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Abstract

Pneumonia, a known leading child killer and a general health burden, continues to
be a major concern due to its high morbidity and mortality rates in the developing
world, which calls for prompt and accurate diagnosis. This paper aims at proposing
a novel medical image analysis framework that can be used in the enhancement of
pneumonia from Chest X-ray images in terms of speed and accuracy. Building on
the capability of the Convolutional Neural Networks (CNNs) that have been tuned
using NVIDIA CUDA, this strategy enhances the computational capabilities and
enables real time analysis. Hence, it meant that we were training a novel deep
learning model which was fit for the specific task we were undertaking involving
identification of bacterial, viral pneumonia in addition to normal cases. The model
finds feature extraction and considers incorporation of advanced layers and/or ar-
chitectures. By paralleling the codes with Cuda we were able to reduce the time
it takes to train and make prediction on models while at the same time not being
compromising on the quality of the models. In addition, Our experimental results
show that, our CUDA-optimized CNN outperforms and achieve equal or higher ac-
curacy against the traditional methods, all this in a drastically shorter time. There
is potential for deploying associated high-resolution diagnostic equipment in clini-
cal environemnt, specifically in situation where decisions are needed quickly. Our
self-contrary contributions signify the effectiveness as well as effectiveness of deep
learning and high-performance computing to augment the medical diagnostic tech-
nique and would open the area to extensive applications of medical image analysis
in the future.

Keywords: Pneumonia detection, medical image analysis, convolutional neural
networks (CNNs), NVIDIA CUDA, chest X-ray, real-time analysis, bacterial pneu-
monia, viral pneumonia, high-performance computing, healthcare diagnostics, deep
learning
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The next list describes several symbols & abbreviation that will be later used within
the body of the document
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CategoricalCross — Entropy A Loss Function for Multi-Class Classification
CNN Convolutional Neural Network

CUDA Compute Unified Device Architecture

GPU Graphics Processing Unit

MSE Mean Square Error

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

SNN Siamese Neural Network

Softmax A Function that Converts Logits to Probabilities
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Chapter 1

Introduction

An infection of one or both lungs brought on by bacteria, viruses, or fungus is known
as pneumonia. The infection is severe and causes pus and other liquid to fill the
air sacs. One or more lung lobes may be affected by lobar pneumonia. The extent
of diagnosis greatly determines the success of treatment and management that will
be given to the patient. Chest X-ray is a widely applied method of diagnosing
pneumonia, though it may be difficult for the radiologists to analyze such images
and it may require much time, especially if they work in areas with the limited
accessibility to the Healthcare services.

Applications of ATl and deep learning in the field have been receiving much attention
in the past few years because of their ability to take over the tedious and time
consuming nature of medical image analysis. CNNs are one of the several types of
DL models, found highly effective in image recognition. They can also learn and
select relevant features from images without any human intervention and can be
applied to technical problems like pneumonia detection.

But the primary concern of training and deploying deep learning models for process-
ing medical images is computational demands. Computation on traditional CPUs
is often time, consuming and less efficient particularly when processing big data
and using complex models or algorithms. This can be problematic for the use of
Al systems for diagnostics, especially in areas where quick analysis of data is im-
portant. To overcome these challenges, we take advantage of CUDA — an umbrella
for parallel computations in NVIDIA graphic processing units for enhancing CNNs
for use in identifying pneumonia. CUDA introduces the ability to work parallel on
GPUs (Graphics Processing Units), which speeds up both the training process and
inference of deep learning models. This is important for the real time analysis, es-
pecially in the clinical setting, which is the main area of application of ECG signal
acquisition.

Here in our proposed study, a novel deep learning model was created to distin-
guish bacterial-viral pneumonia from normal and non-variant pneumonia cases using
chest X-ray pictures. We then incorporate various state-of-the-art and specifically
optimized CNN architectures for feature extraction and classification. Especially
through the use of CUDA for parallel processing, the computational time is sig-
nificantly reduced and therefore, the proposed framework can also be applied in



real-time settings. Moreover, for performance assessment of the developed CUDA-
optimized CNN model, we performed numerous experiments. The findings reveal
that our model has considerable efficacy in detecting pneumonia while maintain-
ing significantly less computational complexity as compared to others in practice.
The results of this study reveal how applying deep learning and high performance
computing may improve medical diagnostics in low resource environments.

1.1 Poblem statement

Even with available and sophisticated imaging methods, the timely and accurate
diagnosis of pneumonia is still a major problem for healthcare since it is more com-
mon among children in the developing world. Pneumonia is an inflammatory lung
disease which results from a bacterial, viral, or other pathogen, and as such, there
is a need to diagnose it in the shortest time possible as well as categorize it properly
to ensure that it receives the right attention from a clinician with the best results
for the patient. However, the manual reporting of these CXRs requires radiologists,
and this can be extremely time-consuming or rather inaccurate in cases where radi-
ologists are overwhelmed by numerous scans or in developing countries where there
is a scarcity of radiologists.

Recent advances in the DL approaches to solve this problem have proven quite ben-
eficial but their computational limitations remain a drawback. An expensive data
processing, as well as intensive computing needed for CNNs training and application
in CPU-based systems are significantly challenging. This limitation greatly reduces
the online analysis feature that is very important in clinical situations where deci-
sions have to be made in real time.

Moreover, the existing models tend to classify the provided image into either having
pneumonia or not, but it is beneficial to make a fine distinction between the types
of pneumonia. The absence of more differentiated classification additionally hin-
ders the applicability of these models in clinical work where identification of what
kind of pneumonia can help to choose an adequate treatment strategy. For these
reasons efficient diagnostic tool is needed with high accuracy and real time results
to distinguish among different pneumonia types by analyzing chest X-ray images.
Using GPU acceleration with NVIDIA CUDA seems like a sensible way to solve
computational-intensive issues, thereby increasing the speed factor and optimizing
the usage of deep learning models. The main aim of this research is to design and

train a specific CNN model capable of speedy and efficient recognition of pneumonia
and other conditions such as bacterial and viral pneumonia as well as no pneumonia
using Chest X-ray images. To this end integrating CUDA for parallel processing is
proposed so as to improve the computational speed and scale-ability of the given
model in order to facilitate the implementation of this model in real world clinical
environments. This approach aims to develop a valid diagnostic aid that can be
utilized by physicians to help diagnose and care for the diseased, hence promoting
positive results among the populace.



