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Abstract

Significant advancements have been made in the field of image-to-image translation
and image synthesis in recent years. Generation of images from sketches is a popular
topic in this field. It has many use cases in day-to-day life especially for artists. One
useful kind of generative model that has recently come into use for this purpose are
diffusion models. In this thesis, we investigate this topic further by developing an
efficient approach to generate sufficiently similar images from simple sketch inputs
using diffusion models. We utilize a custom Kolmogorov Arnold Network (KAN)
based model to provide guidance to a pre-trained diffusion model, so that it generates
an image following the input sketch. We also compare our approach with other
existing methods and also evaluate their performance. Additionally, we experiment
our model with various types of sketch styles containing varying levels of details to
demonstrate its robustness. The results show that our method is able to produce
images from freehand sketches efficiently.

Keywords: KAN; Diffusion Models; Sketch-to-Image; Generative AI
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Chapter 1

Introduction

Drawing a sketch is one of the easiest and fastest ways to picture something. It gives
a vague representation of the scene/image. Sketches are used for various purposes.
For example: drawing the outline of a face, making the blueprint of a building, draw-
ing the outline of a scenery, designing the layout and structure of characters & maps
in games, drawing cartoons, digital painting etc. Drawing a sketch is very simple
and requires very less effort. However, the tricky part comes when converting this
abstract sketch into an actual image or 3D model. Even for professionals, it is quite
a difficult and time-consuming task. One skill that humans have that we would want
computers to replicate is the ability to create a fully realistic visual representation
of an object or scenery from a rough sketch. Due to recent advancements in the
field of artificial intelligence, it is now possible to effortlessly generate images from
a sketch, reducing the hassle of a human artist. However, creating a realistic and
accurate image from an arbitrary drawn sketch is still a task which machines can’t
do perfectly. This is because there are various angles to a sketch and it is quite diffi-
cult to accurately understand the artist’s intent from a simple sketch with very little
detail. A single sketch can be visualized by different people in various different ways
with varying levels of detail. The simple the sketch the harder it is to depict what
it truly meant. This is a very difficult task for a computer as there exists millions
of possibilities of how the output image might be. For this reason, there is a neces-
sity of a textual prompt to accurately understand the artist’s depiction of the sketch.

Lots of different approaches have been introduced in the last few years to solve this
problem. In the beginning, this problem was approached with image retrieval based
methods ([4], [2]), which in reality, do not have any creation ability. These models
work by searching a large database of images for the given input sketch by extracting
and matching common features within them. Then came GANs[22] which had true
generative capability however had other limitations. These methods were quickly
replaced after the rise in popularity of Diffusion Models.

Image to Image translation was first introduced by Isola et al.[10]. Their suggested
model was called pix2pix, which can be used in various tasks like labels to facade,
sketch to image, image recoloring etc. Since then, there have been various new
developments in this field which opened newer applications and possibilities using
sketch-to-image translations. For example, the paper [31] suggests a method of
sketch-based hairstyle design by extending the original pix2pix method. The paper
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[34] proposes an architecture image translation method to synthesize realistic build-
ing images from freehand architecture sketches.

Figure 1.1: Some images generated with SOTA diffusion models

However, the dominance of GANs quickly faded after the introduction of image
generation techniques using diffusion models. DDPM[23] introduced an approach
for image generation by randomly adding noise to the original distribution follow-
ing a markov chain and then learning to remove that noise completely to produce
another similar distribution. Moreover, the paper [26] showed that diffusion mod-
els outperform GANs in every possible way in the task of image generation. From
then, diffusion models became the new SOTA for image synthesis. The process of
adding iterative noise is the forward diffusion process and the process of denoising is
the reverse diffusion process. Diffusion models are a probabilistic generative model
employed for the purpose of image production. The process operates by repeatedly
applying a series of alterations to an initial image in order to generate a different
image. Every stage of transformation adds a specific level of distortion to the image,
which increases as the process continues. The noise gradually spreads out through-
out the screen, leading to intricate and varied visual patterns.

A diffusion model typically consists of a sequence of diffusion stages, which are the
forward and reverse process. In the forward process, Gaussian noise is added it-
eratively into the original image throughout a number of timesteps t. At the end
of this process, the original distribution is completely destroyed and a completely
random noise is produced. In the reverse process, the model learns to remove the
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noise slowly to produce a new image similar to the original distribution. In this way,
diffusion models synthesize images. Diffusion models produce higher quality images
compared to GANs [26]. Because these models can learn complicated data distri-
butions and are resilient to changes in the input shapes, designers and artists can
effortlessly transform their ideas into visually appealing artwork. Following similar
ideas, we propose a method for image synthesis from human hand-drawn sketches
using diffusion models. In particular, we propose a custom model for edge detection
during the generation stage of latent diffusion models, which can be used to generate
images from sketches by controlling the generation process.

Following similar ideas, in this thesis, we propose a method for image generation
from human hand-drawn sketches using diffusion models. In particular, we propose
a custom model for edge detection in the latent space of diffusion models, which can
be used to generate images from sketches.
Our contributions in this study include:

• We utilize a custom KAN based model for edge detection in the latent space.

• Utilize SSIM as a loss during inference process to generate more realistic images
matching the sketch input.

• Find an optimal set of hyperparameters for our model through parameter
tuning.

• Reduce the number of inference steps needed to generate images compared to
our baseline model.

• Integrate a sketch simplification network to make the model generate images
efficiently.

• Integrate CLIP-Interrogator in the pipeline to make user given text prompts
optional.

• Improve efficiency of our baseline model and reduce the time required for
generation.

• Suggest a better method for generating images from freehand sketches.

1.1 Problem statement

Generation of realistic and accurate images from sketches is an important task and
an area of active research in the field of computer vision. It has many applications
in law enforcement, films and animation, digital art, video games etc. This can
also help amateur artists to easily generate realistic images from sketches. Previous
approaches in solving this task were met with various challenges like lacking precise
details, unable to preserve the unique style of the sketches, failure to generate re-
alistic images with rich texture and details, failure to capture in-depth details etc.
We aim to tackle these issues by providing a fast and efficient diffusion model based
method to generate images automatically from input sketches. Moreover, our goal
is to achieve state-of-the-art evaluation metrics on our proposed method.
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1.2 Research Objective

The purpose of this research paper is to examine diffusion model based approaches
for image generation. Various methods are evaluated and tweaked to provide more
accurate image generation using augmented datasets. The research objectives of
this thesis are:

1. To understand the most recent approaches in sketch-to-image tasks.

2. To synthesize realistic looking photos from novice sketches using a diffusion
model.

3. To evaluate existing diffusion models for image generation.

4. To create a deep learning based model for image generation from sketches.

5. To explore various diffusion model based approaches for sketch to image trans-
lation

6. Enhancing performance, accuracy and generation quality further by adjusting
existing models.

1.3 Research Orientation

In this thesis paper, we have organized our work into different chapters for easier un-
derstanding. The 1st chapter consists of the introduction, the 2nd chapter includes
literature review, the 3rd chapter has the research methodology, the 4th chapter has
the results & analysis and finally the 5th chapter contains the conclusion. Through-
out chapter 2, we have examined numerous research papers related to the topic and
have provided a brief summary of those research’s approaches, models used, results
etc. We provide our methodology and model description in chapter 3 and follow up
chapter 4 with our results.
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Chapter 2

