another series of 3D convolution,
batch normalisation, and Leaky ReLU. The last layer employs a similar 3D convolutional
setup to further decrease the number of channels to 1.

The forward technique involves processing the raw features and coarse volumes in order
to calculate the ultimate merged volume. The features tensor in its original form is di-
vided into separate views, and each view is processed in a sequential manner through the
layers of the Context-Aware Fusion Module. At first, every view has dimensions of [batch
size, 9, 32, 32, 32]. While traversing the initial four layers, the dimensions of the input
stay consistent at [batch size, 9, 32, 32, 32]. However, the characteristics of the input
are progressively enhanced at each stage. In the fifth layer, the concatenation process
produces an input tensor with dimensions [batch size, 36, 32, 32, 32]. This tensor is
subsequently reduced to [batch size, 9, 32, 32, 32] and undergoes additional refinement.
The last layer decreases the number of channels to 1, resulting in a tensor of dimensions
[batch size, 1, 32, 32, 32]. The improved features are compressed into a [batch size, 32,
32, 32] shape and stored in a list. The processed views are arranged and rearranged to
align with the size of the coarse volumes. The volume weights are calculated by applying
a softmax function to the views, which guarantees a normalised distribution of impor-
tant weights. The final refined volume is obtained by calculating the weighted sum of
coarse volumes. The resulting value is then restricted to a range of 0 to 1, ensuring that
the output values fall within an acceptable range. The intricate process of the Context-
Aware Fusion Module enables it to efficiently merge and improve the raw features and
rough volumes, hence boosting the overall reconstruction quality in the SMATNet model.

s(i,j,k)r =
exp(m

(i,j,k)
r)∑n

p=1 exp(m
(i,j,k)
p)

Using the above formula, the previously mentioned module calculates the score of the
r-th voxel. The output of this module is the fused voxel v which is produced by the
summation of the product value of coarse volume and the respective scores together.[27]

24

vf =
n∑

r=1

srv
c
r

Figure 3.15: Context-Aware Fusion Module(Contextual Integrator) architecture

3.2.5 Refinement Network Module(Enhancer)

The Refinement Network module inside the SMATNet model is specifically engineered
to augment the precision and intricacy of the 3D coarse volumes produced by the 3D
Volume Generator. The model utilises a blend of 3D convolutional, fully connected, and
transposed convolutional layers to iteratively enhance the input volumes. The configu-
ration parameters (cfg) consist of the negative slope value of the Leaky ReLU activation
and a flag to indicate if biases are utilised in the transposed convolutional layers. The
initial three layers of the Refinement Network are comprised of 3D convolutional layers.
These layers have progressively increasing output channels, starting with 32, then 64, and
finally 128. The kernel size for each layer is 4, and a padding of 2 is used. After each
layer, there is a sequence of batch normalisation, Leaky ReLU activation, and 3D max
pooling with a kernel size of 2. This pooling operation reduces the spatial dimensions
by half. The input volumes are processed by these layers, gradually decreasing their size
while simultaneously increasing the depth of their features.

The forward technique begins by unsqueezing the input coarse volumes to include a
channel dimension. This operation produces a tensor with dimensions [batch size, 1, 32,
32, 32]. The volumes are subsequently processed by the initial 3D convolutional layers,
progressively decreasing their dimensions to [batch size, 32, 16, 16, 16], [batch size, 64,
8, 8, 8], and [batch size, 128, 4, 4, 4]. The output of the third convolutional layer is
transformed into a flat shape and then fed into two fully connected layers. The first
layer reduces the size to [batch size, 2048], while the second layer expands it back to
[batch size, 8192]. The vector is then transformed into a shape of [batch size, 128, 4, 4,
4] and combined with the output of the third convolutional layer. The next transposed
convolutional layers increase the size of the volumes. The first transposed convolutional
layer increases the size to [batch size, 64, 8, 8, 8], the second layer increases it to [batch
size, 32, 16, 16, 16], and the third layer restores the original size to [batch size, 1, 32,
32, 32]. Every transposed convolutional layer in the network is accompanied with batch

25

normalisation and ReLU activation, except for the last layer, which employs a sigmoid
activation function to normalise the output values. The processed volumes are merged
with the matching input volumes from previous layers, and the resulting output tensor
is multiplied by 0.5 to equalise the influences from various levels. The intricate method
guarantees that the Refinement Network efficiently improves the input coarse volumes,
resulting in high-resolution 3D reconstructions.

Figure 3.16: Refinement Network Module(Enhancer) architecture

Figure 3.17: SMATNet architecture

3.3 Loss Function

The network’s loss function is retrieved by the average value of the binary cross entropy
of the constructed object and the ground truth for each of the voxels.[27]

26

ℓ =
1

N

N∑
i=1

[gti log(pi) + (1− gti) log(1− pi)]

3.4 Evaluation Metrics

In order to justify the output of the stated method, here the probabilities have been
binarized at a fixed value of 0.3 and for similarity measure IoU(Intersection over Union)
has been used.[27]

IoU =

∑
i, j, kI (P (i, j, k) > t) I (gt(i, j, k))∑

i, j, kI
[
I (P (i, j, k) > t) + I

(
gt(i, j, k)

)]
3.5 Implementation Details

SMATNet utilised a batch size of 64 RGB pictures with dimensions of 224 by 224. The
final output has a voxel size of 32 × 32 × 32. The whole network was constructed using
the Adam optimizer and PyTorch. The model started with a learning rate of 0.001 and
underwent 250 epochs, with the learning rate dropping at the 150th epoch. The network
is first trained for 150 epochs using just single-view photos. This allows the Refinement
Network and Contextual Integrator modules to be activated from the beginning, ensuring
that detailed features are enhanced and that feature merging is effective.

After this stage, the complete network goes through an extra 100 epochs of training with
varied backdrop colours. This is done to simulate different environmental circumstances
and enhance generalisation. The training procedure incorporates data augmentation tech-
niques, such as modifying brightness, contrast, and saturation, along with the addition of
random noise with a standard deviation of 0.1. These measures ensure that the model is
capable of handling various lighting and noise circumstances with resilience. The weights
are stored every 10 epochs to avoid losing progress and simplify model assessment at
various phases of training.

