
Curious Learner: A Generative Neuro-Symbolic Approach for
Function Execution & Illustration Using Natural Language

by

A.F.M. Mohimenul Joaa
21166040

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

M.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
February 2024

© 2024. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

A.F.M. Mohimenul Joaa

21166040
Student ID

i

Approval

The thesis titled “Curious Learner: A Generative Neuro-Symbolic approach for
function Execution & Illustration using Natural Language” submitted by

1. A.F.M. Mohimenul Joaa (21166040)

Of Spring, 2024 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of M.Sc. in Computer Science on February 21, 2024.

Examining Committee:

Supervisor:

(Member)

Dr. Farig Yousuf Sadeque

Assistant Professor
Department of Computer Science and Engineering

BRAC University

Internal Examiner:

(Member)

Dr. Md. Golam Rabiul Alam

Professor
Department of Computer Science and Engineering

Brac University

External Examiner:

(Member)

Dr. Mamunur Rashid

Assistant Professor
Computational Biology and Bioinformatics

University of Birmingham

ii

Head of Department:

(Chair)

Dr. Sadia Hamid Kazi

Chairperson and Associate Professor
Department of Computer Science and Engineering

Brac University

M.Sc. Thesis Coordinator:

Dr. Md Sadek Ferdous

Associate Professor
Department of Computer Science and Engineering

Brac University

iii

Ethics Statement

Title: Curious Learner: A Generative Neuro-Symbolic Approach for Function Exe-
cution & Illustration Using Natural Language.
Author: A.F.M. Mohimenul Joaa
Supervisor: Dr. Farig Yousuf Sadeque
Department: Department of Computer Science and Engineering
University: BRAC University

1. Ethical Approval:

This thesis received approval from the aforementioned examining Committee to
ensure adherence to ethical guidelines.

2. Data Management:

All data used in this project if created manually, in compliance with data protection
regulations, stored securely, and retained according to institutional policies.

iv

Abstract

Generative models possess immense potential, but their ability to perform complex
calculations is limited by the need to memorize vast amounts of data, leading to
computational inefficiencies. Leveraging tools like the Arithmetic Logic Unit us-
ing symbolic functions offers a more efficient alternative, enabling faster responses,
smaller model sizes, and improved accuracy. We propose a neuro-symbolic generative
model to empower natural language models with task execution abilities by integrat-
ing functional programming principles. Experiments on our scoped four translation
tasks using 98 mathematical functions demonstrated rapid convergence and minimal
training time requirements. Our model, containing 111 million trainable parame-
ters, achieved an average accuracy, BLEU score, and perplexity score of 0.85, 0.84,
and 5.9, respectively, after training on a T4 GPU for several hours. This neuro-
symbolic Language Model shows significant potential for various applications, such
as NLP-based command line tools, customer service automation, service discovery
automation, project code automation, and natural language-based operating systems.

Keywords: Curious Learner; Transformer; Foundational Model; Natural Lan-
guage Processing; Generative Model; Neuro-Symbolic Programming; Large Lan-
guage Model Architecture; Task Executor; Customer Service Automation; Service
Discovery Automation

v

Acknowledgement

All praise to the Great Allah for whom our thesis have been completed without any
major interruption.
My Supervisor Dr. Farig Yousuf Sadeque sir for his kind support and advice in our
work. He helped us whenever we needed help.
My Friend Prattoy Majumder for his support, motivation and contribution in the
project and thesis.
The whole examining committee of the thesis.
And finally to my family without their throughout sup-port it may not be possible.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iv

Abstract v

Acknowledgment vi

Table of Contents vii

List of Figures x

List of Tables xi

Nomenclature xii

1 Introduction 1
1.1 Preface . 1
1.2 Scope of the Study . 2
1.3 Research Design . 3
1.4 Structure of the Thesis . 3

2 Literature Review 5
2.1 Historical Background . 5
2.2 Neurosymbolic Generative Models . 5
2.3 Synthesis of Existing Studies . 5

2.3.1 DreamCoder . 6
2.3.2 ChatGPT Plugin . 6
2.3.3 ChatGPT Function Calling 6
2.3.4 Rasa . 6

2.4 Critique of Existing Literature . 6
2.5 Future Directions . 7

3 Data 8
3.1 Overview . 8
3.2 Functions . 11
3.3 Tasks . 11

3.3.1 Function to Function Translation 11

vii

3.3.2 Function to NL Translation 11
3.3.3 NL to Function Translation 11
3.3.4 NL & Function to NL & Function Translation 15

4 Methodology 16
4.1 Approach Overview . 16
4.2 Vanilla Transformer . 16
4.3 Curious Learner Architecture Selection 17

4.3.1 Architecture Diagram . 18
4.3.2 Input Parser . 18
4.3.3 Tokenizer . 20
4.3.4 ALiBiBi-Attention with Linear Bidirectional Biases Encoder . 20
4.3.5 Category and Task Encoder 21
4.3.6 Common Block . 22
4.3.7 Category Map Block . 23
4.3.8 Category Map Decoder . 23
4.3.9 Category Map Classification Head 23
4.3.10 Category Router . 24
4.3.11 Output Token Block . 24
4.3.12 Output Token Decoder . 24
4.3.13 Output Token Classification Head 25
4.3.14 Response Parser . 26

4.4 Architecture Justification . 26
4.5 Building Vocabulary . 27

4.5.1 Category Map Vocabulary Builder 28
4.5.2 Output Token Vocabulary Builder 28

4.6 Different Types of Embeddings . 28
4.6.1 Token Embeddings . 29
4.6.2 ALIBIBI Embeddings . 29
4.6.3 Category and Task Embeddings 29
4.6.4 Combined Embeddings . 30

4.7 Saving, Loading, and Retraining the Model 30
4.8 Data Loader . 31

4.8.1 Data Generator . 31
4.8.2 Batch Builder . 31

4.9 Training and Inference Methods . 32
4.9.1 Guiding Tokens to Output Token Classification Heads 33
4.9.2 Training and Inference Types 33
4.9.3 Training Process . 33

5 Result 35
5.1 Hyperparameter Selection . 35

5.1.1 Activation Function . 35
5.1.2 Normalization . 36
5.1.3 Regularization . 36
5.1.4 Learning Rate Scheduler . 36
5.1.5 Optimizer . 37
5.1.6 Criterion . 37
5.1.7 Epoch . 37

viii

5.1.8 Training Batch Size . 38
5.1.9 Number of Heads in Attention Layer 38
5.1.10 Number of Layers in Decoder 38
5.1.11 Hidden Embeddings Dimension 38
5.1.12 Feed Forward Layer Dimension 39
5.1.13 Max Decoding Length . 39
5.1.14 Add BOS and EOS Tokens . 39
5.1.15 Data Loader Parameters . 39

5.2 Acuracy Increment per Epoch . 40
5.3 Loss Decrement per Epoch . 42
5.4 Inference . 42

6 Discussion 46
6.1 Challenges and Limitations . 46
6.2 Future Works . 46
6.3 Conclusion . 47

Bibliography 50

ix

List of Figures

4.1 Vanilla Transformer Architecture Diagram 17
4.2 Curious Learner Model Architecture Diagram 19
4.3 Category and Task Embeddings Signal 22
4.4 Category Router Detailed Architecture Diagram 25
4.5 Hub vs Switch category routing . 27
4.6 ALiBiBi Bias for All Attention Heads 29
4.7 Non-generative and Generative Training 34

5.1 Learning Rate Scheduler Graph[15] 36
5.2 Curious Learner Learning Rate Scheduler Graph 37
5.3 Average Acuracy vs Epoch Graph . 40
5.4 Acuracy vs Epoch Graph . 41
5.5 Average Acuracy vs Epoch Graph . 42
5.6 Loss vs Epoch Graph . 43
5.7 Parsed Result Example for Each Task 44
5.8 Inference Evaluation Metrics vs Epoch Graph 45

x

List of Tables

3.1 Category Map Detail . 9
3.2 Function Prefixes and Their Meanings 9
3.3 Mathematical Function Signatures and Return Types(0-42) 12
3.4 Mathematical Function Signatures and Return Types(43-85) 13
3.5 Mathematical Function Signatures and Return Types(86-97) 14
3.6 Function to Function Translation Example 14
3.7 Function to NL Translation Example 14
3.8 NL to Function Translation Example 14
3.9 NL & Function to NL & Function Translation Example 14

5.1 Performance Metrics . 43

xi

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

AGI Artificial General Intelligence

ALIBIBI Attention with Linear Bidirectional Biases

BERT Bidirectional Encoder Representations from Transformers

BLEU Bilingual Evaluation Understudy

CL Curious Learner

E1 Embedding for Category

E2 Embedding for Output Token

GPT Generative Pre-trained Transformer

IP Input Parser

IPO Input Parser Output

LLM Large Language Model

NLP Natural Language Processing

RP Response Parser

XLNet eXtreme Learning NETwork

xii

Chapter 1

Introduction

1.1 Preface

ChatGPT and other Large language models have shown how scaling transformer
models can be useful for learning, reasoning, and querying any specific knowledge.
Standing on this discovery many are trying to build artificial general intelligence.
Everyone has their approach to solving the AGI problem. Some are creating agents
like AutoGPT[36], which can recursively call LLM to figure out a workflow, and
then solve the work by again asking to solve the steps. Some are creating tools for
fine-tuning currently available models on specific domains. Some are trying to make
multi-modal models.

Our proposition hinges on the observation that as humans we solve problems not
only by memorizing but also by using different tools, which we know can do our task.
We learn these tools and use them for accurate answers rather than reinventing the
wheel every time. So if we can give access to these tools to an LLM then it can do
so many tasks for us. ChatGPT is solving this issue by using plugins[31], but it’s an
add-on service where the model is given some extra prompts to accommodate the
function calling of the plugins. Similarly, for getting structural data from ChatGPT
using the function calling[32] feature, it uses its current capability of understanding
the language to identify parameters and return them in a structural format. So as
of now, there is no scalable solution that can give LLM capabilities to use tools like
we humans do.

We want to address this issue, by creating NLP based model that can identify proper
symbolic functions from prompt and execute them by collecting proper parameters
from the user. So our main idea is to add functional programming principles with
LLM to make a scalable Neuro-Symbolic generative model that can use tools just
like us to solve problems. If successfully scaled, our proposed solution could be
effectively employed in various applications:

� Interactive chat UI with dynamic model response and user input widgets.

� Customer service and service discovery chatbots.

� Natural Language-based Command Line Tools (e.g., GitHub CLI, npm, Azure
CLI), enhancing user interaction with systems.

1

� Model reliability: The correctness of the model’s output hinges on its ability
to identify the correct function.

� Natural Language-based Operating System.

