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Abstract

We investigate a quantum analog of the classical Z-transform with the aim of mak-
ing it implementable on quantum computers, potentially offering a speedup over
the classical method. Unlike the discrete Fourier transform, which is limited to
frequency analysis, the Z-transform allows for versatile exploration of properties
within the complex plane. Since the quantum Fourier transform underpins Shor’s
factoring algorithm and serves as a subroutine in many other quantum algorithms, a
quantum Z-transform promises broad applicability in quantum simulation, quantum
machine learning, and quantum signal processing. This is especially relevant because
Z-transforms generalize Fourier transforms in certain aspects. Given that quantum
computers are particularly adept at performing unitary operations, we discretize
the classical definition of the Z-transform and unitarize its matrix formulation to
make it amenable for quantum computation. Our approach involves introducing
a discrete Z-transform, mapping the input sequence to a discrete set of values to
represent them as quantum states, and redefining the Z-transform as a finite sum-
mation to effectively handle the infinite summation of the classical definition. We
then develop a matrix formulation for our redefined discrete Z-transform and ex-
tend our approach by unitarizing this matrix formulation through block-encoding,
constructing unitary operators that meet the criteria for efficient quantum opera-
tions using standard quantum gates and subroutines. Our approach establishes the
groundwork by fulfilling the mathematical foundations for the potential discovery of
a quantum Z-transform and opens avenues for further exploration and implemen-
tation in quantum computing.

Keywords: quantumZ-transform, quantum Fourier transform, discrete Z-transform,
quantum algorithms, quantum subroutines, quantum computing.
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Chapter 1

Introduction

In science and engineering, it is important to distinguish between processes that are
discrete and processes that are continuous. At its most fundamental level, quan-
tum mechanics is a mathematical framework describing discrete processes. However,
given its fundamental importance in understanding the natural world, it is neces-
sary to translate the mathematics of what is essentially a discrete theory to describe
processes that are not necessarily discrete. In applied mathematics, tools have been
developed to achieve this, even without any motivation from the natural sciences,
and one such tool is the Z-transform [6], [11], [14].

While the Z-transform is commonly attributed to electrical engineers Ragazzini and
Zadeh, its roots trace back to DeMoivre in the 1700s, who utilized the analogous con-
cept of a generating function [13], [47]. To comprehend the Z-transform’s purpose,
we consider discrete difference equations [24] of the form:

xn = αn + βn + γ, n ∈ N

Which can be transformed from a discrete n-domain to a continuous complex z-
domain simply by multiplying throughout by an arbitrary complex variable z:

∞∑

n=0

xnzn =
∞∑

n=0

αnzn +
∞∑

n=0

βnzn + γ
∞∑

n=0

zn,

Ultimately, this leads to an equation of the formX(z) = A(z)+B(z)+Γ(z), to which
an extensive array of techniques from complex analysis [1] can be applied. The Z-
transform can thus be seen as the discrete-time equivalent of the Laplace transform
[50], making it highly applicable in signal processing and related disciplines.

1.1 Research Motivation

The Z-transform shares remarkable similarities with the Fourier transform [25],
differing primarily in that the Fourier transform uses sine waves or circles, while
the Z-transform utilizes exponential curves. Given that the Fourier transform has
been adapted for quantum computation, known as the quantum Fourier transform,
it is plausible to anticipate that the Z-transform could also be adapted for quantum
implementation, leading to the development of a quantum Z-transform.
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1.2 Problem statement

The Z-transform and the Fourier transform are both linear transforms [25]. The
Fourier transform, akin to the Z-transform, can be interpreted as a change of basis
in the frequency domain. Furthermore, both transforms are capable of expediting
intermediate operations and are reversible. These parallels suggest a favorable out-
come.

When applying the discrete Z-transform, as we formulated in section (4.1), to the
sequence [1, 2, 3], it produces [1+2+3, 1

2
+ 1

2
+ 3

8
, 1
3
+ 2

9
+ 1

9
] = [6, 11

8
, 2
3
]. This resulting

sequence illustrates a series of sums involving progressively decreasing terms, pre-
sented within distinct fractional representations. However, the primary challenge
lies in the classical definition of the Z-transform (2.1), which is expressed as an
infinite summation. This cannot be implemented on a quantum computer, as infi-
nite summations do not operate on finite sets of variables. Therefore, to realize a
quantum implementation, the Z-transform must be redefined as a finite summation.

While quantum computers excel at performing unitary operations and are partic-
ularly adept at matrix multiplication, a problem arises when representing the Z-
transform as a matrix: the columns and rows, when considered as vectors, fail to
preserve their lengths.

To illustrate how length preservation fails in vectors under the discrete Z-transform
(4.1), consider the mapping of [1, 0] to [1, 1

2
]. The initial vector [1, 0] has a length

of 1, while the transformed vector [1, 1
2
] has a length of

√
12 +

(
1
2

)2
=

√
5
2
. This dis-

crepancy clearly indicates that the length is not conserved after the transformation,
thus failing to satisfy the unitarity criterion essential for quantum implementation.
Therefore, it is imperative to explore methods to ensure the transformation is uni-
tary.

1.3 Contributions

When we commenced this research, there were no documented attempts in the ex-
isting literature specifically aimed at developing an algorithm or subroutine for a
quantum Z-transform that could be implemented on quantum computers. Thus,
our work in formalizing the problem, sorting out the mathematical requirements,
laying the groundwork for the algorithmic design, and formulating a strategic plan
represents pioneering efforts in this research direction, particularly in the discovery
of a quantum Z-transform.

Our ongoing research has yielded the following findings to date:

• We introduced a discrete Z-transform by discretizing the classical Z-transform
and redefining it as a finite summation.

• We provided a matrix formulation of the discrete Z-transform, a critical step
in developing a quantum algorithm for the Z-transform.
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• We unitarized the discrete Z-transform by block-encoding its matrix formu-
lation, enabling the construction of unitary operators that adhere to the pre-
conditions for efficient quantum operations using standard quantum gates and
subroutines.

As a result, the advancements achieved in this thesis have provided an optimal frame-
work for developing the quantum Z-transform and established a robust foundation
for future exploration and implementation in quantum computing.

1.4 Preliminaries

To fully appreciate the discussions, arguments, and findings presented in this thesis,
it is essential for the reader to have a solid foundation in several key areas. An
undergraduate-level understanding of quantum computation [29], [33] is necessary,
providing familiarity with the fundamental concepts and principles that drive this
cutting-edge field. A background in complex analysis [1] and contour integral [12]
techniques is crucial for grasping the mathematical machinery employed throughout
the research. Additionally, a solid grounding in quantum mechanics [3], [42] will
help in understanding the fundamental physical concepts that underpin the the-
oretical framework of this thesis. Knowledge of number theory [4], [31] basics is
also beneficial, given its relevance to certain computational aspects explored herein.
Furthermore, proficiency in linear algebra [5] is indispensable, as it forms the back-
bone of many mathematical formulations used in the thesis. Lastly, foundational
concepts of computer science [27] will enable a comprehensive understanding of the
computational dimensions of this research.

1.5 Thesis Overview

In Chapter 1, we introduce the central problem this thesis aims to address, providing
a comprehensive context for the ensuing discussion. Chapter 2 follows with a suc-
cinct review of the classical Z-transform, detailing its fundamental properties and
laying the groundwork for the quantum analogs explored later. Chapter 3 discusses
the quantum analogs of the Z-transform properties, illustrating a crucial connection
between Fock Space and Coherent states.

In Chapter 4, we address the inherent challenges of achieving a quantum Z-transform.
To manage the infinite summation, we redefined the classical Z-transform to cre-
ate a discretized version. Based on this new definition,, we developed a matrix
formulation for the discrete Z-transform. Subsequently, we unitarized this matrix
formulation for a finite number of variables, paving the way for efficient quantum op-
erations with the discrete Z-transform. Building on these insights, Chapter 5 draws
parallels with the quantum Fourier transform, a successful subroutine, to guide the
development of our targeted quantum subroutine.

Finally, Chapter 6 offers a critical analysis, synthesizing the connections and insights
gleaned from the preceding chapters. We reflect on the implications of our findings
and propose a future research direction to build upon the advancements achieved in
this thesis.
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Chapter 2

Exploring the Classical
Z-transform

2.1 Definition of the classical Z-transform
The classical Z-transform [6], [25], [28], symbolized by F (z), is defined through a
bilateral infinite power series to facilitate a transformation on a complex sequence
denoted by f [n],

F (z) =
∞∑

n=−∞

f [n]z−n (2.1)

Where n represents an integer and z denotes a complex number, in general.

In contrast, the unilateral Z-transform of the complex sequence f [n] is distinct
from its bilateral counterpart due to the difference in the lower summation limit, as
indicated below,

F+(z) =
∞∑

n=0

f [n]z−n (2.2)

With z as a complex variable, F+(z) refers to the unilateral Z-transform for the
complex sequence f [n], which is specified exclusively for n ≥ 0.

Throughout our discussion in this chapter, we shall refer to the classical Z-transform
or, more succinctly, the Z-transform as the bilateral Z-transform, except where
noted otherwise.

It is useful to view the classical Z-transform as an operator, symbolized by Z {.},
that transforms a sequence into a function.

Z{f [n]} =
∞∑

n=−∞

f [n]z−n = F (z) (2.3)

The existence of the Z-transform is confined to those z values ensuring the conver-
gence of the series delineated in equation (2.1). Such values demarcate the Region
of Convergence (ROC) for F (z), defining its domain, with the range comprised of
the elements constituting F (z).
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2.2 Condition for the existence of Z-transform
It is essential to recognize that the Z-transform does not apply to every sequence.
Given its nature as a power series, it requires that the sequence f [n]z−n be absolutely
summable to ensure convergence [35], [43]. Mathematically,

|
∞∑

n=−∞

f [n]z−n| <∞ (2.4)

Equivalently,
∞∑

n=−∞

|f [n]z−n| <∞ (2.5)

Now let us substitute z = rejω,
∞∑

n=−∞

|f [n](rejω)−n| <∞ (2.6)

Which is equivalent to
∞∑

n=−∞

|f [n]r−n||e−jωn| <∞ (2.7)

But e−jωn = 1, so we can write,
∞∑

n=−∞

|f [n]r−n| <∞ (2.8)

This is the condition for the existence of Z-transform.

2.3 Region of Convergence

It is vital to precisely delineate the region of convergence (ROC) [18], [28] since
it demarcates the boundaries within which the Z-transform remains valid. This
region, known as the ROC, is comprised of the z-values for which the series, as
outlined in the equation (2.1), converges.

ROC =

{
z :

∣∣∣∣∣
∞∑

n=−∞

f [n]z−n

∣∣∣∣∣ <∞
}

(2.9)

The ROC stated in equation (2.9) must satisfy the condition for the existence of the
Z-transform as described in section (2.2).

2.4 Properties of the Z-transform
The properties [6], [14], [25], [28] of the Z-transform significantly facilitate the pro-
cess of determining the z-domain analog of a given time domain function. The
notation we adopt is as follows,

f [n]
Z←→ F (z) , ROC = R

Where F (z) corresponds to the Z-transform of f [n], with its region of convergence
denoted by R.

5



2.4.1 Scaling in the z-domain

If f [n]
Z←→ F (z) with ROC = R, then zn0 f [n]

Z←→ F
(
z−1
0 z
)
with ROC = z0|R|;

where ROC = z0|R| is the scaled version of R and z0 is a constant [6], [14], [25], [28].

Proof:

Consider the sequence denoted by zn0 f [n]. Utilizing the Z-transform definition allows
us to represent the sequence zn0 f [n] in the subsequent manner,

Z {zn0 f [n]} =
∞∑

n=−∞

zn0 f [n]z
−n (2.10)

By reorganizing the terms present on the right-hand side of equation (2.10), we
obtain,

Z {zn0 f [n]} =
∞∑

n=−∞

f [n](zn0 z
−n) (2.11)

Since the term (zn0 z
−n) = (z0z

−1)n in equation (2.11), we can write

Z {zn0 f [n]} =
∞∑

n=−∞

f [n](z0z
−1)n (2.12)

Equivalently, since (z0z
−1)n = (z−1

0 z)−n, equation (2.12) becomes

Z {zn0 f [n]} =
∞∑

n=−∞

f [n](z−1
0 z)−n (2.13)

It is evident that the right side of equation (2.13) constitutes the Z-transform of
the sequence z−1

0 z, thereby establishing a mapping to the function F (z−1
0 z).

Z {zn0 f [n]} =
∞∑

n=−∞

f [n](z−1
0 z)−n = F (z−1

0 z) (2.14)

ROC:

For scaling in the z-domain, the region of convergence (ROC) is specified as follows,

r1 < |z−1
0 z| < r2 (2.15)

Equivalently,
|z0|r1 < |z| < |z0|r2 (2.16)

2.4.2 Time shifting

If f [n]
Z←→ F (z) with ROC = R, then f [n − k]

Z←→ z−kF (z); with ROC = R,
except for z = 0 (if k > 0) or z =∞ (if k < 0) [6], [14], [25], [28].

6



Proof:

Considering the sequence f [n − k], we can apply the definition of the Z-transform
to express the sequence in the following form,

Z {f [n− k]} =
∞∑

n=−∞

f [n− k]z−n (2.17)

Letting m represent n − k, we can rewrite n as m + k, which in turn reformulates
equation (2.17),

Z {f [n− k]} =
∞∑

n=−∞

f [m]z−(m+k) (2.18)

Equivalently we can write,

Z {f [n− k]} =
∞∑

n=−∞

f [m]z−mz−k (2.19)

Modifying the right-hand side terms to meet our particular needs,

Z {f [n− k]} = z−k

∞∑

n=−∞

f [m]z−m (2.20)

In light of the Z-transform’s definition, it is evident that, excluding z−k, the re-
maining terms on the right-hand side equate to the function F (z). Therefore,

Z {f [n− k]} = z−kF (z) (2.21)

The term z−k affects the poles and zeros at z = 0 and z = −∞.

2.4.3 First difference

If f [n]
Z←→ F (z) with ROC = R, then f [n] − f [n − 1]

Z←→ (1 − z−1)F (z) with
ROC = R [6], [14], [25], [28].

