An Efficient Handwritten Bangla Character Recognition System
using Computer Vision and Natural Language Processing

by

Tanusree Das Aishi
20101012

Md. Seam Iltimas
20301036

Mirza Azwad Walkil
20101063

Pritam Barua

20101291

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
School of Data and Sciences
BRAC University
September 2023

© 2023. BRAC University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at

BRAC University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Tanusree Das Aishi Md. Seam Iltimas
20101012 20301036
e
Mirza Azwad Wakil Pritam Barua

20101063 20101291

Approval

The thesis/project titled “An Efficient Handwritten Bangla Character Recognition
System using Computer Vision and Natural Language Processing” submitted by

1. Tanusree Das Aishi(20101012)
2. Md. Seam Iltimas(20301036)
3. Mirza Azwad Wakil(20101063)
4. Pritam Barua(20101291)

Of Summer, 2023 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science and Engineering on Septem-
ber 2023.

Examining Committee:

Supervisor:
(Member)

Dr. Md. Ashraful Alam
Associate Professor

Department of Computer Science and Engineering
BRAC University

Co-Supervisor: * y .&J&”UI/
(Member)
Dr. Farig Yousuf Sadeque
Assistant Professor

Department of Computer Science and Engineering
BRAC University

Program Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam
Professor
Department of Computer Science and Engineering

BRAC University

i

Stamp

Stamp

Head of Department:
(Chair)

Dr. Sadia Hamid Kazi
Chairperson and Associate Professor

Department of Computer Science and Engineering
BRAC University

1ii

Ethics Statement

We hereby declare that this thesis is based on our own findings from our own research
discoveries. All other sources used in this work have been properly acknowledged.
Furthermore, we confirm that this thesis has not been submitted nor presented,
either in its entirety or partially for the purpose of receiving a degree from any other
educational institution or university.

v

Abstract

An efficient handwritten character recognition system for an alpha-syllabary lan-
guage like Bangla has always been a challenging issue. Despite being in demand,
the number of papers being conducted on this was very infrequent. Alongside com-
puter vision, our paper proposes the idea of using grapheme segmentation approach
to create an effective system for handwritten Bangla character recognition. The
system profoundly deals with the image of handwritten Bangla characters to pre-
process through Computer Vision. To achieve the efficiency, we have segregated each
Bangla word into grapheme roots and diacritics, whether its simple or compound
character. Through these segments, we compare the roots and diacritics individually
with the given dataset to recognise the characters. Thus, this system is capable of
coping up with the limitations that previous models have by recognising any hand-
written Bangla characters efficiently with great accuracy of 0.98357, 0.98208 and
0.94325 for vowel diacritics, consonant diacritics and grapheme root respectively.
For proper reconstructed grapheme representation as output, we have approached
a reconstruction method with grapheme segmentation. Thus, the implementation
of efficient handwritten character recognition was achieved by computer vision and
grapheme approach from NLP.

Keywords: Character Recognition, Computer Vision, Graphemes, NLP

Dedication

We want to dedicate all of our sacrifices and educational efforts to our great par-
ents, without whom we would be worthless. We also dedicate our thesis to Md.
Ashraful Alam sir, who served as our supervisor and Farig Yousuf Sadeque sir, who
served as our co-supervisor, guided us, and showed us how to develop our skills and
personalities as successful professionals.

vi

Acknowledgement

We extend our gratitude to the Great Almighty for guiding us through the com-
pletion of our thesis without any major setbacks. Our appreciation also goes to
our supervisor, Md. Ashraful Alam and to our co-supervisor Farig Yousuf Sadeque,
for their invaluable support and guidance throughout the process. Lastly, we are
grateful for the unwavering support of our parents, without whom this achievement
would not have been possible.

vii

Table of Contents

Declaration
Approval

Ethics Statement
Abstract
Dedication
Acknowledgment
Table of Contents
List of Figures
List of Tables
Nomenclature

1 Introduction

1.1 Handwritten Bangla Character Recognition
1.2 Research Problem
1.3 Research Objective

Literature Review

Description of the dataset
3.1 Bangla Handwritten Grapheme Dataset
3.2 Data Augmentationo

Description of the models

4.1 Overview of our proposed system:
4.2 Support Vector Classifier (SVC)
4.3 Custom CNN Model
4.4 ResNet-50
4.5 VGG19

viil

ii

iv

vi

vii

viii

xii

xiii

5 Reconstruction

5.1 Reconstruction of Graphemes
5.2 Challenges of Reconstruction and proposed solutions

5.3 Features . .

6 Results and analysis

6.1 Evaluation Metrics
6.2 Results and Comparison of different models
6.2.1 SVC . . .
6.2.2 Custom CNN model
6.2.3 ResNet-50
6.2.4 VGGI9

6.3 Comparison
7 Conclusion

Bibliography

ix

26
26
27
29

30
30
32
32
33
38
43
48

50

52

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Bangla grapheme oL L 1
Image values 8
Grapheme Count 9
Labels 9
Considered roots and diacritics 10
Grayscale grapheme image example 1 10
Grayscale grapheme image example 2 10
Grapheme Frequency 11
SVO X . . o e 11
SVC y . e 12
Automated Batch Learning 0L, 12
Examples of Left Shift, Right Shift and Zoom 14
Examples of Horizontal Flip, Vertical Flip and Rotation 15
Overall structure of the proposed system 16
Support Vector Classifier (SVC) 17
Support Vector Classifier (SVC) model diagram 17
A basic CNN model architecture 18
Custom CNN model, 19
Building block of residual learning 20
ResNet-50 Bottleneck building block 21
ResNet-50 architecture L. 22
VGG19 Model 24
Consonant diacritics in middle 27
Consonant diacriticsinend 27
Solution for the representation problem of ‘& 28
Out of the dictionary grapheme prediction 29
CNN vowel diacritics accuracy L. 33
CNN vowel diacritics loss 33
CNN Vowel Diacritics Confusion Matrix 34
CNN Consonant Diacritics accuracy 35
CNN Consonant Diacritics Loss 35
CNN Consonant Diacritics Confusion Matrix 36
CNN Grapheme Root Accuracy 37
CNN Grapheme Root Loss 37
ResNet-50 Vowel Diacritics Accuracy 38

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25

ResNet-50 Vowel Diacritics Loss 38

ResNet-50 Vowel Diacritics Confusion Matrix 39
ResNet-50 Consonant Diacritics Accuracy 40
ResNet-50 Consonant Diacritics Loss 40
ResNet-50 Consonant Diacritics Confusion Matrix 41
ResNet-50 Grapheme Root Accuracy 42
ResNet-50 Grapheme Root Loss 42
VGG19 Vowel Diacritics Accuracy 43
VGG19 Vowel Diacritics Loss, 43
VGG19 Vowel Diacritics Confusion Matrix 44
VGG19 Consonant Diacritics Accuracy 45
VGG19 Consonant Diacritics Loss 45
VGG19 Consonant Diacritics Confusion Matrix 46
VGG19 Grapheme Root Accuracy 47
VGG19 Grapheme Root Loss 47
Comparison of all the models 49

X1

List of Tables

6.1 SVC Results. 32
6.2 Accuracy comparison of all the models 48
6.3 Precision comparison of all the models 48
6.4 Recall comparison of all the models 48

Xii

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

CNN Convolutional Neural Network
DL Deep Learning

DNN Deep Neural Network

F1 Balanced F-Score

ML Machine Learning

NLP Natural Language Processing
ResNet Residual Neural Network

SV M Support Vector Machine

xiii

Chapter 1

Introduction

1.1 Handwritten Bangla Character Recognition

Bangla, the fifth-most-spoken Indo-European language, is the official and native lan-
guage of Bangladesh and is spoken by around 220 million people globally, primarily
in the Indian subcontinent (West Bengal, Assam, Tripura). It is a very historically
enriched language and is an essential communication medium in the aforementioned
regions. The Bangla alphabet consists of 39 consonants and 11 vowels. Being a lan-
guage from the alphasyllabary family which is also known as abugida, the writing
system of Bangla is segmental, meaning that each word is made up of consonant-
vowel units and these units are referred as Graphemes. In alphasyllabary languages,
graphemes are the smallest units of writing [1]. The fundamental components of
Bangla graphemes are grapheme roots, vowel diacritics, and consonant diacritics.
Three types of grapheme roots can be distinguished: vowels, consonants, or con-
juncts of characters. Vowel or consonant diacritics may be used with grapheme
roots, or they may be used alone to create a single grapheme.