The training setup further defines the paths for ShapeNet, Our dataset, and Pix3D
datasets, encompassing taxonomy files, rendering routes, and voxel paths. The net-
work uses LeakyReLU activation function with a negative slope of 0.2. Since, biases are
not utilised in the transposed convolutional layers, overfitting probability is minimized.
SMATNet efficiently generates high-resolution 3D reconstructions by using the Contex-
tual Integrator’s traits to merge features and the Refinement Network’s traits to enhance
details. This showcases the model’s ability in handling challenging 3D reconstruction
jobs.

3.6 Reconstruction of 3D Volume

The SMATNet’s methods have been examined in various kinds of circumstances. First,
start using a detailed analysis of synthetic photos using the ShapeNet testing set. SMAT-
Net shows a very good performance. By seeing in the Intersection over Union (IoU)

27

graph, SMATNet shows a good resilience in both single-view and multi-view reconstruc-
tion. SMATNet has a good accuracy in capturing intricate features. Specially to replicate
fragile components, such as- table legs and lamp fixtures, it also has good accuracy as
well. SMATNet also shows a very good performance while it is reconstructed from many
perspectives, showing robustness in various kinds of scenarios.

Keeping aside the artificial images, the research includes real-life situations using the
Pix3D dataset. By utilising the RenderForCNN pipeline for data production and inte-
grating unpredictable colour and light jittering during training, the enhanced training
data improves the model’s capacity to adapt to real-world RGB pictures. This is sup-
ported by the higher average Intersection over Union (IoU) scores obtained on the Pix3D
testing dataset. Qualitative analysis provides further evidence to support the claim that
SMATNet is highly effective in tackling the difficulties presented by real-world situations.

In order to assess the models’ ability to generalise, more experiments are undertaken using
Our dataset. SMATNet demonstrates exceptional generalisation capabilities, resulting in
a much higher reconstruction IoU. The findings confirm that SMATNet is capable of
effectively managing items that have not been encountered before, demonstrating its
resilience and flexibility in a wide range of difficult situations. SMATNet architecture
effectively delivers 3D vlume reconstructions by using the Contextual Integrator’s traits
to merge features and the Refinement Network’s traits to enhance details. This shows
the model’s capability to handle challenging 3D reconstruction jobs.

28

Chapter 4

Result Analysis

4.1 VGG16

4.1.1 Extractor-Generator Loss

In the graph 4.1, it shows the loss of the Extractor-Generator component during both
testing and also training stages in a span of 200 epochs. Here, in the y-axis we see the
values of the losses which is an indicator of the amount of error and x-axis shows the
number of complete epochs which indicates the cycles of training completed.At the start
of training, the value of loss is 4.2998 and than it goes through a very significant decline
to a value of 0.5680 which is achieved at the end of the training phase. From this we
can infer that such reduction in training loss hows that the model is very effective in
gathering knowledge and also improvising its capacity to create very accurate predictions
as time passes by. Furthermore, the starting testing loss value goes from 1.8613 to 1.1675
indicating that the model is applicable to unfamiliar and unseen data. In addition ,we
can see that the both the training and testing loss curves converges which greatly shows
that the model is very good at generalization and the most likely there is no form of
overfitting as both value of curves gradually decreases.

Figure 4.1: VGG16 Extractor-Generator Loss

29

4.1.2 Refiner Loss

In the graph 4.2, it shows the loss of the Refiner component during both testing and
also training stages in a span of 200 epochs. Here, in the y-axis we see the values of the
losses which corresponds to the amount of error and x-axis shows the number of complete
epochs which indicates the cycles of training completed. At the start of training, the value
of loss is 1.7427 and than it goes through a very significant decline to a value of 1.1390
which is achieved at the end of the training phase. This trend represents that the model
is undergoing strong learning and the model proficiency is increasing at a good rate.
Furthermore, the starting testing loss value goes from 2.2052 to 0.4198 indicating that
the model is applicable to unfamiliar and unseen data. In addition ,we can see that the
both the training and testing loss curves converges which greatly shows that the model
is very good at generalization and the most likely there is no form of overfitting as both
value of curves gradually decreases.

Figure 4.2: VGG16 Refinement Network Loss

4.1.3 IoU Score

The graph 4.3, it shows the Intersection over Union (IoU) metrics of the Refiner compo-
nent in a span of 250 epochs. Here, in the y-axis we see the values of the IoU and x-axis
shows the number of complete epochs which indicates the cycles of training completed.
From the graph we can see the constant rise of value of IoU which is initialized at 0.4166
and finalized at 0.6315 at the end of the training session part, signifying a strong improve-
ment of 51.57 percent. An IoU score of 0.6315 can be inferred as a significant indicator
that the refiner component enhances the resolution and also the intricate details of the
3D volumes. Achieving and preserving such a value of IoU is very important for maintain
the quality of the 3D volume refinement and boosting the overall proficiency of the 3D
generation model.

30

Figure 4.3: VGG16 IoU Score

4.2 DenseNet-201

4.2.1 Extractor-Generator Loss

In the graph 4.4, it shows the loss of the Extractor-Generator component during both
testing and also training stages in a span of 250 epochs.Here,In the y-axis we see the values
of the losses which corresponds to the amount of error and x-axis shows the number of
complete epochs which indicates the cycles of training completed.At the start of training,
the value of loss is 3.9056 and than it goes through a very significant decline to a value
of 0.7169 which is achieved at the end of the training phase. This trend signifies that the
model is gradually becoming efficient in gaining knowledge and also improving its ability
to make strong predictions as the epochs progresses. Furthermore, the starting testing
loss value goes from 1.9152 to 0.9150 indicating that the model is applicable to unfamiliar
and unseen data. In addition, we can see that the both the training and testing loss curves
converges which greatly shows that the model is very good at generalization and the most
likely there is no form of overfitting as both value of curves gradually decreases.

4.2.2 Refiner Loss

The graph 4.5, it shows the loss of the Refiner component during both testing and also
training stages in a span of 250 epochs. Here, in the y-axis we see the values of the losses
which corresponds to the amount of error and x-axis shows the number of complete
epochs which indicates the cycles of training completed. At the start of training, the
value of loss is 1.7541 and than it goes through a very significant decline to a value of
0.8761 which is achieved at the end of the training phase and a significant decrease of
about 50.06 percent. This trend signifies that the model is gradually becoming efficient in
gaining knowledge and also improving its ability to make strong predictions as the epochs
progresses. Furthermore, the starting testing loss value goes decreases by 78.55percent

31

Figure 4.4: DenseNet-201 Extractor-Generator Loss

indicating that the model is applicable to unfamiliar and unseen data. In addition, we
can see that the both the training and testing loss curves converges which greatly shows
that the model is very good at generalization and the most likely there is no form of
over-fitting as both value of curves gradually decreases.