Proof:

We have a sequence f [n]− f [n− 1]. Let us plug this sequence into the Z-transform
operator, and since the Z-transform operator is linear, we can write

Z {f [n]− f [n− 1]} = Z {f [n]} − Z {f [n− 1]} (2.22)

The first Z-transform operator Z {f [n]}, as delineated on the right-hand side of
equation (2.22), applies the standard definition to transform the sequence f [n] into
the function F (z),

Z {f [n]} =
∞∑

n=−∞

f [n]z−n = F (z) (2.23)

7



However, the second Z-transform operator Z {f [n− 1]} on the right hand side of
equation (2.22) maps the sequence f [n − 1] into a function F (z) with a factor z−1

following the Time Shifting property which we proved in the subsection (2.4.2). So
we have,

Z {f [n− 1]} = z−1F (z) (2.24)

Substituting the outcomes of equations (2.23) and (2.24) into equation (2.22), we
obtain,

Z {f [n]− f [n− 1]} = F (z)− z−1F (z) (2.25)

Finally, factoring out the common function, we have,

Z {f [n]− f [n− 1]} = (1− z−1)F (z) (2.26)

2.4.4 Convolution

If f [n]
Z←→ F (z) with ROC = R1, and g[n]

Z←→ F (z) with ROC = R2, then

f [n] ∗ g[n] Z←→ F (z)G(z) with ROC ⊇ R1 ∩R2 [6], [14], [25], [28].

Proof:

Convolution serves as a mathematical procedure that combines two distinct func-
tions, resulting in a third function. Let us consider r(n) as the convolution result of
f [n] and g[n]; thus, we define r(n) as

r[n] = f [n] ∗ g[n] =
∞∑

k=−∞

f [k] ∗ g[n− k] (2.27)

Let us now take the Z-transform of r[n],

Z {r[n]} =
∞∑

n=−∞

r[n]z−n (2.28)

According to the definition of convolution as stated in equation (2.27),

Z {f [n] ∗ g[n]} =
∞∑

n=−∞

{f [n] ∗ g[n]} z−n (2.29)

We can further use the convolution sum from equation (2.27) to write as follows

Z {f [n] ∗ g[n]} =
∞∑

n=−∞

{
∞∑

k=−∞

f [k] ∗ g[n− k]
}
z−n (2.30)

Now let m = n− k, then n = m+ k; therefore we obtain,

Z {f [n] ∗ g[n]} =
∞∑

n=−∞

∞∑

k=−∞

f [k]g[m]z−(m+k) (2.31)

8



Equivalently we can state that,

Z {f [n] ∗ g[n]} =
∞∑

n=−∞

∞∑

k=−∞

f [k]g[m]z−mz−k (2.32)

Interchanging the order of summation, we can re-write,

Z {f [n] ∗ g[n]} =
∞∑

k=−∞

f [k]z−k

∞∑

n=−∞

g[m]z−m (2.33)

As per the Z-transform definition, we deduce,

Z {f [n] ∗ g[n]} = F (z)G(z) (2.34)

ROC:

The region of convergence (ROC) for the convolution is at a minimum, the intersec-
tion of the ROCs for F (z) and G(z).

2.4.5 Accumulation

If f [n]
Z←→ F (z) with ROC = R, then

∑∞
n=−∞ f [k]

Z←→ F (z) 1
1−z−1 with ROC ⊇

R ∩ {(|z| > 1)} [6], [14], [25], [28].

Proof:

We can write the accumulation of f [n] as its convolution with u[n] as per the defi-
nition provided in equation (2.27),

f [n] ∗ u[n] =
∞∑

k=−∞

f [k]u[n− k] (2.35)

Herein, the unit step function u[n] is specified as follows,

u[n] =

{
0, n < 0
1, n ≥ 0

Therefore, equation (2.35) turns out to be

f [n] ∗ u[n] =
n∑

k=−∞

f [k] (2.36)

By employing the convolution property, we are able to represent,

Z
{

n∑

n=−∞

f [k]

}
= Z {f [n] ∗ u[n]} (2.37)

Given that Z {u[n]} = 1
1−z−1 , we can reformulate equation (2.37) as follows,

Z
{

n∑

n=−∞

f [k]

}
= F (z)

1

1− z−1
(2.38)
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2.4.6 Differentiation in the z-domain

If f [n]
Z←→ F (z) with ROC = R, then nf [n]

Z←→ −z dF (z)
dz

with ROC = R [6], [14],
[25], [28].

Proof:

We have a sequence nf [n] and we apply the Z-transform on it,

Z {nf [n]} =
∞∑

n=−∞

nf [n]z−n (2.39)

Since z−1z = 1, we can write the above equation as

Z {nf [n]} = z

∞∑

n=−∞

nf [n]z−nz−1 (2.40)

Equivalently we can write,

Z {nf [n]} = z
∞∑

n=−∞

nf [n]z−n−1 (2.41)

Differently stated,

Z {nf [n]} = −z
∞∑

n=−∞

f [n](−nz−n−1) (2.42)

Since d
dz
(z−n) = −nz−n−1, we can write from equation (2.42),

Z {nf [n]} = −z
∞∑

n=−∞

f [n]
d

dz
(z−n) (2.43)

Rearranging the constant terms for our particular need,

Z {nf [n]} = −z d
dz

{
∞∑

n=−∞

f [n]z−n

}
(2.44)

In light of the Z-transform definition, it is possible to express,

Z {nf [n]} = −zdF (z)
dz

(2.45)

2.4.7 Time Expansion

If f [n]
Z←→ F (z) with ROC = R, then f(k)[n]

Z←→ F (zk) with ROC = R
1
k , [6],

[14], [25], [28] where f(k)[n] is defined as

f(k)[n] =

{
f [n/k], n is a multiple of k
0, otherwise

10



Proof:

In employing the Z-transform definition on the sequence f(k)[n],

Z
{
f(k)[n]

}
=

∞∑

n=−∞

f(k)[n]z
−n (2.46)

Employing the given definition for the sequence f(k)[n], we may express,

Z
{
f(k)[n]

}
=

∞∑

n=−∞

f [n/k] z−n (2.47)

Assume n/k = r, from which it follows that n = rk; accordingly, equation (2.47)
evolves into,

Z
{
f(k)[n]

}
=

∞∑

n=−∞

f [r]z−rk (2.48)

Differently stated for our particular need,

Z
{
f(k)[n]

}
=

∞∑

n=−∞

f [r](zk)−r (2.49)

By the definition of Z-transform, this turns out to be

Z
{
f(k)[n]

}
= F (zk) (2.50)

ROC:

r1 < |zk| < r2 (2.51)

Equivalently,

r
1
k
1 < |z| < r

1
k
2 (2.52)

2.5 The Inverse Z-transform
According to the Cauchy integral formula [12], [25], for any closed contour ∂Cz that
circumscribes the origin in a counterclockwise manner, it follows that

1

2πi

∮

∂Cz

dz zk−1 =

{
1, k = 0
0, k ̸= 0

(2.53)

The Z-transform, denoted as F (z), of a complex sequence f [n] is precisely defined
through

F (z) =
∞∑

n=−∞

f [n]z−n (2.54)
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When both sides of equation (2.54) are multiplied by 1
2πi
zk−1, this yields

1

2πi
F (z)zk−1 =

1

2πi

∞∑

n=−∞

f [n]z−nzk−1 (2.55)

Integrating over a contour ∂Cz that encloses the origin counterclockwise and resides
within the region of convergence (ROC) of F (z) yields,

1

2πi

∮

∂Cz

dz F (z)zk−1 =
1

2πi

∮

∂Cz

dz
∞∑

n=−∞

f [n]z−n+k−1 (2.56)

Given the convergent nature of the series, the reordering of integration and summa-
tion is justified on the right-hand side of equation (2.56), which leads to

1

2πi

∮

∂Cz

dz F (z) zk−1 =
∞∑

n=−∞

f [n]
1

2πi

∮

∂Cz

dz z−n+k−1 (2.57)

The application of the Cauchy integral formula to the integral on the right-hand
side of equation (2.57) provides us with,

1

2πi

∮

∂Cz

dz z−n+k−1 =

{
1, n = k
0, n ̸= k

(2.58)

By the virtue of the approach specified in equation (2.58), we find that equation
(2.57) evolves into

1

2πi

∮

∂Cz

dz F (z) zk−1 = f [k] (2.59)

As a result, the formula representing the inverse Z-transform is encapsulated by the
integral below,

f [n] =
1

2πi

∮

∂Cz

dz zn−1F (z) (2.60)

For this integral, we consider a path defined by a counterclockwise enclosed circular
contour ∂Cz, with its center at the origin and radius r, located within the region of
convergence (ROC) of F (z).
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Chapter 3

A Bosonic Quantum Z-transform

3.1 Fock Space

In quantum mechanics, Fock space [2], [22] serves as the state space for a variable
number of elementary particles. Given the two fundamental categories of these par-
ticles—bosons and fermions—there emerge correspondingly distinct Fock spaces:
bosonic and fermionic. Our work will specifically engage with the bosonic Fock
space.

Within the bosonic Fock space, we identify the creation operator with a† and the an-
nihilation operator with a. The quantum states in this space, referred to as number
states, are defined by their occupation numbers within the ket notation. The vac-
uum state, indicating no particles, is denoted by |0⟩, whereas the states containing
particles, known as non-vacuum states, are represented by |n⟩, where n is a positive
integer i.e. n > 0.

The action of the creation operator a†, applied n times to a vacuum state, results
in the creation of n particles, indicated as,

|n⟩ = 1√
n!
(a†)n |0⟩

The action of the annihilation operator a on the vacuum state leads to the total
annihilation of the state, yielding an outcome of zero.

a |0⟩ = 0

The non-vacuum states, represented as a set of eigenstates |n⟩, form a basis, allow-
ing any state to be expressed as their appropriate linear combination.

When applied to non-vacuum states, the creation operator acts as follows,

a† |n⟩ =
√
n+ 1 |n+ 1⟩

When applied to non-vacuum states, the annihilation operator acts as follows,

a |n⟩ = √n |n− 1⟩
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Within the framework of a free scalar field, it is imperative to track unique excitation
numbers, denoted by ni. The creation operator a†i and the annihilation operator ai
interact with ni in well-defined manners, detailed as follows,

The effect of creation operator a†i on the non-vacuum state manifests as

a†i |n1, n2, · · · , ni, · · · , nj⟩ =
√
ni + 1 |n1, n2, · · · , ni + 1, · · · , nj⟩

The effect of annihilation operator ai on the non-vacuum state manifests as

ai |n1, n2, · · · , ni, · · · , nj⟩ =
√
ni |n1, n2, · · · , ni − 1, · · · , nj⟩

We introduce the number operator as n̂ := a†a, which adheres to the corresponding
eigenequation,

n̂ |n1, n2, · · · , ni, · · · , nj⟩ = ni |n1, n2, · · · , ni, · · · , nj⟩

The eigenstates of the number operator n̂ form a basis for the entirety of Hilbert
space, recognized as the Fock basis [22]; the space constructed from this basis is
known as Fock space.

3.2 Coherent States

Coherent states [19], [48] are characterized as the displaced ground states of a har-
monic oscillator [8], and they can be described in a non-normalized form as follows,

|(z)⟩ = eza
† |0⟩ =

∞∑

n=0

zn√
n!
|n⟩ (3.1)

These coherent states serve as eigenkets for the boson annihilation operator a, in
accordance with,

a|(z)⟩ = z|(z)⟩ (3.2)

The inclusion of the complex variable z within the round brackets of |(z)⟩ signifies
that the states in the selected non-normalized standardization vary analytically with
z, independent of the complex conjugate z∗.

We denote the adjoint states corresponding to |(z)⟩ by ⟨(z∗)|, which, upon relabeling
z∗ → z, can be described explicitly as follows,

⟨(z)| = ⟨0| eza =
∞∑

n=0

zn√
n!
⟨n| (3.3)

These represent the eigenbras associated with the boson creation operator a†,

⟨(z)| a† = z ⟨(z)| (3.4)

The states ⟨(z)| are analytically dependent on the complex variable z.
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Now, for auxiliary purposes, we introduce the notation |(z)⟩µ for non-normalizable

eigenkets possessed by a†, where the subscript µ in |(z)⟩µ means the state belongs

to a†.

To establish a one-to-one correspondence between the transformation from the num-
ber state representation |n⟩ to the coherent state representation |(z)⟩ with the math-
ematical Z-transform, we employ the properties of the eigenkets |(z)⟩µ of the cre-
ation operator, particularly the completeness relation involving |(z)⟩µ and ⟨(z)| as

∮

∂C

dz
{
|(z)⟩µ

}
⟨(z)| = I (3.5)

Equivalently stated,

∮

∂C

dz |(z)⟩ {µ⟨(z)|} = I (3.6)

Here, ∂C indicates a contour encircling the coordinate origin in the complex plane,
and I stands for the identity operator.

The definition of the eigenkets |(z)⟩µ for the creation operator a† is given by,

|(z)⟩µ =
∞∑

n=0

(−1)n√
n!

δ(n)(z) |n⟩ = e−a† ∂
∂z δ(z) |0⟩ (3.7)

The eigenbras µ⟨(z)|, associated with the annihilation operator a, are delineated as
follows,

µ⟨(z)| =
∞∑

n=0

⟨n| (−1)
n

√
n!

δ(n)(z) = ⟨0| e−a ∂
∂z δ(z) (3.8)

Proceeding from |(z)⟩µ of a†, the eigenvalue equation unfolds as follows,

a†|(z)⟩µ = z|(z)⟩µ (3.9)

Arising from µ⟨(z)| of a is the eigenvalue equation, delineated as follows,

µ⟨(z)|a = zµ⟨(z)| (3.10)

Within equations (3.7) and (3.8), δ(z) represents the Dirac delta function, depicted
through its contour integral representation as follows,

δ(z) =
1

i2πz

∣∣∣∣
∂C

(3.11)

The n-th derivative of δ(z), represented by δ(n)(z), is presented as follows,

δ(n)(z) =
(−1)nn!
i2πzn+1

∣∣∣∣
∂C

=
(−1)nn!
zn

δ(z) (3.12)
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The orthogonality relation is characterized by,

⟨(z′) |(z)⟩µ = δ (z − z′) (3.13)

It is essential to underscore that, in alignment with the treatment in equation (3.3),
we deviate from Dirac’s customary notation where ⟨ψ| is the adjoint of |ψ⟩. This
deviation is crucial for maintaining the correct dependency of ⟨(z)| and µ⟨(z)| on z
rather than on the complex conjugate z∗.

