
SSI-Federation: Facilitating Identity Federation using Self
Sovereign Identity for Web-services

by

Sajid Imam Mahir
20101138

Navid Alvi Ahsan
20101377

Md. Mehrab Hasan Eshan
20101498

A Thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University

June 2024

© 2024. Brac University
All rights reserved.



Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Sajid Imam Mahir
20101138

Navid Alvi Ahsan
20101377

Md. Mehrab Hasan Eshan
20101498

i



Approval
The thesis titled “SSI-Federation: Facilitating Identity Federation using Self Sovereign
Identity for Web-services” submitted by

1. Sajid Imam Mahir(20101138)

2. Navid Alvi Ahsan(20101377)

3. Md. Mehrab Hasan Eshan(20101498)

of Spring, 2024 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science and Engineering in May,
2024.

Examining Committee:

Supervisor:
(Member)

Md Sadek Ferdous, PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii



SSI-Federation: Facilitating Identity Federation using Self Sovereign
Identity for Web-services

Abstract
Identity federation means entrusting an entity’s online identity verification to an
external organization. Identity Federation’s basic concept is that an IdP or Identity
provider ensures an entity’s identity to the SP or the Service Provider an entity that
provides web service. This is an old concept having the issue of how securely the
information will be gathered and stored. To provide security of personal information
and to get an overall convenience efficiently Self-sovereign identity or SSI is used. SSI
is different from any other verification system due to its peer-to-peer decentralized
system with the help of blockchain. This process provides an entity full control of
how much personal information they are sharing and who they are sharing it with,
with the convenience of service access without login credentials. This reduces the
dependency on a specific third party making the process more secure whilst ensuring
proper privacy over their data. In SSI like the Identity Federation, there are also two
entities other than the user which are Issuers and Verifiers where issuers are trusted
credential providers, and the Verifiers are trusted to verify them when requested.
Still, the issue here is that there is no connection between the Issuer and the Verifier
which concerns the issue of trust among these two entities. We provide a solution to
both of these problems by first using SSI as the base model and then enabling the
Issuer and Verifier of it to establish trust among themselves before the user requests
a service through SSI. For this to succeed the Verifier will also play the role of the
SP and the Issuer can be thought of as the IdP. This hybrid system of ours contains
an external trust layer over SSI which makes it function like Federated Identity by
also keeping the characteristics of SSI with the help of hyperledger-based blockchain
technologies.

Keywords: SSI; Identity Federation; Hyperledger; Blockchain; Fabric; Aries; Indy.

iii



Acknowledgement
Firstly, all praise to the Great Allah, for whom our thesis has been completed with-
out any major interruption.

Secondly, to our supervisor, Dr. Md. Sadek Ferdous, sir, for his kind support and ad-
vice in our work. He helped us with our shortcomings and whenever we needed help.

Thirdly, to Research Assistant Md. Yeasin Ali, who helped us in our thesis planning
and work and also guided us as a mentor.

And finally, to our parents, without their constant support, it may not be possible.
With their kind support and prayer, we are now on the verge of our graduation.

iv



Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables viii

Nomenclature viii

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4

3 Literature Review 9

4 Threat Modeling & Requirements 14
4.1 Threat Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Requirement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Non-Functional (Security) Requirements . . . . . . . . . . . . 15
4.2.3 Non-Functional (Privacy) Requirements . . . . . . . . . . . . 16

5 System Model & Architecture 17
5.1 Architecture & Implementation . . . . . . . . . . . . . . . . . . . . . 17
5.2 Use-case & Protocol Flow . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.3 SP & I external connection form Identity Federation . . . . . 24
5.2.4 Modified-SSI Interactions among all the Entities . . . . . . . . 26

v



6 Discussion 33
6.1 Requirement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.1 Functional Requirements: . . . . . . . . . . . . . . . . . . . . 33
6.1.2 Security Requirements: . . . . . . . . . . . . . . . . . . . . . . 33
6.1.3 Privacy Requirements: . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Research Objective Analysis . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Advantages & Limitations . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Conclusion 37

Bibliography 40

vi



List of Figures

2.1 Relation between Entities, Identities, and, Identifiers. [3] . . . . . . . 4
2.2 Relations involved in federated identity model. [21] . . . . . . . . . . 5
2.3 Protocol Flow in SAML. [12] . . . . . . . . . . . . . . . . . . . . . . 6
2.4 The trust-triangle in SSI ecosystem [21] . . . . . . . . . . . . . . . . . 8

3.1 SSI Model in Blockchain [14] . . . . . . . . . . . . . . . . . . . . . . . 11

5.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Add reference to Chaincode and System storage. . . . . . . . . . . . . 25
5.3 SP and I identity federation Sequence Diagram. . . . . . . . . . . . . 26
5.4 Invite QR Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5 Credential Fillup Form . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6 Invitation Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.7 Credential Offered . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.8 Credential Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.9 User and Issuer interactions to get VC Sequence Diagram. . . . . . . 29
5.10 Issuer Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.11 Reconnect with I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.12 Approval of attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.13 Proof Request. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.14 Share attributes for proof. . . . . . . . . . . . . . . . . . . . . . . . . 32
5.15 User and SP service access interactions Sequence Diagram. . . . . . . 32

vii



List of Tables

3.1 Comparison between various reviewed papers related to identity fed-
eration and SSI aligning with user entity. . . . . . . . . . . . . . . . . 13