Figure 4.5: DenseNet-201 Refinement Network Loss

4.2.3 IoU Score

The graph 4.6, It shows the Intersection over Union (IoU) metrics of the Refiner compo-
nent in a span of 250 epochs.Here, in the y-axis we see the values of the IoU and x-axis
shows the number of complete epochs which indicates the cycles of training completed.
From the graph we can see the constant rise of value of IoU which is initialized at 0.337
and finalized at 0.6340 at the end of the training session part. Through this trend it can

32

be comprehended that the model prediction increases in precision as the epochs passes
by. Furthermore, the consistency and steadily increase in the values of IoU can be un-
derstood as a stable training process as there is almost no sign of abrupt changes and
can further be inferred as the model is improving its ability to forecast with increasing
accuracy as the number of epochs increases. Lastly, the significant rise in IoU reaching a
threshold of 89.98 percent shows the notable improvement of the model to generate 3D
reconstructions from 2D.

Figure 4.6: DenseNet-201 IoU Score

4.3 Xception

4.3.1 Extractor-Generator Loss

The graph 4.7, It shows the loss of the Extractor-Generator component during both
testing and also training stages in a span of 250 epochs. Here, in the y-axis we see the
values of the losses which corresponds to the amount of error and the x-axis shows the
number of complete epochs which indicates the cycles of training completed. At the
start of training, the value of loss is 1.9396 and than it goes through a very significant
decline to a value of 0.7194 which is achieved at the end of the training phase. This trend
signifies that the model is gradually becoming efficient in gaining knowledge and also
improving its ability to make strong predictions as the epochs progresses. Furthermore,
the starting testing loss value goes from 1.5105 to 0.9377 indicating that the model is
applicable to unfamiliar and unseen data. In addition, we can see that the both the
training and testing loss curves converges which greatly shows that the model is very
good at generalization and the most likely there is no form of overfitting as both value of
curves gradually decreases.

33

Figure 4.7: Xception Extractor-Generator Loss

4.3.2 Refiner Loss

The graph 4.8, It shows the loss of the Refiner component during both testing and also
training stages in a span of 255 epochs. Here, in the y-axis we see the values of the losses
which corresponds to the amount of error and the x-axis shows the number of complete
epochs which indicates the cycles of training completed.At the start of training, the value
of loss is 1.5121 and than it goes through a very significant decline to a value of 0.9162
which is achieved at the end of the training phase. This trend signifies that the model
is gradually becoming efficient in gaining knowledge and also improving its ability to
make strong predictions as the epochs progresses. Furthermore, the starting testing loss
value goes from 1.9670 to 0.6063 indicating that the model is applicable to unfamiliar
and unseen data. In addition, we can see that the both the training and testing loss
curves converges which greatly shows that the model is very good at generalization and
the most likely there is no form of overfitting as both value of curves gradually decreases.

4.3.3 IoU Score

The graph 4.9, it shows the Intersection over Union (IoU) metrics of the Refiner compo-
nent in a span of 255 epochs. Here, in the y-axis we see the values of the IoU and x-axis
shows the number of complete epochs which indicates the cycles of training completed.
From the graph we can see the constant rise of value of IoU which is initialized at 0.3841
and finalized at 0.6303 at the end of the training session part, signifying a strong improve-
ment of 64.11 percent. An IoU score of 0.6303 can be inferred as a significant indicator
that the refiner component enhances the resolution and also the intricate details of the
3D volumes. Achieving and preserving such a value of IoU is very important for maintain
the quality of the 3D volume refinement and boosting the overall proficiency of the 3D
generation model.

34

Figure 4.8: Xception Refinement Network Loss

Figure 4.9: Xception IoU Score

35

4.4 MobileNet-V3

4.4.1 Extractor-Generator Loss

The graph 4.10, it shows the loss of the Extractor-Generator component during both
testing and also training stages in a span of 200 epochs. Here, in the y-axis we see
the values of the losses which corresponds to the amount of error and the x-axis shows
the number of complete epochs which indicates the cycles of training completed.At the
start of training, the value of loss is 1.9123 and than it goes through a very significant
decline to a value of 0.4093 which is achieved at the end of the training phase. This trend
signifies that the model is gradually becoming efficient in gaining knowledge and also
improving its ability to make strong predictions as the epochs progresses. Furthermore,
the starting testing loss value goes from 2.3756 to 1.4160 indicating that the model is
applicable to unfamiliar and unseen data. In addition, we can see that the both the
training and testing loss curves converges which greatly shows that the model is very
good at generalization and the most likely there is no form of overfitting as both value of
curves gradually decreases.

Figure 4.10: MobileNet-V3 Extractor-Generator Loss

4.4.2 Refiner Loss

The graph 4.11, it shows the loss of the Refiner component during both testing and also
training stages in a span of 200 epochs. Here, in the y-axis we see the values of the losses
which corresponds to the amount of error and the x-axis shows the number of complete
epochs which indicates the cycles of training completed. At the start of training, the
value of loss is 2.1293 and than it goes through a very significant decline to a value of
1.3740 which is achieved at the end of the training phase.This trend signifies that the
model is gradually becoming efficient in gaining knowledge and also improving its ability
to make strong predictions as the epochs progresses. Furthermore, the starting testing
loss value goes from 2.3208 to 1.3949 indicating that the model is applicable to unfamiliar
and unseen data. In addition, we can see that the both the training and testing loss curves

36

converges which greatly shows that the model is very good at generalization and the most
likely there is no form of overfitting as both value of curves gradually decreases.

Figure 4.11: MobileNet-V3 Refinement Network Loss

4.4.3 IoU Score

The graph 4.12, it shows the Intersection over Union (IoU) metrics of the Refiner compo-
nent in a span of 200 epochs. Here, in the y-axis we see the values of the IoU and x-axis
shows the number of complete epochs which indicates the cycles of training complete.
From the graph we can see the constant rise of value of IoU which is initialized at 0.2911
and finalized a0.4661 at the end of the training session part.

