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Abstract

In this thesis, for classification of sleep stages, we use deep learning techniques with
the help of data from fMRI and EEG. The ConvLSTM models are applied for the
fMRI data. The data for the EEG is worked on with the LSTM and Bidirectional
LSTM. This can hence be seen as a work of optimizing the accuracy, the precision,
and the generalizability of all these models with one another. The baselines for all
these different types of data are built up using initial models. The LSTM baseline
model has given an accuracy of 78.69% on testing for sleep staging with W (Wake),
NREM-1, NREM-2, and NREM-3 using EEG data, which is highly effective with
such data resolution in time. Meanwhile, the Bidirectional LSTM model performs
better preprocessing for the temporal aspect and hence yields, on average, 80.60%
accuracy for general classification on the same stages. This would make it a model
that can capture the dynamic nature of the EEG data across these particular stages.
In contrast, processed fMRI data starts with a 76.82% testing accuracy, while per-
formance is readjusted based on the feature extraction spatial-temporal settings
adopted in their ConvLSTM configurations to classify sleep stages W, NREM-1,
NREM-2, and NREM-3, with special attention to the role of model configuration.
These results show that functionalities of tailored deep learning play the most basic
role in the high complexity domain of sleep stage classification. These findings are
prerequisite for the future development of this area.

Keywords: Deep learning, fMRI Data, EEG Data, Sleep Stage Detection, Con-
vLSTM Model, LSTM Model, Bidirectional LSTM Model, Comparative Analysis,
Model Architectures.
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Chapter 1

Introduction

1.1 Background and Significance

Sleep, as a fundamental physiological process, is conspicuously involved in the course
of development of our general condition and cognitive activity. This complex phe-
nomenon embraces the following stages of sleep, which are accompanied by the
typical waves of electrical activity of the brain. Proper classification and monitoring
of various sleep stages have a crucial role in understanding the pathology of sleep for
proper clinical diagnoses and personalized treatment strategies. This becomes all
the more relevant in cases involving patients with coma. This would help everybody
to understand the neurological stage and ability to recuperate. Besides, an advance-
ment in sleep stage monitoring among such comatose persons has unraveled brain
activity and sensitivity, previously unrealized, thereby assisting attending practi-
tioners with altering treatment regimens and, in effect, forecasts about the patient.
Conventional or manual scoring is still the gold standard when classifying the sleep
stages and makes the entire exercise laborious besides being prone to interscorer
variability. Moreover, these conventional approaches generally lack resolution to
permit a detailed examination of sleep dynamics.

Sleep stages may be categorized at different levels. On a basic level, normal sleep
is categorized into two major phases: the Rapid Eye Movement and the non-REM
phase, which alternate in cycles throughout the night. On a higher level, it is divided
into three phases: wakefulness, NREM, and REM. On the policy of Rechtschaffen
and Kales R&K [1] and the American Academy of Sleep Medicine AASM [2], further
stages of NREM sleep have been divided. Clinically, sleep is scored on polysomno-
graphic data, in which signals from electroencephalograms - EEG - are contained.
AASM guidelines have divided NREM sleep into three stages: N1 and N2, which
means light sleep, and N3 - the so-called deep sleep, where greater muscle relaxation
is involved. REM sleep-or, as it is also called, paradoxical sleep-is characterized by
intense dreams, rapid eye movements, and muscular atony [2].

1.2 The Emergence of Advanced Neuroimaging

Recent advances in neuroimaging techniques have entirely changed the field of sleep
studies and the relationship between sleep and activity in the brain. In this regard,
two techniques, electroencephalogram (EEG) and functional magnetic resonance
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imaging (fMRI), are very useful to study the dynamic activity of the sleeping brain.
These two techniques capture, respectively, high-temporal-resolution data about
electric activity on the brain and high-spatial-resolution images of blood flow changes
in the brain. The promise in that integration for a more complete understanding of
sleep dynamics.

1.3 The Role of Deep Learning

As an area of artificial intelligence, deep learning has become popular because of
its ability to extradite complex patterns and traits with efficient performance in
data that are equally complicated [9]. In the field of sleep study, it is individually
applicable in improving the classification of sleep stages. Precisely, deep learning
algorithms will be better suited for integrating EEG and fMRI since they have the
ability to automatically learn the representations from multi-modal data. Such an
integration will create a more complete approach to classifying the different stages
of sleep, one that should be greatly more accurate in its diagnosis.

1.4 The Research Objective

This thesis is, therefore, set to keep tidying answers to several questions in the scope
of neuroimaging data-based sleep stage detection. Each of these questions forms
part of the problem of dimensional variation in the use of deep learning techniques
in.asarraying at improved accuracy and enhanced efficiency for the classification of
sleep stages. Herein, contributions by this work will bring about wholesome anal-
ysis of potential along with the limitations for using fMRI data and EEG data in
combination as well as individually for such sleep stage detection. Work conducted
for this study addresses the following specific aims:

Introduction to Sleep Stage Detection: The research primarily focuses on in-
ducing understanding and application in the utilization of deep learning techniques
for the detection of sleep stages using functional magnetic resonance imaging and
electroencephalography. Sleep is among the most essential aspects of human health
since it has many effects on physiological processes [3]. Detection of the sleep stages
is very important for the diagnosis of sleep disorders, optimization of therapeutic
interventions, and research in neuroscientific fields. Although traditional approaches
for sleep stage analysis exist, these techniques are manual and time-consuming, with
one incidence to variability. Given this, the present study will use the strong power
of deep learning in automatically and accurately detecting sleep stages as a strong,
scalable, and accurate alternative.

Deep Learning for Enhanced Precision: As an extension of machine learn-
ing, deep learning has enjoyed encouraging success in varied fields because of its
excellent capability in modeling complex patterns in hierarchical feature extraction.
This research tries to seek a proper optimization of the deep learning model, specif-
ically for CNNs and RNNs, for sleep stage classification between fMRI and EEG
data. This will hopefully relieve all the limitations that sleep stage detection has
presently been characterized by in terms of variability between raters and too much
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manual intervention. The models devised in this study shall focus on differentiation
in use of minute features on fMRI and EEG signals to ensure that there is precision
and reliability in terms of classifying the sleep stage.

Comparative Analysis of fMRI and EEG: This comparison within the context
of sleep stage detection forms a significant portion of this research work. Obviously,
both modalities provide varying insights: EEG provides high temporal resolution
and therefore catches the fast-changing electrical activity, whereas fMRI provides
high spatial resolution and hence localized brain function. This is the major goal
of the present study-to compare which modality or combination provides better
performance in automatic sleep stage classification following image processing via
deep-learning algorithms [4]. A comparison between fMRI and EEG modalities in
relation to performance could help to highlight the advantages or disadvantages of
each modality and provide information for further research and clinical practices in
sleep medicine.

Application and Implications: Ultimately, the purpose of this paper is to present
a framework to detect sleep stages robust enough to be incorporated into a clinical
decision-making system in order to support diagnosing and treating sleep disorders-
that is, accurate and efficient classification of the sleep stage will result in better
patient outcomes with more accurate and timely interventions. Further, the tech-
niques developed during this course of study may well be more readily transferred
to other areas of neuroimaging and electrophysiology than to sleep medicine. The
integration of Deep learning with fMRI and EEG is an important step given in
biomedical engineering towards a whole new line of possibility into the auto purging
and interpretive Abdul healing of complex physiologic signals.
In this vein, the present research will act as a bridge to associate highly developed
deep learning and sleep medicine in practical applications. That is, a common anal-
ysis of all prevailing strategies will be performed to the best of our capabilities in
order to achieve optimal detection of sleep stages from both advanced fMRI and
EEG data. Resulting implications from this research study will propel not only the
scientific knowledge chain further into the domain of sleep but also open up new
avenues for state-of-the-art diagnostic tools that can revolutionize clinical practices.