1.2 Research’s Objectives

The primary aim of this research is to develop an advanced, CUDA-optimized Con-
volutional Neural Network (CNN) model for the accurate and efficient detection and
classification of pneumonia from chest X-ray images. The specific objectives of this
study are:

e Develop a Custom CNN Architecture:

— This would require formulating and implementing a specialized CNN that
is optimized for pneumonia detection and can differentiate between the
bacterial, viral, and non-pneuma types.

— It helps to enhance the proposed model with the state-of-art deep learning
approach on both the feature extraction and the classification part.

e Leverage CUDA for Performance Optimization:

— Integrate NVIDIA CUDA technology to Improve the model’s numerical
performance by implementing the trained model on GPUs so as to shorten
the overall training and inference time.

— Optimize the model’s computational efficiency by exploiting the parallel
processing capabilities of GPUs, thereby reducing training and inference
times.

e Evaluate Model Performance:

— Perform thorough trials to determine the said CNN model’s accuracy,
precision rate, recall, and computational complexity.

— The following evaluation benchmarks need to be used to assess the per-
formance of the CUDA-optimized model against non-CUDA optimized
models and similarly existing state-of-art models:

¢ Implement Real-time Analysis Capability:

— It is crucial to formulate a set of rules that would allow the model to
identify pneumonia in real-time and distinguish between different types
of pneumonia, so that it could be implemented in clinical practice on
time.

— Validate the usability and effectiveness of the model in real-time clinical
scenarios in order to run it virtually with practical efficiency.

e Analyze and Interpret Results:
— Examine the outcomes of the experiment that have been carried out in

order to determine the potential of and flaws in the proposed model.

— Interprethow the obtained results can shed light on the effects of CUDA
optimization onto the model and potential clinical applications of the
developed technique.



1.3 Thesis Contributions

e Optimized CNN Architecture for Pneumonia Detection: We proposed
a new efficient Convolutional Neural Network (CNN) architecture that can be
used specifically for pneumonia detection on medical images. The embedding
model in this architecture has been considerably altered to enhance feature
representation which results in improved diagnostic accuracy.

e CUDA-Accelerated Training and Preprocessing: We used CUDA c++
to accelerate CNN training and medical image data pre-processing steps to
make training happen as quick and efficient as possible. This drastically short-
ens the training process and is able to provide real-time pneumonia prediction.

¢ Real-Time Pneumonia Detection System: Using the optimized CNN
model and CUDA acceleration, we implemented a real-time pneumonia detec-
tion system. The system instantly analyzes the images of the chest X-rays
(about half a dozen in total), leading to a definitive diagnosis of pneumonia,
their diagnosis could help detect the disease quickly and early treatment.

e Enhanced Efficiency and Accuracy: But these methods are relatively
powerful in many ways when compared to the conventional methods, in par-
ticular in terms of better computational efficiency and the more reliable diag-
nostic accuracy[5]) This well optimized model offers an efficient tool for the
timely and accurate detection of pneumonia with deep learning, together with
GPU acceleration to provide rapid and reliable results. This development
has tremendous promise for improving medical image analysis and assisting
healthcare providers in clinical purposes.

So, this research work boost the field of medical image analysis by presenting an
unique and efficient real time pneumonia detection system that uses CUDA accel-
eration and for its CNN architecture with a unique embedding structure. Although
this is one of the most common diseases, it has the potential to help with faster and
more correctly diagnosing pneumonia, thus improving patient care.

1.4 Thesis Structure

Chapter 1: This is the introduction chapter where the researcher introduces the
topic of study, gives a background to the study, outlines the research objectives and
questions, and justification for the study. Chapter 2: This is the literature review
chapter where the researcher provides an overview of the different literatures that
have dealt with the topic of study to avoid repetition. Chapter 3 — This is the theo-
retical framework chapter where the researcher introduces Beneath the chapter title
“Introduction”, the first chapter addresses: problem statement, research objectives
and thesis contributions. Chapter two of the book is titled as “Literature Review”
which gives information on pneumonia, Convolutional Neural Networks (CNNs),
Compute Unified Device Architecture (CUDA) and works of different researchers.

In the chapter four, titled “Dataset Description”, the current paper presents the
information regarding the chosen dataset, data pre-processing as well as data aug-
mentation utilized in the research. In the fourth chapter, titled “Methodology,



Architecture, and Model Specification,” It presents the assessment of conventional
existing models, the appreciation of Custom Siamese Networks, and the formation
of a highly effective tender model, including the Siamese embedding model and the
dedicated CUDA sliding window L1 distance layer.

Chapter five, titled “Result Analysis,” provides a discussion on the evaluation of
the proposed model, utilised evaluation parameters, comparison of distance layers,
as well as confusion matrix. Last but not the least, Chapter six carries the title,
“Conclusion,” which restates the findings of the study, the conclusions drawn in
relation to the research question and hypotheses, the realization of the challenges
faced during the research and the approaches attempted to minimize these issues.



Chapter 2

Literature Review

2.1 Background

2.1.1 Pneumonia

Pneumonia is a widespread respiratory illness that manifests as an acute infection
and causes immense morbidity worldwide, with children under five years and older
persons being most affected. Pneumonia, WHO estimated that about 15 % of child-
hood deaths were within under five years worldwide, and this causes about 800000
children deaths annually [6]. It can be caused by bacterial and viral infections,
fungal infections, the flu, pneumonia, and COVID-19, but some symptoms include
coughing, fever, and difficulty in breathing.

Infermity and mortality: Pneumonia is not only a children disease it is also fatal
among the elderly and immunocompromised who frequently suffer severe morbidity
and are at high risk of dying from the disease globally. This stresses the significance
of timely and correct diagnosis since further management could worsen if the con-
dition is left unaddressed can result in dire consequences and high mortality rates.
The integration of enhanced diagnostic methods including the deep learning models
and imaging has enabled the ideal identification of required diagnostic outcomes and
determination of patients’ status.

Especially in developing countries where access to healthcare is relatively low, the
burden of disease from pneumonia is fearfully high noting the need to develop ef-
fective and accessible diagnosis techniques. Pneumonia poses a large global health
threat; campaigns coaching the value of vaccination, prompt care-seeking, and cre-
ating a new generation of diagnostic tools would be relevant.

