
Identifying code-mixed and code-switched hateful remarks on
Social Media using NLP

by

Sumaiya Sinha
20101141

Naharin Siddiqui Nawar
24141298

Md. Abrar Faiaz Khan
19301106

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University

May 2024

© 2024. Brac University
All rights reserved.



Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

5. Readers’ dicretion is advised.

Student’s Full Name & Signature:

Naharin Siddiqui Nawar
20101369

Sumaiya Sinha
20101141

Md. Abrar Faiaz Khan
19301106

Stamp

Stamp

Stamp



Approval
The thesis/project titled “Identifying code-mixed and code-switched hateful remarks
on Social Media using NLP” submitted by

1. Sumaiya Sinha (20101141)

2. Naharin Siddiqui Nawar (20101369)

3. Md. Abrar Faiaz Khan (19301106)

Of Spring, 2024 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on May 2024.

Examining Committee:

Supervisor:
(Member)

Farig Sadeque
Assistant Professor

Department of Computer Science and Engineering
Brac University

Co-supervisor:
(Member)

Rafeed Rahman
Lecturer

Department of Computer Science and Engineering
Brac University

ii

Stamp

Stamp



Program Coordinator:
(Thesis Coordinator)

Dr. Md. Golam Rabiul Alam
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

iii



Abstract
Online bullying has prevailed for years in the vast cesspool that is commonly known
as the online social media. Increasing use of social media and online communica-
tion has led to a rise in cyberbullying– which is often facilitated by the abundant
usage of code-mixing and code-switching. Research has been done to filter out
these derogatory remarks. However, little research has been done on code-switched
and code-mixed hateful remarks. English has blended into our Bangla language
so effectively that people regularly use English letters to convey Bangla due to its
convenience. English and Bangla are used interchangeably in regular conversations
as well. Our main objective in this research is to detect these code-switched and
code-mixed remarks– which we plan to do by taking advantage of the state-of-the-
art natural language processing technologies.

Keywords: Online bullying, Cyberbullying, Social media, Code-mixing, Code-
switching, Derogatory remarks, Hateful remarks, Natural language processing, De-
tection.
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Chapter 1

Introduction

In recent times, the internet and social media provided individuals with unlimited
opportunities to share and express their opinions, engage in discussions and connect
with people globally. It has created an impact in both good and bad ways. The
good thing is, we can now connect to people easily. We can share our experiences,
knowledge, and thoughts with people effortlessly and many more. While the inter-
net and social media have many good aspects, it also has many drawbacks, and hate
speech is one of them. In general, hate speech indicates offensive speech or language
that marks an individual or a class according to their basic characteristics like sexual
orientation, religious belief, ethnicity, sexual preferences, and so on. It may harm
the person or the group and can menace social peace. Hate speech is defined by
the UN Strategy and Plan of Action on Hate Speech as any form of language that
focuses or applies demeaning or biased phrases towards an individual or community
on grounds of their beliefs, cultural background, the color of skin, gender, origin, or
other characteristics. It provides a structure for the United Nations to point out the
problem globally. In the era of the internet and online networking, hate speech is
an increasingly prominent problem. People nowadays use different kinds of offensive
language on different social media sites, social media posts, comment sections, mes-
saging apps, and others. Hate speech can originate in many forms. Some common
types of hate speech are threats, online trolling, harassment, derogatory language,
etc. Sexism-related hate speech is another form of that. In recent years, the issue
of sexism has extended its reach into the digital world as well. Sexism can be seen
in online communication platforms and different social media sites. It has become
really hard to detect sexism-related hate speech now because there is a lot of data
on the internet that are either code-switched or code-mixed or both .

Data that is code-switched and code-mixed refers to mixing multiple languages
within conversations or speech. This mixture of languages occurs in multilingual
communities or individuals who are capable of speaking and knowing multiple lan-
guages. Various accents are employed in a single statement or speech when data is
code-mixed. For instance, “I want to buy sabzi from the market”. Here, “sabzi” is
a Hindi word that is mixed into an English sentence. Here, we can see a mixture of
Hindi - English languages. This sentence is an example of code-mixed data. On the
other hand, code-switched data means shifting from one language to another dur-
ing a conversation. For example, if someone writes, “Voy a la tienda to buy some
groceries”. Here, “Voy a la tienda” is a Spanish sentence that means I am going to
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the store. We can see the shift from Spanish to English language in the sentence. It
is an example of code-switched data.

Nowadays the code-mixed and code-switched data has increased so much that it
is really a complex task to detect and reduce sexism-related hate speech. These
linguistic incidents are very common in today’s era where people effortlessly mix
languages to express their feelings, thoughts, and cultural identities. To give an ex-
ample, let’s assume there is a Twitter thread that is discussing women’s rights which
is a trending topic. There are many participants from various countries with different
linguistic backgrounds. In such discussions, contributors may switch their languages
like English, Hindi, and Bengali to express their thoughts, opinions and personal ex-
periences. However, amidst this linguistic diversity, people may target women by
passing sexist comments disguised within the code-mixed and code-switched state-
ment. Identifying and addressing these instances becomes crucial for fostering an
inclusive and respectful online environment.

Traditional approaches to hate speech detection predominantly focus on monolingual
and single-language contexts. We can understand that with an example. Suppose,
an English speaker who also knows Spanish. He wants to make a sexist comment
while involved in an online conversation. Now, a monolingual model is trained on
English data. It does not understand Spanish language. So, if he makes a sexist
comment in Spanish, the model won’t be able to detect it. We can see another
example where a participant writes, “Women should stay at home. They cannot
handle a leadership position. Netritto shudhu chelera dite pare, meyera noy”. Which
means “only men can lead, not women”. This is a case of code-switched situation
where the participant makes a sexist comment while switching his language from
English to Bangla. This is very difficult for a monolingual model to detect and
classify hateful remarks from code-mixed and code-switched data. Machines face
significant challenges in adapting to the intricacies of code-switched and code-mixed
data. The incorporation of multiple languages introduces linguistic variations, cul-
tural references, and idiomatic expressions that may escape detection by existing
systems. Analyzing instances that have code-mixed and code-switched data needs
a deep understanding of language-specific cues, cultural context, and the ability to
detect hateful intent within the interplay of languages. So, our research aims to
identify sexism-related hate speech in Bengali code-mixed and code-switched data
often found in social media posts and comments.

1.1 Research Statement
The primary objective of our thesis is to address the pressing issue of detecting and
mitigating hate speech targeting sexism within Bengali code-switched and code-
mixed data, considering the complex linguistic and cultural dynamics associated
with these communication patterns. Code-switching and code-mixing which are very
prevalent in diverse multilingual societies pose significant challenges in accurately
identifying and effectively combating instances of hate speech. Hate speech, par-
ticularly when intertwined with sexism, perpetuates harmful stereotypes, reinforces
discrimination, and creates an environment of hostility, exclusion, and potential
harm, eroding the principles of equality, dignity, and respect within digital spaces.

3



Existing methodologies and tools for hate speech detection predominantly cater
to monolingual and single-language contexts, lacking the adaptability, nuance, and
contextual sensitivity required to navigate the intricate linguistic and cultural vari-
ations inherent in code-switched and code-mixed data. Moreover, the scarcity of ad-
equately annotated datasets specifically curated for code-switched and code-mixed
hate speech hampers the development and refinement of robust machine learning
algorithms, natural language processing models, and computational linguistic ap-
proaches in this critical domain. These datasets are crucial for training and evalu-
ating hate speech detection systems, as they provide the necessary annotations to
guide the learning process and enhance the system’s ability to recognize and classify
instances of hate speech within code-switched and code-mixed data.