1.5 Problem Statement

Sleep, in any case, is grossly important in maintaining the functions of the brain,
emotional well-being, and general health. Monitoring of the stages of sleep is, there-
fore, critical in the diagnosis of sleep disorders and also the dynamics of the brain
while asleep. This has classically been done using PSG, although it involves bulky
electrodes and may itself cause a disruption to the normal patterns of sleep, making it
unsuitable for long-term monitoring [8]. In recent years, promising non-invasive ap-
proaches for monitoring sleep architecture include electroencephalography, or EEG,
and functional magnetic resonance imaging, or fMRI. In this research, several im-
portant questions will be addressed.
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1.5.1 Challenges in Sleep Stage Detection

Despite the giant leaps taken so far by imaging technologies, the complex challenge
of sleep stage detection continues to climb very sharp challenges. Hence fMRI or
functional magnetic resonance imaging and EEG or electroencephalography data
analysis in this respect are landscapes of immense complexity and dynamics. Fore-
most among these challenges are the laborious procedures of noise reduction, artifact
identification and rectification, and intricate involvement of physiological variability
that is innate in neuroimaging data. Also, manual performance of sleep stage an-
notation is a labor-intensive, subjective procedure, prone to inter-rater variability
[5]. But seeds of hope come along with the introduction of automated techniques,
particularly those exploiting deep learning for their functioning. For sleep stage
classification, these methods are extremely promising and really about to change
the domain in a very efficient and accurate manner. Indeed, the automated meth-
ods based on deep learning techniques especially have great potential to make this
process efficient and fast by accurate classification of the sleep stages from the fMRI
and EEG signals [20]. As we further venture into the complex sleep stage detection
domain, such advanced technology integrations with novel methodologies will open
up new pathways to show us the way forward in better comprehension of sleep dis-
order management.

1.5.2 Unresolved Issues and Opportunities for Improvement

The application of deep learning models to the task of detecting sleep stages from
fMRI and EEG data is a whole spectrum of issues that, instead of being solved,
remain begging for perfection. Mainly, all of the existing methods are failing in
robustness, meaning that they are not able to sail through variations in the qual-
ity and characteristics attached to the data. Also, despite all their good work,
across different demographic profiles and clinical populations, generalizability is a
sore point and invites the need for models that would connote nuances inherent in
various cohorts [22]. Beyond this, there is a comparative analysis between fMRI
and EEG-based techniques for sleep stage detection. Despite the relative strengths
and weaknesses of both modalities being somewhat complementary, their compar-
ative effectiveness and application-utility oriented remain largely unexplored. It is
by addressing unresolved issues and exploiting the thereby arising opportunities for
improvement that the field will be moved forward in such a way that the more ro-
bust, multi-purpose or interpretable deep learning-based approaches to sleep stage
detection can be developed.
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Chapter 2

Literature Review

[14] They review comprehensively both unsupervised and supervised deep learn-
ing techniques in the analysis of rs-fMRI data. In this regard, they systematically
classify the machine learning techniques applied in rs-fMRI into three significant
unsupervised learning approaches that identify the principal patterns across the
spatial, temporal, or population dimensions. The paper also reviews computational
methods and rs-fMRI model representations for improving subject-level supervised
predictions. The present topical overview helps researchers in neuroscience and
computational neuroscience to identify a possible gap in existing methods devel-
oped using machine learning methodologies for rs-fMRI.[14].

Recently, the concept of ablation studies, borrowed from neuroscience, has been
adapted to ANNs. [15] investigated how ablation studies could be used for under-
standing the neuronal structure of bio-systems. They conducted ablation studies
on the VGG-19 network using the ImageNet dataset and also conducted ablation
experiments on a shallow MLP for the MNIST dataset. The results give selective
encoding of properties associated with local and also global data structures, the
adaptive resistance to structural perturbations, and increased robustness as a result
of redundancy. IN this way, while the VGG-19 network was found to sustain perfor-
mance with accuracy metrics at top 1 and top 5 accuracies, an MLP accomplished
an overall accuracy of 94.6% on the MNIST dataset. These findings help to capture
subtle contributions made by different network components towards specific classi-
fication tasks based on weight structures [15].

In [7], the authors proposed an automatic sleep stage classification method accord-
ing to the AASM criteria; they applied time frequency analysis and entropy pa-
rameters to EEG recordings obtained from sixteen patients. They applied three
time-frequency methods to obtain the features of the EEG signals: Choi-Williams
distribution, continuous wavelet transform and Hilbert-Huang Transform. Feature
extraction is done using Renyi’s entropy. Random forest classifiers have been used for
classification. Among the time-frequency distributions, Continuous Wavelet Trans-
form performed excellently with a precision of 0.83 and with a kappa value of 0.76.
Conclusion This study confirms time-frequency analysis along with entropy metrics
as effective tools in the characterization of EEG signals with high accuracy for data
extraction and classification purposes in sleep stage identification.
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[6] developed an automated scheme to aid sleep doctors in scoring sleep stages. They
proposed a new technique of pre-processing the data, the so named k-mean cluster-
ing based feature weighting, KMCFW, applied along with the k-nearest neighbors,
k-NN and decision tree classification algorithms for classification of the sleep stages
from EEG data. The features in the data set with four features of sleep phases
were feature weighted by applying a k-means clustering. A success rate of 55.88%
was obtained in k value 40 for the k-NN classifier, and that is only increased up to,
at the max, 82.15% using KMCFW. The relatedness between some of the recorded
sleep phases and the EEG frequency domain parameters was observed, and it thus
availed that if automated sleep stage classification is to be done online, then by
using KMCFW the efficiency of the created sleep/wake patterns could be improved
in a much better way.

According to [10] , automatized sleep scoring is an area of increasingly sore need
because, in sleep research and diagnosis of sleep disorders, the most time-consuming
part is visual analysis of sleep phases; it is a highly challenging task. The method
proposed in this study employs one-channel electroencephalogram recordings in
which sleep has been staged using TQWT and F flavour inverse Gaussian [NIG]
distribution as probability density function model for feature extraction and then
the features are extracted with the help of ANFIS. In this respect, AdaBoost is
used here for sleep stage categorization. Compared to the existing methods, this
one performs and outperforms them, even for the S1 and REM stages. It is going
to improve the efficiency of diagnosing and monitoring sleep and will work in con-
junction with wireless and wearable EEG devices [10].

[11] The authors proposed an innovative method for automated sleep scoring that
uses single-channel EEG. In that, EEG signal segments are decomposed using En-
semble Empirical Mode Decomposition (EEMD) and further boiled down into impor-
tant statistical moment-based features. They proposed the use of Random Under-
Sampling Boosting to perform the classification task of sleep stages, resulting in a
high classification rate of 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% under dif-
ferent sleep states using the database Sleep-EDF. Thus, this research is the first
to combine EEMD with RUSBoost, therefore showing superior performance in dif-
ferentiating sleep stages concerning S1 and REM. Depending on the findings, the
conclusion is that significant efficiency improvements can be realized when analyzing
big data for sleep studies [11].

[24] provide a great input to the diagnosis of sleep disorders by establishing a deep
learning model that classifies the sleep stages into raw PSG signals. They used
EEG and EOG data, whereby the authors have put forward an original 1D-CNN
with outstanding performance on several datasets concerning two to six classes of
sleep with a big rate of accuracy, especially at the problematic N1 stage, ranging
as high as 89.54-98.06%. While this approach has had a great deal of success, the
study argues that the loss of distinguishing N1 from N2 sleep and the compensation
for increased complexity due to Bi-LSTM layer fractions shed light on the fact that
more effective model architectures are in great demand. The present work takes one
step further the automation in classifying sleep stages yet lays the foundation for
making automatic diagnosis for sleep disorders more meaningful in the future [24].
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Although their application potential has increased due to recent advances in Arti-
ficial Neural Networks, a clear knowledge of their fundamental principles remains
lacking [21]. ANNs function very often as black boxes and the way information is
processed at the neuronal level remains hard to understand. Towards this end, one
of the techniques suggested by researchers for this problem is ablation techniques,
which involves sequentially deactivating elements of a network to understand their
different roles [21]. Such techniques give a network a boost in inference speed and
also in training and yield knowledge about how a network functions. One such way
to not only optimize ANN structures but to make them more interpretable and effi-
cient is through ablation. It makes it easier to create more transparent and efficient
AI systems and deepens our understanding of ANNs by revealing the functions of
individual neurons. In the paper, [21] focus on image classification using CNN on
CIFAR-10; the paper discusses the impact of ablation on performance and robust-
ness without giving an exact accuracy rate.