2.1.2 Convolutional Neural Networks (CNNs)

CNNs are deep learning models designed to work with structured in grid data par-
ticular images for computation. They have in fact claimed that they have attained
the state-of-the-art performance in the general range of computer vision applications
including image categorization, localization, and partitioning. CNNs resembled the
architecture of the animals’ visual cortex and are designed with several layers for
layer-wise learning of the spatial hierarchy of features from the input images in an
automatic as well as adaptive manner. The CNN architecture contains three main
levels; they are the convolutional, pooling, and fully connected level. A convolution



layer uses a kernel or filter to convolve the input image and produces features maps
of its input that help in defining local patterns like edge, texture, shapes etc. To
explain this, the filters are placed on top of the input image, and vector multiplica-
tion by corresponding elements occurs — helpful for training spatial features. Batch
normalization scales and shifts the activations with learnable parameters so that the
preceding layer’s outputs are normalized; activation functions such as ReLU (Rec-
tified Linear Unit) which introduces nonlinearity into the data to enable learning
more complex patterns.

Stride layers, commonly, max-pooling layers, downsample the feature map and
thereby reduce the computational dimension and the parameters. This process also
helps in making the model translation invariant with small transformations with the
input image. The last one is in the last layer where industry application is completed
and the first two are composed of convolution and pooling layers feature map.
CNNs use various methods in improving it performance these includes; Batch Nor-
malization, Dropout and Data Augmentation among others. Batch normalizes and
hastens up the training process and also fight off the issue of internal covariate shift
by normalizing the input to that layer. L2 regularization helps to address the issue
of overfitting which is a scenario whereby, some of the neurons are intentionally
‘dropped’ while training in a bid to enable the network learn better features. This
mainly entails leading the existing training images through some processing mecha-
nism like the rotating, scaling and flipping which in one way or the other assist the
model to enhance its capacities of generalization.

Figure 2.1: Convolutional Neural Networks



2.1.3 Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture or CUDA [3] is a parallel computing platform
and application programming interface (API) which is created and developed by
Nvidia. It is a niche and conservative field of programming which allows developers
to use a CUDA-enabled graphics processing unit (GPU) for general purpose process-
ing that is known as GPGPU. It is an incredible environment for High-performance
computing (HPC) yet due to its capacity to scale, it is perfect for Deep learning,
Scientific computations, and Real-Time Processing functions.

e Global Memory (DRAM): Huge, NFS access by all threads, but slow.

e Shared Memory (L1 Cache):Faster and shared between threads in the
same block.

e Constant and Texture Memory: Specialized memory spaces for read-only
data

e L2 Cache: Acts as a high-speed data storage, used by the CPU.

e L3 Cache: Enhances Data Access Speed across Mutliprocessors

Figure 2.2: CUDA Architecture: Hierarchical Memory Structure

The figure above illustrates the hierarchical memory structure which showcase the
separation of caches and control units that enhances computational efficiency and
memory management.

Advantages

e Parallelism: CUDA allows thousands of threads to execute concurrently,
speeding up the processing of computationally intensive workloads.

e Scalability: The architecture scales with the number of available cores which
makes it adaptable to various GPU models and sizes.
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e Efficiency: Provides data access with minimal latency and enhances overall
performance by means of hierarchical memory structure.

e Flexibility: CUDA supports a wide range of applications; from scientific
simulations to deep learning, through its comprehensive programming model.

e Community and Ecosystem: A strong pool of libraries, resources and
support in community aids in development and optimization.

Applications

CUDA has changed the game in many fields, particularly in the area of deep learning
where it speeds up the training and inference of neural networks. It is used in medical
imaging to allow for real-time processing and analysis, essential for tasks like the
detection of pneumonia from X-ray images.

2.2 Related Works

The paper titled, ‘Deep Learning for Automatic Pneumonia Detection’ by [15] pro-
vides a detailed and fairly exhaustive understanding of how the concept of deep
learning can be applied to diagnosing pneumonia from chest X-ray images. One of
the major objectives in the existing research is to try out different types of CNN
structures and approaches toward achieving higher diagnostic performance. It is also
important to note that the authors use the feature extractor models like transfer
ability of VGG16, ResNet50, and InceptionV3 trained on the dataset of the pneumo-
nia image. Based on the findings, deep learning models, particularly when applied
with transfer learning, are much more effective than conventional approaches in diag-
nosing pneumonia, indicating the ability of the methods in supporting radiologists
in or outpatient practice. This study demonstrates that the improvement of the
structures of neural network and the introduction of data augmentation techniques
are critical factors in enhancing the accuracy and reliability of Medical Imaging
applications.

The paper entitled “An Efficient Deep Learning Approach to Pneumonia Classi-
fication in Healthcare” by Okeke Stephen published in 2019 [14] proposes a new
pneumonia CNN model from scratch that was trained to detect pneumonia based
on chest X-ray images. The problem with deep learning is that at times it can be
highly demanding in the amount and quality of data to generate and so unlike the
traditional methods that just use transfer learning, this study uses data augmenta-
tion techniques to try and increase the accuracy of the model with the little amount
of data available. The employed CNN architecture which is fine-tuned to the task of
feature extraction and classification implies high validation accuracy. It is equally
important also because the accuracy of using this approach in diagnosing pneumo-
nia is commendable, especially for health facilities that are poorly endowed. The

paper "CheXNet: The paper titled “Detecting pneumonia from chest X-rays using
deep learning” by[10] develops a more enhanced 121 layers Convolutional Neural



Network (CNN) named CheXNet to detect pneumonia in the chest X-ray scans. By
using DenseNet structure, the proposed model was trained on ChestX-ray14 dataset
which includes over 100, 000 X-ray images labeled with 14 classes of thoracic dis-
eases. CheXNet also adopts the transfer learning to improve its performance and
retrain the network just for the detection of pneumonia. Using the F'1 score as the
measure of accuracy, the given model was able to establish an f1 of 0. 435, which was
even more accurate than practicing radiologists assigned to aid in the study. This
work reveals that deep learning is well developed for the medical diagnosis and can
bring significant changes to enhance the diagnosis speed and accuracy. Large-scale
annotated datasets, deep learning architectures and pre-trained models are also em-
phasized as critical elements for building reliable, generalizable Al tools that can be
adopted in clinical practice settings.

The article by Ali Bakhoda [3] provides extensive detail about the SIMD or SIMT
model, which Cuda uses. The SIMT model used by Cuda stands for Single Instruc-
tion Multiple Thread, where multiple threads work the same based on one single
instruction. But they proceed on various data points, and all are being calculated
parallelly. Furthermore, this work describes a large number of non-graphic programs
developed in the Cuda model running on a new microarchitecture powered by the
parallel thread execution (PTX) virtual instruction set from Nvidia. The author
also claims that the number of GPU cores is much more than the CPUs, which is
really helpful for the parallel tasks used in various machine learning or deep learning
models.