Graphemes

o /\M

--

Consonant Diacritic

Vowel Diacritic Grapheme Roots

Figure 1.1: Bangla grapheme

Character recognition systems are increasingly in demand for governmental and aca-
demic uses in recent times and have been growing in popularity. There have been
many studies done for handwritten English character recognition but unfortunately
very few researches have been carried out for the recognition of Bangla handwritten
characters. Moreover, it is easier to recognize English characters because of their lin-
ear arrangement of letters which is not the case for Bangla characters. Unlike English
characters, Bangla characters are difficult to recognize due to the complex writing
system and non-linear arrangement of the characters. Whereas most OCR(Optical
Character Recognition) systems perform a linear pass over a written line, we need to
take into account the idea of non-linear placement while developing OCR systems
for alphasyllabary languages like Bangla [1]. Another challenge as mentioned by
M.Z. Alom et al. [2] in their paper, handwriting of each language typically varies in
size and shape from person to person. Additionally, the characters might either be
isolated or written in cursive, which makes it more difficult to recognize them.

Our goal in this thesis is to address the aforementioned issues with handwritten
Bangla character recognition, with a focus on conjunct grapheme recognition. We
aim to construct a system with the aid of computer vision and natural language
processing by researching existing methodologies and datasets. We intend to develop
a feasible and more efficient method than the existing approaches for reading Bangla
handwriting that will be useful for both academic, governmental and commercial
purposes.

1.2 Research Problem

The progress of handwritten character recognition in English and a few other lan-
guages have come a long way. Many models have been developed through which
handwritten characters can be recognized with almost 100 percent accuracy espe-
cially in English. According to [3], MNIST dataset is able to recognize English
handwritten characters with 99.79% accuracy which is almost as close as a human
can recognize.

However, in the case of Bangla, things get a little complicated. Firstly, the letters
are complex in shape and some have similarities with each other. There are even few
characters that differ from one another only by a single dot. Secondly, there is no
perfect Bangla dataset. Even though there are some, those are not enough. These
datasets can either identify a higher number of classes or provide high accuracy but
not both at the same time. The system developed by K. Roy et al. obtained 98.42%
accuracy on 10 numeric data classes and 91.13% accuracy on 50 classes of character
data [4]. Next, there is also another model which is mainly machine learning based
through which satisfying accuracy can be achieved [4].Yet, the accuracy becomes
questionable when it comes to identifying a new character compared to a previously
faced character. Moreover, there are many other models such as CNN (Convolutional
Neural Network), Autoencoder, Extended CNN, Data Augmentation, Bi-directional
LSTM (Long Short-Term Memory) etc. However, most of these models fail to
provide high accuracy for large numbers of classes. Now this raises a question,

Is it possible to develop such a system where huge numbers of data,
especially compound characters are recognized with high accuracy?

We believe that it is possible to do so using the latest techniques of Natural Lan-
guage Processing and Computer Vision combined.

In this research, NLP and Computer vision based Bangla Handwritten character
recognition is investigated. The proposed system first divides the given word into
separate characters and applies computer vision to identify whether the character
is simple or compound. If it is a simple character then the corresponding unicode
is generated. On the other hand, if it is a compound character then NLP comes
into action in order to divide the compound character into separate segments based
on graphemes. Finally, the corresponding unicodes of the separate segments are
combined in order to convert it to the desired text regardless of the combination of
characters used in the compound character. We are hopeful that this method will
be able to show satisfactory results and outperform other existing methods.

1.3 Research Objective

Considering the previously used models for the purpose of handwritten character
recognition in Bangla language, our paper upholds the purpose of a more efficient
system. Alongside using the adequate models, usage of grapheme segmentation via
NLP and computer vision for preprocessing the simple singular character, will be
the part of our preferred research.

In the field of Bangla character recognition, working with neural models we often
face the hardships in finding the proper dataset in correct and desired format, which
results in fluctuating accuracy. In the preprocessing stage of our model, Computer
Vision extracts the characters(Simple and Compound) from any word and the sim-
ple characters are converted to unicodes according to their class values. Then, for
the compound character NLP (Natural Language Processing) will be of great use
through graphemes.

Therefore Objectives:

1. Synchronizing the unicodes from classifier in preprocessing via Computer vi-
sion.

2. For compound characters to be recognised, efficient usage of NLP, where
Graphemes(Segmentation of the words linguistically) will play a significant
role.

3. Attempt to gather a proper dataset for peak accuracy.

Chapter 2

Literature Review

To establish an efficient system for Bangla handwritten character recognition is very
demanding despite the number of researches being infrequent. Some recent research
is based on DNN, CNN, Computer Vision and Machine Learning. But those papers
do not take NLP into consideration, specifically for compound Bangla handwritten
graphemes. Also, a Grapheme based approach for detecting the conjunct characters
is not so usual as the number of researches is very few.

Due to the variability of individual handwriting style together with the isolated or
cursive style of the characters make it more complex to recognize them [2]. This
complexity enhances more in terms of Bangla handwritten characters, especially the
compound characters. An approach to create a model of Bengali handwritten digits
recognition has been taken through a Computer Vision challenge in 2018 for the
purpose of mass public use [5]. In this challenge, the participants have submitted
different models for digit recognition while using traditional machine learning tech-
niques. However, their models only focused on Bengali digits and not on the letters.

To work on the characters, the authors of this paper [1] have proposed an identi-
fying scheme dependent on linguistic fragments of words called Graphemes. The
Grapheme segments consist of Grapheme roots(Vowel, Consonant and Conjunct
roots) as well as Diacritics. They have used the Bengali ASR dataset [6] for
graphemes selection, a large dataset based on the scheme. Also, the contrasting or-
thography of alpha-syllabary languages like Bangla compared to English had made
it more challenging for them to create the model. In our model, we have also used
Graphemes to detect simple and compound characters through CV and NLP with
larger dataset. In order to perform that, the idea of reconstruction has been intro-

duced.

Another paper [7] introduced a DNN based automated system for Bangla char-
acter recognition where they have used DNNs, for example, VGG16, ResNet50
and DenseNet121 to achieve a great accuracy of more than 90%. Their dataset
is BanglaLekha-isolated dataset [8] for the research. They have also worked for vi-
sually impaired people by converting those recognised characters into Unicode and

eventually interpreting it though a Braille representation system. However, in our
paper, we only focus on the implementation of detecting the handwritten characters.
Also, our paper gives importance on NLP for compound characters to eventually
recognise Bangla words which this paper [7] fails to achieve.

Another approach made by M.M. Rahman et al. [9] using CNN(Convolutional
Neural Network) was able to generate better accuracy than DNN based model in
character recognition. For this, they have gone through 20,000 handwritten samples
and achieved 93.93% accuracy eventually. However, their work is only limited to
basic Bangla characters. To deal with the compound Bangla handwritten characters
recognition, U. Pal et al. [10] proposed the idea of using Gradient Feature by which
they could obtain an accuracy of 85.90% from 20,543 samples of these conjunct
characters. Nonetheless, our intent is to produce higher accuracy for this task with
the help of NLP which can assist computers to read texts, recognise and interpret
it.

Again, T.K. Bhowmik et al. [11] introduced another model where they introduced an
MLP classifier to recognise 50 Bangla basic characters from 440 sample images based
on stroke features. In this process, they tried to extract 10 distinct features from
the character images by identifying the strokes present in them. On the contrary,
another model [12] of SVM (Support Vector Machine) based two-stage Hierarchical
Architecture has been proved to outperform the MLP and RBF network classifiers
in recognising the characters. In addition, the researchers proved the fusion scheme
of the three classifiers to be slightly better than the SVM classifier.

Apart from the above models, S.K. Parui et al. [13] presented an alternate approach
where they worked with 24,500 handwritten isolated sample characters and grouped
the different strokes of the graphemes into 54 classes based on their similarity in
shape. And they used HMM (Hidden Markov Models) for the recognition of these
strokes. Finally, they used a second phase classification for character recognition
through the classification of strokes. Nonetheless, their model only concentrates on
the basic Bangla handwritten graphemes despite having a large dataset.

Analyzing the above discussed papers, it can be concluded that an efficient recogni-
tion system for Bangla handwritten graphemes is still a requirement as the amount
of research on the topic is very few. Moreover, most of the work is based on simple
Bangla characters recognition. There exists some work on recognition of compound
characters, yet their accuracy is not up to the expectation in every case. Therefore,
the significance of compound or conjunct characters recognition cannot be denied
also. In our proposed model, we are not only using Computer Vision for basic char-
acters, but also implementing NLP(Natural Language Processing) for Compound
characters through the concept of Grapheme segmentation.