Thus, there is an urgent need to explore and develop innovative methodologies and
approaches that effectively address the detection and mitigation of hate speech,
specifically targeting sexism, within Bengali code-switched and code-mixed data.
This research endeavor aims to bridge this critical gap by proposing novel tech-
niques that leverage the complex linguistic and cultural characteristics of Bengali
code-switched and code-mixed data. By incorporating linguistic features, cultural
references, contextual clues, and language-specific nuances, the proposed approaches
aim to enhance the accuracy, comprehensiveness, and contextual awareness of hate
speech detection systems.

By advancing progressive machine learning algorithms, natural language processing
models, and computational linguistic methods, this research seeks to add to the
conception of more polished, nuanced, and adaptable systems that effectively detect
sexist speech within Bengali code-switched and code-mixed digital communication
platforms. Fundamentally, the discernments derived from this research aspire to
nurture a more inclusive, respectful, and equitable digital landscape, advocating a
culture of tolerance, diversity, and safety, thereby mitigating the detrimental impacts
of hate speech and discrimination.

1.2 Research Objective
The main objectives of this research are to:

1. Analyze and identify the unique cultural and linguistic features of information
that have been code-mixed and code-switched in the context of sexism, to gain
insights into the manifestation and complexities of sexist language in multilingual
communities.

2. Recognize and categorize the many forms of sexism included in code-mixed
and code-switched data, such as openly insulting comments, hidden gender biases,
stereotypical portrayals, and microaggressions, we may create a full taxonomy that
encompasses the spectrum of sexist utterances.

3. Develop and curate a labeled dataset specifically tailored for code-mixed and
code-switched sexist language, encompassing various language combinations, cul-
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tural contexts, and domains, to provide a valuable resource for training and evalu-
ating sexism detection models.

4. Explore and adapt existing machine learning algorithms, natural language pro-
cessing techniques, and computational linguistic models to effectively detect in-
stances of sexism in code-mixed and code-switched data, accounting for linguistic
variations, cultural references, and the dynamic nature of language.

5. Enhance the accuracy and inclusivity of sexism detection systems by integrating
contextual information, cultural sensitivity, and domain-specific knowledge into the
detection algorithms, aiming to minimize false positives and false negatives while
accounting for cultural nuances and the intended meaning within utterances that
are either code-switched, or code mixed, or both.

The goal of this study is to improve sexism detection methods in code-switched
and code-mixed information. By achieving these research goals, we can help create
inclusive and equitable digital platforms and raise awareness of the negative effects
of sexist language in online settings.
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Chapter 2

Literature Review

We have divided our research topic into two parts. In the first phase, we will analyze
the existing literature on hate speech. Cambridge dictionary defines hate speech as
“public speech that expresses hate or encourages violence toward a person or group
based on something such as race, religion, sex, or sexual orientation ” [21]. Since
hate speech covers multiple areas, we will concentrate only on a single type that is
sexism. In the second part, we will analyze relevant code mixed and code switched
papers.

2.1 Hate Speech Literature
Waseem, Z. & Hovy, D. (2016, June) recognize the importance of detecting hate
speech in social media sites [1]. They believe that hate speech can incite physical
violence. The authors used critical race theory to annotate more than 16k tweets.
The tweets were divided into three categories, sexist, racist and neither of them. For
this research, the authors compared the performance of character n-grams (sequence
of characters) with word n-grams (sequence of words). They were able to find that
the former outperforms the latter by using a bootstrap sampling test. So, they used
character n-grams as their primary feature. This research came to the conclusion
that character n-grams along with gender as a feature gives the best results. On the
other hand, length of hate speech and its location brings insignificant improvement
to results. The readers must keep in mind that the geographic distribution did not
cover a wide range. So, there is still room for improvement.

In another paper, Waseem, Z. (2016, November) aims to detect hateful discourse
on Twitter without bias by using various machine learning models and analyzing
the impact from the perspective of human annotators [2]. The study collected a
dataset of tweets containing racism, sexism and neither of them. We must be aware
that the new dataset was created based on a sample from the original dataset re-
leased by Waseem and Hovy (2016) [1]. The new dataset was then labeled as hate
speech or not by experts (feminist and anti-racism activists) and amateur annota-
tors. The study found significant disagreement among the annotators due to the
context-dependent nature of hate speech. Hate speech does not have a universal
definition. The definition changes based on culture, geographical distribution and
so on. The best-performing features for detection were token unigrams, cluster de-
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tection, length analyzer, and sarcasm detection. Machine learning models trained
on annotations from multiple annotators performed better than those trained on a
single annotator, highlighting the importance of considering human bias and vari-
ability when developing and evaluating hate speech detection models.

The next article acknowledges its predecessors and agrees with the fact that hate
speech has a context dependent nature which makes it difficult for non-experts to
annotate without having proper knowledge of the domain. The authors used a one-
step and a two-step classification approach to detect abusive language containing
racism and sexism [3]. The one-step approach trains a single classifier to identify
tweets, while the two-step approach first labels potentially abusive tweets using a
binary classifier and then labels them as either abusive or non-abusive using an-
other classifier. The study uses three different types of CNN models, CharCNN,
WordCNN, and HybridCNN, to classify a large dataset of 20 thousand tweets. The
two-step approach outperforms the one-step approach in terms of F1 score and is
better at avoiding false positives, while the one-step approach is better at identifying
borderline cases.

Another research paper acknowledges that differentiating hate speech from other
offensive language is a challenge. In order to build the dataset, the authors used
a website called Hatebase.org to collect a list of terms and phrases that have been
classified as hate speech online [4]. Then they use Twitter API to look for tweets
that contain words from their original list. Overall, they were able to gather 85.4
million tweets. They then selected a random sample of 25k tweets from this cor-
pus and had CrowdFlower (CF) employees manually code them. Each tweet was
given a classification in one of three categories: hate speech, offensive but not hate
speech, or neither offensive nor hate speech. In order to comprehend the tweets, the
researchers employed a variety of techniques. They experimented with several data
analysis techniques to see which one was most effective. They discovered that linear
SVMs and logistic regression were the most efficient. These techniques were able to
detect if a tweet contained hate speech, offensive language, or neither. They used
all of their collected tweets to train their final model. Logistic regression with L2
regularization was used as a unique methodology to estimate the type of language.
The model that performed the best overall has an F1 score of 0.90, a recall of 0.90,
and a precision of 0.91. Just like the articles [2] and [3], the researchers concluded
that hate speech is difficult to identify since each person has their own definition of
what constitutes hate speech. For instance, people see homophobic and racist slurs
as being hateful but might overlook sexist language. The future works thus need to
address these biases.