[27] make a key contribution towards the automation of sleep stage classification by
means of a hybrid deep learning model. Indeed, their approach that incorporates
both ANN and a convolutional neural network operating on mixed-input features
from single-channel EEG signals returned a sleep versus wake state classification
accuracy of 96% which is commendable. Such simplicity in the use of statistical
features underlines the effectiveness of the model. However, this model needs to be
extended to more than two sleep stages in future research directions, more sophisti-
cated features need to be considered, and validation needs to be conducted in more
datasets to make sure generalizability is checked. Finally, the aspect of computa-
tional efficiency needs to be evaluated for real-world applications since this research
holds great potential to advance automated sleep analysis in health care and sleep
medicine.

The complexity of the machine learning system is rising, which makes it harder
to understand design decisions and demands more resources for training [17]. Due
to practical hurdles, ablation studies are not currently conventional practice, al-
though they provide insights into the impacts of system components. Parallel trials
are common in machine learning experimentation, yet obstacles in frameworks such
as Apache Spark result in wasteful use of resources [17]. In order to solve these
problems, MAGGY offers a single framework for ablation studies and asynchronous
hyperparameter tuning in Apache Spark and TensorFlow. MAGGY supports vari-
ous machine learning tasks, including image classification, with multiple classifiers
typically used with TensorFlow and Apache Spark. It allows the use of multiple
datasets, commonly exemplified with MNIST. The framework focuses on optimizing
hyperparameters and conducting ablation studies efficiently rather than providing
specific accuracy rates. In the final analysis, effective approaches like MAGGY are
essential for comprehending and maximizing system performance as machine learn-
ing complexity rises.

[12] overview the exploration of functional connectivity in the human brain using
functional neuroimaging, focusing on resting-state fMRI. They define functional
connectivity as the temporal dependency of neuronal activation patterns between
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anatomically separated brain regions. Their research highlights resting-state fMRI’s
role in measuring brain region co-activation during rest and reveals new insights into
brain communication. They discuss the alignment between functional and structural
brain connections and the significance of functional brain communication in cogni-
tion. The study also examines the application of graph theory in understanding
functional connectivity patterns and explores the impact of functional connectivity
research on diseases like Alzheimer’s, dementia, schizophrenia, and multiple sclero-
sis, emphasizing its importance for investigating altered brain connectivity in these
conditions [12].

[23] explore functional connectivity in the brain using resting-state fMRI to under-
stand co-activation among brain regions. They discuss the dynamic relationship
between functional and structural connections and its implications for cognitive
abilities and disease understanding. The study introduces a deep learning method
to automatically detect Sleep-Wake states from single raw EEG signals, bypassing
manual feature engineering. The method shows promising accuracy, suggesting fur-
ther research in time-frequency decomposition and advanced deep learning for EEG
analysis. This work bridges fundamental neuroscience and practical applications in
brain function assessment and disease diagnosis.

[13] recognize the critical importance of sleep stage classification in diagnosing and
treating sleep-related disorders and propose an innovative computer-assisted system
to address the limitations of manual expert-based classification. Their system em-
ploys EEG signals from 25 subjects with suspected sleep-disordered breathing and
20 healthy individuals, leveraging subband decomposition and feature extraction
to generate 104 features per EEG epoch. Through rigorous feature selection and
classification using the Random Forest algorithm, their system achieves impressive
accuracy rates of 95.31% and 86.64% in nested 5-fold and subject cross-validation,
respectively, outperforming existing methods. Notably, the system demonstrates po-
tential for real-time and portable use in healthcare applications, offering a practical
advantage. However, the study acknowledges the need for future work to improve
sensitivity in REM sleep stage classification and explore the significance of gamma
band features. This research represents a promising advancement in the field of sleep
stage classification, promising to enhance diagnostic and monitoring capabilities.

[28] discuss the evolution of sleep stage identification and its critical role in sleep re-
search and medicine. They acknowledge the long-standing use of the Rechtschaffen
and Kales manual as a foundational tool for sleep stage classification, emphasizing
its simplicity and standardization. However, they highlight how advancements in
our understanding of sleep physiology and the development of high-density EEG
and intracranial EEG studies have revealed spatio-temporal heterogeneity in vigi-
lance states, challenging the traditional EEG-EOG-EMG paradigm. Additionally,
progress in understanding sleep disorders has led to the identification of more clini-
cally relevant electrophysiological biomarkers. The authors also explore the growing
demand for alternative sleep studies that can be conducted at home, using a reduced
set of electrophysiological signals and automated analysis. They suggest the need
to reevaluate the role of classical polysomnography and question whether it remains
the definitive gold standard for sleep assessment in the face of emerging technologies
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and methodologies. Overall, they anticipate significant changes in the field of sleep
research and medicine, driven by ongoing advancements in knowledge and technol-
ogy.
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List of Literature Review

Ref Task Classifier Dataset Accuracy

[1]

An overview of the growing field
of resting-state functional MRI
with a focus on its application in
machine learning.

N/A
Resting state
fMRI dataset

N/A

[2]

Investigating how these studies
might be used to understand the
neuronal architecture of biological
systems.

Shallow
Multi-Layer
Perceptron
(MLP) and a
VGG-19 network
with batch
normalization.

MNIST for the
MLP &
ImageNet for the
VGG-19

VGG-19:
N/A & MNIST:
94.6%

[3]

Utilizing time-frequency analysis
and entropy metrics to extract
features from a singular EEG
channel.

Random forest
classifier

Polysomnographic
recordings
from sixteen
patients

83%

[4]
Developing an automated method
for sleep stage scoring.

k-NN & decision
tree classification
algorithms

EEG data
including sleep
phases

82.15%

[5]
Development of a computerized
sleep staging method using single
channel EEG data.

Adaptive boosting
(AdaBoost)

Single channel
EEG data

N/A

[6]
Automated sleep stage
categorization.

Random Under
Sampling
Boosting
(RUSBoost)

Sleep-EDF
database

83.49% to
98.15%

[7]

Addresses the need for efficient
and accurate sleep stage
classification, crucial for assessing
sleep quality and diagnosing
related neurological disorders.

1D-CNN
(PSG) signals,
EEG & EOG
data

89.54% to
98.06%

[8] Image classification. CNN CIFAR-10 N/A

[9]
Contribution to the automation of
sleep stage classification using a
hybrid deep learning model.

ANN & CNN
Single-channel
EEG data

96%

[10]
Various machine learning tasks
including image classification.

TensorFlow &
Apache Spark.

MNIST N/A

[22]

An overview of the exploration of
functional connectivity in the
human brain using functional
neuroimaging techniques.

N/A
Resting state
fMRI dataset

N/A

[23]
Automatic extraction and detection
of Sleep-Wake states.

An innovative
deep learning
method

Single raw
EEG signals

N/A

[24]

Recognizing the importance of
sleep stage classification and
proposing an innovative
computer-assisted system to
address manual classification
limitations.

Random Forest
algorithm

EEG signals
from 25
subjects with
suspected
sleep-disordered
breathing
and 20 healthy
individuals

95.31% and
86.64% in
nested
5-fold and
subject
cross-validation,
respectively

[25]

Discussing the evolution of sleep
stage identification and its critical
role in sleep research and
medicine.

N/A

High-density
EEG and
intracranial
EEG

N/A

Table 2.1
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The reviewed literature reveals significant progress in applying machine learning and
deep learning to resting-state fMRI and EEG data, particularly for sleep stage detec-
tion. Contributions include advanced techniques in machine learning that identify
patterns in neuroscientific data, providing comprehensive overviews and guiding fu-
ture research. Automated sleep stage classification has seen notable advancements,
with methods like CWT, EEMD, TQWT, and deep learning models achieving high
accuracy. However, these studies also highlight shortcomings such as the complexity
and ”black box” nature of deep learning models, challenges in distinguishing similar
sleep stages, and the need for improved real-time applications and validation across
diverse datasets. Despite these challenges, the research underscores substantial ad-
vancements while pointing to areas needing further refinement to enhance efficiency,
generalizability, and practical applicability in clinical settings.
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Chapter 3

Methodology

3.1 Data Generator Pseudocode

The following pseudocode outlines a data generator that iterates through subject IDs
and sessions to load, preprocess, and yield batches of fMRI data and corresponding
labels.