4.5 EfficientNet-B0

4.5.1 Extractor-Generator Loss

The graph 4.13, it shows the loss of the Extractor-Generator component during both
testing and also training stages in a span of 200 epochs. Here, in the y-axis we see the
values of the losses which corresponds to the amount of error and the x-axis shows the
number of complete epochs which indicates the cycles of training completed. At the
start of training, the value of loss is 2.5761 and than it goes through a very significant
decline to a value of 1.4783 which is achieved at the end of the training phase. This trend
signifies that the model is gradually becoming efficient in gaining knowledge and also
improving its ability to make strong predictions as the epochs progresses. Furthermore,
the starting testing loss value goes from 2.0586 to 1.3585 indicating that the model is
applicable to unfamiliar and unseen data. In addition, we can see that the both the
training and testing loss curves converges which greatly shows that the model is very
good at generalization and the most likely there is no form of overfitting as both value of
curves gradually decreases.

37

Figure 4.12: MobileNet-V3 IoU Score

Figure 4.13: EfficientNet-B0 Extractor-Generator Loss

38

4.5.2 Refiner Loss

The graph 4.14, it shows the loss of the Refiner component during both testing and also
training stages in a span of 200 epochs. Here, in the y-axis we see the values of the losses
which corresponds to the amount of error and the x-axis shows the number of complete
epochs which indicates the cycles of training completed. At the start of training, the
value of loss is 2.0214 and than it goes through a very significant decline to a value of
1.3075 which is achieved at the end of the training phase. This trend signifies that the
model is gradually becoming efficient in gaining knowledge and also improving its ability
to make strong predictions as the epochs progresses.Furthermore,The starting testing loss
value goes from 2.4068 to 1.4342 indicating that the model is applicable to unfamiliar
and unseen data. In addition, we can see that the both the training and testing loss
curves converges which greatly shows that the model is very good at generalization and
the most likely there is no form of overfitting as both value of curves gradually decreases
and the model is improving with time as the loss values decreases.

Figure 4.14: EfficientNet-B0 Refinement Network Loss

4.5.3 IoU Score

The graph 4.15, it shows the Intersection over Union (IoU) metrics of the Refiner com-
ponent in a span of 200 epochs.Here,In the y-axis we see the values of the IoU and x-axis
shows the number of complete epochs which indicates the cycles of training completed.
From the graph we can see the constant rise of value of IoU which is initialized at 0.2908
and finalized at 0.4906 at the end of the training session part. Here, the value of IoU
improves by 68.75 percent but the IoU value falls below the 0.5 category which indicates
that this needs much more improvement. In order to get much more intricate and de-
tailed 3D volume refinement and to improve the overall efficiency it is absolute necessary
to improve the IoU above the criterion value of 0.5.

39

Figure 4.15: EfficientNet-B0 IoU Score

4.6 ResNet50

4.6.1 Extractor-Generator Loss

The graph 4.16, it shows the loss of the Extractor-Generator component during both
testing and also training stages in a span of 250 epochs. Here, in the y-axis we see the
values of the losses which corresponds to the amount of error and the x-axis shows the
number of complete epochs which indicates the cycles of training completed. At the
start of training, the value of loss is 5.6535 and than it goes through a very significant
decline to a value of 0.4179 which is achieved at the end of the training phase. This trend
signifies that the model is gradually becoming efficient in gaining knowledge and also
improving its ability to make strong predictions as the epochs progresses. Furthermore,
the starting testing loss value goes from 2.0506 to 1.0358 indicating that the model is
applicable to unfamiliar and unseen data. In addition, we can see that the both the
training and testing loss curves converges which greatly shows that the model is very
good at generalization and the most likely there is no form of overfitting as both value of
curves gradually decreases.

4.6.2 Refiner Loss

The graph 4.17, it shows the loss of the Refiner component during both testing and also
training stages in a span of 250 epochs. Here, in the y-axis we see the values of the losses
which corresponds to the amount of error and the x-axis shows the number of complete
epochs which indicates the cycles of training completed.At the start of training, the value
of loss is 1.9329 and than it goes through a very significant decline to a value of 0.9999
which is achieved at the end of the training phase. This trend signifies that the model
is gradually becoming efficient in gaining knowledge and also improving its ability to
make strong predictions as the epochs progresses. Furthermore, the starting testing loss

40

Figure 4.16: ResNet50 Extractor-Generator Loss

value goes from 3.0535 to 0.3164 indicating that the model is applicable to unfamiliar
and unseen data. In addition, we can see that the both the training and testing loss
curves converges which greatly shows that the model is very good at generalization and
the most likely there is no form of overfitting as both value of curves gradually decreases
and the model is improving with time as the loss values decreases.

Figure 4.17: ResNet50 Refinement Network Loss

4.6.3 IoU Score

The graph 4.18, it shows the Intersection over Union (IoU) metrics of the Refiner com-
ponent in a span of 250 epochs. Here, in the y-axis we see the values of the IoU and
x-axis shows the number of complete epochs which indicates the cycles of training com-
pleted. From the graph we can see the constant rise of value of IoU which is initialized at

41

0.3279 and finalized at 0.6684 at the end of the training session part,Signifying a strong
improvement of 103.85 percentage.
The final value of IoU which is 0.6684 gives a strong indication that the refiner component
is pushing the resolution of the 3D regeneration and also improving the intricate level
of details in 3D volumes.Furthermore, gaining and conserving such a high value of IoU
score is of utmost importance to enhance the 3D volume refinement of intricate details
and boosting the overall performance of 2D to 3D model.

Figure 4.18: ResNet50 IoU Score

4.7 ShuffleNet-V2

4.7.1 Extractor-Generator Loss

The graph 4.19, it shows the loss of the Extractor-Generator component during both
testing and also training stages in a span of 250 epochs. Here, in the y-axis we see the
values of the losses which corresponds to the amount of error and the x-axis shows the
number of complete epochs which indicates the cycles of training completed. At the
start of training, the value of loss is 2.8771 and than it goes through a very significant
decline to a value of 0.5008 which is achieved at the end of the training phase. This trend
signifies that the model is gradually becoming efficient in gaining knowledge and also
improving its ability to make strong predictions as the epochs progresses. Furthermore,
the starting testing loss value goes from 1.7427 to 0.9360 indicating that the model is
applicable to unfamiliar and unseen data. In addition, we can see that the both the
training and testing loss curves converges which greatly shows that the model is very
good at generalization and the most likely there is no form of overfitting as both value of
curves gradually decreases.