The previous works have focused on detecting hostile sexism. However, according
to Jha, A., Mamidi, R. (2017, August), sexism comes in two forms Hostile and
Benevolent. Here, the primary aim of the researchers was to investigate the form of
sexism that normally goes unnoticed [5]. An example of benevolent sexism could be
‘They’re probably surprised at how smart you are, for a girl’. Benevolent sexism can
be subtle but dangerous. It can negatively impact women’s cognitive performance
and create gender inequality.In order to build their extensive dataset, the researchers
gathered data from various sources. They basically collected tweets which fell into
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three categories of sexism which are ‘hostile’, ‘benevolent’ and ‘others’. They made
use of the Twitter Search API to collect tweets that fall under the ‘benevolent’ cate-
gory. For the other two categories, they used the public corpus published by Waseem
and Hovy (2016) [1]. Glick and Fisk (2019) proposed a groundbreaking ambivalent
sexism theory. This theory was used by the authors to identify and annotate benev-
olent sexism [10]. The theory covers three important concepts. The concepts are
paternalism, gender differentiation and heterosexuality. If we dive deeper into pa-
ternalism, we get to notice that it has two sides. One is the dominative paternalism
which sees women with hostility. Consequently, viewing them as inept. The other
kind is protective paternalism. This is a bit interesting. Even though this type is
not exactly hostile, it normally concludes that women are to be cherished because
they are weak. An example sentence could be “Women are like flowers who need
to be cherished!”. In this way both gender differentiation and heterosexuality can
have a hostile and a benevolent side. The authors utilized the FastText classifier,
SVM, and sequence-to-sequence models to classify the tweets into their respective
categories. They used the FastText classifier to get the best F1-score.

In a more recent paper than the preceding ones, authors Rodríguez-Sánchez, F.,
Carrillo-de-Albornoz, J., Plaza, L. (2020) talk about the need for effective detec-
tion technologies to identify hate speech online. In their work, they primarily treat
hate speech as being any form of derogatory content [6]. Simply, hate speech is
described as any form of communication that disparages people or groups based on
attributes including gender, sexual orientation, race, nationality, or religion. They
used two publicly accessible datasets that have been annotated for racist, sexist,
hateful, or other offensive content on Twitter to assess their suggested methodol-
ogy. In order to improve hate speech detection, the researchers used a pre-trained
language model called BERT that learned from English Wikipedia and BookCor-
pus. Using publicly available datasets, they proposed a transfer learning approach
on BERT. They also introduced new fine-tuning methodologies to BERT. Through
this, they were able to get experiment results that outperformed previous works in
terms of precision, recall, and F1-score. They also found out that their model was
able to detect unfairness in the datasets they used. This is extremely useful because
it will make sure that the hate speech datasets used to train models in the future
are more impartial and balanced.

Until now we mainly focused on hate speech in the English Language. In the up-
coming article, the researchers address the difficulties of detecting hate speech in
Arabic language in the context of social media [7]. The hate speech can be based
on gender, race or religion. It underlines the lack of study in Arabic hate speech
detection compared to languages with Latin characters. It shows the difficulty in
creating successful detection models due to the complexity and variety of the Arabic
language due to its dialects, derivations and so on. The paper discusses the pop-
ularity of supervised machine learning approaches, unsupervised machine learning
approaches, and semi-supervised machine learning approaches. It also emphasizes
the growing usage of deep learning models, particularly recurrent neural networks
(RNN) and convolutional neural networks (CNN), for the detection of hate speech.
According to the article, future research should concentrate on adding the most
recent deep learning architectures to create a model for Arabic hate speech identi-
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fication that is more successful.

We can observe another implementation of BERT, a powerful deep learning model,
to detect hate speech, especially sexism, in the next research paper. The authors
created a dataset called MeTwo which contained more than 3000 Spanish Tweets
[8]. The tweets were classified into three categories, “SEXIST’’, “DOUBTFUL’’ and
“NON-SEXIST”. Just like research paper [5], the authors here have made sure to
cover both types of sexism, ranging from explicit hate to subtle expressions. To de-
tect sexism, the authors made a comparison between traditional methods and neural
networks in Machine Learning. They implemented two approaches for feature ex-
traction. For instance, traditional features like tf-idf and a quite newer one like word
embeddings. BERT gave the best results compared to all the other algorithms. It
has an accuracy of 74%. However, the authors encountered several difficulties while
conducting the experiment. The difficulties were mainly due to the fact that lan-
guage is complex. It can be harder to interpret sarcasm or ambiguity in words.
Also, tweets are normally short and concise which makes it difficult to understand
the context behind it. The size of the dataset can also be a factor. Obviously, a
larger dataset would have led to more accurate results.

The last research paper in our hate speech category provided a twist to the earlier
deep learning models. It used a deep generative model to detect hate speech [9].
Previously deep learning solutions have been suggested for modest sized datasets
of a few thousands. However, these models only worked well for limited datasets.
Due to this, the authors initially presented a dataset of 1 million hate and non-hate
sequences generated by a deep generative model. Additionally, they used the gener-
ated data to train a well-researched DL detector, showing appreciable performance.
The current labeled datasets were then updated with the generated data, thereby ex-
panding the training sets with new information. When compared to models trained
on the original, unaugmented datasets, the performance of the hate speech detec-
tion models performed better. Recall, precision, and F1 score were used to evaluate
the efficacy of the augmentation strategy. The results of the studies showed that
adding autonomously produced hate speech samples to the training sets significantly
increased the recall, F1 score, and generalization ability of the hate speech detec-
tion models. The problem of false negatives (missing hate speech sequences) was
addressed by the improved performance of the upgraded model.

2.2 Code-Mixed and Code-Switched Literature
The process of switching back and forth between two or more languages or dialects
during a discussion is known as code switching. Usually, it happens when bilingual
or multilingual people alternate between two or more languages depending on their
social or cultural environment. On the other hand, code mixing happens when speak-
ers use words, phrases, or grammar structures from one language while speaking or
writing in another. Below we will analyze the code-mixed and code-switched papers.

In their paper, Barman, U., Das, A., Wagner, J. & Foster, J. (2014, October) de-
scribe a common phenomenon called code-mixing which is caused by multilingual
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users. According to the authors, linguistic analysis and computational modeling of
code-mixed data is challenging due to linguistic intricacy brought on by irregular
spelling and grammar differences, and transliteration [11]. The authors created a
new dataset that contained both Facebook posts and comments that exhibit code
mixing between Bengali, English and Hindi. Different techniques were employed,
including a simple unsupervised dictionary-based approach, supervised word-level
classification with and without contextual clues, and sequence labeling using Con-
ditional Random Fields. For the dictionary-based approach, they integrated two
dictionaries known as LexNormList and Training Data. The accuracy of this sys-
tem was 93.12%. For the second technique, supervised word-level classification, they
trained a Support Vector Machine (SVM) model using several features like charac-
ter patterns, word length, capitalization, etc. They discovered that combining these
features led to the best accuracy of 94.75%. But the CRF model with a combination
of features gave an accuracy of 95.98%. So, the dictionary-based approach was sur-
passed by supervised classification and sequence labeling, and that it was important
to take contextual clues into consideration. They drew the following conclusions as
a result of the experimental findings: character n-gram features were helpful for this
task; contextual information was also crucial; and information from dictionaries can
be successfully incorporated as features.

Authors in the next research paper, analyze the different ways code-mixing can oc-
cur [12]. For instance, people can mix one word from another language or they
can combine phrases from another language. The researchers also examined how
frequently various words are used. They divided the words into three groups: clear
Code-Mixing (CM) , clear Borrowings, and Ambiguous. Using a word from another
language on purpose is known as clear CM. Words that are clearly translated from
one language to another are called clear Borrowings. The distinction becomes blurry
in the case of Ambiguous since it can be both clear CM and clear Borrowings. One
issue the researchers had was with vulgar language and profanity. Without addi-
tional information, it can be challenging to discern the intended meaning of these
terms because they are frequently confused with other languages. They also discov-
ered that in order to comprehend code-mixing, one must take into account both the
linguistic structure and the motivations behind language mixing. The researchers
intend to keep working to enhance how computers comprehend multilingual com-
munication and comprehend code-mixing.