5.1 Cryptographic Notations . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 External Identity Federation Protocol . . . . . . . . . . . . . . . . . . 24
5.4 Web-SSI Protocol for VC . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5 Modified Web-SSI Protocol . . . . . . . . . . . . . . . . . . . . . . . 30

viii



Chapter 1

Introduction

1.1 Introduction
The main driving force of SSI is thought to be the users [17]. As a result, till now it
has not been able to provide incentives to service providers to adopt it. However, as
long as service providers do not embrace an SSI solution, the overall adoption of SSI
cannot be imagined. The internet is home to a vast number of individuals, the ma-
jority of whom are strangers to each other [21]. However, there is a pressing need for
an identity layer to establish trust and security. Unfortunately, the existing identity
management models have proven inadequate in addressing this challenge. Conse-
quently, as the internet expands, a significant gap has emerged in the establishment
of reliable and trustworthy identities, resulting in a notable increase in cybercrime.
Furthermore, the existing models have also witnessed instances of privacy rights
violations. To tackle these critical issues pertaining to identity management, Self-
Sovereign Identity (SSI) can be a promising resolution. But suddenly removing old
infrastructure is very difficult, although necessary in the long run. The system we
proposed in this paper first establishes an identity federation between the Issuer and
Verifier, which can also be interpreted as IdP and SP connection. This is possible
through exchanging DIDs(Decentralized Identifier) of bothentities,s which at a later
point would be necessary to establish trust among them before even the verifying
starts of the usual SSI. We have used Hyperledger Fabric [30] and Hyperledger Aries
[28] technologies both sequentially a ledger software and a library of the renowned
Hyperledger Foundation which started alongside SSI itself for implementing our new
steps connected with the old ones of SSI thus, resulting in a completion of our hybrid
model.

1.2 Problem Statement

SSI is the latest identity management model where the user has the most power, but
there is a concern about the Issuer and Verifiers if they are completely trustworthy
or not, as there is no prior connection or contract among them. Assuming users
want to take service from a trustworthy SP or Verifier the Issuer itself may be a
fraud or leak data in that case the Verifier won’t have any say.

1



- First problem statement is to provide an external trust layer over SSI to build a
trust relation between the Issuer and Verifier which also does the job of Identity
federation.

In recent years we saw how the world and its activities shifted online and brought in
the necessity of registering everywhere. This just didn’t increase the hassle of one’s
creating multiple profiles and remembering credentials but also providing personal
information to all those platforms without control. The laws of identity [1] suggest
that minimal identifying information should be taken from the user, as in all sce-
narios an e-Commerce platform does not need my birthdate, rather it can just get
my age range to give me suggestions. So blindly giving all the personal information
of an individual to a platform creates security concerns.

- Second problem statement is to provide users total control over their own user
information and to specify the scope of using it by other entities.

- Third problem statement is to provide a secure identity model where Third parties
don’t have a user’s raw personal data.

Single-sign-on, or SSO is the most popular federated identity service. This allows
[8] a user to authenticate once to get both connectivity and access permission. Al-
though this is a beneficial process to overcome registering on every platform, the
question still remains whether a user has full access to their personal information
or not. In this case, the personal information does not go directly to the Service
provider but still goes to a third party [32]. Here, concerns remain if this third
party maintains security standards and whether their system is vulnerable or not.
Moreover, there is no solution for insiders in that organisation or even identity theft
from hackers.

1.3 Research Objectives
We wish to facilitate an SSI-based model with an external Identity Federation layer
with the help of blockchain and hyperledger technologies like Fabric and Aries in our
paper. This should satisfy the shortcomings of the already existing Identity models
and make them robust for a more user-centric distributed architecture. To make
this possible, the following objectives have been developed:

• RO1: To Construct an effective model of Identity based on pre-
existing models. The first objective of our research is to review the existing
works of Federated Identity and SSI models to get a good base point for our
research. Different services of them are being used with different working
procedures. To ensure consistency, we will review a few of the topics to get a
good idea of Identity Management.

• RO2: Comparison Among Existing Identity Models. The second ob-
jective of our research is to find out the issues of the existing models so that,
we can identify and also mitigate those issues in our research. The analysis
will give an idea of which aspects our research should focus on.

2



• RO3: User-centric Identity System. The third objective of our research is
to propose a User-centric Federated Identity management system that allows
users to have full control and disclosure over their personal information. This
allows us to solve the problem that the existing models have.

• RO4: Using an SSI Framework for Authentication. Since there should
not be any data siloes to ensure consistency and security the SSI framework
is to be implemented with this proposal to make it decentralized. The issuer
in this case doesn’t store user credentials but rather only the list of trusted
Verifers or service providers thus not becoming the single point of failure.

• R05: An external layer over SSI to build more trust. The current SSI
structure doesn’t connect the Issuer and Verifier beforehand. As a result, if
the VC issuing or processing was done by some less trustworthy entity that
could affect the integrity of SSI. For this reason, we provided an external trust
layer among these entities so that this problem can also be mitigated.

• RO6: Proposing a Proof of Concept(PoC) including Architecture,
Protocol, and full implementation of a new Identity Management
System. The sixth and last objective is to finally propose a better structure
for SSI and Federated Identity services so that it can mitigate any of the
existing privacy issues of the usual structures.

