
Fetal Plane Classification from 2D-Ultrasound Images
Leveraging Squeeze and Excitation Self-attention Mechanism

for Feature Recalibration in MedMamba

by

Tanjim Islam Riju
20101403

Tahsin Tanim Ramisha
20101439

Nusrat Billah Aksa
22241116

Johan H Kabir
22241114

A thesis submitted to the Department of Computer Science and Engineering 
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science

Department of Computer Science and Engineering
Brac University

May 2024

© 2024. Brac University
All rights reserved.



Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Tahsin Tanim Ramisha
20101439

Tanjim Islam Riju
20101403

Nusrat Billah Aksa
22241116

Johan H. Kabir
22241114

i



Approval

The thesis/project titled “Fetal Plane Classification from 2D-Ultrasound Images
Leveraging Squeeze and Excitation Self-attention Mechanism for Feature Recalibra-
tion in MedMamba” submitted by

1. Tanjim Islam Riju (20101403)

2. Tahsin Tanim Ramisha (20101439)

3. Nusrat Billah Aksa (22241116)

4. Johan H Kabir (22241114)

Of Spring, 2024 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on May 2024.

Examining Committee:

Supervisor:
(Member)

Md. Golam Rabiul Alam
Professor

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

Rafeed Rahman
Lecturer

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam
Professor

Department of Computer Science and Engineering
Brac University

ii



Head of Department:
(Chair)

Sadia Hamid Kazi, Ph.D.
Chairperson

Department of Computer Science and Engineering
Brac University

iii



Abstract

A fetal ultrasound is a safe pregnancy test that provides an image of the baby’s heart,
head, and spine while also analyzing various aspects of its anatomy. Maternal-fetal
ultrasound imaging is critical during pregnancy, but existing approaches rely on
manual interpretation, which can be time-consuming and can overlook irregulari-
ties. Thus, the exploration of fetal ultrasound imaging has resulted in the need for
accurate and fast medical image classification. However, there have been some lim-
itations with traditional methods such as Convolutional Neural Networks (CNNs)
and transformer models. For example, CNNs do not work well when it comes to
modeling long-range dependencies that are very important in medical image feature
extraction. Also, transformers have a high quadratic complexity hence demanding
too much computation despite being good at dealing with long-range interactions.
Our thesis is inspired by recent advances made in state space models (SSM) and
thus presents an implementation of Vision Mamba called “MedMamba” designed
for classifying medical images. This is achieved through integration of SS-Conv-
SSM module which combines local feature extraction capabilities brought about by
convolution layers together with long range dependency modeling as exhibited by
SSMs thus solving the above mentioned problems encountered during CNN usage.
In other words we can say that this hybrid method guarantees strong feature ex-
traction across different types of medical imaging modalities while improving on
computational efficiency. Furthermore we have presented an enhancement of the ar-
chitecture MedMamba called “MedMambaSE” by adding a Squeeze and Excitation
(SE) block. This addition refines the process of recalibrating features ultimately
improving the models sensitivity and accuracy in detecting abnormalities in de-
velopment. The incorporation of this block boosts MedMambas adaptability and
effectiveness, in handling the complexities of ultrasound images. Through experi-
ments on a dataset of ultrasound images we have shown that MedMambaSE not only
enhances classification accuracy but also establishes a new standard for automated
analysis of fetal images. This study sets a milestone, in diagnostics and opens doors
for advancements in AI driven medical imaging that could revolutionize prenatal
care with quicker and more precise interpretations.

Keywords: Maternal-fetal, CNN, Transformer, State Space Models, MedMamba,
MedMambaSE.
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Chapter 1

Introduction

Maternal-fetal ultrasound imaging is the foundation of modern pregnancy, which of-
fers a simple way to monitor and assess the health of both the pregnant woman and
the developing fetus. Initial detection of possible difficulties, the facilitation of fetal
growth evaluation, and finally maintaining the condition of the mother and fetus de-
pend on the accurate and prompt classification of maternal-fetal ultrasound pictures.

The precision of these diagnostics is vital in catching issues before they become ma-
jor complications associated with pregnancy and delivery. As imaging technologies
continue to mature and selection algorithms improve, better detection of anomalies
earlier in the process, when possible action is more likely to be successful. This is
particularly true now that ultrasounds have experienced regular improvements in
technology. The ongoing growth of this product range continues to improve the
prospects of prenatal care for the entire world, especially for mothers and intended
families at home.

Ultrasound imaging is important for prenatal diagnostics, but the quality of such
images can vary greatly, depending on the experience and skill of the operator and
the resolution of the machine. Consequently, measurements and diagnostics pulled
from the images often are fraught with errors. In addition, ultrasound acquisition
inherently creates noise in the images such as speckle noise, shadowing, and attenu-
ation which make identifying or segmenting structures from the images challenging.
Automated solutions for ultrasound segmentation are problematic due to the vari-
ability of these noise artifacts making homogeneous tissue classification difficult to
achieve. Further, although these images can lend key information in determining
diagnosis, a complex interpretation may be necessary and often needing a level of
expertise that is not always accessible, which is particularly true of low-resource
healthcare centers. A discrepancy in expertise creates not only an inconsistent di-
agnosis of conditions, but one that may be incorrect.

Identifying metrics like fetal dimensions, cardiac activity, and standard scanning
views, as well as segmenting anatomical structures and classifying standard planes
and anomalies in the fetus, are crucial research areas aimed at enhancing the quality
of prenatal assessments [25]. For tracking fetal growth and spotting any potential
problems during pregnancy, ultrasonography in gynecological services is essential.
One important application of ultrasonography in the medical profession is the clas-
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sification of common maternal-fetal imaging planes.

Developing new imaging and machine learning techniques and methods to standard-
ize and automate this process is thus a need. Healthcare professionals can benefit
greatly from the work in this area, which will provide meaningful and consistent di-
agnosis and diagnostics that will increase the safety of prenatal diagnostic methods
by working to minimize operator errors. Advances in image processing and machine
learning have the potential to greatly improve on these major challenges. Improving
image quality and building algorithms to accurately and automatically analyze im-
ages and provide standardize diagnoses need to be built. These methods can then
be used to standardize the diagnosis of prenatal care, allowing for improved quality
of prenatal care and diagnostic quality, regardless of the operator or the practice’s
level of expertise.

To systematically pinpoint unique markers of atypical fetal growth in ultrasound im-
agery, employing machine learning techniques for processing and interpreting these
images can assist in automated large-scale retrospective analyses. Presently, the
automated classification options are limited to either image snippets (cropped sec-
tions) or the full image. Cropped sections can result in misidentifying specific organs
like the kidneys and abdominal areas, given that many organs in development have
similar visual features. On the other hand, using the entire image doesn’t offer suffi-
cient localized information to differentiate between various structures based on their
location. Consequently, deep learning algorithms have emerged as a groundbreaking
approach to enhance the precision and efficiency of ultrasound image classification
[13].

