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Abstract

In today’s digital world, voice emotion recognition is essential for ap-
plications like intelligent tutoring, audio mining, security, telecommuni-
cation, HCI, lie detection, and human-machine interactions in various
settings. Voice, which is used to express one’s perspective and com-
municate inter-personally, is one of the characteristics that differentiate
humans. The rise of IoT and wearable technology offers new opportuni-
ties for real-time, remote emotion detection through voice. In the con-
text of voice processing-based emotion recognition, particularly in the
Internet of Things wearable, this thesis investigates the possibilities of
tiny machine learning or TinyML. To accomplish this goal, we evaluated
Bidirectional-LSTM and CNN on both vector quantization and raw data
gave us notable accuracy of 88%, 80%, 85%, and 81% respectively and
LSTM, Random Forest, Logistic Regression, KNN and GRU on only raw
data shows accuracy rates of 86%, 89%, 89%, 86% and 82% using the
composite dataset that includes well-known datasets such as RAVDESS,
CREMA-D, TESS, and SAVEE. Furthermore, the models with the best
accuracy were selected to be implemented within the TinyML framework,
Tensorflow-lite. Our benchmarks highlighted that most of the best per-
forming models were Recurrent Neural Network (RNN) based, notably
BiLSTM, LSTM, GRU alongside the CNN model. Finally, after vali-
dating the findings through hardware implementation on Raspberry Pi
4, the study concludes that BiLSTM model would be most suitable for
speech emotion recognition tasks (SER) in the TinyML domain . The
hardware performance of the model illustrates how confident the model
actually is in predicting emotions from raw voice input within significant
resource and power constraints . These findings contribute to the ongoing
discourse on the intersection of voice emotion recognition, TinyML, and
IoT, showcasing the potential for enhanced human-machine interactions
in a wide variety of practical domains.

Keywords: Tiny Machine Learning (TinyML); Emotion Recognition;
SER; Voice Signals; Wearable IoT Devices; BiLSTM; CNNs; LSTM;
GRU; KNN
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Chapter 1

Introduction

1.1 Introduction

Emotion identification is in high demand due to the unprecedented surge
in the use of video conferencing platforms, which were widely utilized
throughout the epidemic. Again, due to the drawbacks of video-based
emotional recognition, such as privacy issues and the requirement for
an unobstructed camera view, voice analysis has the potential to be
a more versatile and covert substitute. The study explores the com-
plexities of speech recognition algorithms, with an emphasis on identify-
ing and evaluating auditory cues that correspond to different emotional
states. BiLSTM, CNN, GRU, and LSTM are some practiced models
that promise the future of speech emotion recognition. We examine the
use of different TinyML models, focusing on those that are appropri-
ate for the resource-constrained environment of wearable devices and
computationally efficient given that recurrent neural networks are excel-
lent at processing sequential data and temporal data like voice signals,
there is an exploration of their potential, with a focus on the BiLSTM
model. We further explore the integration of these TinyML models into
Internet of Things frameworks, enabling real-time emotional state detec-
tion and communication. This entails prototyping with commonly avail-
able microcontrollers in Bangladesh, such as Arduino Uno, Raspberry
Pi, ESP32, and STM32. An essential component of our research is a
comparative analysis of different models and algorithms, evaluating their
applicability, performance, and power consumption. This integrated sys-
tem has several potential uses in the fields of healthcare, mental health,
social interaction, and other areas. Our goal is to design a system that
not only achieves high accuracy in emotion detection but also optimizes
power usage, boosting the usefulness and sustainability of IoT wearable
devices. To do so, we began by conducting a comparative analysis of vari-
ous models and algorithms, assessing their performance based on metrics
such as accuracy, F1 score, confusion matrix, precision, and recall. Sub-
sequently, we identified the top-performing models and converted them
into tinyML for real-time detection evaluation.
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1.2 Motivation

We intend to work on voice-based emotion recognition with Tiny Ma-
chine Learning (TinyML) to create a supplemental tool that improves
human-computer interactions, particularly in wearable IoT devices. The
exponential expansion of voice assistants and the limits of video-based
emotional identification highlights the need for a versatile and discreet
alternative, such as voice analysis. We hope to develop systems that aid
in real-time emotional recognition, which is critical for applications in
healthcare, mental health, and social interaction, using TinyML’s ability
to execute efficient on-device processing. With institutional funding, we
hope to increase accessibility through mobile apps and websites, raising
awareness and contributing to the emerging field of emotion-sensitive AI
technology.

1.3 Research Objectives

Using effective TinyML algorithms, the primary goal of this research is to
further the field of emotion detection in wearable IoT devices. To train
and evaluate machine learning models, the project will entail gathering a
variety of speech datasets, with an emphasis on precisely identifying var-
ious dialects and accents. The most successful models will be integrated
into widely accessible microcontroller, and powerful algorithms that will
significantly advance mental health, social interaction, and healthcare
will be developed as a result of evaluating various machine learning clas-
sifiers and models in the context of TinyML and IoT.
1. Analyze the efficacy of current TinyML algorithms for voice signals
on Internet of Things wearables in detecting emotions.

2.Compare performance metrics of various machine learning classi-
fiers in the context of TinyML and IoT wearable devices.

3.Integrate the selected TinyML models into IoT frameworks, utiliz-
ing microcontrollers such as Arduino Uno, Raspberry Pi, ESP32, and
STM32, which are readily available in Bangladesh,all the while consider-
ing a suitable framework for the microcontroller (TensorFlow Lite)

4. Rigorously test and evaluate the integrated system in terms of
accuracy, computational complexity, and power consumption, aiming for
high accuracy and optimized power usage.

5. Explore the potential applications of the integrated system in mul-
tiple practical fields like healthcare, mental wellness, and social interac-
tion.
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1.4 Research Methodology

This study uses a complete research methodology to create and assess
Tiny Machine Learning (TinyML) models for real-time voice-based emo-
tion recognition in wearable IoT devices. To ensure broad application,
the methodology starts with collecting and preprocessing a diverse group
of speech datasets, including different dialects and accents. Preprocessing
methods include normalising audio signals, identifying key characteris-
tics such as Mel-Frequency Cepstral Coefficients (MFCC), and enriching
the dataset with techniques such as pitch change and time stretching to
improve model resilience.

The study addresses choosing and practicing a variety of machine learning
models and classifiers, including Bidirectional Long Short-Term Mem-
ory (BiLSTM) networks, Convolutional Neural Networks (CNNs), Long
Short-TermMemory (LSTM) networks, K-nearest neighbors (KNN), Ran-
dom Forest, Logistic Regression, and Gated Recurrent Unit. These mod-
els were chosen based on their shown usefulness in dealing with sequen-
tial and temporal data, such as voice signals, as well as their ability to
operate within the processing restrictions of wearable devices. The train-
ing comprises supervised learning, which uses labeled datasets to teach
models how to recognize and classify emotional states based on audio
inputs. The performance of each model is optimized by hyperparameter
tweaking and cross-validation.
Accuracy, precision, recall, and F1-score are some of the measures used
to assess the performance of these TinyML models. Furthermore, confu-
sion matrices and classification reports are provided to properly examine
the models’ effectiveness. The study also investigates the integration of
these models into IoT frameworks, using Raspberry Pi 4B to demon-
strate real-time emotional state detection. The comparative examina-
tion of these platforms takes into account elements such as computing
complexity and power consumption to assure the viability of continuous
operation in resource-constrained contexts. Our objective is to create an
energy-effective and efficient emotion recognition tool for use in health-
care, mental health, and relationships. The research project examines
TinyML models’ resilience and flexibility in real-world scenarios. This
includes evaluating their performance in varied environments, such as
background noise and voice volume. The models are carefully evalu-
ated with real-time speech inputs from users in various circumstances,
including indoor, outdoor, and noisy environments, to ensure their de-
pendability and accuracy in recognising emotions. Validating the models’
effectiveness in real-world applications is crucial, as external factors can
significantly affect the efficiency of voice-based emotion recognition sys-
tems.
An important component of this research is the examination of energy-
effective methodologies and procedures tailored specifically for TinyML
implementations. Given the restrictions of wearable IoT devices, which
usually have a short battery life, optimizing power usage while preserving
accuracy is crucial. The study investigates various approaches, such as
low-power feature extraction algorithms and lightweight model designs,
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to achieve a balance between computational efficiency and model perfor-
mance. Such efforts are targeted at increasing the battery life of wearable
devices, hence improving user experience and the feasibility of continuous
emotion monitoring.
The paper also discusses the ethical and privacy implications of adopt-
ing voice-based emotion identification technology. Ensuring user data
privacy and securing informed consent are key aspects of the study tech-
nique. The research includes best practices for secure data process-
ing, anonymization techniques, and regulatory compliance, including the
General Data Protection Regulation (GDPR). It also emphasizes the ne-
cessity of creating transparent and explainable models that allow users
to understand how their data is used and how the models arrive at spe-
cific emotional classifications. By putting ethical considerations first, the
study hopes to foster trust and promote responsible usage of emotion
identification algorithms in wearable IoT devices.