Figure 2.3: Cuda Architecture [3]

The research article “Diagnosis of Pneumonia Using Deep Learning” by [12] exam-
ines the ability of deep learning to detect pneumonia and classify chest X-ray images
to normal, bacterial, or viral pneumonia. The authors used CNN to build a model
that: can accurately differentiate between bacterial pneumonia, viral pneumonia,
and normal cases. The study establishes CNN as highly accurate and efficient in
medical diagnosis, which forms the foundation of deep learning. To increase the
efficiency of the algorithm, data augmentation and preprocessing strategies were
used. From the results presented in the model, the accuracy was found to be very
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high, thereby implying the ability of the model to support quick and more accurate
diagnosis of pneumonia by healthcare practitioners.

The development of mainstream software that can take use of the growing number of
processing cores in multicore CPUs and many-core GPUs is covered in the paper by
R Farber [5]. This is basically done by Nvidia’s Cuda architecture and implements
the microarchitecture in scalable parallel systems. Additionally, Stratton et al.’s
framework, known as ” prototype source-to-source translation,” which maps a thread
block to loops within a single CPU thread in order to compile CUDA programs for
multicore CPUs, is explained in the study. Recent GPGPU models are comparable
to the kernels used by Cuda. It differs, though, in that it offers thread blocks, shared
memory, global memory, and flexible thread generation.

The SIMD model of Cuda is described in the paper ” Accelerating Large Graph Al-
gorithms on the GPU Using CUDA” by Pawan [1], which also explains how several
GPU threads can work on a single instruction. SIMD, or single instruction mul-
tiple data model, is vastly used in machine learning and ai sectors to work with
different parallel data points. In this paper, an implementation of a large graph was
shown involving almost a million vertices. Additionally, the author demonstrated
how cuda performs incredibly well on a few standard algorithms, including all-pairs
shortest path, single source shortest path, and breadth-first search. Here from the
table we can see how efficiently cuda cores executed the tasks and it takes much less
time when the graphs are not linear. The cuda cores are unable to achieve optimal
performance when the graph is linear because each loop requires processing every
vertex, which lowers speed.

Figure 2.4: Cpu vs Gpu computation comparison [1]

Michael Garland’s research article [2] describes the architecture and operation of
CUDA as well as the simple implementations of the SAXPY procedure that are
defined by the BLAS linear algebra library. serial implementations on a CPU cal-
culate one element in each iteration while all these independent elements are being
computed in parallel, assigning each a separate thread. The paper describes the
Tesla unified graphics architecture designed by Nvidia to accelerate parallel pro-
gramming. From the figure, we can see how well the GeForce 8300 + Core2 Duo
computes comparing doing a task only with the help of Core2 Duo (CPU). This is
because all the parallel tasks are being done in the Cuda kernels, and the complex
serial tasks are done in Cpu, and both of the hardware is being used at the same
time.
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Figure 2.5: performance on dense LU 2]

A GPU parallelization technique for 3D finite difference stencil computing using
CUDA is described in the paper by Paulius Micikevicius[[4]], where it delivers an
order of magnitude speedup over comparable seismic industry-standard algorithms.
One drawback of this method is that it ignores other framework parallelization
techniques in favor of concentrating solely on the 3D finite difference using Cuda.
However, it also explains how to leverage several GPUs in a single system to ac-
complish linear scaling with GPUs through the use of asynchronous computing and
communication.

The paper ”Comparison and Validation of Deep Learning Models for the Diagnosis
of Pneumonia” by [16] evaluates several deep learning models for classifying pneumo-
nia from chest X-ray images. The study uses the Kaggle dataset, containing 5216
training and 624 testing images, to compare the performance of five mainstream
CNN algorithms: a regular CNN, ResNet-50, MobileNet, VGG19 andResNet-18,

MobileNet, enhanced with depthwise separable convolutions, emerged as the
most efficient, achieving the highest accuracy (92.79%) and recall (98.90%) with
significantly lower computational costs. This research underscores the potential of
lightweight CNN models like MobileNet for rapid and accurate pneumonia diagnosis,
particularly in resource-constrained clinical settings.

In the paper titled “Early Diagnosis of Pneumonia with Deep Learning ” written by
Deniz Yagmur Urey, Can Jozef Saul and Can Doruk Taktakoglu in 2019 [13], deep
learning approach was proposed for early diagnosis of pneumonia through chest X-
ray image analysis. To predict the tumour size, the authors proposed the deep
learning structure of the CNN and residual networks, with preprocessing steps to
improve feature of images. Their approach entailed increasing the contrast of images;
changing the color space of features; and adding artificial light onto features, so as
to make out diagnoses more distinctly. These types of classifications attempted
at attaining an accuracy of 78% as per the proposed model outlined in fig. 73
percent of the samples, a much higher rate than before, which indicates that future
efforts in diagnosing early pneumonia may benefit greatly. In the current study,
the importance of machine-based techniques is expressed to maintain the level of
accuracy and reproducibility in the diagnoses revealing a possible shift in time that
eliminates human-centered imaging interpretation in clinical applications.
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Chapter 3

Dataset Desccription

3.1 Description of the Dataset

Dataset Source

The dataset for this study includes chest X-ray images from two sources on Kaggle:
”Chest X-Ray Images (Pneumonia)” and ” Chest X-ray (COVID-19 & Pneumonia)”.

Organization

The datasets are organized into train, test, and validation folders where each contains
subfolders for different categories.

Content

e Total Images: 5,863 chest X-ray images (JPEG format)
e Categories: Pneumonia, Normal, and COVID-19

e Source: Pediatric patients from Guangzhou Women and Children’s Medical
Center

Quality Control

All radiographs were screened for quality, removing low-quality scans. Diagnoses
were verified by two expert physicians and then reviewed by a third expert.

Clinical Context

e Normal: Clear lungs without abnormal opacification
e Bacterial Pneumonia: Focal lobar consolidation

e Viral Pneumonia: Diffuse interstitial pattern
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COVID-19 Pneumonia Data
e Source: "Chest X-ray (COVID-19 & Pneumonia)” on Kaggle

e Additional Categories: COVID-19
e Total Images: Included in the overall count

e Content: Chest X-rays of COVID-19 patients showing characteristic lung
opacities

Figure 3.1: Illustrative Examples of Chest X-Rays in Patients with Pneumonia.