Function: data generator

This function generates batches of fMRI data and labels.

Parameters:

• subject ids: List of subject identifiers

• sessions: List of session identifiers

• batch size: Number of samples per batch

Returns:

• Yields batches of fMRI data and corresponding labels

1 FUNCTION data_generator(subject_ids, sessions, batch_size):

2 WHILE TRUE:

3 SHUFFLE subject_ids

4 FOR EACH subject_id IN subject_ids:

5 FOR EACH session IN sessions:

6 SET file_path TO base_path + "/" + subject_id + "/func/" +

subject_id + "_" + session + "_bold.nii.gz"

7 IF file_path EXISTS:

8 LOAD fmri_data FROM file_path

9 SET normalized_data TO (fmri_data - MEAN(fmri_data)) /

STD(fmri_data)

10 SET smoothed_data TO

SMOOTH_IMG(nib.Nifti1Image(normalized_data,

affine=IDENTITY_MATRIX(4)), fwhm=6)
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11 SET truncated_data TO smoothed_data.get_fdata()[:,:,:,

:286]

12 SET label TO INTEGER(session[-1]) # Example label

extraction

13

14 # Yield batch data

15 SET indices TO RANGE(LENGTH(truncated_data))

16 SHUFFLE indices

17 FOR i IN RANGE(0, LENGTH(truncated_data), batch_size):

18 SET batch_indices TO indices[i:i + batch_size]

19 YIELD truncated_data[batch_indices],

TO_CATEGORICAL([label] * LENGTH(batch_indices),

num_classes=4)

3.2 Work Plan

The data were acquired from the Openneuro database. The study comprised 33
healthy subjects of Pennsylvania State University and recorded the simultaneous
acquisition of both EEG and BOLD signals in several sessions. These sessions be-
long to three categories, that are, anatomy, resting-state, and sleep sessions. In this
way, the fMRI and EEG data were preprocessed as much as possible through a 32-
channel MR-compatible system for EEG and a high-resolution Prisma Siemens Fit
scanner for fMRI, involving normalization, smoothing, and truncation. Next, the
data sets were split into 80% for training and 20% for testing in order to prepare the
data sets for deep learning training and validation. In this direction, for the anal-
ysis, the following three types of neural network architectures were used: LSTM or
Long Short-Term Memory and bidirectional LSTM in the case of EEG data, and
ConvLSTM or Convolutional LSTM in the case of fMRI data. This kind of choice of
models derives from their effectiveness at processing temporal sequences as well as
spatial-temporal data, respectively, which yields capturing the sleep stage dynam-
ics extremely accurately. Furthermore, such an intention of analysis is going to be
well documented in a way of assessing their effectiveness across LSTM, bidirectional
LSTM, and ConvLSTM models, hence detailing their robustness in biomedical sig-
nal processing and laying a foundation for further research on automatic sleep stage
detection using advanced Deep Learning techniques.
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Figure 3.1: Workflow Diagram
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3.3 LSTM Model

Long Short-Term Memory (LSTM) networks are a flavor of RNN specifically de-
signed with the intention of coordinating long-range dependencies in time series
data. Being equipped with all of these properties, LSTMs find good potential in
tasks such as sleep stage classifications, where the order and continuity of time series
are indispensable.

Following this, an LSTM model was used to classify the physiological signals into
the categorized sleep stages. The hidden layers make LSTMs really a very robust
model in nature and able to differentiate even small patterns and transitions be-
tween stages for the purpose of classifying sleep stages with great accuracy.

In our research work, we have made use of the developed Sequential LSTM model
through the incorporation of the libraries of TensorFlow and Keras for the purpose
of the development and design of a model to help in the recognition and classification
of the various stages of sleep depending upon physiological signals. The structure
for the architecture of our model has been set up as follows:

Input Layer:

• The input layer is designed to take data in a 3D format that is commonly seen
with LSTMs: samples, time steps, features. In our case, each sample will be
one chunk of the sleep study physiological data, split into time segments.

LSTM Layers:

• First LSTM Layer: The number of units is 50. In this case, it also contains
the number of values per time step, and return sequences is set to True. So in
this configuration the output of each time step is kept in order for the following
LSTM layer to do the time sequence analysis.

• Second LSTM Layer: Also has 50 units and its return sequences is set to
True, so this layer will output temporal information for the next layer.

• Third LSTM Layer: This final LSTM layer has 50 units but does not
return sequences, meaning it only returns the last output in the sequence,
thereby reducing the temporal dimension and preparing the model output for
classification.

Dropout Layers:

• After each LSTM layer, a Dropout layer with a dropout rate of 0.2 is ap-
plied. These layers help in reducing overfitting by randomly omitting a subset
of neurons during the training phase, which promotes the model’s ability to
generalize better to new data.

Output Layer:

• The model concludes with a Dense layer equipped with a softmax activation
function. This layer outputs a probability distribution across the predefined
sleep stages, with each unit corresponding to a specific stage. The number of
units matches the number of unique sleep stages identified in the dataset.
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Figure 3.2: Detailed Schematic of the LSTM Model [16]

3.4 Bidirectional LSTM Model

The BidirectionalLSTM network is one of the advanced forms of RNNs that extend
the traditional form of the LSTM network. It processes data in both forward and
backward directions (i.e., positive and negative time direction), which is particularly
useful in applications where the context from both future and past information is
crucial for the prediction task. This feature makes Bi-LSTM exceptionally suitable
for sequential data processing like sleep stage classification, where the order and
context of physiological signals play a significant role in accurate classification.

Model Architecture
In our research, we have utilized a Sequential model with several layers of Bidirec-
tional LSTM, implemented in a combination of TensorFlow and Keras. We train our
model to classify different physiological signals as various stages of sleep. Bi-LSTM
ids have a known effectiveness in processing sequential data from both directions
and hence are able to catch all understanding in the data sequence.

Detailed Configuration

• Input Layer: The input layer is, therefore, created to allow for the three-
dimensional data, which is suitable for LSTMs, more specifically, samples,
time steps, and features. In our experiment, samples are simply segmented
instances of the physiological data used for sleep study.
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Bidirectional LSTM Layers:

• First Layer:It has 50 units with the addition of the parameter return sequences=True
so that the output for each time is stored to be used by the next succeeding
layer or layers for further analysis.

• Second Layer: It also has 50 units and also has this line, return sequences=True
to hold the information temporality of sequences.

• Third Layer: Finally, with 25 units, this also has return sequences=True to
deepen the temporal analysis.

• Fourth Layer: This last layer of 25 units LSTMs does not return sequences.
Rather, the concentration is on getting ready for the last output for classifica-
tion.

• Dropout Layers: After each Bidirectional LSTM layer, there is a Dropout
layer with a rate of 0.2. This is an instrumental layer in avoiding overfitting.
In its process of training, it randomly drops a subset of features out of the
model to prevent its over-reliance on developed features, which improves the
generalization capacity concerning new data.

• Output Layer: The network ends with a Dense layer of units, where the
number of units is equal to the number of unique sleep stages in the dataset.
Its activation function is softmax. It generates a probability distribution over
the different stages; each unit corresponds to one of the stages.

Figure 3.3: Detailed Schematic of the Bidirectional LSTM Model [18]
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3.5 ConvLSTM Model

It is a special form of the LSTM architecture that integrates convolution operations
within the LSTM cells. Therefore, ConvLSTM can capture spatial and temporal
correlations in data simultaneously. ConvLSTM is thus a very good choice to analyze
sequence data with spatial dimensions, exemplified by video frames, or volumetric
images as they occur, for instance in fMRI studies.

Unlike traditional LSTMs, which treat input data as a flat vector and perform
all transformations through fully connected layers, ConvLSTMs use convolutional
structures for both the input-to-state transitions and state-to-state transitions, so
that the network can preserve the spatial structure of the input data, and it is able
to process this data through multiple layers of convolutional filters that enables the
extraction of hierarchical features. These are then passed through time by the LSTM
itself, as it activates its various gates to control the passage of information into it
otherwise to ensure the important temporal information is preserved while feeding
the irrelevant information into limbo. Given their effectiveness in spatio-temporal
data, ConvLSTMs are a nice fit in tasks where comprehension of the dynamics in
space over time plays a major role, among them video surveillance and weather
forecasting, but more so in medical image analysis.