We start from what we know. As transformer models are working great for NLP-
related tasks we started from a vanilla transformer model. The idea was Instead
of the word as a token what if we explore the concept of utilizing a map structure
with metadata, encompassing diverse token types such as words, functions, integers,
lists, etc. While the metadata includes its type, subtype, and subsubtype. However,
this approach poses challenges, including the inability to utilize conventional tok-
enizers and the exponential increase in token count due to unique token-metadata
combinations. Moreover, vanilla transformers can’t work with words and sentences
at the same time. It can’t ensure the proper order and type of param for function
execution. Also due to sinusoidal positional embeddings no additional information
can be embedded along with embeddings.

So to mitigate these issues we add components gradually. For extracting token meta-
data information from the raw string as well as to execute functions we add the input
parser. However, since humans may not understand these technicalities, we add the
response parser at the output end to adjust the tokens for human comprehension. As
functions are best represented by multiple sentences using doc string, we used the
sentence transformer to get the initial vector embedding of functions. We need to
ensure the function parameter type and order to execute a function properly, which
we are calling hard constraints. To ensure the hard constraints we are predicting the
category of a token first before predicting the real token. Then using this category
we are routing embedding through expert classification heads to retrieve the specific
type of token. We utilized Attention with Linear Bidirectional Bias instead of si-
nusoidal positional embedding to enhance the integration of additional information
with tokens. We introduce the category and task encoder to incorporate category
and task information into token embeddings and utilize cross-attention to the func-
tion signature to discern parameter types and order. Consequently, our architecture
diverges significantly from the vanilla transformer, leading us to term it ”Curious
Learner.”

1.2 Scope of the Study

As we all know, training a foundational model is computationally demanding, and for
independent researchers, accessing such computational power is often not feasible.
Therefore, we have deliberately limited the scope of our research to focus on a
specific subset of tasks and data.
To this end, we have identified 98 mathematical functions and developed training
and inference data generators using these functions. Further details about these
functions can be found in the data chapter of the thesis. Given the mammoth task
of creating a generative large language model (LLM), which requires substantial
computational power and engineering effort, it is also imperative to scope the tasks
on which the model will be trained and tested. We have identified four tasks that
scope the training and testing scope, as well as our computational requirements:

2

i. Function to Function Translation Dataset

ii. Function to Natural Language Translation Dataset

iii. Natural Language to Function Translation Dataset

iv. Natural Language & Function to Natural Language & Function Translation
Dataset

Since our dataset and task are unique and no similar dataset is available, we can’t
conduct any comparative study. This architecture can be further scaled if we can
implement the switch routing mechanism and create categories based on function
signatures rather than predicting function parameter categories, which are the bot-
tleneck for computation power. So with them solved along with a larger dataset our
model can outperform our current presented evaluation with a big margin.

1.3 Research Design

Our research design encompasses the development and evaluation of two distinct
models: a vanilla transformer model and a decoder-only generative curious learner
model. Initially, we constructed a vanilla transformer model utilizing a custom vo-
cabulary. In this vocabulary, each unique category map and token combination was
considered a token. The specifics of this model, including architecture and training
methodology, are detailed in the methodology chapter. Subsequently, we developed
our decoder-only generative curious learner model. This model architecture, which
incorporates functions as tokens to determine the appropriate function to execute
and its parameters, is thoroughly explained in the methodology chapter. To ensure
the generated tokens adhere to the correct order and type of parameter of the func-
tions, we adopted a two-step approach. Firstly, we predicted the category of the
token. Then, based on the predicted category, we employed a specific output clas-
sification head to predict the token itself. Additionally, we implemented an Input
Parser to facilitate processing of natural language data. Similarly, to convert pre-
dicted categories and tokens into human-readable natural language, we developed a
Response Parser.

1.4 Structure of the Thesis

This thesis is structured into Six chapters:

i. Introduction: This chapter provides an overview of the research topic, mo-
tivations, objectives, and outlines the structure of the thesis.

ii. Literature Review: The second chapter reviews relevant literature and ex-
isting research in the field of neuro-symbolic generative foundational models
in natural language processing.

iii. Data: Chapter three discusses the data utilized in the study, including the
selection, preprocessing, and creation of datasets.

3

iv. Methodology: In chapter four, the methodology employed in developing
and evaluating the models, including the architecture, training procedures,
and evaluation metrics, is detailed.

v. Results: Chapter five presents the results obtained from the experiments
conducted with the developed models.

vi. Discussion: Chapter six provides a comprehensive discussion of the findings,
interpretations, and implications of the results, as well as limitations and future
research directions.

4

Chapter 2

Literature Review

2.1 Historical Background

Neuro-symbolic programming represents a convergence of neural network-based ap-
proaches and symbolic reasoning, aiming to leverage the strengths of both paradigms
in AI systems[28]. This interdisciplinary field traces its origins back to early AI
research, where the idea of combining neural and symbolic methods emerged as
researchers sought to bridge the gap between logic-based abstraction and pattern
recognition from data[27], [28]. In the early stages, significant efforts were made to
integrate handwritten symbolic rules into neural networks, refining them with data
to improve generalization and efficiency[28]. Over time, research evolved to extract
symbolic models from neural networks, demonstrating enhanced performance com-
pared to traditional neural networks[27]. This convergence of neural and symbolic
approaches was further developed in frameworks such as the Connectionist Inductive
Learning and Logic Programming system[28]. Recent studies have explored employ-
ing large language models (LLMs) to synthesize programs from natural language de-
scriptions, potentially revolutionizing program synthesis methods[28]. These LLMs,
such as GPT and BERT, have demonstrated remarkable capabilities in language
understanding and generation tasks[14], [21], [26].

2.2 Neurosymbolic Generative Models

Neurosymbolic generative models combine neural and symbolic techniques to gen-
erate data adhering to specific constraints or patterns[18]. They leverage neural
networks and symbolic reasoning, demonstrating promising capabilities in tasks like
program synthesis[27] and programmatic expression generation[24].

2.3 Synthesis of Existing Studies

The field of neurosymbolic computing encompasses a wide range of research, from
foundational theory to practical applications. Early work focused on theory and
basic implementations[3], but recent advances have led to more sophisticated mod-
els[28]. Integration with other AI paradigms, like reinforcement learning and pro-
gram synthesis, has broadened its applicability[22]. Yet, challenges such as scalabil-
ity and interpretability persist[7].

5

2.3.1 DreamCoder

DreamCoder advances neurosymbolic programming by automatically generating in-
terpretable programs through Bayesian methods[22]. This facilitates learning com-
plex tasks with limited data, aiding in generalization to new scenarios.

2.3.2 ChatGPT Plugin

ChatGPT have implemented initial support for plugins on March 23, 2023[31]. Plu-
gins are tools designed specifically for language models with safety as a core prin-
ciple, and help ChatGPT access up-to-date information, run computations, or use
third-party services. By combining neural language understanding with symbolic
manipulation of dialogue context, ChatGPT-Plugin enhances conversational agents’
ability to generate coherent and relevant responses in various domains[33].

2.3.3 ChatGPT Function Calling

ChatGPT announced updates including more steerable API models, function calling
capabilities, longer context, and lower prices on 13 June 2023[32]. Since the alpha
release of ChatGPT plugins, significant advancements have been made in integrat-
ing tools and language models securely. Function calling allows developers to more
reliably get structured data back from the model. Developers can consume infor-
mation from trusted tools and by perform actions on users behalf with real-world
impact, such as sending an email, posting online, or making a purchase.

2.3.4 Rasa

Rasa, facilitates the development of contextual assistants capable of layered conver-
sations with extensive back-and-forth interactions[8]. Unlike our approach, which
utilizes an attention layer to execute functions with proper parameters in a single
shot, Rasa identifies the user’s intent first and then asks further questions to execute
a task based on the intent. This distinction highlights the capability of our approach
to execute functions using proper parameters without extensive back-and-forth in-
teractions efficiently.

2.4 Critique of Existing Literature

Despite extensive research in neurosymbolic computing and impressive advance-
ments in various applications, a notable gap persists in executing functions using
large language models (LLMs). While studies have explored LLMs’ capabilities for
language tasks[14], [21], [26], none systematically tackle function execution from nat-
ural language prompts[28]. This underscores the need for novel approaches combin-
ing LLMs’ power with symbolic reasoning to execute functions directly from natural
language. While ChatGPT’s function calling capabilities have seen considerable
progress in its plugin functionality, there remains a notable absence of informa-
tion regarding its architecture. Moreover, it appears that the design of ChatGPT
has not been explicitly tailored to adhere to functional programming principles.
Consequently, there exist opportunities for exploring novel architectures that could

6

better accommodate function calling with large language models (LLMs). Such ar-
chitectures could potentially address existing gaps and enhance the efficiency and
effectiveness of function calling within the context of LLMs.

2.5 Future Directions

Our research identifies a gap in function execution using LLMs, offering a promising
avenue for future investigation. Future research should focus on optimizing the inte-
gration of LLMs with symbolic reasoning techniques to enhance function execution
efficiency and accuracy[26]. Additionally, exploring LLM-based function execution
across various domains is crucial, including software development and data analy-
sis[18]. By evaluating performance and scalability in practical settings, researchers
can demonstrate utility and identify areas for improvement, advancing neurosym-
bolic computing in automating tasks and improving human computer interaction.

7

Chapter 3

Data

3.1 Overview

We want to use functions as tokens of the generative LLM, so we searched the web
for this type of dataset, but quickly we figure out that, we need full customization
capability of our data, as our model architecture is new. We looked into the following
dataset.

1. BigCloneBenc : The BigCloneBench dataset is a significant resource in soft-
ware engineering for code clone detection research. It comprises over pairs
of code clones extracted from diverse open-source projects in various pro-
gramming languages like Java, C, and C++. These clones encompass differ-
ent types, including identical, syntactically similar, and semantically similar
clones. Each clone pair is manually annotated with clone type and similarity
information. The dataset serves as a benchmark for evaluating the effective-
ness of clone detection algorithms and is freely available for research purposes,
aiding in the advancement of code clone detection techniques.

But none of them fulfill our requirements. At last we build our own dataset. Initially
we create a set of 98 mathematical functions, for using them as the function tokens.
Normally we will provide only text to the model, model will parse the input and
create (value, category map) from each token. We have created a input parser for
this purpose. Category map have three information, each of them are enum which
can take values from their respective sub lists. In Table: 3.1, we provided the values
of these enums.

As our model will predict the category map of the next token first. Then based on
the category map it will router the output token embeddings through the predicted
output token classification head to predict the output token. So to combine these
information and present the result to the end user, we build a response parser.
The output of response parser is human readable code or natural language or both.
Whereas the input of the input parser need some modification for capturing the
function information.
Functions can be represented using four different prefixes. In Table: 3.2, we provided
the meanings of these function prefixes.
Some example triplet of model input(Input Parser input), Input parser Output
(Response Parser input) & Response Parser output is provided below.