1.4 Structure
In this research paper, we briefly discuss the issues with the present identity sys-
tems and our research objectives in Chapter 1. The background of identity man-
agement systems like Identity Federation, SSI, Blockchain, etc., along with some
core concepts, have been discussed in Chapter 2. Some relevant scholarly articles
and research papers have been reviewed in Chapter 3 with a comparison table. The
requirements of our system and the threat model have been discussed in Chapter 4.
In Chapter 5, we went into detail about the architecture of our presented system, in-
cluding its full implementation, valid use-cases, and even the protocol flow for them.
Chapter 6 contains our analysis based on the requirements presented and research
objectives, covering how much we succeeded in fulfilling this paper. Moreover, it
also includes advantages, limitations, implementation challenges, and future work
based on our proposed system. Lastly, we focused on the significance of our paper
to wrap up in Chapter 7.

3



Chapter 2

Background

Identity Management
Identity management is how user identities are managed for a specific service tradi-
tionally by the Service Providers [3]. Due to the rise in internet users new concepts
of identity management have already emerged to fulfill the user’s needs. Basically,
identity management has two parts, firstly identifying a user uniquely by provid-
ing credentials and identifiers and, secondly authorizing them and controlling their
scope of service when logged in. The identity of an entity is the representation of it
on a service platform. These entities have characteristics or attributes that are con-
sidered identifiers that identify them which Figure 2.1 correctly depicts. Currently,
there are three types of user-centric identity concepts and we are going to focus on
two of them which are: Federated Identity and Self-Sovereign Identity (SSI).

Entities Identities Identifiers

Figure 2.1: Relation between Entities, Identities, and, Identifiers. [3]

Federated Identity
Federated Identity Model was introduced in the industry to deal with some of the
problems that can be found in the traditional old identity model where for each

4



service the user has to create an account [21]. It encompasses three main entities-
IDP(Identity Provider), SP(Service Provider) or Orgs, and User. The basic idea is
to create one account for an IDP and receive services from all the SPs related to
the IDP the relationship between these entities can be seen in Figure 2.2. Orgs or
sites with a common IDP comprise a federation and the Orgs in the federation are
called relying parties. Security Assertion Mark Language (SAML) [8], (ID-FF) WS-
Federation, Liberty Identity Federation, etc. are some of the popular FIM(Federated
Identity Management) solutions.

User
IdP

Org

Figure 2.2: Relations involved in federated identity model. [21]

SAML
SAML [8] version 2.0 is considered an industry standard FIM protocol. SAML
(Security Assertion Markup Language) version 2 is a norm of protocols mainly used
in authentication and authorization information exchange between different systems.
It enables SSO(Single Sign-On), which means you can access several Apps with one
login which means without having to provide your credentials repeatedly. IDP and
SP are the two main entities in the SAML framework. Users authenticate using
IDP and a special token is generated called SAML assertion which is used on SP’s
side for verification. SAML assertion is like a digital identity that proves a user’s
identity. Each SP has an Assertion Consumer Service which receives and validates
assertions from IDP. Once a user is validated, he is granted access based on the data
in the assertion. Here in Figure 2.3 from [12] a basic SAML protocol flow is shown
describing the communication among different entities.

OAuth
OAuth is an open standard that solely focuses on the authorization of an entity and
provides federated identity to a user. OAuth introduced a layer [26] between the
user and the service provider which focuses on that. This authorization layer acts
as a middleman for access to service from an SP and also handles the authorization
process on its own. Here, no user credentials are required rather the OAuth Server
provides a token to the service provider including scope, lifetime, attributes, etc.
after authorization. Although, this is widely used it does not support any encryption
and signatures making it vulnerable to a lot of security threats.

5



User IdP SP

User requests Service Access

If the user is not authenticated a list of IdPs are shown to the user

User selects one of the IdPs

User is forwarded to the selected
IdP with an Authentication request

User gets Authenticated at IdP

IdP forwards the user to the SP with an Authentication
Response containing SAML assertion

SP validates the assertion while retrieving embedded
attributes and make authorization using attributes

After being authorized user can access requested service

Figure 2.3: Protocol Flow in SAML. [12]

OpenID
OpenID is an open standard that acts as a trust anchor [25] to provide identity
federation. Trust anchors are trusted third parties that issue statements about other
entities. OpenID is similar to OAuth having the use of tokens but here, identity
is given first priority rather than what the user is allowed to do. Here, different
levels of entity statements chain together until a trust anchor is found. Then a
verified trust chain federation policy is applied to generate metadata describing the
leaf entity thus identity federation is done. Leaf entity here refers to Relying party
or, Provider party defined by OpenID Connect.

SSI
Self-Sovereign-Identity (SSI) [21] represents a transformation in the control of iden-
tity or authority. Internet’s rapid growth has made the need for an identity layer
quite clear. Finding that identity layer has led us to SSI which revolutionized the
traditional internet where control is at the center of a network to peer-to-peer net-
work. The control or the crux of the federated identity model is with the issuers

6



and verifiers. On the contrary, the decentralized SSI identity model has shifted this
control to the users who can exist on the network independently of others. They
are not in the palm of any identity provider for their existence on the network. SSI
puts the individual at the center of their digital identity. It leverages decentralized
technologies to make sure that users can freely control their own data and eliminates
the need for any third party.