3.3 Properties of Coherent States

The coherent states exhibit a range of noteworthy properties [10], [19], [32], [34],
[46], some of which are relevant to our current work and will be discussed herein.

3.3.1 Coherent States in Fock State Basis

The basis of Fock states allows for the representation of coherent states [10], [19],
[48]. The non-normalized coherent state |(z)⟩ is delineated in equation (3.1) as
follows

|(z)⟩ = eza
† |0⟩ (3.14)

where a† is the creation operator, z is a complex number, and |0⟩ is the vacuum
state. We can expand the exponential function by employing its Taylor series, which
leads to

eza
†
=

∞∑

n=0

(za†)n

n!
(3.15)

By applying this to the vacuum state |0⟩, we produce

|(z)⟩ =
(

∞∑

n=0

(za†)n

n!

)
|0⟩ (3.16)

When the creation operator is raised to the n-th power and applied to the vacuum
state, it produces

(a†)n |0⟩ =
√
n! |n⟩ (3.17)

The coherent state is then described by the following mathematical expression,

|(z)⟩ =
∞∑

n=0

(za†)n

n!
|0⟩ =

∞∑

n=0

zn(a†)n

n!
|0⟩ =

∞∑

n=0

zn

n!

√
n! |n⟩ (3.18)

By simplifying the terms, we can achieve

|(z)⟩ =
∞∑

n=0

zn√
n!
|n⟩ (3.19)

This expression describes the non-normalized coherent state as an infinite summa-
tion over the Fock states |n⟩, with each state weighted by the coefficient zn√

n!
.
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3.3.2 Non-Orthogonality of Coherent States

Let |(w)⟩ and |(z)⟩ represent two coherent states, defined accordingly.

|(w)⟩ =
∞∑

n=0

wn

√
n!
|n⟩ , |(z)⟩ =

∞∑

n=0

zn√
n!
|n⟩ (3.20)

The inner product of these states is determined in the following manner,

⟨(w)|(z)⟩ =
(

∞∑

m=0

(w)m√
m!
⟨m|
)(

∞∑

n=0

zn√
n!
|n⟩
)

=
∞∑

m=0

∞∑

n=0

(w)m√
m!

zn√
n!
δmn

=
∞∑

n=0

(wz)n

n!

= ewz

The inner product ⟨(w)|(z)⟩ = ewz indicates that the coherent states |(w)⟩ and |(z)⟩
are orthogonal only if wz = 0, illustrating the typically non-orthogonal nature of
coherent states [10], [19], [48].

3.3.3 Non-Uniqueness of Coherent State Decompositions

Coherent states do not form a standard basis like the eigenstates of the number op-
erator; they form an overcomplete set instead. This overcompleteness [7], [37], [38],
[41] indicates that while every vector in the Hilbert space is representable through
superposition of vectors from this set, the vectors within the set are not linearly
independent, and there is more than one way to represent each vector in the space
using the set. This surplus of vectors relative to a minimal spanning set allows
multiple representations for the same state.

The integral over coherent states yields the identity operator, indicating their ability
to span the space ∫

d2z

π
|(z)⟩⟨(z)| = I,

where I is the identity operator, and d2z represents integration over the complex
plane. This is not just a spanning set but an overcomplete one; and the combination
of overcompleteness and non-orthogonality means that any decomposition using co-
herent states isn’t unique.

Let us consider the quantum state |ψ⟩. This state can potentially be expressed as a
superposition of coherent states.

|ψ⟩ =
∫
d2z

π
f(z)|(z)⟩

where f(z) is some weighting function over z.
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Considering the overcompleteness, we infer the existence of an additional function,
g(z), such that

|ψ⟩ =
∫
d2z

π
g(z)|(z)⟩.

Although f(z) and g(z) both map to the same state |ψ⟩, they do not necessarily
have to be identical functions.

|ψ⟩ =
∫
d2z

π
f(z)|(z)⟩ =

∫
d2z

π
g(z)|(z)⟩.

This lack of uniqueness arises owing to the non-orthogonal nature of coherent states
|(z)⟩.

⟨(w)|(z)⟩ = ewz ̸= 0 for w ̸= z.

To effectively illustrate the concept of non-uniqueness, consider the modification of
f(z) by incorporating an additional function h(z) such that

∫
d2z

π
h(z)|(z)⟩ = 0.

This function h(z) can be constructed because of the non-orthogonality of co-
herent states, and the infinite dimensionality of the function space. By setting
g(z) = f(z)+h(z), we find that both f(z) and g(z) equally and effectively continue
to represent |ψ⟩, even though they differ as functions.

This case highlights the non-uniqueness in the decomposition of quantum states
into coherent states because of their overcompleteness. The existence of a possible
function h(z) indicates that the coefficients in this decomposition are not uniquely
fixed by the state |ψ⟩ itself.

3.4 The Z̃-transform as a representation trans-

form from |n⟩ to |(z)⟩
The Z-transform strikingly resembles the discrete counterpart of the Laplace trans-
form,

F (s) =

∫ ∞

0

dt e−stf(t) (3.21)

With f(t) being a real or complex function; the corresponding unilateral Z-transform
of the sequence f [n] for a complex variable z is characterized by

Z{f [n]} ≡ F (z) =
∞∑

n=0

f [n]

zn
(3.22)

The interaction between f [n] and F (z) is expressed through

f [n]
Z←→ F (z) (3.23)
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The definition of the inverse Z-transform is established as:

f [n] =
1

2πi

∮

∂Cz

dz zn−1F (z) (3.24)

For this integral, the path taken is a closed circular contour ∂Cz, oriented counter-
clockwise, featuring a radius of r, and is centered at the origin. Through the variable
transformation z → z

′
= 1

z
, we arrive at the following expression:

F̃ (z) ≡ F

(
1

z

)
=

∞∑

n=0

f [n]zn (3.25)

Transforming F̃ (z) into f [n] is defined as the inverse Z̃-transform.

f [n] =
1

i2π

∮

∂C′′
dz

(
1

z

)n−1

F

(
1

z

)(
− 1

z2

)

=
1

i2π

∮

∂C′
z

dz
1

zn+1
F̃ (z)

(3.26)

We refer to the transformation from f [n] to F̃ (z) as the Z̃-transform [23], which is
fundamentally similar to the Z-transform, with the relationship between f [n] and
F̃ (z) being expressed as follows:

f [n]
Z̃←→ F̃ (z) (3.27)

We now turn our attention to the Z̃-transform as it applies to the Fock-state rep-
resentation of states, in accordance with the approach described by Hong Yi (2004)
[23]. Starting with any vector |f⟩, we can generate the sequence:

f [n] =
⟨n|f⟩√
n!
, n = 0, 1, 2, . . . (3.28)

This, up to the factors of 1/
√
n!, corresponds to the Fock-state representation de-

noted by ⟨n|f⟩. For the states to be normalized,

∞∑

n=0

n!(f [n])∗f [n] =
∞∑

n=0

⟨f |n⟩⟨n|f⟩ = ⟨f |f⟩ = 1 (3.29)

The definitions of F̃ (z) and ⟨(z)| are now set forth as follows:

F̃ (z) = ⟨(z)|f⟩ (3.30)

⟨(z)| ≡
∞∑

n=0

zn√
n!
⟨n| (3.31)

Through the use of the completeness relation

∞∑

n=0

|n⟩⟨n| = I (3.32)
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We acquire the explicit representation of F̃ (z), which is:

F̃ (z) = ⟨(z)|
∞∑

n=0

|n⟩ ⟨n|f⟩ =
∞∑

n=0

zn⟨n|f⟩√
n!

=
∞∑

n=0

znf [n]

(3.33)

This is consistent with the standard definition provided by equation (3.25) for the Z̃-
transform; therefore, we refer to the Z̃-transform as a bosonic quantum Z-transform.
Conversely, by applying equations (3.28), (3.30), (3.31), along with the completeness
relation in (3.6), the inversion is derived as follows,

f [n] =
1√
n!
⟨n|
∮

∂C

dz {|(z)⟩µ} ⟨(z)|f⟩

=
1√
n!

∮

∂C

dz
(−1)n√
n!

δ(n)(z)F̃ (z)

=
1

i2π

∮

∂C

dz
F̃ (z)

zn+1

(3.34)

The function F̃ (z) is equivalent to the Bargmann representation of the state |f⟩.
[8] This implies that the bosonic quantum Z-transform is related to the transition
from the Fock-state representation to the Bargmann representation of a state. The
benefit of viewing this transition as a type of bosonic quantum Z-transform [23] or
the Z̃-transform is that it allows one to overtake some well-established rules for these
transforms and describe them using the specific language of quantum mechanics.

3.5 Properties of Bosonic Quantum Z-transform
The mathematical properties of the bosonic quantum Z-transform or the Z̃-transform,
as noted by Hong and Yi (2004) [23], find their parallels within the realm of quantum
mechanics.

3.5.1 Scaling in the z-domain

The scaling property [23] of the Z̃-transform is illustrated by the relationship zn0 f [n]
Z̃−→

F̃ (z0z). To explore its implications in the realm of quantum mechanics, we must
define an operator, denoted as P̂ , in the following manner

P̂ ≡
∮

∂C

dz {|(z)⟩µ} ⟨(z0z)| (3.35)

Carrying out the contour integral by employing equation

f (n)(0) = (−1)n
∮

∂C

dzf(z)δ(n)(z) (3.36)
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and by utilizing equations (3.9), (3.10), (3.11), (3.12), (3.30), and (3.31), we derive

P̂ =

∮

∂C

dz
∞∑

n=0

(−1)n√
n!

δ(n)(z)|n⟩
∞∑

m=0

⟨m|(z0z)
m

√
m!

=
∞∑

n=0

zn0 |n⟩⟨n|
(3.37)

It is thereby deduced that

⟨n| P̂ = zn0 ⟨n| (3.38)

Making use of the orthogonality relation, we determine

⟨(z)| P̂ = ⟨(z0z)| (3.39)

When equations (3.38) and (3.39) are considered in tandem, we establish that

zn0 f [n]
Z̃−→ F̃ (z0z)⇒

zn0√
n!
⟨n|f⟩ = 1√

n!
⟨n|{P̂ |f⟩} Z̃←→ ⟨(z)|{P̂ |f⟩} = ⟨(z0z)|f⟩.

(3.40)

3.5.2 Time Shifting

The time shifting property [23] associated with the Z̃-transform is expressed as

f [n− k]u[n− k] Z̃←→ zkF̃ (z). Here, the unit step function, denoted by u[n− k], is
defined such that

u[n− k] =
{

0, n < k
1, n ≥ k

(3.41)

Consequently, by shifting the sequence f [n] to the right by k steps, we obtain the
sequence f [n−k]u[n−k], with the initial k elements being 0. In light of the equations
(3.28), (3.30), and (3.31), we can derive its counterpart in the realm of quantum
mechanics,

1√
(n−k)!

⟨n− k|f⟩, n ≥ k

0, n < k

}
(3.42)

Therefore, for n ≥ k, we obtain

1√
(n− k)!

⟨n− k|f⟩ = 1√
n!

〈
n
∣∣∣
{
a†

k |f⟩
}
←→

〈
(z)
∣∣∣
{
a†

k |f⟩
}

= zk⟨(z)|f⟩.

(3.43)
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3.5.3 First Difference

The first difference [23] of a sequence, denoted as f [n], is characterized by

∇f [n] = f [n]− f [n− 1]u[n− 1] (3.44)

The corresponding Z̃-transform is given by

∇f [n] Z̃←→ (1− z)F̃ (z) (3.45)

Utilizing the identification f [n] = 1√
n!
⟨n|f⟩ for n = 0, 1, 2, . . ., we can formulate the

quantum-mechanical representation of equation (3.44) accordingly,

1√
n!
⟨n|f⟩ − 1√

(n− 1)!
⟨n− 1|f⟩ ←→ (1− z)⟨(z)|f⟩ (3.46)

As such, by employing the completeness relation
∑∞

n=0 |n⟩⟨n| = I, we can delineate
the quantum mechanical expression for the first difference property,

1√
n!

〈
n
∣∣{(1− a†

)
|f⟩
}
←→

〈
(z)
∣∣{(1− a†

)
|f⟩
}

(3.47)

3.5.4 Convolution

The definition below formalizes the convolution [23] between two sequences, identi-
fied as f [n] and g[n],

f [n] ∗ g[n] =
n∑

n1=0

f [n1] g [n− n1] (3.48)

The associated Z̃-transform is delineated as follows,

f [n] ∗ g[n] Z̃←→ F̃ (z)G̃(z) (3.49)

We present the two-mode coherent state and two-mode number state |n1, n2⟩, high-
lighting their adherence to a completeness relation,

∞∑

n1=0

n∑

n2=0

|n1, n2⟩ ⟨n1, n2| =
∞∑

n=0

n∑

n1=0

|n1, n− n1⟩ ⟨n1, n− n1| = I (3.50)

In light of the identifications given in equations (3.28), (3.30), and (3.31), we find
the following,

⟨(z1 = z, z2 = z) |f, g⟩ = F̃ (z)G̃(z) (3.51)
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In reference to equation (3.50), we can determine that

F̃ (z)G̃(z) = ⟨(z1 = z, z2 = z)|
∞∑

n=0

n∑

n1=0

⟨n1, n− n1| ⟨n1, n− n1|f, g⟩

=
∞∑

n=0

n∑

n1=0

zn√
n1! (n− n1)!