Lastly, our paper deals with the recognition system with a unique approach. In this
approach, each image of Bangla characters (Simple and Compound) is represented
by a unique numerical value. Then the model is trained with the corresponding
value of the image where the value is reconstructed to that specific image character.
Thereafter, the trained model can predict the characters while testing an image by
generating the corresponding numeric value as well as converting it to that character
in text format. But what makes it unique is that the model can even predict
a conjunct character which may have not been used in training. However, the
diacritics and the roots of that conjunct character may have been used in separate
different images. Basically, the reconstruction process is used in such a way that it
does not merely search for an expected character as it is. Rather, it tries to recognise
a character by its root and diacritics, matching them with different images (roots
and diacritics of different compound characters). In this way, the proposed model
is distinctive among all other models. As a result, our model is able to detect all
kinds of Bangla characters (Basic and Conjunct) with brilliant accuracy.

Chapter 3

Description of the dataset

3.1 Bangla Handwritten Grapheme Dataset

The task of Bangla handwritten character recognition requires a huge amount of
data. There are lots of datasets available for Bangla handwritten characters that
are nearly similar. But as we are considering an approach based on graphemes,
we were able to acquire a multi-target dataset for common Bengali graphemes that
aligns with our requirements. Therefore, we chose to work with this pre-existing
grapheme dataset [1], which is the very first bangla handwritten characters dataset
with a grapheme-based labeling scheme.

Our data set is divided into two parts. One consists of the pixel values of 137x236
sized images with image Id and the other one contains the labels along with the
image Id. Each image is Flattened to 1-dimensional 32,332 pixel values and saved
as a row. Again the image Id section is divided into four different parquet files.

imgedid 0 1 2 3 4 5 6 7 8§ .. 332 333 334 335 3326 3327 3328 3319 3B 32331
Tran 0 204 263 202 263 201 202 203 201 261 .. 263 263 203 203 3 23 W3 W 23 !

Tranf 261 244 238 240 248 246 246 247 261 .. 286 205 245 W0 N6 05 B N6 X5 M

Tran2 201 250 249 260 249 240 247 202 202 .. 24 0 W %3 % 49

Trand 247 247 243 203 263 260 261 201 280 .. 2% 24 4 M | 3 203 B M

Traind 249 248 246 246 248 204 202 242 229 .. 2% 0 W % w W

Figure 3.1: Image values

It is really difficult to manage four separate files simultaneously. So, while working,
we had to merge them all into one table for getting proper values and we used the
pandas library for this purpose. After combining, we can observe that our data
consists of 1295 unique graphemes along with 200,840 images which means there
are 200,840 rows in total.

A image_id = # grapheme_root = # vowel_diacritic = # consonant_diacrit... = A grapheme

I
146.96 - 150.30
Count: 10,828

200840 1295
unique values unigue values
0 167 0 10 0 6

Train_8 15 9 5 (%3l

Train_1 159 2] e =

Train_2 22 3 5 g

Train_3 53 2 2 6

Train_4 71 9 5 can

Train_5 153 9] [Saa]|

Train_6 52 2] f&

Figure 3.2: Grapheme Count

Similarly, the label file consists of 200,840 rows. However, it consists of 5 columns
representing image id, grapheme root, vowel diacritic, consonant_diacritic and
unicode Bangla character representation respectively. Grapheme root, vowel di-
acritic and consonant diacritic are already encoded and each are assigned with values
from 0 to n (total number).

image_id grapheme_root vowel_diacritic consonant_diacritic grapheme

Train_0 15
Train_1
Train_2
Train_3
Train_4
200835 Train_200835
200836 Train_200836
200837 Train_200837
200838 Train_200838
200839 Train_200839

200840 rows x 5 columns

Figure 3.3: Labels

Bangla language has a large number of graphemes (approximately 341,782,677).
Considering all of the possible combinations of compound characters, the number
is nearly infinite. Consequently, it is impractical to deal with such a vast quantity
of data. Therefore, in our case, we have restricted it to 1295 commonly employed
graphemes. We have 168 grapheme roots among which 11 are vowels, 38 are conso-
nants and 119 are conjuncts. Also, we have 11 vowel diacritics as well as 8 consonant

diacritics (including null).

Target Variable

Class

Grapheme
roots

(168)

VoweL Roots
o (a), ® (a), 2 (), F (1), © (u), © (), * (r), @ (&), F (ai), ¢ (0), &
(au)
CoNSONANT RooTs
F (ka), 9 (kha), % (ga), ¥ (gha), & (na), b (ca), ® (rha & (ja), ¥
(jha), @ (fia), B (ta), 7 (tha), ® (da), & (dln) q (1_1'1) ta), ¥ (tha),
W (da), ¥ (dha), (nm) i (pa) % (pha), 9 (ba), ® bln) T (ma), T
(va), @ (ra), @ (la), ® (%a), ¥ (sa), A (9 , 2 (ha), © (ra), ¥ (rha), ¥
(), ¢ (), <t (), & (t)
ConjuneT RooTs
@ (kka), 3 (kta), ® (kta), ¥ (kla), (ksa), ¥ (ksna), ® (ksma),
F (ksa), % (gdha), ¥ (gna), ¥ (gba), ¥ (gma), & (gla), ¥ (ghna),
(nka), % (nkta), ¥ (niksa), ® (nkha), ¥ (nga), ¥@ (ngha), ® (cca),
52 (ccha), B (cchba), ®& (jja), 5 (jjba), & (jia), § (jba), % (fica), 2
(ficha), @ (ija), B (tta), 8 (dda), ¥ (nta), ¥ (n;ha), @ (nda), & (nma),
@ (tta), § (ttha), ¥ (t'tha), g (tna), \‘47 (tha), ¥ (tma), (dgh'\) W
(dda), @ (d'dha), & (dba), @ (dbha % (dma), ® (dhba), 75 (nja),
% (nta), ¥ (ntha), ® (nda), © (nt'}) ¥ (ntba), ¥ (ntha), ’ﬁ (nda),
7 (ndba), % (ndha), ¥ (nrn) (nba), ¥ (nma), ¥ (nsa), 5 (pta),
& (pta), @ (pna), 8 (ppa), ¥ (pla), # (psa), ¥ (phta), ¥ (phpha),
(phh) ® (bja), @ (bda), & (bdha), ¥ (bba), § (bla), § (bhla), ®
(mna), ® (mpa), ¥ (mba), ¥ (mbha), ¥ (m'ma), ¥ (mla), % (lka), &
(lga), % (Ita), ® (Ida), ¥ (Ipa), & (Iba), & (Ima), & (lla), 5 (Sca), ¥
($na), ¥ ($ha), =T ($ma), # (Sla), ¥ (ska), B (sta), k) (stha), B (sna), ™
(spa), ¥ (spha), @ (sma), % (ska), 75 (sta), ® (sta), % (stha), § (sna),
= (spa), % (spha), ¥ (sba), ™ (sma), @ (sla), ™ (s’sa), ¥ (hna), &
(hba), ® (hma), Z (hla)

Vowel Diacritics (11)

Null, @ (ba), 7@ (bi), & (b1), g (bu). q (bu), @ (be), & (bai), @ (bo),
] (bau)

Consonant Diacritics (8)

Null, (bya), & (bra), & (rba), & (rbya), & (brya), & (rbra), q (B)

Figure 3.4: Considered roots and diacritics

As the pixel values of our image are represented in 1D shape, we can not visualize
it directly. To solve this, we implemented the numpy library to convert the data
to a numpy array from panda. After that, we reshaped it to size 137x236 through
numpy.reshape. Following that, the matplotlib library is used for visualizing the
images. Few examples of the grapheme grayscale images are shown below.

0

0

20

40

60

80

100

120

20

40

60

80

100

120

"] 50 100

Figure 3.5: Grayscale grapheme

image example 1

150

200

0 50 100 150 200

Figure 3.6: Grayscale grapheme
image example 2

10

Subsequently, we iterated over the graphemes to determine the total number of im-
ages for each individual grapheme. We noticed that the highest frequency is 178
and the lowest is 118. We also determined the average frequency and it turned out
to be around 155 images per grapheme.