Blockchain
Blockchain [21] is a highly secure distributed digital ledger that is not in control of
any central authority. But unlike a traditional ledger, which is controlled by a single
authority a blockchain is decentralized. Each transaction is considered a digital
document that needs to be signed. When someone wants to add a new transaction
to the blockchain, they sign it digitally using their private key. Transactions are
grouped together into blocks. Once a block is created and linked to the block before
it using the hash of that block, it becomes very difficult to modify it. Altering a
transaction would require recalculation of the hash of the block. Since the hash of
the block that is immediately before it is also part of the hash, tampering with a
transaction is immediately noticeable as every new block is replicated among the
peers in the network.

Verifiable Credentials
Verifiable Credentials or VCs are the very center of every SSI-based architecture
[21]. A physical form of verifiable credentials can be seen in every part of our day to
day life, from credit cards to licenses. But these physical credentials can be easily
stolen, misplaced, or even misused by the wrong person. However, the new standard
of Verifiable Credentials, or VCs, allows the physical credentials to produce digital
VCs which are then used for verification anywhere using mobile phones or any online
methods [21]. It has now become the full World Wide Web Consortium (W3C) open
standard. Popular use cases of VCs include opening bank accounts, receiving local
access passes, etc.

Decentralized Identifier
An equivalent to the Verifiable Credentials are the cryptographic Decentralized Iden-
tifiers or DIDs [21]. A DID is a unique identifier or a URI and can be either a URL
or URN. It is a string of characters which identify a specific resource. By looking
up or resolving a DID, the metadata which is a standardized set of information can
be retrieved [21]. A DID has four core properties including the identifier being per-
manent (persistent), resolvable, cryptographically verifiable, and decentralized [21].
The DIDs can be useful by itself as being used as identifiers, but they can also be
used by applications or used to construct advanced URLs based on a DID.

7



Trust in SSI
The trust triangle of Self-Sovereign Identity (SSI) [21] represents the three core en-
tities that contribute to establishing trust within the SSI ecosystem. The entities
are issuers, holders, and verifiers. Issuers issue credentials which can be govern-
ment agencies, financial institutions, universities, corporations, and even individ-
uals. Holders can request credentials from issuers and keep them in their digital
wallets. When verifiers require proof from holders then the holder’s agent presents
the proof which contains a digital signature of the issuer. The solution for associ-
ating a public key with a user is solved by DID (Decentralized Identifiers). Trust
among these three entities can be seen in Figure 2.4.

Issuer Verifier

Digital Wallet

Holder

Proof

Trust

Verifiable Credential

Figure 2.4: The trust-triangle in SSI ecosystem [21]

8



Chapter 3

Literature Review

Bangladesh has adopted web-based services like many developed countries to provide
efficient services to its citizens. As these web services became really popular, issues
like identity management became a headache. Moreover, the massive landscape of
web-based services requires collaborations among business partners. Thus, there
was a need for interoperability between systems and identity management systems
and Federated Identities came to be. The main objective of the paper [9] seems to
bring this FIM to the attention of different stakeholders that provide Web-enabled
services in Bangladesh by discussing its advantages and use cases in the government
and Higher Education Institutes, two of the most important web-enabled service
sectors in Bangladesh. Finally, [9] discusses the security and privacy issues related
to FIM.

The paper [18] proposes an access control model for identity management called
SSIBAC. It implements decentralised authentication using blockchain and central
authorization using traditional methods. To ensure the protection of user privacy
which traditional centralized and federated models fail to achieve, SSI principles are
taken into account. SSI is able to alleviate the impact of data breaches and provide
users with full control over their data without storing it in any central database.
Although the SSI authentication mechanism was properly developed, authorization
and access control felt somehow lacking. This paper [18] aims to fill this gap using
DID, VC, and blockchain. A prototype of the solution is tested with quite a large
number of access control requests. Finally, the limitation of the SSIBAC is discussed.

The paper [13] proposes the foundations for a regulated self-sovereign-identity man-
agement system. The proposed systems encompass User, AP(Attribute Provider),
SP(Service Provider), and RB(Regulatory Body), four roles. RB licenses the AP
and monitors their activities. RB also maintains a blockchain where all certificate
requests and certified attributes are stored. A user wallet is one of the fundamen-
tal pieces in this system which assures the secrecy and ownership of attributes by
referencing the AP. When a user interacts with an SP and is asked to prove the
ownership of an attribute he wants to disclose, he provides the reference to the at-
tribute certificate which is linked with AP and utilizes related keys in his personal
wallet. Trust between SP and AP is important here although the AP will never
know which of the SPs the user is related to. APs do not need to trust RBs, hence,
making it impossible to forge attribute certifications for RBs.

Requirements served by various IdM Systems are scattered and a clear picture of

9



which IdM Systems fulfill which requirements can not be found. This paper [10]
presents this comparison among six different IdM Systems to remove that vagueness
and find an ideal one. Firstly, all requirements were defined properly and brought
under eight large requirement categories. Those were used as the metrics for com-
parison to find the ideal IdM system. However, it is stated that the systems analyzed
did not meet the requirements to be ideal because either they failed to fulfill the
requirements or were not usable in practical situations. Finally, the paper [10] ends
with a concerned remarking that most IdM systems lack privacy requirements.