42

Figure 4.19: ShuffleNet-V2 Extractor-Generator Loss

4.7.2 Refiner Loss

The graph 4.20, it shows the loss of the Refiner component during both testing and also
training stages in a span of 250 epochs. Here, in the y-axis we see the values of the losses
which corresponds to the amount of error and the x-axis shows the number of complete
epochs which indicates the cycles of training completed.At the start of training, the value
of loss is 1.6812 and than it goes through a very significant decline to a value of 0.9239
which is achieved at the end of the training phase. This trend signifies that the model
is gradually becoming efficient in gaining knowledge and also improving its ability to
make strong predictions as the epochs progresses. Furthermore, the starting testing loss
value goes from 2.2173 to 0.3592 indicating that the model is applicable to unfamiliar
and unseen data. In addition, we can see that the both the training and testing loss
curves converges which greatly shows that the model is very good at generalization and
the most likely there is no form of overfitting as both value of curves gradually decreases
and the model is improving with time as the loss values decreases.

4.7.3 IoU Score

The graph 4.21, it shows the Intersection over Union (IoU) metrics of the Refiner com-
ponent in a span of 250 epochs. Here, in the y-axis we see the values of the IoU and
x-axis shows the number of complete epochs which indicates the cycles of training com-
pleted. From the graph we can see the constant rise of value of IoU which is initialized at
0.3846 and finalized at 0.6622 at the end of the training session part,Signifying a strong
improvement of 72.18 percentage.
The final value of IoU which is 0.6622 gives a strong indication that the refiner component
is pushing the resolution of the 3D regeneration and also improving the intricate level
of details in 3D volumes.Furthermore,Gaining and Conserving such a high value of IoU
score is of utmost importance to enhance the 3D volume refinement of intricate details
and boosting the overall performance of 2D to 3D model.

43

Figure 4.20: ShuffleNet-V2 Refinement Network Loss

Figure 4.21: ShuffleNet-V2 IoU Score

44

4.8 SMATNet(ShapeNet Dataset)

4.8.1 Extractor-Generator Loss

The graph 4.22, it shows the loss of the Extractor-Generator component during both
testing and also training stages in a span of 250 epochs. Here, in the y-axis we see the
values of the losses which corresponds to the amount of error and the x-axis shows the
number of complete epochs which indicates the cycles of training completed. At the
start of training, the value of loss is 1.9123 and than it goes through a very significant
decline to a value of 0.4093 which is achieved at the end of the training phase. This trend
signifies that the model is gradually becoming efficient in gaining knowledge and also
improving its ability to make strong predictions as the epochs progresses. Furthermore,
the starting testing loss value goes from 1.5608 to 0.9899 indicating that the model is
applicable to unfamiliar and unseen data. In addition, we can see that the both the
training and testing loss curves converges which greatly shows that the model is very
good at generalization and the most likely there is no form of overfitting as both value of
curves gradually decreases.

Figure 4.22: SMATNet Extractor-Generator Loss

4.8.2 Refiner Loss

The graph 4.23, it shows the loss of the Refiner component during both testing and also
training stages in a span of 250 epochs. Here, in the y-axis we see the values of the losses
which corresponds to the amount of error and the x-axis shows the number of complete
epochs which indicates the cycles of training completed. At the start of training, the
value of loss is 1.5502 and than it goes through a very significant decline to a value of
0.9731 which is achieved at the end of the training phase. This trend signifies that the
model is gradually becoming efficient in gaining knowledge and also improving its ability
to make strong predictions as the epochs progresses. Furthermore, the starting testing
loss value goes from 1.9042 to 0.2861 indicating that the model is applicable to unfamiliar
and unseen data. In addition, we can see that the both the training and testing loss curves

45

converges which greatly shows that the model is very good at generalization and the most
likely there is no form of overfitting as both value of curves gradually decreases and the
model is improving with time as the loss values decreases.

Figure 4.23: SMATNet Refinement Network Loss

4.8.3 IoU Score

The graph 4.24, it shows the Intersection over Union (IoU) metrics of the Refiner com-
ponent in a span of 250 epochs. Here, in the y-axis we see the values of the IoU and
x-axis shows the number of complete epochs which indicates the cycles of training com-
pleted. From the graph we can see the constant rise of value of IoU which is initialized at
0.4203 and finalized at 0.6828 at the end of the training session part,Signifying a strong
improvement of 62.45 percentage. The final value of IoU which is 0.6828 gives a strong
indication that the refiner component is pushing the resolution of the 3D regeneration
and also improving the intricate level of details in 3D volumes. Furthermore, Gaining
and Conserving such a high value of IoU score is of utmost importance to enhance the
3D volume refinement of intricate details and boosting the overall performance of 2D to
3D model.

4.9 SMATNet(Our Dataset)

4.9.1 Extractor-Generator Loss

The graph 4.25, it shows the loss of the Extractor-Generator component during both
testing and also training stages in a span of 250 epochs. Here, in the y-axis we see the
values of the losses which corresponds to the amount of error and the x-axis shows the
number of complete epochs which indicates the cycles of training completed. At the start
of training, the value of loss is 9.5838 and than it goes through a very significant decline
to a value of 0.0357 which is achieved at the end of the training phase. This trend signifies
that the model is gradually becoming efficient in gaining knowledge and also improving

46

Figure 4.24: SMATNet IoU Score

its ability to make strong predictions as the epochs progresses. In addition, we can see
that the both the training and testing loss curves converges which greatly shows that the
model is very good at generalization and the most likely there is no form of overfitting
as both value of curves gradually decreases.

Figure 4.25: SMATNet Extractor-Generator Loss

4.9.2 Refiner Loss

The graph 4.26, it shows the loss of the Refiner component during both testing and also
training stages in a span of 250 epochs. Here, in the y-axis we see the values of the losses

47

which corresponds to the amount of error and the x-axis shows the number of complete
epochs which indicates the cycles of training completed. At the start of training, the value
of loss is 3.6651 and than it goes through a very significant decline which is achieved at
the end of the training phase. This trend signifies that the model is gradually becoming
efficient in gaining knowledge and also improving its ability to make strong predictions
as the epochs progresses. Furthermore, the starting testing loss value goes from 4.9723
to 0.0366, we can see that the both the training and testing loss curves converges which
greatly shows that the model is very good at generalization and the most likely there
is no form of overfitting as both value of curves gradually decreases and the model is
improving with time as the loss values decreases.