Literature Review

2.1 GAN based methods

Image to Image translation models can be used for sketch to image generation tasks.
Pix2Pix[10], a conditional GAN, was the first model for image to image translation,
which can be used in various tasks like labels to facade, sketch to image, image recol-
oring etc. Since then, there have been various new developments in this field which
opened newer applications and possibilities using sketch-to-image translation. Cy-
cleGAN[11] proposed a method for unsupervised image to image translation. AODA
[42] suggested a method for open domain unsupervised sketch to image translation
similar to the idea of cycleGAN. SketchyGAN [13] proposed an end-to-end trainable
approach for sketch to image synthesis using GANs. Chen et al. in paper [13] men-
tions that the process of quickly visualizing a scene or object is by using sketches
and then using these sketches to produce realistic images is challenging as there is
limited dataset. To solve this problem, they proposed SketchyGAN, an end-to-end
trainable approach for sketch to image synthesis using GAN. Previously, sketch to
image synthesis required image retrieval techniques and complex post-processing.
Now, with the emergence of deep convoluted neural networks and generative adver-
sarial networks, a deep learning model can be employed for image synthesis. The
authors expanded an existing sketch dataset with a bigger dataset of paired edge
maps and images in an effort to circumvent the difficulties of getting paired photos.
They taught the model to go from making images from edges to making images from
sketches. Additionally, they included several loss terms to improve image quality
as well as a MRU, which uses an internal mask to determine information flow. The
study shows comparisons with pix2pix[10] model which shows that in terms of faith-
fulness of input sketch, augmented pix2pix [10] (65.9%) compared to SketchyGAN
(47.4%). However, in terms of realism, SketchyGAN shows 53.7% better realism
than pix2pix.

In [20], the authors have proposed a new approach, to generate realistic images con-
taining many objects from hand drawn sketches and have also built a new dataset
called SketchyCOCO, which is based on COCO-Stuff [12]. Their proposed architec-
ture, EDGEGAN, is the first deep neural network architecture for generating images
from freehand sketches containing multiple objects. They mainly divided the task of
image generation from sketches into two separately-trained sequential stages: fore-
ground generation and background generation. The foreground generation module
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focuses on generating a foreground image from the freehand sketch given by the user,
strictly maintaining the user requirements detail by detail. Instead of directly gener-
ating the foreground image from the input sketch, it is generated from an attribute
vector learned by the model during its training stage. In the background gener-
ation stage, the authors train pix2pix[10] to convert the image synthesized in the
foreground generation stage to produce the final image. To match the background
with the foreground, pix2pix is leveraged and the foreground image is used as a
constraint. The model is compared against other models like pix2pix [10], Sketchy-
GAN[13] etc. The results prove that this model produces much more realistic and
diverse images than the others and is far superior compared to them by comparing
various metrics.

In the paper [19], the authors introduce a conditional GAN with self-attention to
generate realistic human-face images from lines/edge maps that vaguely describe a
face. The output images are well-aligned with the input image. The paper talks
about the issues for which previous GAN based models failed to render highly de-
tailed realistic face images from lines/edge maps/sketches. In solution to the issues,
the authors propose a conditional self-attention module (CSAM). Using CSAM, in-
formation can be parsed by the higher layers from the input image while capturing
deep-level dependencies. Moreover, the authors build a multi-scale discriminator
while capturing details of the image from various depths. This discriminator pushes
the generator to yield realistic and detailed images with accurate facial features. The
conditional self-attention module is added before the last convolution layer. The au-
thors train their model on the CelebA-HD dataset by randomly selecting 24k images
and extracting the edges using a deep edge detector to generate edge maps. Various
evaluation metrics like Inception scores [7], Fréchet inception distance [9] etc. are
used to measure the model’s performance. The experiments produce promising re-
sults compared to previous approaches. This proposed model allowed the generation
of high-detailed images from edgemaps even when some facial structures are missing
in the input images.

In paper [27], it states that the conversion of black-and-white facial sketches into
lifelike colored images is a crucial issue in image processing and machine vision, and
it is covered in this work. There are three different categories of facial sketches:
seen, forensic, and composite. Due to variations in structural and morphological
traits, it can be difficult to match sketches with realistic images. To overcome this,
the research suggests a framework for converting face sketches into high-resolution,
high-quality, and colorful photographs. The model transforms an intermediate latent
vector into the final image using a GAN. In order to increase the similarity between
the synthesized photo and the input face sketch, it captures high-level qualities from
the input face sketch as a feature vector, maps those traits into the latent space of
the GAN, and then optimizes the latent vector. Unlike paper [13], the proposed
model does not require training on paired sketch-photo data, and the experimental
results demonstrate its effectiveness in terms of both qualitative and quantitative
measures. The study showed results comparing with other models like DualGAN,
CycleGAN[11], psp in terms of realism which showed the proposed model (75.89%)
beating DualGAN (8.03%), CycleGAN (4.35%) and psp (11.72%).
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The authors of paper [17] did a study that addresses the creation of a conditional
GAN-based interactive picture generation system. The ability to convert abstract
inputs into actual images has been achieved by existing models, but the current user
interfaces make it challenging for users to generate drawings gradually since they
demand the complete edge or label map as input like in paper [13]. The suggested
system is a recommender system that creates a complete picture from only a few
of the user’s partial strokes or sketches. Through the use of a gating-based con-
ditioning method, it uses a single conditional GAN model to represent numerous
image classes. The technique uses a two-stage methodology to give the artist input
on the overall item shape, allowing for speedy refining of higher-level geometries.
Performance is better when the completion and image production processes are sep-
arated than when partial outlines are converted straight into images. The second
step makes use of a multi-class generator that is dependent on a user-supplied class
label and uses a gating mechanism to concentrate on key components unique to a
given class. With this method, a single generator and discriminator may be trained
across many object classes, producing a deployable model that can be used in a va-
riety of scenarios. The study shows that in single class generation, using two stage
produces more accurate images compared to single stage across multiple datasets.
In multi class generation, the system produces a 97.38% average accuracy.

The paper [21] discusses the task of Lab2Pix, which involves generating realistic
images from sketch labels. Realistic images have been successfully produced by
supervised approaches, but unsupervised scenarios do not work well with current
architectures. The CycleGAN[11] model has been a ground-breaking effort in lever-
aging a cycle model to translate labels to actual images. It can synthesize intricate
items in scenarios with multiple objects and use an excessive amount of resources to
show the finer features of a single object. The unsupervised version of this problem
is difficult to solve because of the disparity between the labels that are input and
the images that are generated. The authors presented a unique framework that they
named Lab2Pix with the goal of synthesising real-life images in a consistent manner
as a solution to these challenges. The generator was developed to produce images
with increasingly greater resolutions during a single forward step. The final couple
of layers of the generator are where the framework places label guided spatial co-
attention (LSCA) blocks. These blocks integrate features from multiple levels and
refine outputs by making use of low-level attributes that are guided by the labels.
A segmentation component is used to verify the produced outputs against the input
labels. The authors recommend using the network for three different functions in
order to increase the likelihood that it would produce lifelike photos. First, genuine
photos are scaled up and down to create fuzzy samples in order to define a sharp
enhancement loss. In order to differentiate between synthetic and real-world data,
discriminators must be trained, which forces the generator to produce sharper im-
ages. A second picture consistency loss is included so that multi-scale images can be
aligned at the feature level and the training process can be stabilised. Third, in the
adversarial loss function, the synthesis of the foreground is improved. Experimental
results show that the proposed method performs significantly better compared to
CycleGAN. It shows that adjusted Lab2Pix achieves comparable Fréchet Inception
Distance scores or FID[9] scores (98.0 vs 83.9), reduced training time (0.4 times less)
and less computational resources (11 GB vs 8 GB).