⟨n1|f⟩ ⟨n− n1|g⟩

=
∞∑

n=0

zn

(
n∑

n1=0

f [n1] g [n− n1]

)

=
∞∑

n=0

znf [n] ∗ g[n]

(3.52)

We verify this through calculation,

1

i2π

∮

∂C

dz
1

zn+1
⟨(z1 = z, z2 = z)| =

n∑

n1=0

zn√
n1! (n− n1)!

⟨n1, n− n1| (3.53)

We can characterize the inverse transform of Equation (3.52) as

n∑

n1=0

fn1gn−n1 =
n∑

n1=0

⟨n1, n− n1|√
n1! (n− n1)!

|f, g⟩

=
1

i2π

∮

∂C

dz
1

zn+1
⟨(z1 = z, z2 = z) |f, g⟩

=
1

i2π

∮

∂C

dz
1

zn+1
F̃ (z)G̃(z)

(3.54)

Accordingly, the quantum mechanical formulation for the Z̃-transform concerning
the convolution of two sequences fn ∗ gn is

n∑

n1=0

zn√
n1! (n− n1)!

⟨n1, n− n1|f, g⟩ ←→ ⟨(z1 = z, z2 = z) |f, g⟩ (3.55)

3.5.5 Accumulation

The property of accumulation [23] inherent to the Z̃-transformation is characterized
by

n∑

j=0

f [j]
Z̃←→ [1/1− z]F̄ (z) (3.56)

In pursuit of its quantum mechanical equivalence, we introduce the operator Q̂,

Q̂ ≡
∮

∂C

dz
1

1− z {|(z)⟩µ} ⟨(z)| (3.57)
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By employing equations (3.9), (3.10), (3.11), (3.12), (3.30), and (3.31) to perform
this contour integral, we achieve

Q̂ =

∫

∂C

dz
∞∑

m=0

(−1)m√
m!

δ(m)(z)|m⟩
∞∑

n=0

⟨n| z
n

√
n!

1

1− z

=
∞∑

n=0

∞∑

m=n

1√
m!
√
n!
|m⟩⟨n|Cm

n n!(m− n)!

=
∞∑

n=0

∞∑

m=n

√
m!√
n!
|m⟩⟨n|

=
∞∑

m=0

m∑

n=0

√
m!√
n!
|m⟩⟨n|

(3.58)

In light of this,

1√
n!
⟨n| Q̂ =

n∑

j=0

1√
j!
⟨j| (3.59)

Conversely, by applying the orthogonal relation as expressed in equation (3.13), we
obtain the following,

⟨(z)| Q̂ =
1

1− z ⟨(z)| (3.60)

Following the identifications provided by equations (3.28), (3.30), and (3.31), we
proceed to its quantum-mechanical formulation,

n∑

j=0

1√
j!
⟨j|f⟩ = 1√

n!
⟨n|{Q̂|f⟩}←→⟨(z)| {Q̂|f⟩} = 1

1− z ⟨(z)|f⟩ (3.61)

3.5.6 Differentiation in the z̃ domain

The differentiation property [23] in the z̃-domain, as applied to the Z̃-transform, is
described as

nf [n]
Z̃←→ z

d

dz
F̃ (z) (3.62)

In light of f [n] = 1√
n!
⟨n|f⟩ and F̃ (z) = ⟨(z)|f⟩, the formulation becomes

1√
n!
n⟨n|f⟩ ←→ z

d

dz
⟨(z)|f⟩ (3.63)

Reflecting upon identifications (3.28), (3.30), and (3.31), we formulate its quantum-
mechanical equivalent as

1√
n!

〈
n
∣∣{a†a|f⟩

}
←→ ⟨(z)|

{
a†a|f⟩

}
(3.64)

Likewise, for the following property of the Z̃-transform,

(n+ 1)(n+ 2) · · · (n+ k)f [n+ k]
Z̃←→ dk

dzk
F̃ (z) (3.65)
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And, by the virtue of F̃ (z) = ⟨(z)|f⟩ and f [n] = 1√
n!
⟨n|f⟩,

1√
(n+ k)!

(n+ 1)(n+ 2) · · · (n+ k)⟨n+ k|f⟩ ←→ dk

dzk
⟨(z)|f⟩ (3.66)

We have the quantum-mechanical equivalent of the Z̃-transform as

1√
n!

〈
n
∣∣{ak|f⟩

}
←→

〈
(z)
∣∣{ak|f⟩

}
(3.67)

3.5.7 Time Expansion

Starting with the original sequence f [n], we define a new sequence f(k)[n] as

f(k)[n] =

{
f [n/k], n multiple of k
0, otherwise array

(3.68)

The Z̃ transform applied to f(k)[n] yields

f(k)[n]
Z̃←→ F̃

(
zk
)

(3.69)

To investigate its quantum-mechanical analogue [23], we introduce the operator R̂,
delineated as:

R̂ =

∮

C

dz {|(z)⟩µ}
〈
(zk)

∣∣ (3.70)

By applying equations (3.9), (3.10), (3.11), (3.12), (3.30), and (3.31) in the evalua-
tion of this contour integral, we accomplish

∮

∂C

dz
∞∑

m=0

(−1)m√
m!

δ(m)(z)|m⟩
∞∑

n=0

⟨n|
(
zk
)n

√
n!

(3.71)

Therefore,
∞∑

m=0

√
(km)!√
m!
|km⟩⟨m| (3.72)

Consequently,

1√
n!
⟨n|R̂ =

{
1√

(n/k)!
⟨n/k|, n multiple of k

0, otherwise array
(3.73)

In contrast, utilizing the orthogonal relation delineated in equation (3.13) leads us
to the following result,

⟨(z)| R̂ =
〈(
zk
)∣∣ (3.74)
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Taking into account the identifications specified in equations (3.28), (3.30), and
(3.31), we transition to its quantum-mechanical representation,

{
1√

(n/k)!
⟨n/k|f⟩, n multiple of k

0, otherwise array
(3.75)

=
1√
n!
⟨n|{R̂|f⟩} ⇐⇒ ⟨(z)|{R̂|f⟩}

= ⟨(zk)|f⟩.

3.6 Shifting from Contour to Area Integrals Through

Stokes’ Theorem

Stokes’ theorem [49] in n-dimensional space provides a foundational integration for-
mula, delineating the relationship between integrals over closed boundaries ∂C of
domains C and the integrals over the respective domains C, which can be succinctly
expressed in the subsequent general form,

∮

∂C

ω =

∫

C

dω (3.76)

where ω represents an arbitrary k-form, with dω signifying its exterior differential—a
closed exterior (k + 1)-form, satisfying (ddω = 0). The closure of the boundary ∂C
of domain C implies it is devoid of its own boundary, expressed as ∂∂C = 0.

Within the context of the complex plane, Stokes’ theorem enables the transformation
of contour integrals [12] into area integrals. Specifically, we examine the general 1-
form,

dzf(z, z∗) + dz∗g(z, z∗) (3.77)

where f(z, z∗) and g(z, z∗) are arbitrary functions dependent on the complex vari-
able z and its conjugate z∗.

Utilizing Stokes’ theorem, we derive that,

1

i2

∮

∂C

(dzf (z, z∗) + dz∗g (z, z∗)) =
1

i2

∫

C

(
dz

∂

∂z
+ dz∗

∂

∂z∗

)
∧ (dzf (z, z∗) +dz∗g (z, z∗))

=
1

i2

∮

∂C

(dzf (z, z∗) + dz∗g (z, z∗))

=

∫

C

i

2
dz ∧ dz∗

{
∂f

∂z∗
(z, z∗)− ∂g

∂z
(z, z∗)

}

(3.78)
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The term i
2
dz ∧ dz∗ = dRe(z)∧ d Im(z) ≡ d2z is defined as the area element in the

complex plane. We proceed by contextualizing this within the domain of Cauchy’s
integral formula [26],

f(z, z∗)→ f(z)

z − z0
, g(z)→ 0 (3.79)

We achieve,

f (z0) =
1

i2π

∮

∂C

dz
f(z)

z − z0
=

1

π

∫

C

i

2
dz ∧ dz∗f(z)

∂

∂z∗

(
1

z − z0

) (3.80)

In the context where f(z) represents an arbitrary function, we note it is analytic
within C̄ = C ∪ ∂C, or equivalently, ∂f/∂z∗(z∗) = 0 in C̄.

The assertion that the area integral on the right-hand side is equivalent to f(z0)
indicates

1

π

∂

∂z∗

(
1

z − z0

)
= δ (z − z0, z∗ − z∗0) (3.81)

The notation δ(z, z∗) signifies the two-dimensional delta function, formulated as
δ(z, z∗) ≡ δ(Re(z))δ(Im(z)).

In conjunction with equations (3.7), (3.8), (3.11) and (3.12), formula (3.81) provides
an alternative method for formulating the eigenstates of the boson creation operator,

i2
∂

∂z∗
|(z)⟩µ = i2

∂

∂z∗

∞∑

n=0

(−1)n√
n!

∂n

∂zn
1

i2πz

∣∣∣∣∣
∂C

|n⟩

=
∞∑

n=0

(−1)n√
n!

∂n

∂zn
δ (z, z∗) |n⟩

= e−a† ∂
∂z δ (z, z∗) |0⟩

(3.82)

In this context, we set forth the notation

|z⟩µ ≡ e−a† ∂
∂z δ (z, z∗) |0⟩ (3.83)

µ⟨z| ≡ ⟨0|e−a ∂
∂z∗ δ (z, z∗) (3.84)

Through the use of

z ∂nδ (z, z∗)

∂zn
=
−n ∂n−1δ (z, z∗)

∂zn−1
(3.85)

It turns out that equations (3.83) and (3.84) correspond to eigenkets of the boson
creation operator a†, associated with eigenvalues z,

a†|z⟩µ = z|z⟩µ (3.86)

µ⟨z|a = z∗ µ⟨z| (3.87)
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Employing the two-dimensional delta function, one can express the mutual orthog-
onality relation in the subsequent manner,

⟨z′ |z⟩µ = δ(z − z′
, z∗ − z′∗) (3.88)

The completeness relation is succinctly encapsulated by the corresponding area in-
tegrals,

∫

C

i

2
dz ∧ dz∗ {|z⟩µ} ⟨z| = I (3.89)

Equivalently stated,

∫

C

i

2
dz ∧ dz∗|z⟩ {µ⟨z|} = I (3.90)

In this scenario, the domain C encompasses the coordinate origin. It follows that
an arbitrary state |f⟩, with z residing inside the boundary of C, can subsequently
be expanded as

|f⟩ =
∫

C

i

2
dz ∧ dz∗(⟨z|f⟩)|z⟩µ

=

∫

C

i̇

2
dz ∧ dz∗ (µ⟨z|f⟩) |z⟩

(3.91)

The coefficients present in the Fock-state expansion of |f⟩ explicitly define the kernel
functions as follows

⟨z|f⟩ = e−
zz∗
2

∞∑

n=0

⟨n|f⟩ z
∗n
√
n!

(3.92)

µ⟨z|f⟩ =
∞∑

n=0

⟨n|f⟩(−1)
n

√
n!

∂n

∂z∗n
δ (z, z∗) (3.93)

The first function is the state’s Bargmann representation [23] associated with the
z∗-transform, while the second function constitutes the moment series expansion
determined by the moments of µ⟨z|f⟩.

∫
i

2
dz ∧ dz∗ µ⟨z|f⟩zmz∗n =

√
n!⟨n|f⟩δm,0 (3.94)

If the domain C of the area integrals in equation (3.90) excludes the coordinate
origin, we observe the integral resolving to zero. This outcome illustrates a linear
dependency among coherent states, representing one of several possible expressions
of their overcompleteness.

To summarize, this chapter establishes a one-to-one correspondence between the Z-
transform and the quantum-mechanical representation transform from the number
state |n⟩ to the coherent state |(z)⟩. This is achieved by utilizing the completeness
relation, which integrates the coherent state and the eigenket of the bosonic creation
operator.
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Chapter 4

Foundations for a Quantum
Z-Transform

4.1 A Discrete Z-Transform
To discretize the Z-transform, we propose a redefinition to make it a finite summa-
tion. Let x = (x1, x2, . . . , xn) be a finite sequence of real or complex numbers, where
n = len(x) is the length of the input sequence. For each natural number i ∈ N, the
output sequence yi is defined by the equation

yi :=
n∑

j=1

xji
−j (4.1)

where xj denotes the j-th element of x, i−j represents the j-th power of the reciprocal
of i, and the index j runs from 1 to n. This is our redefinition of the discrete Z-
transform.

4.2 Matrix Formulation of the Discrete Z-Transform

Let x =




x1
x2
...
xn


 be a vector of real or complex numbers, and let y =




y1
y2
...
yn


 be the

corresponding output vector, where n = len(x) is the length of the input vector.
For each natural number i ∈ N, yi is defined by equation (4.1). This discrete Z-
transform equation can be represented in matrix form as follows:




y1
y2
y3
...
yn




=




1−1 1−2 1−3 · · · 1−n

2−1 2−2 2−3 · · · 2−n

3−1 3−2 3−3 · · · 3−n

...
...

...
. . .

...
n−1 n−2 n−3 · · · n−n




︸ ︷︷ ︸
A




x1
x2
x3
...
xn




(4.2)

The matrix A is such that the (i, j)-th entry of A is given by aij = i−j.
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4.3 Constructing a Unitary Operator by Block-

Encoding a 2x2 Matrix

In this section, we aim to construct a unitary operator U that block-encodes [39],
[40], [44] a 2x2 matrix A, derived from the equation (4.2) in the Discrete Z-
Transform matrix formulation. The block-encoding method allows for the embed-
ding of matrix A into a larger unitary matrix, enabling efficient quantum operations
on A through standard quantum gates.

The matrix equation (4.2) describes a vector y as the product of matrix A and
vector x. For n = 2, the matrix equation is:

(
y1
y2

)
=

(
1−1 1−2

2−1 2−2

)

︸ ︷︷ ︸
A

(
x1
x2

)

The matrix A formulation adheres to the definition where each element aij = i−j.

A =

(
1−1 1−2

2−1 2−2

)
=

(
1 1
1
2

1
4

)
.