In another article, researchers believed that despite its widespread use, little effort
has been invested into creating computational methods or even fundamental linguis-
tic resources to aid research into the processing of mixed-language data [12]. The
authors encountered challenges in gathering code-switched tweets for their research.
They found Nepali-English code-switching users through a collaborator and collected
tweets from 42 frequent code-switchers. For Spanish-English, they used Twitter’s
search API and annotators to identify code-switching tweets. Demographic infor-
mation was manually extracted. The corpora were split into training and test sets,
with 11,400 (train) and 3,014 (test) tweets for Spanish-English and 9,993 (train) and
2,874 (test) tweets for Nepali-English. The researchers believe the techniques they
incorporated for data collection and annotation could prove useful. More extensive
and diverse datasets in other languages could be created through their techniques.
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Moving on to the the next research article, the authors gathered tweets and anno-
tated 345 samples of texts in two languages which are Hindi and English [13]. NLP
(Natural Language Processing) techniques were used to carry out sentiment analysis
on the data. The study concludes that we can accurately do sentiment analysis on
code-switched data but there are several challenges we should be aware of. There is
obviously a scarcity of systematic rules to handle such data. On the other hand, it
is indeed very challenging to determine the language of a given word. The research
highlights another very crucial point. One should consider the culture and the lin-
guistic backgrounds of users when he is examining sentiment of code-switched data.

POS (Part-of-Speech) tagging is a very important technique in NLP. This technique
allocate words in a text to their corresponding part-of-speech. The grammatical role
and function of each word in a phrase are represented by a tag, such as noun, verb,
adjective, adverb, pronoun, preposition etc. Sequiera, R., Choudhury, M., Bali, K.
(2015, December) discusses Part-of-Speech (POS) tagging of Hindi-English Code-
Mixed (CM) text from social media content [14]. The POS taggers were trained
using Supervised Learning (SL). They initially used a model called VGSBC, but
it didn’t work properly. As a result, they shifted to SL. This model performed a
lot better. In order to select the appropriate tags, it transmitted the entire text
to a Hindi or English tagger. Although, they used language features like context,
normalization etc. to see if it would improve the performance of their model but un-
fortunately it made little difference. The researchers discovered that the SL model
with the best features provided them with the maximum accuracy. English and
Hindi had 93% and 85.9% accuracy respectively. This indicates that the machine
was able to identify POS correctly most of the time. A larger dataset was used to
compare the models, and they discovered that the accuracy was consistently greater.
This demonstrated that it is crucial to have additional data to learn from.

In another academic paper, researchers explore the English-Bengali code-mixing
phenomenon. The researchers used different machine learning algorithms to build
their system [15]. For instance, J48, IBk, Random Forest. They used n-grams and
dictionaries as features. They formulated their dataset from facebook posts. They
were able to reach an accuracy of 90%. But they discovered that the accuracy varied
based on the particular data they examined. For instance, while accuracy declined
for a different dataset based on Facebook discussions, it increased for a particular
dataset dubbed FIRE 2013. They talked about their research’s difficulties as well.
The researchers faced difficulty to identify proper nouns (names of people, places
etc.) in Bengali language due to variations in spellings, contextual ambiguity etc.
To better understand the language and context of each word, sentiment analysis
needs to be carried out. The authors mentioned that Bengali is still a relatively
unexplored language in NLP. In future works, it will be beneficial to incorporate a
Parts-of-Speech tagger.

The next paper mentions the ICON 2017 where a group of teams participated
to identify sentiment analysis from a code-mixed dataset [16]. The dataset in-
cluded Hindi-English text and Bengali-English. The teams were made to analyze
the dataset and categorize the dataset into positive, negative or neutral sentiments.
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The highest accuracy was achieved by the team that used features like word em-
beddings and n-grams. They made use of the SVM algorithm. The performance of
deep learning models was not up to the mark due to the restricted dataset. Overall,
research showed that even though it is difficult to understand code-mixed languages,
the correct technique might give satisfactory results.

Till now we focused on sentiment analysis of code-mixed languages that typically
involved English, Bengali or Hindi. However, the upcoming research paper addresses
sentiment analysis of code-mixed for the transliterated Hindi and Marathi texts [17].
A dataset of 1,200 Hindi and 300 Marathi papers was gathered by the authors from
chats, tweets, and YouTube comments. They first tested each of the individual
languages separately. The authors employed multiple metrics, including precision,
recall, and F-measure, to assess how well the system performed. They observed
that the F1 score was highest for the Naive Bayes (NB) and Linear Support Vec-
tor Machine (SVM) algorithms, whereas the RBF-based SVM algorithm did not do
that well. Various percentages of the dataset were used to train the models. It was
found that, Hindi and Marathi datasets showed more or less similar outcomes. They
faced difficulty while trying to manage the grammar of code-mixed scripts. It was
challenging to accurately apply conventional grammar rules and part-of-speech iden-
tification to this hybrid script. They proposed that concentrating on these linguistic
shifts might offer insightful information about sentiment analysis. The authors de-
veloped a Marathi Wordnet in Python to overcome these issues and made it available
as an open-source project. They also discussed the necessity to establish a separate
Marathi SentiWordNet (MSWN) and enhance the Hindi SentiWordNet (HSWN) by
including more slang words for sentiment analysis.

The authors of our second-last research paper in mixed language category focus on
building a corpus specifically intended for analyzing sentiment in code-mixed Tamil-
English text [18]. The authors were aware of the importance of code-mixed data in
sentiment analysis research. So, they offered valuable resources to study sentiment
analysis in code-mixed data, especially involving the language pair Tamil-English.
The dataset was collected from movie trailers and the sentiments in the text was
annotated and several categories were created based on the sentiments. They were
positive, negative, neutral, mixed, or other languages. The dataset was not balanced.
There were more positive sentiments. The writers then experimented with several
techniques to analyze the sentiments in the text. They employed techniques like sup-
port vector machines (SVM), deep learning, decision trees, logistic regression, and
random forest classifiers. They calculated precision, recall, and F-score to assess the
effectiveness of these techniques. These indicators show how well the techniques can
foretell the sentiments in the text. Like the previous papers, the methods had diffi-
culty in accessing sentiments in code-mixed or hybrid script. In comparison to SVM
and deep learning techniques, the performance of logistic regression, random forest
classifiers, and decision trees was somewhat better. This was due to the fact that
the data was unique which made it difficult for the models to predict the sentiments.

As one of the latest research done on sentiment analysis of code-switched data,
our last article uses the terms code-mixed and code-switched interchangeably [20].
The authors worked on four hybrid language pairs. They are Spanglish (Spanish-
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English), Hinglish (Hindi-English), Tanglish (Tamil-English) and Malayalam-English.
From our previous research papers, we are aware of the fact that traditional sen-
timent analysis techniques often call for a labeled dataset in which each text is
assigned a sentiment (positive, negative, or neutral) that corresponds to it . We also
saw the implementation of unsupervised learning in our prior papers. The authors in
this particular paper also chose to carry out an unsupervised self-training approach
in their research. The researchers gathered a dataset of tweets in various code-mixed
languages to start their study. They assigned the labels HIN (Hindi), ENG (En-
glish), or 0 (symbol or special character) to each word in the dataset. In addition,
they established a concept known as the Token Ratio. For instance, if we consider
the Hinglish dataset, Token Ratio would indicate how much more Hindi is used in a
statement than English. They trained the model using the code-mixed dataset they
gathered using their unsupervised self-training approach. The algorithm used data
from each training cycle to make predictions on fresh, unlabeled texts. The model
supplied temporary labels using these predictions. It subsequently gained knowl-
edge from the newly labeled data, which included both the authentically labeled
sentences and the pseudo-labels. The model learned from its own predictions as the
process was performed numerous times, improving its comprehension of code-mixed
data. When compared to models that were trained using human annotations (su-
pervised models), the researchers found that their unsupervised model performed
competitively. This was a huge success because it eliminated the need for costly and
time-consuming human labeling.