8

CategoryType CategorySubType CategorySubSubType
function
word
integer
float
list
bool
special

return value
default
integer
float
list
bool
word
placeholder

none
placeholder
param one
param two
param three
para four
param five
param last
execute
represent

Table 3.1: Category Map Detail

Prefix Meaning
$$ Input Parser(IP) Execute
Input Parser(IP) Represent Response Parser(RP) Execute
@@ Input Parser(IP) and Response Parser(RP) Placeholder
&& Input Parser(IP) and Response Parser(RP) Represent

Table 3.2: Function Prefixes and Their Meanings

1. Input Parser(IP) Execute

� Model Input: $$add(3, 4)

� Input Parser Output:
[

(

7,

{category : ”integer”, subCategory : ”return value”, subSubCategory : ”none”}
),

]

� Response Parser Output: 7

2. Input Parser(IP) Represent Response Parser(RP) Execute

� Model Input: adding 3 plus 4 = ##add(3, 4)

� Input Parser Output:

9

[

(

adding,

{category : ”word”, subCategory : ”default”, subSubCategory : ”none”}
),

(

3,

{category : ”integer”, subCategory : ”default”, subSubCategory : ”none”}
),

(

plus,

{category : ”word”, subCategory : ”default”, subSubCategory : ”none”}
),

(

4,

{category : ”integer”, subCategory : ”default”, subSubCategory : ”none”}
),

(

=,

{category : ”word”, subCategory : ”default”, subSubCategory : ”none”}
),

(

add(),

{category : ”function”, subCategory : ”integer”, subSubCategory : ”execute”}
),

(

3,

{category : ”integer”, subCategory : ”default”, subSubCategory : ”param one”}
),

(

4,

{category : ”integer”, subCategory : ”default”, subSubCategory : ”param last”}
),

]

� Response Parser Output: adding 3 plus 4 = 7

3. Input Parser(IP) and Response Parser(RP) Placeholder

� Model Input: @@avg(@list)

� Input Parser Output:
[

(

avg(),

{category : ”function”, subCategory : ”float”, subSubCategory : ”placeholder”}
),

(

@list,

{category : ”list”, subCategory : ”placeholder”, subSubCategory : ”param last”}
),

]

� Response Parser Output: avg(@list)

10

4. Input Parser(IP) and Response Parser(RP) Represent

� Model Input: &&avg([1, 2, 3])

� Input Parser Output:
[

(

avg(),

{category : ”function”, subCategory : ”list”, subSubCategory : ”represent”}
),

(

[1, 2, 3],

{category : ”list”, subCategory : ”placeholder”, subSubCategory : ”param last”}
),

]

� Response Parser Output: avg([1, 2, 3])

Further detailed functionality of input parser and response parser is provided in the
methodology chapter.

3.2 Functions

We have chosen the following 98 mathematical functions for practically evaluating
our model.

3.3 Tasks

Our generative model can mark different task using frequency and amplitude modu-
lation technique, more about this technique can be found in the methodology chap-
ter. We are using the following four tasks for evaluating the model performance
regarding identifying tasks,

3.3.1 Function to Function Translation

This task involves translating a given function expression into another function ex-
pression. It assesses the model’s ability to understand and transform mathematical
operations. Example is presented in Table 3.6.

3.3.2 Function to NL Translation

In this task, we translate a function expression into a natural language description
of the calculation. It evaluates the model’s capacity to generate human-readable
descriptions of mathematical operations. Example is presented in Table 3.7.

3.3.3 NL to Function Translation

This task involves translating a natural language query into a corresponding function
expression. It tests the model’s ability to interpret and convert human language
instructions into executable mathematical operations. Please refer to Table 3.8 for
example pair.

11

Function Signature Return Type
addition(x: int, y: int) int
subtraction(x: int, y: int) int
multiplication(x: float, y: float) float
division(x: float, y: float) float
exponentiation(x: float, y: float) float
square root(x: float) float
floor division(x: int, y: int) int
modulus(x: int, y: int) int
logarithm(x: float, base: float) float
sine(x: float) float
cosine(x: float) float
tangent(x: float) float
arcsine(x: float) float
arccosine(x: float) float
arctangent(x: float) float
hyperbolic sine(x: float) float
hyperbolic cosine(x: float) float
hyperbolic tangent(x: float) float
logarithm base 10(x: float) float
logarithm base 2(x: float) float
degrees to radians(x: float) float
radians to degrees(x: float) float
gcd(x: int, y: int) int
lcm(x: int, y: int) int
isqrt(x: int) int
pow mod(x: int, y: int, mod: int) int
ceil(x: float) int
floor(x: float) int
round(x: float) int
absolute difference(x: float, y: float) float
greatest value(x: float, y: float) float
smallest value(x: float, y: float) float
product(numbers: list) float
factorial(x: int) int
is prime(x: int) bool
prime factors(x: int) list
is perfect square(x: int) bool
is perfect cube(x: int) bool
mean(numbers: list) float
median(numbers: list) float
relu(x: float) float
ascending sort(lst: list[int]) list[int]
descending sort(lst: list[int]) list[int]

Table 3.3: Mathematical Function Signatures and Return Types(0-42)

12

Function Signature Return Type
square int(x: int) int
square(x: float) float
absolute(x: float) float
power of ten(x: float) float
cube(x: float) float
cube root(x: float) float
is even(x: int) bool
is odd(x: int) bool
max value(lst: list[int]) list[int]
min value(lst: list[int]) list[int]
nth root(x: float, n: int) float
geometric mean(lst: list[float]) float
is power of two(x: int) bool
binary to decimal(binary) int
decimal to binary(decimal) str
is palindrome(x: str) bool
sum of digits(x: int) int
hypotenuse(a: float, b: float) float
circle area(radius: float) float
permutation(n: int, r: int) int
combination(n: int, r: int) int
invert number(number: float) float
float to int(value: float) int
int to float(value: int) float
geometric series sum(a: float, r: float, n: int) float
sigmoid(x: float) float
cosine similarity(vector1: list, vector2: list) float
euler totient(n: int) int
l1 norm(vector: list) float
l2 norm(vector: list) float
average(numbers: list) float
sum(numbers: list) float
length(numbers: list) float
check same string(str1: str, str2: str) bool
reverse string(input str: str) str
get pi() float
get e() float
calculate dot product(vector1: list, vector2: list) int
a plus b whole square(a: int, b: int) int
a squared plus 2ab plus b squared(a: int, b: int) int
a minus b whole squared plus 4ab(a: int, b: int) int
a minus b whole squared(a: int, b: int) int
a squared minus 2ab plus b squared(a: int, b: int) int

Table 3.4: Mathematical Function Signatures and Return Types(43-85)

13

Function Signature Return Type
a plus b whole squared minus 4ab(a: int, b: int) int
a squared plus b squared(a: int, b: int) int
negative 2ab(a: int, b: int) int
positive 2ab(a: int, b: int) int
x plus a times x plus b(x: int, a: int, b: int) int
x squared plus a plus b times x plus ab(x: int, a: int, b: int) int
a cubed plus b cubed(a: int, b: int) int
a plus b whole cubed minus 3ab times a plus b(a: int, b:
int)

int

a plus b times a squared minus ab plus b squared(a: int, b:
int)

int

a cubed minus b cubed(a: int, b: int) int
a minus b whole cubed plus 3ab times a minus b(a: int, b:
int)

int

a minus b times a squared plus ab plus b squared (a: int, b:
int)

int

Table 3.5: Mathematical Function Signatures and Return Types(86-97)

Input ##mean([18,57,72,39])

Output ##division(##sum([18,57,72,39]),##length([18,57,72,39]))

Table 3.6: Function to Function Translation Example

Input ##addition(18,18)

Output Calculation: 18 + 18

Table 3.7: Function to NL Translation Example

Input Find the area of a circle with radius 90.5

Output ##circle area(90.5)

Table 3.8: NL to Function Translation Example

Input If you evenly distribute 54 candies among 18

children, how many candies does each child receive

Output Each child will receive ##division(54,18) candies

Table 3.9: NL & Function to NL & Function Translation Example

14

3.3.4 NL & Function to NL & Function Translation

In this task, we translate a combination of natural language and function expression
into another combination of natural language and function expression. It assesses
the model’s capability to handle complex queries involving both textual instructions
and mathematical operations. Example is presented in Table 3.9

15

Chapter 4

Methodology

4.1 Approach Overview

In this section, we provide an overview of our approach to developing and evaluating
the models used in this study. We began by creating a vanilla transformer model,
utilizing a custom vocabulary that treated every unique category map and token
combination as a separate token. This approach allowed us to capture fine-grained
distinctions in the input data and yielded satisfactory results. Building upon the
success of the vanilla transformer model, we proceeded to implement our decoder-
only generative curious learner model. This model architecture, which is the focus
of this chapter, incorporates functions as tokens and predict the category of the next
token first and then using the that information, it selects the output classification
head to predict the token itself. We find that this architecture works perfect for
following the hard constraint of functional programming and functions. As function
need specific order and type of params for execution, so our model can ensure that
this requirement is meet. This chapter will delve into the details of both the vanilla
transformer model and the curious learner architecture, including their respective
training procedures, components, and design decisions.

4.2 Vanilla Transformer

In this section, we describe the development and architecture of the Vanilla Trans-
former model, which served as the foundation for our subsequent explorations. We
utilized a custom vocabulary builder, to construct the vocabulary for the Vanilla
Transformer model. This builder keep track of unique hashable vocabItems that
consists of token, category type, category subtype and category subsubtype. The
vocabulary builder includes encoding and decoding functions to map vocabItems to
integer tokens and vice versa. The architecture of the model is the replication of the
basic transformer architecture. Please refer to Figure: 4.1 for detail..
Our setup mirrors the basic Transformer architecture, featuring multi-head attention
with sinusoidal positional encoding. We’ve added a checkpoint manager to handle
model snapshots and facilitate reloading from different stages. Additionally, we’ve
implemented a learning rate scheduler to optimize training by dynamically adjusting
the learning rate. Collectively, these components form the Vanilla Transformer,
streamlining training, inference, and checkpoint management.

16

Figure 4.1: Vanilla Transformer Architecture Diagram

4.3 Curious Learner Architecture Selection

The Curious Learner represents a neuro-symbolic learning algorithm designed to
execute symbolic programs based on natural language prompts. It integrates neu-
ral network components for language understanding and symbolic reasoning, en-
abling language models to interpret and execute symbolic functions seamlessly. The
development of the Curious Learner model involved careful consideration of vari-
ous factors to ensure its effectiveness in executing symbolic functions using natural
language prompts. In this section, we discuss the key aspects of the architecture
selection process.
In designing the architecture of the Curious Learner model, we focused on three key
considerations:

1. Hard Constraint for Function Signatures: The model must accurately
identify function signatures and strictly adhere to the order of function param-
eters and types. This ensures precise execution of symbolic programs, forming
the foundation of the Curious Learner’s functionality.