Figure 4.26: SMATNet Refinement Network Loss

4.9.3 IoU Score

The graph 4.27, it shows the Intersection over Union (IoU) metrics of the Refiner com-
ponent in a span of 250 epochs. Here, in the y-axis we see the values of the IoU and
x-axis shows the number of complete epochs which indicates the cycles of training com-
pleted. From the graph we can see the constant rise of value of IoU which is initialized at
0.0404 and finalized at 0.5016 at the end of the training session part, signifying a strong
improvement of 1141.46 percentage. The final value of IoU which is 0.6828 gives a strong
indication that the refiner component is pushing the resolution of the 3D regeneration
and also improving the intricate level of details in 3D volumes.

48

Figure 4.27: SMATNet IoU Score

4.10 Ground Truth vs Reconstructed Volume

4.10.1 VGG16

(a) Ground Truth (b) Reconstructed Model

Figure 4.28: Comparison of Ground Truth and Reconstructed Model

49

4.10.2 DenseNet-201

(a) Ground Truth (b) Reconstructed Model

Figure 4.29: Comparison of Ground Truth and Reconstructed Model

4.10.3 Xception

(a) Ground Truth (b) Reconstructed Model

Figure 4.30: Comparison of Ground Truth and Reconstructed Model

50

4.10.4 MobileNet-V3

(a) Ground Truth (b) Reconstructed Model

Figure 4.31: Comparison of Ground Truth and Reconstructed Model

4.10.5 EfficientNet-B0

(a) Ground Truth (b) Reconstructed Model

Figure 4.32: Comparison of Ground Truth and Reconstructed Model

51

4.10.6 ResNet50

(a) Ground Truth (b) Reconstructed Model

Figure 4.33: Comparison of Ground Truth and Reconstructed Model

4.10.7 ShuffleNet-V2

(a) Ground Truth (b) Reconstructed Model

Figure 4.34: Comparison of Ground Truth and Reconstructed Model

52

4.10.8 SMATNet(ShapeNet Dataset)

(a) Ground Truth (b) Reconstructed Model

Figure 4.35: Comparison of Ground Truth and Reconstructed Model

4.10.9 SMATNet(Our Dataset)

(a) Ground Truth (b) Reconstructed Model

Figure 4.36: Comparison of Ground Truth and Reconstructed Model

4.11 Comparison

The comparison of IoU scores among different models highlights significant variances in
performance. The DenseNet201 model demonstrates a substantial enhancement, with the
initial Intersection over Union (IoU) value of 0.3337 increasing to a final IoU of 0.6340.
This is an impressive 89.98 percent improvement, indicating excellent performance. The
initial performance of EfficientNetV0 was 0.2908, then it improved to 0.4906, resulting
in a 68.75 percent increase, which is considered suboptimal. The MobileNetV3 model
demonstrates a 60.11 percent improvement, as indicated by an initial Intersection over
Union (IoU) value of 0.2911 and a final IoU value of 0.4661. However, this improvement
is considered suboptimal. ShuffleNet has a significant increase of 72.18 percent, starting
at 0.3846 and reaching 0.6622, which demonstrates excellent performance. The VGG16
model, starting at an initial value of 0.4166 and reaching a final value of 0.6315, demon-
strates a significant improvement of 51.57 percent, which is highly commendable. The

53

XceptionNet model demonstrated a significant improvement, increasing from an initial
accuracy of 0.3841 to 0.6303, representing a remarkable 64.11 percent gain. This per-
formance may be considered highly commendable. SMATNet demonstrates a notable
improvement, with an initial Intersection over Union (IoU) of 0.0404 and a final IoU of
0.5016. This is an outstanding increase of 1141.46 percent, which is highly commend-
able. The ResNet50 model demonstrates a significant increase of 103.85 percent, as it
progresses from an initial value of 0.3279 to a final value of 0.6684. This development
is highly commendable. SMATNet (ShapeNet) demonstrates a significant improvement,
with an initial IoU (Intersection over Union) of 0.4203 and a final IoU of 0.6828, resulting
in a 62.45 percent increase, which is highly commendable. Generally, models that achieve
a final Intersection over Union (IoU) score of 0.60 exhibit excellent performance, whilst
those with a score below 0.60 are considered to have poor performance.

Table 4.1: Comparison of Initial and Final IoU values for different models

Model Initial IoU Final IoU ∆ IoU ∆ % Evaluation
DenseNet201 0.3337 0.6340 0.3003 89.98% Optimal
EfficientNetB0 0.2908 0.4906 0.1999 68.75% Sub optimal
MobileNetV3 0.2911 0.4661 0.1750 60.11% Sub optimal
ShuffleNet 0.3846 0.6622 0.2776 72.18% Optimal
VGG16 0.4166 0.6315 0.2149 51.57% Optimal
XceptionNet 0.3841 0.6303 0.2462 64.11% Optimal
ResNet50 0.3279 0.6684 0.3405 103.85% Optimal
SMATNet(ShapeNet) 0.4203 0.6828 0.2625 62.45% Optimal
SMATNet(Our Dataset) 0.0404 0.5016 0.4612 1141.46% Optimal

If we categorize by the value of IoU, Resnet (IoU=0.6684), ShuffleNet(IoU=0.6622) and
SMATNet(IoU=0.6828) all showing excellent capability in improvising the IoU, models
such as DenseNet201(IoU=0.6340), VGG16(IoU=0.6315) and XceptionNet(IoU=0.6303)
all attained finalized value of IoU ranging from 0.63 to 0.65, can be considered as notewor-
thy but not the best category. The rest of the models such as EfficientNetB0(IoU=0.4960)
and MobileNetV3(IoU=0.4661) achieves sub-optimal IoU scores below 0.63 and can be
considered worst of all the categories and thus can be inferred as not recommended and
absolutely not suitable for the dataset in consideration due to their low IoU values. From
this comparison we can say that, the best performing category consisting of ResNet,
ShuffleNet and SMATNet are the most proficient models among all the models and there
is scope for development for other models.