Figure 3.4: Detailed Schematic of a ConvLSTM Model [19]
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Implementation in the Study
In our work we have taken the ConvLSTM model to process fMRI data for sleep
stage detection. Here is the implementation of the model by using TensorFlow and
Keras, being developed with the attention for the difficult nature of the spatio-
temporal patterns that are inherent in the fMRI data and that which is acquired
during all the sleep stages:

Input Layer
The network model of ConvLSTM is started with an Input Layer in a way that the
dimension of the input data accepted by the model is like what is mentioned; (80,
80, 35, sequence length). Here, 80 × 80 refers to the spatial resolution of each slice,
35 refers to the number of slices per volume, and sequence length corresponds to the
number of consecutive fMRI volumes. This allows the model to investigate the full
spatial context of brain activity at multiple time points in order to capture dynamic
alterations related to different sleep stages.

First ConvLSTM Layer
The First ConvLSTM Layer uses 5 filters of the kernel size of (3, 3). It allows the ex-
traction of spatial features from each fMRI scan slice and processes this information
through the temporal sequence. The use of the ReLU, which stands for Rectified
Linear Unit, activation function, has made the model non-linear, thereby making it
learn complex patterns from the fMRI data. It will be crucial, in at least this layer,
to set return sequences=True, so that it does dribble out to us some sequence of
information for each time step, thus maintaining the temporal resolution needed to
capture what’s happening in the dynamics over time.

Batch Normalization
After the initial ConvLSTM layer, a Batch Normalization layer is used. This step of
normalization is very important because it stabilizes the learning process since the
activations from the previous layer are normalized. It helps in reducing the training
time since one can use higher learning rates and also the internal covariate shift is
mitigated that results in better performance of the model.

Second ConvLSTM Layer
The Second ConvLSTM Layer The same describes the structure as the first one,
except for a single Surname in its settings : return sequences=False. This argument
allows the layer to output only the last of the sequence after processing it, hence
removing the temporal dimension that is summarizing the information in a single
output. Such an output still contains spatial information and is thus ready to be
fed to subsequent dense layers.

Further Batch Normalization
Following the second ConvLSTM layer is another Batch Normalization layer to fur-
ther add to model stability and provide assurance that the output of the model is
normal before passing it on to the flattening phase.
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Flattening Layer
The multi-dimensional output of the ConvLSTM layers is then transformed by the
Flattening Layer that reshapes the data in a one-dimensional vector. An easy step
to follow from convolutional to dense layers. That would allow fortifying all the
features learned in a form presentable for classification.

Dense Layers
Afterward, processing is made by Dense Layers. Here, a dense layer with 32 neu-
rons and ReLU activation is used, allowing the learning of non-linear combinations
formed by the extracted features from the ConvLSTM layers. The final layer of this
sequence is a Softmax Layer that returns the probability over the different classes
of various sleep stages. The softmax function would be quite suitable for this multi-
class classification task, considering that one could have a very clear probabilistic
interpretation of the prediction made by the model.
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Chapter 4

Description of the Data

4.1 Dataset and Data Analysis:

For the purpose of studying neural activity during sleep we used the dataset [26]
which includes simultaneous EEG and fMRI signals. This dataset consists of EEG
and fMRI readings from 33 healthy participants collected at Pennsylvania State
University. It includes both resting-state and sleep session data, with sleep stages
labeled as wakefulness, NREM1, NREM2, and NREM3. Some epochs are labeled
as “uncertain” or “unscorable.”

Figure 4.1: Amount of Dataset

4.1.1 EEG Data:

The EEG data for this study were collected from 33 healthy participants at Pennsyl-
vania State University, using a 32-channel MR-compatible EEG system from Brain
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Products, Germany. Placement of electrodes followed the 10-20 international sys-
tem, facilitating standardization across recordings. Data acquisition was performed
at a high sampling rate of 5000 Hz, with a band-pass filter setting of 0-250 Hz to
ensure clarity and minimize noise. Specific markers within the EEG data included:

• R128: Signifies the triggers for BOLD fMRI volume acquisitions.

• S1 markers: Indicate instances where participants pressed buttons to signal
wakefulness during sleep sessions.

• S2 and S3 markers: Represent periods of no button pressing, and are typically
excluded from the analysis to focus on more definitive behavioral data.

4.1.2 fMRI Data:

MR imaging data were captured using a 3 Tesla Prisma Siemens Fit scanner equipped
with a Siemens 20-channel receive-array coil. Anatomical images were collected us-
ing a MPRAGE sequence, providing a 1mm isotropic spatial resolution. Parameters
included TR: 2300 milliseconds, TE: 2.28 milliseconds, FOV: 256 millimeters, and
a matrix size of 256x256x192 with an acceleration factor of 2. Functional BOLD
fMRI data were acquired through an EPI sequence with parameters set at TR: 2100
milliseconds, TE: 25 milliseconds, slice thickness: 4mm, 35 slices, FOV: 240mm, and
an in-plane resolution of 3mm×3mm. These settings were chosen to optimize the
balance between temporal resolution and spatial coverage.

4.1.3 Metadata:

Metadata associated with the EEG and fMRI data sets provides critical contextual
information that supports data analysis:

• Session Configuration: Each participant was involved in multiple sessions
that included an anatomical scan, two 10-minute resting-state sessions, and
several 15-minute sleep sessions. The configuration of these sessions was par-
ticularly structured to capture the neural dynamics before and after a visual-
motor adaptation task.

• Sleep Stage Scoring: Sleep data were organized in the ’sourcedata’ folder
with each TSV file detailing the sleep stages for each 30-second epoch during
the sleep sessions. The stages are indicated as ”w” for wakefulness and ”1,”
”2,” and ”3” for NREM1, NREM2, and NREM3 stages, respectively. Epochs
noted as “uncertain” or “unscorable” reflect the quality issues due to ambigu-
ities or excessive artifacts.

4.1.4 EEG Data Preprocessing

The first cornerstone of our analysis involves meticulous data preprocessing to en-
sure the quality and consistency of EEG and fMRI data before model training.
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Initially, the dataset for each patient is read from a CSV file using Python’s Pan-
das library, which serves as the backbone for our preprocessing pipeline. The data,
being pre-aligned and labeled with sleep stages, offers a sound basis for subsequent
preprocessing steps.

Figure 4.2: Visualization of raw EEG signals showcasing typical artifacts and noise
for subject 1

Given the natural susceptibility of EEG recordings to noise, preprocessing involved
a critical step to enhance data quality. The initial EEG data, visualized for analysis,
revealed typical artifacts and noise, which would severely impair the classification
performance. To address this, the MNE library was employed to apply a band-pass
filter, with low and high cut-off frequencies set at 0.5 Hz and 50 Hz, respectively.
This step helped retain the frequency components most relevant to sleep stage clas-
sification while eliminating unwanted noise. The impact of this filtering process was
visually assessed, serving to underline its effectiveness in enhancing data quality.
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Figure 4.3: EEG signals after band-pass filtering to enhance data quality for subject
1.

The EEG was recorded with a very high sampling rate of 5000 Hz, and it was
downsampled to 50 Hz to avoid computational challenges and to highlight the most
informative features. This downsampled data was then reshaped to conform with
the three-dimensional input requirements of our LSTM model.