2. Different Tokenization Schemes for Data Types: As different types of
tokens convey distinct meanings, employing the same tokenization scheme for
all data types may lead to ambiguity. Hence, we opted for separate output
classification heads and tokenizers tailored to different data types, enhancing
model interpretability and performance.

3. Category and Task Information Integration: To incorporate category
and task information with the tokens, we employed frequency modulation
technique. This approach facilitates the contextual understanding of input
prompts and enables the model to generate appropriate responses.

17

4.3.1 Architecture Diagram

An architecture diagram illustrating the components and flow of information within
the Curious Learner model is provided in figure: 4.2:
This diagram visually depicts the structural organization of the model and elucidates
the relationships between its constituent elements. The architecture of the Curious
Learner model encompasses various components, each serving a specific purpose
in the execution of symbolic functions. Detailed discussions of these components,
including their functionalities and interactions, are presented in the subsequent sec-
tions.

4.3.2 Input Parser

The Input Parser plays a crucial role in the Curious Learner model by converting
input strings into Input Parser output. In this section, we delve into the functional-
ity, rationale, components, and construction of the Input Parser. The Input Parser
processes input text provided to the model and generates the Input Parser tuple
consisting of tokens and category maps. This tuple contains information about the
type, subtype, and subsubtype of each token, enabling the model to understand the
structure and semantics of the input. The Input Parser was developed to handle the
complexity of natural language prompts and extract relevant information for sym-
bolic function execution. By parsing input text into categorized tokens, the model
gains insights into the intended operations and parameters. It handles various in-
put formats and extract function-related information efficiently. It employs specific
prefixes to represent different types of functions. As input to the model need to
have information about the function, we have introduced four prefixed to facilitate
different behaviors of functions. In Table3.2, we provided the meanings of these
function prefixes. Moreover, input parser categorizes tokens based on their type,
subtype, and subsubtype. Each of them are enum which can take values from their
respective sub lists. In Table3.1, we provided the values of these enums.

Example

Consider the following input string:

”##division(4.5,2)”

After parsing, the Input Parser generates the following IO parser output:

[
(
"<function MathFunctions.division at 0x117b828c0>",
{ "type":"function", "subType":"float", "subSubType":"execute" }

),
(
4.5,
{ "type":"float", "subType":"default", "subSubType":"param_one" }

),
(
2,
{ "type":"integer", "subType":"default", "subSubType":"param_last" },

)
]

This output demonstrates how the Input Parser categorizes tokens and assigns ap-

18

Figure 4.2: Curious Learner Model Architecture Diagram

19

propriate category maps based on their characteristics, facilitating the subsequent
execution of symbolic functions by the model.

4.3.3 Tokenizer

In the Curious Learner model, we utilize pre-trained models for generating initial
word embeddings and function token embeddings, eliminating the need for custom
tokenizers. This section discusses the approach to tokenization and embedding gen-
eration employed in the model.

Sentence Encoder[13]

We employ the ”all-mpnet-base-v2” pre-trained model for generating initial word
embeddings(IWE) and function docstring embeddings. Each embedding is repre-
sented as a [1×768] tensor, encapsulating semantic information extracted from the
pre-trained model. Moreover, we experimented with our own custom vocabulary
builder and tokenizer for initial word embeddings(IWE), finding that our custom
tokenizer yielded superior performance, enhancing the model’s accuracy

Graphcodebert Base Encoder[23]

Similarly, for function token embeddings, we utilize the ”microsoft/graphcodebert-
base” pre-trained model. This model generates embeddings for function tokens,
capturing their semantic meaning and contextual relevance within the programming
domain.
One of the primary objectives of the Curious Learner model is to accurately predict
the category of the next token. To achieve this, we employ cross-attention mecha-
nisms leveraging the signature of the function, particularly for function parameter
tokens. By incorporating the function signature, the model gains contextual infor-
mation about the parameters and their expected types, enhancing the accuracy of
token category prediction. Additionally, we utilize the docstring of the function for
generating appropriate initial tokens for functions. The docstring provides valuable
contextual information about the purpose and usage of the function, aiding in the
generation of meaningful initial tokens. By leveraging pre-trained models and incor-
porating cross-attention mechanisms along with docstring utilization, the tokenizer
in the Curious Learner model ensures efficient representation and interpretation of
input data.

4.3.4 ALiBiBi-Attention with Linear Bidirectional Biases
Encoder

In the Curious Learner model, we opted to utilize ALiBiBi-Attention with Lin-
ear Bidirectional Biases[30] instead of traditional sinusoidal positional encoders[12],
Learned Positional Embeddings[9] or Rotary positional encoder[35]. This section
explores the rationale behind this decision, how ALiBiBi was integrated into the
model, and the benefits it offers over positional embeddings. The decision to utilize
ALiBiBi-Attention with Linear Bidirectional Biases stemmed from the need to cap-
ture longer contextual information within the model. ALiBiBi enables the model to
extend its contextual understanding beyond fixed positional encodings, allowing it

20

to leverage bidirectional biases for more comprehensive contextual representations.
This approach aligns with the model’s objective of understanding and executing
complex symbolic functions based on natural language prompts.
Incorporating ALiBiBi into the Curious Learner model involved replacing traditional
positional encoders with ALiBiBi-Attention mechanisms within the encoder archi-
tecture. This allowed the model to dynamically adjust attention weights based on
bidirectional biases, enabling it to capture longer-range dependencies and contextual
information.
ALiBiBi offers several advantages over traditional positional embeddings:

� Longer Contextual Information: By leveraging bidirectional biases, ALi-
BiBi enables the model to capture longer contextual information, facilitating
a deeper understanding of input sequences.

� Dynamic Attention Adjustment: ALiBiBi allows for dynamic adjustment
of attention weights based on bidirectional biases, enhancing the model’s abil-
ity to attend to relevant information across the input sequence.

� Reduced Dependency on Positional Encoding: ALiBiBi reduces the
reliance on fixed positional encodings, providing more flexibility in capturing
contextual relationships without explicit positional information.

Furthermore, the use of ALiBiBi facilitated the integration of the frequency mod-
ulation technique for adding task and category information with the token embed-
dings. By incorporating task and category information into the token embeddings,
the model gains additional contextual cues, enhancing its ability to understand and
execute symbolic functions accurately based on natural language prompts.

4.3.5 Category and Task Encoder

The Category and Task Encoder was implemented to enrich token embeddings with
additional contextual information regarding task and category classifications. By
embedding task and category information directly into token representations, the
model gains enhanced contextual cues. To encode category and task information into
token embeddings, we employed the frequency and amplitude modulation technique.
This technique involves assigning unique signature biases for each task and category
combination, which are then modulated onto the token embeddings. By modulating
the token embeddings with task and category-specific frequencies and amplitudes,
we ensure that each token carries contextual information relevant to its associated
task and category.
Figure 4.3 illustrates the graph of category and task embeddings, token embeddings,
and the amalgamated graph of category and task embeddings, alongside their cor-
responding fast Fourier transformed graphs.
The process of creating modulated signals involves several steps:

1. Base Frequencies and Amplitudes: We defined base frequencies and am-
plitudes for each task, categoryType, categorySubType, and categorySubSub-
Type. These parameters serve as the foundation for modulating the token
embeddings.

21

Figure 4.3: Category and Task Embeddings Signal

2. Modulations: We defined modulation frequencies corresponding to unique
combinations of task and category information. These modulation frequencies
determine how the base frequencies and amplitudes are modulated onto the
token embeddings.

3. Nyquist-Shannon Sampling Theorem: We adhered to the Nyquist Shan-
non sampling theorem to determine the sampling rate of the combined signal.
This ensures that the modulated signals accurately represent the encoded task
and category information without aliasing or distortion.

4.3.6 Common Block

In the generative Curious Learner model, the Common Block plays a pivotal role
in processing token embeddings before passing them through subsequent blocks.
This section delves into the importance of the Common Block, its purpose, and
the rationale behind combining both category and token information. The Com-
mon Block serves as a fundamental component within each layer of the generative
Curious Learner model. Its primary purpose is to process token embeddings, en-
suring that they are appropriately contextualized before proceeding to subsequent
blocks. By incorporating mechanisms such as self-attention, dropout regularization,
and layer normalization, the Common Block enhances the model’s ability to capture
and propagate relevant information throughout the decoding process.
A key aspect of the Common Block is its capability to combine both category and
token information. This integration is essential for predicting the category and
token of the next output in the sequence. By jointly processing category and token
embeddings, the Common Block enables the model to leverage contextual cues from
both sources, enhancing the accuracy of category and token predictions.

22

4.3.7 Category Map Block

The Category Map Block consists of several layers designed to process token em-
beddings and incorporate category-specific information effectively. The block begins
with a multi-head attention layer, followed by dropout regularization and layer nor-
malization. Subsequently, a feed-forward layer is applied, followed by another round
of dropout and normalization. A distinguishing feature of the Category Map Block
is its token-type based attention mechanism. Depending on the current token’s type,
the block employs either cross attention or self-attention. Specifically, if the token
represents a function or a parameter of a function (excluding the last parameter),
cross attention is utilized on the signature of the function. Conversely, for other
tokens, self-attention is employed.
The primary purpose of the Category Map Block is to identify parameter sequences
and types using cross attention on function signatures while leveraging self-attention
for other tokens. This approach ensures that token embeddings are appropriately
contextualized based on the nature of the token and the surrounding context. By
incorporating category-specific information into token embeddings, the block en-
hances the model’s ability to predict the category and token of the next output in
the sequence accurately.

4.3.8 Category Map Decoder

The Category Map Decoder consists of multiple layers, each designed to predict
the category of the next token in the sequence. At each layer, the decoder utilizes
a common block followed by a Category Map Block to process token embeddings
and incorporate category-specific information. The decoder employs a total of 8
attention heads and 6 layers to capture and propagate contextual information ef-
fectively. The Category Map Decoder begins by obtaining token embeddings using
the Embeddings Manager. These embeddings serve as the input to the decoder
layers. Before passing through the decoder layers, dropout regularization is applied
to prevent over-fitting and enhance model generalization.
The decoder layers are implemented using an nn.ModuleList, allowing for efficient
processing and propagation of token embeddings. At each layer, token embeddings
undergo processing through the common block and the Category Map Block, en-
abling the model to capture and leverage category-specific information effectively.
At the final layer of the Category Map Decoder, the output is an embedding vec-
tor representing the category of the next token in the sequence. This embedding,
denoted as E1 (Embedding for Category), encapsulates contextual information and
category-specific cues, facilitating accurate prediction of the next token’s category.