4.12 Limitations

2D to 3D model conversion is a computationally challenging task that requires a signif-
icant amount of time and resources, particularly computational resources such as GPUs
and processing units. Due to constraints such as the availability of GPUs and scheduling

54

issues, our model produced suboptimal results. Furthermore, we faced significant chal-
lenges in scaling the dataset, as it was not feasible to collect a large number of dataset
samples within such a short time window, and the quality of the dataset dipped due to
not being able to collect a large number of samples of the same object. Additionally,
preprocessing the collected dataset from one type to another continuously drained our
already scarce time and resources.
Our Research model also faced some concerning limitations including increased number
of parameters due to stacked ensembling, increased resource consumption which is the
result of increase in number of parameters. On top of this, there was the issue of computa-
tionally expensive Multi-view image processing and also the need of precise preprocessing
which is an precondition for 3D model generation.

55

Chapter 5

Conclusion

Since every gadget is now automated, computer vision has emerged as a priority research
area for the next generation of technology. The process of converting from 2D to 3D mod-
els can be considered a fundamental component of any computer vision application that
requires 3D reconstruction, as capturing 3D models directly can sometimes be expensive
compared to going from 2D to 3D. The applications of our research range from medical
imaging, such as prosthetics and implants, to industry-level automation and applications.
Our study’s ultimate goal is to provide a straightforward, accurate, and inexpensive ap-
proach to convert from 2D to 3D models, which further lays the foundation for advanced
research in the future.

56

Bibliography

[1] K. N. Kutulakos and S. M. Seitz, “What do n photographs tell us about 3d shape,”
University of Rochester, TR680, vol. 29, 1998.

[2] I. Shimshoni, Y. Moses, and M. Lindenbaum, “Shape reconstruction of 3d bilaterally
symmetric surfaces,” International Journal of Computer Vision, vol. 39, pp. 97–110,
2000.

[3] B. K. Hall, “Unlocking the black box between genotype and phenotype: Cell con-
densations as morphogenetic (modular) units,” Biology and Philosophy, vol. 18,
pp. 219–247, 2003.

[4] S. Battiato, S. Curti, M. La Cascia, M. Tortora, and E. Scordato, “Depth map
generation by image classification,” in Three-Dimensional Image Capture and Ap-
plications VI, SPIE, vol. 5302, 2004, pp. 95–104.

[5] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruction in real-
time,” in 2011 IEEE intelligent vehicles symposium (IV), Ieee, 2011, pp. 963–968.

[6] S. Izadi, D. Kim, O. Hilliges, et al., “Kinectfusion: Real-time 3d reconstruction and
interaction using a moving depth camera,” in Proceedings of the 24th annual ACM
symposium on User interface software and technology, 2011, pp. 559–568.

[7] D. Maier, A. Hornung, and M. Bennewitz, “Real-time navigation in 3d environments
based on depth camera data,” in 2012 12th IEEE-RAS International Conference
on Humanoid Robots (Humanoids 2012), IEEE, 2012, pp. 692–697.

[8] A. Baak, M. M”uller, G. Bharaj, H.-P. Seidel, and C. Theobalt, “A data-driven ap-
proach for real-time full body pose reconstruction from a depth camera,” Consumer
Depth Cameras for Computer Vision: Research Topics and Applications, pp. 71–98,
2013.

[9] Y. M. Mustafah, A. W. Azman, and M. H. Ani, “Object distance and size measure-
ment using stereo vision system,” Advanced Materials Research, vol. 622, pp. 1373–
1377, 2013.

[10] A. Anwer, A. Baig, and R. Nawaz, “Calculating real world object dimensions from
kinect rgb-d image using dynamic resolution,” in 2015 12th International Bhurban
Conference on Applied Sciences and Technology (IBCAST), IEEE, 2015, pp. 198–
203.

[11] E. Bostanci, “3d reconstruction of crime scenes and design considerations for an in-
teractive investigation tool,” International Journal of Information Security Science,
vol. 4, no. 2, pp. 50–58, 2015.

[12] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for real-
time object recognition,” in 2015 IEEE/RSJ international conference on intelligent
robots and systems (IROS), IEEE, 2015, pp. 922–928.

57

[13] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object de-
tection with region proposal networks,” Advances in neural information processing
systems, vol. 28, 2015.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 779–788.

[15] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 1251–1258.

[16] R. A. Ralph, Applications of 3d reconstruction in the real world by rsip vision, RSIP
Vision, Aug. 2017.

[17] A. El Sallab, I. Sobh, M. Zidan, M. Zahran, and S. Abdelkarim, “Yolo4d: A spatio-
temporal approach for real-time multi-object detection and classification from lidar
point clouds,” 2018.

[18] N. Ma, X. Zhang, H. Zheng, and J. Sun, “Shufflenet V2: practical guidelines for
efficient CNN architecture design,” CoRR, vol. abs/1807.11164, 2018. arXiv: 1807.
11164. [Online]. Available: http://arxiv.org/abs/1807.11164%7D.

[19] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines
for efficient cnn architecture design,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 116–131.

[20] H. Qassim, A. Verma, and D. Feinzimer, “Compressed residual-vgg16 cnn model
for big data places image recognition,” in 2018 IEEE 8th annual computing and
communication workshop and conference (CCWC), IEEE, 2018, pp. 169–175.

[21] Z. Ren and E. B. Sudderth, “3d object detection with latent support surfaces,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 937–946.

[22] A. Howard, M. Sandler, G. Chu, et al., Searching for mobilenetv3, 2019. arXiv:
1905.02244 [cs.CV].

[23] M. Simon, K. Amende, A. Kraus, et al., “Complexer-yolo: Real-time 3d object
detection and tracking on semantic point clouds,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, 2019, pp. 0–0.

[24] K. Simonson, Associated General Contractors of America, Mar. 2019, 2019.

[25] D. Sinha and M. El-Sharkawy, “Thin mobilenet: An enhanced mobilenet archi-
tecture,” in 2019 IEEE 10th annual ubiquitous computing, electronics & mobile
communication conference (UEMCON), IEEE, 2019, pp. 0280–0285.

[26] V. Tadic, A. Odry, I. Kecskes, E. Burkus, Z. Kiraly, and P. Odry, “Application of
intel realsense cameras for depth image generation in robotics,” WSEAS Transac.
Comput, vol. 18, pp. 2224–2872, 2019.

[27] H. Xie, H. Yao, X. Sun, S. Zhou, and S. Zhang, “Pix2vox: Context-aware 3d re-
construction from single and multi-view images,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2019, pp. 2690–2698.