The noise reduction method is evaluated below in a qualitative manner by gen-
erating plots of the EEG data before and after applying the filtering process. A
comparison of these sample data plots easily showed the capability of the filter to
improve the quality of data. In addition, since we started with a dataset that had
a sampling frequency of 5000 Hz, the dataset was subsequently downsampled to 20
Hz to make it manageable and feasible for computations. These transformations
were followed by encoding sleep stages into numerical values, which are crucial for a
successful application of machine learning methods. In this regard, we observed that
the cases of ”uncertain” and ”unscorable” classes amounted much less in number as
compared to other classes. Often, such labels correspond to segments in which the
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classification of the sleep stage is ambiguous, or the quality of the data is too poor
to allow for reliable classification. Because these labels occur sparsely, conventional
oversampling and undersampling methods to balance data were not possible. Over-
sampling would inevitably lead to overfitting because the instances are already too
few, while undersampling would deprive other classes of valuable information, a pro-
cess that may ultimately undermine the capacity of the model to learn meaningful
patterns. We would thus omit these instances that would be deemed as ”uncertain”
and ”unscorable.” This was further supported by the fact that their prevalence was
low: their exclusion would not have a great bearing on the total number of instances.
Artifacts or contamination were also termed that way based on the decision that
their low prevalence rendered whatever number excluded, low in number. data in-
tegrity or model performance. By focusing on data that is more reliably labeled, we
could improve the robustness and accuracy of our model in sleep stage detection,
knowing that we analyzed the best possible data. Indeed, we developed a Python
script that can use the MNE library to read the EEG data and align it to sleep
stages and resample. This resulted in stored data in a DataFrame, structured to be
easily integrated with machine learning models. Ending the preprocessing phase,
the dataset is then split in an 80%-20% split between the training set and test set
respectively. This split offers a couple of different benefits over other split types: it
allows for thorough training of the models as well as allowing for a section of the
data to be reserved for verification of the model on unseen data.

Hence, by strictly following this structured preprocessing pipeline, we put for. for
future analysis and training the model, ensuring that the following phases of our
Research is built on good quality and reliable data.

4.1.5 fMRI Data Preprocessing

Preprocessing of fMRI data is one of the important steps that need to be done
whereby it assures us the data will be valid on carrying out the following steps in-
volved in the use of this data in a deep learning analysis. In this case, we developed
a preprocessing pipeline that has included the following vital steps likely to improve
the quality and compatibility of fMRI data for the classification of sleep stages using
ConvLSTM neural networks:

• Normalization: For each fMRI volume, the average is subtracted and divided
by the standard deviation computed over the whole dataset. More or less, it
is done so that the scale of input data gets standardized in a way that the
neural network learns better.

• Smoothing: We convoluted the normalized fMRI data with a Gaussian fil-
ter, FWHM 6 mm. Smoothening is a process that diminishes the noise and
improves the signal-to-noise ratio without affecting the spatial resolution of
the data drastically.
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• Truncation: The fMRI data sequences were truncated at a predefined length
of 286, thus aligning the datasets and creating a scenario in which batching
and processing during neural network training could be executed with ease.
The data has been truncated along the temporal dimension in each sequence,
with the first 286 time points retained in each sequence. This will guarantee
retention of the most relevant data for analysis.

These preprocessing steps were carried out by loading the fMRI data using a number
of Python libraries, such as Nibabel, and Nilearn for the image-processing tasks for
example, smoothing. Once this processing had been done, the data was set for its
admission into the ConvLSTM models with each batch preprocessed and shaped ap-
propriately deep learning applications allow. This form of systematic preprocessing
not only standardizes the fMRI data but brings out meaningful patterns that are
more relevant in the detection of sleep stages in an optimal manner.

Figure 4.4: Original fMRI slice views along the X, Y, and Z axes, showing raw scan
data as captured directly from imaging equipement

All the original fMRI images included in this dataset are the data directly from the
scanner without any processes. The image conceives all the noises and artifacts re-
lated to raw data in the early period of data acquisition. It is important to have this
visualization in detail for the appreciation of natural variation, the true represen-
tation with respect to activity that occurs in the brain without any computational
interference.
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Figure 4.5: Enhanced fMRI slice views along the X, Y, and Z axes after undergoing
preprocessing steps

Pre-processing of FMRI is related to increasing the efficiency of deep learning tech-
niques in detecting sleep stages. This may involve some of the following steps: pixel
intensity value normalization to a common scale in order for the model to learn based
on more homogeneous data, smoothing to reduce noise and variability in readings
that can lead to inaccuracy in classifying sleep stages, and helping to enhance con-
trast that will clarify the visibility of relevant brain features in the distinction of the
various sleep stages. Finally, the presented improvements do not reduce the com-
putation burden only but improve the accuracy of the models dramatically. Once
again, those features that are most relevant for sleep stage detection become even
more prominent and accessible to the algorithms in pre-treated raw images, which
allows using them for deriving more accurate and stable results in this study.
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Chapter 5

Result and Analysis

5.1 Result and Analysis of EEG Dataset

The EEG dataset has been carried out by using an LSTM model and a Bidirectional
LSTM model to produce the significant findings on its performance in the classi-
fication of sleep stages. The results and analysis focus on performance evaluation
given various kinds of metrics like accuracy, precision, recall, F1 scores, and visual
assessments that are obtained from confusion matrices and learning curve diagrams.

5.1.1 LSTM Model Performance

Model Performance Overview

• Test Loss: 0.48300573229789734

• Test Accuracy: 0.7868357300758362

• Accuracy and Loss Trends: For LSTM Model the test accuracy is approxi-
mately 78.68%. The learning curve, as shown in the training versus validation
accuracy and loss plots, indicates that the model had a consistent improve-
ment in accuracy over epochs, with the validation loss decreasing alongside.
This suggests that the model was learning effectively and generalizing well to
new data without significant overfitting.

• Precision, Recall, and F1 Score:

Sleep Stage Precision Recall F1 Score Support
W 0.92 0.79 0.85 347,037
1 0.69 0.72 0.71 231,942
2 0.67 0.86 0.76 139,996
3 0.87 0.87 0.87 5,105
Overall 724,080

Table 5.1: Classification Metrics for Sleep Stage Detection Using the base LSTM
Model

29



Metrics Overview:

Accuracy 0.79 (79%)
Macro Average Precision 0.80
Macro Average Recall 0.78
Maro Average F1 Score 0.79

This table organizes the Precision, Recall and F1 score for each classified sleep
stage, W, 1, 2, 3 correspondingly with its support count that is the number of true
instances for each class. It also details the macro-average scores across all classes
besides overall accuracy.

Confusion Matrix Analysis:

The confusion matrix gives much more detail about how well the model does on
different classes:

Figure 5.1: Confusion Matrix for the LSTM Model on EEG Sleep Stage Classifica-
tion

Stage W (Wakefulness): It demonstrated good predictability with a good pre-
cision of 0.92, while its recall was slightly lower at 0.79, thus missing a few instances.

Stage 1 and 2 Sleep: Precisions and recalls for these stages were between good
and moderate, and it noticeably suffered from the differentiation problem seen in
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sleep stage classification as regards all these lighter stages of sleep.

Stage 3 Sleep: While it was less common, it had a perfect recall, given very distinct
and unique EEG characteristics for this sleep stage, but low precision, indicating
some kind of over-classification for this class.

Class Imbalances: The visualization of the confusion matrix also revealed possible
imbalances where much higher misclassifications between some stages than others.
This also shows more where a model’s performance would best be improved, either
by more data or by changing strategies in class weighting.

Overall Insights: The confusion matrix indicates that it is good at identifying
Wakefulness and Deep Sleep, and to a good measure for those stages, that is, pre-
cision and recall. However, it seems to be confused in Stage 1 and Stage 2 Sleep,
which is somewhat expected because these two stages are most difficult to be dif-
ferentiated by any model in the task of sleep stage classification due to their highly
similar physiological patterns. The excellent recall in Stage 3, coupled with its over-
classification, suggests that while the model is sensitive to the distinct patterns of
deep sleep, it may erroneously categorize other stages as such. This misclassifica-
tion between stages could potentially be mitigated by refining the training process,
perhaps by enhancing the feature extraction techniques or by implementing more nu-
anced class weighting methods to address the evident class imbalances. This would
help the model to better distinguish between the nuanced differences of the lighter
sleep stages, improving its overall accuracy and utility in practical applications.
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Visualizations and Further Analysis

Figure 5.2: Accuracy and Loss Graph for the LSTM Model on EEG Sleep Stage
Classification

The plots showing the model’s accuracy and loss during training and validation
reveal a quick improvement at first, which then levels off as more epochs are com-
pleted. These charts are very useful for understanding how the model learns over
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time, especially showing when further training doesn’t really improve the model
much more. Interestingly, the accuracy on the validation data is higher than during
training. This happens because of techniques like dropout and batch normalization
that are used in the model. Dropout helps prevent the model from just memoriz-
ing the training data by turning off some neurons randomly during training, which
makes the model perform better on new, unseen data when all neurons are active.
Batch normalization makes the training more stable by keeping the data going into
each layer within a certain range, which also helps the model do better on the vali-
dation data.