3.2 Data pre-processing

Data pre-processing of chest X-ray images is the foundation of the deep learning
model preparation which includes several steps. First, each image is loaded using
the file path and its format is changed to gray, as all input data should be unified.
These images are then reduced to 100x100 pixels to ensure that the real images fed
to the model are in this required size. Next, the pixel values are scaled to get a pixel
value ranging from 0 to 1 by dividing the pixel value by 255 which helps in stabilizing
and speed up the training of the network. This pre-processing pipeline is crucial
to regulate a variation in the input data so that the probability of learning data in
an optimal way and predicting data accurately is improved. If done systematically,
the transformation of raw images into the right format contributes to efficiency and
boosting the generalization capacity of the model in unseen data sets.

Figure 3.2: Sapmle data image after Image Pre-Processing
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3.3 Class Distribution

Figure 3.3: Distribution of 4 classes

In the pie chart labeled above, it is possible to get some insights into the distribution
of elements of our dataset by classes which is also imbalance. Although, SNN can
efficiently deal with such imbalance sample; therefore, augmentation of this imbal-
ance sample was not performed. SNNs learn the matrices of similarities between
pairs of inputs; therefore, they require no further examples for the classification
of some classes of inputs. Such approach to learning from comparing with other
classes, as well as from using such methods as selection of pairs for comparison and
the contrastive loss gives the input SNN to train a very effective model of the classes
while at the same time making sure that the integrity of the datasets is upheld.
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Chapter 4

Methodology, Architecture, and
Model Specification

4.1 Evaluation of Well-known Existing Models

While exploring for the best model to incorporate into our model of detecting Pneu-
monia we considered the following four deep learning models namely ResNet, Incep-
tion and VGG16.

ResNet (Residual Networks)

ResNet was proposed in [8] to overcome the vanishing gradient problem and employs
the residual connections that are actually the connections that allow to skip one or
more layers. These connection enable the network to have capability of learning for
identity mappings and as a result have the ability of training very deep networks
with up to hundreds or thousands of layers. As for the performance of ResNet on
several benchmark datasets, ResNet yielded excellent results. For example, ResNet-
50, with depth of 50 layers, reached 3% top-5 error rate. They obtain 6% on the
ImageNet dataset, which is higher than ever seen before with previous models.

Inception

Inception, proposed by Szegedy et al.[9] , Completion organizations use inception
modules that extract multi-scale characteristics at the same depth. The convolution
operation involves applying multiple filters of different sizes (1x1, 3x3, 5x5) in the
same module which gives the network the ability to learn the fine as well as the
coarse features efficiently. Comparing to other deep learners, Inception is highly
accurate and fast, which makes it important in large scale image classifications. For
example, the Inception-v3 model described above recorded a top-5 error rate of 3%.
Every time is better than other networks with accuracy of 46% on the ImageNet
dataset, which again proved that it performs better and faster.

VGG16

Another popular CNN is VGG16 designed by Simonyan and Zisserman [11] mainly
known for its simplicity and depth. It comprises of multiple convolutional layers
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where several stacks of 3x3 filters are placed to ensure the extraction of hierarchical
features; fully connected layers for classification purposes. The presented approach
of the model’s architecture and the increased depth of the VGG16 network allowed
achieving high results in image classification. Surprisingly, VGG16 proposed a top-
5 error rate of 7.3 percent despite its rather basic structure. 3% on the ImageNet
dataset, but it has more than 138,089,840 parameters that are making it very large,
complex and computationally intensive.

4.2 Preference for Siamese Networks

Despite the robust performance of existing models like ResNet, Inception, and
VGG16, we found the concept of Siamese networks particularly compelling for our
application. Here, we explain the advantages and reasons for preferring Siamese
networks over these traditional models.

e Similarity Learning: Siamese networks are explicitly designed to learn a
similarity function, which is crucial for distinguishing between similar classes.
In medical image analysis, such as distinguishing types of pneumonia from X-
ray images, subtle differences need to be identified accurately. While ResNet
and DenseNet are excellent at feature extraction due to their depth and resid-
ual connections, they primarily focus on classification tasks rather than mea-
suring similarity. In contrast, Siamese networks excel in verification tasks,
making them ideal for medical diagnostics where understanding the relation-
ship between pairs of images is critical.

e Pairwise Comparisons: Siamese networks operate by comparing pairs of im-
ages, learning to determine whether the images are similar or different. This
approach enables the network to generalize better to new, unseen data. Incep-
tion and VGG16, though powerful, are designed to extract multi-scale features
and hierarchical features respectively, and are not optimized for pairwise com-
parison tasks. The pairwise comparison capability of Siamese networks allows
them to leverage smaller datasets more effectively by focusing on the relation-
ship between image pairs rather than solely on individual image classification.
This is particularly advantageous in medical fields where labeled data can be
scarce and obtaining more labeled data is costly and time-consuming.

¢ Robustness to Class Imbalance: Siamese networks handle class imbal-
ance effectively by focusing on the relationship between pairs rather than the
individual class distributions. Traditional models like ResNet, DenseNet, In-
ception, and VGG16 can suffer from performance degradation when trained
on imbalanced datasets. In medical image datasets, certain conditions (e.g.,
rare diseases) may have significantly fewer examples compared to common
conditions. By learning to discriminate based on similarity rather than abso-
lute classification, Siamese networks mitigate the impact of class imbalance,
leading to more reliable and balanced performance across different classes.

e Efficiency and Practicality: Where previously proposed ways need lots of
data with human annotation of each class, the Siamese networks are getting
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trained on less no of samples by focusing on pairwise comparisons. By admin-
istering tests using motion data to verify each implementation, it can reduce
the amount of data to be collected and facilitate faster development. More-
over, Siamese networks are designed in such a way that it allows us to integrate
new classes for recognition without much headache of forward pass complexity,
which is extremely beneficial in fields like medical diagnostics where addition
of new signs, image for diagnosis is a routine affair.