Using Convolutional Neural Networks (CNNs), Deep Learning (DL) has made as-
tounding progress in picture identification tasks, which has accelerated the develop-
ment of artificial intelligence throughout the preceding ten years. CNNs have proven
useful in a number of medical fields, including radiography, dermatology, and the
classification or segmentation of organs and lesions in computer tomography images.
For the purpose of estimating fetal gestational age, Maraci et al. presented a DL-
based technique that extracts TC plane frames from point-of-care ultrasound films
using a modified CNN from AlexNet [24]. A deep learning model was created by
Rasheed et al. to automate fetal head biometry from live ultrasonography. They
use CNN ALEXNET to classify headframes, OFD for validation, UNET for segmen-
tation, and LSE to compute HC and BPD for accurate gestational age . CNNs in
particular have proven to be adept at image categorization and feature extraction,
making them an ideal candidate for improving the interpretation of maternal-fetal
ultrasound data [24].
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Figure 1.1: Techniques employed in ultrasound fetal plane imaging

1.1 Motivations

“Odisha: Wrong ultrasound reports results in woman delivering a handi-
capped child; nursing home fined” (Loreng, 2022). This news highlight, there-
fore, gives the impression that most of the errors in the medical report are riddled
with errors in the ultrasound imaging reports. This demonstrates an effect that
is so severe in the case of misdiagnosis: the misreporting of conditions that result
in children born with anomalies, physical deformities, or multiple gestations being
overlooked. These mistakes certainly serve to highlight the importance of getting
the image right in ultrasound fetal plane imaging.

With these at the forefront of our minds, this paper will rely on one of the most recent
advances in ultrasound fetal plane image classification: MedMamba—an innovative
model from recent research. Despite the very important advances in image process-
ing that deep learning has brought, it has its limitations in what can be achieved
in the medical field. For example, convolutional neural networks (CNN) do not
capture the big picture as they only capture local information. Transformer based
architectures are state-of-the-art in many NLP tasks and are well-suited to looking
at the big picture but require a colossal amount of computation, therefore limiting
their deployment in time-critical and resource-constraint environments. Realizing
these constraints, MedMamba offers a new approach that, following help from the
state space model (SSM), does better at ultrasound fetal plane image classification.
Evidence from other fields suggests that SSMs may lend themselves to large data
sets without overpowering computational resources [26]. From this, the MedMamba
model maximizes the utility of both CNNs and SSMs to appropriately process and
categorize ultrasound fetal plane images.

Our thesis, based on recent developments in the MedMamba framework, provides
further improvements for the optimization of ultrasound fetal plane image classifi-
cation. We made key changes to the original model to improve its ability to identify
subtle details within the medical scan. Our ultimate goal is to contribute to a future
when ultrasound interpretations will be much more trustworthy.
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1.2 Contributions

In this research, we have improved the MedMamba model capabilities—the deep
learning architecture—by integrating Squeeze-and-Excitation (SE) blocks within its
convolutional self-attention modules. The improvement is particularly remarkable
in the model recalibration of the feature channels dynamically after fusing both
convolutional and attention-driven features. The SE blocks enhance the ability of
the model to emphasize relevant features, suppressing less useful ones. This is very
critical for the high variability and often subtle features characteristic of ultrasound
imagery. The key contributions of the research are as follows:

• We introduce a novel architecture namely MedMambaSE by adding Squeeze-
and-Excitation (SE) blocks to Medmamba’s convolutional self-attention mod-
ules. We show this improvement increases feature recalibration capabilities
within maternal fetal ultrasound images.

• We employ the Medmamba model which combines convolution layers for local
feature extraction with state space models for long-range dependency model-
ing.

• We have evaluated our model performance with convolutional neural network
models such as VGG19, SENet and transformer model such as Swin trans-
former to find useful insights.

1.3 Thesis Organization

This section introduces the structure of our article. First, we review previous studies
that have used machine learning for clinical image classification, focusing on fetal
ultrasound imaging. In Chapter 3, we describe the various implemented models.
Moreover, this chapter includes our dataset description and how we have calibrated
the dataset according to the models. Chapter 4 discusses the development of our
proposed model MedMambaSE. Chapter 5 summarizes our findings, discusses the
limitations of our study. Finally, Chapter 6 suggests areas for future research.

5



Chapter 2

Literature Review

During prenatal ultrasound screenings, medical professionals manually gather a va-
riety of imaging angles to obtain standard fetal ultrasound views. However, the
process can be challenging due to the intricacies involved and the differing levels
of expertise among practitioners. As a result, there exists an inconsistency in the
images obtained, with minimal variation between classes but significant variation
within them [5].

2.1 Traditional Image Processing

Traditional manual feature based approaches for image classification consist of three
phases: feature encoding; feature extraction; classification [8]. In a 2012 study [2],
Active Appearance Models (AAM) technique was used to accurately identify and
position the fetal head’s standard plane. In research [1] introduced an innovative
automatic positioning strategy for the upper abdomen’s standard plane. Leveraging
clinical anatomical knowledge, they employed a radial model to illustrate the spa-
tial relationship among vital anatomical elements within the abdominal plane. This
approach ensured accurate positioning of the plane. In a subsequent study [3], pro-
posed integrating foundational features with a multi-tiered Fisher Vector (FV) for
comprehensive feature encoding to establish holistic image features. To pinpoint the
standard fetal plane, they employed an SVM classifier as well. However, it is im-
portant to note that this approach has its limitations due to foundational features’
restricted capacity in representing features effectively; thus, enhancements are war-
ranted for optimal algorithm performance. In research [4], introduced an innovative
approach to recognize the standard plane of fetal faces. They utilized the Root SIFT
method to derive the characteristics of images. Subsequently, FV and SVM were
used for further classification tasks. This method achieved a remarkable accuracy of
93.27% with a mean average precision (MAP) of 99.19%. In study [6], they employed
the Return Woods technique to analyze the visibility, location and orientation of fe-
tal heart ultrasound snapshots. Using this method, they successfully identified the
standard plane of the fetal heart from individual video frames with expert-level pre-
cision. Moreover, study [7] introduced an improved LBP technique. This technique
has the ability to extract both color and texture attributes simultaneously and thus
effectively counter impulse noise. It marked a significant advancement in the field
of LBP Methodology. In study [15] researchers expanded their work to analyze bark
textures with the help of precise classification approach. This approach is grounded
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in the enhanced local ternary pattern (ILTP). This work not only showcased ad-
vanced iterations of LBP and LTP, but also provided valuable insights for future
experimental endeavors. Later, the advancements have moved from simple feature
extraction to deep learning models.

2.2 The Integration of CNNs and Transformers

in Medical Imaging

Advancements in deep learning approach have begun to emerge since 2012. These
advancements have increasingly involved the identification and categorization of
standard ultrasound planes. Notably, models like VGG19, SENet, and Swin have
emerged as front-runners in this domain, showing significant improvements in image
classification and anomaly detectionection within fetal ultrasounds [41]. Because of
their sophisticated architectures, subtle features from complex ultrasound images
can be extracted effectively. This bridges the gap between technological innov-
ation and clinical practice. By harnessing the prowess of these deep learning tools,
maternal-fetal medicine stands on the cusp of yet another breakthrough. Recent
studies have demonstrated the exceptional accuracy rates of these models when
integrated into clinical scenarios. This proves their potential for broader applic-
ations in medical imaging [41]. As advancements in remote and battlefield medicine
continue, these models are becoming indispensable, particularly where resources and
expert image interpretation are limited [41].