This paper [2] highlights the trust issues in existing identity management models.
It [2] shows how complex and different trust relationships are in various identity
management models and how confusing that can be for the stakeholders. The com-
parison between various models can serve as the basis for assessing the cost of sat-
isfying trust requirements. Finally, personal identity management seems to be the
most promising because of greater flexibility and low additional trust requirements,
hence, it is suitable to combine with other models to improve user experience.

The paper [17] aims to provide a service provider-friendly SSI integration architec-
ture. The existing SSI solutions are focused solely on user requirements. However,
as long as service providers do not embrace an SSI solution the overall adoption of
SSI can not be imagined. The paper [17] proposes an integration architecture that
enables SPs to integrate SSI functionality into their system by defining protocols,
standards, and interfaces so that they can use SSI systems to verify user identities.
Their proposed gateway aims to provide seamless connectivity and interoperability
between service providers and SSI platforms. The identity provider here is built
over a blockchain system and the SP depends on the gateway for proper validation
of claims.

SSI is currently using new blockchain technologies [19] to maintain the system of
identification which is currently a really important matter. The authors of the paper
[19] propose a new model where SSI and blockchain can work hand in hand with
popular standards like OAuth 2.0. The whole system of authentication resides on
the blockchain model and not any service provider. By using blockchain, the model
shows how there is no single service provider for which the authentication depends
rather it is decentralized. Moreover, as the model complies with OAuth 2.0 it is
easy for previous users and is also really scalable.

Recently, there has been a rise in future possibilities of SSI due to the emergence
of blockchain technology. The paper [16] shows this possibility by merging SSI with
Blockchain to cover different aspects of identity management. FIM systems make
the IdP a centralized entity and also pose the threat of a source error [24]. So,
the paper [24] designs and implements a decentralized system to solve this problem.
Blockchain technology is this decentralized system which is a ledger-based solution
trained in a distributed network of peer nodes. Being added to a blockchain system
the IdP can now be trusted and only attributes are stored rather than the whole
data. This system has been analyzed under a sophisticated quality protocol named
ProVerif.

Blockchain gives the system immutability, decentralization, and a verifiable ledger
to validate online transactions. Still, problems of scalability, security, and privacy

10



issues remain which the paper [14] solves by providing a novel privacy-preserving
solution giving users the opportunity to become anonymous and take control of their
data while performing digital transactions through an SSI model shown in Figure
3.1. The reduction of intermediaries due to blockchain is creating a revolution in
sectors like IoT, healthcare, and even in day-to-day life activities in a smart city.
Many current sophisticated privacy technologies were used to examine this paper.
The proposal here allowed us to strengthen the scenarios of blockchain privacy-
preserving features.

Wallet App
DID

Document

SSI - DIDS

Issuer Service Proivider (Verifier)

User

Blockchain

Issuance:
- Attestations

- ZK Credentials
- Verifiable Claims

Access to services including:
- Attestations, claims

- ZK Proofs

- Check revocations of Attestations
- Check Signatures
- Look-up Identities

Registered
SSI Identity

- Identity Hashes
- Certificate Hashes
- Verifiable claims

Figure 3.1: SSI Model in Blockchain [14]

Modbus an Industrial Internet of Things Protocol is one of the most widely used
protocols but has the challenge of security. According to the [20] paper, a solution
is possible based on SSI over hyper ledger fabric blockchain. The decentralized
approach of blockchain is used here which gives a device self-custody of its identifiers
and verification info. SSI has been implemented here over a Hyperledger Fabric
Blockchain to maintain on-chain authentication, authorization, and other aspects of
an access control system. This system also provides scalability where more than one
organization is in use. To make this system fully machine compatible the authors
imply to use OAuth machine-to-machine scheme.

As time goes on and with the advances of technology and digital information the
importance of trustworthy identification has become necessary [15]. This paper
[15] explores the realm of SSI solutions and finds out the necessities of blockchain
technology in them. The internet itself doesn’t have an identity protocol for which
service providers come into play. There are certain problems with this structure and
Federated Identities like Facebook and Google’s trusted identity policy are being
used. But even that is not the best solution and SSI comes here with the notion of
combining DLT or, Digital Ledger Technology combined with it. Blockchain looks
really promising here but there is still the possibility of private/public key pair

11



theft. Even keeping this in mind research shows how blockchain-based solutions
provide more security than others. This paper [15] comes to the conclusion that
blockchain-based technologies are a good foundation for SSI solutions.

SSI management is a revolutionary approach to the traditional login systems where
the users can control their own data [22]. This system is implemented by replacing
traditional usernames and passwords with credentials that are more secure. SAML
is a standard for exchanging information between IdPs and SPs. The author [22]
designed and developed a concept of implementing SSI on the existing infrastructure
of federation identity by creating a hybrid authentication process where the verifica-
tion is done via SAML. This allows the verification process to be limited to the IdP
and can use SSI credentials to replace the conventional usernames and passwords.

Traditional ways of user authentication are still present in current-day web services.
As a result, it still is one of the major reasons for security breaches. In response to
this a new framework of SSI in web services was proposed called SSI4Web [23]. In
that proposal, there is no need for passwords which gives flexibility. The framework
includes a mobile wallet through which VC will be presented but, both the issuer
and verifier entity is taken care of by an SSI Agent entity. The paper [23] takes
advantage of a few important services or projects of Hyperledger Foundation which
are Aries, Indy. It also includes a detailed protocol, architecture, and practical use
cases of how and in which scenarios this SSI4Web framework can be used. Finally,
it gives us an idea that this can also be out for a test to establish different models
like FIM.