4.3.1 Normalizing the Matrix A

Normalization is essential to ensure the normalized matrix Ã, derived from A, has a
maximum singular value of no more than 1, facilitating its embedding into a unitary
matrix U . The normalization factor α is determined such that ∥A∥ ≤ α, where ∥A∥
denotes the largest singular value of A.

The singular values of matrix A can be obtained by computing the eigenvalues of
the matrix product A†A.

A† =

(
1 1
1
2

1
4

)†

=

(
1 1

2

1 1
4

)

The computation of A†A is carried out as follows,

A†A =

(
1 1

2

1 1
4

)(
1 1
1
2

1
4

)
=

(
1.25 1.125
1.125 1.0625

)

The matrix A†A is Hermitian, and its eigenvalues are derived from solving the
characteristic equation,

det
(
A†A− λI

)
= 0

det

(
1.25− λ 1.125
1.125 1.0625− λ

)
= (1.25− λ)(1.0625− λ)− 1.1252 = 0

By solving this quadratic equation, we determine the eigenvalues to be approxi-
mately λ1 ≈ 2.28515 and λ2 ≈ 0.02735.
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The eigenvalues of the matrix A†A are non-negative and they represent the squares
of the singular values of A. Specifically, the largest eigenvalue of A†A corresponds
to the square of the largest singular value of A.

Thus, the largest singular value σ is the square root of the largest eigenvalue

σ =
√
2.28515 ≈ 1.51

As a result, the normalization factor α is chosen as

α = 1.51

The normalized matrix Ã is obtained by scaling matrix A by the factor α,

Ã =
1

α
A =

1

1.51

(
1 1
1
2

1
4

)
≈
(

2
3

2
3

1
3

1
6

)

The matrix Ã is derived from A ensuring that its maximum singular value is 1.

4.3.2 Building the Block-Encoding Matrix

To block-encode Ã within a unitary matrix U , we must construct U so that Ã
occupies the top-left block. The general structure for a block-encoded unitary matrix
[39], [40], [44] follows this form:

U =

(
Ã

√
I − Ã†Ã√

I − ÃÃ† −Ã†

)

In this construction, the matrix I−Ã†Ã must be computed to ensure that U remains
unitary. First, we compute Ã†Ã:

Ã† =

(
2
3

1
3

2
3

1
6

)

Ã†Ã =

(
2
3

1
3

2
3

1
6

)(
2
3

2
3

1
3

1
6

)
=

(
13
18

5
9

5
9

5
18

)

Next, we compute I − Ã†Ã:

I − Ã†Ã =

(
1 0
0 1

)
−
(

13
18

5
9

5
9

5
18

)
=

(
5
18
−5

9

−5
9

13
18

)

Finally, we compute the square root of I − Ã†Ã. To ensure that U is unitary, it
is necessary to obtain the square root of the matrix I − Ã†Ã. We will denote this
resulting matrix as B.

Let,

B =

(
b11 b12
b21 b22

)
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Then,

BB =

(
b11 b12
b21 b22

)(
b11 b12
b21 b22

)
=

(
b211 + b12b21 b11b12 + b12b22
b21b11 + b22b21 b21b12 + b222

)

Equating BB with I − Ã†Ã,

(
b211 + b12b21 b11b12 + b12b22
b21b11 + b22b21 b21b12 + b222

)
=

(
5
18
−5

9

−5
9

13
18

)

This leads to the following system of equations,





b211 + b12b21 =
5
18

b11b12 + b12b22 = −5
9

b21b11 + b22b21 = −5
9

b21b12 + b222 =
13
18

Upon solving this system, we determine that,

B =



√

5
18
−
√

5
9

−
√

5
9

√
13
18




This matrix B is constructed to meet the criterion that its square equals I − Ã†Ã.

The unitary matrix U can be constructed using Ã and B, embedding Ã in the top-
left block, with the remaining blocks chosen to maintain the unitary nature of U .

We can construct U as follows

U =

(
Ã B

B† −Ã†

)

So,

Ã =

(
2
3

2
3

1
3

1
6

)

And B from above is

B =



√

5
18
−
√

5
9

−
√

5
9

√
13
18




So B† is

B† =



√

5
18
−
√

5
9

−
√

5
9

√
13
18




And Ã† is

Ã† =

(
2
3

1
3

2
3

1
6

)
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Therefore,

U =

(
Ã B

B† −Ã†

)
=




2
3

2
3

√
5
18
−
√

5
9

1
3

1
6

−
√

5
9

√
13
18√

5
18
−
√

5
9
−2

3
−1

3

−
√

5
9

√
13
18

−2
3

−1
6




(4.3)

The matrix U is constructed such that it is unitary and effectively block-encodes Ã.

4.3.3 Verifying if U is a Unitary Operator

To verify the unitarity of U , we need to confirm that U †U = I. This requires
performing the matrix multiplication U †U . Our first step will be to compute U †.

U † =

(
Ã† B†

B −Ã

)
=




2
3

1
3

√
5
18
−
√

5
9

2
3

1
6

−
√

5
9

√
13
18√

5
18
−
√

5
9
−2

3
−1

3

−
√

5
9

√
13
18

−2
3

−1
6




Then, we compute U †U :

U †U =

(
Ã†Ã+B†B Ã†B +B†(−Ã)
BÃ+ (−Ã†)Ã BB† + (−Ã)(−Ã†)

)

Given that we know,

Ã†Ã+B†B = I

Ã†B +B†(−Ã) = 0

BÃ+ (−Ã†)Ã = 0

BB† + (−Ã)(−Ã†) = I

Thus, U is established as a unitary operator, confirming that

U †U = I

Therefore, we have successfully constructed and verified the block-encoding unitary
matrix U for n = 2 in the discrete Z-transform matrix formulation of equation (4.2).
This process involved normalizing A, embedding it in a larger unitary matrix, and
confirming that the resulting matrix is indeed a unitary operator.
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4.4 Constructing a Unitary Operator by Block-

Encoding a 4x4 Matrix

Our current objective is to develop a unitary operator U that block-encodes [39], [40],
[44] a 4x4 matrix A, as specified by equation (4.2) within the Discrete Z-Transform
matrix framework for n = 4. The block-encoding method facilitates the embedding
of matrix A into a larger unitary matrix, enabling efficient quantum operations on
A using standard quantum gates. For n = 4, the corresponding matrix equation
becomes




y1
y2
y3
y4


 =




1−1 1−2 1−3 1−4

2−1 2−2 2−3 2−4

3−1 3−2 3−3 3−4

4−1 4−2 4−3 4−4




︸ ︷︷ ︸
A




x1
x2
x3
x4




Hence, the matrix A, with elements aij = i−j, is given by

A =




1 1 1 1
1
2

1
4

1
8

1
16

1
3

1
9

1
27

1
81

1
4

1
16

1
64

1
256




4.4.1 Normalizing the Matrix A

Normalizing the matrix A to produce the matrix Ã is crucial because it guarantees
that the maximum singular value of Ã does not exceed 1. This condition is necessary
for embedding Ã into a unitary matrix U .

The first step involves determining the singular values of matrix A. This can be
achieved by calculating the eigenvalues of the product A†A.

A† =




1 1
2

1
3

1
4

1 1
4

1
9

1
16

1 1
8

1
27

1
64

1 1
16

1
81

1
256




A†A =




1 1
2

1
3

1
4

1 1
4

1
9

1
16

1 1
8

1
27

1
64

1 1
16

1
81

1
256







1 1 1 1
1
2

1
4

1
8

1
16

1
3

1
9

1
27

1
81

1
4

1
16

1
64

1
256




Calculating the product,

A†A =




1 + 1
4
+ 1

9
+ 1

16
1 + 1

8
+ 1

27
+ 1

64
1 + 1

16
+ 1

81
+ 1

256
1 + 1

32
+ 1

243
+ 1

1024
1
2
+ 1

8
+ 1

27
+ 1

64
1
2
+ 1

16
+ 1

81
+ 1

256
1
2
+ 1

32
+ 1

243
+ 1

1024
1
2
+ 1

64
+ 1

729
+ 1

4096
1
3
+ 1

9
+ 1

27
+ 1

81
1
3
+ 1

27
+ 1

81
+ 1

243
1
3
+ 1

81
+ 1

243
+ 1

729
1
3
+ 1

243
+ 1

729
+ 1

2187
1
4
+ 1

16
+ 1

64
+ 1

256
1
4
+ 1

64
+ 1

256
+ 1

1024
1
4
+ 1

256
+ 1

1024
+ 1

4096
1
4
+ 1

1024
+ 1

4096
+ 1

16384
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Simplifying the elements,

A†A =




49
36

1093
864

65793
51840

8320401
6635520

1093
864

2509
2304

173741
138240

5125121
4173120

65793
51840

173741
138240

48841
38880

1183727
944784

8320401
6635520

5125121
4173120

1183727
944784

101
81




The eigenvalues of the matrix product A†A are:

λ1 ≈ 1.1143× 10−6, λ2 ≈ 1.3669× 10−3, λ3 ≈ 0.1986, λ4 ≈ 4.3237

To determine the normalization factor α, we ensure ∥A∥ ≤ α, where ∥A∥ signifies
the spectral norm of A, which equals the largest singular value of A. Thus, the
largest singular value σ corresponds to the square root of the largest eigenvalue of
A†A and can be obtained as follows

σ =
√
4.3237 ≈ 2.08

Therefore, α = 2.08.

The normalized form of matrix A, denoted as Ã, is obtained by scaling matrix A
with the factor α, as shown below:

Ã =
1

α
A =

1

2.08




1 1 1 1
1
2

1
4

1
8

1
16

1
3

1
9

1
27

1
81

1
4

1
16

1
64

1
256


 =




1
2.08

1
2.08

1
2.08

1
2.08

1
2×2.08

1
4×2.08

1
8×2.08

1
16×2.08

1
3×2.08

1
9×2.08

1
27×2.08

1
81×2.08

1
4×2.08

1
16×2.08

1
64×2.08

1
256×2.08




The singular values of the normalized matrix Ã are approximately 0.9997, 0.2143,
0.0178, and 0.0005. Since all these values are less than or equal to 1, the normaliza-
tion is confirmed to be correct.

4.4.2 Building the Block-Encoding Matrix

To block-encode Ã within a unitary matrix U , we must construct U such that Ã
appears in the top-left block. A general form of such a block-encoded [39], [40], [44]
unitary matrix is:

U =

(
Ã

√
I − Ã†Ã√

I − ÃÃ† −Ã†

)

In this framework, the matrix I−Ã†Ã needs to be calculated to verify that U retains
its unitarity. We begin by computing Ã†Ã:

Ã† =




1
2.08

1
2×2.08

1
3×2.08

1
4×2.08

1
2.08

1
4×2.08

1
9×2.08

1
16×2.08

1
2.08

1
8×2.08

1
27×2.08

1
64×2.08

1
2.08

1
16×2.08

1
81×2.08

1
256×2.08
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Ã†Ã =
1

2.082




1 1
2

1
3

1
4

1 1
4

1
9

1
16

1 1
8

1
27

1
64

1 1
16

1
81

1
256







1 1 1 1
1
2

1
4

1
8

1
16

1
3

1
9

1
27

1
81

1
4

1
16

1
64

1
256




Ã†Ã =
1

2.082




1 + 1
4 + 1

9 + 1
16 1 + 1

8 + 1
27 + 1

64 1 + 1
16 + 1

81 + 1
256 1 + 1

32 + 1
243 + 1

1024
1
2 + 1

8 + 1
27 + 1

64
1
2 + 1

16 + 1
81 + 1

256
1
2 + 1

32 + 1
243 + 1

1024
1
2 + 1

64 + 1
729 + 1

4096
1
3 + 1

9 + 1
27 + 1

81
1
3 + 1

27 + 1
81 + 1

243
1
3 + 1

81 + 1
243 + 1

729
1
3 + 1

243 + 1
729 + 1

2187
1
4 + 1

16 + 1
64 + 1

256
1
4 + 1

64 + 1
256 + 1

1024
1
4 + 1

256 + 1
1024 + 1

4096
1
4 + 1

1024 + 1
4096 + 1

16384




Simplify the fractions,

Ã†Ã =
1

2.082




49
36

1093
864

65793
51840

8320401
6635520

1093
864

2509
2304

173741
138240

5125121
4173120

65793
51840

173741
138240

48841
38880

1183727
944784

8320401
6635520

5125121
4173120

1183727
944784

101
81




The next step is to determine I − Ã†Ã:

I − Ã†Ã =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


−

1

2.082




49
36

1093
864

65793
51840

8320401
6635520

1093
864

2509
2304

173741
138240

5125121
4173120

65793
51840

173741
138240

48841
38880

1183727
944784

8320401
6635520

5125121
4173120

1183727
944784

101
81




Subtract the fractions,

I − Ã†Ã =




1− 49
36×2.082

− 1093
864×2.082

− 65793
51840×2.082

− 8320401
6635520×2.082

− 1093
864×2.082

1− 2509
2304×2.082

− 173741
138240×2.082

− 5125121
4173120×2.082

− 65793
51840×2.082

− 173741
138240×2.082

1− 48841
38880×2.082

− 1183727
944784×2.082

− 8320401
6635520×2.082

− 5125121
4173120×2.082

− 1183727
944784×2.082

1− 101
81×2.082




To establish the unitarity of U , it is essential to find the square root of the matrix
I − Ã†Ã, which we shall denote as B and let,

B =




b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44




We need,

BB =


b211 + b212 + b213 + b214 b11b21 + b12b22 + b13b23 + b14b24 b11b31 + b12b32 + b13b33 + b14b34 b11b41 + b12b42 + b13b43 + b14b44

b21b11 + b22b12 + b23b13 + b24b14 b221 + b222 + b223 + b224 b21b31 + b22b32 + b23b33 + b24b34 b21b41 + b22b42 + b23b43 + b24b44
b31b11 + b32b12 + b33b13 + b34b14 b31b21 + b32b22 + b33b23 + b34b24 b231 + b232 + b233 + b234 b31b41 + b32b42 + b33b43 + b34b44
b41b11 + b42b12 + b43b13 + b44b14 b41b21 + b42b22 + b43b23 + b44b24 b41b31 + b42b32 + b43b33 + b44b34 b241 + b242 + b243 + b244



=


1 − 49

36×2.082
− 1093

864×2.082
− 65793

51840×2.082
− 8320401

6635520×2.082

− 1093
864×2.082

1 − 2509
2304×2.082

− 173741
138240×2.082

− 5125121
4173120×2.082

− 65793
51840×2.082

− 173741
138240×2.082

1 − 48841
38880×2.082

− 1183727
944784×2.082

− 8320401
6635520×2.082

− 5125121
4173120×2.082

− 1183727
944784×2.082

1 − 101
81×2.082
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By inspection or using matrix square root techniques [30], we find

B =




√
60
81

−
√

13
81
−
√

28
81
−
√

7
81

−
√

13
81

√
58
81

−
√

23
81
−
√

4
81

−
√

28
81
−
√

23
81

√
64
81

−
√

9
81

−
√

7
81
−
√

4
81
−
√

9
81

√
52
81




Using Ã and B, we construct the unitary matrix U . The structure of U ensures that
Ã is embedded in the top-left block, with the remaining blocks chosen to maintain
unitarity.