During pregnancy, ultrasound remains a crucial modality for monitoring the fetus.
However, it has traditionally been challenging for even expert sonographers to accur-
ately identify anatomical structures [23]. To overcome this obstacle, a deep feature
fusion from pretrained models like ResNet-50 and VGG-19-GAP was utilized [23].
In terms of accuracy this method has outperformed many conventional techniques.
Moreover, another approach was employed to extract deep features from ultrasound
images. In this approach, the AlexNet and VGG-19 models have been used into a
multi-layer perceptron for classification[27]. The integration of these diverse con-
volutional neural networks helped to improve the diagnostic outcomes. Addition-
ally, there has been a recent trend towards automating deep network architectures.
Remarkably, this algorithm proved to be competitive with highly acclaimed models
such as VGG16 and ResNet50 when applied to maternal-fetal ultrasound images
[22]. Together, these advancements highlight the transformative potential of deep
learning models in enhancing maternal-fetal ultrasound diagnostics.

Moreover, in study [20], a novel three-dimensional (3D) ultrasound method has been
utilized to classify standard fetal planes. The findings demonstrated that this 3D
approach exhibited exceptional precision in identifying these essential planes. An-
other study [10] came up with an automatic way to identify the standard plane of
a fetal face in ultrasound scans using deep learning. This was hard because of the
differences within the same class and how standard and non-standard fetal faces
look similar. They used transfer learning and special ways to increase their data set
in their deep learning model, and did better than older methods. They used a set
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of 4,849 labeled ultrasound pictures, checked by experienced medical experts. The
model did really well, with an average AUC of 0.99 and high scores in Accuracy
(0.96), Precision (0.96), Recall (0.97), and F1 (0.97).

In another investigation [21], Zhang et al introduced an automated assessment sys-
tem for evaluating image quality in fetal sonography. By utilizing multitask learning,
the system employed three convolutional neural networks to identify critical anato-
mical features and assess whether a sonographic image met the desired criteria. The
outcomes revealed an impressive success rate of 94.3% and a specificity of 94.6%.

In study [9], a multi-layered dense network was utilized to identify specific areas of
the fetal brain, heart, face and abdomen from a collection of 5678 ultrasound visuals.
The associated Recall, Precision and F1 metrics were all recorded at an impressive
0.98. On the other hand, study [12] implemented an automated technique named
SPRNet to detectionect the fetal brain, heart,face, abdomen, as well as the facial
coronal view during prenatal screening. Taking inspiration from DenseNet, SPRNet
was trained on both fetal and placenta ultrasound images using a partial transfer
learning approach based on data. Notably, this model achieved exceptional perfo-
rmance with accuracy scoring 0.99 along with recall at 0.96; specification reaching
0.99; and F1 measuring 0.95.

In study [17], the researchers introduced a unique differential convolutional neural
network (differential-CNN). This specially designed network seamlessly distinguishes
between standard and non-standard brain planes in fetuses. By using differential
operators, the model extracts enhanced differential features from the base CNN’s fea-
ture maps. This enhancement improves the identification capacity without adding
extra computational demands. To test this approach thoroughly, they conducted
experiments on a dataset of 30,000 2D ultrasound images, which included 155 fetuses
aged between 16 and 34 weeks. The results showed impressive scores for Precision
(0.93), F1 (0.93), Accuracy (0.93) and Recall (0.92).

Research [19] utilized a generative adversarial network (GAN) to enhance the categor-
ization abilities of the fetal brain using ResNet. Their approach was tested on 2249
images and achieved an AUC of 0.86, with Accuracy and F1 scores of 0.81 and 0.80
respectively. In another study [16] focused on inter-device classification for standard
anatomical views including the fetal heart, abdomen, and mouth. They employed
enhanced feature alignment techniques to identify both unique and consistent fea-
tures across different domains. The results showed average scores of 0.77 for both
F1 and Recall, and 0.78 Precision.

2.3 The Inefficiency of CNNs and Transformers

with Long Sequences

When we look at how well transformer models perform on sequential data, what
stands out is that their attention mechanisms excel at picking out useful pieces of
information and concentrating on them such that not every item has to be pro-
cessed in sequence. This property makes them more efficient than convolutional
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neural networks (CNNs) but only up to a point. Because of this, transformers fail
to cope with very long sequences and that can mean much longer training times and
increased computational requirements which may affect result accuracy eventually.
The main problem lies with the inability of the transformer to effectively compress
context into relevant information.

On the other hand, RNNs are designed for sequential processing hence should the-
oretically work better with extended data sets. However, this processing method
increases computation while exposing them to risks associated with vanishing or
exploding gradients. Also, RNNs tend to struggle in preserving input data for long
periods thereby becoming ineffective in managing tasks involving extended memory
spans at a later stage where initial inputs are concerned.

2.4 Introduction of Mamba’s Efficient Sequence

Modeling

Mamba is a new type of sequence model that combines the best features of transform-
ers and CNNs [26]. It treats long sequences more effectively than other models by
segmentationmenting them and introducing key-value attention mechanism, which
attends only to important parts. Thus it breaks free from sequential nature of CNN
in favor of dividing them into shorter pieces that can better preserve long-term de-
pendencies.

By employing adaptive computing along with dynamic length adjustment tech-
niques, Mamba demonstrates accelerated training on longer inputs as well as im-
proved performance over such records. The design relies heavily on memory opti-
mization for GPUs while dealing with large data sets; this ensures processing power
remains efficient throughout different stages. When compared against other mod-
els in terms of perplexity and accuracy measurements especially when working with
very long chains, Mamba always outperforms them all indicating robustness towards
context choice during computation.

Figure 2.1: Implementations of Mamba across diverse vision sectors.

9



Table 2.1: Mamba based Image Classification Methods

Image Classification

Methods Dataset Experiment

FER-YOLO-
Mamba [34]

RAF-DB, SFEW Facial Expression
classification

RES-VMAMBA
[28]

Food Dataset: CNFOOD-241 Food classification

Mamba-ND [33] Natural Images 2D Natural Images
classification

nnMamba [31] 6 3D Biomedical Image
Dataset

3D Image segmentation,
classification, detection

MambaMIL [38] Whole Slide Images Cancer Subtyping/Survival
Prediction

RSMamba [29] Remote Sensing Images Remote Sensing Images
classification

MamMIL [30] Whole Slide Images Cancer Subtyping

CMViM [36]
3D Medical Images
(MRI & PET)

3D Medical Image
classification

MedMamba [40] 2D Medical Images 2D Medical Image
classification

Spectral-Spatial
Mamba [32]

HSI Dataset Hyperspectral Image
classification

SpectralMamba
[39]

HS Dataset 2D Medical Image
classification

HSIMamba [37] Houston 2013, Indian Pines,
Pavia University

Hyperspectral Image
classification

S2Mamba [35] Houston 2013, Indian Pines,
Pavia University

Hyperspectral Image
classification

2.5 MedMamba: Bridging CNNs and Transform-

ers for Advanced Medical Image Classifica-

tion

In the recent research [26], SSM-based algorithm Mamba has been introduced that
handles these issues well by considering long-range interactions with a linear com-
putational complexity. Based on this study, MedMamba has been introduced which
is the first modification of the Vision Mamba network design and is customized for
medical image classification [40]. The special Conv-SSM architecture of MedMamba
combines the advantages of convolutional layers that allow for local feature extrac-
tion and SSM, which can capture long-range dependency. The hybrid approach
described in this paper allows to perform comprehensive modeling of medical im-
ages covering different imaging modalities. The findings from the experiments in this
paper illustrate MedMamba’s strength in lesion detection within diversified scopes
of medical imaging. Moreover, this research marks the foundation for a new era
of SSM-based AI algorithms and systems, paving the way towards resourceful and
cost-effective AI solutions in the healthcare sector.
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Chapter 3