Federation Model allows users to share access to multiple domains and their re-
sources without needing to log in every time [5]. SSO is one of the most common
implementations of this model allowing users to access multiple websites after veri-
fying their identity at a single website which can be achieved by using SAML. The
author [5] studied the underlying trust mechanisms and put forward the concept of
an extension to the standard SAML enabling the identity federation management to
be more dynamic. The current frameworks do not allow the system to be dynamic
and as such, SAML is used, allowing flexible and better trust decisions. SAML is
a kind of framework based on XML which allows authentication between entities.
SAML has an extension point known as metadata.

Recently, organizations are shifting to using a common authentication system to
verify their identities for their internal services and applications [6]. This enables the
users to verify their identities easily and securely without needing to authenticate for
each service. With the increasing number of services, general users have to remember
their passwords and usernames for each service. Additionally, each user has to sign
up for each service, creating duplicate information for each user. In response to
these problems, the author [6] implements a centralized SSO for different systems
using SAML, allowing users to control their own data and providing flexible and
secure data trade between IdPs and SPs. This also reduces the number of shared
accounts, enhancing the user experience, by using the same credentials for every
service.

Single Sign-On allows different companies to build a federation such that users can
use a single username and password to sign into all the services of different com-

12



panies, eliminating the redundancy of creating multiple accounts [4]. The OASIS
SAML 2.0 SSO is a new standard for SSO protocols. Companies like Google, imple-
ment their Single Sign-On based on SAML, such as the Sign-On services for Google
Web Applications. In this paper, the author [4] proposes a new model correlating
to the SAML-SSO model and analyzes the issues of the models with the help of
SATMC, a great model that checks security protocols, identifying an unknown flaw
within the Google-SSO protocol. The author also tried to recreate the identified
attack to confirm the flaw.

SAML SSO is the standard in which users can log in to different services after
authenticating through a single service built on SAML [7]. SAML provides a few
security suggestions, but does not account for every instance. As such, a SAML
SSO designer may miss a few flaws depending on the security suggestions, which
can compromise the overall security of the solution itself. This was further evident by
the security flaw identified in the previous paper [4]. This flaw was identified using a
model checker for security flaws. In this paper, the author [7] will demonstrate that
by using such model checkers, we can ensure the development of SSO solutions by
ensuring the security of the solution. Model checking can identify security flaws in
distributed systems and services, which in turn helps make the solution more secure.

Below in Table 3.1 we have tried to show how different research papers that we
reviewed related to identity federation’s features align with user entity in a tabular
format. Where the properties apply we used ”X”, where they do not apply we
marked ”X”, and where we are unsure we used ”− ”.

Belchior
et al.
[18]

Ferdous
et al.

[9]

Coelho
et al.
[13]

Ferdous
et al.
[10]

Grüner
et al.
[17]

Hong
et al.
[19]

Yildiz
et al.
[22]

Ferdous
et al.
[23]

Our
Paper

System
Design X X X X X X X X X

Independent
User X - X - X X - X X

User Control,
Consent X - - - X X X X X

Minimal
Disclosure X - X - X X - X X

Justifiable
Parties X X X X X X X X X

Security
Requirements X X X X X X X X X

Protocol X X X X X X X X X

Encrypted
Channel X X X X X X X X X

Consortium X X X - X X X X X

DID X X X X X X X X X

Table 3.1: Comparison between various reviewed papers related to identity federa-
tion and SSI aligning with user entity.

13



Chapter 4

Threat Modeling & Requirements

4.1 Threat Modeling
Threat modeling is the use of the model to point out possible security issues in
any system [11]. This step helps the system to be robust by finding out issues in
a system even before coding it. Since, our work focuses on SSI, FIM, Hyperledger,
and Blockchain where identity management and federation are fundamental things
we must do threat modeling. The model we are choosing for our Threat Model
is STRIDE [11], a well-renowned threat model that helps your system to maintain:
legitimacy, non-repudiation, integrity, confidentiality, availability, and authorization.

• T1-Spoofing: An adversary can act to be an authorized user, issuer, or
verifier even if it’s not part of the system consortium.

• T2-Tampering: An adversary or issuer could change the TAL metadata of
a trusted entity and allow entry into the consortium as an outsider.

• T3-Repudiation: An Issuer can refuse the release of VCs even though it was
released for the requested Verifer or SP.

• T4-Information Disclosure: An unauthorized attacker might get hold of
an authorized user’s attributes and the Issuer might provide some attributes
of an authorized user to the Verifier without the user knowing.

• T5-Denial of Service(DoS): Whole services can become inaccessible due to
any DoS attack on the Issuer or Verifier.

• T6-Elevation of Privilege: If the authorization medium and process is
faulty there might be unwanted authorization which may lead to unauthorized
users getting the privilege of using the system.

We also considered the following threats after considering STRIDE threats:

• T7-Replay Attack: An attacker can take hold of a req/resp during commu-
nication and submit it to use it independently.

• T8-Lack of consent: The user attribute might be used without permission
of the actual holder.

14



• T9-Lack of control and transparency: In the whole process of generat-
ing VC to verification of the user the user him/herself might have almost no
control.