7



In paper [41], the authors introduce DeepPortraitDrawing as a deep generative ap-
proach for generating lifelike human images from low-quality, hand-drawn input.
The method addresses the challenges of sketch-based synthesis by leveraging part-
level shape spaces, refining sketch and parsing maps, and employing global synthesis
and face refinement networks. The experimental results validate the effectiveness
and practicality of the proposed method, offering visually pleasing results with re-
alistic local details. The researchers conducted a study to prove the effectiveness of
their approach for synthesizing lifelike human portraits from hand-drawn sketches.
Their method was compared against various other well-known methods. All mod-
els were trained on the same dataset. Their method produced the best FID scores
which is 50.36, then GauGAN (51.92), pix2pixHD (70.87) and pix2pix (71.12).

The paper [28] introduced a self-supervised learning approach for exemplar-based
sketch-to-image synthesis, disregarding the necessity of sketch-image paired data.
They present a unique way of generating images from sketches using Auto-Encoders
and GANs. Firstly, the authors propose generating line-sketches for RGB only
datasets, which allows synthesis of multiple sketches for a single image. Then using
a self-supervised Auto-Encoder, the style features and contents are decoupled from
the sketches and RGB images from the dataset. The AE is formed of two separate
encoders: a style encoder and a content encoder. A decoder takes the extracted
features from both the encoders and produces the final image. The auto encoder
generates images that maintain the details of the sketch and are similar in style
with the RGB images. The authors also discuss various optimization techniques for
performance and synthesis quality. A GAN is used to refine the output produced
by the AE, making the model more efficient. The authors evaluate their model on
the CelebA-HQ and WIKIART dataset, which yields a top-notch performance on
10242 resolution. The self-supervision mechanisms presented by the paper gives a
significant performance boost on the tasks of sketch to image translation.

In paper [16], the authors present a novel approach to synthesize photorealistic face
photos from sketches using GANs. The generator utilizes a deep residual U-Net ar-
chitecture while the discriminator adopts a Patch-GAN with residual blocks. Skip
connections and residual blocks help the generator produce high-resolution with rich
details. The generator’s encoder uses a 4x4 kernel and 2x2 stride filters. The last
layer of the decoder uses a tanh activation function while the basic structure is
formed by combining deconv+bn+res+relu. 5 layers of down-sampling are used by
the discriminator among which are 4 residual blocks. The authors think that just
using convolution layers are inefficient to properly discriminate the image, so they
add residual blocks. The authors also introduce three effective loss functions that
enforce pixel, edge, and high-level feature restrictions on the synthesized face im-
ages. The performance of the proposed approach is further enhanced by these loss
functions. The paper also proposes a data augmentation strategy for photo-sketch
pairings to alleviate data scarcity. This reduces overfitting and improves generation
efficiency. Using a NVIDIA TITAN X gpu, the model is trained for a thousand iter-
ations. The authors evaluate their method by means of qualitative and quantitative
experiments. Furthermore, the paper evaluates the synthesized face photos in the
context of face recognition tasks. Comparing the results against other state-of-the-
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art methods, the authors state that the photos generated by their method achieves
consistently better performance and improves the accuracy of the sketch-to-image
tasks.

In the paper [24], the authors have suggested a sketch-to-image synthesis method
that is end-to-end trainable and can produce objects from various classes. Their
proposed approach accepts sketches of objects as input, and produces realistic im-
ages of the same objects in similar postures. The process of image generation is of
two stages. In the first stage, their goal is to synthesize an image from the class
label in order to establish a uniform baseline for each class. Then in the second
stage, they combined the input sketch and the uniform baseline to create the re-
alistic image. The second stage is implemented with the same backbone structure
as SketchyGAN [13]. The authors describe a GAN-based sketch-to-image synthesis
method that can create images straight from sketches without the need for image
retrieval during testing. Their proposed method can learn more accurate represen-
tations of the publicly available unpaired data by using a CGAN, which allows it to
take full advantage of the data. The authors utilize Inception Scores[7] to evaluate
their method on their dataset.

In the paper [42], the authors introduced a first-of-its-kind Adversarial Open Domain
Adaptation (AODA) framework that is taught to combine the missing hand-drawn
input sketches and allows for unsupervised open-domain adaptation. The authors
proposed a translation method for image to sketch and vice-versa, with the intent of
converting open-domain pictures into sketches using GANs. The suggested frame-
work and training methodology can produce real looking results, even for inputs of
hypothetical classes. The authors compared their suggested method with existing
previously developed similar approaches and evaluated their proposed method bet-
ter since results from both qualitative and quantitative studies demonstrate that
this method performs better on both seen and unseen data. To solve the problem of
missing details in input sketches, the authors trained a model using their suggested
framework. Besides, the authors implemented an open-domain training technique
in order to lessen the generator’s bias toward synthesized drawings and take ad-
vantage of the generalization of adversarial domain adaptation and this strategy
allowed them to generate open-domain classes more faithfully. Moreover, the au-
thors describe their introduced network as an excellent freehand drawing extractor
for random photographs. Extensive research, user testing, and analysis of multiple
datasets show that the described model in this paper can correctly synthesize gen-
uine images for various types of open-domain freehand sketches.

In the paper[32], the paper introduces a Sketch Transformer network for generation
of realistic human faces from sketches. The network incorporates a self-attention
mechanism to generate realistic face sketches from photos. The modules that make
it up are an MFPEncoder, a residual self-attention block and lastly a MSPADE-
Decoder. The MFPEncoder extracts feature embeddings and positional encodings
at different scales, while the residual self-attention layer captures long-range spa-
tial dependencies. The MSPADE-Decoder reconstructs the target image using the
output of the self-attention module, multi-scale feature embeddings, and positional
encodings. Quantitative and qualitative evaluations show that the suggested ap-
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proach achieves better output quality than state-of-the-art methods. Evaluation
metrics such as LPIPS, FID, and FSIM are used to measure the generated images’
quality, with lower LPIPS and FID scores and higher FSIM scores indicating better
quality. The Sketch-Transformer model effectively preserves global structures and
produces sketch-like textures. The experiments are conducted on public databases,
including the CUFS and CUFSF datasets, using standardized image sizes and com-
parison settings.