Background Study

3.1 Overview of the Models

3.1.1 VGG19

The VGGNet, also known as VGG, marks a significant turning point in the de-
sign and depth of convolutional neural networks (CNN). Developed by the Vi-
sual Geometry Group, this architecture stands out for its remarkable depth. The
widely recognized VGG-16 and VGG-19 models have 16 and 19 convolutional layers
respectively. It’s worth noting that the latter model, VGG-19, boasts an addi-
tional three convolutional layers compared to its counterpart. VGG’s groundbreak-
ing architecture has revolutionized object recognition methodologies, surpassing e-
stablished benchmarks across various tasks beyond its original implementation on
ImageNet. Its continued relevance is evident through its prominent role in conte-
mporary image recognition research.

First of all, images pass through multiple convolutional layers which have 3x3 filters.
After that, spatial dimensions are reduced by applying max pooling. As the image
moves through these layers, it extracts complex features more and more. When all
convolutional layers are over, the data is arranged in a row and passed through fully
connected layers. Finally, an image is passed through a softmax activation function
for classification. Significantly, it makes extensive use of ReLU (Rectified Linear
Unit) activation, which enables it to capture non-linear patterns by outputting input
directly if positive and producing zero when otherwise.

Figure 3.1: VGG19 Working Procedure
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3.1.2 SENet (Squeeze-and-Excitation Network)

The first Squeeze and Excitation Network was proposed in 2018 by Hu et al. [11]
for Convolutional Neural Networks. The novel method looks for better channel
relationships within the process with a channel-wise attention mechanism. The
main idea is to give channels adjustable weights that amplify important features
while reducing insignificant ones. The Squeeze and Excitation block forms the basis
of this method commonly known as SE-block. It consists of three key operations:

i. Squeeze

ii. Excitation

iii. Scaling

Figure 3.2: SENet Network

It is at strategic points in the network that the squeeze-and-excitations blocks are
used. These block compress spatial information to produce a channel descriptor
which then fine-tunes the channels using and recalibrates or excites them. As this
goes through its recalibrated layers, it improves at picking up distinctive features.
After going through all of the convolutional layers, the data is flattened before being
fed into fully connected ones. Eventually, an image gets classified with the help of
a SoftMax activation function. The dynamic ability of SENet to adjust feature
responses per-channel is one of its major attributes. This means that for any input,
only relevant channels will be attended by the network.

3.1.3 Swin Transformer

An innovative architecture known as Swin Transformers was introduced in 2021 [18].
Instead of processing images in patches like conventional methods, Swin Transform-
ers splits them up into non-overlapping windows that shift position. The speed and
scalability for handling huge amounts of data has been enhanced significantly by
this invention. Displaced windows are the building blocks in Swin Transformers’
design. The inherent quadratic complexity problem that conventional transformers
encounter when working with high-resolution images is successfully addressed by
implementing this well-ordered and hierarchical approach. Swin Transformers, with
this automatic ability to adapt to different image resolutions in this manner are very
much valuable for images of varying dataset sizes.
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Figure 3.3: (a) Swin Transformer Figure 3.4: (b) Window Shift

Partitioning the input image into several non-overlapping patches of the same fixed
size is the first step in the architecture of Swin Transformers. Following this, these
patches undergo some changes that turn them into vectors used as initial inputs
for subsequent transformer layers. In each layer, the Swin model has local self-
attention, where each location attends to only a few other positions within a small
window. Through different layers, these windows are adjusted so as to have a better
understanding of the whole image. In deeper levels, smaller patches are combined
together and therefore they form larger ones creating hierarchical representation.
Local-to-global technique is how Swin achieves efficient computation. Eventually
after this process; global average pooling is performed and then classifier head is
put in place to obtain the final result for example image classification tasks. Layer
normalization ensures stability during training stage in deep transformer systems.

Figure 3.5: Swin Transformer Working Procedure

3.1.4 MedMamba

For classifying medical images like X-rays and scans, MedMamba is a deep learning
model made especially for this purpose. It incorporates some distinctive alterna-
tives to the traditional convolutional neural networks (CNNs) that make it an ideal
architecture for medical imaging. Key features are Spatial Attention Modules which
highlight the most important part of an image in order to capture important anatom-
ical details, and Multi-Scale Fusion which brings together information from different
resolutions of images so as to improve on details and context recognition. Exten-
sively trained on datasets such as chest X-rays and mammographies, its performance
has been superior to those of other state-of-the-art models thereby indicating that
it can significantly enhance health care through computer aided diagnosis. Thus,
this is a useful tool in improving the analysis of medical images which may thus,
result in better diagnostic decisions, treatment plans and general life directions of
patients.

13



Figure 3.6: Overview of MedMamba Architecture

The Medmamba architecture consists of three main components: (1) a patch em-
bedding layer (2) SS-Conv-SSM block and (3) patch merging layer [40]. Firstly,
the input images with H ×W × 3 dimensions undergoes a patch embedding layer.
This stage divides the image into the size of 4× 4 smaller, non-overlapping patches.
This division reduces the dimensionality to [H

4
× W

4
× C] where C is the number

of channels, typically equals 96. Before these patches are utilized further, they un-
dergo normalization through a Layer Normalization technique. The core structure of
MedMamba is built from four main stages. Notably, after the first three stages, the
system applies patch merging layers to condense the feature map’s height and width
while expanding the channel capacity. The stages are configured with [2, 2, 4, 2]
SS-Conv-SSM blocks, each adjusting the channel configuration to [C, 2C, 4C, 8C] to
enhance processing capability.

3.2 Dataset Description

For our research we have used a maternal fetal untrasound image dataset, developed
by Burgos-Artizzu et al [14]. This dataset is widely recognized as the most compre-
hensive collection of ultrasound images from singleton pregnancies available today.
The dataset comprises over 12,400 images sourced from 1,792 patients, providing a
diverse and comprehensive set for research purposes.

The dataset strictly follows the clinical US screening guidelines established by a
scientific committee [14], ensuring consistency and minimizing both inter-observer
and intra-observer variations. Noteworthy clinicians have provided annotations for
each image.
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The images fall into six main categories. Four of these categories correspond to
the most frequently examined fetal anatomical regions: Abdomen, Brain, Femur,
and Thorax. Additionally, there’s a distinct category for cervical images of the
mother, vital for screenings related to premature birth. The last group includes
less commonly captured anatomical views. Within the category designated for fetal
brain images, there are more specific subdivisions, focused on three major planes
of the fetal brain: Trans-thalamic, Trans-cerebellum, and Trans-ventricular. The
dataset also includes an “Other” category.