Limitations of Siamese Networks:

While Siamese networks offer significant advantages; they also come with certain
limitations which must be considered:

e Computational Intensity: Siamese networks require lot of computational
resources to train. This is because there are pairs of images input in the model
instead of single images, this doubles the amount of data to be processed. Dur-
ing training, for every pair of images, the embeddings are calculated for both
and a similarity measure between them is computed. This adds a computa-
tional burden, which means that you can wait much longer for the training
times and sometimes this is not an option, and for that you need to have hard-
ware reinforcement like GPUs. This requirement of substantial computational
power is a hindrance, especially in areas deprived of enough resources.

e Classical Siamese Networks and Binary Classification: Traditional
Siamese networks are mainly used for simple binary classification problems
where the model has to decide if two inputs belong to the same class or not.
This limitation might be a disadvantage in cases where tasks that involve
multi-class classification, that is, tasks that involve making a forecast of which
of the multiple possibilities is the correct class. Applying the Siamese networks
towards multi-class classification brings extra difficulties and research into the
design since the primary Siamese network is a binary classifier, and other
techniques like triplet loss need to be applied to enlarge upon the network’s
capability.

4.3 Development of an Efficient Custom Model

To overcome these limitations, we redesigned the model that is based on the Siamese
network, though with certain modifications. To adopt and keep the learning sim-
ilarities” idea present in the original model; the custom model proposes a newly
developed embedding layer and a main structure model. The new model is designed
for improved feature extraction and classification accuracy.

4.3.1 Embedding Model

We analyzed and examined the architecture of the Siamese network from the paper
”Siamese Neural Networks for One-shot Image Recognition” by [7] source. It is also
important to note that the paper has a clear breakdown of how the architecture of
the Siamese network was analyzed and examined. It was this paper that came up
with the concept of implementing Siamese networks in the form of image recognition
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with special focus on their capacity for learning similarity measures. In this case,

the embedding model includes several convolution layers with max pools after each
convolution layer. It should be noted that in the present case convolutional layers
are used for detecting a range of features at the varying level of abstraction. The
first layer would identify edges and textures that are basic to image recognition
whilst the subsequent layers could identify intricate features and structures in the
image. This is generally achieved through a hierarchy of feature extraction functions
that help the model capture high dimensional and informative representations of the
input images.

e Initial Layers: Focus on low-level features like edges and textures.
e Intermediate Layers:Capture mid-level features such as shapes and patterns.

e Deeper Layers: Detect high-level features like object parts or larger structures.

input —— {;UJLE; —» maxponl2d|—> {:U;:?zd maxpool2d Cﬂ:}fd —» | maxpool2d

conv2d
4x4

flatten

B

P
| output |
R

Embedding Layer

Figure 4.1: Embedding Architecture by [7]

Complexity

As mentioned earlier, architectures with this form of capability are very useful in
obtaining comprehensive features. But it tend to be computationally intensive and
therefore very slow. The convolutional layers are known to consist of many param-
eters that are unique and are required to be learned and this enhance the compu-
tational cost. Max-pooling layers are used to decrease the number of dimensions
which also leading to increased computational time. Training such a model calls for
massive 1/O requirements for data handling through high end graphics processing
units, GPUS as well as take a very long time which makes the model less suitable
for real time applications specially in those cases where high end resources are very
unlikely to be available.

Limitations

The high computational cost of the embedding model poses several challenges:

19



Resource-Intensive: Relies on a fair amount of processing and memory units
which may need internal and external support in most deployment scenarios.

Slow Inference: Through the model complexity there comes a disadvantage
of slow computation which is unhelpful to any real life problem where decisions
are needed instantly.

Scalability Issues: Sometimes, such increases can be extremely challenging
especially when dealing with large data sets or when the model has to be
scaled to handle more classes, in such scenarios it becomes cumbersome for
some actual applications.

Proposed Embedding Architecture

Our updated mapping has five convolutional blocks and each of them is designed to
discover progressively more abstract representations of the input images. Here’s a
detailed explanation:

Architecture:

First Block: The initial convolutional layer has 32 filters. Here each of
them forms with a 5x5 kernel, followed by batch normalization and max-
pooling.Mainly, This layer captures basic features like edges.

Second Block: The initial convolutional layer has 64 filters with a 3x3 ker-
nel, followed by batch normalization and max-pooling.Mainly, captures more
complex patterns.

Third Block: The 3rd convolutional layer has 32 filters with a 3x3 kernel, fol-
lowed by batch normalization and max-pooling. Mainly,capture intermediate-
level features.

Fourth Block: Here, total 256 filters with a 3x3 kernel are applied, followed
by batch normalization and max-pooling. And this basically captures even
more complex features.

Fifth Block: The final convolutional layer has 512 filters also with a 3x3
kernel, followed by batch normalization and max-pooling. And this mainly to
capture the most abstract features.

Final Embedding Block:Finally, The feature maps are flattened and passed
through a dense layer with 1024 units with a sigmoid activation in order to
generate the final embeddings.

Advantages:

Efficiency:Using batch normalization, the learning process of the model be-
comes more stable and it helps the model to converge faster and hence reduces
the time taken for training the model.

Regularization: Max-pooling layers help in reducing overfitting by down-
sampling the feature maps and then regularizing the selected features.
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Figure 4.2: Proposed Efficient Embedding Model

e Layer Depth: The model is able to learn features from multiple stages of
abstraction and identity hierarchical features, making it better at finding more
nuanced patterns than what was possible with previous architectures.

e Computation: Even though the depth is more, using smaller kernels (3x3),
and efficient pooling layers together do not make this Siamese version very
computationally expensive unlike conventional Siamese networks.

4.3.2 Custom CUDA L1 Distance Layer

We introduce a custom CUDA L1 distance layer that combines the raw power of
CUDA C++ with Python in order to perform accelerated L1 distance calculations on
GPU. This consists of writing a CUDA kernel to handle element-wise computations
and exposing it over a Python interface for easy integration with PyTorch.
Implementation:

e CUDA Kernel: The CUDA kernel (11_distance_kernel) computes L1 dis-
tance by subtracting corresponding elements of two tensors and taking the
absolut value.

e PyTorch Extension:handles out memory for the output tensor, launching
the CUDA kernel, and synchronization.

e Python Interface: This Function is exposed in Pure C++4-, using PyTorch
C++ extension API as a Python Module For direct Call into PyTorch Models.

Benefits:
e Efficiency:

— Speed: :As opposed to CPU-based implementation the CUDA kernel
applies thousands of GPU cores to perform parallel computations on large
tensors and takes less time for the computation.