In paper [25], the authors state that investigators often utilize forensic artists’ facial
sketches to recreate images from verbal statements. The subject’s genuine features
are depicted in these sketches. These sketches aren’t good for biometric identifi-
cation. Edges dominate sketches’ pixel information. However, these edge features
can contain structural information that helps create high-quality visual representa-
tions. Due to the lack of a style guideline, turning sketches into realistic photographs
might be difficult. Translation from picture to image, sketch to image, or edge to
image has been established. Conditional generative models and image content and
style separation are used in these methods. Combining deep convolutional neu-
ral networks with generative models like generative adversarial networks (GANs),
VAEs, and auto-regressive models has improved data distribution modelling. In
that respect, the authors proposed a model where sketches are synthesized into
high-resolution graphics. A generator produces photos with diverse target proper-
ties while preserving the subject’s identification. The model also has a verifier to
assure identity consistency and a hybrid discriminator to identify actual and syn-
thesized photographs based on desired qualities. The model uses a quality-guided
network to reduce perceptual discrepancies between synthesized and actual images
in different network sections to improve image quality. An identity preserving net-
work keeps the subject’s biometric identity. The results show a marked improvement
over existing models like BP-GAN (86.1 FID), C-GAN (43.2 FID), CA-GAN (36.1),
SCA-GAN (34.2), the author’s model (34.1).

Generative Adversarial Networks [22] have true generative capability and are supe-
rior to older methods like image retrieval methods and VAEs. GANs, by learning the
underlying distribution of data, can truly generate images. For this reason, GANs
are very popular for image-to-image-translation based tasks. GAN consists of two
networks, which work in contrast to each other. They play a minimax like game
which results in the production of accurate output. However, the training process
of GANs are prone to higher instability due to the complicated nature of training.
They suffer from mode collapse and vanishing gradient most of the time. GAN
based approaches learn to map an image from a domain to another domain. They
work well, however, their big downside is that they cannot generate outside their
training domain. Moreover, they lack support for text prompts, which are essential
for clearly understanding the artist’s intent.
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2.2 Diffusion model based methods

Another newer approach for generating realistic images from sketches is by using dif-
fusion models[23]. Various papers proposed ways to synthesize images from sketches
using diffusion models like [40], [43]–[46].

The paper [40] uses diffusion models for sketch-controlled image generation. The
proposed framework consists of a forward diffusion process and a reverse diffusion
process. In the forward diffusion process, the input image is converted into latent
noise by slowly adding Gaussian noise to destroy the pixel value distribution. In the
process of reverse generation, the latent noise is removed in steps to produce the de-
sired image. The classifier plays an important role in the image generation process.
It makes sure that generated images match the category that we want to produce.
The authors’ proposed model is called DiffSketching. This is one of the first works
done on sketch to photo generation with a diffusion model. It uses diffusion models
to generate realistic looking images as well as overcoming the limitations of previous
GAN based works.

In paper [43] a unique method to image generation was introduced called DiSS. This
approach generates images by taking input from sketches and strokes using diffusion
models. This approach differs from other methods because this gives granular con-
trol over the position, colour and realism of the generated images in 3D. It also gives
control in how closely the generated image would match the given input sketch. In
other words, it lets you choose if you want the generated image to be more similar
to the sketches or more realistic. This has numerous advantages from using sketches
to generate images of different styles to generating a specific part of an input sketch.
Also, the results given shows that the author’s claims are valid.

The paper [46] a new approach to manipulate a pre-trained model that transforms
text into visual representations by utilizing both sketches and textual instructions.
They utilize a Latent Guidance Predictor (LGP) to effectively control the visual
representation of objects in the generated images, despite the presence of noisy in-
put. This enables the generation of varied visuals that adhere to the framework of
a drawing, even across various artistic styles. The approach is highly economical,
as it only requires a minimal dataset for training, and it demonstrates excellent
performance across many domains and drawing styles. Additionally, they showcase
its application in repairing absent sections of photographs and altering the horizon
line. An important benefit is its ability to handle various sketch styles and provide
a diverse range of graphics with meticulous control over the displayed elements.

This paper [44] introduces an innovative method for image-to-image translation
using diffusion models. In contrast to current approaches, the authors represent
img2img translation as a stochastic process, eliminating the reliance on conditional
generation. Unlike other methods, where the diffusion model is conditoned with
a sketch input to generate the image, the authors approach this problem by using
brownian bridge process to map an image into another image directly. This approach
leverages bidirectional diffusion to acquire knowledge of the mapping between image
domains directly, thereby augmenting the efficiency of translation. By operating in
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the latent space of a pre-trained VQGAN, both generalization and efficiency are
enhanced. The experimental findings demonstrate that BBDM exhibits competitive
performance in both visual and quantitative domains, effectively tackling challenges
encountered by alternative methods such as training instability and mode collapse.
Notable contributions consist of the elimination of conditional inputs in the predic-
tion phase and the provision of a translation process that is more consistent and
diverse.

The paper [45] presents a technique that produces high-quality facial images from
basic sketches. Contrary to earlier methods, SGLDM preserves intricate facial char-
acteristics and ensures precise rendering. The system uses a Multi-Auto-Encoder to
transform various segments of a sketch into a more streamlined representation, while
preserving the geometric properties. The model is trained using paired sketch-face
data and then enhanced with a Stochastic Region Abstraction technique to handle
different sketch styles. SGLDM surpasses other methods, such as Pix2pixHD and
Psp, in generating intricate facial images with diverse expressions and character-
istics. The success of the system is supported by qualitative evaluations and user
studies, which consistently show its ability to construct realistic facial representa-
tions from simple sketches.
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Chapter 3

Research Methodology

3.1 Workflow

In this section, we discuss the workflow and methodology of our study. The entire
procedure can be summarized by the high level flowchart below:

Figure 3.1: Flowchart of workflow
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3.2 Input Dataset

The foundation of any successful machine learning model is a high-quality, well-
balanced dataset. By guaranteeing an equal distribution of data from a variety of
classes, it allows a much better generalization of the data. By feeding a diverse
set of inputs, the model learns to handle real-world scenarios better. Moreover, a
balanced dataset comes with its own added benefits like being less prone to under-
fitting/overfitting, having lesser bias towards specific classes, faster convergence etc.
Training models on big and balanced datasets helps it to learn to generate better
quality images and improve overall performance. We will use two different datasets
for training and testing our model:

3.2.1 ImageNet Dataset

Training our model doesn’t require any readily available sketch-image pair dataset.
As the purpose of our model is to learn edge structures, we can generate edgemaps
from any images and train it. For the purposes of our research, we have selected
the widely established ImageNet dataset[3] as our training dataset. The dataset is
diverse and consists of many different categories with a large number of samples.
There are a total of 14 million images in the ImageNet dataset. However, our model

Figure 3.2: Construction process of the training dataset

requires only a few thousand images to be trained. So, we handpick 55 classes from
the ImageNet dataset and download random 200 images per class. We collect a total
of 11,000 images from the ImageNet dataset. Then, to extract edge-maps from the
samples we used PiDiNet [30]. PiDiNet is a CNN that extracts useful edges from
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images by using pixel difference. It is useful because it can automatically discard
background elements and generate edgemap of the subject only. In this way, we
have generated our dataset with 11,000 images and sketches/edgemaps. Samples of
the dataset are provided below:

Figure 3.3: Sketch Samples of our training dataset

Figure 3.4: Real Samples of our training dataset
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3.2.2 Sketchy Dataset

The Sketchy dataset [8] is an extensive dataset of images and human drawn sketches.
We will use it to test our model. The dataset consists of 12,500 images from 125
classes and corresponding 75,000 sketches of each image. Each image in the dataset
contains equivalent 5-10 sketches drawn by various artists. Multiple variations of
the sketches allows a wide range of sketching styles and degrees of abstraction. We
will use this dataset to generate images from our model for evaluation. We will
randomly pick a sketching style from randomly selected images of the dataset and
evaluate our model with it.