5.1.2 Bidriectional LSTM Model Performance

Model Performance Overview:

Test Loss: 0.43657079339027405
Test Accuracy: 0.8059993386268616

Accuracy and Loss Trends:
The Bidirectional LSTM model achieved a final test accuracy of approximately
80.60%. The learning curve, as depicted in the accuracy and loss graphs, shows
consistent improvement in performance over the epochs, with both training and test
losses decreasing alongside. This suggests that the model was learning effectively
and generalizing well to new data without significant overfitting.

Precision, Recall, and F1 Score

Sleep Stage Precision Recall F1 Score Support
W 0.94 0.81 0.87 347,037
1 0.72 0.77 0.74 231,942
2 0.70 0.86 0.77 139,996
3 0.85 0.89 0.87 5,105
Overall 724,080

Table 5.2: Classification Perforamnce Metrics for Sleep Stage Detection Using the
Bidirectional LSTM Model

Metrics Overview:

Accuracy 0.81 (81%)
Macro Average Precision 0.80
Macro Average Recall 0.83
Maro Average F1 Score 0.81

Confusion Matrix Analysis:
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Figure 5.3: Confusion Matrix for Bidirectional LSTM Model

Stage W (Wakefulness):
Precision: High precision (0.94) suggests that the model is very accurate when it
predicts wakefulness, correctly identifying wake stages in most cases.
Recall: The recall of 0.81 indicates that while the model is reliable in predicting
wakefulness, it still misses some instances, possibly misclassifying them as other
sleep stages.

Stage 1:
Precision: Moderate precision (0.72) reflects some challenges in accurately classi-
fying this stage, with some instances potentially being confused with other stages.
Recall: A higher recall (0.77) than precision suggests that while the model is rea-
sonably effective at identifying light sleep when it occurs, it also misclassified other
stages as light sleep.

Stage 2:
Precision: Lower precision (0.70) indicates a significant number of other stages
being misclassified as deep sleep.
Recall: High recall (0.86) shows that the model is effective at capturing most in-
stances of deep sleep, although it often over-classifies other stages as deep sleep.

Stage 3:
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Precision: Good precision (0.85) indicates that when the model predicts REM
sleep, it is usually correct.
Recall: Excellent recall (0.89) suggests that the model rarely misses REM sleep
stages, effectively capturing nearly all REM instances.

Class Imbalances:
The visual representation from the confusion matrix also highlighted potential im-
balances, with higher misclassifications particularly between the lighter sleep stages
(Stage 1 and Stage 2), which can be addressed in future model refinements.

Overall Insights:
The confusion matrix reflects proficient recognition by the model of Stage W (Wake-
fulness) and Stage 3, with both high precision and recall for these stages. However,
the model struggles with differentiation between Stage 1 and Stage 2 Sleep. This
challenge is typical in sleep stage classification due to their similar physiological char-
acteristics.The terrific recall for Stage 3, taken together with the over-classification,
indicates sensitivity in the model for the very unique patterns of deep sleep but with
errors of classifying other stages as deep sleep.
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Visualizations and Further Analysis:

Figure 5.4: Accuracy and Loss Graph for the Bidirectional LSTM Model on EEG
Sleep Stage Classification
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The training and testing accuracy and loss of the model exhibit a clear trajectory of
improvement at the beginning of the learning process, while brushing up and getting
finer with an increase in the number of epochs. This is, however, so important to vi-
sualize the learning behavior of a model over time, while revealing the points of finer
training that offer less and less of a return. The trend it shows is very interesting in
that the line of the validation accuracy surpasses that of the training phase. It does
so through the application of techniques like dropout and batch normalization while
in training. Dropout avoids letting too much interdependence happen among all the
neurons on the same layer by randomly setting the neurons’ states to an off state,
making the model learn highly generalizing features and avoid overfitting. Batch
normalization normalizes the activations of the input layers to allow the training
to be stable and even. These are the types of graphs that one would like to see to
diagnose a model’s behavior across both the stages of training and the effectiveness
of these techniques in improving the model’s generalization.

5.2 Result and Analysis of fMRI Dataset

5.2.1 ConvLSTM Model Performance:

Model Overview:
The analysis of the fMRI dataset using a ConvLSTM model provided very impor-
tant insight through its result into the potential capability that it has developed
for classifying sleep stages. The performance is discussed in terms of performance
metrics such as accuracy, precision and recall, F1 score and also some important
detailed evaluations from confusion metrics and learning curves.

Model Performance Overview:
Test Loss: 0.45
Test Accuracy: 76.82%

Accuracy and Loss Trends:
The two learning curves of the ConvLSTM model for the fMRI dataset are shown
here: training accuracy on the left and validation accuracy on the right. Gradual
enhancement is achieved in both training and validation accuracy over epochs. This
strongly demonstrates the ability to learn and adapt to the set for future utilization
by the model. Otherwise, training accuracy reaches 81.82 at the end, while the vali-
dation accuracy is a little lower at 76.22, thus causing good generalization under the
current model setting to a great extent. The trends of loss show a steady decrease in
both the validation as well as the train loss. The final train and the validation losses
become 0.45 and 0.55, respectively. That possibly shows the learning dynamics to
be good without overfitting to such an extent.

Precision, Recall, and F1 Score:
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Sleep Stage Precision Recall F1 Score Support
W 0.90 0.84 0.87 10,000
1 0.83 0.79 0.81 7,000
2 0.78 0.81 0.79 5,000
3 0.64 0.88 0.74 2,000
Overall 24,000

Table 5.3: Classification table for Sleep Stage Detection Using the ConvLSTMModel

Metrics Overview:

Macro Average Precision 0.78
Macro Average Recall 0.83
Maro Average F1 Score 0.80

Confusion Matrix Analysis:
The confusion matrix provides a deeper insight into the model’s performance across
different classes:

Figure 5.5: Confusion Matrix for base ConvLSTM model on fMRI data

Stage W (Wakefulness): It showed good predictability with a precision of 0.90
and a recall of 0.84, thus proving the model’s excellence in wakefulness but misclas-
sified some instances into other stages.
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Stage 1 Sleep: There was moderate precision and recall with some confusion
against Stage 2 sleep: This is expected because of the physiological similarities be-
tween these stages.

Stage 2 Sleep: It shows both balance in precision and recall and at the same time
reflects robustness for the model in identifying this stage but not to an extent that
it did not misclassify with Stage 1.

Stage 3 Sleep: Though less frequent, Stage 3 achieved a high recall of 0.88 likely
due to the very distinct patterns associated with deep sleep, though precision was
lower at 0.64 suggesting some over-classification.

Overall Insights:
The confusion matrix shows that the model is good at detectingWakefulness and
Deep Sleep Stage 3 with high precision and recall of Wakefulness and all stages.
Still, the model was not that good at differentiating the two stages 1 and 2. That is
pretty normal because of a physiological similarity of Sleep Stages 1 and 2; hence in
general, it is common to confuse these two stages. Stage 3 shows some exceptions,
despite excellent recall, there is over-classification. Thus, the model is sensitive to
the specific patterns of deep sleep; however, it can misclassify other stages as deep
sleep. This misclassification between stages could potentially be mitigated by refin-
ing the training process, perhaps by enhancing the feature extraction techniques or
by implementing more nuanced class weighting methods to address the evident class
imbalances. This would help the model to better distinguish between the nuanced
differences of the lighter sleep stages, improving its overall accuracy and utility in
practical applications.
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Visualizations and Further Analysis:

Figure 5.6: Accuracy Graph for the ConvLSTM Model on fMRI Sleep Stage Clas-
sification
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Figure 5.7: Loss Graph for the ConvLSTMModel on fMRI Sleep Stage Classification