4.3.9 Category Map Classification Head

The Category Map Classification Head is designed to process token embeddings
and predict the category of the next token. The head begins with a feed-forward
network, followed by dropout regularization and layer normalization. Subsequently,
the output layer projects the hidden dimension into a vocabulary size, enabling the
model to generate specific word probabilities. The primary function of the Category
Map Classification Head is to predict the category of the next token based By
applying feed-forward layers, dropout regularization, and layer normalization, the

23

head enhances the model’s ability to capture and leverage category-specific cues
effectively.
The output layer of the Classification Head generates logits, representing the prob-
abilities of each token category. These logits are then processed to determine the
most probable category for the next token, facilitating accurate prediction within
the decoding process. As Embedding for Category(E1) pass through the head, cat-
egory probabilities are computed, providing crucial information for the model to
generate contextually relevant token sequences.

4.3.10 Category Router

The Category Router is a critical component of the generative Curious Learner
model, responsible for routing each token to its specific output token classification
head based on its category. It consists of multiple output token classification heads,
each corresponding to a unique category present in the training data. These heads
are responsible for classifying tokens based on their category probabilities, facilitat-
ing accurate routing within the model. The router employs two distinct methods
for guiding tokens to their specific routes:

1. The Hub Method: The Hub Method involves passing every token to every
output token classification head,

2. The Switch Method: while the Switch Method routes each token to its
specific classification head.

Each method offers unique advantages and trade-offs in terms of training conver-
gence and computational efficiency. The Hub Method offers a straightforward ap-
proach by passing every token to every classification head, optimizing training con-
vergence but resulting in redundant calculations. In contrast, the Switch Method
optimizes computational efficiency by routing each token directly to its specific clas-
sification head, but may encounter challenges with backpropagation during inference
due to sequence disruption. Figure 4.4 presents a comprehensive depiction of the
architectural framework and logical flow of the category router.

4.3.11 Output Token Block

The Output Token Block is responsible for token generation during the decoding
phase. Similar to the Category Map Block, the Output Token Block comprises
multiple layers, each consisting of several sub-components. However, unlike the
Category Map Block, the Output Token Block does not incorporate cross-attention
mechanisms. Instead, all tokens pass through self-attention layers within each block.
The primary function of the Output Token Block is to process token embeddings and
contextualize them using self-attention mechanisms. By leveraging self-attention,
the block enables tokens to capture contextual information from their surrounding
tokens, facilitating accurate token generation and sequence completion.

4.3.12 Output Token Decoder

The Output Token Decoder consists of multiple layers, each comprising a series
of sub-components. Similar to other decoding blocks within the model, such as

24

Figure 4.4: Category Router Detailed Architecture Diagram

the Category Map Decoder, the Output Token Decoder utilizes a common block
followed by an Output Token Block on each layer. However, unlike the Category
Map Decoder, the Output Token Decoder focuses solely on processing output tokens
and does not incorporate cross-attention mechanisms.
The primary function of the Output Token Decoder is to decode token embeddings
and generate subsequent output tokens based on the contextual information cap-
tured from the input tokens. At the final layer of the Output token Decoder, the
output is an embedding vector representing the output of the next token in the
sequence. This embedding, denoted as E2 (Embedding for Output Token), encap-
sulates contextual information and output token-specific cues.

4.3.13 Output Token Classification Head

In our model we have multiple output classification heads, each for specific unique
category and subcategory combination, which we are calling OutputTokenClassifica-
tionHeadVocabItem. The category router is responsible for routing each Embedding
for output token(E2) through its specific output classification head. These heads
are responsible for predicting the probability distribution over the vocabulary of
output tokens, enabling the model to generate coherent and contextually relevant
token sequences.
The primary function of the Output Token Classification Head is to classify output
token embeddings and predict the probability distribution over the vocabulary of
output tokens. Each classification head is trained to recognize specific patterns

25

and generate appropriate output tokens of its data type based on the contextual
information encoded in the Embedding for output token(E2).

4.3.14 Response Parser

The primary function of the Response Parser is to process the predicted category
probabilities and output token probabilities and generate a human-understandable
response. It combines the category probability information with the output token
probability distribution to execute functions and parameters and return the result
in plain text format. It is the reverse process of the Input Parser(IP).
Consider the following example input generated by the Input Parser:

[
(
"<function MathFunctions.division at 0x117b828c0>",
{ "type":"function", "subType":"float", "subSubType":"execute" }

),
(
4.5,
{ "type":"float", "subType":"default", "subSubType":"param_one" }

),
(
2,
{ "type":"integer", "subType":"default", "subSubType":"param_last" },

)
]

After processing by the Response Parser, the generated response would be: ”2.25”

This response represents the result of executing the division function with parame-
ters 4.5 and 2, yielding the quotient 2.25.

4.4 Architecture Justification

Let’s ask some questions to justify our network architecture choice:

1. What’s the difference between Hub and Switch category routing, and why

Switch category routing should work better?

In hub category routing we route each token to all available heads, to keep
parallel training intact, so heads that don’t own the token will predict nOt-
MyToKeN. Whereas in switch category routing we route each token to only
its specific classification head. So this routing mechanism can remove both
unnecessary computation and nOtMyToKeN error with the imbalance token
count issue. See Figure 4.5 for details.

The switch method should outperform the hub method because it eliminates
the need for nOtMyToKeN tokens in the output token classification heads.
This resolves errors of producing nOtMyToKeN from heads meant to gen-
erate tokens of specific categories. With only the relevant heads producing
tokens, unnecessary computations are reduced, resulting in faster training and
inference times.

2. Why ”notmytoken” is introduced in the Hub category routing method?

26

Figure 4.5: Hub vs Switch category routing

The addition of ”nOtMyToKeN” serves a purpose in hub category routing by
ensuring that all heads produce an output, aligning with machine learning
optimization for parallelization. This waste computation resource still it’s
necessary, as heads not designated for token classification would otherwise
lack output without it.

3. Challenges for implementing the Switch category routing method?

Implementing the switch method poses challenges because it disrupts the par-
allelism of training by guiding tokens exclusively to their relevant classifica-
tion heads. While we’ve managed this for inference, ensuring backpropagation
during training is complex. Rearranging token order interferes with attention
layer backpropagation, and we haven’t found a solution yet. Overcoming this
obstacle could significantly enhance model accuracy.

4. Can we create the category for function params using function signature instead

of predicting them using cross attention?

Although not yet implemented, creating categories based on function signa-
tures rather than predicting function parameter categories can eliminate func-
tion parameter category mismatch errors entirely.

4.5 Building Vocabulary

We built and maintained a comprehensive vocabulary for effective tokenization,
classification, and decoding. The vocabulary serves as a repository of all unique to-
kens, categories, and classification heads encountered during training and inference.
Vocabulary plays a crucial role in tokenization by providing a structured mapping
between raw input data and tokenized representations. During tokenization, input
text is parsed and converted into tokens based on predefined hashable vocabulary
items.
Moreover, the vocabulary facilitates classification by organizing tokens into distinct
classification heads. Each token is associated with a specific category map, which
defines its type, subtype, and subsubtype. Additionally, output tokens are assigned
to output token classification heads, which represent the predicted types of tokens
generated by the model. By maintaining a comprehensive vocabulary, the Curious

27

Learner model can effectively tokenize input data, classify tokens into meaningful
categories, and generate accurate output predictions.

4.5.1 Category Map Vocabulary Builder

The Category Map Vocabulary Builder module is responsible for managing the vo-
cabulary related to category maps, which represent the type and subtype and sub-
subtype of each token. This vocabulary maintains four types of items, each with its
own encode and decode functions:

� Index

� CategoryVocabItem: Represents the hashable category map for a token.

� OutputTokenClassificationHeadVocabItem: Represents the hashable type for
the output token classification head of the token.

� Input Parser Output

The Category Map Vocabulary Builder dynamically tracks unique category vocab
item and output token classification head vocab items. Where each OutputToken-
ClassificationHeadVocabItem corresponds to an output token classification head.
Category vocab item is build using unique category type, subtype and subsubtype
combination while output token classification head is build using only the unique
category type and subtype combination.

4.5.2 Output Token Vocabulary Builder

The Output Token Vocabulary Builder module manages the vocabulary associated
with output tokens, which are the predicted tokens generated by the model. The
Output Token Vocabulary Builder is essential for tracking and organizing the various
types of output tokens generated by the model. It ensures that the vocabulary
is comprehensive and facilitates effective decoding and response generation. This
vocabulary maintains three types of items, each with encode and decode functions:

� Index

� OutputVocabItem

� Input Parser Output

4.6 Different Types of Embeddings

In the generative Curious Learner model, embeddings play a crucial role in repre-
senting tokens, capturing positional information, and encoding category and task
details. Different types of embeddings are utilized to ensure that tokens are accu-
rately represented and contextualized within the model’s architecture.

28

4.6.1 Token Embeddings

Token embeddings serve as the foundational representation of individual tokens
within the model. These embeddings capture semantic information about each to-
ken, allowing the model to understand and process input data effectively. We have
implemented two approaches for generating token embeddings, which encode to-
kens into dense vector representations based on their contextual usage. The first
approach involves using pre-trained transformer models ”all-mpnet-base-v2,” also
known as sentence encoders. The second approach utilizes our custom tokenizer,
which we built from scratch using vocabulary builder and the nn.embeddings layer
of the PyTorch library. In our experiments, we have observed that our custom
tokenizer yields better results. For function tokens we used the doc string of the
function to generate the embeddings using the ”all-mpnet-base-v2,” pre-trained sen-
tence encoder model. But for cross attention in the category map block we used the
signature of the function and “microsoft/graphcodebert-base” pre-trained model to
get the embeddings.

4.6.2 ALIBIBI Embeddings

ALIBIBI embeddings incorporate positional information into token representations,
enabling the model to capture long-range dependencies and context information.
These embeddings are generated using the ALIBIBI encoder, and subtracted from
the calculated attention score in the Multi head attention to introduce positional
biases. By incorporating positional information, ALIBIBI embeddings enhance the
model’s ability to understand the sequential structure of input data and make ac-
curate predictions. Token in question will have zero bias while furthest token will
have most bias. For adding randomness between the heads we gradually decrease
the base by a factor of ½ in each upcoming head from the previous. Please refer to
Figure 4.6 for details.

Figure 4.6: ALiBiBi Bias for All Attention Heads

4.6.3 Category and Task Embeddings

Category and task embeddings encode additional metadata about tokens, including
their category type, subtype, and task information. These embeddings are generated
using the category and task encoder module, which adds category and task informa-
tion to token embeddings. By incorporating category and task details, combining
these embeddings with token embeddings enable the model to differentiate between
different types of tokens and perform task-specific operations more effectively.

29

4.6.4 Combined Embeddings

Combined embeddings merge token embeddings, and category/task embeddings into
a unified representation for each token. These embeddings capture comprehensive
information about tokens, including their semantic meaning and category/task de-
tails. Combined embeddings are used as input features for the model’s training and
inference processes, providing a rich representation of input data that facilitates
accurate prediction and generation tasks.