200

100

nﬁ?#@gle?k"g@ﬁ@tl"ﬁw“E’EQ@E"E&EEWGEEMHGEEEV“EE%&&H‘@WEE’,@@EI&»REEM&Z FREFFRERFEFRREBEREET T

Figure 3.7: Grapheme Frequency

After that , we preprocessed our data to make it suitable for training our models.
Firstly, for SVC we dropped the image id column from image values and added
each row to an array called x which is our features. Next, we normalized the x
within the range 0 to 1 by dividing the values with 255. For y (target) we dropped
the image id and Bangla character representation column from the label file and
appended each row in y.

image_id 0 1 2 3 4 5] 7 8 ... 32322 32323 32324 232325 32326 32327 32328 32329 32330 3233

Train_75 249 252 253 254 254 254 254 253 251 .. 254 254 254 254 254 254 254 254 255 255
Train_128 247 251 248 253 252 248 250 252 249 . 253 253 253 253 253 253 254 254 253 253
Train_221 252 253 252 251 252 252 252 252 253 254 254 254 253 252 252 252 252 252 252
Train_262 248 248 249 248 248 249 248 246 245 255 255 255 255 255 255 255 255 255 255
Train_283 233 252 252 252 252 253 253 253 253 . 252 252 232 232 232 232 252 252 252 252

rain_199714 251 244 250 251 254 252 252 248 252 254 254 253 253 254 253 254 253 254 252
rain_199865 251 250 251 250 248 248 251 252 252 . 255 255 255 255 255 255 255 255 254 254
rain_200409 238 240 246 250 249 247 247 247 247 . 253 253 252 252 252 252 252 252 252 252
rain_200599 252 250 253 251 249 254 253 253 251 .. 254 254 253 252 253 253 253 254 254 255
rain_200767 251 252 253 253 252 252 252 233 253 . 252 252 232 232 232 232 253 253 254 252

Figure 3.8: SVC x

11

grapheme_root vowel diacritic consonant_diacritic

15 9 5

Figure 3.9: SVC y

On the other hand , VGG19 and ResNet-50 takes 224 x224 sized images as input.
Loading all data at once might cause the dead kernel issue due to the huge amount
of data. To avoid these issues, we stored the numpy array as raw image of size
137x236 in a desktop folder using Image.fromarray.save() function using a loop for
all images and giving names according to the image id. After that we created a
loader function with the purpose to load the image. To implement that, we used the
keras.utils.load img to load images from directory and convert it to size=224x224
and color _mode=rgb. For custom CNN , we did the similar thing, only changed
the size to 200x200 and color _mode to grayscale. Then we normalized the x by
dividing it by 225. After that, we used the yield function which plays the main role
of loading our data in batches. Finally, incremented the batch start and batch end
position. This loader function allowed us to train our model in even low configura-
tion pc which was beneficial for us.

_ - Update Data < Launch
— -7 - A
-t
Data Can be
Automated
,ﬂ»f&”:"

' Train Model —— E‘:)Tll;tjgtr?

Figure 3.10: Automated Batch Learning

12

We randomly splitted the x and y in 90:10 ratio for train and test named x_ train,
y_train, x_test and y__test using train_ test_ split of sklearn model selection. Then
x_ train ,y_ train was again splitted into 90:10 ratio for actual train and validation
respectively. We plan on using x_train and y_train for training the model, x val
and y_val for validation during training and x_test and y_ test for testing its final
accuracy. We also ensured that all the models use the same data splits using seed
numbers.

13

3.2 Data Augmentation

While preparing our dataset, we went for data augmentation. Due to the fact that
people have different handwriting styles, data augmentation was crucial for us. It is
unfeasible to compile every type of writing style. Data augmentation enables us to
transform the original image into different shapes by rotating, adjusting contrast,
and so on. Data augmentation additionally expands the size of the training data,
which is beneficial for deep learning neural network models as they are able to learn
the features better. In addition, it reduces over-fitting during model training by
providing more training data to the model ensuring that it can learn from these
data and it allows the model to generalize to new data. For data augmentation, we
created a function named data augment that uses the ImageDataGenerator library.
This function was used for data augmentation during the training of the model. We
used the rotation range=15 and tried to keep other things minimal as too much of
other things such as zoom, shift might have resulted in wrong character.

Left Shifting 3 Right Shifting 3

7

Zoom ¥

Figure 3.11: Examples of Left Shift, Right Shift and Zoom

14

Horizontal Flip Vertical Flip ¢

Rotation « Rotation «

Figure 3.12: Examples of Horizontal Flip, Vertical Flip and Rotation

15

Chapter 4

Description of the models

4.1 Overview of our proposed system:

The figure 4.1 illustrates the overview of our proposed system where an image of
handwritten grapheme would be taken as an input and it would be passed through
the model which would give three labels as outputs: grapheme root, vowel diacritic
and consonant diacritic. The labels would be mapped to get the actual form of the
three outputs and then through the reconstruction approach, it would give a proper
reconstructed computer usable grapheme as an output.

255(255] ..., 0 |224

Z HEETEE 255 | 255
@g‘v%::: HE

223 | 0 |224) ..., 0 |28

Vowel: 1
[

Vowel: T
Consonant: <] | ——»
Root: §

Mapping and Reconstructed
Reconsuuction Compurter-Usable Text

-4
Root: 118

224 |25 (255 ..., 255 | 255
Input Image 0 1 m

Model Outputs

Image Pixel Values

Figure 4.1: Overall structure of the proposed system

4.2 Support Vector Classifier (SVC)

In machine learning, the Support Vector Classifier (SVC), developed based on SVM,
is an algorithm to be used for classification problems. In SVC, the data points of
the dataset are classified distinctly in an N-dimensional space through Hyperplane
(maximum margin to separate the data points). The SVC kernel transforms low
dimensional input space into a higher one to linearly separate the data points. With
this algorithm, two bordering parallel plates are created to draw the linearly sepa-
rable categories of data away from each other. The categories that are farthest from
the boundary of the plates are the best separator, and the nearest training data to
the hyperplane separator plates is called the Support Vector.

In order to implement SVC we used the built in model from sklearn library. Firstly ,
we imported the SVC from sklearn. Then initialized the model with a linear kernel.
Our project outputs three labels at once. As the SVC kernel is linear, it has been

16

A %0,
Category 1 " N %%

O Category 2

v

Dividing Hyperplane

Figure 4.2: Support Vector Classifier (SVC)

combined with ClassifierChain for handling multiple labels in this proposed project.
The ClassifierChain will basically arrange the binary Support Vector Classifier into
a chain where the models will parallelly make predictions in a specific labels using
the available features. This makes our model ready for training . Finally we trained

the model with our train data and calculated the accuracy accordingly.

After the preprocessing and formatting of the image data, it is split into Train and
Test data where 80% of the data are Train data and the rest of the 20% are Test
data. Then the SVC parameters are defined as well as combined with ClassifierChain
to train the model using the Train data. To know whether our model is accurate
enough to predict, we have used the Test data in our model. The final prediction

score signifies how well the model has been trained.

‘ Image data ‘

J
Data preprocessing and formatting
J
‘ Splitting in test and train ‘
J
‘ Train data ‘ ‘ Test data ‘
I S,
Define SVC parameters
I S,
Combine with classifier chain
I S,
‘ Train model ‘
f
‘ SVC Prediction Process ‘
I

‘ Final Prediction ‘

Figure 4.3: Support Vector Classifier (SVC) model diagram

17

4.3 Custom CNN Model

Deep learning models have developed significant popularity in the field of computer
vision and recognition tasks due to their better efficacy when compared to machine
learning models. As deep learning models utilize neural networks, they are signifi-
cantly better at analyzing and capturing complexities in data patterns. Additionally,
these models perform far more accurately when trained with large datasets.

Input

Output

Flatten
Layer

Convolutional Layer ‘ ‘ Pooling ‘ Fully Connected Layer
}<— > <—){ —\{; >

Figure 4.4: A basic CNN model architecture

Convolution Neural Network (CNN) is a neural network model that is extensively
used in computer vision and image processing related tasks. A basic CNN model is
composed of three layers: convolutional layer, pooling layer and fully connected lay-
ers. Convolutional layers are the fundamental building blocks of CNN architecture as
they carry out most of the computations. These convolutional layers extract crucial
details and features from the input image by performing dot products between two
matrices, one of which is the kernel layer, also known as filters and the other being a
portion of the input image data. The kernel layer which is essentially a matrix with
learnable parameters and smaller than the input data, traverses iteratively through-
out the entire image input and generates feature maps as final output. To introduce
nonlinearity into the model, activation functions such as ReLLU are applied to the
produced feature maps. These outputs are then forwarded to the pooling layer,
which reduces the spatial dimensions of the feature maps while preserving the most
important features. Pooling layer contributes in reducing computational complexity
and brings robustness to the model. Feature extraction process is mainly carried
out within the convolutional and pooling layers. Following this, the feature maps
are flattened to a one dimensional vector and passed through the fully connected
layers for the final classification, generating the final output.