58

https://arxiv.org/abs/1807.11164
https://arxiv.org/abs/1807.11164
http://arxiv.org/abs/1807.11164%7D
https://arxiv.org/abs/1905.02244

[28] S.-H. Wang and Y.-D. Zhang, “Densenet-201-based deep neural network with com-
posite learning factor and precomputation for multiple sclerosis classification,”
ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM), vol. 16, no. 2s, pp. 1–19, 2020.

[29] T. Ahmed and N. H. N. Sabab, Classification and understanding of cloud structures
via satellite images with efficientunet, 2021. arXiv: 2009.12931 [eess.IV].

[30] B. Deng, C. R. Qi, M. Najibi, T. Funkhouser, Y. Zhou, and D. Anguelov, “Re-
visiting 3d object detection from an egocentric perspective,” Advances in Neural
Information Processing Systems, vol. 34, pp. 26 066–26 079, 2021.

[31] P. Gohel, P. Singh, and M. Mohanty, “Explainable ai: Current status and future
directions,” arXiv preprint arXiv:2107.07045, 2021.

[32] N. Ketkar, J. Moolayil, N. Ketkar, and J. Moolayil, “Introduction to pytorch,” Deep
learning with python: learn best practices of deep learning models with PyTorch,
pp. 27–91, 2021.

[33] Z. Lu, “Construction of the 3d reconstruction system of building construction scene
based on deep learning,” Scientific Programming, vol. 2021, pp. 1–9, 2021.

[34] S. Mascarenhas and M. Agarwal, “A comparison between vgg16, vgg19 and resnet50
architecture frameworks for image classification,” in 2021 International conference
on disruptive technologies for multi-disciplinary research and applications (CENT-
CON), IEEE, vol. 1, 2021, pp. 96–99.

[35] N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-net and its variants
for medical image segmentation: A review of theory and applications,” Ieee Access,
vol. 9, pp. 82 031–82 057, 2021.

[36] K. Srinivasan, L. Garg, D. Datta, et al., “Performance comparison of deep cnn mod-
els for detecting driver’s distraction,” Cmc -Tech Science Press-, vol. 68, pp. 4109–
4124, May 2021. doi: 10.32604/cmc.2021.016736.

[37] M. Akhtar, R. Mahum, F. Shafique Butt, et al., “A robust framework for object
detection in a traffic surveillance system,” Electronics, vol. 11, p. 3425, Oct. 2022.
doi: 10.3390/electronics11213425.

[38] D. Alma, “Gan Architectures for 3D Models,” vol. 2, no. 7, Apr. 2022.

[39] F. Drews, D. Feng, F. Faion, L. Rosenbaum, M. Ulrich, and C. Gl”aser, “Deepfusion:
A robust and modular 3d object detector for lidars, cameras and radars,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2022, pp. 560–567.

[40] P. Kadam, M. Zhang, S. Liu, and C.-C. J. Kuo, “R-pointhop: A green, accurate,
and unsupervised point cloud registration method,” IEEE Transactions on Image
Processing, vol. 31, pp. 2710–2725, 2022.

[41] X. Chen, X. Pu, Z. Chen, et al., “Application of efficientnet-b0 and gru-based deep
learning on classifying the colposcopy diagnosis of precancerous cervical lesions,”
Cancer Medicine, vol. 12, no. 7, pp. 8690–8699, 2023.

[42] Unknown Author, ResNet50 Network Architecture Diagram, Wikimedia Commons,
[Accessed 19-May-2024], 2023. [Online]. Available: https://commons.wikimedia.
org/wiki/File:ResNet50.png.

59

https://arxiv.org/abs/2009.12931
https://doi.org/10.32604/cmc.2021.016736
https://doi.org/10.3390/electronics11213425
https://commons.wikimedia.org/wiki/File:ResNet50.png
https://commons.wikimedia.org/wiki/File:ResNet50.png

[43] GeekssforGeeks, U-net architecture explained, https://www.geeksforgeeks.org/u-
net-architecture-explained/, Accessed: 2024-01-15.

[44] J. McDermott, Hands-on transfer learning with keras and the vgg16 model, https:
//www.learndatasci.com/tutorials/hands-on-transfer- learning-keras/, Accessed:
2024-01-15.

60

https://www.geeksforgeeks.org/u-net-architecture-explained/
https://www.geeksforgeeks.org/u-net-architecture-explained/
https://www.learndatasci.com/tutorials/hands-on-transfer-learning-keras/
https://www.learndatasci.com/tutorials/hands-on-transfer-learning-keras/

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	Nomenclature
	Introduction
	Problem Statement
	Research Objective

	Literature review
	Methodology
	Models
	VGG16
	DenseNet-201
	Xception
	MobileNet-V3
	EfficientNet-B0
	ResNet50
	ShuffleNet-V2
	U-Net

	Framework
	PyTorch
	Dynamic Computational Graphs
	Tensor Computation
	Autograd
	Neural Network Library
	GPU Acceleration
	Community and Ecosystem
	Model Deployment
	Interoperability

	Architecture
	Feature Extractor Module
	Ensembler Module
	3D Volume Generator Module
	Context-Aware Fusion Module(Contextual Integrator)
	Refinement Network Module(Enhancer)

	Loss Function
	Evaluation Metrics
	Implementation Details
	Reconstruction of 3D Volume

	Result Analysis
	VGG16
	Extractor-Generator Loss
	Refiner Loss
	IoU Score

	DenseNet-201
	Extractor-Generator Loss
	Refiner Loss
	IoU Score

	Xception
	Extractor-Generator Loss
	Refiner Loss
	IoU Score

	MobileNet-V3
	Extractor-Generator Loss
	Refiner Loss
	IoU Score

	EfficientNet-B0
	Extractor-Generator Loss
	Refiner Loss
	IoU Score

	ResNet50
	Extractor-Generator Loss
	Refiner Loss
	IoU Score

	ShuffleNet-V2
	Extractor-Generator Loss
	Refiner Loss
	IoU Score

	SMATNet(ShapeNet Dataset)
	Extractor-Generator Loss
	Refiner Loss
	IoU Score

	SMATNet(Our Dataset)
	Extractor-Generator Loss
	Refiner Loss
	IoU Score

	Ground Truth vs Reconstructed Volume
	VGG16
	DenseNet-201
	Xception
	MobileNet-V3
	EfficientNet-B0
	ResNet50
	ShuffleNet-V2
	SMATNet(ShapeNet Dataset)
	SMATNet(Our Dataset)

	Comparison
	Limitations

	Conclusion
	Bibliography