21



— Resource Utilization: Moreover, Offloads computations to the GPU
and relieves the burden from the CPU and benefits the system’s capability
of managing multiple applications.

e Scalability:

— Large Datasets: The CUDA implementation works well with large size
of datasets, and therefore is suitable particularly for high dimensional
data format that is commonly used in the deep learning.

— Real-Time Applications: The rate of the GPU computations meets
the real-time processing requirement . And it is crucial within applica-
tions like the medical image analysis which needs immediate results.

Therefore, by utilizing this custom CUDA L1 distance layer, the model achieves
significant improvements in computation speed, scalability, and overall performance.
As a result, makes it an ideal choice for complex deep learning tasks requiring
efficient distance calculations.

4.3.3 Final Proposed Model

our proposed model runs on a dual-stream architecture that is designed to distin-
guish between X-rays that match and those that don’t. Two different kinds of image
pairs are processed by this complex model where input images paired with matching
positive images and input images paired with non-matching negative images. More-
over, the model structure is capable of multi-label classification. This architecture
extends traditional Siamese networks by incorporating a custom embedding layer, a
distance layer, and a softmax classification layer which enables it to classify inputs
into multiple categories efficiently.
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e Two Streams of Flow:

— Input and Validation Image Processing: In the first stream, the
input image is transformed and in the second stream, the validation image
is transformed. Both images go through the same CNN network layers
in getting the feature embeddings of the pictures.

— Embedding Comparison: The embeddings obtained from both the
streams are then compared using the intra-router L1 distance layer which
has been specially designed and implemented in CUDA to calculate the
Manhattan distance between the two embeddings.

— Multi-Label Classification: The distances calculated during the dis-
tance layer are taken into a dense layer with softmax activation for the
choice of input by the model in several categories, for example, various
types of pneumonia or normal conditions.

e Embedding Layers:

— Input Processing: In this model, two sets of identical convolutional
neural network units are applied to analyze the input and validation
images, capturing high levels of deep features.

— Convolutional Blocks: Every chosen CNN includes 5 convolutional
layers, each of which is succeeded by the batch normalization layers and
the max-pooling layers. This hierarchical feature extraction abstracts out
or captures all the details that are important for proper classification into
the different classes.

— Flattening and Dense Layer: The embeddings of the convolutional
blocks are flattened and the dense layer is applied with 1024 nodes and
sigmoid activation function to produce the final representations.

e Distance Layer:

— L1 Distance (Eucladian Distance): A fully differentiable CUDA-
accelerated L1 distance layer computes the difference between embedding
vectors of input and validation images and takes the absolute value. De-
spite the presence of other distance metrics, Euclidean distance is used
for its simplicity and suitability for measuring similarity, which is crucial
for comparing medical images and identifying small differences between
the two images.

e Classification Layer:

— Softmax Activation: The last layer of the classification layer is a dense
layer with softmax activation which can generate probability of each class
that the model is trained on. This configuration enables Multiple-label
classification which distinguishes different types of pneumonia and normal
person’s chest X-Ray.

Loss Function:

— The model uses categorical cross-entropy as the loss function to handle
multi-class classification tasks effectively.
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Optimizer:

— The Adam optimizer is used for training the model which provides adap-
tive learning rate optimization in order to enhance convergence speed and
accuracy.

Training Process:
— Data Preparation: The dataset is divided into training, validation, and
test sets to ensure model evaluation.

— Model Training: The model is trained using the training set, with the
help of loss function and optimizer that guides the learning process.

— Validation and Tuning: The validation set is used to tune hyperpa-
rameters and avoid overfitting which ensures the model’s generalization
well to unseen data.

— Evaluation: Finally, the model’s performance is evaluated on the test
set by assessing metrics such as accuracy, precision, recall, and F'1-score
in order to ensure its effectiveness in real-world applications.

Figure 4.3: Final Proposed Model
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Chapter 5

Result Analysis

5.1 Performance Assessment of the Proposed Model

We perform the assessment test in order to test the performance from our pro-
posed model and the outcome shows excellent performance in all types of tests.
The proposed model accurately differentiates between various forms of pneumonia
and demonstrates satisfactory results in terms of the model’s accuracy, recall, and
precision.

Evaluation Metrics

e Accuracy By observing the accuracy rate achieved it was evident that
a high number of test samples were grouped properly by the model.

e Recall This is vital in medical diagnosis and revealed the model has
a high TRUE POSITIVE rate for pneumonia and hence, few FALSE NEGATIVE.

e Precision The precision metrics depicted the capability of the model
in filtering the actual positive results and eliminating chances of
accidentally predicting false positives.

Efficiency The model is designed in such a way that it effectively analyses images
and uses optimized layers and CUDA cores to provide real-time performance. This
efficiency is very beneficial in real-world applications that are pertinent in medical
facilities where rapid identification of diseases is crucial.

5.1.1 Evaluation Metrics of proposed model

The proposed model demonstrated superior performance metrics on both the train-
ing and testing datasets, with high recall and precision values indicating its effec-
tiveness in pneumonia detection. Table 5.1 shows the detailed performance metrics.
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Metric Value
Recall 0.9902915
Precision 0.9906344
Mean Squared Error (MSE) | 0.0020542317
Pixel Accuracy 0.99063

Table 5.1: Performance Metrics

The training loss per epoch is depicted in Figure 5.1. The graph shows a significant
reduction in loss over the epochs, indicating that the model is learning effectively
and converging well.

Figure 5.1: Training Loss per Epoch

Figure 5.5 presents a visualization of the model’s predictions on sample validation
images. Each column shows an anchor image and its corresponding validation im-
age along with the true and predicted labels. This visualization demonstrates the
model’s capability to accurately classify different types of pneumonia.
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Figure 5.2: Visualization of Predictions: Each column shows an anchor image and
its corresponding validation image with the true and predicted labels.
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The evaluation metrics, loss graph, and visualization of predictions collectively affirm
the proposed model’s robustness and reliability in accurately detecting pneumonia
from chest X-ray images.

5.2 Distance layer comparison:

The comparative analysis of different distance layers used in the Siamese Neural Net-
work model reveals significant performance variations. Euclidean Distance emerged
as the most effective distance layer, demonstrating the lowest loss (0.0092) and the
highest recall and precision ( 0.9902,0.9906), indicating superior accuracy and min-
imal error. In contrast, Cosine Similarity performed poorly, with both recall and
precision at 0, suggesting its unsuitability for this task. Manhattan Distance showed
moderate performance with a loss of 0.937 and balanced recall and precision around
0.601, while Hamming Distance had the highest loss (1.2719) and the lowest re-
call and precision (0.4708 and 0.4711, respectively), reflecting high error rates and
unreliable predictions. These results underscore the critical impact of choosing the
appropriate distance metric, with Euclidean Distance proving to be the most reliable
for accurate similarity comparisons in this context.