18

Input

|

Convolution

v

Max Pooling

v

Convolution

v

Max Pooling

v

Convolution

v

Max Pooling

v

Convolution

v

Max Pooling

v

Convolution

v

Max Pooling

h 4 h 4 h 4
FC FC FC

v v v

FC FC FC

v v v

Softmax Softmax Softmax

| | |

Qutput
Consonant
Diacritic

Qutput Qutput
Grapheme Vowel
Root Diacritic

Figure 4.5: Custom CNN model

We have built a custom CNN model with 8 layers in total for our task. It takes an
image of size 200*%200 as input and the input is then passed through the convolu-
tional layers. We have stacked 5 convolutional layers to enable the model to learn
more intricate features and patterns, each of these convolutional layers is followed
by a max pooling layer. Afterwards, the feature maps produced by these layers
are passed through 2 fully connected layers and 1 softmax layer, finally producing
the output. We used ADAM optimizer and sparse categorical cross-entropy for loss
function.

19

4.4 ResNet-50

ResNet-50 is a very deep convolutional neural network architecture that was first
introduced in the paper titled 'Deep Residual Learning for Image Recognition’ [14],
published at the 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition and has since received widespread acclaim and popularity. It is comprised
of 50 layers and is based on the concept of residual learning and layering residual
blocks to create a potent deeper neural network. This neural network model is a pre-
trained model and it was initially pretrained using the ImageNet dataset consisting
of millions of images, which helped the model acquire various features, shapes and
patterns. The pre-training phase provided the model with a deeper and enriched
comprehension of image features, which has been shown to be beneficial for different
tasks related to computer vision.

The vanishing gradient problem is an often encountered issue while training a deeper
neural network. This has been an issue for multilayered neural networks because
as the network gets deeper, the gradient decreases. In the backpropagation tech-
nique, gradients are computed by moving from the output layers to the input layers
and multiplying the derivatives of the activation functions of each layer. Now the
problem arises because most activation functions limit their output value between 0
and 1. When these small values are multiplied, the gradient continues to decrease,
which would have an impact on the initial layers because they would be unable to
update their weights and biases. Consequently, it would result in an overall drop in
the neural network model.

tlayer

F(x) relu X

L 4

identity
[weight layer

F(x)+x

Figure 4.6: Building block of residual learning

20

The ResNet-50 model addresses this issue by implementing the concept of skip con-
nections and residual blocks. In this approach, the output of one layer serves as the
input for the following layers, skipping one or more layers in between. It allows to
create a shortcut path for information to flow and to bypass certain intermediary
layers, facilitating gradients to find a path to flow without minimizing their value.
The skip connections prevent the value from passing through the activation func-
tions that were causing the vanishing gradient in the first place. In other words, if
any layer ends up having a reduced value of gradients, it skips that layer bypassing
through the skip connections.Therefore, this technique resolves and mitigates the
issue of vanishing gradient.

256 d

F

[3x3 64]
relu
k J
[1x1, 256

Figure 4.7: ResNet-50 Bottleneck building block

As stated previously, ResNet-50 consists of 50 layers where the network is essentially
composed of residual building blocks stacked on top of one another. It takes an RGB
image of 224x224 size as input which is then passed through an initial 7x7 convo-
lutional layer. Following that, batch normalization and ReLU activation function is
implemented. After that, it passes through a 3x3 kernel sized max pooling layer,
with stride size of 2. Following this, it gets passed through multiple ResNet blocks
where each block consists of 3 layers : the first layer of 1x1 kernel, the second layer
of 3x3 kernel and the last layer of 1x1 kernel. These blocks are also known as Conv
block and Identity block . Each Conv block is followed by an Identity block. In the
ResNet-50 architecture, the skip connections bypass 3 layers which is illustrated in
the bottleneck building block. After getting passed through the last residual block,
the output then passes through the average pooling layer. Lastly the output goes
through a fully connected layer and softmax function.

21

l Input

Zero Padding

v

Convolutional Layer

Batch Normalization

RelLu

Max Pool

v

Conv block

1D block

v

Conv block

1D block

v

Conv block

1D block

v

Conv block

1D block

v

Average Pooling

Flattening

FC

l Output

Figure 4.8: ResNet-50 architecture

In order to implement ResNet50 built-in ResNet50 of tensorflow.keras.applications,
we set the parameters include top = False , weights="imagenet’ and set the in-
put_ tenosr and pooling to None. The input shape was (224x224x3) which is the
recommended shape for resnet50. As our program outputs three separate things
such as grapheme root, vowel diacritic and consonant diacritic, we had to modify
the model and add extra layers. In order to do so we added three new branches where
each branch consists of two dense layers with ReLLU activation and one dropout layer
in between. Finally, we concatenated the output of each branch and added the final
classification layer which makes our model ready for training.

22

4.5 VGG19

VGG19 is an advanced and deep CNN model that was first introduced in the paper
‘Very Deep Convolutional Networks for Large-Scale Image Recognition’” which was
published at the ICLR 2015 [15]. This is a pre-trained model that has been trained
with millions of diverse images. The performance of VGG19 was appreciated and
brought to popularization in the field of computer vision and image classification
because of its depth, capability of learning complex features, working efficiently and
effortlessly with a wider range of dataset and having simpler architecture compared
to other contemporary CNN models.

Three layers: convolutional layers, pooling layers, and fully connected layers —
forms a basic CNN model. Image dataset is given as input and the first convolu-
tional layer extracts features from the input images. It produces a feature map as
an output, which is then used as input by the additional layers to learn more about
the features of the images. In convolutional layers, an activation function is used
to introduce nonlinearity into the network for simpler computational tasks for the
network, primarily its ReLU (Rectified linear activation unit). Convolutional layers
are typically followed by pooling layers after that. The core purpose of the pooling
layer is to minimize the feature map size for the ease of computation. Finally it
generates the desired output in image format in the output layer where another
activation function is used, softmax is used commonly.

VGG19 is a more advanced Convolutional Neural Network architecture known for
its 19 layers deep architecture as well as a large number of parameters. The depth
of this architecture allows it to recognise more detailed patterns in images and learn
more complex features about the input images.These 19 layers are made of 16 Con-
volutional layers along with 5 MaxPool layers, 2 Fully Connected layers and 1 final
layer which is softmax. The input image is given as RGB image, pixels fixed to size
224 x224. This method is used for image classification where there are multiple 3x3
filters used in each convolutional layer. These multiple small 3x3 filters are useful
for the network as it can learn more fine grained features for a better result. An
activation function is implemented to introduce nonlinearity into the network after
each convolutional layer. Rectified linear activation unit (ReLU) is commonly used
as the activation function in the VGG19 model. Between the convolutional layers,
max pooling layers are also included with the purpose of reducing the size of the
feature map and acquiring important smooth and sharp features from the images.
After 16 convolutional layers along with 5 MaxPool layers, fully connected layers
are added along with 1 final softmax layer, which is connected with the output layer
that generates the output.

With the VGG19 network, large datasets can be easily trained which eventually will
not hamper the performance of the model. Rather than using a classical CNN; this
complex CNN architecture can be of great use in terms of achieving better accurate
results and more robustness to the alteration in the dataset.

23

[

Input

v

Deptn 64 |

Conv 1-1

Conv 1-2
Max-Pooling

v

—— Block 1

Conv 2-1

Depth 128 |

Conv 2-2
Max-Pooling

v

—— Block 2

Conv 3-1

Conv 3-2

Conv 3-3

Conv 3-4
Max-Pooling

v

A

— Block 3

Depth 512

Conv 4-1

Conv 4-2

Conv 4-3

[
[
|
[

Conv 4-4
Max-Pooling

v

A

— Block 4

Depth 512

Conv 51

Conv 5-2

Conv 5-3

[
[
|
[

Conv 5-4
Max-Pooling

v

A

Fully Connected layer 1

Fully Connected layer 2

v

[

Softmax

v

Output

Figure 4.9: VGG19 Model

24

— Block &

For implementing VGG-19 we used the built-in vggl9 model of keras. However,
we used the include top=False in order to remove the previously existing fully
connected layers and to use our own data to train the model. The input size is set
to 224x224x3. Next, a GlobalAveragePooling layer is added. After that we created
3 different branches which will return the class values of 168 grapheme roots, 11
vowel diacritics and 8 consonant diacritics respectively. Each output layer consists
of one dense layer of unit 512, 1 Dropout layer and finally another Dense layer of unit
256. Accuracy metrics have been used along with Sparse categorical crossentropy
as we have not used any one hot encoding . We have also set the learning rate to be
.001 initially and .0001 after 10th epoch in order to get better model training. During
prediction, the model returns the class values in sorted order based on prediction
value. The first values of the arrays of each output branch are considered to be
predicted grapheme root, vowel diacritic and consonant diacritic.