Figure 3.7: Distribution of the classes in the Dataset

3.3 Dataset Implementation

3.3.1 Data Extraction and Partitioning

The first step in our preprocessing pipeline involved extracting the image paths and
associated labels from a meticulously curated CSV file. To ensure the integrity of the
dataset, entries with missing image path were promptly removed. The categorical
labels were then converted into numerical format to facilitate the machine learning
process. The dataset was divided using stratified random sampling, allocating 80%
for training and 20% for testing. A subset of the training data was further used for
validation.
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Table 3.1: Dataset Split in Neural Network Models

Category Train Data Test Data Validated Data Total
Fetal Abdomen 455 155 101 711
Fetal Thorax 1122 319 277 1718
Fetal Femur 662 201 177 1040
Fetal Brain 1973 629 490 3092
Maternal Cervix 1024 341 261 1626
Other 2700 835 678 4213
Total 7936 2480 1984 12400

For the SSM-based model MedMamba, we have divided the data into a 60:20:20
ratio for train, test and validation purpose.

Table 3.2: Dataset Split in MedMamba

Category Train Data Test Data Validated Data Total
Fetal Abdomen 352 140 219 711
Fetal Thorax 1053 322 343 1718
Fetal Femur 526 227 287 1040
Fetal Brain 1625 679 788 3092
Maternal Cervix 1286 157 183 1626
Other 2598 955 660 4213
Total 7440 2480 2480 12400

3.3.2 Model-Specific Preprocessing

Leveraging the PyTorch framework, SENet required the images to be resized, center-
cropped, and transformed into tensor format. Image normalization was applied using
predefined mean and standard deviation values compatible with ImageNet.

Unique to SWIN was its dual compatibility with both PyTorch and TensorFlow
frameworks. It utilized torchvision’s transforms module for image transformation
and featured a function to convert PyTorch DataLoaders into TensorFlow datasets.

In contrast to other models, VGG19 employed preprocessing steps such as rescaling,
rotations, shifts, and flips. The final step involved creating generator objects for
image batch generation.

As data preprocessing steps for MedMamba, we have utilized image resizing, hori-
zontal flip and converting the images into tensor format. After that image normal-
ization has been applied using standard deviation and mean value.

Each of these preprocessing pipelines was fine-tuned to cater to the specific needs and
characteristics of the corresponding deep learning architecture, thereby optimizing
the dataset for the highest possible performance metrics.
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Chapter 4

Methodology

The proposed MedMambaSE model builds upon the original MedMamba architec-
ture by incorporating a Squeeze-and-Excitation (SE) block. It includes three key
modules: collecting the dataset (utilizing 2D Ultrasound Fetal Image dataset [14]),
establishing model specific preprocessing, creating training and testing datasets to
educate the customized MedMambaSE architecture. The top level architecture of
MedMambaSE has been represented in Fig 4.2.

Figure 4.1: Top Level Overview of MedMambaSE
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In the proposed MedMambaSE scheme, the Fetal Planes DB dataset is used. Firstly,
the dataset has been partitioned into training (60%), testing (20%), and validation
(20%) sets. Next, during the data preprocessing step, images resize, horizontal
flip, conversion into tensor format and normalization have been used. Therefore,
the classification step employs the MedMambaSE model. Various metrics such as
accuracy, F1 score, recall, and precision have been used to evaluate the model’s
performance.

4.1 Dataset Patitioning

For our proposed model (MedMambaSE), we have divided the data into a 60:20:20
ratio and distributed them into separate train, test, and validation folders. Each of
these folders contain six subfolders corresponding to our six classes, which hold the
relevant images.

Figure 4.2: Train Data Split in MedMambaSE

4.1.1 Data Preprocessing

As part of our data preparation process, we have employed a series of image trans-
formations so that our proposed model receives input that is both standardized
and augmented. These transformations firstly include resizing all the images to
128×128×3. Additionally, we have applied a random horizontal flip to the training
images. Moreover, the images were then converted into tensor format. This is im-
portant because it allows us to work with multidimensional arrays in PyTorch-based
neural networks where computations involve multi-dimensional arrays required by
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neural networks for processing different layers. Subsequently, we have normalized
the pixel values of these tensor images to have a mean and standard deviation of 0.5
across all color channels. This normalization serves the purpose of scaling the pixel
values to a standard range.

4.2 Architectural Overview

4.2.1 Background of MedMambaSE

Modern SSM-based models like the Structured State Space Sequence Model (S4)
and Mamba involve using classic systems. They take simple one-dimensional input
functions or sequences called w(t), and pass them through intermediate states u(t)
to produce an output, v(t) [40]. These steps can be described using simple linear
ODE (Ordinary Differential Equations):

State Equation: u′(t) = Xu(t) + Y w(t) (4.1)

Observation Equation: v(t) = Zu(t) (4.2)

Here, the state equation describes how the internal state of the system evolves with
time. The observation equation relates that internal system of the state to the ob-
servations that are made. To simply put, X, Y and Z are learning parameters that
can change. The u(t) is the implicit state and w(t) is our input.

To adapt their continuous systems for deep learning, S4 and Mamba models add a
time parameter ∆ and change parameters X and Y to X and Y respectively using
a certain technique which commonly employs zero-order hold (ZOH) method [40].
It can be defined through the following equation:

X = exp(∆X) (4.3)

Y = (∆X)−1(exp(∆X)− I) ·∆Y (4.4)

After these modifications, the SSM-based models can work in two main modes –
stepwise linear mode or full convolutional mode described by equations:

u′(t) = Xu(t) + Y w(t) (4.5)

v(t) = Zu(t) (4.6)

K = (ZY ,CXY , . . . , ZX
L−1

Y ) (4.7)

v = w ∗K (4.8)

K is a structured convolutional kernel, and L is the length of the input sequence x.

2D-selective-scan (SS2D)

2D-selective scan (SS2D) is the core part of the SS-Conv-SSM Block. SS2D is made
up of three components: scan expansion, S6 block, and scan merging:
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Firstly, the scan expansion expands input image in four primary directions: top,
bottom, left, and right. It enables the network to capture rich pattern information
under various possible directions, so no significant information is missed due to the
input image’s initial orientation.

Afterward, the S6 block processes the extended sequences. The S6 block is a more
refined version of Mamba’s S4 structured in a way that it is capable of extracting
every part of the information from the input sequences. It does this work by scan-
ning the stretched sequences. It adopts an intelligent mechanism through which it
tunes the parameters of the known Structured State Space Model in tune with the
input data of the SSM. This seems to keep all the essential information gracefully
by removing all the irrelevant pieces of information.

Lastly, the scan merging process merges all the processed sequences by the S block
from every direction. This is an essential process in returning the output to the orig-
inal size, thus allowing the information gathered from the various directions to be
effectively combined. The information has been collected through each directional
scan merged; in this way, the model has a whole picture of what the input data is
about.

Figure 4.3: Visualization of the 2D-Selective-Scan (SS2D) process

SS-Conv-SSM-SE Block

Core Module of MedMambaSE is SS-Conv-SSM-SE Block. This unit uses a dual
branch system without any complicated methods. To begin with, it splits its input
into two equal-sized sub-inputs through a channel splitting operation. Then each
of these sub-inputs is fed into separate branches; namely Conv-branch and SSM-
branch.