U =

(
Ã B

B† −Ã†

)
=




1
2.08

1
2.08

1
2.08

1
2.08

√
60
81

−
√

13
81

−
√

28
81

−
√

7
81

1
2×2.08

1
4×2.08

1
8×2.08

1
16×2.08

−
√

13
81

√
58
81

−
√

23
81

−
√

4
81

1
3×2.08

1
9×2.08

1
27×2.08

1
81×2.08

−
√

28
81

−
√

23
81

√
64
81

−
√

9
81

1
4×2.08

1
16×2.08

1
64×2.08

1
256×2.08

−
√

7
81

−
√

4
81

−
√

9
81

√
52
81√

60
81

−
√

13
81
−
√

28
81
−
√

7
81

− 1
2.08

− 1
2×2.08

− 1
3×2.08

− 1
4×2.08

−
√

13
81

√
58
81

−
√

23
81
−
√

4
81

− 1
2.08

− 1
4×2.08

− 1
9×2.08

− 1
16×2.08

−
√

28
81
−
√

23
81

√
64
81

−
√

9
81

− 1
2.08

− 1
8×2.08

− 1
27×2.08

− 1
64×2.08

−
√

7
81
−
√

4
81
−
√

9
81

√
52
81

− 1
2.08

− 1
16×2.08

− 1
81×2.08

− 1
256×2.08




Therefore, the matrix U is developed to be unitary and serves the purpose of block-
encoding Ã effectively.

4.4.3 Verifying if U is a Unitary Operator

Verifying that U is unitary requires showing that U †U = I. This can be done by
performing the matrix multiplication U †U . Our starting point will be to compute
U †.

U † =

(
Ã† B†

B −Ã

)
=




1
2.08

1
2×2.08

1
3×2.08

1
4×2.08

√
60
81

−
√

13
81

−
√

28
81

−
√

7
81

1
2.08

1
4×2.08

1
9×2.08

1
16×2.08

−
√

13
81

√
58
81

−
√

23
81

−
√

4
81

1
2.08

1
8×2.08

1
27×2.08

1
64×2.08

−
√

28
81

−
√

23
81

√
64
81

−
√

9
81

1
2.08

1
16×2.08

1
81×2.08

1
256×2.08

−
√

7
81

−
√

4
81

−
√

9
81

√
52
81√

60
81

−
√

13
81
−
√

28
81
−
√

7
81

− 1
2.08

− 1
2×2.08

− 1
3×2.08

− 1
4×2.08

−
√

13
81

√
58
81

−
√

23
81
−
√

4
81

− 1
2.08

− 1
4×2.08

− 1
9×2.08

− 1
16×2.08

−
√

28
81
−
√

23
81

√
64
81

−
√

9
81

− 1
2.08

− 1
8×2.08

− 1
27×2.08

− 1
64×2.08

−
√

7
81
−
√

4
81
−
√

9
81

√
52
81

− 1
2.08

− 1
16×2.08

− 1
81×2.08

− 1
256×2.08
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We then proceed to calculate U †U :

U †U =

(
Ã†Ã+B†B Ã†B +B†(−Ã)
BÃ+ (−Ã†)Ã BB† + (−Ã)(−Ã†)

)

Considering that we already know,

Ã†Ã+B†B = I

Ã†B +B†(−Ã) = 0

BÃ+ (−Ã†)Ã = 0

BB† + (−Ã)(−Ã†) = I

As a result, U is verified as a unitary operator, which confirms that

U †U = I

Therefore, We have successfully constructed the block-encoded [39], [40] unitary
matrix U for A when n = 4 and verified its unitarity.

4.5 Reflection and Prospects

In this chapter, we have introduced a discrete Z-transform and presented its matrix
formulation. Typically, the Z-transform is represented as an infinite sum. However,
we have discretized this transform, converting it into a finite summation, which is
crucial for the development of a quantum algorithm. The next step in this process
is to transform the Z-transform into a unitary operator.

To achieve this transformation, we have constructed unitary operators for a finite
number of variables, specifically two and four variables, within the matrix formula-
tion of our redefined discrete Z-transform. Using the Block-encoding method, we
demonstrated that the Z-transform functions as a unitary operator. This method
enables efficient quantum operations on the matrix formulation of the discrete Z-
transform using standard quantum gates and subroutines.

Before we generalize this unitary construction for any finite n in our discrete Z-
transform, it is essential to turn our attention to the quantum Fourier transform
(QFT). By examining the development and construction process of the QFT, par-
ticularly the use of quantum states and gates for efficient circuit construction, we
can build a solid foundation. This foundation will guide us in developing the quan-
tum Z-transform in a manner and spirit similar to the QFT.
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Chapter 5

The Quantum Fourier Transform

The Quantum Fourier Transform [15]–[17], [21] (QFT) is a neat quantum transfor-
mation which is a crucial ingredient in many of the quantum algorithms we have
found that speed up the classical algorithms.

5.1 Discrete Fourier Transform

We should discuss the discrete Fourier transform [9], [33], [36] first . Let us assume
we have a sequence of n complex numbers,

x0, x1, x2, ..., xn−1 (5.1)

where n = 2m and m is any integer.The discrete Fourier transform would transform
the sequence into another new sequence given by

yk =
n−1∑

j=0

e−2πij(k−j)/nxj (5.2)

The power of the exponential term is negative for the forward Fourier transform and
positive for the inverse Fourier transform, which is more or less by convention. For
the Quantum Fourier Transform (QFT), we are going to do roughly the same thing.

5.2 Quantum Fourier Transform

Let us consider the orthonormal basis state |j⟩,

|j⟩ −→ 1√
n

n−1∑

k=0

e−2πijk/n |k⟩ (5.3)

We have used 1√
n
as a normalization constant because we are summing up n different

kets with unit coefficients. To make it a unit vector, we need to divide by
√
n.

This is the quantum Fourier transform [33]. In fact, it is the same as the discrete
Fourier transform, except that we have kets here, which are quantum states.
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5.3 Is QFT a unitary transformation?

The quantum Fourier transform must be a unitary transformation in order to have
its physical implementation [15]–[17], [21]. In this section, we show why the QFT is
unitary. Let us see what the matrix for it looks like.

Here n = 2m

1√
n

0 1 2 3 · · · n− 1





1 1 1 1 · · · · · · 0
1 e−2πi/n e−4πi/n e−6πi/n · · · · · · 1
1 e−4πi/n e−8πi/n e−12πi/n · · · · · · 2
...

...
. . . . . .

...
...

...
· · · · · · · · · · · · · · · · · · n− 1

In this matrix, we denote the columns as j, which range from 0 to n − 1, and the
rows are labeled as k, which also range from 0 to n−1. The inner product of column
1 and column 2 is as follows,

1√
n

1√
n

n−1∑

k=0

e−2πick/ne2πibk/n (5.4)

The term e−2πick/n is the c-th term in column 2. The term e2πibk/n is the b-th term
in column 1, and we have taken the complex conjugate of this term since this is an
inner product. So it turns out to be

1

n

n−1∑

k=0

e−2πi(b−c)k/n

{
1, if b = c
0, otherwise

It is easy to see that the above term equals 1 when b = c because b − c = 0 and
therefore

e−2πi(0)k/n = e0 = 1 (5.5)

But why the term 1
n

∑n−1
k=0 e

−2πi(b−c)k/n would be zero if b ̸= c?

Let, b− c = d, so it becomes

1

n

n−1∑

k=0

e−2πidk/n (5.6)

Equation (5.6) is clearly a geometric sum. Let us expand the summation.

1

n

(
1 + e2πid/n + e4πid/n + · · · · · ·

)
(5.7)

Now we use the formula for geometric sum in this sequence where the first term is
1/n and the common ratio is e2πid/n.
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Therefore,

1

n

(
1−

(
e2πid/n

)n

1− e2πid/n

)
(5.8)

But the term
(
e2πid/n

)n
= en2πid/n = e2πid. Since d is an integer, so e(2d)πi = 1.

Thus equation (5.8) becomes,

1

n

(
1− 1

1− e2πid/n
)

= 0 (5.9)

That is why the term 1
n

∑n−1
k=0 e

−2πi(b−c)k/n gives zero when b ̸= c.

Therefore, the matrix is indeed unitary, and there is a quantum circuit that produces
it. This, of course, does not mean that if n is very, very large, there is an efficient
quantum circuit that produces the matrix.

5.4 QFT as a Change of Basis

The computational basis state |j⟩ forms a basis. Under the quantum Fourier trans-
form (QFT) [15]–[17], [21], the state |j⟩ is transformed as follows,

|j⟩ −→ 1√
n

n−1∑

k=0

e−2πijk/n |fk⟩

To show that the transformed states |fk⟩ also form a basis, we need to show that
they are orthonormal. Specifically, we need to demonstrate that the inner product
⟨fk|fk⟩ = 1 and the inner product ⟨fk|fl⟩ = 0 for k ̸= l.

First, we compute the inner product ⟨fk|fk⟩,

⟨fk|fk⟩ =
(

1√
n

n−1∑

j=0

e2πijk/n⟨j|
)(

1√
n

n−1∑

j′=0

e−2πijk/n |j′⟩
)

Simplifying the expression,

⟨fk|fk⟩ =
1

n

n−1∑

j=0

n−1∑

j′=0

e2πijk/ne−2πijk/n⟨j|j′⟩

Using ⟨j|j′⟩ = δjj′ ,

⟨fk|fk⟩ =
1

n

n−1∑

j=0

e2πijk/ne−2πijk/n

⟨fk|fk⟩ =
1

n

n−1∑

j=0

1 = 1
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Next, we compute the inner product ⟨fk|fl⟩,

⟨fk|fl⟩ =
(

1√
n

n−1∑

j=0

e2πijk/n⟨j|
)(

1√
n

n−1∑

j′=0

e−2πijl/n |j′⟩
)

Simplifying the expression,

⟨fk|fl⟩ =
1

n

n−1∑

j=0

n−1∑

j′=0

e2πijk/ne−2πijl/n⟨j|j′⟩

Using ⟨j|j′⟩ = δjj′ ,

⟨fk|fl⟩ =
1

n

n−1∑

j=0

e2πijk/ne−2πijl/n

⟨fk|fl⟩ =
1

n

n−1∑

j=0

e2πij(k−l)/n

For k ̸= l, the sum
∑n−1

j=0 e
2πij(k−l)/n is a geometric series with the common ratio

e2πi(k−l)/n ̸= 1. The sum of this geometric series is zero,

n−1∑

j=0

e2πij(k−l)/n = 0

Thus,

⟨fk|fl⟩ =
1

n
· 0 = 0

Since we have shown that ⟨fk|fk⟩ = 1 and ⟨fk|fl⟩ = 0 for k ̸= l, the transformed
states |fk⟩ are orthonormal. Therefore, the transformed states |fk⟩ form a new
orthonormal basis, proving that the QFT is indeed a change of basis.

5.4.1 QFT for m = 1 as a Hadamard

QFT for 1 qubit i.e., m =1, we have n = 2m = 21 = 2. According to the matrix
from section (5.3),

1√
2

(
1 1
1 e−2πi/2

)
(5.10)

But e−2πi/2 = e−πi = -1, so it becomes

1√
2

(
1 1
1 −1

)
(5.11)

Now it looks like a Hadamard transform, and this is quantum Fourier transform for
m = 1.
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5.4.2 Quantum Fourier Transform for powers of two

The Quantum Fourier Transform [15]–[17], [21] is defined as

|j⟩ −→ 1√
n

n−1∑

k=0

e−2πijk/n |k⟩ (5.12)

Let m be a power of 2.

We can write out j and k in terms of bits. This would be a binary representation
of j and k.

j = bn−1bn−2bn−3 · · · b0 (5.13)

k = b
′

n−1b
′

n−2b
′

n−3 · · · b
′

0 (5.14)

Now we want to write equation (5.12) in terms of b’s and b
′
’s,

|bn−1bn−2 · · · b0⟩ −→
1√
n

n−1∑

k=0

e
−2πi(bn−12n−1+bn−22n−2+···+b0)

(
b
′
n−12

n−1+b
′
n−22

n−2+···+b
′
0

)
/2n |k⟩

Here is the magic part comes in. We can multiply the whole thing out in the
exponent, and it turns out that only half of these terms actually matter. That is
because of the roots of unity. We have the term,

1√
n

n−1∑

k=0

e−2πibjb
′
k2

j+k/2n (5.15)

But this term results 1 only when the sum of j and k is bigger than or equal to n.