25

Chapter 5

Reconstruction

5.1 Reconstruction of Graphemes

Reconstruction refers to the process of converting a graphical, numeric or any other
representation of characters to a computer understandable and editable text format.
Throughout the years, reconstruction of Bangla characters has been quite challeng-
ing because of vast variations and combinations of characters. So we tried to solve
this problem by using the grapheme approach. In our required dataset, the images
are labeled with numeric values that are later called in as input for our model train-
ing. We mapped those values to the corresponding grapheme root, vowel diacritic
and consonant diacritic. However, the main challenge was to merge them into a
single grapheme.

26

5.2 Challenges of Reconstruction and proposed
solutions

During building the output, the diacritics did not seem to be adjacent as required
for proper character presentation. In some cases, the root was in first position then
the consonant diacritic and finally the vowel diacritic. Again, in some cases, the
consonant was in first position followed by grapheme root and vowel diacritic. In
order to solve this issue, we tried to find some patterns of positioning and noticed
that the vowel diacritics are always to be placed after the grapheme root for proper
concatenation to build the required character. We also noticed that the main thing
that was changing position was the consonant diacritic. The consonant diacritics
seem to be following some sort of rules.

N+ ol 4+ Gl — N
N+ T+ el — (T

Figure 5.1: Consonant diacritics in middle

"N+ e+ (el — Nl
M+ (T + 'V' 7 C?ﬁ
Figure 5.2: Consonant diacritics in end

The issue consonant diacritics are causing can be called unicode syntax error where
the diacritics are not placed according to their adjacent placement. As mentioned
above, the diacritics are labeled alongside the grapheme roots. For this reconstruc-
tion methodology we have come up with an approach of creating separate arrays
that consist of the numerics in order to call for identifying as their respective posi-
tions. The positions for vowel diacritics are recalled after the roots. However, the
consonants are likely to be placed before the roots or in the end or sometimes before
vowel diacritics as in the middle. So, we created some arrays named as:

e consonant middle
e consonant after
e consonant before

e consonant combined

27

These arrays are checked while calling a function named get_grapheme that takes
the numeric values of grapheme root, vowel diacritics and consonant diacritics as
parameters and returns the text formatted corresponding grapheme. In order to
do so, it first checks which array does the consonant diacritic belong to. If it is in
consonant_ middle, then it is concatenated between grapheme root and vowel dia-
critic. Similarly, in case of consonant__before and consonant__after it is concatenated
before root and after vowel respectively. The consonant combined represents the
combination of two different consonant diacritics. In such cases we noticed that the
first one is added before root and the second one is added before vowel diacritic. So,
we constructed our character accordingly in order to get the proper result.

Next, we faced another problem which was finding the representation form of the
bangla consonant diacritics ‘C3%”. For other diacritics we were easily able to find the
separated form of each diacritics. For example, for T-FeTT we got ©J, for I-Tell we
found &. However, there is no such representation for the consonant diacritics ‘CI%”.
In order to solve this problem, we tried to find out a pattern for ‘Cd%” in unicode
and found that the unicode of ‘T@&F” is \u09b0\u09cd. So we used the unicode
directly instead of character representation in order to get the proper reconstructed
result.

(] — Exists
) — Exists

7

— Doesn't Exist

SOIUtion —> Unicode

|
\u09b0\u09cd

Figure 5.3: Solution for the representation problem of ‘<%’

28

5.3 Features

In traditional one input one output classification method applied in paper [4], the
model can predict only the characters that are used to train the model. It can not
predict any out of dictionary character as there is no common pattern. As a result,
a huge amount of data is required to train the model. However in our case, the
program can recognize out of dictionary characters.

Trained Model With — > | (7 | 9] | o1 | T |(5HI| 5FJ

Not Trained with | (23T 5
Model can still predict |CIT ol
oy

Figure 5.4: Out of the dictionary grapheme prediction

For example, let us assume that we train our model with %, 1, 31, 9, % and (O and
we want to predict (1. One thing to note here is that, we didn’t train out model
with 1. Still our model would be able to predict it. As shown in the figure, o1
directly exits, So , model will detect the grapheme root from there. Next, T would
come from GFI and =3 would be detected from 3. This is how our model will give
grapheme root, vowel diacritic and consonant diacritic value separately. Finally, we
would combine them and get our desired result. Because of this approach, the num-
ber of classes is getting reduced which is ultimately reducing the size of our dataset.

Finally, in paper [4], they used direct searching in the dataset method to find the
reconstructed character. This method might work perfectly if the dataset is huge
and considers all variation of characters. The drawback of this method is that it
won’t be able to reconstruct any out of dictionary character. As a result, if we had
implemented this approach in our program, then out of dictionary characters would
have been recognized but reconstruction would not have been possible. As we are
using a concatenation method applying proper sequence, our program can not only
identify out of dictionary characters properly, but also reconstruct it and give us our
desired character in editable text format.

29

Chapter 6

Results and analysis

6.1 Evaluation Metrics

For analysing a model’s capability, evaluation metrics have a significant role through
which we can help us evaluate the performance of the model more precisely and accu-
rately. After training the on a labeled dataset, we can obtain different performance
metrics, for instance, Accuracy, Precision, Recall and F1l-score. Rather than only
using any definite metric like accuracy, we evaluate our machine model even better
by other metrics as well. In this proposed machine model, we have dealt with Ac-
curacy, Precision and Recall and F1-Score.

Accuracy determines the overall correctness of the model. For measuring accuracy
in both models, the ratio of total number of correct predictions is to be calculated in
perspective to total instances. The total instances contain true positives, true nega-
tives, false positives and false negatives. The correct predictions are the combination
of true positives and true negatives.

TruePositive + TrueNegative

Accuracy =
4 TruePositive + TrueNegative + FalsePositive + FalseNegative

The precision reflects the ability to predict the positive instances correctly. It ini-
tiates the number of true positiveness in ratio to the total number of predicted
positiveness.

TruePositive

Precision =
TruePositive + FalsePositive

Precision is used to decrease the incorrect positive predictions due to high false pos-
itives.

30

Recall is also known as sensitivity which also determines the model’s ability to
identify the positive instances correctly. It calculates the true positiveness in ratio
to the actual positiveness.

TruePositive

Recall =

TruePositive + FalseN egative

31

6.2 Results and Comparison of different models

This section evaluates and presents the results of our experiment for the handwrit-
ten Bangla character recognition task. We have experimented with both machine
learning and deep learning models in order to determine the best performing model.
We have placed more emphasis on deep learning models than machine learning
models, as we have observed in numerous studies that deep learning models are
more accurate for character recognition tasks and have better performance on large
dataset. Moreover, neural network models tend to perform better when learning
detailed features and patterns in the data. Therefore, we have opted for SVC as our
machine learning approach. We chose and experimented with Custom CNN model,
ResNet-50, and VGG-19 as our deep learning models. Here, we have employed ac-
curacy, precision, and recall as evaluation metrics for analyzing and comparing the
performance of our models.

6.2.1 SVC

We have opted for SVC as our machine learning approach. However, the accuracy
result turned out to be to 0.771 , with precision of 0.7635 and recall of 0.7501 . The
result was not satisfactory. It is to be expected because SVC is not meant for such
complex image classification task as Character recognition. In fact, it is designed
for more simple problems. So, we did not proceed with further experiments on this
model.

Model | Accuracy | Precision | Recall
SVC 0.771 0.7635 0.7501

Table 6.1: SVC Results

32

6.2.2 Custom CNN model

Vowel Diacritics

We ran the Custom CNN model for 30 epochs. For the vowel diacritics, we noticed
that the training accuracy drastically increased till 12th epochs. After that it kept
increasing at a slower but constant rate. However, the validation accuracy did not
improve that much after 10 epochs. It became consistent after 10 epochs. At the
peak, the training vowel accuracy was 0.997 and validation accuracy was 0.965.

Vowel diacritic training and validation accuracy

1.00

0.95 A

o
o
o

accuracy

o
[+]
[

0.75 i
—— training

validation

T T T T T T T
o] 5 10 15 20 25 30
epoch

Figure 6.1: CNN vowel diacritics accuracy

However, in the case of loss, we saw that even though the training loss was decreasing
at every epoch, the validation loss kept increasing after 10 epochs. So, it started to
overfit at that stage.

Vowel diacritic training and validation loss

0.8

—— training
validation
0.7 1
0.6
0.5 1
v
5 0.4 1
0.3
0.2 1
0.1 \
0.0 1
T T T T T T T
o] 5 10 15 20 25 30

epoch

Figure 6.2: CNN vowel diacritics loss

33

From the confusion matrix we can see that even though majority classes were cor-
rectly predicted, still some of the classes were being wrongly predicted by this model.
As we can see, the model tried to predict almost all of the labels with some data as
label 0. This resembles that there is still room for improvements.