In the foregoing analysis, we have discussed the nature of hate speech, particularly
sexism, and its impact in society. We analyzed various methods to detect it in
the context of social media. Likewise, we have discussed the previous studies done
on code-mixed and code-switched languages. We talked about how the authors of
each paper collected their data and the models they used. Different models were
compared in terms of accuracy, precision etc. We also discussed the difficulties the
researchers faced in conducting their research and what improvements need to be
made in the future. Overall, the subject is vast and we could not discuss all aspects
of it. However, we believe that further research is needed on the subject in the near
future.
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Chapter 3

Dataset Description

3.1 Collection
We observed the comment sections of a lot of different Youtube videos and Facebook
public comment sections. For collection of Facebook comments, we used the help of
CommentExp, which is a public API, to collect our public Facebook comments. Our
main objective was to identify sexist content in code-mixed and code-switched data.
So, we only chose the Youtube videos and public Facebook content that contained
a significant amount of comments catering to our interest. We collected about 7k
comments in total. Our dataset did not only just contain code-mixed and code-
switched comments. It also had comments solely in English or Bangla.

We believe our dataset is special due to several reasons. First of all, it had linguistic
complexity due to its code-mixed and code-switched nature. People who commented
were particularly bilingual speakers, fluent in both Bangla and English. Secondly,
our dataset was robust since people from diverse social and cultural backgrounds
commented. So, the comments covered a wide range of topics and contexts. Lastly,
the dataset covered different types of sexist expressions, ranging from subtle to overt
sexist remarks. This ensured the analysis was done on a broad range of sexism.

3.2 Category Construction
Kirk et al. (2023) divides sexist content into four conceptually and analytically dis-
tinct categories [22]. We used the same categories and definitions to annotate our
dataset. However, we added two extra rows to identify the non-sexist and solely
English comments. The categories and definitions are highlighted in a table. We
provided real code-mixed and code-switched comments from online communities as
examples. Figure 3.2.1 illustrates the table.

Content warning: Please view the examples with caution. These are real comments
from out dataset. These examples might cause discomfort to some.
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Table 3.1: Different categories of sexism and their corresponding definitions, exam-
ples, and values.

3.3 Annotation
Our team of dedicated three members annotated the whole dataset with the help of
an expert. Before beginning the annotation, the members received detailed guide-
lines and thorough training. Various case studies were used as examples to make
the amateur annotators get familiar with the whole process. The team carried out
weekly meetings with the expert annotator in order to discuss challenging cases and
refine their understanding and approach to annotation. This rigorous and collabo-
rative effort ensured that our dataset was of superior standard with high accuracy.

A three step process was carried out to annotate the whole dataset. Firstly, the
amateur annotators were divided into pairs for different batches of the comments.
Let’s denote the members as N, F and S for simplicity. The first 500 comments were
annotated by N and F separately, then by N and S for the next 500, and finally by F
and S for another 500. The subsequent 500 was annotated by N and F again and so
on. The pairs covered the whole dataset following this technique. The annotators
assigned to a particular batch worked separately. For example, if N and F were
assigned a batch of 500 comments, N made sure that she did not let F know which
values she assigned for the comments. F did the same thing. This was done to
ensure a variety of perspectives and to minimize biases on decision-making as much
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as possible.

Secondly, the members held regular meetings to check their annotations. If there
was any disagreement between the members involved with a particular batch, the
third member, who was not part of the pair for that batch, acted as a mediator. An
example of this is, if N and F disagreed on a particular comment, S would decide
which value is most appropriate. In this way, the third member would bring a new
outlook to the situation and resolve the dispute between the rest of the members.

Thirdly, if the former process could not produce a consensus for ambiguous cases,
the amateur annotators would seek help from the expert. The expert annotator
played a crucial role in ensuring that our dataset was accurate and reliable. Overall,
the whole meticulous process created a comprehensive dataset for the detection of
sexist remarks in online platforms.

3.4 Statistics
Our dataset contains about 7k comments in total. Fig 3.2 shows our data distribu-
tion. We have almost 1.9k comments which are solely English. Our main objective
was to remove these comments. These comments were not Bangla nor code-mixed
or code-switched. Therefore we removed it when we cleaned our data for several
reasons. For instance, our model BanglaBERT was designed specifically for the
Bangla Language. In order for our model to work properly, we wanted to confuse
it as little as possible with another completely different language. We hence felt
purely English language would not add significant value to our dataset. Also, we
believe that training large models requires computational resources and we wanted
to allocate our resources as effectively as possible by focusing on our ultimate goal.
Besides that, there are lots of models for purely English Language but little research
has been done on Bangla language nuances. So we wanted to focus on Bangla and
its variants. We have above 5k comments which are code-mixed and code-switched.
Comments which are entirely Bangla have also been given the category of code-
mixed and code-switched.
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Figure 3.1: Comparison of code-mixed and code-switched vs. English data

Fig 3.3 illustrates the total count of our six categories. From the table it can
be seen that our dataset contained about 4k comments from the code-mixed and
code-switched category which were non-sexist. The four sexist types are also given
subsequently which include 1500 comments in total. We also found 1915 solely En-
glish comments in our diverse dataset.

Table 3.2: Distribution of showing number of occurrences of different label

Figure 3.4 illustrates only the sexist categories in a bar chart respectively. There
are four sexist categories we used to annotate our dataset which are threats with
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the intention of harming, derogation and so on.

Figure 3.2: Comparison of different types of sexism from the dataset

Figure 3.4.4 gives us a visualization of our word cloud. It highlights the most used
words in our sexist corpus. For instance, the words “khanki” and “magi” which
are gendered slangs in the Bangla language have been been casually used numerous
times in our dataset.
Content warning: Please be aware that some of the words might cause discomfort.

Figure 3.3: Word Cloud of sexist words
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Chapter 4

Data Preprocessing

4.1 Data Cleaning
The custom annotated dataset containing nearly 7k comments is loaded using the
pandas library. To avoid errors of chosen NLP model we cleaned our dataset which
contains steps-

Handling Missing Values:
We search for columns that contain NaN value, and replace it with empty strings
to avoid error and data bias.

Removing Duplicates:
We remove duplicate columns to avoid data bias in training and to increase accuracy
of the model.

Removing unwanted sections:
To increase accuracy we remove characters that don’t add value to the meaning of
comments. So we remove URLs, html tags, hashtags, mentions and digits using
regular expressions. And we remove emojis and replace it with empty strings by
utilizing re modules’ regex patterns.
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4.2 Data Preprocessing
For ensuring quality full training of our chosen model we preprocess data to enhance
the quality of our data and visualize and analyze following below steps-

Removing Punctuation: To remove punctuation from the English language we use
nltk library. For Bangla language we take a list of punctuations and remove it from
the text data.

Removing Stop Words: We use nltk library to access English and Bangla stop-words.
Then we remove it from the text data column.

Translation: Some models are pre trained to handle monolingual data and some
are trained to handle multiple languages. So, to increase accuracy of model we do
translation on code-mixed and code-switched data to convert to Bangla language.
We use Googletrans library version 4.0.0-rc1 to access Google Translate API. Then
we identify the columns that are code switched or code mixed to convert them to
Bangla text by translating.