Figure 3.5: Sketchy dataset sample

3.3 Dataset Preprocessing

Due to the variation of sizes and high levels of noise in the dataset’s images, pre-
processing is required in order to convert them to the standard format. So, our pre
processing includes some of the following:

Resizing: We resize the original input sketch into 512x512 size, so that the images
are consistent with the model’s input size. The images in our dataset are of varying
sizes, so they need to be resized.

Normalization: To stabilize the training process, we will bring the pixel value
distribution of the images between -1 to 1. This will help in generalizing better.
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3.4 Proposed Approach

The purpose of this research is to analyze the working procedures and limitations
of existing sketch-to-image generation models and suggest a method for doing this
task with improved performance and accuracy. To achieve this goal, we will use a
Diffusion Model. However, our method doesn’t require training a conditional latent
diffusion model from scratch to generate images from sketches. Rather, we will train
a KAN (Kolmogorov Arnold Network) based latent sketch guidance network and
use that to provide guidance to a pre-trained latent diffusion model based on input
sketches during inference time. The motive behind the sketch guidance model is to
learn edge representations based on noisy encoded images and predict edges during
the inference stage. The input sketches will be simplified using sketch simplification
network [14]. This will allow us to clean up rough sketches or unclean pencil sketches
and generate images from it. We will also utilize CLIP-Interrogator to automatically
generate text prompts from the input sketch, so that the necessity of giving input
prompts from the user can be left optional. After simplifying the input sketch, we
will utilize our sketch guidance network during the inference process of the pre-
trained diffusion model.

Figure 3.6: Our proposed approach

Our sketch guidance model, KAN Sketch Guider, will estimate the edges generated
by the diffusion model by capturing the low level features from the core of the
diffusion model. Based on the estimations of the sketch guidance model, we can
encourage the generation process of the diffusion model to follow the input sketch
and generate a realistic image. This will ensure that the diffusion model is able to
generate images corresponding to the freehand input sketch. Below we describe our
sketch guidance model and image generation process in further details.

3.4.1 KAN-Sketch Guider

In order to predict edges during the image generation process or inference time, we
will utilize a custom model called KAN Sketch Guider (KSG). Our model works
similarly to the LEP proposed by Voynov et al. [46]. However, instead of using only

17



an MLP (Multi-Layer Perceptron), our latent sketch guider is based on a KAN (Kol-
mogorov Arnold Networks) [47]. Moreover, we use CLIP Interrogator to generate
captions of the training dataset and train our model with it, in contrast to [46] who
used the class labels for training. The purpose of KSG is to learn edge structures
of encoded latent images. It does so by extracting internal features from the core
(U-net) of the pretrained diffusion model. Our KSG is trained using pixelwise Mean-
Squared Error loss. This ensures that the model learns to map individual pixels to
their equivalent edge-maps in the latent space. Due to this pixelwise training, it
isn’t only limited to the training dataset’s images or sketch styles, but rather learns
open domain adaptation. So, our model can generate images which are beyond the
training dataset.

Figure 3.7: Training process of our model

The KSG mainly takes as input a joined list of the internal features of the core
U-Net of the diffusion model. The internal features are fetched after the core U-Net
is fed with an input x along with a text prompt p and a timestep t. The fetched
features are later resized and concatenated to be passed as input to the KSG. Let,
the conjoined list of fetched internal features be F . After F is forwarded to the
sketch guider, it predicts a latent edge-map of the generated photo from the input
x at the given timestep t. Then the loss between the predicted latent spatial map
and the real encoded edge map from the training datatset will be computed using
MSE loss. In this way, the sketch guider model will be trained. After it fully learns
to estimate, it can be used to predict the edgemaps of the noisy latent images and
guide the generation process to follow the outline of the input sketch.

3.4.2 Sketch to Image Generation Process

Our goal is to efficiently generate images from a given freehand input sketch s and a
text description/prompt p. We have integrated sketch simplification network in this
step to cleanup any rough lines or edges in the input sketch. The sketch simplification
network returns a simplified version of the sketch with an overall clean outline, which
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is helpful for generating high quality images. In addition to that, we have used
CLIP-Interrogator to automatically generate a text prompt from the input sketch.
This will now make it optional for the user to enter a prompt during the generation
process. Our KSG model is used to lead the generation process. The core diffusion
model is built with an U-Net to produce a less noisy latent zt−1 from a latent zt
at each timestep iteratively from t=T until t=1. This is the reverse process. This
takes place in the latent space to make it more efficient. A latent space is just a low
dimensional encoded space. We will use our sketch guider to use the input sketch as
a conditional control to produce an image following the sketch’s structure. At every
timestep t, our KSG model will predict an edgemap P (e) in the latent space after
the denoised latent zt−1 is produced by the backbone U-Net. The simplified input
sketch s will also be encoded in the latent space into E(s) and a noisy version will
be produced for each noise level. We will then use SSIM to compare the predicted
edgemap P (e) and the encoded input sketch ϵ(s). In contrary to [46], who used MSE
loss to compare the two, we use SSIM as this will help measure how close the two
sketches are not only in terms of structural similarity but also in perceived quality.
The gradients are then computed based on SSIM. Then the normalized gradient
will be subtracted from the produced noisy latent zt−1 so that it matches the input
sketch. In this way, guidance will be provided to the denoising process in order to
produce an output image similar to the input sketch. A parameter β is used to
control the strength of guidance from the gradient step. It acts as the parameter to
balance between the edge similarity of the final output image and the input sketch.
The denoised latent zt−1 is updated using the gradient controlled by β. In this way
guidance is provided. The sketch-based guidance is provided for only some i steps of
the denoising process and the rest T −i steps are left untouched so that the diffusion
process isn’t hampered. After the final denoising step is completed, i.e. after t=1,
the final latent z0 is decoded by the core model’s decoder to produce the final image.
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3.5 Description of the model

Here we provide a brief description of the models used in our suggested approach
and also some components of diffusion models.

3.5.1 Kan Sketch Guider

This is the architecture of our custom model, Kan Sketch Guider, as described in
section 3.4.1.

Figure 3.8: The architecture of our model

The input and output size of our KSG model is (9324,4) respectively. The architec-
ture of our KSG model is simple. The first layer is a Fully Connected Layer with
input dimension of 9324, hidden layer of size 512 and output size of 256. The next
layer is a multi-layered KAN with input size 256 with hidden layers of size [128,64]
and output dimension equal to 4. The output size is 4 since this is the number of
output channels of the encoder of Stable Diffusion, which is the pre-trained diffusion
model we chose.
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3.5.2 KAN

Kolmogorov-Arnold Network (KAN) [47] is a new type of neural network architec-
ture which works as a replacement for traditional MLPs. The theory behind KAN is
the Kolmogorov-Arnold representation theorem, while the theory behind MLP is the
universal approximation theorem. The Kolmogorov-Arnold representation theorem
makes it possible to define any multivariate continuous function as a composition of
multiple univariate functions. Kolmogorov-Arnold networks use this theory to ar-
range the network in a way that facilitates learning complex multivariable functions.
The formula can be expressed by:

f(x) =
2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)

KANs learn these functions i.e. have learnable functions instead of learnable weights.
There are two primary layers of the network. Each node in the first layer of the
network structure computes a continuous function that is subsequently used to alter
the input. In the network structure’s second layer, each node applies a weighted sum
of the first layer’s outputs to a continuous function. The final output equals to the
sum of the second layer outputs. One of the differences between KANs and MLPs is
that the activation functions of KANs are on the edges while the activation functions
of MLPs are on nodes. The authors of [47] have shown that KANs outperform MLPs
in various ways. KANS learn faster than MLPs and have higher accuracy. For these
reasons, we have decided to build our model based on KANs.