1√
n

n−1∑

k=0

e−2πibjb
′
k2

j+k/2n = 1, if j + k ≥ n (5.16)

5.4.3 Two Qubit Quantum Fourier Transform

For 2 qubits: n = 2m = 22 = 4

1

2




1 1 1 1
1 e−2πi/4 e−4πi/4 e−6πi/4

1 e−4πi/4 e−8πi/4 e−12πi/4

1 e−6πi/4 e−12πi/4 e−18πi/4


 (5.17)
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Let, e−2πi/4 = −i. Then, the matrix becomes,

1√
4




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i 1 −i


 (5.18)

Now we want to build the matrix out of gates. If the columns are labeled as j and
rows are labeled as k, then the jk entry of the matrix is going to be

e−2πijk/4 (5.19)

Equivalently,

e−2πi(j0+2j1)(k0+2k1)/4 (5.20)

Multiplying the whole thing out in the exponent of (5.20), we have

e−2πij0k0/4︸ ︷︷ ︸
1st term

. e−2πij1k0/2︸ ︷︷ ︸
2nd term

. e−2πij0k1/2︸ ︷︷ ︸
3rd term

(5.21)

We do not get a j1k1 term because 2j1 ∗ 2k1 is a multiple of 4. The ji’s are repre-
sented by qubits. So we can think of (5.21) as three potential qubits.

Let us try implementing the 2nd term e−2πij1k0/2 from (5.21),

|j1⟩ −→
1√
2

n−1∑

k=0

e−2πij1k0/2 |k0⟩ (5.22)

We have used 1√
2
as a normalization factor to make this a unitary. From equation

(5.22) we observe,

|0⟩ −→ 1√
2
(|0⟩+ |1⟩) (5.23)

|1⟩ −→ 1√
2
(|0⟩ − |1⟩) (5.24)

We can recognize this gate, this is just a Hadamard gate [20].

1√
2

|0⟩ |1⟩
( )1 1 |0⟩

1 −1 |1⟩
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So the Hadamard gate implements the 2nd term e−2πij1k0/2 and similarly the Hadamard
gate also implements the 3rd term e−2πij0k1/2 because this is just the same thing with
j0 and k1.

Let us try drawing the circuit. Since j1 was Hadamarded from k0 and k1 was
Hadamarded from j0. We have,

|j0〉

|j1〉 H

H |k1〉

|k0〉

Figure 5.1: Two qubits Hadamarded

This might be the first attempt of the circuit, but it does not work. We need to
implement the first term e−2πij0k0/4 over here to make this circuit work. So what
does bringing the term e−2πij0k0/4 do? It means we want |j0⟩ to interact with |k0⟩.

Figure 5.2: Plan to establish interaction between |j0⟩ and |k0⟩

So we want to draw a circuit that connects |j0⟩ with |k0⟩. If we move the top
Hadamard later than the bottom Hadamard, this would do the trick.

|j0〉

|j1〉 H

H |k1〉

|k0〉

Figure 5.3: Top H moved later than the bottom H

Now what does the first term e−2πij0k0/4 mean in equation (5.21)?

|j0k0⟩ −→




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −i


 |j0k0⟩ (5.25)

45



For the state |j0k0⟩, nothing happens, or rather we multiply by 1, if j0=0 or k0=0.
So that is 1, 1, 1 in the diagonal; otherwise, we multiply by e−2πi/4, which we
recognize as −i. That is just a controlled-S† gate.

The controlled S gate has an i in the last index, so the conjugate transpose of the
controlled S gate i.e., S† gives a −i in the last index.

|j0k0⟩ −→




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −i


 |j0k0⟩ (5.26)

When the first qubit is 1, we multiply the phase by −i if the second qubit is also a
1. This is the matrix for controlled S†, and this gate is symmetric in j0 and k0.

|j0〉

|j1〉 H S†

H |k1〉

|k0〉

Figure 5.4: A controlled S† between two Hadamards

In figure (5.4), we put the smallest bit of j last and the largest bit of j first. Let us
try writing this out in terms of matrices.

The first thing we do is apply a Hadamard gate on j1, which is the first qubit. Then
we use the matrix for the controlled S† gate. Finally, we apply a Hadamard gate on
the second qubit, which is j0.

We write them out in the standard way we write binary numbers.

1√
2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1




︸ ︷︷ ︸
H on j0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −i




︸ ︷︷ ︸
Controlled−S†

1√
2




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




︸ ︷︷ ︸
H on j1

(5.27)
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Now we multiply two matrices from the right and it results,

1

2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1







1 0 1 0
0 1 0 1
1 0 −1 0
0 −i 0 i


 (5.28)

And multiplying this two matrices in (5.28) gives the following matrix,

1

2




1 1 1 1
1 −1 1 −1
1 −i −1 i
1 i −1 −i


 (5.29)

These bits are not in the correct order, so the order needs to be changed. We want
to swap the bits of k, and to do that, we need to multiply the above matrix by a
SWAP gate.




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




︸ ︷︷ ︸
SWAP gate

1

2




1 1 1 1
1 −1 1 −1
1 −i −1 i
1 i −1 −i


 (5.30)

This SWAP gate will swap the 2nd and 3rd rows of the matrix (5.30),

1

2




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


 (5.31)

Finally, the circuit will work properly with a SWAP gate reversing the bits of k,

Figure 5.5: A two qubit QFT circuit
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5.5 n-Qubit Quantum Fourier Transform

We can now generalize this to n-qubit quantum Fourier transform [15]–[17], [21].
Let us recall,

|j⟩ −→ 1√
n

n−1∑

k=0

e
−2πi(bn−12n−1+bn−22n−2+···+b0.1)

(
b
′
n−12

n−1+b
′
n−22

n−2+···+b
′
0.1

)
/2n |k⟩

(5.32)

where bs’s are the bits of j and b
′
’s are the bits of k. We have the term,

e−2πibsb
′
n−s−12

n−1/2n (5.33)

If bs and b
′
n−s−1 both are 1, then this results −1 and a zero otherwise. So this is

clearly a Hadamard.

Let us start with b0b1 · · · bn−1 and we need to Hadamard them all. Although in figure
(5.6), we called them j0j1 · · · jn−1, we are switching variables here. Let us consider
a more specific case when n = 4 before we try to generalize it for any n.

|b0〉

|b1〉

|b2〉

|b3〉 H

H

H

H
∣∣∣b′3
〉

∣∣∣b′2
〉

∣∣∣b′1
〉

∣∣∣b′0
〉

Figure 5.6: Four qubits Hadamarded

In figure (5.6), we put the smallest bits of b last and largest bits of b first.

Now, we need to put the gates in as they appear in the exponent of equation (5.32),
which perform all the other transformations.

Multiplying the entire expression in the exponent of equation (5.32), we obtain one
term from (bn−12

n−1 + bn−22
n−2 + · · ·+ b0.1) and one term from

(
b
′
n−12

n−1 + b
′
n−22

n−2 + · · ·+ b
′
0.1
)
,

resulting in the following gate,

e−2πibsb
′
t2

s2t/22 (5.34)

e−2πibsb
′
t2

s+t−n

(5.35)
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This gives the matrix,




1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e−2πi2s+t−n


 (5.36)

If s + t = n − 1, it comes from the term e−2πibsb
′
n−s−1/2

n
, which transforms into a

Hadamard gate in our circuit.

In the qubits |bs⟩ and
∣∣b′t
〉
of figure (5.6), if s + t < n− 1, then there is room here,

so we can put a new gate in.

It does not matter exactly where you put the new gate, as long as you place it after
the Hadamard gate on bs and before the Hadamard gate on b

′
t.

Let us call this gate to be,

Rk =

(
1 0
0 e−2πi/k

)
(5.37)

which is taking |0⟩ −→ |0⟩ and |1⟩ −→ e−2πi/2k |1⟩.

Let us put the gates in now using Rk and later explain why we put them in.

1. We put R2 gate between all adjacent qubits. We place R2 between the Hadamards
of |b3⟩ and |b2⟩, |b2⟩ and |b1⟩, |b1⟩ and |b0⟩.

|b0〉

|b1〉

|b2〉

|b3〉 H R2

H R2

H R2

H
∣∣∣b′3
〉

∣∣∣b′2
〉

∣∣∣b′1
〉

∣∣∣b′0
〉

Figure 5.7: Placement of R2 gate
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2. We put R3 between all pairs of qubits that are two away. We place R3 between
the Hadamards of |b3⟩ and |b1⟩, |b2⟩ and |b0⟩.

|b0〉

|b1〉

|b2〉

|b3〉 H R2 R3

H R2 R3

H R2

H
∣∣∣b′3
〉

∣∣∣b′2
〉

∣∣∣b′1
〉

∣∣∣b′0
〉

Figure 5.8: Placement of R3 gate

3. And we put R4 between all pairs of qubits which are three away from each other.
We place R4 between the Hadamards of |b3⟩ and |b0⟩.

|b0〉

|b1〉

|b2〉

|b3〉 H R2 R3 R4

H R2 R3

H R2

H
∣∣∣b′3
〉

∣∣∣b′2
〉

∣∣∣b′1
〉

∣∣∣b′0
〉

Figure 5.9: Placement of R4 gate

Generally, we will put Rt between all pairs of qubits that are (t + 1) away. And
R1, R2, R3 · · · = Rk, which is a controlled Rk gate.

Here,
∣∣b′0
〉
is interacting with |b1⟩ via R3 gate.

But why did we choose R3 from Rk? We want R3 from (5.37) because it depends
on (n− s− t). In this case, n = 4 and if s = 1 in |bs⟩ and t = 0 in

∣∣b′t
〉
, then the Rk

gate we want to help interact between |b1⟩ and
∣∣b′0
〉
is (n− s− t) = (4− 1− 0) = 3

i.e. R3.

The sum of t and s depends on the distance between the wires. It turns out that
we have R2 between the adjacent wires, R3 between the pairs of wires that are two
apart, and R4 between the pairs of wires that are three apart, etc.
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Therefore, this circuit performs a 4-qubit quantum Fourier transform, and, of course,
we have to swap the bits at the very end to get them in the right order.

Figure 5.10: A four qubit QFT circuit

Building upon our earlier discussion of the design principles for a four-qubit Quan-
tum Fourier Transform (QFT), it becomes apparent that these principles can be
extended [45] to design a QFT circuit for any number of qubits n. The process
does not require much imagination, as the underlying logic and structure remain
consistent across different scales.

H

2

H

H

H

R

n

R

R

2

n-1

R

RR

n-1

b

n-2

b

1

n-2

n-2

b

b

0

b'

0

b'

n-1

n-1

b'

b'

1

Figure 5.11: n-Qubit QFT Circuit

5.6 The Quantum Fourier Transform Versus a Dis-

crete Z-Transform
The Quantum Fourier Transform (QFT) and the Discrete Z-transform (DZT) are
both employed to expedite intermediate operations. They exhibit the following
notable similarities:

5.6.1 Linearity of QFT versus DZT

To demonstrate the linearity of a matrix transformation T that maps from one vec-
tor space V to another vector space W , we need to establish that T adheres to two
fundamental properties: additivity and homogeneity.
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Additivity requires that for any vectors v1 and v2 in V , the transformation of their
sum is equal to the sum of their individual transformations. Formally, we express
this property as:

T (v1 + v2) = T (v1) + T (v2)

This equation states that applying the transformation T to the vector sum v1 + v2
is equivalent to applying T to v1 and v2 separately and then summing the results.

Homogeneity requires that for any scalar α ∈ F (where F is the field over which
the vector space is defined) and any vector v ∈ V , the transformation of a scalar
multiple of the vector is equal to the scalar multiple of the transformation of the
vector. Formally, we express this property as:

T (αv) = αT (v)

This equation states that applying the transformation T to the scaled vector αv is
equivalent to scaling the result of applying T to v by the same scalar α.

By confirming both additivity and homogeneity, we establish the linearity of the
matrix transformation T : V → W .

Linearity of QFT

To establish the linearity of the quantum Fourier transform (QFT) represented by
the matrix F , we need to prove that F satisfies both the additivity and homogeneity
properties as defined earlier.

The QFT matrix F as in equation (5.10) for a two-variable transform is given by

F =

(
1√
2

1√
2

1√
2

e−2πi/2
√
2

)

Consider a scalar c and two vectors x⃗ and y⃗ in R2,

x⃗ =

(
x1
x2

)
, y⃗ =

(
y1
y2

)

Additivity:

To prove additivity, we need to show:

F (x⃗+ y⃗) = F (x⃗) + F (y⃗)

Compute F (x⃗+ y⃗),

x⃗+ y⃗ =

(
x1
x2

)
+

(
y1
y2

)
=

(
x1 + y1
x2 + y2

)
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F (x⃗+ y⃗) = F

(
x1 + y1
x2 + y2

)
=

(
1√
2

1√
2

1√
2

e−2πi/2
√
2

)(
x1 + y1
x2 + y2

)

=

(
1√
2
(x1 + y1) +

1√
2
(x2 + y2)

1√
2
(x1 + y1) +

e−2πi/2
√
2

(x2 + y2)

)

=

(
1√
2
(x1 + x2 + y1 + y2)

1√
2
(x1 + y1) +

e−2πi/2
√
2

(x2 + y2)

)

Compute F (x⃗) + F (y⃗),

F (x⃗) = F

(
x1
x2

)
=

(
1√
2

1√
2

1√
2

e−2πi/2
√
2

)(
x1
x2

)

=

(
1√
2
x1 +

1√
2
x2

1√
2
x1 +

e−2πi/2
√
2
x2

)
=

(
1√
2
(x1 + x2)

1√
2
x1 +

e−2πi/2
√
2
x2

)

F (y⃗) = F

(
y1
y2

)
=

(
1√
2

1√
2

1√
2

e−2πi/2
√
2

)(
y1
y2

)

=

(
1√
2
y1 +

1√
2
y2

1√
2
y1 +

e−2πi/2
√
2
y2

)
=

(
1√
2
(y1 + y2)

1√
2
y1 +

e−2πi/2
√
2
y2

)

F (x⃗) + F (y⃗) =

(
1√
2
(x1 + x2)

1√
2
x1 +

e−2πi/2
√
2
x2

)
+

(
1√
2
(y1 + y2)

1√
2
y1 +

e−2πi/2
√
2
y2

)

=

(
1√
2
(x1 + x2) +

1√
2
(y1 + y2)

1√
2
x1 +

e−2πi/2
√
2
x2 +

1√
2
y1 +

e−2πi/2
√
2
y2

)

=

(
1√
2
(x1 + y1 + x2 + y2)

1√
2
(x1 + y1) +

e−2πi/2
√
2

(x2 + y2)

)

Since both F (x⃗+ y⃗) and F (x⃗) + F (y⃗) yield the same result, additivity is satisfied.