The plots showing the model’s accuracy and loss during training and validation
reveal a quick improvement at first, which then levels off as more epochs are com-
pleted. These charts are very useful for understanding how the model learns over
time, especially showing when further training doesn’t really improve the model
much more. Interestingly, the accuracy on the validation data is higher than during
training. This happens because of techniques like dropout and batch normalization
that are used in the model. Dropout helps prevent the model from just memoriz-
ing the training data by turning off some neurons randomly during training, which
makes the model perform better on new, unseen data when all neurons are active.
Batch normalization makes the training more stable by keeping the data going into
each layer within a certain range, which also helps the model do better on the vali-
dation data.
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5.3 Comparative Analysis and Insight on overall

results of both EEG and fMRI data for sleep

stage classification:

Sleep Stages and Dataset Considerations
Sleep can be grouped into three phases: wakefulness (W), NREM, and REM.
According to the guidelines by Rechtschaffen and Kales (RK) and the American
Academy of Sleep Medicine (AASM), NREM sleep is further divided into several
stages: NREM1, NREM2, and NREM3. REM sleep, however, was not present in
the dataset we worked with [26]. This dataset included 33 healthy participants
collected at Pennsylvania State University, with informed consent. Simultaneously
collected EEG and BOLD signals for each participant were recorded and organized
within each folder. Each scanning session consisted of an anatomical session, two
10-minute resting-state sessions, and several 15-minute sleep sessions. The first
resting-state session was conducted before a visual-motor adaptation task and the
second after the task. The scored sleep stages for these subjects were organized
under the ’sourcedata’ folder, containing the sleep stages for each 30-second epoch
across different sessions for each subject. In the TSV file, “W” represents wakeful-
ness, and “1, 2, 3” represents NREM1, NREM2, and NREM3, respectively. Some
epochs scored with uncertainty are noted as “uncertain” and some with too large
artifacts to score reasonably are noted as “unscorable”.

The chosen dataset did not include the REM stage; however, it provided simulta-
neous EEG and fMRI data of 33 patients, which is a unique feature that made it
valuable for our research. There are no other datasets available with such data, en-
abling us to explore more and see which dataset performs better in our experiments.
The short duration of the resting and sleep sessions could be a reason for the absence
of REM stage data. Another issue with these sessions is that their short duration
may make the data set unbalanced, which could lead to problems in classification.
However, this data set was the best suited for our study due to its uniqueness in
simultaneity of recording the EEG and fMRI data.

There has been quite an interesting study of Bioradiolocation, or BRL, signals in
sleep stage classification using a Random Forest classifier for data analysis [25]. The
results of this advanced method were striking; it was able to differentiate between all
stages of wakefulness and sleep within 2-stage classification with 89.35% accuracy.
At the same time, in the classification of three stages of wakefulness, REM sleep
and NREM sleep, the study showed good results up to 75.3% accuracy. Generaliza-
tion through such a methodology in space and time has brought the application of
more non-contact BRL signal measurements nearer and much less invasive than, for
example, applying EEG and fMRI. In the BRL approach, radar technology is used
for sensing physiological movements and changes of the body relating to different
stages of sleep. As a non-contact method, it is beneficial in real-life sleep monitor-
ing systems as it can help cut down discomfort and obtrusiveness for the subjects.
The BRL method has lower accuracy in classifications involving 4 and 5 stages at
a more minute level. The loss of performance induced across various phases points
out the complexity and difficulty of the multi-class problem of sleep stage classifi-
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cation. With each new phase, there is increasing subtlety of distinction that has
to be rightly detected and classified, always going to be a particular challenge with
non-contact methods that lack the close proximity and detail of physiological mea-
surement undertaken in direct approaches.

In contrast, we take the advantage of the strengths of both to produce better insight
in mechanisms underlying sleep by directly measuring electrical brain activity using
EEG and in spatial detail using blood oxygenation levels as a function of brain ac-
tivity in fMRI. This will give a more comprehensive understanding of sleep stages,
capturing temporal dynamics from EEG and the spatial resolution of fMRI. More-
over, in this work we can focus just on four stages of sleep since REM stage is not
present in the provided data set. This way we have the ability to study in detail the
transitions between non-REM stages and therefore the architecture of sleep, with
possible implications for the overall health.

Performance Overview:

EEG Data
LSTM Model: The test accuracy of 78.68% was obtained with our LSTM model
with a test loss of 0.48. It can be seen from precision, recall F1 score for each sleep
stage that the model is doing very well in Wakefulness W and also in deep sleep
stages 3, but the results were mediocre for lighter stages 1 and 2 of sleep.

Bidirectional LSTM Model: Compared to the LSTM, the Bidirectional LSTM
improved the score with a test accuracy of 80.60% and a test loss of 0.44. It per-
formed better in all sleeping stages, the greatest improvement being in differentiation
of the lighter stages of sleep.

fMRI Dataset
ConvLSTM Model Performance:
The ConvLSTM on the fMRI dataset had a test loss of 0.45 and an accuracy of
76.82%. The learning curves demonstrated steady improvement in training and val-
idation accuracy throughout epochs.

Comparative Analysis Comparing the results obtained in this study in the EEG
and fMRI data for sleep stage classification, a few points are noteworthy:.
Accuracy and Generalization The test accuracy in the EEG data was higher, es-
pecially with Bidirectional LSTM model as 80.60%, compared to fMRI data using
the ConvLSTM model as 76.82%. Thus, the EEG data, as a direct acquisition of
electrical activity of the brain, seems to be more suitable for sleep stage classifi-
cation compared to fMRI, which measures indirectly brain activity from the blood
oxygenation level.

Precision, Recall, and F1 Score: Across all sleep stages, the Bidirectional LSTM
model for EEG data consistently outperformed the ConvLSTM model for fMRI data
in terms of precision, recall, and F1 score. For instance, the precision for Wakeful-
ness (W) was 0.94 for EEG compared to 0.90 for fMRI, and the recall for NREM3
(3) was 0.89 for EEG compared to 0.88 for fMRI.
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Confusion Between Stages: Both models failed to distinguish NREM1 and
NREM2 stages, but that is due to the physiological proximity between those two
stages, which makes it hard for the model to do so. However, the EEG models
showed better differentiation, likely due to the higher temporal resolution of EEG
signals which better captures the subtle transitions between sleep stages.

Class Imbalance and Model Robustness: The EEG models appeared more
robust to class imbalances, likely due to the richer temporal features captured by
EEG data. The fMRI model showed more misclassifications, particularly in distin-
guishing between NREM1 and NREM2, highlighting the need for enhanced feature
extraction or class balancing techniques in fMRI-based models.

In summary, both fMRI and EEG data are useful in sleep stage classification; how-
ever, EEG data is more potent than the other, especially when analyzed using state-
of-the-art models such as Bidirectional LSTM. The nice explanation given is that,
due to the more direct measurement of brain activity, EEG has higher temporal
resolution and is therefore better in capturing the dynamics in sleep stages. While
on the other hand, the presentation of spatial resolution by integrated fMRI data
sets covers a High-quality complementarity. For example, hybrid models combining
strengths of the two modalities, EEG and fMRI data, could be explored for even
greater accuracy in sleep stage classification in follow-up research.
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Chapter 6

Conclusion

In this research, we have done the detailed performance evaluation of all three mod-
els, Convolutional LSTM, LSTM, and Bidirectional LSTM using fMRI data and
EEG data. Based on the results of our study, it can be directly inferred that Con-
vLSTM works well on fMRI data because obvious and more pronounced and reli-
able spatio-temporal features are present. In contrast with them, LSTMs, especially
Bidirectional LSTMs, can capture more relevant features from raw EEG data in the
task of sleep stage classification. This is explained by the high temporal resolution
of the EEG, which is very important for the subtle dynamics of sleep stages. Hence,
the effectiveness that the EEG showed on these grounds is a great hope for the
future of computational neuroscience and the methodologies of diagnosis implicated
in sleep studies. In the future the aim is to integrate data between EEG and fMRI
and that would be an exciting area of multimodal analysis. This is hopefully going
to synergize the advantages of both modalities and hopefully reach breakthroughs
in the accuracy and effectiveness of sleep stage classification. This will open the
way to further advance not only our knowledge of the physiology of sleep but also
of the clinical assessment and treatment of sleep disorders toward more and more
individualized and effective therapy.
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