1.5 Research Problem

The growing reliance on voice assistants, combined with the limits of
video-based emotional identification, highlights the need for a more ver-
satile and discrete technique of emotion detection. Current systems fre-
quently encounter obstacles such as privacy concerns and the need for
unobstructed visual inputs. Visual inputs adds an unnecessary dimen-
sion to the scopes of IoT, requiring two simultaneous inputs for speech
emotion detection. The best approach to this issue , would be to directly
detect emotions from speech using only the audio data and thus reduc-
ing the input dimensions. There is an urgent need for effective real-time
emotion identification algorithms that can be effortlessly integrated into
wearable IoT devices, and uses voice signals only to predict emotions.
This study aims to overcome these issues by using Tiny Machine Learning
(TinyML) to create effective, on-device voice-based emotion recognition
systems. The purpose is to develop a supplementary tool that improves
human-computer interactions, notably in healthcare, mental health, and
social interaction applications, as well as to investigate approaches to
increase accessibility via mobile apps and websites.
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Chapter 2

Literature Review

Deep convolutional neural networks (CNNs) have been employed in paper
[8] to extract features from audio data and categorize them into various
emotion groups. To significantly enhance the classification performance,
the paper additionally employs an ensemble of seven binary classifiers,
each of which is tailored for a certain emotion category. Three distinct
audio datasets were employed by the authors: IEMOCAP, EMO-DB,
and RAVDESS. RAVDESS was selected because of its excellent acces-
sibility and collection of audio and video recordings with twelve male
and twelve female performers delivering English lines with eight distinct
facial expressions. Researchers studying speech-based emotion detection
frequently utilize EMO-DB, which has 535 audio utterances in German
categorized into 7 emotion classes. Improvised data is used to create
IEMOCAP.
The authors used these datasets to develop several incremental models
for the classification of emotions. They only used speech samples rep-
resenting the eight distinct emotion classes—sad, joyful, furious, calm,
afraid, surprised, neutral, and disgusted—from the RAVDESS database.
The datasets were integrated into the suggested framework, which begins
with feature extraction and then applies the baseline deep learning model.
The outcomes demonstrate that the proposed framework performs bet-
ter in terms of accuracy and generalization than earlier state-of-the-art
techniques.
Using deep learning approaches, Paper [10] conducts an extensive lit-
erature review on speech emotion recognition (SER). The authors have
carried out an extensive review of the literature on this subject, cov-
ering the databases utilized, the emotions retrieved, the advancements
made in speech emotion identification, and any associated restrictions.
Additionally, they covered the various deep learning methods for SER,
including deep belief networks (DBNs), long short-term memory (LSTM)
networks, and convolutional neural networks (CNNs), and summarized
the research based on these methods. The study has demonstrated that
recurrent architectures like Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) are significantly more effective in speech-
based classification, even if DNNs and CNNs offer state-of-the-art results
for video feeds and image processing. Likewise, Paper [1] provides an
additional thorough analysis of the current state-of-the-art SER. A thor-
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ough summary of the numerous SER emotional models that are now in
use, such as dimensional models, category models, and hybrid models,
is also given by this particular study. Not only that, but the research
also delves into the use and usefulness of a number of databases—like
the Interactive Emotional Dyadic Motion Capture Database, the Emo-
tional Prosody Speech and Transcripts, and the Berlin Emotional Speech
Database—that are used to train SER systems. These case-by-case re-
views help us effectively choose which algorithms and classification ap-
proaches would be best suited for our research works. A two-stage train-
ing process is suggested in Paper [7] for the semi-convolutional Neu-
ral Network (semi-CNN), which is the basis for learning affect-salient
features for Speech Emotion Recognition (SER). Initially, contractive
convolutional neural networks are used to process unlabeled samples to
identify potential features. Subsequently, the Semi-CNN receives these
features and employs a novel objective function that emphasizes fea-
ture saliency, orthogonality, and discrimination to train affect-salient,
discriminative features. The suggested approach takes a spectrogram
of the speech sound as input and comprises an input layer, one con-
volutional layer, one fully connected layer, and an SVM classifier. As
the semi-CNN learns features at each layer, the features remain affect-
salience concerning the SER aim, but they grow more and more invariant
to nuisance factors. The learnt features beat other well-known feature
representations regarding speaker variance and obtain higher accuracy
in emotion classification, according to the evaluation of this approach
on four benchmark datasets. A novel framework called Radial Based
Function Network (RBFN) employing crucial sequencing segment selec-
tion is presented in this paper [15]. The STFT algorithm is used to
convert speech sequences into spectrograms, which are then examined
by a CNN model to extract important features. After normalizing these
CNN features, they are input into a deep BiLSTM, which uses compara-
ble datasets that we previously covered to focus on important segments
and reduce computational complexity while improving the detection of
spatiotemporal information. This allows for the temporal information to
be captured for correct emotion recognition. However, Paper[11] places a
strong emphasis on audio or voice signal preprocessing. using the Global
Feature Algorithm to eliminate redundancy after extracting features us-
ing the MFCC, DWT, pitch, energy, and ZCR algorithms. Ultimately,
they discovered the universal emotions of happiness, anger, neutrality,
and sadness utilizing well-known machine learning techniques, including
SVM, Decision Tree, LDA, RBF, KNN, ANN, and GMM.

A frame-by-frame method for processing voice utilizing deep learning al-
gorithms and basic speech processing was presented in Paper [5]. It was
argued that frame-based processing is preferable than turn-based process-
ing. Their method also performed best when used with the IEMOCAP
dataset. This frame-based approach uses Fourier-transform-based filter
bank audio spectrograms and a deep multi-layered neural network to es-
timate emotion class probabilities for each frame in the input utterance.
Paper [4], which reviews the usefulness of voice assistants, is entirely dif-
ferent from the others. This highlights the necessity for emotion recog-
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nition to provide voice assistance, a new generation of technology, by
demonstrating how useful VAs can be for a variety of everyday chores.
The review research was presented in the publication using the ISO 9241-
11 framework as the measuring tool. Also covered were various classifier
models, including CNN, SVM, KNN, and CapsNet.

2.1 IoT Devices and Sensors (Arduino UNO/NANO,
TinyML board)

The articles [17], [2], and [19] are all concerned with directly integrat-
ing SER algorithms on Internet of Things (IoT) devices (Arduino-UNO,
NANO), but using different databases and methodologies. A model that
divides speech characteristics into three emotional states—positive, nega-
tive, and neutral—was put out by the authors of paper [17]. The model is
constructed using a Convolutional Neural Network (CNN). They trained
their model using the RAVDESS dataset, extracted features using a Mel-
frequency cepstral coefficient (MFCC), and developed the model using
TensorFlow Lite. The Arduino Nano 33 BLE Sense, which has several
sensors and Bluetooth for Low Energy connectivity, is the hardware used
for the study. Conversely, the goal of paper [2] is to reduce the high ex-
penses and computational complexity associated with conventional Edge
AI machine learning approach implementations. The same IoT as in pa-
per [17] was used (Arduino Nano 33 BLE), but the edge device and cloud
were given different jobs to complete: motion detection was handled by
the edge device, and emotion recognition was handled by the cloud. With
relatively little latency and resource consumption throughout testing, the
model has attained a high accuracy rate.

Thus, this study has succeeded in developing an efficient and economical
way to incorporate real-time emotion identification in Edge AI systems,
which is crucial for any TinyML project. An intriguing new stacking-
based ensemble TinyML framework has been introduced in Paper [19] to
facilitate cooperative decision-making between edge nodes and IoT de-
vices. In this instance, a system-wide choice is made by combining the
individual decisions made by end devices at the edge level. The study
uses an Arduino Uno device with LoRa-powered connectivity to show
the viability of the technique with a focus on a smart-agriculture use-
case scenario. They have also employed their own bespoke datasets with
over 10k samples and run MLP, DT, and RF classifiers on them. The
Random Forest (RF) and Decision Tree (DT) algorithms demonstrated
remarkably good accuracy, energy consumption, latency, and memory
usage. This research, which combines edge computing and TinyML,
is a step towards the implementation of useful hierarchical intelligent
IoT systems. On the other hand, when the model was translated using
TFLite, Paper [21] proposed a model for detecting and analysing emo-
tions utilizing tinyML technology on a TinyML board as the IoT device.
TensorFlow was utilised to build CNN and CNN-LSTM, two models that
were used in this study to classify emotions (8 categories). For analysis,
characteristics such as zero crossing rate, root mean square energy, and
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Mel Frequency Cepstral Coefficients (MFCC) were taken out of audio sig-
nals. Twenty thousand audio recordings gathered from the RAVDESS
and CREMA-D datasets are used to train the models.