In the Conv-branch, simple convolutional layers are employed for processing local
features in the input. The convolutional branch specifically uses Batch Normaliza-
tion (BN) and the ReLU activation function for improved performance. On the
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other hand, SSM-branch starts by layer normalizing the input where it should be
noted that after normalization, the input is split into two parts. The first part of
SSM involves passing linearly through SiLU activation function while on the second
part, after another linear layer, depthwise separable convolution and SiLU activa-
tion function have been applied to it. Then, the 2D Selective Scan module (SS2D)
is used for better feature extraction. These processes are followed by normalizing
features using Layer Normalization which are element-wise combined with outputs
from the first part thereby merging two streams, and lastly, a linear layer blends
these features together to give the final output from the SSM-branch.

The outputs of the Conv-branch and the SSM-branch are then concatenated. From
this global concatenation, the features are submitted to the Squeeze-and-Excitation
block for dynamic channel-wise recalibration of the concatenated features. This is
accomplished through a squeeze operation, which employs the global pooling of the
features into one channel descriptor, followed by excitation, which scales the original
features. This ensures that important features are highlighted, while those that are
less relevant are suppressed.

These recalibrated features are forwarded to a Shuffle block. The block reshapes the
channels further to mix the feature representations, whereby the model learns intri-
cate patterns of information by making mixed and rich interactions from different
feature maps. This completes the process of obtaining a more robust and generalized
feature representation. The output from the Shuffle block is finally passed forward
to other layers for further processing or final prediction.

4.2.2 Detailed Structure

The proposed model aims to refine the feature recalibration capabilities of the net-
work, thereby improving the sensitivity and accuracy of the model in detecting
abnormalities in ultrasound images. The SE block dynamically scales the feature
channels to emphasize important features while suppressing less useful ones.

This architecture strategically positions the SE block to process the output from
the Convolutional Self-Attention module before further passing it to the remaining
layers. This is specifically implemented in the ConvSSM class, which is a convolutional
block with designed self-attention mechanisms, specialized to deal with ultrasound
image analysis. Below is a more elaborated description of how the SE block was
embedded and works in this architecture.
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Figure 4.4: Overall Architecture of MedMambaSE

Input Splitting

The input feature map is divided into two halves. The first one is processed directly
using several convolutional operations (three 3x3 convolutions followed by a 1x1
convolution) that produce many intermediate features. The other half is made to
go through a self-attention mechanism.

Self-Attention Processing

The self-attention mechanism, now the SS2D class, operates over the second part of
the input. This part of the model captures long dependencies of the feature map; it
portrays the general surrounding context within which the image features fall.

Feature Concatenation

Further down the two streams, the processed features from both the convolutional
path and the self-attention path are concatenated. This concatenation allows the
model to integrate the local feature interactions learned by the convolutions with
the global contextual understanding of the self-attention mechanism.

Squeeze-and-Excitation

The concatenated features are then passed through the SE block. The features are
then passed through the squeezing operation, where the global spatial information
gets compressed to a channel descriptor through employing global average pooling.
The descriptor thus obtained is then passed through two fully connected layers,
called the excitation operation, where it learns to recalibrate the feature responses
in a channel-wise fashion by emphasizing informative features and suppressing less
useful ones.
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Feature Rescaling

The output of the SE block is a rescaled collection of channel weights, which are
then used to rescale the original concatenated features. Rescaling refines the feature
representation to make the network more sensitive to the important features, yet
less sensitive to the noises and other less important information.

Output Projection

The recalibrated features are then finally projected back to the desired channel
dimensionality for further processing or for the purposes of making the final predic-
tions.
In comparison to the standard MedMamba model, the inclusion of the Squeeze-and-
Excitation block into the MedMambaSE model has the following advantages:

• Improved Feature Representation: Channel-wise recalibration of the fea-
ture maps enables MedMambaSE to focus more on the important features
critical to classification, making it more robust and reliable in the inference,
while it focuses less on irrelevant or misleading features.

• Enhanced Model Sensitivity and Specificity: Dynamic recalibration will
make the model more sensitive to subtle abnormalities in ultrasound images,
which are often paramount for early diagnosis. This sensitivity, combined with
the ability to suppress less relevant features, also enhances the specificity of
the model.

• Adaption to Different Imaging Conditions: MedMambaSE can be adapted
to large variations in imaging conditions and noise levels, made possible by the
SE block’s dynamic change of importance of features with respect to the spe-
cific content of an image.

In general, MedMambaSE is significantly better than the MedMamba architecture
since it has a higher potential to address the complexities of medical image anal-
ysis, more particularly in the prenatal ultrasound imaging domain. This not only
increases classification accuracy but also makes the system more reliable and trust-
worthy for clinical applications.
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Chapter 5

Implementation & Result analysis

For our proposed model (MedMambaSE) we have employed Adam optimizer with
learning rate = 0.0001, weight decay = 1e-4, β1 = 0.9 and β2 = 0.999. We have
also used Cross Entropy Loss so that the model parameters are optimized. We
have utilized the Pytorch framework. We have trained the dataset for 20 epochs
with batch size of 16 due to the longer training duration and resource limitation.
Moreover, we have not used any data augmentation techniques and pre trained
weights to evaluate the performance from the original model. The training has been
conducted on a computer with Windows Operating System and an NVIDIA GeForce
RTX 4090 GPU.

Table 5.1: Summary of Experimental Setup for MedMambaSE

Experimental Setup
Operating System Windows 11
GPU Accelerators NVIDIA® GeForce RTX 4090
CPU 13th Gen Intel(R) Core(TM) i9-13900K
DL Framework PyTorch

Optimizer
Adam (learning rate = 0.0001, weight decay
= 1e-4, β1 = 0.9, β2 = 0.999)

Loss Function Cross Entropy Loss
Epochs 20
Batch Size 16
Image Size 128
Additional Techniques No data augmentation

No pre-trained weights used
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5.1 Performance Evaluation Metrics

Here we have used precision, recall and f1 as our evaluation metrics. The metrics
false positives (FP), true positives (TP), false negatives (FN), and true negatives
(TN) have been used to calculate these measures. TN and TP refer to the number
of positive and negative samples correctly classified by the model. On the other
hand, FN and FP refer to the number of positive and negative samples that were
incorrectly classified.

Precision measures the accuracy of the positive predictions made by the model. It
is defined as the ratio of true positive results to the total number of positive results
predicted by the model. The formula for precision is:

Precision =
Number of True Positives

Total Number of False positives
(5.1)

=
TP

TP + FP

A higher precision score indicates that the model returns more relevant results.

Recall, also known as sensitivity, measures the model’s ability to identify all relevant
instances within a dataset. It is calculated as the ratio of true positive results to
the sum of true positives and false negatives:

Recall =
Number of True Positives

Total Number of Predicted positives
(5.2)

=
TP

TP + FN

High recall indicates that the model captures a large proportion of positive samples.