4.7 Saving, Loading, and Retraining the Model

The Curious Learner model employs a checkpoint manager to save and load its state
during training and inference. This functionality is crucial for preserving the model’s
progress and parameters, allowing for seamless continuation of training or retrieval
of trained models for inference purposes.
When saving the model, the checkpoint manager stores various components of the
model’s state, including the following key information:

� Epoch: The current epoch number of training.

� CL Model State: The state of the CL model, containing its parameters and
optimizer state.

� Optimizer State: The state of the optimizer used for training.

� Category Map Decoder State: The state of the category map decoder module.

� Category Map Classification Head State: The state of the category map clas-
sification head module.

� Output Token Decoder State: The state of the output token decoder module.

� Category Router State: The state of the category router module.

� Category Map Decoder Blocks State: The state of the blocks within the cat-
egory map decoder.

� Output Token Decoder Blocks State: The state of the blocks within the output
token decoder.

� Output Token Classification Heads State: The state of the dynamically created
output token classification heads.

� Embeddings Layer State: The state of the embeddings layer, which is used for
generating the initial token embeddings.

Upon loading the model, it is essential to use the same input examples as those used
during training to ensure proper reconstruction of the output token classification
heads. This is required because we used dynamic calculation of the output token
classification heads from the input data. This ensures that the model’s architecture
remains consistent and avoids tensor size mismatches. However, once the model
is loaded, it can be retrained on new input data as long as the input tokens are

30

recognized by the model. The ability to save, load, and retrain the model pro-
vides flexibility and scalability, enabling efficient management and utilization of the
Curious Learner across various tasks and scenarios.

4.8 Data Loader

The Data Loader package plays a crucial role in preparing the data for training and
testing of the CL-Pre-Trainer model. It comprises two main components: the Data
Generator and the Batch Builder.

4.8.1 Data Generator

The Data Generator module is responsible for generating samples upon request. It
provides a mechanism to create data samples for training and testing purposes. It
supports both random data loading and also loading data using identifier. These
samples are then processed by the Data Loader to incorporate necessary information
for model training. As an illustration, consider the following example:

[
{

"inputStr": "##multiplication(107.23600916441234,784.625535184504)",
"outputStr": "107.23600916441234 times 784.625535184504 equals?",
"taskType": "func_to_nl_translation",
"sentence": "##multiplication(107.23600916441234,784.625535184504)

= 107.23600916441234 times 784.625535184504 equals?",
"ioParserOutput": [

{
"token": "<BOS>",
"category": { "type": "special", "subType": "word", "subSubType": "none" },
"position": 0

},
...

],
"inputTokenCount": 4,

}
]

In this example, we have a data sample for the task of function-to-natural-language
translation. The input string represents a multiplication operation, and the output
string prompts the user to calculate the result. The input is tokenized and processed
into a sequence of tokens with corresponding category information, including spe-
cial tokens such as <BOS>(beginning of sequence). The ”inputTokenCount” field
indicates the number of tokens in the input sequence.

4.8.2 Batch Builder

The Batch Builder module enhances the data generated by the Data Generator by
adding essential information required for training the CL-Pre-Trainer model. This
includes details such as input and output strings, task types, and pre-processed
tokenized representations of the input and output sequences. Additionally, it facil-
itates the construction of batches with specified batch sizes and maximum decoder
sequence lengths.
The batch builder function, performs various tasks such as adding special tokens like
<BOS>(beginning of sequence) and <EOS>(end of sequence), truncating sequences

31

to meet length constraints, and preparing attention masks for model training. Fur-
thermore, it supports generative training by employing a <MASK>token to indicate
the next token to predict, facilitating sequential prediction until the <EOS>token is
reached.
Together, the Data Generator and Batch Builder modules form an integral part
of the data loading pipeline for the CL model, ensuring that the model receives
properly formatted and processed data for effective training and evaluation.
Consider the following example of a batch:

[
{

"inputStr": [
{

"token": "<BOS>",
"category": { "type": "special", "subType": "word", "subSubType": "none" },
"position": 0

},
...
{

"token": "<MASK>",
"category": { "type": "special", "subType": "word", "subSubType": "none" },
"position": 7

},
...

],
"outputStr": [

{
"token": "<BOS>",
"category": { "type": "special", "subType": "word", "subSubType": "none" },
"position": 0

},
...
{

"token": <function MathFunctions.subtraction at 0x1241d5ab0>,
"category": { "type": "function", "subType": "integer", "subSubType": "execute" },
"position": 7

},
{

"token": "<MASK>",
"category": { "type": "special", "subType": "word", "subSubType": "none" },
"position": 8

},
...

],
"taskTypeKey": "nl_to_func_translation",
"initialTokenCountKey": 7

},
...

]

In this example, we have a batch of data samples for the task of natural language to
function translation. Each sample contains input and output sequences represented
as lists of tokens, along with their corresponding categories and positions. The
”taskTypeKey” field indicates the type of task associated with the batch, and the
”initialTokenCountKey” field denotes how many tokens need to be given to the model
for first next word prediction.

4.9 Training and Inference Methods

The training and inference methods for the CL model encompass various approaches
tailored to different scenarios and objectives. These methods involve guiding tokens
through specific routes to output token classification heads, which play a crucial role
in predicting the next token during training and inference.

32

4.9.1 Guiding Tokens to Output Token Classification Heads

Two main methods are employed to guide tokens to their specific routes:

1. Hub Method: In the hub method, every token is passed to every output token
classification head. If the token does not match the classification head, it
is identified as ′notMyToken′. This approach allows for efficient utilization of
the attention layer, leading to faster training convergence. However, it involves
redundant calculations.

2. Switch Method: In the switch method, each token is passed only to its specific
output token classification head. While this approach is more optimized, it
may lead to longer backpropagation times due to the disruption of sequential
word order in the attention layer. Therefore, it is primarily used during in-
ference. Note that due to time constraint and parallelization issue we can’t
implement the switch training method properly.

4.9.2 Training and Inference Types

Training and inference can occur in four different modes, depending on whether it
is generative or non-generative and whether the hub or switch method is employed:

1. Generative Hub Training/Inference: This mode entails training or inferring
the model in a generative manner using the hub method.

2. Generative Switch Training/Inference: Similar to generative hub training or
inference, but employs the switch method to guide tokens during training or
inference.

3. Non-Generative Hub Training/Inference: In this mode, the model undergoes
training or inference in a non-generative manner using the hub method.

4. Non-Generative Switch Training/Inference: Similar to non-generative hub train-
ing or inference, but utilizes the switch method to guide tokens.

4.9.3 Training Process

The Curious Learner model undergoes two stages of training: non-generative and
generative. Additionally, training using the Hub Method requires inference using
the Hub Method, and likewise for the Switch Method.

Non-generative Training:

Initially, the model learns to predict the next word in an autoregressive manner
without using any <MASK>token. Here, we use all the tokens with future masks
and predict the right-shifted result of the tokens in a single pass. Like: BOS I want to
eat an apple >> I want to eat an apple EOS. This process employs teacher forcing and
parallel training to expedite the fixation of the embedding layer and comprehension
of natural language. It serves as the foundational step for subsequent training.

33

Figure 4.7: Non-generative and Generative Training

Generative Training:

After completing non-generative training, the model is further trained using a gen-
erative approach. Here in a single pass, we just predict the <MASK>token and shift
the <MASK>to the next position with all the following tokens as padding. We run
generative training in a recursive loop both in training and inference until EOS is
reached, the only difference is in training we use teacher forcing while in inference
we don’t. This helps the model to become proficient as a generative next token
predictor where in each step the model predicts the next word. Please refer to Fig-
ure 4.7 for details.

XLNet[19] offers an advanced autoregressive pre-training approach, addressing limi-
tations of BERT[14] by effectively modeling bidirectional contexts. It maximizes the
expected likelihood over all permutations of the factorization order, benefiting from
its autoregressive training nature. Both the training approach of XLNet[19] and
BERT[14] can significantly improve training results, albeit at the cost of substantial
time and computational resources.

34

Chapter 5

Result

5.1 Hyperparameter Selection

In this section, we discuss the various hyperparameters that were experimented with
and the choices we made based on the performance of the CL model.

5.1.1 Activation Function

Activation functions play a crucial role in neural networks by introducing non-
linearity, allowing the model to learn complex patterns in the data. We experimented
with several activation functions, including Swish, PReLU, and ReLU.

Swish:

Swish is a recently proposed activation function that has been shown to outperform
traditional activations like ReLU in some cases[25].
It is defined as f(x) = x · sigmoid(x).

SwiGLU:

SwiGLU, short for Swish-Gated Linear Unit, is a type of activation function that
combines elements of the Swish activation function with a gating mechanism. SwiGLU
aims to capture both the non-linearity of the Swish function and the linearity of the
linear unit, providing a flexible activation function for neural networks[34].
It is defined as: f(x) = σ(x) · x+ (1− σ(x)) · x

PReLU (Parametric Rectified Linear Unit):

PReLU introduces learnable parameters to Leaky ReLU, enabling the model to
adaptively learn the optimal slope of the negative part of the activation function[16].

ReLU (Rectified Linear Unit):

ReLU is a simple and widely used activation function that outputs zero for negative
inputs and the input value for positive inputs[4].
After experimentation, we found that PReLU performed best for our use case, pro-
viding improved convergence and performance.

35

5.1.2 Normalization

Normalization techniques help stabilize and speed up the training process by en-
suring that input features are on a similar scale. We experimented with Layer
Normalization and RMSNorm.

Layer Normalization:

Layer Normalization normalizes the activations of each layer independently, across
the features dimension.

RMSNorm (Root Mean Square Normalization):

RMSNorm normalizes the activations using the root mean square of the activations
over the entire feature dimension[20].
We found that RMSNorm worked well for our model, contributing to faster conver-
gence and improved performance.

5.1.3 Regularization

Regularization techniques are employed to prevent over-fitting and improve the
generalization ability of neural networks. One common regularization method is
dropout[5], which randomly drops a fraction of the input units during training. This
helps prevent complex co-adaptations between neurons and reduces over-fitting. We
employed nn.Dropout to apply dropout with a dropout probability of 0.01.

5.1.4 Learning Rate Scheduler

Figure 5.1: Learning Rate Scheduler Graph[15]

The learning rate scheduler[15] dynamically adjusts the learning rate during training
to facilitate effective optimization. We employed the Adam optimizer with a learning
rate scheduler, which gradually increases the learning rate before decaying it [Figure:
5.1].
We utilized three parameters to control the learning rate scheduler:

� Factor: This parameter determines the rate at which the learning rate de-
creases. A factor of 0.05 indicates that the learning rate is multiplied by this
factor after each step.

36

Figure 5.2: Curious Learner Learning Rate Scheduler Graph

� Warmup: Specifies the number of steps during which the learning rate is
increased. We used (number of batch * epoch) // 2 for calculating the warmup
number.