In addition, the audio files were altered by stretching, shifting, and in-
troducing noise.Even while the paper’s findings might not be seen as
impressive in terms of generalization to previously unpublished data,
more model validation and improvement could produce far more reliable
and accurate outcomes. In order to better identify emotions, Paper [23]
suggested utilizing the Ardiuno Nano 33-BLE for voice and gesture de-
tection with the TinyML model. This provided a new level of complexity.
The hand gesture recognition system can identify movements of the hu-
man hand, and the speech recognition system can control the onboard
RGB LED based on spoken keywords. However, they did not present
any datasets for the proposal. They employed the EdgeImpulse frame-
work for model training and deployment with an easy approach. In the
end, Paper [18] proposed a classifier algorithm using a combined dataset
of two well-known speech recognition datasets, SAVEE and TESS. They
used a matrix to use 70% of the data as a train set and 30% as a test
set. Their proposed algorithm was then compared to existing machine
learning models, such as MNB, NB, INB, SVM, DT, and RF, and it
was discovered to have a high accuracy of 15.76%, a higher specificity of
20.69%, greater sensitivity of 15.59%, better precision of 12.62%, and a
30.65% improved f1-score. It gives our findings a fresh perspective. In Pa-
per[6], multi-class and hierarchical Support Vector Machines (SVMs) for
emotion recognition are investigated using the EMO-DB, DES, and Ser-
bian emotional speech datasets. varied moods are classified with varied
accuracy percentages in different datasets; the Serbian emotional speech
database has remarkably high accuracy percentages. The paper’s ma-
jor focus is on speech-based emotion classification using a multi-class
SVM with a hybrid kernel and thresholding fusion [25]. The hybrid ker-
nel selection, which includes linear, quadratic, polynomial, MLP, and
RBF kernels, produces notable accuracy percentages for a range of emo-
tions. The recommended strategy outperforms the reference in terms of
classifier-level accuracy and decision-level recall, especially in speaker-
independent emotion classification.

Paper [20], which investigates the application of various audio properties
and machine learning techniques for speech-to-emotion detection. Sup-
port Vector Machines (SVM), random forest classifiers, LSTM, and CNN
are utilised, displaying varying classification results on datasets such as
Ravdess, Save, Tess, and Crema-D. A deep learning technique for pattern
identification and feature selection for voice emotion recognition is pro-
vided in Paper [9], using CNN and ResNet34 in particular. The study’s
investigations, which displayed different accuracy percentages for differ-
ent feature sets, were conducted using the Berlin database. Paper [12]
examines effective voice emotion identification with enhanced feature ex-
traction, using Fractional Fourier transform on EMO-DB, SAVEE, and
PDREC datasets. The proposed strategy achieves high accuracy per-
centages in the dataset classification.
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The paper[26] describes a voice emotion identification system that inte-
grates HSF-DNN, MS-CNN, and LLD-RNN, three multi-task learning-
based classifiers. Using the interactive emotional dyadic motion capture
dataset (IEMOCAP), the study compares the weighted and unweighted
accuracies of each classifier. Paper [3] focuses on the use of Gaussian
mixture models (GMM) to recognise speaker variability in emotions.
When tested on the German FAU Aibo Emotion Corpus and the En-
glish LDC Emotional Prosody speech corpus, the model achieves a com-
bined classification accuracy of 70.4%. Paper [24] investigates speech
emotion categorization with an attention-based LSTM, demonstrating
improvements on the CASIA, eNTERFACE, and GEMEP dataset. The
suggested approach improves recognition accuracy by 5.4%, 33.8%, and
17.0%, respectively, indicating its ability to capture the speech wave-
form’s inherent temporal correlations. Paper [16], focuses on real-time
speech emotion recognition implemented using LSTM and Raspberry Pi,
and speech signal spectral analysis is used to identify depression . The
procedure entails taking features out of speech signals, creating an LSTM
model to identify emotions, and testing the model with real-time voice
signals that are gathered and processed by Raspberry Pi. The spectral
analysis carried out using MATLAB is covered in the paper, along with
the datasets used, including the RAVDESS and DAIC-WOZ databases.
The accuracy of the LSTM model for speech emotion recognition has
been reported to be 86%. Paper [14] used a Raspberry Pi 3 with a Digi-
tal Signal Processor (DSP) model to identify emotions in speech signals.
In order to ensure efficiency and clarity, the system recorded speech with
varying emotions, analyzed these signals using Python on the Raspberry
Pi, and then compared the outcomes with those processed in MATLAB.
The findings revealed that the Raspberry Pi 3 could recognise emotions
with an accuracy of 95% and 85% in MATLAB.
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Table 2.1 provides an in-depth summary of the reviewed paper, specif-
ically including references, specific tasks addressed, types of IoTs used,
classifiers applied, databases utilized, and the achieved accuracy, offering
a detailed understanding of the research findings.

Ref. Task IoTs Classifier Database Accuracy
[8] DNN for Speech

Emotion
Recognition.

N/A CNN, Ensemble
of Seven Binary
Classifiers

RAVDES,
EMO-DB,
IEMOCAP

RAVDESS- 71.61%
EMO-DB- 86.1%
EMO-DB- 95.71%
IEMOCAP- 64.3%

[10] Deep Learning
Techniques for
Speech Emotion
Recognition

N/A DBMs, DBNs,
CNNs, RNNs,
RvNNs, AE

IEMOCAP,
Emo-DB,
SAVEE

DCNN- Higher
Accuracies
Compared to
Traditional
Techniques

[7] Learn
Affect-Salient
Features for SER
Using Semi-CNN

N/A SVM SAVEE,
Emo-DB
DES MES

Semi-CNN Excels in
Complex Scenes
Outperforming
Other SER Features

[1] Survey on SER N/A BPNN, DES
BLR, MLP,
HMM, ANN,
Naive Bayes

SAVEE,and
Multilingual
Databases

SAVEE - 46.25%
EMA - 61.65% LDC
- 43.18%

[15] Clustering-Based
Speech Emotion
Recognition by
Deep BiLSTM

N/A CNNs, SVMs,
Random
Forests, MLP,
Softmax ,
Adam, BiLSTM

IEMOCAP,
EMO-DB,
RAVDESS,

IEMOCAP- 72.25%
EMO-DB- 85.50%
RAVDESS- 77.02%

[11] Feature Extraction
Algorithms to
Improve Speech
Emotion
Recognition

N/A SVM, Decision
Tree, LDA,
RBF, KNN,
ANN, GMM

EMO-DB,
RAVDESS

SVM- 77% RBF-
82% MLP- 78%
KNN- 64% HMM-
76.12% GMM-
78.77% ANN-51.19%

[5] Evaluating Deep
Learning
Architectures for
Speech Emotion
Recognition

N/A DNNs,
ConvNets,
RNNs, LSTM

IEMOCAP N/A

[4] A Systematic
Review of Voice
Assistant Usability

N/A CNN, SVM,
KNN, CapsNet,

N/A N/A

[17] Implementing
Real-Time SER on
Embedded
Systems.

Arduino
Nano
33 BLE
Sense

Convolutional
Neural Network
(CNN)

RAVDESS N/A
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[2] Continuous
Emotion
Recognition on a
Small-Scale Edge
Device

Arduino
Nano
33 BLE
sense

Deep Learning
Algorithms

AffectNet 86.7%

[19] Intelligent and
Efficient IoT Using
TinyML and Edge
Computing

Arduino
Uno

Multi-Layer
Perceptron
(MLP),
Decision Tree
(DT)

Custom
Dataset
(10,000
Samples)

Up to 99.9% (DT
and RF)

[21] Automatic
Emotion
Recognition
System Using
TinyML

TinyML
Board

CNN Model,
CNN-LSTM
Model

RAVDES,
CREMA-D

CNN = 67%,CNN-
LSTM=72%

[23] Implementation of
TinyML Models on
Ardiuno 33-BLE
for Gesture and
Speech Recognition

Arduino
Nano
33 BLE

NN, SVM,
K-NN, LDA,
HMMs

N/A N/A

[18] Automatic Speech
Emotion Detection

N/A Hybrid of Gray
Wolf Optimizer,
Naive Bayes

SAVEE
TESS

N/A

[6] Multi-Class and
Hierarchical SVMs
for Emotion
Recognition

N/A SVM EMO-DB,
DES, SESD

Angry- 64%
Neutral- 58% Sad-
72% Happy- 72%

[25] SPEECH-BASED
EMOTION CLAS-
SIFICATION

N/A SVM LDC Anger- 76.9%
Sadness- 95.4%
Disgust- 98.7%
Neutral- 100%
Happiness- 70.5%
Fear- 73.0%

[20] Emotion
Recognition From
Speech

N/A SVM Random
forest LSTM
CNN

Ravdess
Save Tess
Crema-D

SVM- 0.68 Random
Forest- 0.63 LSTM-
0.71 CNN- 0.74

[9] Pattern
Recognition and
Features Selection
For SER

N/A CNN ResNet34 Berlin MFCC- 94.21%
Prosodic Feature-
83.54%, LSP
Features- 83.65%
LPC Features-
78.13%
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[12] Efficient Speech
Emotion
Recognition Using
Modified Feature
Extraction

N/A Fractional
Fourier
Transform

EMO-DB
SAVEE
PDREC

EMO-DB 97.57%
SAVEE 80%
PDREC 91.46%

[26] Speech Emotion
Recognition Using
Fusion of Three
Multi-Task
Classifiers:
HSF-DNN
MS-CNN
LLD-RNN