Similarity Layers Loss Recall Precision

Cosine Similarity 1.1665 0 0
Eucladian Distance 0.0092 0.9902 0.9906
Manhattan Distance 0.937 0.6014 0.601
Hamming Distance 1.27119 0.4708 0.4711

Figure 5.3: Distance layer comparison
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5.2.1 Optimizers:

During the optimization stage of our model’s training, we assessed the effectiveness
of two distinct optimizers: Stochastic Gradient Descent (SGD) and Adam (Adaptive
Moment Estimation). Adam combines the best features of RMSProp and AdaGrad,
two more SGD enhancements. For every weight update, SGD keeps track of a single
learning rate; Adam calculates adaptive learning rates for every parameter. The
Adam optimizer uses the first moment (the mean) and the second moment (the
uncentered variance) of the gradients to estimate the learning rate for each weight
in the neural network:

my = Bimy_1 + (1= B1)g (5.1)

vy = Boveo1 + (1= Ba)g; 5.2)

7m:1T% (5.3)

@zlf% (5.4)
m

Opir = 0, — gie (5.5)

Adam outperforms the other models in our analysis because of its flexible learning
rate, which enables greater updates for rare parameters and smaller updates for
more common ones. Compared with SGD, which utilizes the same learning rate
for all weight updates and necessitates precise calibration, this adaptive approach
frequently leads to faster convergence and can handle the sparse gradients on noisy
issues more successfully.

To sum up, Adam was a better option for optimizing our Siamese network model
due to its versatility, efficiency, and less computing demand while processing sparse
data. This required modification of hyper- parameters.

Optimizer Accuracy
Adam (Adaptive Moment Estimation) 0.9906
Stochastic Gradient Descent (SGD) 0.9511

Table 5.2: Comparison of Optimizers
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5.3 Confusion matrix

The confusion matrix demonstrates the high classification accuracy of the model
across four classes: We have Normal ,Bacterial Pneumonia, Viral Pneumonia, and
COVID-19 as our four categories of pneumonia. The diagonal elements show the
correct classification on the outcome, with 227 of the 227 Normal cases, 218 of the
225 Viral Pneumonia cases, 415 of the 417 Bacterial Pneumonia cases, and 356 of
the 359 COVID-19 cases. The number of misclassifications is low and the majority
of them is between classes that are in the same category, for example, Bacterial and
Viral Pneumonia. This depicts the strength of our model concerning its ability in
detecting cases of COVID-19 with almost total precision. Summing up, these out-
laws corroborate the high accuracy and stability of our model in diagnosing various
types of pneumonia as well as normal conditions, which may be helpful in practical
applications.

Figure 5.4: Confusion matrix

These results highlight the model’s overall high performance, with particularly
strong accuracy in identifying Normal and COVID-19 cases.However, the minimal
misclassifications which occurred primarily between Viral and Bacterial Pneumonia,
suggests areas for further refinement to achieve even higher precision.
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5.4 Execution Time Comparison

Model Average Execution time per epoch
Proposed model for multi-class classification 425
G Koch's model for binary classification 440s

Figure 5.5: Execution Time

The decrease in average execution times and epochs per mode for multi-class classifi-
cation when compared to G. Koch’s model for binary classification demonstrates the
improvement in efficiency. Our proposed model also takes only 42 seconds to finish
an epoch, which denotes the model is efficient in handling multi-class problems. This
rapid execution time is significant especially in the medical image where timely di-
agnosis contributes to improved health. The efficiency of our model not only comes
with the added benefit of faster processing of large data sets compared to previous
method but also makes it practicable to use in real time clinical environment.
Compared to this, G. Koch’s model that is designed for binary classification only,
takes 440 Sec per epoch which is significantly longer. This longer time may prove
to be a drawback when the system is run in a situation where time is critical.
Whereas Koch’s model may be suitable for the binary classification problems or
problems where accuracy is paramount, its longer time to complete one epoch makes
it unsuitable for multi-class problems and contexts where real-time image analysis is
critical. A significant disparity in the execution time also establishes the relevance of
the proposed model in offering rapid, precise, and effective multi-class categorization
for health-associated image analysis.

30



Chapter 6

Conclusion

Hence, in the proposed model of pneumonia, we have documented high accuracy
in differentiating between various pneumonia types in chest X-rays. But adding
a custom distance layer that has been expedited through CUDA C++ and the
utilization of the FEuclidean distance measure enhanced the model’s accuracy and
speed. In addition to achieving higher recall and precision when compared to models
such as G Koch’s, our models returned results with greater speed, further enhancing
our model’s real-world usability in the clinical environment. The proficiency with
which the model can diagnose pneumonia means that this model could be easily
applied in clinical practice, thus giving doctors and other healthcare workers a new
powerful tool. Thus, this work emphasizes the necessity of higher techniques in
computational method and algorithms to increase the diagnosis accuracy and time
efficiency in medical imaging.

6.1 Limitations

However, it is essential to point out that the presented dataset carries several limi-
tations. First of all, the data which is used for the model is quite good but not very
diverse and not very large which can lead to low applicability of the model. Thirdly,
the number and type of images in the dataset may not be representative of all the
variations that one might find in clinical practice, the effect of which when using
the model on new images could be suboptimal. It is, nevertheless, crucial to point
out that the focus of this investigation is on the construction and assessment of the
tailored custom model, and not on the dataset. The contributions of this work are
in its design of the new architecture of the custom model and utilization of distance
layers.
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6.2 Future Work

In future work, we aim to gather large and diverse dataset to analyze the proposed
custom model and also try to overcome all those drawbacks which is mentioned in
this study. This will require finding datasets that contain the population of patients
and pneumonia types that are not present in our data, as well as images with varying
degrees of quality. In this way, it has been intended to validate the effectiveness of
the presented model as well as improve its reliability and its ability to be adapted
for other datasets. Further, the subsequent studies will extend the research through
incorporating state-of-the-art data augmentation techniques, CUDA and the trans-
fer learning methodology to enhance the proposed model’s performance. By doing
so, we hope to succeed in creating a more accurate and stable approach towards
pneumonia identification, specifically within medical imaging techniques.
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