Figure 3.9: A simple KAN
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3.5.3 Clip Interrogator

CLIP Interrogator is a tool that automatically generates prompts for images. This is
done using BLIP[35] and CLIP[29]. The process by which CLIP Interrogator works
is by feeding an image to BLIP, it will get a description as output and the same
image is also fed to CLIP which gets the text embedding. By comparing the image
embedding with label embedding from many lists, four most similar embeddings are
selected. Finally, by combining these selected texts, it produces the final prompt,
which provides an optimal visual description of the image.

Figure 3.10: CLIP Interrogator working process (Souce: [39] )

3.5.4 Diffusion Model

Diffusion models became a popular choice for image synthesis after DDPM[23] pro-
posed a new method to generate images using them. Diffusion models consistently
beat GAN based models in generating images. The working principles behind Dif-
fusion models are described below:

DDPM [23] generates images by adding noise to them and later denoising them
iteratively. The forward process and the reverse process are the two main processes
involved in this. The model follows a Markov chain to transform the input photo
into a pure random noise during the forward step. Progressively, Gaussian noise is
iteratively introduced to the initial data sample, resulting in the production of a
completely new random noise at the end of this process. Adding noise completely
destroys the overall distribution of the initial image. As the step size increases, the
attributes of the original data sample decrease and the resulting image gradually
resembles a Gaussian distribution. Subsequently, during the process of reverse dif-
fusion, the model gradually eliminates this noise through repeated steps, resulting
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Figure 3.11: Diffusion Process

in the generation of another distribution that closely resembles the original one.
This technique utilizes Variational Autoencoders and a U-net. The reverse process
operates as a sequence of denoising autoencoders, often implemented using a U-Net
architecture with weight sharing. The purpose of training these autoencoders is to
predict the denoised versions of their noisy inputs.

3.5.5 Latent Diffusion Model

To reduce the computation requirements, [37] suggested to move the diffusion pro-
cess in the latent space. A pre-trained encoder and decoder are used to facilitate the
transformation of the image from the pixel-space to the latent space and vice versa.
By shifting the diffusion process in the latent space, we can reduce the computa-
tional cost required for training by a significant amount. This is what the Latent
Diffusion Model (LDM) achieves. LDMs produces good looking and high quality
images comparable to traditional diffusion models.

LDM uses a method called perceptual compression. Here, using a patch based
adversarial objective and perceptual loss, an auto encoder is trained. LDM lowers
the dimensionality of the data by mapping it to the low dimensional latent space,
which removes information that are imperceptible. This strategy aims to enhance
the efficiency of model training and inference by reducing computational complexity
and minimising storage requirements.
The Latent Diffusion Model framework illustrated above, trained an auto encoder,
which includes an encoder and a decoder. The diffusion process is carried out on the
latent representation space following the encoder ϵ’s compression of the image x to
latent representation z. The diffusion process of Latent Diffusion Model and regular
Diffusion Model are comparable. Latent Diffusion Model takes a data sample z from
noise zT and it uses a decoder D to restore the sample to the original pixel space
and thus producing the final image which is x̂.
A pre-trained perceptual compression model, including the encoder and the decoder,
allows LDM to obtain noise samples zt in the latent space and perform the forward
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Figure 3.12: Latent Diffusion Model Framework

diffusion process there. An LDM is trained with the following loss:

LLDM := EE(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, t)∥22

]
3.5.6 Attention Mechanism

The attention mechanism is crucial for computer vision tasks such as object detec-
tion and image recognition. It enables the models like Transformer, BERT, and
GPT to concentrate on important regions or features of the input. The two types
of attention mechanism are self attention mechanism and cross attention mecha-
nism. Cross-attention analyses the connections between different components of
multimodal inputs. On the other hand, self-attention focuses on the relationships
between the same input.
More precisely, cross-attention allows for the incorporation of different forms of data
that are not related. One mode is employed for inquiries, while another mode is uti-
lized for both keys and values in cross-attention. Latent Diffusion Models utilize
this procedure to produce conditional images by including cross-attention into the
U-Net backbone network. Latent Diffusion Models offer many forms of conditioning
throughout the process of image synthesis. This is achieved by employing a domain-
specific encoder to translate conditional information, such as text or drawings, to
an intermediate representation.

3.5.7 U-Net

U-Net [5] is a deep learning network designed for semantic segmentation tasks. It
utilizes an encoder-decoder architecture, which allows it to efficiently finish segmen-
tation using less amount of training data. The encoder is composed of convolutional
and pooling layers, which serve to decrease the dimensions of the input image and
extract information at a higher degree of abstraction. The decoder improves the
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accuracy of segmentation and restores the image size by preserving contextual in-
formation. This is achieved by employing transposed convolutions and including
skip connections from the encoder.

Figure 3.13: Simplified architecture of U-Net

In the Latent Diffusion Model, U-Net is enhanced by incorporating a temporal
embedding module and a spatial transformer module (cross-attention). Time em-
bedding enables the model to utilize temporal connections by converting time in-
formation into a continuous vector space. The Latent Diffusion Model incorporates
temporal information to repeatedly forecast noise, enabling U-Net to gradually en-
hance noise predictions. The cross-attention module in the Latent Diffusion Model
enhances the interaction between text and picture data by linking specific textual
information with corresponding regions of the noise matrix.
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3.6 Loss Functions

We describe below some of the loss functions used for training our model.

3.6.1 MSE Loss

Mean Squared Error loss is a very popular and well known loss. Diffusion models are
mostly trained with mse loss. It is also very effective in guiding the model during the
inference process. In case of training diffusion models, this loss is the most popular.
It measures the average of the squared error of the ground truth and the predicted
noise of the diffusion model, for every pixel of the latents, in each time interval. We
utilize this loss for training our model. It is defined by:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

3.6.2 SSIM

Structural Similarity Index is used to evaluate structural similarity between the
generated images and real images. Although it was introduced as an evaluation
metric years ago, it can also be used as a loss function. The values of SSIM are
always within -1 and 1. The higher the value, the higher the structural similarity
between the images and vice versa. It not only measures the outline of the two
images but also other factors like structure and luminance. This will be utilized
in our inference process to generate images with high visual perception. The SSIM
value is calculated by:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

3.7 Evaluation Metrics

Evaluation metrics are necessary to judge the generated output quality of genetive
models. Metrics are also used to compare between different models and frameworks.
We describe below some of the metrics we used for evaluation:

3.7.1 FID

Fréchet Inception Distance (FID) [9] is used to evaluate the efficacy of generated
output images. If the values of FID are low, then the distributions of the produced
and real data are very comparable. An Inception-v3 network is used to extract
features for this measure. So, lower FID scores are preferable.