Removing empty columns: Removing stop words, emoji, urls and mentions might
create empty rows in the dataset. So to remove errors in training we remove any
empty rows.

Handling Multi-label: Our dataset was annotated in a way that it is possible for each
data row to have multiple labels. Rather than handling it as multi-class meaning
creating a new category for multiple labels, we want to work with multi labels. So,
we extract multiple labels from each row and count it towards the existing category.

4.3 Visualization
We want to visually analyze our data to get a better understanding of the custom
annotated dataset. So we plot graphs to show distribution of labels and their im-
plications.

Since we want to separately deal with binary classification for sexist versus non sex-
ist data and multi label classification for our defined labels in dataset description.
So we define and label the data where- label-0: Non - sexist, label-1: Threats, plans
to harm, label-2: Derogation, label-3: Animosity, label-4: Prejudiced Discussion,
label-9: English. Then we use scikit-learn to binarize our text data. For classifica-
tion we create binary matrix representation of our original data. So we create a bar
Chart for Labels 1 to 4 for multi-labels and for non-sexist data. And we visualize
bar charts for English vs code-mixed and code switched data.

To get a better understanding of our dataset and analyze linguistic patterns we
implement wordcloud on data before doing translation, to see frequently occurring
Bangla and English words in sexist data. We utilize Bangla font ‘kalpurush.ttf’
to visualize Bangla words in the word cloud properly. We make use of wordcloud
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library to represent frequent words from both languages.
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Chapter 5

Models, Experiment and Results

5.1 Models Introduction
Our dataset consists of code mixed and code switched sexist data. So to deeply
analyze we first work with binary classification to identify if the text is sexist or not.
And in multi label classification, we separately detect what category of sexism the
text falls under. For this we used multiple NLP and deeplearning models. which
are-

5.1.1 BanglaBERT
BanglaBERT, pre-trained on a vast Bangla data corpus, enhances its understanding
of Bengali language nuances, syntax, semantics, and colloquial expressions. This
specialization is crucial when dealing with Bangla code-mixed and code-switched
data. The BanglaBERT model builds up on the foundational ELECTRA frame-
work focusing on efficiency and effectiveness in order to better suit the intricacies
of the Bangla language. It includes a 12-layer Transformer encoder structure. Each
encoder layer is equipped with 768 embedding and hidden size units, 12 attention
heads for complex pattern recognition, and a larger feed-forward network with a size
of 3072. The unique pretraining objective of BanglaBERT is Replaced Token De-
tection(RTD) that sets it apart from BERT’s Masked Language Modeling (MLM).
Training parameters are carefully chosen to balance computational resources with
performance. Using a v3-8 TPU instance, the model is trained over 2.5 million steps
with a batch size of 256. Adam optimizer is used to handle the optimization with a
learning rate of 2e-4 which includes a linear warmup over the first 10k steps. These
parameters are selected to ensure that the model learns effectively while manag-
ing computational load. Basically, BanglaBERT represents a modified approach in
developing language models for specific linguistic contexts, using an advanced ar-
chitecture to process and understand the Bangla language with high efficiency.[25]
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Figure 5.1: Architecture of BanglaBERT

5.1.2 BERT
The architecture of BanglaBERT is based on the ELECTRA model which is a vari-
ant of BERT. Basically, BanglaBERT is a version of the original BERT model which
is modified for the Bangla language. It is built on the transformer architecture which
is mentioned in the ”Attention is All You Need” paper [23]. BERT is a unique ar-
chitecture that uses attention mechanisms in order to comprehend the meaning of
a word in a sentence. It uses the encoder part of the Transformer and consists of a
stack of identical layers, each with a multi-head self-attention mechanism and a fully
connected feed-forward neural network.The Multi-Head Self-Attention component
helps understand word context by focusing on different input sequence positions.
BERT’s input representation uses WordPiece token embeddings, positional encod-
ings, and segment embeddings to differentiate between different sentences. Unlike
traditional language models, BERT considers all surrounding text, both left and
right of the word. It is trained on Masked Language Modeling (MLM) and Next Sen-
tence Prediction (NSP) to predict masked tokens and follow two sentences. BERT
can be enhanced with additional output layers for various NLP tasks. The BERT
architecture’s design effectively captures language nuances which enables advanced
performance in different Natural Language Processing tasks.

23



Figure 5.2: Architecture of BERT

5.1.3 Bi-LSTM
Bidirectional Long Short-Term Memory (BiLSTM) model is a kind of recurrent
neural network (RNN) architecture. This is designed to process sequential data
effectively by capturing dependencies in both forward and backward directions. Be-
cause of this bidirectional capability, this model is appropriate for tasks like text
classification specially where understanding the context from the entire sequence of
words is the most important part. This model in an extended version of the original
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LSTM. It consists of two separate LSTM networks, one to process input sequence
and one to perform backward LSTM. After the processing of the the entire sequence
is done by both LSTMs, the hidden states are concatenated at each time step. This
contributes in getting a comprehensive representation of each word that incorpo-
rates information from both directions by just combining the forward and backward
context. This allows Bi-LSTM to understand the full context of each word[26].

Figure 5.3: Architecture of Bi-LSTM

5.1.4 GRU
GRU model is a form of Recurrent Neural Network(RNN) which is very effective at
handling sequence modeling tasks. It is designed to handle the vanishing gradient
problem and has the ability to remember long-term dependencies in the data. GRU
model is based on two gates - reset and update gates. The reset gate calculates and
decides how much of the past it needs to forget. On the other hand, the update gate
determines how much of the past knowledge gathered from earlier processes needs
to be sent along.[24]
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Figure 5.4: Architecture of GRU

5.1.5 MuRIL
MuRIL (Multilingual Representations for Indian Languages) is a pre-trained BERT
model which has been trained on 17 Indian Languages including Bangla. The model
has also been trained on the transliterated counterparts respectively. This means
the model not only learns from the traditional scripts but versions of texts that have
been converted into a common script. The model was pre-trained using data from
Wikipedia, Common Crawl, PMINDIA and Dakshina respectively. We specifically
used the MuRIL base because it’s smaller in size needing less computational re-
sources and therefore, it’s faster to run. Even though MuRIL large might not meet
the performance of its variant but it’s suitable in our case because we wanted lower
resource consumption and good performance speed. The MuRIL is trained on two
types of data parallelly. One is the transliterated data and another is the translated
data[27].
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5.1.6 BanglishBERT
Banglishbert is a pretrained model that is developed by a NLP research group at
BUET. This model was created for Bangla and “Banglish” text, which is very use-
ful for handling the instances of code-mixed and code-switched content involving
Bangla and English. Banglishbert has multiple layers of Transformer blocks where
each block contains a multi-head self-attention mechanism and a fully connected
feed forward network which are known as sublayers of the block. For Banglishbert,
the tokenizer is trained on a mixed corpus of Bangla and English text, which helps it
to handle the instances of Bangla mixed with the structure of English. The unique
pretraining objective of BanglishBERT is Replaced Token Detection(RTD) that sets
it apart from BERT’s Masked Language Modeling (MLM)[28].
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5.2 Binary Classification
Avoid rows: For binary classification, we consider sexist and no-sexist data which
includes rows labeled 0, 1, 2, 3 and 4. So we drop rows labeled 9 which hold data
for english text and create objects for binary classification.