N/A HSF-DNN
MS-CNN
LLD-RNN

IEMOCAP W/A- 54.4% U/A-
55.6%

[3] SPEAKER
VARIABILITY IN
EMOTION
RECOGNITION

N/A GMM LDC-
English
German

70.4%

[24] Speech Emotion
Classification
Using Attention

N/A LSTM CASIA eN-
TERFACE
GEMEP

Improved 5.4%,
33.8% 17.0%

[16] Real Time Speech
Emotion
Recognition Using
Raspberry Pi

N/A LSTM DAIC WOZ
RAVDESS

86%

[14] Real Time
Emotion Detection
From Speech Using
Raspberry Pi 3

N/A SVM HMM
GMM ANN

IEMOCAP
RAVDESS

85% in MATLAB
95% on the Arduino
Board

Table 2.1: Comparative Analysis of Key Findings from Selected Research Studies
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Despite significant advancements in speech emotion recognition (SER)
through various deep learning methodologies and extensive use of com-
prehensive datasets, several gaps remain in the current literature, es-
pecially concerning the integration of SER algorithms with TinyML on
IoT wearable devices. While studies have demonstrated the efficacy of
CNNs, LSTMs, and hybrid models in extracting and classifying emo-
tional features from speech data, there is a limited exploration of how
these models can be effectively adapted and optimized for the constrained
computational environments of wearable IoT devices. All the researches
has largely focused on standalone systems or cloud-based implementa-
tions, overlooking the challenges and opportunities of edge computing
in real-time emotion detection. Moreover, existing works that incorpo-
rate TinyML, such as those using Arduino platforms, have primarily
addressed basic classification tasks with limited emotion categories and
have not fully leveraged advanced deep learning techniques for enhanced
accuracy and efficiency. There is also a paucity of research on the de-
ployment and validation of these models in practical, real-world scenar-
ios, which is crucial for understanding their performance in dynamic and
noisy environments typical of wearable applications. This thesis aims to
bridge these gaps by proposing algorithms specifically transformed for
IoT wearable devices, focusing on optimizing deep learning models for
low-power, real-time emotion recognition and validating their effective-
ness in practical use cases.
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Chapter 3

Data Sets

3.1 Descriptions

In this section, we delve into the process of dataset collection, essential
for training models and conducting accuracy comparisons. To enhance
the robustness of our outcomes, we have carefully chosen a composite of
well-established secondary datasets.

3.1.1 Crowd-sourced Emotional Multi modal Actors Dataset
(CREMA-D)

The CREMA-D dataset is notable for its extensive diversity, including
7,442 original footage from 91 performers of diverse ages, genders, colors,
and ethnicities, including African American, Asian, Caucasian, Hispanic,
and unspecified backgrounds. The dataset, which includes contributions
from 48 male and 43 female performers ranging in age from 20 to 74,
provides a rich tapestry of vocal performances ideal for training robust
and generalized emotion classification models. Each actor recorded lines
expressing six different emotions: anger, disgust, fear, happiness, neutral-
ity, and sadness, with four levels of emotional intensity: low, medium,
high, and unspecified. The diversified amount of data ensures that mod-
els trained on CREMA-D can effectively avoid overfitting and succeed at
generalization tasks across a variety of datasets, making it a priceless as-
set for academics and professionals in emotional computing and emotion
recognition from audio.

3.1.2 Ryerson Audio-Visual Database of Emotional Speech
and Song (RAVDESS)

The RAVDESS dataset comprises recordings from 24 skilled actors, evenly
split between genders, who deliver two sets of phrases matched for con-
tent in a neutral North American accent. These phrases convey a range
of emotions including calmness, happiness, sadness, anger, fear, surprise,
and disgust. Each emotional state is depicted at two levels of intensity –
normal and strong – with an additional neutral expression included for
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comparison. This dataset serves as a valuable resource for researchers
studying emotional expression in speech and related fields such as ef-
fective computing and natural language processing. Its comprehensive
coverage allows for detailed analysis and modeling of various emotional
states across different intensity levels, contributing to a deeper under-
standing of human communication and interaction.

3.1.3 Surrey Audio-Visual Expressed Emotion (SAVEE)

The SAVEE dataset features high-quality audio recordings from four
male native English speakers affiliated with the University of Surrey.
Each speaker provided utterances across six primary emotions: anger,
disgust, fear, happiness, sadness, and surprise, along with a neutral cat-
egory. The dataset includes 15 TIMIT sentences per emotion, compris-
ing three common, two emotion-specific, and ten generic sentences, all
phonetically balanced. Additionally, each emotion-specific sentence was
recorded neutrally, resulting in a total of 120 utterances per speaker.
While the dataset offers valuable insights into male emotional expres-
sion, its gender imbalance suggests a need to supplement it with datasets
featuring female speakers for a more comprehensive emotion classifier.

3.1.4 Toronto Emotional Speech Set (TESS)

The TESS dataset, renowned for its high-quality audio recordings, exclu-
sively features female speakers, offering a valuable counterbalance to the
predominantly male-focused datasets in emotion classification research.
With a total of 2800 audio files, each containing one of 200 target words,
the dataset captures performances by two actresses across seven distinct
emotions: anger, disgust, fear, happiness, pleasant surprise, sadness, and
neutral. Organized by actress and emotion, the dataset’s structure facil-
itates easy access to the audio files in WAV format. This comprehensive
and meticulously curated dataset provides an excellent resource for train-
ing emotion classifiers, enhancing generalization capabilities, and miti-
gating the risk of overfitting.

Each dataset offers unique strengths and characteristics that contribute
to the robustness and generalization of the classifier. To ensure best pos-
sible speed and functionality for our research, all 7,442 sound clips from
91 different performers in the Crema-D dataset have been used. However
to be more precise, we have reduced the number of files in Tess to 2,800,
Savee to 480, and Ravdess to 1,440. These datasets contain unprocessed
data that is necessary for our purpose of classifying emotions.
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3.2 Data pre-processing

In the data pre-processing phase, we streamlined our approach by con-
solidating the diverse 12162 audio clips into a single cohesive data frame.
This allowed us to efficiently process and train our models. By meticu-
lously defining file directory paths and sourcing locations for the audio
files, we ensured precise data organization. We then categorized the data
based on gender attributes, enabling gender-specific analysis and insights
to be gleaned from the dataset. Additionally, we labeled the data ac-
cording to emotion categories, laying the foundation for emotion-specific
analyses and model training.

Conducting exploratory data analysis (EDA) was crucial to identify
any potential imbalances, particularly focusing on the male-to-female ra-
tio. This assessment provided valuable insights into the distribution of
emotions and genders within the dataset. To prepare the primary data
representation of the audio data, we introduced an array of audio samples
from our dataset. Then we performed a comparison study of the audio
ratios of male and female voices.

Figure 3.1 depicts the ratio between male to female ratio.

Figure 3.1: Male-to-female ratio
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After analyzing the data, we decided on the female ratio since it met
our evaluation criteria better and showed better performance, and the
result can be seen in figure 3.2

Figure 3.2: Female ratio

Furthermore, a trimming process was implemented to remove unnec-
essary silence intervals, enhancing the quality and relevance of the audio
data, thus can be seen in figure 3.3.

Figure 3.3: Audio Transformation

After that we can see Figure 3.4 of the spectrogram, illustrating the
frequency distribution over time.
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Figure 3.4: Spectogram

Ensuring uniformity and compatibility within the dataset was essen-
tial, so we applied a padding mechanism to guarantee that all audio sam-
ples obtained a consistent length. This standardized format facilitated
seamless processing and analysis across the dataset. Additionally, we cre-
ated a dictionary for mapping emotion labels to numerical values, along
with a function to encode emotion labels into their numerical represen-
tations. This encoding mechanism provided a standardized framework
for handling emotion data within our models.

3.3 Features Extraction

”Pyaudio”, a python library is widely used to perform a wide range of au-
dio analysis tasks, and thus we selected it for extracting the most notable
features from voice signals . Then we identified three main audio features
of the human voice and given priority to those during the feature ex-
traction stage: Root Mean Square Energy (RMSE), Zero Crossing Rate,
and Mel-Frequency Cepstral Coefficients (MFCCs). In this, MFCCs does
help with recording an audio source’s spectral envelope, and also helps for
gaining important knowledge about the frequency distribution. On the
otherside, MFCCs helps the audio input to convert into a Mel-frequency
scale in the multi-step procedure, and then the discrete cosine transform
is used to produce coefficients.

Next, the Zero Crossing Rate function measures the speed at which a
signal changes and provides important details regarding the fluctuation
patterns of the audio stream. This feature helps to explain abrupt shifts
in the audio waveform that’s useful for analyzing the speech.

Additionally, Root Mean Square Energy (RMSE) captures the audio
signal’s root mean square amplitude, that offers insight of its total en-
ergy content, and by squaring the amplitude values RMSE provides a
comprehensive understanding of the signal’s strength and intensity. This
aids in the analysis of voice loudness characteristics.

These extracted features serve as vital descriptors of the audio signals,
facilitating easier analysis and model training in subsequent stages. Their
inclusion ensures that our models can effectively capture the unique char-
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acteristics of the audio data, thereby enhancing their performance and
accuracy in emotion classification tasks.