- 3500

Z6e+0S 0
- 3000

2 1leet03 O

2500
1.8e+03

11 4.7e+02

2000

1500

1000

500

Figure 6.3: CNN Vowel Diacritics Confusion Matrix

34

Consonant Diacritics

The changes in consonant diacritics is also similar to vowel diacritics. Here it rose
significantly till 11th epoch and finally after 30th epoch it reached 0.9979 with
validation accuracy of 0.9618. In the case of losses, similar to that of vowel diacritics,
the validation for consonant diacritics loss kept increasing. This shows there was
overfit.

Consonant diacritic training and validation accuracy

1.000 A

0.975 A

0.950 A

0.925

0.900 A

accuracy

0.875 A

0.850 A

0.825 1 -
—— ftraining

validation

0.800 A

T
0 5 10 15 20 25 30
epoch

Figure 6.4: CNN Consonant Diacritics accuracy

Consonant diacritic training and validation loss

0.6 -
—— training
validation

0.5 1

0.4 1

loss
o
w
|

0.2 1

0.1

0.0 1

0 5 10 15 20 25 30
epoch

Figure 6.5: CNN Consonant Diacritics Loss

35

In the case of consonants we can see that there are 3 huge errors. This model
predicted images of Class 2,4,5 as class 0. This indicates that the model is predicting
too much class 0 and the model fails to perform in case of the consonant diacritics.

- 12000
1.2e+04

- 10000

8000

6000

le+02
4000

2e+02

2000

Figure 6.6: CNN Consonant Diacritics Confusion Matrix

36

Grapheme Root

Finally, the grapheme root’s training accuracy kept improving. However , the val-
idation accuracy became 0.87 after the 12th epoch and remained almost constant
after that. This might be the reason of getting low accuracy in grapheme root.
Similar to vowel and consonant diacritics, the validation loss kept increasing at a
slow rate even though the training loss was decreasing.

Grapheme root training and validation accuracy

1.0

—— training
0.9 4 val|dat|0%r/’——_

accuracy
°© © © o @
- L =] ~ [+:]

o
w
1

(=]
8]
1

T T T T T
10 15 20 25 30
epoch

o
]

Figure 6.7: CNN Grapheme Root Accuracy

Grapheme root training and validation loss

3.5

—— training
validation
3.0 4
2.5
2.0
v
(i)
K=}
1.5 A
1.0 A
057 k
0.0 1
T T T T T T T
o] 5 10 15 20 25 30

epoch

Figure 6.8: CNN Grapheme Root Loss

We can clearly see that the Custom CNN did quite well compared to the SVC.
However, the results were still average and not up to the mark all the time. Though
vowel diacritics and root accuracy is good, the grapheme root accuracy is pretty low.
Also, the consonant diacritics confusion matrix shows it was not able to predict class
0 images properly. So, it denotes that in order to achieve better results, we felt the
need of more better and complex models.

37

6.2.3 ResNet-50

Vowel Diacritics

We ran the ResNet-50 for 20 epochs as there was not that much change . In case
of vowel diacritics, the model initially seemed to be performing well. However, at
the 11th epoch, there was a huge deviation in validation accuracy and huge increase
in validation loss of vowel diacritics. The accuracy almost decreased by 45 percent.
Such deviations can also be observed at 16th and 19th epoch which indicates that
the model might not be able to detect vowel diacritics properly which ultimately
resulted in low accuracy in vowel diacritics.

Vowel diacritic training and validation accuracy

1.0+
0.9 1
> 0.8+
e
=1
w
b=
[
0.7 7
0.6 1
—— ftraining
validation

T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

Figure 6.9: ResNet-50 Vowel Diacritics Accuracy

Vowel diacritic training and validation loss

—— training
2.54 validation

2.0

1.5

loss

1.0

0.5

0.0

T T T T T T T T
0.0 2.5 5.0 15 10.0 12.5 15.0 17.5
epoch

Figure 6.10: ResNet-50 Vowel Diacritics Loss

38

Lots of errors can be seen from the confusion matrix of vowel diacritics of Resnet50.
Especially class 0,1,4 and 7 is not being predicted properly.

+02

1.8e+02 - 3000

- 2500
1.6e+03 0O
5 12e+03
2000
24
- 1500
1.9e+03
1000
2.7e+02 63 10
16e+03 © 500
6 3.5e+02
0

V] 1 2 3 4 5 6 7 8 9 10

Figure 6.11: ResNet-50 Vowel Diacritics Confusion Matrix

39

Consonant Diacritics

In case of consonant diacritics there is also a huge change in accuracy and loss in
11th epoch. However, it is not that significant. It is just around 10 percent which
can be considered as normal.

Consonant diacritic training and validation accuracy

1.00 A

0.98

0.96

accuracy

0.94 4

0.92 4

—— training
0.90 validation

T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

Figure 6.12: ResNet-50 Consonant Diacritics Accuracy

Consonant diacritic training and validation loss

—— training

validation
0.30 A

0.25 4

0.20 4

loss

0.15 A

0.10 A

0.05 4

0.00 -

T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

Figure 6.13: ResNet-50 Consonant Diacritics Loss

40

The matrix of consonant diacritics class seems normal apart from few errors in class

0.

- 12000
o - l2e+04

- 10000

8000

6000

- : 2.1e+03
4000

" g 2.1e+03

2000

Figure 6.14: ResNet-50 Consonant Diacritics Confusion Matrix

41

Grapheme Root

Just like consonant diacritics , there is a decrease in accuracy in case of grapheme
root too in the 11th epoch. However, in the case of 16 th and 19th epoch, the model
was able to recover from it which led to a good final accuracy in grapheme root.

Grapheme root training and validation accuracy

1.00

—— training
validation
0.95 4

accuracy

o o o
o] o
o 5] o

e
~
w

e
~
Qo

0.65 -

T T T T T T T T
0.0 2.5 5.0 1.5 10.0 12.5 15.0 17.5
epoch

Figure 6.15: ResNet-50 Grapheme Root Accuracy

Grapheme root training and validation loss

1.4 —— training
validation
1.2

1.0

0.8

loss

0.6

0.4

0.0 1

T T T T T T T T
0.0 2.5 5.0 15 10.0 12.5 15.0 17.5
epoch

Figure 6.16: ResNet-50 Grapheme Root Loss

The ResNet-50 performed extremely well in case of consonant diacritics and grapheme
roots. However, in the case of vowel diacritics, it had a huge downfall. It almost
dropped around 40 percent which is not acceptable. So, we moved on to the next
model which is VGG19.

42

6.2.4 VGGI19

Vowel Diacritics

Just like ResNet50, we ran the Vggl9 for 20 epochs too. In case of vowel diacrit-
ics, the validation accuracy jumped within the range of .97 to .99. No significant
difference was noticed here. The validation loss was also near to constant.

Vowel diacritic training and validation accuracy

1.00
0.98 1
0.96 1
==
[8)
g
=
o
9 0.94 -
0.92
—— training
0.90 1 validation

T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

Figure 6.17: VGG19 Vowel Diacritics Accuracy

Vowel diacritic training and validation loss

—— training
0.30 validation

0.25 4

0.20

loss

0.15 4

0.10 A

0.05 - \

0.00 1

T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

Figure 6.18: VGG19 Vowel Diacritics Loss

43

From the matrix we can see almost every class is being predicted properly.

- 400

- 350

0 2eetldz O

- 300
1l.6e+02

l.8e+02 250
200

150

100

1.6e+02

50

Figure 6.19: VGG19 Vowel Diacritics Confusion Matrix

44

Consonant Diacritics

The consonant validation accuracy was also good and no huge deviation was noticed.

Consonant diacritic training and validation accuracy

1.00
—— ftraining
0.99 4 validation

0.98

0.97 4

0.96

accuracy

0.95 4

0.94 4

0.93 4

0.92 4

T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

Figure 6.20: VGG19 Consonant Diacritics Accuracy

Consonant diacritic training and validation loss

—— training
0.25 4 validation

0.20 4

0.15 A

loss

0.10 A

0.05 4

0.00 T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

Figure 6.21: VGG19 Consonant Diacritics Loss

45

Just like vowel diacritics, Vgg19 is also able to predict almost all consonant classes
properly.

- 1200
o - l2e+03

- 1000

800

600

= 2.1e+02

400

200

Figure 6.22: VGG19 Consonant Diacritics Confusion Matrix

46

Grapheme Root

Finally, the grapheme root accuracy kept changing between .944 to .949 after the
12th epoch. Similarly the training accuracy hardly got more than .98. So, stopped
the epoch at 20 as there was no change in neither accuracy nor loss.