� Max Rate: Sets an upper limit on the learning rate to prevent it from growing
too large.

5.1.5 Optimizer

We used the AdamW[11] optimizer, a variant of the Adam optimizer that includes
weight decay regularization. Weight decay adds a penalty term to the loss function,
encouraging the model to learn smaller weight values and reducing over-fitting.

5.1.6 Criterion

For the criterion, we employed the CrossEntropyLoss[2] with label smoothing[17].
Label smoothing[17] is a regularization technique that prevents the model from
becoming overconfident in its predictions by smoothing the target distribution.
Additionally, we applied weighted loss[29] to address class imbalance issues. Weights
were calculated based on the frequency of each class in the dataset, with a higher
weight assigned to underrepresented classes. We used 0.3 weight for the nOtMyTo-
KeN token irrespective of the calculated value.
As we have multiple head for output token classification, we used the multitask
learning approach here. In this approach, the network is trained to perform multiple
tasks simultaneously by optimizing a combined loss[10] function that aggregates the
losses from each task. In our case from each output token classification head. This
can be beneficial as the classification tasks are related and learning one classification
can help improve performance on another.

5.1.7 Epoch

The training process of the CL model spanned multiple epochs, with adjustments
made to the training approach and hyperparameters over time.

37

Non-Generative Training (40 Epochs):

Initially, the model was trained for 40 epochs in a non-generative manner. During
this phase, the focus was on learning the underlying structure of natural language
without considering the generative aspect.

Generative Training:

Following the non-generative training, the trained model was loaded, and generative
training commenced. This phase lasted until convergence, during which the model
was trained to predict the next token in a sequence, generating natural language
text. To improve the accuracy of the generated sequences, the training process was
adjusted. The training process involved dynamic adjustments to the batch size.
Initially, a larger batch size was used, and it was gradually decreased to 4 over the
course of training. Additionally, after 20 epochs of generative training, the model’s
performance was evaluated, and the best-performing model based on accuracy was
saved. This approach allowed for the preservation of the best model’s state for
further training or evaluation.

5.1.8 Training Batch Size

The choice of batch size is a crucial hyperparameter in training deep learning models,
as it affects both computational efficiency and the quality of the learned represen-
tations. In the case of the CL model, the training batch size underwent dynamic
adjustments during the training process. The training commenced with a relatively
large batch size to leverage parallel processing and accelerate the training process. A
larger batch size often leads to faster convergence but may compromise the model’s
ability to generalize. As training progressed, the batch size was gradually reduced to
a smaller value. This reduction allowed for finer updates to the model parameters
and improved convergence to more optimal solutions. Eventually, the batch size
was decreased to a smaller value, specifically set to 4. This smaller batch size en-
abled the model to capture finer patterns in the data and potentially achieve better
generalization performance.

5.1.9 Number of Heads in Attention Layer

We employed 8 heads in the attention layer, consistent with the architecture outlined
in the ”Attention is All You Need”[12] paper.

5.1.10 Number of Layers in Decoder

Similar to the referenced paper, our decoder consisted of 6 layers to facilitate learning
complex patterns.

5.1.11 Hidden Embeddings Dimension

The hidden embeddings dimension was set to 768 for our model, as it proved effective
in capturing intricate relationships within the data.

38

5.1.12 Feed Forward Layer Dimension

We opted for a feed forward layer dimension of 2048, a choice that allowed the
model to capture intricate feature representations effectively. This dimensionality
was applied consistently across different components, including the category map
block, output token block, and classification heads. In the category map block &
output token block, the feed forward layer was designed to transform the input em-
beddings using two linear transformations with a Leaky ReLU activation function
in between. This architecture facilitates the extraction of meaningful features from
the token embeddings. Similarly, within the classification heads, the feed forward
layer was constructed to process the token embeddings, employing two linear trans-
formations with a Parametric Rectified Linear Unit (PReLU) activation function.

5.1.13 Max Decoding Length

A max decoding length of 24 was chosen to balance computational efficiency and
model performance.

5.1.14 Add BOS and EOS Tokens

Both Beginning of Sequence (BOS) and End of Sequence (EOS) tokens were added
during training and inference to mark the beginning and end of sequences, respec-
tively. This facilitated sequence generation tasks.

5.1.15 Data Loader Parameters

The data loader function is responsible for loading and mixing samples from different
tasks to create training data for the Curious Learner model. We have 4 tasks, 98
generators(functions), and for each unique task, generator pair we have 20 to 30
samples. It accepts various parameters to customize the loading process:

� seed: Seed for generating random indexes.

� shuffle: Flag to shuffle the list before returning if set to true.

� batch size: Size of the batch.

� number of batch: The number of batches needed, where batch size × number of batch

equals the total count of samples.

� add bos and eos: Flag indicating whether to add the Beginning of Sentence
(BOS) and End of Sentence (EOS) tokens to the token list.

� max sequence length: Maximum length until which padding will be added. If
set to None, no padding will be applied.

� task generator indexes: Index indicating the task-type generator, ranging from
0 to 3.

� generator indexes: Index of the example function generator, ranging from 0 to
the length of the sample generators list.

39

� identifier: Example function identifier. Samples retrieved start from this iden-
tifier and continue till the identifier + batch size.

� param variation: We can generate an infinite number of samples by introduc-
ing variations to the parameter. This allows us to control the sample creation
process.

The task generator indexes parameter corresponds to four available task types, each
associated with a specific set of generators. These generators include natural lan-
guage to natural language (Nl2NlSamples), function to function (F2FSamples),
function to natural language (F2NSamples), and natural language to function (
N2FSamples) translation. Each task type comprises multiple generators, and each
generator contains a set of samples. generator indexes is a list which, let you se-
lect which generator(functions) to use for generating samples. The identifier and
batch size parameters work together to select samples from the specified generators.
Samples are chosen starting from the identifier and extending up to identifier +
batch size.

5.2 Acuracy Increment per Epoch

The accuracy increment per epoch provides insight into the model’s performance
improvement over successive training epochs. By monitoring the accuracy metric
across epochs, we can observe how effectively the model learns and generalizes from
the training data.

Figure 5.3: Average Acuracy vs Epoch Graph

During training, we tracked the accuracy of the model on a validation set at the end
of each epoch. The accuracy increment per epoch represents the change in accuracy
from one epoch to the next, indicating whether the model is making progress or
plateauing in its learning. A consistent increase in accuracy across epochs suggests
that the model is learning relevant patterns and improving its predictive performance
as shown in Figure 5.3.
In our experiments, we observed a steady increase in accuracy over the training
epochs, indicating that the model was effectively learning from the training data
and improving its performance over time. We find the accuracy of the category map
classification head and most of the output token classification heads become 1 after
some time, except the word, floating point, and integer output token classification
head as shown in Figure 5.4. As some data are continuous in nature like integer
or floating point so we think using a custom data type-specific tokenizer for these
output token heads can solve this issue easily.

40

Figure 5.4: Acuracy vs Epoch Graph

41

5.3 Loss Decrement per Epoch

The loss decrement per epoch provides insight into how the model’s loss function
decreases over successive training epochs. Monitoring the loss decrement helps assess
the model’s convergence and optimization progress during training.

Figure 5.5: Average Acuracy vs Epoch Graph

During training, we also tracked the loss of the model on a validation set at the
end of each epoch. The loss decrement per epoch represents the change in loss
from one epoch to the next, indicating whether the model is converging towards
an optimal solution or plateauing in its optimization. A consistent decrease in loss
across epochs suggests that the model is effectively minimizing its error and learning
relevant patterns from the training data as shown in Figure 5.5.
In our experiments, we observed a consistent decrease in loss over the training
epochs, indicating that the model was effectively minimizing its error and learning
relevant patterns from the training data. We find that the loss of the category
map classification head and most of the output token classification heads steadily
decreased over time, converging towards lower values Figure 5.6. However, some
heads, such as those associated with word, floating point, and integer output to-
kens, exhibited slower rates of loss reduction. We attribute this observation to the
inherent challenges in distinguishing between similar initial embeddings, especially
when utilizing a sentence encoder for obtaining initial embeddings rather than a
more specialized tokenizer. Addressing this issue may require the implementation
of a custom data type-specific tokenizer tailored to these output token heads, po-
tentially improving the model’s performance and convergence.

5.4 Inference

Given limitations in both data availability and computational power, achieving uni-
versality, validity, or general applicability in our model, which contains 111 million
trainable parameters, is unattainable. Consequently, accuracy serves as a primary
evaluation metric, indicating the extent to which our model memorizes correctly.
On average, for a batch comprising 97 samples, we attain the scores outlined in
Table 5.1. For additional insights, please refer to Figure 5.8.
Initially, we trained our model to determine if it could memorize samples. We choose
our 4 tasks, 50 functions, and 4 samples each, to create a dataset totaling 800 sam-
ples. After several hours of training on a T4 GPU, we achieved the following average
performance metrics across a batch of 98 samples: Accuracy of 0.85, BLEU[1] Score
of 0.84, and Perplexity[6] Score of 5.9. Afterward, we created a dataset with 4 tasks,

42

Figure 5.6: Loss vs Epoch Graph

Metric Value
Accuracy 0.85

BLEU Score 0.84
Perplexity 5.9

Table 5.1: Performance Metrics

43

10 functions, 4 samples, and 100 parameter variations each, totaling 16,000 samples.
However, due to computational limitations, we couldn’t process this dataset. So, we
downscaled to 400 samples with 4 tasks, 10 functions, 1 sample, and 10 parameter
variations each. We split these samples into 80% training, 10% validation, and 10%
testing sets.

Figure 5.7: Parsed Result Example for Each Task

After training our model for approximately 150 epochs, 40 non-generative and the
rest generative, we achieved an accuracy of 0.82, BLEU score of 0.82, and Perplexity
score of 5.15 on the testing set. While these results look promising, they are likely
memorized due to the small dataset size. In some cases, our model overfit and
predicted memorized parameters from the training data instead of generalizing. For
example: ”When asked how many unpacked apples are left if 20 apples are packed
into boxes of 10 each, the model incorrectly predicted 42 and 32 for the modulus
function instead of the correct values 20 and 10.”
While these scores provide valuable insights into overall performance, they do not
pinpoint specific areas of error. In order to ascertain the weaknesses of the model, we

44

Figure 5.8: Inference Evaluation Metrics vs Epoch Graph

provide examples showcasing both accurately parsed results and inaccurately parsed
results for each task (refer to Figure 5.7). Our analysis reveals that a common
source of error lies in the model’s tendency to predict the ′notMyToken′ instead
of the correct token, leading to parsing inaccuracies. We posit that training and
inference using the switch method, without the ′notMyToken′ for each output token
classification head, could mitigate this issue.
Besides, as we are training on a tiny dataset our model is memorizing the parameters
sometimes, which we believe can be solved if we train for less epoch and use larger
sample datasets.