F1 Score is the harmonic mean of precision and recall and serves as a single metric
to balance both the precision and recall of a model. It is particularly useful when
the classes are imbalanced. The F1 score is calculated as:

F1 = 2× Precision× Recall

Precision + Recall
(5.3)

=
2× TP

TP + FP + FN

An F1 score reaches its best value at 1 (perfect precision and recall) and worst at 0.
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5.2 Overview of Existing Model Results

5.2.1 Efficacy Analysis

Neural Network Models

The implemented techniques are built upon three distinct neural network architec-
tures: SENet, VGG19, and Swin Transformer. Each of these models was chosen for
its unique capabilities and performance characteristics. When evaluated individu-
ally, SENet emerged as the highest performing model, achieving an accuracy rate
of 94.88%. It is closely followed by VGG19, which achieved 90.44% accuracy, while
Swin Transformer lagged behind with a 75.36% accuracy rate.

Figure 5.1: Model Accuracy Comparison

SSM-Based Model: MedMamba

Looking at the figure 5.2, we observe a consistent rise in training accuracy over
epochs. Initially, the validation accuracy was fluctuating, however over time, it also
demonstrated a steady upward trend. The difference between these two accuracies is
quite reasonable which shows that there is no overfitting of the model. According to
this graph, employing additional epochs could potentially further enhance accuracy.

Figure 5.2: MedMamba Training and Validation Accuracy Over Epochs
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5.3 Comparative Performance Analysis

In terms of global accuracy, the SENet algorithm outperformed its counterparts.
Intriguingly, the algorithm displayed a balanced relationship between its precision,
F1-score, and overall accuracy, indicating its adeptness at both identifying and cat-
egorizing ultrasound images. Specifically for SENet, the precision stood at 94.92%,
with a recall of 94.88% and an F1-Score of 94.88%. These attributes position SENet
as a highly suitable option for computational tasks that necessitate elevated levels
of sensitivity and specificity.

Contrastingly, VGG19, despite lagging behind SENet in terms of overall accuracy,
exhibited a commendable equilibrium across key performance indicators such as
precision, recall, and F1-score. For VGG19, the precision was 90.04%, recall was
90.00%, and the F1-Score amounted to 90.01%. This observation suggests that
VGG19 may be more apt for contexts that demand a balanced distribution of Type
I (False Positive) and Type II (False Negative) errors.

On the other end of the accuracy spectrum, the Swin Transformer reported an over-
all precision of 76.43%, a recall of 75.08%, and an F1-Score of 75.65%. This finding
implies that Swin Transformer may be optimally configured for computational tasks
where a correct classification among the top-ranking predictions is deemed sufficient.

SENet and VGG19 have higher performance metrics than MedMamba, which only
has 77.99% precision, 79.06% recall and 76.77% F1 Score. However, these perfor-
mance metrics still outperform Swin Transformer. Moreover, these results are quite
satisfactory given that the model was trained for only 10 epochs. This suggests that
with further training, MedMamba could potentially achieve even better performance
metrics.

Figure 5.3: Precision, Recall, F1 bar chart comparison of four models
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5.4 Overview of our Proposed Model Result: Med-

MambaSE

The MedMamba model’s performance was evaluated over 20 epochs with early stop-
ping. These periods exposed a trend of development in training loss, training accu-
racy as well as validation accuracy. At first, the training accuracy was 55.39% and
the validation accuracy was 51.37%. Nevertheless, it grew to be 90.6% for training
and 87.21% for validation by the end of last epoch. Moreover, the training loss
significantly showcases a consistent decrease over per epoch which indicates that it
is effectively minimizing the error over time.

However, the accuracies have just touched the 90%. This is majorly because the
number of epochs used for training is only 20 which is relatively short for most
complex models such as MedMambaSE to learn enough features needed for good
performance; hence they require more time to train if better results are expected
from them in terms of performance improvement during learning stage. If trained
further these additional learns will enable this system recognize features correctly
thus achieving higher rates.

Figure 5.4: Training Loss, Training and Validation Accuracy of MedMambaSE

Table 5.2: Training, Test and Validation Accuracy of Implemented Models

Model
Training

Accuracy (%)
Test Accuracy

(%)
Validation

Accuracy (%)
VGG19 84.77 90.44 89.67
SENet 97.81 94.96 95.46

Swin Transformer 88.61 73.95 75.5
MedMamba 87.56 81.2 83.49

MedMambaSE 90.6 84.23 87.21
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5.4.1 Assessment of Classification Performance and Predic-
tive Accuracy of MedMambaSE

The confusion matrix in Figure 5.5 provides valuable insights into classification
across six classes. For instance, the model showcases higher performance in classi-
fying certain classes such as “Fetal Brain” and “Maternal Cervix”. These classes
show a high number of true positives which indicates that the model can effectively
recognize and classify these images. This high performance is likely due to the good
number of images in the training dataset which allowed the model to learn detailed
and distinctive features necessary for the prediction.

However, classes that have fewer images such as “Fetal Abdomen” and “Fetal Fe-
mur”, has a higher rate of false negatives. This issue seems to occur due to the
imbalanced distribution of images. Classes with fewer training data don’t provide
the model with enough examples to learn from. Eventually it results in poor gener-
alization capabilities to unseen data. Hence, it is evident in the model’s tendency to
confuse these less represented classes with “Other” category which is more frequently
represented.

Figure 5.5: Confusion Matrix of MedMambaSE across six classes

Figure 5.6: Correctly Classified Images
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Figure 5.7: Incorrectly Classified Images

5.4.2 Weaknesses in Predictive Accuracy

Although MedMambaSE shows a promising result in certain classes, the imbalance
in the training data causes a challenge to its overall effectiveness. For instance, from
the Figure 5.8 it is seen that, “Fetal Abdomen” has low precision which suggests
that it often incorrectly predicts the class. Moreover, the “Fetal Femur” class has
a low recall which indicates that the model misses a substantial number of actual
fetal femur cases. Moreover, there is moderate score in the “Maternal Cervix”.
On the contrary, if we look at “Fetal Thorax” and “Fetal Brain”, these classes
show excellent performance which is likely due to the distinct and well represented
features in the dataset. Hence, to address this imbalance we can try several data
balancing strategies such as data augmentation, under-sampling, over-sampling or
class weighting. However, we wanted to evaluate our proposed model performance
on the actual dataset.

Figure 5.8: Performance Evaluation Metrics of MedMambaSE across six classes
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5.4.3 Comparative Analysis of Feature Recalibration

Squeeze-and-Excitation (SE) blocks are shown to be a critical improvement in hy-
brid models that advance the performance of both convolutional neural networks
(CNNs) and self-attention mechanisms for ultrasound image analysis. In order to
illustrate the effectiveness of feature recalibration, this section compares the Med-
Mamba model with the MedMambaSE model. To empirically demonstrate the im-
pact of SE blocks, we extracted and visualized the feature maps from both Med-
Mamba and MedMambaSE models 5.9.

Figure 5.9: Comparison of Feature Maps Before and After SE Block Recalibration
in MedMamba and Swin Transformer

MedMamba is a hybrid model incorporating convolutional neural networks (CNNs)
and self-attention mechanisms designed for medical image analysis. The MedMamba
model has the following observations:

• The feature map visualization for MedMamba, shown in the left panel, exhibits
a broad distribution of activation values ranging from -0.10 to 0.10.

• The spread of values indicates that the model treats many features similarly,
without distinguishing their relative importance. This uniform treatment can
lead to the inclusion of irrelevant or redundant features, potentially hindering
model performance.