3.7.2 LPIPS

LPIPS is designed to be visually compatible with human vision by concentrating
on perceptual image similarity and comparing images using a learned perceptual
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measure. Higher levels of visual similarity are indicated by lower LPIPS scores.
The combination of these criteria allows for a thorough quantitative evaluation of
diffusion models, highlighting distributional alignment and perceptual quality.

3.7.3 Inception Score

One way to measure the quality and diversity of images generated by generative
models like Diffusion Models is with the Inception Score (IS). It is a measure of
the originality and diversity of the generated images. To calculate the score, the
photographs are first classified using a pretrained Inception v3 model. The entropy
of the class distribution is taken into account for both the total distribution of the
produced images and for each individual image. Inception Score is a way to compare
two distributions. This metric does a good job at capturing visual diversity and
quality. A higher Inception Score indicates better fidelity of generation, including
both exceptional image quality and a wide range of variations.
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Chapter 4

Experiments and Results

4.1 Experimental Setup

We performed various experiments with different model architectures and datasets to
create our custom model. Moreover, we trained our model with various batch size,
edge maps styles and hyperparameters to finally select a model architecture and
training hyperparameters. We also performed various inference/generation tests
with our model and other state-of-the-art models, including various GAN based
models, for analysis and comparison. We ran all the models on the default hyper-
parameters provided by the respective authors to prevent any bias in our analysis.
We chose Stable Diffusion v1.5 as the pre-trained diffusion model for our approach.
It is trained on 5 billion images from the LAION-5B dataset [38]. For the edgemap
generation, we generated edgemaps initially with Im2Pencil [18] on various datasets
but found much better results with the edgemaps generated with PiDiNet[30] on
a subset of ImageNet dataset. All our experiments were performed on device with
hardware configurations:

• Intel Core i9 13900K CPU

• Nvidia RTX 4090 GPU

• 64 GB RAM

• Windows 10 OS

After running various tests, we picked the right epoch, batch size, hyperparameters,
along with loss functions and evaluation metrics for training and testing our model.
The details of those along with the results and analysis are provided below.

4.2 Training Details

We trained our Kan Sketch Guider model using the images and generated edgemaps
from samples we collected from the ImageNet dataset. The images and edge maps
were normalized from -1 to 1. Pixel intensity less than 0.5 will be converted to 0
and greater than 0.5 will be converted to 1. This makes it easier for the model to
converge. Our training dataset is formed with triplets of {image,sketch,caption}.
The sketches / edgemaps were generated with PiDiNet and image descriptions with
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Clip-Interrogator. The use of proper prompts instead of only the class label as
caption will help the model learn better. Next, our model is trained similarly as
described in section 3.4.1. We have used pretrained Stable Diffusion v1.5 as the
core diffusion model. The internal activations are captured from the core diffusion
model’s 9 feature blocks. The images and edgemaps are encoded into the latent
space by the diffusion model’s encoder. The text encoder of Stable Diffusion is
used to encode the text captions into tokens. The architecture of our custom sketch
guider network is quite simple. The first layer is made with Fully Connected Layers
with input size equal to the total size of the extracted activations. However, they
are resized to 9324 as the size of all the activations are not the same. We use 9324
as the input dimension of our model. So, our model’s first layer’s input size is 9324
and output size is 256, with a hidden dimension of size 512. Then we have utilized
a KAN based multilayered structure. The KAN is formed of 3 total layers, with the
input size of first layer being 256 and hidden layers of sizes 128,64. The output size
of the last layer is 4, which is equal to the number of output channels of diffusion
model’s encoder. For training we have used the MSE loss to measure the pixelwise
loss between the predicted edgemaps and real edegemaps in the latent space. We
have used the Adam optimizer to optimize the learnable parameters. The learning
rate is set to 1.5 × 10−4. We have used a constant schedule with warmups of 300
steps as the learning rate scheduler. The diffusion timesteps were set to 250 steps
for training. We train our model for a total of 6 epochs or 66,000 steps. Each epoch
or 11,000 steps took around 30 minutes on a single RTX 4090 GPU.

4.2.1 Training Analysis

We trained the MLP LEP[46] with the default settings as suggested by the author
and compared our model with it. Our model outperforms the LEPMLP . Our KAN
based sketcher guider learns much faster and better than the MLP based Latent
Edge Predictor. The model converges very fast compared to LEP and the training
loss of our model is much lower.

Figure 4.1: Training comparison Figure 4.2: Overall Training Loss

As seen from the figure 4.1, our model starts stabilizing very early, only after 1000
steps whereas the LEPMLP [46] takes around 5000 steps to start stabilizing. Figure
4.2 shows the overall training loss of our model for all the 6 epochs.
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4.3 Results

In this part, we will describe the inference process details along with their results,
comparisons and analysis with other baseline models.
The image generation process is described in the section 3.4.2. For the hyperparam-
eters of our model, we chose β = 0.65 and classifier free guidance[33] level = 6.5. We
set our inference steps=55. The sketch-based guidance from our model is provided
for 50% of the total steps. The input sketches are simplified with sketch simplifi-
cation. The images were generated with random sketch samples from the Sketchy
dataset[8]. The output image size is set to 512×512. Below are some of the images
generated with our approach:

Figure 4.3: Generated images of our model
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Figure 4.4: More generation samples
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4.4 Comparisons

We will compare our model and approach with other similar models in this section.
We choose the latent edge predictor (LEP) from [46] as our baseline for comparison.
LEPMLP was trained for the same number of epochs as ours, which is 6 epochs. The
default parameters suggested by the authors were used to generate images from the
LEPMLP , which is β = 1.6 and MSE loss for inference. For our model, we used
the parameters described in the previous section, which is β = 0.65 and SSIM[1] as
inference loss. The seed value, number of inference steps and guidance level were
all kept the same for both the models in order to prevent any bias between the
comparisons. We synthesize images from both the models using the same prompts
we generated using CLIP-Interrogator, for fair comparison.

4.4.1 Qualitative Evaluation

We conduct qualitative analysis between our model’s outputs and the output of our
baseline model LEPMLP . Below we provide the images generated from both the
models.

Figure 4.5: Comparison of generated images
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We can see from the figure 4.5 that our model’s generation capability is much higher
and better. The images generated with our approach align much better with the
input sketch. This is due to the fact that we used SSIM loss during the generation
process instead of the MSE Loss. In some cases where the LEPMLP produces outputs
capturing the sketch’s outline, it comes at the cost of realism of the image. However,
our model doesn’t suffer from this issue because of the SSIM loss we used. SSIM
not only measures structural similarity between images but also other factors which
impact perceived quality. Due to this, our model can generate more realistic images
with much better alignment to the freehand input sketch.