3.4 Splitting Data

After completing feature extraction, we proceeded to split the data into
two distinct sets: an intermediate set and a training set. The train-
ing set comprised 88% of the data, providing a substantial portion for
model training, while the remaining 12% constituted the intermediate
set, allowing for initial evaluation and refinement. Also segmentation
was performed on the intermediate set, dividing it into testing and val-
idation subsets. We allocated 30% of the data from the testing set and
70% from the intermediate set for validation purposes. This meticulous
division facilitated a comprehensive assessment of model performance,
ensuring robustness and reliability in subsequent analyses.

By structuring the data in this manner, we were able to systematically
organize the labels into layers and convert them into a categorical format,
enhancing the interpretability and accuracy of our results. This rigorous
approach to data splitting laid a solid foundation for the development
and evaluation of our classification models.
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Chapter 4

Methodology

4.1 Proposed methodology

4.1.1 LSTM Model

Recurrent neural network architectures, such as Long Short-Term Mem-
ory, are excellent for processing and forecasting sequential data. Long-
term dependence are captured with effectiveness. To detect emotions,
this model is trained using a labelled dataset of inputs tagged with cor-
responding emotions. It acquires the capacity to identify input connec-
tions and patterns linked to specific emotional states. Because LSTMs
can manage and maintain long-term dependencies in data, such as emo-
tion recognition, they are very useful tools. This capacity results in high
accuracy and efficient performance in applications where context and
sequential information are important [5].

ft = σ(Wf · [ht−1, xt] + bf ) (4.1)

it = σ(Wi · [ht−1, xt] + bi) (4.2)

C̃t = tanh(WC · [ht−1, xt] + bC) (4.3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4.4)

ot = σ(Wo · [ht−1, xt] + bo) (4.5)

ht = ot ∗ tanh(Ct) (4.6)

Figure 4.1 shows the detailed model framework for LSTM, highlighting
the intricate architecture [5].
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Figure 4.1: Detailed Model Framework for LSTM [5]

4.1.2 Convolutional Neural Network(CNN)

CNNs are like Long Short-Term Memory (LSTM) models, excel at pro-
cessing sequential data with long-term dependencies. They also do well in
picture classification, object detection, and image segmentation. CNNs
use a unique architecture that includes convolutional layers, pooling lay-
ers, and fully connected layers to extract hierarchical representations
from input images, distinguishing nuanced features ranging from edges
to complex object shapes and textures. CNNs are trained on labeled
datasets correlating inputs with matching emotions or categories. They
develop the ability to recognize input patterns and connections connected
to specific emotional states or object categories. This capability, com-
bined with their ability to manage long-term dependencies within data,
establishes CNNs as reliable instruments for achieving high accuracy and
efficient performance in tasks requiring contextual and sequential infor-
mation, ushering in advancements across a wide range of domains, includ-
ing emotion recognition, object detection, and image classification. Our
methodology takes advantage of CNNs’ intrinsic capabilities to improve
picture data analysis and interpretation. CNNs excel at capturing subtle
characteristics required for effective classification and segmentation tasks
by meticulous training on labeled datasets. They also distinguish input
connections and patterns associated with distinct emotional states or
object categories. CNNs have the potential to achieve higher accuracy
and efficiency in applications that need complex contextual knowledge
and sequential information processing because of their ability to manage
and sustain long-term dependencies within data. Leveraging CNNs in
our proposed methodology demonstrates our dedication to pushing the
boundaries of image analysis, supporting advances in a variety of sectors
where exact recognition and understanding of visual data are critical [17].
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Convolution layer:

hij = σ

(
b +

∑
m

∑
n

I(i+m)(j+n)Kmn

)
(4.7)

Figure 4.2 shows the detailed model framework for Convolutional Neural
Networks (CNN), the layers of convolution, activation functions, pooling,
and fully connected layers that enable feature extraction and classifica-
tion [17].

Figure 4.2: Detailed Model Framework for CNN [17]

4.1.3 Gated Recurrent Unit (GRU)

In our suggested methodology, the Gated Recurrent Unit (GRU) is a reli-
able solution for processing sequential data with long-term dependencies.
GRU is a recurrent neural network (RNN) architecture that successfully
captures temporal patterns in sequential input. Unlike standard RNNs,
GRU uses gating methods to control the flow of information, such as an
update and reset gate. These gates allow the GRU model to selectively
update its internal state representation and retain important informa-
tion across time, which aids in the capture of long-term dependencies. In
our methodology, GRU models are trained utilizing common procedures
such as backpropagation through time (BPTT) and gradient descent op-
timization. The training procedure comprises feeding sequential data
into the GRU model, which then learns and adapts its internal state
representation iteratively. By using GRU’s gating features, the model
effectively captures and utilizes long-term dependencies in the data. We
tailor the GRU model’s architecture and parameters to optimize its per-
formance for our specific task, whether it’s time series forecasting, natural
language processing, or emotion recognition, using meticulous hyperpa-
rameter tuning and optimization techniques like grid search and random
search. By including GRUmodels in our suggested methodology, we hope
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to improve sequential data analysis, allowing for breakthroughs in a vari-
ety of disciplines where contextual knowledge and temporal information
processing are critical [13].

zt = σ(Wxzxt +Whzht−1 + bz) (4.8)

rt = σ(Wxrxt +Whrht−1 + br) (4.9)

h̃t = tanh(Wxhxt +Whh(rt ⊙ ht−1) + bh) (4.10)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (4.11)

Figure 4.3 illustrates the GRUmodel framework, showing how the update
and reset gates control information flow and memory in the network [13].

Figure 4.3: Detailed Model Framework for GRU [13]

4.1.4 Bidirectional LSTM (BiLSTM)

To enhance our model’s capacity in terms of LSTM for identifying cor-
relations and connections, we utilized a Bidirectional Long Short-Term
Memory (BiLSTM) network. This approach allowed us to extract con-
textual information from both the preceding and following states in the
sequence data. The BiLSTM architecture is formed with two LSTM
layers: one processes the sequence from beginning to end (forward di-
rection), while the other processes the sequence from end to beginning
(reverse direction). The model is able to analyse the preceding and sub-
sequent context at every point in the sequence. In this case, the input
data was preprocessed, including feature normalisation, missing value
management, and noise removal, to ensure quality and consistency. The
optimizer was utilised to effectively update the model parameters after
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the BiLSTM model was trained using a loss function appropriate for
our goals, such as Mean Squared Error (MSE) for regression or Cross-
Entropy Loss for classification. Metrics that we worked with including
accuracy, precision, recall, and F1-score for classification tasks and Root
Mean Squared Error (RMSE) or Mean Absolute Error (MAE) for regres-
sion were employed to evaluate the performance of the BiLSTM model.
Hyperparameter tweaking was used to adjust the model’s performance,
changing variables including the number of LSTM units, learning rate,
batch size, and epoch count. We employed both grid search and random
search to find the best hyperparameter configuration. When it came
to collecting long-term dependencies and taking advantage of context in
both directions, the BiLSTM model fared better than baseline techniques
like unidirectional LSTM and other RNN variants [15].

The detailed BiLSTM model framework is shown in Figure 4.4, show-
ing how the bidirectional structure processes information from past and
future sequences to enhance context understanding [15].

Figure 4.4: Detailed Model Framework for Bidirectional LSTM [15]

4.1.5 Random Forest

Our research paper introduces Random Forest as a flexible ensemble
learning algorithm for regression and classification applications in the
methodology section. A type of supervised learning method called Ran-
dom Forest creates a lot of decision trees during training and outputs the
mean prediction (regression) or the mode of the classes (classification)
for each tree. The Random Forest enhances the diversity and resilience
of the ensemble model by building each decision tree using a random sub-
set of attributes and data points. This collective approach finds complex
patterns in the data and minimizes overfitting by averaging the predic-
tions of several trees. Moreover, Random Forest offers information on
the importance of features, which makes it possible to identify impor-
tant predictors that have an impact on the result variable. In our study
process, Random Forest is a useful categorization approach, particularly
when there is a complex or nonlinear relationship between inputs and out-
comes. By utilizing the combined knowledge of numerous decision trees,
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Random Forest generates forecasts that are trustworthy and strong, ef-
fectively capturing intricate patterns and correlations within the data.
The random forest model is also flexible enough to handle categorical
variables and missing data, which makes it appropriate for a variety of
real-world situations. We seek to make use of Random Forest’s capac-
ity for achieving high accuracy and generalization performance through
extensive testing and assessment, providing essential insights into the
predictive elements that impact our research objectives[15].

Figure 4.5 explores the detailed model framework for Random For-
est, a versatile and robust ensemble learning method. This framework
illustrates how Random Forest combines multiple decision trees to make
predictions, offering a powerful tool for classification and regression tasks
across various domains [15].

Figure 4.5: Detailed Model Framework for Random Forest [15]

4.1.6 Logistic Regression

Logistic regression is a basic statistical method used for binary classifica-
tion tasks, where we want to predict one of two possible outcomes. Unlike
linear regression, which predicts continuous values, logistic regression es-
timates the probability that an observation belongs to one of two groups
based on one or more predictor variables. This makes it especially useful
when the outcome is categorical and the relationships between predictors
and the outcome are not linear. In our study, we use logistic regression
to understand the relationship between predictor variables and binary
outcomes[22].
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By calculating the coefficients for each predictor, logistic regression
helps us see how these variables influence the probability of the outcome,
making it easier to interpret and predict results in various situations.