Grapheme root training and validation accuracy

P———

1.0 A

0.9

o
o
|

accuracy

o
~
L

0.6

—— training
validation

T T T T T T T T
0.0 2.5 5.0 15 10.0 12.5 15.0 17.5
epoch

Figure 6.23: VGG19 Grapheme Root Accuracy

Grapheme root training and validation loss

—— training

2.00 1 >
validation

1.75 4
1.50 4

1.25 4

loss

1.00
0.75 4
0.50 4

0.25 7 ¥

0.00 4

T T T T T T T T
0.0 2.5 5.0 1.5 10.0 12.5 15.0 17.5
epoch

Figure 6.24: VGG19 Grapheme Root Loss

Here we can see that VGG19 was able to perform all three of the grapheme root,
vowel diacritic and consonant diacritic with high accuracy. Though the accuracy
of grapheme root is slightly lower than ResNet50, the overall accuracy was very
satisfactory. So we decided to use VGG19 as our final model.

47

6.3

Comparison

Accuracy
Custom CNN | ResNet50 | VGG19
vowel diacritics 0.9642 0.66669 0.98357
consonant diacritics 0.9635 0.98436 0.98208
grapheme root 0.88 0.94809 0.94325

Table 6.2: Accuracy comparison of all the models

Precision
Custom CNN | ResNet50 | VGG19
vowel diacritics 0.96438 0.82557 0.98367
consonant diacritics 0.96356 0.98448 0.9822
grapheme root 0.88131 0.94649 0.94689

Table 6.3: Precision comparison of all the models

Recall
Custom CNN | ResNet50 | VGG19
vowel diacritics 0.9642 0.6667 0.98357
consonant diacritics 0.9635 0.98437 0.98208
grapheme root 0.88 0.94209 0.94326

Table 6.4: Recall comparison of all the models

48

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Custom CNN, ResNet50 and VGG19 Accuracy Comparison

® Accuracy Custom CNN ® Accuracy ResNet50 @ Accuracy VGG19
0.98357 0.98436 0.98208

0.9642 0.9635
0.94809 0.94325
0.88
0.66“9 I

vowel diacritics consonant diacritics

Figure 6.25: Comparison of all the models

49

grapheme root

Chapter 7

Conclusion

The very purpose of this project started with the intention of making an efficient
Bangla handwritten character recognition system. As stated earlier, this require-
ment was in demand despite the number of researches on this topic being infrequent.
Isolated or cursive styles within individual handwriting was making it complex for
recognising alpha syllabary languages like Bangla. We defined an efficient system
within goals of recognising the basic Bangla characters as well as the conjunct char-
acters. Deep neural networks and machine learning models have been approached in
previous works, but couldn’t result in great accuracy for recognizing both the simple
and compound Bangla handwritten characters. We approached NLP for applying
grapheme segmentation. Grapheme, a linguistic fragment of words, helped us to
train the model with grapheme roots and diacritics. Through NLP and Computer
Vision we trained our models with larger dataset. The very intention of approaching
grapheme segmentation was to avoid the extra data considering all the compound
characters which are almost infinite. Training models in the grapheme approach not
only reduced the number of data but also resulted in successful detection of com-
pound characters that were not included in the dictionary while training. SVM as
a machine learning model and DNN models like CNN, Resnet50, VGG19 were used
for our approach. We also used a reconstruction approach, which not only generates
the corresponding values correctly but also solves the complex ordering issue of the
traditional reconstruction approach. After model implementation we trained the
model with our train data and calculated the accuracy accordingly. Starting with
SVC as a machine learning approach the result was not satisfactory, considering
it not suitable for such complex image classification. Custom CNN gave average
results with low grapheme root accuracy. Also couldn’t predict the class 0 images
properly. Then, Resnet50 resulted in a huge downfall in case of vowel diacritics even
though it had high accuracy in root and consonant diacritics. Therefore, we moved
to the VGG19 model. It performed with high accuracy. Despite being slightly lower
in grapheme root accuracy, the overall result was satisfactory. Thus, VGG19 was
chosen as the final model. This has been challenging but we overcame it and solved
most of the research problems stated before. To conclude, we have successfully
been able to build a Bangla handwritten character recognition system which will
contribute to future research in this field.

20

Bibliography

[10]

Samiul Alam et al. “A Large Multi-target Dataset of Common Bengali Hand-
written Graphemes.” In: Document Analysis and Recognition — ICDAR 2021.
Springer International Publishing, 2021, pp. 383-398. pot: 10.1007/978-3-030-
86337-1_26. URL: https://doi.org/10.1007%2F978-3-030-86337-1_ 26.

Md Zahangir Alom et al. Handwritten Bangla Digit Recognition Using Deep
Learning. 2017. arXiv: 1705.02680 [cs.CV].

Md Shopon, Nabeel Mohammed, and Md Anowarul Abedin. “Bangla hand-
written digit recognition using autoencoder and deep convolutional neural
network.” In: 2016 International Workshop on Computational Intelligence
(IWCI). IEEE. 2016, pp. 64-68.

Rumman Rashid Chowdhury et al. “Bangla handwritten character recognition
using convolutional neural network with data augmentation.” In: 2019 Joint
8th International Conference on Informatics, Electronics & Vision (ICIEV)
and 2019 3rd International Conference on Imaging, Vision & Pattern Recog-
nition (icIVPR). IEEE. 2019, pp. 318-323.

Sharif Amit Kamran et al. Al Learns to Recognize Bengali Handwritten Dig-
its: Bengali. AI Computer Vision Challenge 2018. 2018. arXiv: 1810.04452
[cs.CV].

Oddur Kjartansson et al. “Crowd-Sourced Speech Corpora for Javanese, Sun-
danese, Sinhala, Nepali, and Bangladeshi Bengali.” In: Proc. The 6th Intl.
Workshop on Spoken Language Technologies for Under-Resourced Languages.
2018, pp. 52-55. URL: http://dx.doi.org/10.21437/SLTU.2018-11.

Md Hussain et al. “Deep Learning based Bangla Voice to Braille Character
Conversion System.” In: Oct. 2022, pp. 0262-0267. por: 10.1109/TEMCON56893.
2022.9946619.

Mithun Biswas et al. “BanglaLekha-Isolated: A multi-purpose comprehensive
dataset of Handwritten Bangla Isolated characters.” In: Data in Brief 12 (June
2017), pp. 103-107. por: 10.1016/;.dib.2017.03.035.

Md Mahbubar Rahman et al. “Bangla handwritten character recognition using
convolutional neural network.” In: International Journal of Image, Graphics
and Signal Processing (IJIGSP) 7.8 (2015), pp. 42-49.

Umapada Pal, Tetsushi Wakabayashi, and Fumitaka Kimura. “Handwritten
Bangla compound character recognition using gradient feature.” In: 10th in-
ternational conference on information technology (ICIT 2007). IEEE. 2007,
pp- 208-213.

51

[11]

[12]

[13]

[14]

[15]

Tapan Kumar Bhowmik, Ujjwal Bhattacharya, and Swapan K Parui. “Recog-
nition of Bangla handwritten characters using an MLP classifier based on
stroke features.” In: Neural Information Processing: 11th International Con-
ference, ICONIP 2004, Calcutta, India, November 22-25, 2004. Proceedings
11. Springer. 2004, pp. 814-819.

Tapan Kumar Bhowmik et al. “SVM-based hierarchical architectures for hand-
written Bangla character recognition.” In: International Journal on Document
Analysis and Recognition (IJDAR) 12.2 (2009), pp. 97-108.

Swapan K Parui et al. “Online handwritten Bangla character recognition using
HMM.” In: 2008 19th International Conference on Pattern Recognition. IEEE.
2008, pp. 1-4.

Kaiming He et al. “Deep Residual Learning for Image Recognition.” In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 770-778. por: 10.1109/CVPR.2016.90.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].

52

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Handwritten Bangla Character Recognition
	Research Problem
	Research Objective

	Literature Review
	Description of the dataset
	Bangla Handwritten Grapheme Dataset
	Data Augmentation

	Description of the models
	Overview of our proposed system:
	Support Vector Classifier (SVC)
	Custom CNN Model
	ResNet-50
	VGG19

	Reconstruction
	Reconstruction of Graphemes
	Challenges of Reconstruction and proposed solutions
	Features

	Results and analysis
	Evaluation Metrics
	Results and Comparison of different models
	SVC
	Custom CNN model
	ResNet-50
	VGG19

	Comparison

	Conclusion
	Bibliography