Split data: We use a cross validation process to split our dataset to avoid any kind
of overfitting. For this we split the dataset so that the train set size is 80 percent
and testset size is 20 percent of the main dataset.

Tokenize: To properly format our data to input in our BanglaBERT model, we to-
kenize our training and testing sets using pre trained ”csebuetnlp/banglabert” auto
tokenizer. We load the banglaBERT tokenizer and sequence classification model
using the Hugging Face Transformers library. We create a custom dataset class
“BanglaDataset“ to fit our raw dataset with pytorch data loader to create dataset
objects.

Training and Evaluating: We use the banglabert model to train on our dataset. We
set custom training arguments and change these training arguments adapting with
the models performance on the test dataset. We evaluate our model using accuracy,
f1 score, precision and recall and loss. We visualize it by portraying it on training
loss and validation loss graph over epochs and confusion matrix.

Figure 5.5: Training loss of Binary classification over epochs
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5.3 Multi-label Classification

5.3.1 BERT+Bi-LSTM
Architecture

We start our experimentation with Bidirectional Encoder Representations from
Transformers (BERT). As bert is known for its context capture ability, so to get
the best result for multilabel text classification, we utilize contextual comprehen-
sion of BERT and the sequence modeling capabilities of BiLSTM.

For this algorithm, we initialized with Bert pre-trained model for better context and
tokenized input, Then, used Bertotkenizer for our corpus, Bert’s embedding layer
maps input tokens to dense vectors which lays the foundation for future process.
BERT’s multi-layered in this case 12 layered bidirectional transformers are used to
capture token relationships within a sequence. So the pooled output of bert cor-
responding to the [CLS] token, captures the entire sequence’s contextual essence.
The pooling layer aggregates bert embeddings into a fixed-size representation of the
input to get proper BERT embeddings for this case. After getting the pooled output
its passed through a dropout layer to mitigate over-fitting and to get the regularized
pooled output.

We use BiLSTM to capture dependencies from both past and future contexts within
the sequence, enhancing the model’s ability to understand the full context. So,
the dropout output is then fitted to the BiLSTM input requirements and passed
through the BiLSTM layer. From this we get the output that comprises concen-
trated forward and backward hidden states, which means it contains the sequence’s
full context. Then its passed through a linear layer so that logits for each label can
be computed, And we get the values of loss based on the logits and true labels for
training and future improvement and evaluation. By doing so, we made our model
well-equipped to handle the complexities of multi-label text classification.
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Figure 5.6: BERT + LSTM Architecture

Performance Evaluation

Performance Evaluation: This model’s accuracy over all epochs averaged at 0.822,
with an F1-score of 0.817, precision of 0.826, and recall of 0.808. This gives an
insight into how well this model if performing while classifying multi label classifi-
cation.
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Figure 5.7: Training and validation Loss Graph of BERT + LSTM

This model undergoes an iterative optimization process and the parameters are
adjusted accordingly to minimize loss function. The training loss here gradually
decreases and drops as low as 0.011. Meanwhile validation loss shows some fluctua-
tion and drops as low as 0.22. This proves that the model is successfully capturing
underlying patterns and features in the codemixed and code switched text. In con-
clusion it is generalizing effectively, and making accurate predictions for multi-label
text classification tasks.
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5.3.2 BERT
Architecture

Experimenting with bert+lstm gave us impressive results, which inspired us to fine-
tune BERT with custom parameters.

As established, BERT is a pre-trained model that captures context from little hints
even on a small corpus.Basing on this, for this algorithm we recreated the same to-
kenization and process of getting the embeddings from BERT as our BERT+LSTM
model. We apply dropout on this to avoid overfitting. Linear layer transforms these
BETT outputs into classification format and then we calculate loss based on model
prediction and true labels. And while training we keep updating model parameters
based on it. Here we implement a function to calculate samples and inversely cal-
culate weights for customizing loss computation for multi-label classification.

Performance Evaluation

Fine tuned bert with custom parameters also give noticeable results. Where accu-
racy is 0.833 and f1 score is 0.828 with precision 0.837 and recall 0.819. Observing
the validation graph we can see that training loss gradually decreases a lot and
drops to 0.017, Whereas, the validation loss is fluctuating but still drops to 0.19 at
some point. These trends, coupled with high accuracy and f1 gives the idea that
the model is reliable and sustainable real-world applications where accurate classi-
fication of text data across multiple labels is paramount.

Figure 5.8: Training and validation Loss Graph of BERT
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5.3.3 MuRIL+Bi-LSTM
Architecture

Our dataset contains text comments and their corresponding labels in a CSV format.
The code-mixed and code-switched in our original dataset were converted to entirely
Bangla to make it easier for the model to understand context better since MuRIL
is based on Bert Model which was pre-trained on 17 Indian languages including
Bengali. Hence, it’s logical to convert the comments to Bengali. The pre-processed
text data was converted to tokens using MuRIL’s tokenizer. The tokens were fur-
ther converted to embeddings using the MuRIL model. The main reason for doing
this was due to the fact that the MuRIL model is able to capture the contextual
relationships within text. The dataset was split into train, validation and test sets
respectively. We tried to implement K-fold cross validation for splitting but the
results were not satisfactory. This might be for several reasons. For instance, our
dataset is imbalanced which means all classes might not be properly represented
in each fold. Eventually, the splitted data was fed to an LSTM with an attention
mechanism to capture the important parts of the text. Weights were calculated to
handle class imbalance. A higher weight was given to the class that appeared less
frequently in the dataset and vice versa. This was done by inverting the frequency
of the class. Early stopping was implemented to ensure no overfitting took place.
Also, different combinations of parameters were tested through random search and
the parameters with the best results were selected eventually.

Figure 5.9: Flowchart of MuRIL + Bi-LSTM methodology

Performance Evaluation

The MuRIL showed noticeable results with 0.713 accuracy, 0.788 precision, 0.757
recall and f1 score of f1 score of 0.772. The continuous decrease in training loss
suggests that the model is effectively learning. The validation loss also decreases
with the training loss which is a good sign. Both the graphs fluctuate a bit. The
validation loss graph starts to increase after 35 epochs and it’s stopped by early
stopping ensuring no over-fitting occurs.
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Figure 5.10: Train and Validation Loss Graph of MuRIL + Bi-LSTM
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5.3.4 BanglishBERT+GRU
Architecture

For this integrated model, at first, we have done some preprocessing for the dataset.
We did not translate the comments as we are using Banglishbert which is compatible
with code-mixed and code switched data. Then the values were converted into a
list of integers to capture the categorical nature of our labels which were one-hot
encoded which converts categorical integers into binary matrices.

To prepare the data for model input, we utilized a tokenizer from the pretrained
”csebuetnlp/banglishbert”. This tokenizer is developed to handle Banglish text (a
mixture of Bengali and English), making it ideal for our dataset. The tokenizer is
used to convert the text data into tokens, which are essential for understanding and
capturing the linguistic patterns within the text. We also defined a dataset class to
manage the tokenized data and corresponding labels.

After that, we implemented a GRU based classifier layer on top of the Banglishbert
model’s output. This setup was designed to leverage both the contextual embedding
capabilities of BanglishBERT and the sequence modeling prowess of GRU, providing
a robust framework for text classification. The GRU is supplemented by a dropout
layer to prevent overfitting and a linear layer that maps the GRU’s output to our
label space. Aditionally, to manage class imbalance, weights were dynamically ad-
justed during training. Common classes received lower weights and less frequent
classes were highly weighted. Finally, the model was evaluated and tested with dif-
ferent matrices.