Given features (X1,X2, . . . ,Xn)

weights (W1,W2, . . . ,Wn)

the probability (p) of a certain class can be predicted as:

Probability of a class:

p =
1

1 + e−(b+W1X1+W2X2+...+WnXn)
(4.12)

Here (e) is the base of natural logarithms, and (b) is the bias.
We can also see the framework of logistic regression in Figure 4.6 to

clarify more about its detailed information [22].

Figure 4.6: Detailed Model Framework for Logistic Regression [22]

4.1.7 K-Nearest Neighbors (KNN)

Our thesis’ technique part describes k-nearest Neighbours (k-NN) as
a basic method for regression and classification applications. A non-
parametric, instance-based learning technique called k-NN bases its pre-
dictions on the degree to which entering data points resemble training
examples. The k-NN principle is simple: a data point’s class (for clas-
sification) or value (for regression) is determined by the majority class
or average value of its k nearest neighbours in the feature space. An
essential parameter that influences the generalizability and performance
of the model is the selection of k. Essentially, the foundation of k-NN is
the notion that data points with identical goal values or similar feature
values are members of the same class. Because of this, k-NN performs
particularly well in scenarios where the data distribution is unknown and
the decision boundary is complex or nonlinear [11].
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Also figure 4.7 represents the detailed frame work for K-nearest neigh-
bors[11].

Figure 4.7: Detailed Model Framework for K-Nearest Neighbors [11]

4.2 Working plan

The initial phase in our recommended work plan is to collect data in-
puts for our sensors while taking into account numerous complexity and
parameter concerns. These issues include ambiguity, noise level, delay,
pitch, length, and accent. To assure the quality and dependability of
the inputs, each of these factors necessitates a unique approach to data
transformation and preprocessing.

After collecting and preprocessing the data, we analyze it using a
variety of modeling methodologies. These approaches include data clus-
tering, which groups comparable data points, and classification, which
divides data into specified categories. These models assist in under-
standing trends and making predictions based on sensor data. After
constructing and improving the models, we evaluate their performance
and test accuracy. This evaluation verifies that the models fulfill the
required requirements and can manage the intricacies of the data. To
prepare the models for deployment on resource-constrained devices, we
convert them to TensorFlowLite, a lightweight version of TensorFlow op-
timized for mobile and embedded devices. This conversion optimizes the
models, lowering their size while increasing their efficiency.

Finally, the optimized models are deployed on IoT devices, allowing
for real-time data processing and decision-making at the edge. This
deployment signals the end of our approach, delivering a strong response
to the research challenge.

Figure 4.8 depicts the functional flowchart for this process, highlight-
ing each stage from data collection to model distribution on IoT devices.
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Figure 4.8: Detailed Work Plan
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Chapter 5

Implementation

5.1 Implementation and Results

In this section, our focus lies on the application and expected outcomes of
the provided model. The primary model utilized across all implementa-
tions, testing, and validation is the BiLSTM classifier. After conducting
appropriate pre-processing steps, the input data was partitioned into
distinct training, testing, and validation segments. Subsequently, we em-
ployed a variety of classification models including BiLSTM,CNN, LSTM,
Random forest, Logistic regression, KNN and Vector Quantize models to
assess and predict the inputs based on these segmented datasets. Lastly,
this section presents the anticipated results derived from the application
of these classification models, demonstrated through the presentation of
confusion matrices and classification reports. These results are visually
depicted using the matplotlib function of the MATLAB package.

5.2 Classification

For the categorization of input data, ML models which can expertly
analyze temporal series of data - BiLSTM, CNN,LSTM,GRU and clas-
sification capabilities of KNN, Random forest, Logistic regression—are
employed. The experiment makes use of 32 gigabytes of system RAM,
two 2.00GHz Intel(R) Xeon(R) CPUs, an NVIDIA T4 x2 GPU with 16
gigabytes of VRAM per GPU, and a single kernel of the Kaggle virtual
machine. Performance is measured by evaluating the loss values, classi-
fication reports and training accuracy of the appropriate dataset.

Table 5.1 provides a comprehensive understanding of the model archi-
tecture and specific training parameters used in our model training.
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Detailed Architecture of Machine Learning Models

Model Output Shape Param # Trainable Params

BiLSTM

bidirectional (Bidirectional) (None, 352, 128) 40960 40960

bidirectional 1 (Bidirectional) (None, 128) 98816 98816

dense 16 (Dense) (None, 6) 774 774

LSTM

lstm 12 (LSTM) (None, 352, 64) 20480 20480

lstm 13 (LSTM) (None, 64) 33024 33024

dense 12 (Dense) (None, 6) 390 390

CNN

conv1d 6 (Conv1D) (None, 348, 64) 4864 4864

max pooling1d 6 (MaxPooling1D) (None, 174, 64) 0 0

conv1d 7 (Conv1D) (None, 170, 64) 20544 20544

max pooling1d 7 (MaxPooling1D) (None, 85, 64) 0 0

flatten 3 (Flatten) (None, 5440) 0 0

dense 13 (Dense) (None, 64) 348224 348224

dense 14 (Dense) (None, 6) 390 390

GRU

gru (GRU) (None, 352, 64) 15552 15552

gru 1 (GRU) (None, 64) 24960 24960

dense 15 (Dense) (None, 6) 390 390

Table 5.1: Training Parameters of BiLSTM, LSTM, CNN, and GRU Models

Training Parameters

• Loss Function: Categorical Cross Entropy

• Optimizer: RMSProp

• Metrics: Categorical Accuracy

• Number of Epochs: 50

Data Enhancements

• Preprocessing Function: preprocessinput

• Data Augmentation Techniques:

– Horizontal Flip: True

– Shear Range: 0.2

– Zoom Range: 0.2
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5.3 Results

BiLSTM
In order to properly extract emotions from spoken communications, one
of the classifiers we have used is Bidirectional Long Short-Term Memory
(BiLSTM) models for properly understanding the series of temporal data
and identify properties of voice signals that can be mapped to various
emotion templates in this study. Our method uses the temporal depen-
dencies captured by BiLSTM structures to analyze acoustic properties
collected from audio recordings, in contrast to traditional text-based ap-
proaches. In order to represent the acoustic properties, the pre-processing
step entails segmenting the voice clips into smaller chunks and collecting
pertinent audio features, such as spectrograms or Mel-frequency cepstral
coefficients (MFCCs). These features are then imported into the BiL-
STM model, which is designed to process sequential audio input and so
be able to record temporal dependencies in both directions.

For reference, Table 5.2 provides detailed classification report of BiL-
STM. Figure 5.1 shows the loss metrics for BiLSTM, figure 5.2 shows the
accuracy metrics for BiLSTM, and figure 5.3 provides confusion metrics
of BiLSTM.

Precision Recall F1-Score Support

Neutral 1.00 0.88 0.94 17

Calm 0.83 0.86 0.84 22

Sad 0.89 1.00 0.94 16

Happy 0.86 0.86 0.86 22

Fear 1.00 0.94 0.97 17

Disgust 0.95 0.95 0.95 20

accuracy - - 0.88 114

Macro Avg 0.92 0.92 0.92 114

Weighted Avg 0.92 0.91 0.91 114

Table 5.2: Classification Report for BiLSTM
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Figure 5.1: Loss Metrics for BiLSTM

Figure 5.2: Accuracy Metrics for BiLSTM

Figure 5.3: Confusion Metrics for BiLSTM
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CNN Model
In our comparative analysis, the CNN model exhibited notable perfor-
mance, achieving 85% accuracy after 50 epochs of training. Figure 5.4
illustrates the loss metrics of CNN and figure 5.5 shows the accuracy
metrics of CNN.

Figure 5.4: Loss Metrics for CNN

Figure 5.5: Accuracy Metrics for CNN

33



After executing every training setting, the confusion matrix was created
can be found in figure 5.6 and classification report of CNN in Table 5.3.

Figure 5.6: Confusion Matrix for CNN (Raw)

class Precision Recall F1-Score Support

Neutral 0.94 0.88 0.91 17

Happy 0.82 0.82 0.82 22

Sad 0.88 0.94 0.91 16

Angry 0.91 0.91 0.91 22

Fear 0.83 0.88 0.86 17

Disgust 0.89 0.85 0.87 20

Accuracy - - 0.85 114

Macro Avg 0.86 0.86 0.85 114

Weighted Avg 0.87 0.85 0.85 114

Table 5.3: Classification Report for CNN
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LSTM Model

For our study, using the provided dataset, our LSTM model demon-
strated commendable performance, achieving an accuracy of 86% over 50
epochs post-input integration. This outcome underscores the effective-
ness of LSTM architecture in capturing temporal dependencies within
the data. Referencing Figure 4.2, which showcases the LSTM loss chart
and training and validation accuracy plots, we can visually validate the
model’s convergence and generalization capabilities over the training pe-
riod. Such robust performance highlights the potential of LSTM mod-
els in our context and underscores their relevance in tackling sequence-
based tasks effectively. For reference, figure 5.7 shows the loss metrics
for LSTM, and figure 5.8 shows the accuracy metrics of LSTM.