45

Chapter 6

Discussion

6.1 Challenges and Limitations

Although the results were promising, we still faced some issues. These are described
below:

1. Achieving comprehensive natural language understanding in a model necessi-
tates substantial computational resources, extensive datasets, and significant
engineering efforts. However, our current project scope does not accommodate
the requirements for training such a highly generalizable model. The limita-
tions in available resources, including both data and computational power,
preclude the training of a model that can effectively generalize across diverse
linguistic contexts.

2. Function overloading could not be implemented, as our system does not permit
the retention of multiple signatures with the same name.

3. We utilized a category router to route tokens to their specific classification
head. However, there were two potential methods for doing this. We initially
attempted both approaches but, due to time constraints, we were unable to
implement the Switch method effectively. Consequently, we utilized the Hub
method, which involved routing tokens to each classification head using the
′nOtMyToKeN′ approach for tokens that were not intended to be classified by
other classification heads.

(a) Switch method (Optimized) - This method routed each token to its spe-
cific classification head only.

(b) Hub method (Non-Optimized) - This method routed each token to each
classification head.

4. Initially, we considered implementing a Siamese network to establish relation-
ships between functions. However, this approach quickly became impractical
as the model’s size increased, leading us to abandon the idea.

6.2 Future Works

In the future, we aim to enhance our model through the following:

46

1. Employing a tokenizer for each data type, to ensure comprehensive and accu-
rate processing. As continuous data type like integer, floating point involves
converting them into discrete tokens that can be processed by models.

2. Improve the switch training method for a more optimized training cycle. Al-
though hub training and switch inference are functional, enhancing the switch
training process could streamline both training and inference methods, elimi-
nating redundant computations.

3. Cross-attention mechanisms are unnecessary for discerning function parame-
ters. By predicting the function token first, we leverage the subsequent func-
tion signature to discern the required token types. Thus, instead of predicting
the next token category map, we construct it using available information and
subsequently predict the output token. This approach can enhances both the
efficiency and accuracy of our model.

6.3 Conclusion

The Curious Learner model, initially a vanilla Transformer, evolved into a decoder-
only generative model trained on four tasks. With a customized vocabulary and
sentence encoder, it excelled in function execution via natural language. Its inno-
vative approach to language understanding opens doors to enhanced automation
and problem-solving, promising transformative advancements in human-computer
interaction and task automation. However, addressing key challenges such as better
initial embedding for continuous data, creating function parameter category types
using function signatures instead of predicting them, and implementing a paralleliz-
able Switch category routing mechanism could not only decrease our computation
need but also lead to drastic improvements in our results.

The code for training and evaluating our models is on GitHub:
https://github.com/nerdslab-club/cl model
Additionally, sample input-output pairs for the identified four tasks are available at
https://github.com/nerdslab-club/cl data/tree/cl model main
Moreover, documentation for the selected 98 mathematical functions can be found
at:
https://github.com/nerdslab-club/function representation

47

https://github.com/nerdslab-club/cl_model
https://github.com/nerdslab-club/cl_data/tree/cl_model_main
https://github.com/nerdslab-club/function_representation

Bibliography

[1] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for au-
tomatic evaluation of machine translation,” in Proceedings of the 40th annual
meeting of the Association for Computational Linguistics, 2002, pp. 311–318.

[2] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep
belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[3] S. Harnad, “Symbol grounding problem,” Scholarpedia, 2007. doi: 10.4249/
SCHOLARPEDIA.2373.

[4] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th international conference on machine
learning (ICML-10), 2010, pp. 807–814.

[5] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature de-
tectors,” arXiv preprint arXiv:1207.0580, 2012.

[6] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regu-
larization,” arXiv preprint arXiv:1409.2329, 2014.

[7] L. A. Dennis, M. Fisher, M. Slavkovik, and M. Webster, “Formal verification
of ethical choices in autonomous systems,” Robotics and Autonomous Systems,
2016. doi: 10.1016/J.ROBOT.2015.11.012.

[8] T. Bocklisch, J. Faulkner, N. Pawlowski, and A. Nichol, “Rasa: Open source
language understanding and dialogue management,” arXiv preprint arXiv:1712.05181,
2017.

[9] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolu-
tional sequence to sequence learning,” in International conference on machine
learning, PMLR, 2017, pp. 1243–1252.

[10] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient compres-
sion: Reducing the communication bandwidth for distributed training,” arXiv
preprint arXiv:1712.01887, 2017.

[11] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv
preprint arXiv:1711.05101, 2017.

[12] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Ad-
vances in neural information processing systems, vol. 30, 2017.

[13] D. Cer, Y. Yang, S.-y. Kong, et al., “Universal sentence encoder,” arXiv
preprint arXiv:1803.11175, 2018.

48

https://doi.org/10.4249/SCHOLARPEDIA.2373
https://doi.org/10.4249/SCHOLARPEDIA.2373
https://doi.org/10.1016/J.ROBOT.2015.11.012

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[15] A. M. Rush, “The annotated transformer,” in Proceedings of workshop for
NLP open source software (NLP-OSS), 2018, pp. 52–60.

[16] L. B. Godfrey, “An evaluation of parametric activation functions for deep
learning,” in 2019 IEEE International Conference on Systems, Man and Cy-
bernetics (SMC), IEEE, 2019, pp. 3006–3011.

[17] R. Müller, S. Kornblith, and G. E. Hinton, “When does label smoothing help?”
Advances in neural information processing systems, vol. 32, 2019.

[18] A. Murali and P. Madhusudan, “Augmenting neural nets with symbolic syn-
thesis: Applications to few-shot learning,” arXiv: Learning, 2019.

[19] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le,
“Xlnet: Generalized autoregressive pretraining for language understanding,”
Advances in neural information processing systems, vol. 32, 2019.

[20] B. Zhang and R. Sennrich, “Root mean square layer normalization,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[21] T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learners,”
Advances in neural information processing systems, vol. 33, pp. 1877–1901,
2020.

[22] K. Ellis, C. Wong, M. Nye, et al., “Dreamcoder: Growing generalizable, inter-
pretable knowledge with wake–sleep bayesian program learning,” Philosophical
Transactions of the Royal Society A, 2020. doi: 10.1098/RSTA.2022.0050.

[23] D. Guo, S. Ren, S. Lu, et al., “Graphcodebert: Pre-training code representa-
tions with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[24] J. Huang, C. Smith, O. Bastani, R. Singh, A. Albarghouthi, and M. Naik,
“Generating programmatic referring expressions via program synthesis,” In-
ternational Conference on Machine Learning, 2020.

[25] M. A. Mercioni and S. Holban, “P-swish: Activation function with learnable
parameters based on swish activation function in deep learning,” in 2020 Inter-
national Symposium on Electronics and Telecommunications (ISETC), IEEE,
2020, pp. 1–4.

[26] C. Raffel, N. Shazeer, A. Roberts, et al., “Exploring the limits of transfer
learning with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[27] J. Austin, A. Odena, M. Nye, et al., “Program synthesis with large language
models,” ArXiv, 2021.

[28] S. Chaudhuri, K. Ellis, O. Polozov, R. Singh, A. Solar-Lezama, and Y. Yue,
“Neurosymbolic programming,” Found. Trends Program. Lang., 2021. doi:
10.1561/2500000049.

[29] K. R. M. Fernando and C. P. Tsokos, “Dynamically weighted balanced loss:
Class imbalanced learning and confidence calibration of deep neural networks,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 7,
pp. 2940–2951, 2021.

49

https://doi.org/10.1098/RSTA.2022.0050
https://doi.org/10.1561/2500000049

[30] O. Press, N. A. Smith, and M. Lewis, “Train short, test long: Attention with
linear biases enables input length extrapolation,” arXiv preprint arXiv:2108.12409,
2021.

[31] OpenAI. “Chatgpt plugins.” (2023), [Online]. Available: https://openai.com/
index/chatgpt-plugins (visited on 03/23/2023).

[32] OpenAI. “Function calling.” (2023), [Online]. Available: https ://platform.
openai.com/docs/guides/function-calling (visited on 03/23/2023).

[33] Y. Shavit, S. Agarwal, M. Brundage, et al., “Practices for governing agentic
ai systems,” Research Paper, OpenAI, December, 2023.

[34] D. Groeneveld, I. Beltagy, P. Walsh, et al., “Olmo: Accelerating the science
of language models,” arXiv preprint arXiv:2402.00838, 2024.

[35] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu, “Roformer: Enhanced
transformer with rotary position embedding,”Neurocomputing, vol. 568, p. 127 063,
2024.

[36] Significant Gravitas, AutoGPT. [Online]. Available: https : / / github . com/
Significant-Gravitas/AutoGPT.

50

https://openai.com/index/chatgpt-plugins
https://openai.com/index/chatgpt-plugins
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT

	Declaration
	Approval
	Ethics Statement
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Preface
	Scope of the Study
	Research Design
	Structure of the Thesis

	Literature Review
	Historical Background
	Neurosymbolic Generative Models
	Synthesis of Existing Studies
	DreamCoder
	ChatGPT Plugin
	ChatGPT Function Calling
	Rasa

	Critique of Existing Literature
	Future Directions

	Data
	Overview
	Functions
	Tasks
	Function to Function Translation
	Function to NL Translation
	NL to Function Translation
	NL & Function to NL & Function Translation

	Methodology
	Approach Overview
	Vanilla Transformer
	Curious Learner Architecture Selection
	Architecture Diagram
	Input Parser
	Tokenizer
	ALiBiBi-Attention with Linear Bidirectional Biases Encoder
	Category and Task Encoder
	Common Block
	Category Map Block
	Category Map Decoder
	Category Map Classification Head
	Category Router
	Output Token Block
	Output Token Decoder
	Output Token Classification Head
	Response Parser

	Architecture Justification
	Building Vocabulary
	Category Map Vocabulary Builder
	Output Token Vocabulary Builder

	Different Types of Embeddings
	Token Embeddings
	ALIBIBI Embeddings
	Category and Task Embeddings
	Combined Embeddings

	Saving, Loading, and Retraining the Model
	Data Loader
	Data Generator
	Batch Builder

	Training and Inference Methods
	Guiding Tokens to Output Token Classification Heads
	Training and Inference Types
	Training Process

	Result
	Hyperparameter Selection
	Activation Function
	Normalization
	Regularization
	Learning Rate Scheduler
	Optimizer
	Criterion
	Epoch
	Training Batch Size
	Number of Heads in Attention Layer
	Number of Layers in Decoder
	Hidden Embeddings Dimension
	Feed Forward Layer Dimension
	Max Decoding Length
	Add BOS and EOS Tokens
	Data Loader Parameters

	Acuracy Increment per Epoch
	Loss Decrement per Epoch
	Inference

	Discussion
	Challenges and Limitations
	Future Works
	Conclusion

	Bibliography