4.2 Requirement Analysis
Before implementation of the system, we needed to define a well-defined requirement
analysis which is really necessary for a successful application or, system development.
We have shown many functional and non-functional (security, privacy) requirements
for our proposed system. Functional requirements represent what is necessary for
the system to run and non-functional requirements represent the features necessary
to ensure that the security threats have been taken care of.

4.2.1 Functional Requirements
• F1: A mechanism will be established for Issuers and Verifiers to establish trust

relationships before user requests, ensuring secure interactions within the SSI
framework.

• F2: Users will have control over their credentials and will share the necessary
credentials with Issuers and Verifiers.

• F3: The new system will allow the Issuers to issue verifiable credentials (VCs)
and the Verifiers to verify the credentials without compromising privacy.

• F4: The new system will be executed in a way so that the already existing
Federation system and SSI-based structures don’t need to change.

• F5: Blockchain technology should be established in such a way that it doesn’t
delay the process of authentication rather it makes the system robust.

• F6: A decentralized identity management system will be utilized based on
blockchain technology.

4.2.2 Non-Functional (Security) Requirements
• S1: Since this system follows the SSI protocol, only trusted Issuers and Veri-

fiers can participate in the federation which mitigates the risk of spoofing (T1).
Moreover, only the trusted entities are storing the metadata, diminishing the
chances of tampering (T2).

• S2: Establishing a mechanism to ensure that the verifiable credentials (VCs)
are non-repudiable, thereby mitigating repudiation threats (T3).

• S3: Since SSI protocol is strictly maintained using VCs, the trusted Issuers
cannot expose any attributes of the user without explicit permission from the
user as only the user wallet app contains the VC. This mitigates the chances
of information disclosure (T4).

15



• S4: The system must be maintained available even during potential denial of
service (DoS) attacks, ensuring that trusted Verifiers have consistent access to
necessary services. This mitigates Denial of Service (T5).

• S5: The system implements authorization mechanisms with VCs and blockchain
technology to prevent unauthorized elevation of privileges, ensuring only au-
thorized users can access the system removing the chances of elevation of
privileges (T6).

• S6:The system provides users with complete transparency and control over
their identity data throughout the process, from VC issuance to verification,
mitigating issues of lack of control and transparency (T9).

4.2.3 Non-Functional (Privacy) Requirements
• P1: The system uses unique session tokens and timestamps to protect against

replay attacks, ensuring that intercepted communications cannot be reused
maliciously. This overcomes the chances of replay attacks (T7).

• P2: The system ensures strict SSI protocol and only allows the trusted entities
to access the attributes after getting the permission of the user addressing
concerns of lack of consent (T8).

16



Chapter 5

System Model & Architecture

5.1 Architecture & Implementation
In this section, we provide the complete architecture based on our system require-
ments to fulfill the features and mitigate security issues. Figure 5.1 represents our
architecture in a flow where we start from the Verifier’s connection with Issuer.

1

8. Grant access 
to Service

Verifier/SP

1

6. Forward User to SP with User VC

Issuer/IdP

1. Interchanging Secret Message, DID

2, 5
User

2

Blockchain

2. Get VC and 
store to Wallet 3. Request 

for Service

4. Forward User to connect with Issuer

7. Match 
Issuer DID

1

12, 5

Mediator

Fabric Registry
Peer

5. Request proof of User

Figure 5.1: System Architecture

The main goal of our SSI-Federation system is to provide a more trusted interac-
tion between SSI agent entities which are Issuer, and Verifier almost following the
obligations of the Identity Federation to enable the users to trust both entities and
access web services passwordless. As there are only a few SSI frameworks to follow
we took the help of the SSI4Web framework [23] and modified it where necessary for

17



the base SSI part. Moreover, we even modified the Verification step of the Verifier
to enable us to implement Federated Identity over SSI.

• In our SSI-Federation system, the main novelty starts at the beginning of the
process where the Verifier or SP wants to connect with a certain Issuer or IdP.
In normal SSI this connection is not there as this corresponds with Federated
Identity but to make this connection possible Unique DID of both Issuer and
Verifier needs to be shared. This DID sharing process depends on the Issuer
Org and Verifier Org where they could physically agree to a contract or, online
however they agree to share a secret_ref which only the other entity knows
and also some necessary info they agreed to like Domain, Org name, etc. After
knowing the secret_ref Verifier will send a request to the Issuer with it, its
own DID, and what the VC format is through which the Users will be verified
before accessing. The Issuer will first match the secret_ref and if it matches
it will store the DID of the Verifier in its own Fabric registry. In response to
this request, the Issuer will send back the secret_ref it was provided with to
the Verifier and its own DID to successfully connect with each other agreeing
on a consortium.

• The User before even accessing the Verifier will first access the trusted Issuer
and according to the schema defined will fill out the necessary credentials and
will get a VC for it which will be sent back to the user’s Wallet App through
a Mediator. Until now, the whole process has been the security extension of
our system.

• Now the normal SSI architecture comes into play when the User requests a
service to the SP or Verifier.

• The Verifier forwards the User to connect with the Issuer and the Issuer re-
quests proof of the User whether it has already taken VC or not. The User in
this case fills minimal verifiable credentials to be connected with the Issuer if
VC was already taken, and no password is needed here.

• The Issuer upon verification of the User takes the VC of the User and forwards
it to the Verifier, which also contains the DID of the Issuer.