Figure 5.7: Loss Metrics of LSTM
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Figure 5.8: Accuracy Metrics of LSTM

The heatmap is shown in Figure 5.9 below, and the confusion matrix
has been created after all training settings have been run and Table 5.4
showcases the classification report.

Figure 5.9: Confusion Matrix for LSTM (Raw)
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Class Precision Recall F1-Score Support

Neutral 0.96 0.94 0.95 17

Happy 0.91 0.91 0.91 22

Sad 0.94 0.94 0.94 16

Angry 0.95 0.95 0.95 22

Fear 0.88 0.88 0.88 17

Disgust 0.85 0.85 0.85 20

Accuracy - - 0.86 114

Macro Avg 0.87 0.87 0.86 114

Weighted Avg 0.87 0.86 0.86 114

Table 5.4: Classification Report for LSTM

Gated recurrent units Model
Using the input dataset, however the GRU model attained 82% accuracy
across 50 epochs after input implementation. With an accuracy of 82%,
the GRU model demonstrated its capacity to recognise emotions from
voice notes. This degree of precision shows how well the model learns
and generalizes the temporal patterns linked to various emotional states.
We have given below the GRU loss chart and plots for training and
validation accuracy along with confusion matrix. For reference, table 5.5
provides the classification report.

Emotion Precision Recall F1-Score Support

Neutral 0.83 0.88 0.86 17

Calm 0.77 0.91 0.83 22

Sad 0.80 0.75 0.77 16

Happy 1.00 0.64 0.78 22

Fear 0.80 0.94 0.86 17

Disgust 0.81 0.85 0.83 20

Accuracy - - 0.82 114

Macro Avg 0.84 0.83 0.82 114

Weighted Avg 0.84 0.82 0.82 114

Table 5.5: Classification Report for GRU

For reference, Accuracy Metrics 5.11, Loss Metrics 5.10, Confusion
Matrix 5.12 are given in next page.
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Figure 5.10: Loss Metrics for GRU

Figure 5.11: Accuracy Metrics for GRU

Figure 5.12: Confusion Matrix for GRU
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KNN Model

The KNN model is remarkably good at identifying emotions from voice
notes, as evidenced by its 86% accuracy rate in emotion detection. This
degree of accuracy indicates that the model was successful in identifying
patterns in the acoustic characteristics that correspond to various emo-
tional states, making it possible to classify the underlying emotions that
were portrayed in the voice recordings in a trustworthy manner. Classi-
fication report 5.6 and Confusion Matrix 5.13 are given below.

Precision Recall F1-Score Support

Neutral 0.84 0.94 0.89 17

Calm 0.89 0.73 0.80 22

Sad 0.75 0.94 0.83 16

Happy 0.94 0.77 0.85 22

Fear 0.89 0.94 0.91 17

Disgust 0.86 0.90 0.88 20

Accuracy - - 0.86 114

Macro Avg 0.86 0.87 0.86 114

Weighted Avg 0.87 0.86 0.86 114

Table 5.6: Classification Report for KNN

Figure 5.13: Confusion Matrix for KNN
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Random Forest Model

The audio recordings were processed to obtain spectrograms, pitch,
energy, and Mel-frequency cepstral coefficients (MFCCs), which were
then fed into the model. Based on these auditory traits, emotions were
classified using the Random Forest technique, which builds an ensemble
of decision trees trained on random subsets of the data and features.
The model’s remarkable 89% accuracy rate suggests that it is capable of
effectively extracting emotions from voice notes. This high degree of ac-
curacy shows how well the model captures and categorises the emotional
content of speech depicted in the confusion matrix 5.14 and classification
report 5.7.

Precision Recall F1-Score Support

Neutral 1.00 0.94 0.97 17

Calm 0.95 0.82 0.88 22

Sad 0.89 1.00 0.94 16

Happy 0.90 0.86 0.88 22

Fear 0.81 1.00 0.89 17

Disgust 0.84 0.80 0.82 20

Accuracy - - 0.89 114

Macro Avg 0.90 0.90 0.90 114

Weighted Avg 0.90 0.89 0.89 114

Table 5.7: Classification Report for Random Forest

Figure 5.14: Confusion Matrix for Random Forest
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Logistic Regression Model

The feelings were categorized using the logistic regression approach,
which calculates the likelihood of each emotion category by applying
a logistic function to a linear combination of the input characteristics.
Surprisingly, the logistic regression model’s accuracy of 89% shows how
well it can distinguish emotions from voice notes. This high degree of
accuracy shows how well the model captures and categorizes the emo-
tional content of speech. Below is reported classification report 5.8 and
confusion matrix 5.15.

Precision Recall F1-Score Support

Neutral 1.00 0.82 0.90 17

Calm 0.90 0.82 0.86 22

Sad 0.79 0.94 0.86 16

Happy 0.87 0.91 0.89 22

Fear 0.94 0.88 0.91 17

Disgust 0.86 0.95 0.90 20

Accuracy - - 0.89 114

Macro Avg 0.89 0.89 0.89 114

Weighted Avg 0.89 0.89 0.89 114

Table 5.8: Classification Report for Logistic Regression

Figure 5.15: Confusion Matrix for Logistic Regression
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Results after Vector Quantization (VQ) of Data:

In an attempt to minimize dimensionality, we have tried vector quanti-
fying our extracted features, specifically the Mel-Frequency Cepstral Co-
efficients (MFCC), to reduce the allocation of computational resources
and the overall runtime of our models. A codebook with k = 10 clusters
was created using K-means clustering. Each MFCC was then substituted
with a codeword from the codebook, resulting in a quantized version of
the MFCC (mfccs vq), which we utilized to train our models and assess
performance. You can see below figure 5.16 for the loss metrics and figure
5.17 for the accuracy metrics for BiLSTM vector quantized.

Figure 5.16: Loss Metrics for BiLSTMV Q

Figure 5.17: Accuracy Metrics for BiLSTMV Q
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After training, the accuracy was 0.7999 80%, which is (88-80)= 8%
less than the RAW output. For reference, figure 5.18 shows confusion
matrix after vector quantization.

Figure 5.18: Confusion Matrix (BiLSTMV Q)

For CNN also we tried to do the vector quantifying to minimize dimen-
sionality. Also, it keeps the main weights of the model while reducing
the unnecessary once.The results obtained are given below.

For reference, Figure 5.19 shows the loss metrics for CNN VQ
Figure 5.20 shows the accuracy metrics for CNN vector quantized.
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Figure 5.19: Loss Chart of(CNNV Q)

Figure 5.20: Accuracy Chart of (CNNV Q)
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After training, the accuracy was 81%, which is (85-81)= 4% less than
the RAW output. For reference 5.21 provides the confusion metrics of
CNN with vector quantized.

Figure 5.21: Confusion Matrix for CNN (CNNV Q)

Evaluation Comparison
Here we are showcasing a comparison of accuracy between all models in
Table 5.9.

Model Accuracy

LSTM 86%

BiLSTM 88%

Random Forest 89%

Logistic Regression 89%

CNN 85%

KNN 86%

GRU 82%

Table 5.9: Comparison Table

In summary, while training the models on Vector Quantified data
sped up the runtime significantly compared to RAW data, the models’
accuracy was also lost, albeit to varying degrees. This is not ideal for a
complex accuracy prediction model meant for Speech Emotion Recogni-
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tion (SER) tasks. Therefore, attempting to VQ any other features except
MFCC that wouldn’t raise the loss functions could be one optimization.
Additionally, it may be inferred that the Bidirectional Long Short-Term
Memory (BiLSTM) classification method would be most appropriate for
our thesis task after training a variety of classification models and filtering
the models with the best accuracies. It will be excellent for capturing
long-term dependencies and temporal dynamics in audio signals since
BiLSTM models, because of their gating principles, can handle sequence
data considerably better than the previous classification models we have
examined. In addition, it will also be significantly easier to convert our
Keras BiLSTM model to TinyBiLSTM (TFLite) models for SER tasks
on TinyML machines.