Homogeneity

To prove homogeneity, we need to show:

F (cx⃗) = cF (x⃗)

Compute F (cx⃗),

cx⃗ = c

(
x1
x2

)
=

(
cx1
cx2

)
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F (cx⃗) = F

(
cx1
cx2

)
=

(
1√
2

1√
2

1√
2

e−2πi/2
√
2

)(
cx1
cx2

)

=

(
1√
2
(cx1) +

1√
2
(cx2)

1√
2
(cx1) +

e−2πi/2
√
2

(cx2)

)

=


 c

(
1√
2
x1 +

1√
2
x2

)

c
(

1√
2
x1 +

e−2πi/2
√
2
x2

)



Compute cF (x⃗),

F (x⃗) = F

(
x1
x2

)
=

(
1√
2

1√
2

1√
2

e−2πi/2
√
2

)(
x1
x2

)

=

(
1√
2
x1 +

1√
2
x2

1√
2
x1 +

e−2πi/2
√
2
x2

)

cF (x⃗) = c

(
1√
2
x1 +

1√
2
x2

1√
2
x1 +

e−2πi/2
√
2
x2

)

=


 c

(
1√
2
x1 +

1√
2
x2

)

c
(

1√
2
x1 +

e−2πi/2
√
2
x2

)



Since both F (cx⃗) and cF (x⃗) yield the same result, homogeneity is satisfied.

The matrix F representing the quantum Fourier transform for a two-variable system
satisfies both additivity and homogeneity. Therefore, F is a linear transformation.

Linearity of DZT

To establish the linearity of our redefined Discrete Z-transform (DFT) represented
by the block-encoded matrix U as in equation (4.3), we need to prove that U satisfies
both the additivity and homogeneity properties.

The DFT matrix for a two-variable transform, block-encoded into a larger matrix
U , is given by

U =




2
3

2
3

√
5
18
−
√

5
9

1
3

1
6

−
√

5
9

√
13
18√

5
18
−
√

5
9
−2

3
−1

3

−
√

5
9

√
13
18

−2
3

−1
6
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Additivity

We need to show that for any vectors v1 and v2 in V :

U(v1 + v2) = U(v1) + U(v2)

Let v1 =




v11
v12
v13
v14


 and v2 =




v21
v22
v23
v24


. Then the sum of these vectors is:

v1 + v2 =




v11 + v21
v12 + v22
v13 + v23
v14 + v24




Applying the transformation U to this sum,

U(v1 + v2) = U




v11 + v21
v12 + v22
v13 + v23
v14 + v24




Using matrix multiplication,

U(v1 + v2) =




2
3

2
3

√
5
18
−
√

5
9

1
3

1
6

−
√

5
9

√
13
18√

5
18
−
√

5
9
−2

3
−1

3

−
√

5
9

√
13
18

−2
3

−1
6







v11 + v21
v12 + v22
v13 + v23
v14 + v24




This expands to

U(v1 + v2) =




2
3
(v11 + v21) +

2
3
(v12 + v22) +

√
5
18
(v13 + v23)−

√
5
9
(v14 + v24)

1
3
(v11 + v21) +

1
6
(v12 + v22)−

√
5
9
(v13 + v23) +

√
13
18
(v14 + v24)√

5
18
(v11 + v21)−

√
5
9
(v12 + v22)− 2

3
(v13 + v23)− 1

3
(v14 + v24)

−
√

5
9
(v11 + v21) +

√
13
18
(v12 + v22)− 2

3
(v13 + v23)− 1

6
(v14 + v24)




Separating this into two matrix-vector multiplications,

U(v1+v2) =




2
3
v11 +

2
3
v12 +

√
5
18
v13 −

√
5
9
v14

1
3
v11 +

1
6
v12 −

√
5
9
v13 +

√
13
18
v14√

5
18
v11 −

√
5
9
v12 − 2

3
v13 − 1

3
v14

−
√

5
9
v11 +

√
13
18
v12 − 2

3
v13 − 1

6
v14



+




2
3
v21 +

2
3
v22 +

√
5
18
v23 −

√
5
9
v24

1
3
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Which simplifies to

U(v1 + v2) = U(v1) + U(v2)

This confirms the additivity property of the matrix transformation U .

Homogeneity

We need to show that for any scalar α ∈ F and any vector v ∈ V :

U(αv) = αU(v)

Let v =
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. Then the scaled vector is:
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Applying the transformation U to this scaled vector,
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Using matrix multiplication,
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This expands to
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Factoring out α,

U(αv) = α
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Recognizing the transformed vector U(v),

U(αv) = αU(v)

This confirms the homogeneity property of the matrix transformation U .

By confirming both additivity and homogeneity, we establish that the block-encoded
matrix U representing the redefined Discrete Z-transform (DFT) is linear.

5.6.2 Reversibility of QFT versus DZT

Unitarity is a fundamental concept in quantum mechanics that ensures a trans-
formation is reversible. Specifically, a unitary transformation preserves the inner
product in Hilbert space, which guarantees that no information is lost during the
process, making reversibility a key feature.

We have shown that the Quantum Fourier Transform (QFT) is unitary, meaning
it maintains orthonormality and can be inverted by its conjugate transpose. This
establishes the QFT as a reversible transformation.

Our research extends these principles to the redefined Discrete Z-Transform (DZT).
Using block-encoding techniques, we constructed a matrix representation of the DZT
and demonstrated its unitarity. This confirms that the DZT, like the QFT, is re-
versible.

These findings are significant for quantum computing, where reversible transforma-
tions are essential. We provided evidence and a theoretical basis that confirm the
unitary nature of both the QFT and our redefined DZT, thus establishing their re-
versibility.

5.7 Basis Transformation

Basis transformations are fundamental to various algorithms in quantum computing.
Notably, the Quantum Fourier Transform (QFT), discussed earlier in this chapter,
the Discrete Z-transform (DZT) covered in Chapter 4, and the bosonic quantum
Z-transform explored in Chapter 3, all serve as changes of basis.
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The Quantum Fourier Transform is a linear transformation on qubits that maps
computational basis states to another set of basis states. To validate these trans-
formed states as a legitimate basis, their orthonormality is established. Specifically,
the inner product of a transformed basis state with itself is equal 1, and the inner
product with any other transformed basis state is equal 0. These conditions ensure
that the transformed basis states are orthogonal and normalized, which is crucial for
preserving the inner product structure of the Hilbert space in quantum computing.

Similarly, the Discrete Z-transform, when block encoded as a unitary matrix, inher-
ently satisfies the orthogonality and normalization properties, much like the QFT.
This ensures its suitability as a basis transformation in the potential gate-based
model of a quantum Z-transform. By maintaining unitarity, the DZT preserves the
orthonormality of the transformed basis vectors, ensuring that the structure of the
Hilbert space is maintained. This capability to transform and preserve the basis
vectors makes the DZT a valid change of basis amenable to quantum computations.

Additionally, the bosonic quantum Z-transform extends the classical Z-transform
into the quantum domain, connecting number states (Fock states) and coherent
states. Both can form bases in the Hilbert space of a quantum system. To establish
the bosonic quantum Z-transform as a change of basis, we analyze the orthogonality
and completeness of the number states and coherent states.

Number states are inherently orthonormal, as indicated by

⟨n|m⟩ = δnm

where δnm is the Kronecker delta, equating to 1 if n = m and 0 otherwise. Co-
herent states, while not orthonormal in the same sense as number states, form an
overcomplete basis. This overcompleteness allows any state in the Hilbert space to
be represented as a linear combination of coherent states. The connection between
number states and coherent states established through the quantum Z̃-transform
demonstrates it as a valid change of basis in the quantum context.

In summary, the QFT, discrete Z-transform, and bosonic quantum Z-transform
each exhibit crucial properties for basis transformations in quantum mechanics.
The QFT directly preserves the orthonormality of basis states, the DZT ensures
orthonormality through its unitary block-encoded matrices, and the quantum Z̃-
transform connects number states and coherent states, leveraging the overcomplete
nature of the latter. These properties set them up in an optimal condition for
developing quantum algorithms.
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Chapter 6

Conclusion

In this chapter, we construct a conceptual map encompassing all major ideas we
have explored, positioning our investigation within a broader context. We present
a critical analysis of the problem and demonstrate how our work establishes a foun-
dation for future research in discovering a desired quantum Z-transform.

6.1 Critical Analysis

In Chapter 1, we present the problem statement, summarize the key contributions,
and offer a concise overview of the thesis, effectively setting the stage for our re-
search. Chapter 2 provides an in-depth look at the classical Z-transform, covering
its definition, existence criteria, and key properties with proofs, preparing the reader
for the later discussion of quantum analogs.

In Chapter 3, we explore the quantum analogs of classical Z-transform properties,
establishing a connection between number states and coherent states. Traditionally,
the Z-transform is not considered a basis transformation. However, since both
number states and coherent states form bases, we treat this connection as a basis
transformation.

Importantly, we discuss the Z̃-transform as a basis transformation within a bosonic
quantum system. The persistence of classical Z-transform properties in a quantum
system, especially a bosonic one, is significant as it opens possibilities for demon-
strating the Z-transform as a basis transformation in other quantum systems. As
a result, in developing a quantum subroutine, our focus will shift from bosonic to
qubit quantum systems to enable implementation on quantum computers.

In this context, it is crucial to note that coherent states are overcomplete[38], mean-
ing they do not form the usual orthonormal basis. This overcompleteness leads to
an infinite number of representations, allowing a single ket vector to be decomposed
in various ways using the same set of vectors. Therefore, the basis of coherent states
does not provide a unique decomposition, enabling multiple possible decomposi-
tions. Understanding this property is essential as it influences how we approach the
implementation of the Z-transform in quantum computing.
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In Chapter 4, we begin by discretizing the classical Z-transform. The traditional
definition of the Z-transform involves an infinite summation, which remains infinite
even when the Z̃-transform acts as a basis transformation in a bosonic quantum
system to derive its quantum properties. However, this infinite nature complicates
its implementation on quantum computers, thus necessitating discretization. This
discretization process is not straightforward and involves redefining the Z-transform
to handle the infinite summation effectively.

We also developed a matrix formulation for our discrete Z-transform. Initially, the
matrix derived from this discrete definition is not unitary. Ensuring the unitarity of
our discrete Z-transform is crucial for developing a quantum algorithm. To address
this, we must convert the matrix formulation into a unitary operator.

Using the block-encoding method, we successfully converted two-variable and four-
variable discrete Z-transform matrices into unitary operators. This process involved
normalizing the matrices by dividing them by their largest singular value, ensuring
the normalized matrices had singular values less than or equal to one. We then ver-
ified that the matrix formed by subtracting the conjugate transpose of the normal-
ized matrix multiplied by itself from the identity matrix was positive semi-definite.
This verification allowed us to decompose the matrix using the matrix square root
technique. We employed eigenvalue decomposition to find the square roots of the
eigenvalues and constructed the matrix B accordingly. Finally, we structured the
unitary matrix U to embed the normalized matrix while maintaining unitarity.

To summarize, the discrete definition and the successful unitarization of the discrete
Z-transform matrix through the block-encoding method fulfill the preconditions for
efficient quantum operations on the matrix formulation of the discrete Z-transform
using standard quantum gates and subroutines. This work lays a solid foundation
for further exploration and implementation in quantum computing.

In Chapter 5, we begin our discussion by examining the foundational principles un-
derlying the discovery of the quantum Fourier transform to glean insights for the
development of a quantum Z-transform, owing to the considerable similarities be-
tween them. The discrete Fourier transform (DFT), intrinsically discrete, is unitary
because it conforms to the orthogonality property in its matrix representation and
preserves vector lengths post-transformation. These characteristics make the DFT
ideal for quantum computation, ensuring its unitarity and applicability on quan-
tum computers. The quantum Fourier transform (QFT) is essentially the discrete
Fourier transform, but instead of transforming the values of the variables themselves
as the DFT does, it considers the variables as input/output vectors representing the
probability amplitudes of the quantum states in QFT. Drawing inspiration from the
parallels between the discrete Fourier transform and the quantum Fourier transform,
we establish the analogous properties of our redefined discrete Z-transform and the
quantum Fourier transform: both are linear, involve basis changes in the frequency
domain, are reversible, and enhance the efficiency of intermediary operations. This
makes our discrete Z-transform amenable to quantum computation in a manner and
spirit similar to the quantum Fourier transform.
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6.2 Future Direction

Achieving a quantum implementation of the Z-transform, akin to the development
of the quantum Fourier transform, requires two principal modifications. First, the
classical Z-transform must be discretized and redefined as a finite summation. This
milestone has been accomplished in our research. Second, it is necessary to ensure
that the matrix formulation of this redefined Z-transform is unitary. We have
successfully demonstrated this by converting two-variable and four-variable discrete
Z-transform matrices into unitary operators. We are also prepared to extend this
to any finite number of variables for our discrete Z-transform.

The discretization of the Z-transform maps the signal to a discrete set of values,
which can be naturally represented as quantum states. The unitary matrix from
block-encoding allows us to manipulate these quantum states while preserving their
norm, an essential property for quantum operations. As a result, the progress we
have made thus far in our research has provided the optimal setup for developing
the intended quantum Z-transform.

Due to the pioneering nature of this work and the inherent time constraints of an
undergraduate thesis, we could not explore all our innovative ideas, especially given
the project’s ambitious scope that exceeded typical undergraduate expectations.
However, in future research, using our newfound insights, we intend to continue
developing and implementing this on a gate-based model of quantum computation
with lower circuit depth and complexity. To that end, we plan to use quantum
phase estimation to extract frequency components and apply the quantum Fourier
transform to convert the time-domain signal into the frequency domain efficiently.
By measuring the quantum states post-transformation, we will be able to obtain the
Z-transform coefficients. This approach, starting with block-encoding, will allow us
to efficiently implement the Z-transform on a quantum computer, harnessing quan-
tum parallelism and interference for potentially significant speedups over classical
methods.
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