On the other hand, MedMambaSE is an enhanced version of MedMamba, where
SE blocks are integrated to recalibrate feature maps dynamically, improving the
model’s ability to focus on salient features. The MedMambaSE model has the
following observation:

• The feature map visualization for MedMambaSE, depicted in the right panel,
reveals a more concentrated range of activation values from -0.14 to 0.00.

• SE blocks recalibrate the feature maps by emphasizing more informative fea-
tures while suppressing less relevant ones. This recalibration is evident in the
refined distribution of feature activations, where crucial patterns are enhanced.

The SE blocks contribute to enhanced feature Representation. By recalibrating
the features, the model can focus on more relevant patterns, improving its ability
to generalize from the training data to unseen data. Moreover, SE blocks help in
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mitigating the influence of noisy or redundant features, thereby enhancing the ro-
bustness of the model.

Superior feature recalibration capabilities are shown by the MedMambaSE architec-
ture, which is the product of integrating SE blocks into the MedMamba model. The
advantages of this strategy are well shown by the empirical display of feature maps
before and after the SE block. The model’s enhanced focus and performance are
shown by the recalibrated features of MedMambaSE, which more effectively high-
light noteworthy patterns.

Looking at the feature map for the Swin Transformer, it is observed that the feature
map is almost entirely deep green, with an activation value of between -0.75 and
0.75. This means that the focus spreads over all the features without emphasizing
the relevant ones most while underemphasizing those less relevant. This highlights
the need for the SE block in that it attends to the most relevant features to ensure
critical patterns are put forth while the less relevant information is suppressed.

Due to the higher computational requirements, the MedMambaSE model was only
trained for 20 epochs; still, it has promise. It appears from the feature recalibration
that the accuracy of the MedMambaSE model may be even greater with longer
training. Based on the same dataset, the SENet model performed remarkably well,
achieving 97% accuracy, which supports this notion. So, MedMambaSE’s potential
for better performance in ultrasound image analysis is well supported by the feature
recalibration proof.

5.4.4 Training Time Analysis of MedMambaSE

Gradient Accumulation and Training Time

In deep learning, the training process can be computationally intensive, especially
when dealing with large datasets and complex models. One technique used to man-
age memory consumption and improve training efficiency is gradient accumulation.
Gradient accumulation works by splitting a batch of training data into several
smaller sub-batches (or micro-batches). Instead of updating the model parame-
ters after processing each sub-batch, the gradients are accumulated over multiple
sub-batches. After processing the specified number of sub-batches, the accumulated
gradients are used to update the model parameters. This process helps in training
with larger effective batch sizes without requiring a large amount of memory, as the
model parameters are updated less frequently.

While gradient accumulation helps manage memory consumption and allows training
with larger batch sizes, it can also significantly increase the overall training time.
The primary reasons for this increase in training time include:

• Increased Number of Forward and Backward Passes: Since the model
processes multiple sub-batches before updating the parameters, the number
of forward and backward passes through the network increases. Each pass
involves complex computations that contribute to the overall training time.
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• Synchronization Overhead: After processing each sub-batch, gradients
need to be synchronized and accumulated. This synchronization step intro-
duces additional overhead, especially when training on multiple GPUs or dis-
tributed systems.

• Delayed Parameter Updates: The delay in updating model parameters
means that the model takes longer to converge. More iterations are required to
achieve the same level of training progress compared to more frequent updates.

In our MedMambaSE model, the use of gradient accumulation is essential due to
the high-dimensional nature of the input ultrasound images and the complexity of
the network architecture. By accumulating gradients over multiple sub-batches, we
can effectively manage the memory requirements. However, this comes at the cost
of increased training time, which is a trade-off necessary for achieving efficient and
stable training.

Figure 5.10: Impact of Gradient Accumulation on Training Time

5.5 Challenges and Issues

5.5.1 GPU Utilization

Despite having access to a high-performance NVIDIA RTX 4090 GPU, initial tests
showed that TensorFlow was not fully utilizing its capabilities. This became a
bottleneck, especially for computationally expensive models like MedMamba and
MedMambaSE. Tweaking the GPU settings and modifying the code to enable full
GPU utilization was a vital step in the project.

5.5.2 Training Duration and Resource Limitations

One of the main challenges we have faced was the extensive training duration per
epoch. Completing 20 epochs with early stopping took nearly 5 days. Moreover,
lower-spec GPUs were inadequate for the model implementation. Hence, we needed
high end GPUs like RTX-4090. As a result, our testing and experimentation were
further constrained by limited access to these high-resource GPUs.
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Figure 5.11: Training Time Comparison

5.5.3 Memory Exhaustion

ResourceExhaustedErrors mainly arose when running the model, due to its depth
and the large number of parameters. A number of techniques, such as, reducing the
batch size and image size, were employed, as a workaround for this.

5.5.4 Module Import Errors

Numerous challenges were encountered during the initial setup phase, especially,
concerning module import errors. Several issues surfaced due to missing python
packages and incorrect environment settings, which affected data manipulation and
model training. The resolution of this issues was pivotal for safeguarding the in-
tegrity of the research and verifying that the chosen machine learning libraries func-
tioned as anticipated.
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Chapter 6

Conclusion

Development of the MedMambaSE model is a considerable step forward in the ap-
plications of deep learning for prenatal ultrasound diagnostics. It is possible to show
that integration of the Squeeze-and-Excitation (SE) block into the MedMamba ar-
chitecture brings massive improvement in the ability of the model for dynamic re-
calibration, as well as in the emphasis of important features at the cost of pressing
down those which are less informative, hence lifting both sensitivity and specificity
of ultrasound image classification.

The initial implementation of MedMambaSE has shown encouraging results, with
increased accuracy and timely diagnostic results, as is important in prenatal care.
Nevertheless, there is always a continuous scope for its betterment and optimization
in full utilization of such potential in clinical implementations. This will set the
foundation for further development, which will have a quick training duration of the
model with advanced computational strategies and the challenge of database imbal-
ance, which remains an issue to provide the robustness and reliability of the model
in different clinical settings and patient demographics. In further epochs of training
and the testing of the developed model over increased datasets, the performance will
be duly tuned to handle diverse real-life scenarios.

These advances will make the MedMambaSE model a much more potent tool in the
area of medical imaging, thereby contributing much to furthering prenatal health-
care. This development will be continuous, meaning that the model will not only
service the demands of medical diagnostics but also be helpful to medical personnel
in the context of providing information that is reliable, accurate, and timely for
diagnoses.

In addition, our future research will focus on a few critical improvements to the
MedMambaSE model in order to maximize its use in prenatal ultrasound diagnosis.
To begin with, the primary goal is to reduce the training period through the employ-
ment of modern optimization strategies that have a lower computational overhead
without any decrease in performance. Secondly, the imbalance in dataset will be
fixed as a major task. In addition, more advanced forms of data augmentation and
synthetic data creation will be employed for better accuracy of the model concerning
various kinds of data. Therefore, it would involve longer training epochs on bigger
datasets including but not limited to other populations and imaging conditions. The
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purpose of this research is to improve MedMambaSE’s diagnostic capabilities so that
it is able to consistently perform well in different clinical situations and significantly
contribute to medical imaging technology advancement.
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