5.4 Comparative Analysis of BiLSTM, CNN, LSTM,
GRU Models

Following a comprehensive comparative analysis, we found that after 50
training epochs, BiLSTM, CNN, LSTM and GRU are the best fit for
speech emotion recognition especially because these are comparatively
better in handling temporal data. They analyze speech signals at dif-
ferent levels of abstraction, allowing them to capture both short-term
acoustic features and long-term contextual information critical for recog-
nizing emotional content. LSTMs analyze the sequential nature of speech
signals. Each time step corresponds to a small segment of the speech sig-
nal. LSTMs process these segments one by one, retaining memory of
past segments through their cell state. This enables them to capture the
temporal dynamics of speech features such as pitch, intensity, and spec-
tral characteristics, which are crucial for identifying emotional content.
BiLSTMs extend the capabilities of LSTMs by processing sequences in
both forward and backward directions. This allows them to capture con-
text from past and future data points simultaneously. Again, CNNs are
well-suited for capturing spatial patterns in data through convolutional
layers, pooling layers, and activation functions. In the context of speech
emotion recognition, CNNs are typically applied to time-frequency repre-
sentations of speech signals, such as spectrograms. Convolutional layers
analyze local patterns in these representations, capturing features such
as spectral changes and modulations over time. Pooling layers aggre-
gate information, reducing the dimensionality of the feature maps while
preserving important features. CNNs can effectively learn hierarchical
representations of speech features, enabling them to identify emotional
cues present in different frequency bands and time intervals. Lastly,
GRUs are another type of recurrent neural network architecture similar
to LSTMs but with a simpler structure, consisting of a reset gate and an
update gate. Since these RNN-based models best aligns with our spe-
cific research scopes we decided to move forward with these models for
hardware implementation.
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5.5 Hardware-Implementations

Our study’s hardware implementation aims to implement and assess ef-
ficient emotion recognition models, including BiLSTM, CNN, LSTM,
and GRU, on devices with limited resources. This entails picking suit-
able hardware platforms—like the Raspberry Pi 4—and making sure the
models can function well within these devices’ computational and power
constraints. Accurate and real-time emotion recognition is the aim. With
this implementation, we hope to show off TinyML’s viability and useful-
ness in improving voice-activated technology by adding emotion recogni-
tion capabilities.

Classifications
For the categorization of input data, BiLSTM, CNN, LSTM and GRU-
are to be employed. The experiment makes use of the Raspberry Pi 4B
model uses a 64-bit quad-core Cortex-A72 processing unit with an 8GB
LPDDR4 RAM with a low power consumption of 5V/3A power supply
and performance is measured using evaluation and training accuracy on
the appropriate dataset converting into light-weight models using Ten-
sorFlow Lite. Our Hardware setup is given below in figure 5.22.

Figure 5.22: Hardware Setup
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In our setup we have used primarily three input device: Microphone,
Keyboard and Mouse and an output device: LCD Monitor. For memory
we utilized built-in memory slot and for rest of the connectivity we used
1 USB 3.0 pin and 2 USB 2.0 Pin and the B type screen connection pin.
For attaining smoother voice input we used external sound card using
USB pin to connect the microphone. This can be seen in figure 5.23.

Figure 5.23: Hardware PinOut Details
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Model Adjustments
Before deploying our models directly to the hardware, we need to per-
form a few steps first, such as post quantization and model conversion,
so that the models can properly fit into various hardware configurations.
To get an insight of the models weight distribution , we have first plotted
a histogram. This step is crucial because when the models are converted
to tflite versions it can cause significant reduction in the accuracy due to
the reduced precision of weights. By properly analyzing the range and
distribution of the weights, we can study the efficacy of the post quanti-
zation process.

Figure-5.24 demonstrates the histograms of our converted models. The
weights appears to have a relatively narrow and concentrated distribu-
tion of weight values which are mostly clustered near zero.This narrow
and concentrated distribution suggests that the post-quantization pro-
cess has effectively compressed the model’s weights while preserving the
important information. The concentration of weights around zero in-
dicates that many of the weights have been quantized to small values,
which is desirable for our goal of reducing memory usage and computa-
tional complexity.

Figure 5.24: Weight Distribution Histograms of the Models

Also, since we have to account for model sizes as IoT devices generally
have low storage capacities, post quantization also serves as an efficient
data compression technique which allows us to reduce the memory foot-
print and computational complexity of our models.
Figure-5.25 includes a size comparison between the original trained mod-
els and their vector quantized file sizes which have been significantly re-
duced.
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Figure 5.25: Original vs Quantized File-size Comparison

The primary objective of our research is acquiring a model , which
has a small size all the while maintaining similar accuracy to the original
model. So, we can compare the inference times of our TFLite models
with their original ones.
Figure-5.26 provides a comparison of the inference times of the 4 models.
These inference times denote the time taken by each model to make a
prediction or generate an output given a new input

Figure 5.26: Inference Time Comparison
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Hardware-Result
For our study, we first converted the quantized BiLSTM, LSTM, CNN
and GRU neural-network architectures, to ”.tflite” models using the Ten-
sor Flow-lite framework and imported those to our processing unit. Next,
we sampled the analog voice signals from the microphone to ’digital audio
waveform’ and trimmed, and padded those to match our model inputs.
We further transformed the waveform to ’audio spectrograms’ for precise
analysis by the trained model and finally performed the evaluation. A
hardware workflow is given below in figure 5.27.

Figure 5.27: Hardware Workflow

To test out our model with voices which are completely different than
what we have in our testing and training data, we recorded our own
voices with different emotions and predicted the outcomes. The audio
contains a female voice that says ”This coffee is fine, I don’t need extra
sugar” in a neutral tone.

Waveplot of Neutral Voice and Confidence Score is given below in figure
5.28, 5.29 respectively.

Figure 5.28: Waveplot of Neutral Voice
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Figure 5.29: Neutral Emotion Prediction

Again, a male voice said ”This coffee is finest with enough sugar, I love
it”, and the Waveplot for the voice sample and Confidence Score is given
in figure 5.30, 5.31.

Figure 5.30: Waveplot of Happy Voice

Figure 5.31: Happy Emotion Prediction

Similarly, we have run the tests for all other emotion labels (angry,
disgust, sad,fear), and the model has been able to map the voice inputs
to correct emotion labels with an average confidence score of above 80
% in all cases. The only emotion where the model under performed
was the ’neutral’ label, which reported a confidence score of 73 %. The
most probable case for this would be the fact that our training sets had
fewer audio clips for ’neutral’ emotion labels as opposed to the other 5
emotions. This can be fixed if we introduce more neutral audio clips or
add synthetic data among the training sets to adjust for the under-fit.
Confidence Scores for the rest of the emotion is represented in the Table
5.10
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Model Neutral Happy Sad Disgust Anger Fear
BiLSTM 73.02% 95.62% 89.73% 94.21% 88.68% 85.47%
LSTM 87.28% 80.27% 77.04% 76.74% 77.62% 75.92%
CNN 88.66% 88.12% 87.11% 83.96% 90.83% 92.58%
GRU 81.07% 80.10% 76.54% 74.58% 80.53% 73.48%

Table 5.10: Confidence scores for emotion recognition

Our experiments with several neural network architectures, includ-
ing as BiLSTM, LSTM, CNN, and GRU, have proved the hope of fea-
sibility of deploying compact and efficient machine learning models for
real-time emotion detection on resource-constrained IoT devices. The re-
sults show that the BiLSTM model outperforms most emotion categories,
with an average confidence score greater than 80% for all emotions except
’neutral’. The CNN model also performs well, notably in distinguishing
’anger’ and ’fear’ emotions. The LSTM and GRU models, while effective,
have lower confidence ratings than BiLSTM and CNN, emphasizing the
relevance of model design in maximizing SER performance for TinyML
applications. Overall, our hardware implementation produced good re-
sults, highlighting TinyML’s potential in deploying closely efficient and
accurate emotion recognition systems in real-world applications.
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Chapter 6

Conclusion

6.1 Future Scope

In today’s rapidly evolving world, emotion detection has emerged as a
crucial component of human-machine interaction, influencing numerous
sectors including criminal justice, education, audio analysis, security,
telecommunications, smart home technology, healthcare, and beyond.
Cost-effectively achieving accurate emotion detection is essential for driv-
ing technological progress in these areas. Future research should aim to
enhance the model’s robustness by incorporating more diverse and com-
prehensive datasets, representing various languages, cultures, and con-
texts to improve its generalized applicability and performance across dif-
ferent real-world scenarios. Another promising direction is to explore the
integration of multi-modal data, combining audio with visual cues or text
analysis, to capture the full spectrum of emotional expressions. Further-
more, our focus will be on refining existing models to create lightweight
solutions with minimal energy consumption and improved accuracy, with
the ultimate goal of seamlessly integrating these models into Internet of
Things (IoT) wearable devices. This will foster enhanced communication
and interaction between humans and machines, making interfaces more
intuitive, efficient, and responsive to our emotional needs.

6.2 Conclusion

The proposed work has successfully addressed the challenge of diagnos-
ing emotions in human speech through a comprehensive analysis utilizing
fine tuned machine learning models. By accurately identifying various
emotional states, the models holds significant promise for applications
in sentiment analysis, customer feedback evaluation, and mental health
monitoring. The achieved accuracy underscores the model’s effectiveness
in discerning emotional nuances in voice signals, providing a valuable
tool for various real-world applications. Notably, the BiLSTM, CNN,
and GRU models that were trained and tested as part of this study
have outperformed existing benchmarks under strict and minimum
power-memory constraints, setting new scopes in the field of emotion de-
tection.Based on these results, we can wholeheartedly recommend these
models for future research in this domain . While our current focus has
been on broad emotion detection, there is ample opportunity to refine
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and expand the model’s capabilities. Future research should prioritize
the inclusion of additional acoustic features and explore multi-modal ap-
proaches to capture a more holistic view of emotional expression. By
leveraging the power of emotion recognition technology in wearable IoT
devices, we envision a future where human-machine interfaces are more
intuitive, efficient, and responsive to our emotional needs. Overall, the
study sets a strong foundation for the continued advancement of emotion
detection technology, with the potential to significantly impact fields that
rely on understanding human emotions.
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