4.4.2 Quantitative Evaluation

Here, we compare our model which is the KAN Sketch Guider (KSG) with the MLP
based Latent Edge Predictor (LEP) and found that KSG outperforms LEPMLP

comprehensively in a wide range of evaluation metrics including Frechet Inception
Distance (FID) [9], Inception Score (IS) [6] and Learned Perceptual Image Patch
Similarity (LPIPS) [15]. We used these metrics to evaluate the quality of our gen-
erated images. For that purpose, we have generated 2,200 samples from each of the
two models. It took around 2.5 hours to generate the requisite amount of samples
per model with our machine. The LEPMLP model has generated images with stock
parameters according to the paper and both models have generated images with 55
steps with each iteration taking around 6 seconds to complete. We also generate
another 2200 images using LEPMLP using our own hyperparameters (e.g. β = 0.65)
to show the comparison results. The results are given below:

Model FID ↓ IS ↑ LPIPS ↓
LEPMLP 59.46 27.293 0.819

LEPMLP (β = 0.65) 39.51 38.349 0.807
Ours 35.56 42.317 0.791

Table 4.1: Comparison between LEPMLP [46] and our model

FID score measures the similarity of the original image with the generated image.
This shows how closely the generated image resembles the original image. A lower
FID score means better quality images. FID scores also indicate a greater sample
variety with the generated images. As we can see from the table above, our model
has achieved a FID score of 35.56 which is much lower than LEP whose FID score
is 59.46. This indicates our model produces images much closer to the original
sample than LEP. Moving over to the Inception Score (IS), we can see that our
model achieves a higher Inception Score (42.32) than LEP (27.293). In this case,
a higher score is better than a lower one. Inception Score measures the quality
of an individual generated image. It provides a measure of each of the individual
images from a collection of generated images based on factors like diversity and
quality. As the Inception Score is better in our model compared to LEP, the quality
of generated images are much greater and diverse. The LPIPS metric on the other
hand measures perceptual similarity in contrast to the quality evaluation of the
previous metrics. This metric has been shown to match with human perceptions as
well. Here, a lower score indicates a better image. As we can see from the table,
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our model has also achieved a lower Lpips score than LEP as well. It scored 0.791
compared to LEPs 0.819. So, taking all of the scores in account, we can conclude
that our model produces better looking images that match with human perception
as well as sketches with a greater variety.

Human Evaluation

We conducted human evaluation of our model’s output. The images generated by
generative models cannot be properly evaluated without human feedback. For this
reason, we conducted an anonymous survey with the outputs of our model and
LEPMLP . We provided some of the sketches and outputs of the two models and
told users to select which of the images they preferred. The provided outputs were
randomly selected. The users were not informed about which model generated which
output. The survey was conducted in between a total of 19 participants. The users
were asked to select an output image of their preference according to the sketch and
also rate the two outputs on a scale of 1 to 5, based on two factors: sketch similarity
and realism. The results are provided below:

Model User Preference↑
User Rating↑

Sketch Similarity Realism

LEPMLP 29.48% 3.112 3.187

Ours 70.52% 3.656 4.025

Table 4.2: Human Evaluation Comparison

As we can see from the table above, our model was consistently chosen by survey
participants over the LEPMLP model. It shows that 70.52% of survey participants
chose our generated images compared to 29.48% of LEPMLP . It also shows that they
found our images more realistic with a rating of 4.025 compared to LEPMLP (3.187).
They have also found our images to be more similar (3.656) to the input sketches
compared to LEPMLP (3.112). So, in conclusion, the survey showed our images to
be more realistic and similar to the sketches and thus the survey participants chose
our images more consistently.
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4.5 Analysis

We perform various tests with our and other models for analysis and ablation study.

4.5.1 Ablation Study

We test the impact of different parameters in our model and compare it with our
baseline model. We test the impact of β and the number of inference steps in the
generation process. We generate images with our model and LEPMLP with varying
inference steps while keeping everything else the same. The resulting images are
given below:

Figure 4.6: Image quality comparison with varying steps

The results show that our model can generate good looking images with as low as 15
inference steps only. However, for realistic high quality images it takes 25 steps on
average. However, the authors of [46] suggested 250 inference steps for their model.
That is a 90% difference in inference steps. So, our model has a faster inference time.

Figure 4.7: Impact of different β values on image quality

The parameter β is a control over the strength of guidance from our model. Higher
β values will cause the denoising process to follow the sketch more strongly. The
figure 4.7 shows the results of the same image produced with different β values.
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4.5.2 Comparison with other methods

Our model generates images similar to [46], by using a model for edge prediction
in the latent space of a pretrained diffusion model. There are other approaches
for image to image translation using generative models. Here, we discuss how our
compares with those. Pix2Pix[10] genrates images by training a dedicated generator
against a discriminator. It was the first model to introduce image to image trans-
lation. However, it cannot generate outside it’s training dataset. So, it is not very
useful. SDEdit[36] suggested an approach for image to image translation with La-
tent Diffusion models[37]. However, it cannot perform sketch to image translation.
When it is given an input sketch, it returns another output sketch. However, our
approach can generate realistic images from sketch inputs.

Figure 4.8: Comparison with SDEdit[36]

4.6 Applications

1. Artists can generate sample images to see how a given sketch might look like.

2. Entry level comic book authors can generate images to streamline the process
of creating panels.

3. Concept arts can be quickly created using the generated images.

4. Marketers can quickly produce images for ad presentation.

5. Can be useful for generating illustrations quickly for books or other educational
materials.
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4.7 Limitations and Future Work

There are some limitations in our approach. Firstly, our model cannot generate
images with matching faces. We found through our experiments that, when a human
face sketch is provided to the model, it fails to produce images of similar faces.
Moreover, if there are multiple subjects in a single sketch, our model sometimes gets
confused and mixes up the subjects in the final image. In addition to that, we saw
that sometimes the model struggles to produce images of different artistic styles.

((a)) Face synthesis limitation ((b)) Multiple subjects limitation

Figure 4.9: Limitations of our model

We left it as a future work to fully inspect these problems and come up with a better
solution.
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Chapter 5

Conclusion

Before the arrival of diffusion models and GANs, image generation was done using
image retrieval methods like Photosketcher [4], Sketch2photo [2]. This approach
worked well for some time but it required much precise data and had no true gen-
eration capability. On the other hand, diffusion models have made a tremendous
impact on the field of image generation. Diffusion models have also provided enor-
mous benefits in other applications such as video games, texture enhancement, image
up-scaling etc. Our paper focuses on improving the existing methods on producing
a realistic image from a sketch.

In this paper, for generating realistic images from sketches, we suggested a diffusion
model based approach that improves on the foundation of previous approaches. We
utilize a pre-trained diffusion model, in particular Stable Diffusion 1.5, and produce
images from freehand sketches with great quality. Our main contribution lies in
generating images from source sketches by using a custom KAN based model for
edge estimation in the latent space and providing a few adjustments to the model
for improving performance. We propose a custom kan based model to detect edges
in the latent space. This model will be used to guide the image generation process
of a pretrained diffusion model from human drawn sketch inputs. We replace MSE
loss with SSIM loss and integrate other modules like sketch simplification and clip
interrogator, in the generation process, which improves generation quality of our
model. Our model has been able to produce images from input sketches drawn by
amateur artists efficiently and improved the performance of existing models with
similar approaches. We conducted various studies along with human evaluations,
which shows the efficacy of our method compared to previous methods. The research
undertaken in this paper will help in the field of criminology, digital art, video game
development etc. In general, diffusion based models have revolutionized the field
of image generation and have become a vital tool in various fields, but additional
research and development are necessary to solve the limitations and make it more
widely available.
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