Figure 5.11: BanglishBERT + GRU Architecture

Performance Evaluation

After training the model, we have got 79.15% of the accuracy, 79.10% of F1 score,
a precision of 80.58%, and 77.67% of recall.
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Figure 5.12: BanglishBERT + GRU Train and Validation Loss Graph

Placing the training and validation loss for the Banglishbert + GRU model in a
graph, we can observe that both training and validation loss is decreasing over each
epoch. As the number of epochs increases, the training loss decreases. 10 epochs
are run on the model and after around 8 epochs, the training loss stabilizes.For
validation loss, it shows an initial decrease but after epoch 4, it rises sharply. But
after this spike, it steadily decreases through the remaining epochs. The graph
indicates that the model is learning and generalizing well from the training data to
the unseen validation data.
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Chapter 6

Result Comparative Study

6.1 Binary classification
By evaluating Banglabert model, we see that our binary classification model provides
a notable accuracy of 90.79%. And a loss score of 0.284 shows that the model is
performing efficiently minimizing errors. Furthermore, the F1 score of 71.65% shows
good balance of the model with Precision and recall scores of 77.18% and 66.86%.

6.2 Multi-label classification

Model Names Accuracy (%) F1 Score(%) Precision(%) Recall(%)
BERT 83.3795 82.8185 83.7073 81.9484
BERT + Bi-LSTM 82.2022 81.6981 82.6336 80.7836
MuRIL + Bi-LSTM 71.3147 77.2357 78.8381 75.6972
BanglishBERT + GRU 79.1545 79.0984 80.5846 77.6660

Table 6.2: Evaluation Metrics for Multi-label Classifications of different models

From the above table, we can analyse that BERT model achieves the highest ac-
curacy, making it the most overall correct model in prediction across all instances.
The MuRIL + Bi-LSTM model lags significantly in accuracy, suggesting it might
be less effective for the task or dataset used.

While comparing the precision, BERT offers the best precision whereas, MuRIL +
Bi-LSTM shows the lowest precision among the four models. For recall, the BERT
model leads with the highest recall whereas, MuRIL + Bi-LSTM has recall percent-
age which is the lowest.

Now, the F1 score, balancing the precision and recall, is highest for the BERT model
which indicates that it manages a balanced trade-off between precision and recall
most effectively. The MuRIL + Bi-LSTM model that has the lowest F1 score which
suggests a less optimal balance between precision and recall.

Seeing the overall result, the BERT model outperforms the other models in almost
all matrics, suggesting it is the most balanced and effective model to detect sexism
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from code-mixed and code-switched comments. BERT + Bi-LSTM follows closely
but still lags slightly behind the standalone BERT in every metric. The MuRIL +
Bi-LSTM model shows notable weakness across all metrics, which might indicate
that this particular architecture is not well suited to the dataset or task. The
BanglishBERT + GRU model presents itself as a moderately effective model, offering
decent performance across the board but it does not excel in any particular metric
compared to the BERT models. We have also trained our dataset on other models
but they do not show a satisfactory outcome.
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Chapter 7

Limitations

Imbalanced Dataset
Our dataset had fewer occurrences of class 1 and 4. This means our dataset wasn’t
fully balanced. We did not oversample our dataset because we wanted to have an
authentic dataset that captured real situations on online platforms.

Quality of Translation
For the majority of our models, we translated our code-mixed and code-switched
comments into bangla so that our models understand the data better. For transla-
tion, we used Googletrans which is a free library that implements Google Translate
API. Issues arised with slang, idiomatic expressions, etc. Therefore, the translation
had its deficiency which might have introduced noise and errors in our dataset which
eventually affected our model training.

Content warning: Please view the examples with caution. These are real comments
from out dataset. These examples might cause discomfort to some.

Table 7.1: Distinction between Original and Translated Comments

Availability of Resource
Most pre-trained models and NLP tools are developed for major languages and do
not support occurrences with code-mixed and code-switched characteristics. This
lack of resources hindered the development of an effective solution.

Limitation in Data Diversity
Even though we collected our dataset from Social Media like Youtube and Facebook
which made our dataset somewhat robust, we still might have missed some nuances
of code-mixed and code-switched data. Our dataset might not have captured every
type of variability possible and this might have affected our results. Therefore, fur-
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ther improvement is obviously required.

Continual Data Update Necessity
Languages are constantly evolving and so is every social media platform. Our dataset
is not dynamic sadly. In the near future, if new data arises, our dataset might lose
its validity and can be misleading. Slangs, idioms, spellings and various other nu-
ances in languages are changing day by day. New abbreviations might be added.
Our dataset will not have these variabilities and might be obsolete in the future.

Difficulty in Capturing Language Subtlety
Our models might have suffered from language subtlety. For instance, it might
have mixed sarcastic comments with serious ones. Distinguishing between these two
types of comments is indeed very challenging. Although a difficult task, accurately
distinguishing between these two types of nuances would indeed bring better results.
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Chapter 8

Future Work

In the field of Natural language Processing and deep learning, there is significant
potential to enhance the performance of detecting sexism in languages including
codemixed and code switched cases. So we aim to build up on our existing work in
the future. Such areas are-

Dataset Diversity: Our model is currently utilized on English, Bangla, codemixed
and code switched languages. In the future, we want to expand our dataset in terms
of language variety and will experiment with models to get the best possible perfor-
mance on other languages as well.

Data collection method: Our existing dataset is collected from scratch, custom made
and was annotated over a long period of time. With this baseline work we would
like to utilize methods in the future so that we can collect data dynamically. So
that current and reflective contemporary language trends are fed into the models.
So that our models can keep up with the evolving languages.

Review System: In the future we would like to implement a real-world application.
This will allow us to evaluate our model in social media and adapt the model. A
review or feedback system can be implemented here so that users can report false
positive and negatives.This will give opportunity for continuous improvement of the
detection model thus enhancing its performance.

Finally, more fine tuning and experimentation will be done using various deep learn-
ing models to get better performance. Our goal is not only to detect overt instances
of sexism but also to improve the model’s capability to identify sarcastic or subtly
expressed sexist remarks with higher accuracy
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Chapter 9

Conclusion

The detection of sexist code-mixed and code-switched data is a crucial task that
plays a significant role in combating online discrimination in present days. Our
thesis has explored the challenges associated with identifying sexism in multilingual
platforms like Youtube and Facebook. Since we are able to detect sexism effectively,
in the near future, our research might help to mitigate the effects of these sexist
comments from online platforms. Sexist comments targeted to a particular person
or group are always detrimental for the mental health of the victims. Every person
has different sensitivity levels. If sexist comments crosses a certain boundary, some
victims might take drastic measures due to not being able to take the trauma. They
might commit suicide. So, it’s extremely crucial to remove these comments from
online platforms because we want a peaceful world where people are cordial with each
other in social media platforms. We believe our authentic dataset will help future
researchers to further their research in this intriguing field of study. We explored
several models and gave the results of the models that performed best. But there is
always scope for improvement. Improving the performance of the models is our near
future goal. We faced several limitations. We hope to mitigate these limitations in
the future. We hope to further study and improve our research. Maybe we will
be able to achieve results in the 90th percentile in the future. Even though our
aims are novel, we have a strong desire to accomplish it. We will keep exploring
the existing literature and research in this field to identify any nuances we might
have missed. Overall, we believe our research will provide valuable insights into the
various approaches and methodologies employed for sexism detection in code-mixed
and code-switched data effectively for future researchers.
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