• The Verifier resolving the VC matches the DID of the Issuer with the before
stored one in its own Fabric registry to verify the User whether it took VC from
a trusted Issuer or not. In normal SSI this step is not present; moreover, the
Verifier would have checked the VC with the blockchain whether it matched or
not. On the contrary, our SSI-Federation model skips this step which allows
no User information to be read by the Verifier rather upon trusting the Issuer
will complete the connection.

• Lastly, in our architecture after matching DID the Verifier will grant access to
the requested resources of the User thus completing our system’s architecture.

This Proof of concept was developed leveraging different frameworks and tools, in-
cluding Hyperledger Aries [28], Hyperledger Indy [31] and, Hyperledger Fabric [30].

18



The idea of web-service access was made with the help from the SSI4Web frame-
work [23]. Hyperledger Indy is a blockchain platform which provides tools, libraries,
and components for creating decentralized identities to be used in SSI Applica-
tions. In our SSI-Federation system, we have used the Indy testbed called BCovrin
Test http://test.bcovrin.vonx.io/. Hyperledger Aries is an interoperable toolkit used
for developing digital credentials used in SSI applications. We have used the Hy-
perledger Aries Cloud Agent Python (ACA-Py) library [29] in our SSI-Federation
system. In our SSI-Federation system, the issuer also acts as a SSI agent which has
been developed using NodeJs [33]. This SSI agent utilizes the ACA-Py library for
its SSI functionalities. Moreover, we have used the open source Aries-compliant mo-
bile App of the Aries Mobile Agent React Native [27] project as our Mobile Wallet.
Finally, we have used Hyperledger Fabric [30] to store our decentralized identifiers
to our permissioned blockchain ledgers.

5.2 Use-case & Protocol Flow
Now this section shows the different use cases with their protocol flows and sequence
diagrams to enact the architecture that we proposed to solve our stated issues. First,
in Table 5.1 we can see the mathematical and cryptographic notation that we will
use throughout this part.

5.2.1 Data Model

Table 5.1: Cryptographic Notations

Notations Description

U The identity holder or Service user

I Issuer organization or Identity Provider

SP Service Provider or Verifying organization

B Blockchain

Cc Consortium Chaincode

UW User wallet

M Mediator

KI
U Public key of U for I

K
−1|I
U Private key of U to be used for I

KU
I Public key of I for U

K
−1|U
I Private key of I to be used for U

19

http://test.bcovrin.vonx.io/


DIDI Decentralised identifier of I

DIDSP Decentralised identifier of SP

V CU
I Verifiable credential issued by I for U

Ni A nonce

{}K Encryption operation using a public key K

{}K−1 Signature using a private key K1

H(M) SHA-512 hashing operation of message M

[...]K Communication over an channel encrypted with key K

[...] Communication over an unencrypted channel

[[...]] Optional data

The raw data we have used in our proposed model has been illustrated in Table 5.2
with the appropriate description. The system we proposed works like a responsive
system that gives some responses (indicated by res in table) upon giving some re-
quests (indicated by req in table). Our system consists of seven types of req which
are: didReq, reqRegister, credReq, inviteReq, attrReq, proofReq, serviceReq.
The first two of these requests are made during the external identity federation
layer that helps us establish the connection. To add to that the next three requests
are that of the normal SSI flow but for only acquiring V C from the issuer and the
last two requests are meant for the modified Web-SSI protocol we made for the flow
to complete. There are also five types of responses that are executed in response to
the mentioned requests.

The didReq contains the secret_refx of the Issuer or Verifier they got this while the
organizations communicated with each other for the trust relationship to be estab-
lished based on the DID they get. To add to that, the didReq also contains DIDx of
the Issuer or Verifier so that while requesting for the other entity’s DID they could
also join the consortium on that platform. To enter the Chaincode consortium a
registration request has to be executed with reqRegister. This request consists of
the requesting entity’s domainx, orgx, DIDx so that it can remain in the Chaincode
registry and join the consortium. The credReq request is actually a simple request
for establishing a connection with the Issuer which is why only minimal email, alias
are to be taken here. The attrReqandproofReq contain simple attributes of the
user to create V C or just give proof of authenticity. For the user to get V C a SSI
connection needs to be started as stated before and that starts with inviteReq which
contains a URL of the Issuer and a fresh nonce. In response to this two responses
are sent back which are inviteResp1, inviteResp2. The responses contain the DID
pairs of the invite request so that they can clearly identify themselves while commu-
nicating. Lastly, the request that starts the SSI in a manner serviceReq contains
the requested service URL and optionally invitecookie or sessioncookie.

The didResp in itself is actually a request although it is a response to a request

20



and it contains the same as didReq and also works the same. In Table 5.2 we also
included some string value responses like attrResp which has the name-value pair
of user attributes. The response of credReq is credResp which contains the VC
generated by I for U . The VC structure and sign format have also been added to
the table. Finally, proofResp actually contains the requested VC to prove a user
while requesting a service.

Table 5.2: Data Model

req , 〈didReq, reqRegister, credReq, inviteReq, attrReq, proofReq, serviceReq〉

resp , 〈didResp, inviteResp[1− 2], attrResp, credResp, proofResp〉

didReq , 〈secret_refx, DIDx〉

reqRegister , 〈domainx, orgx, DIDx〉

credReq , 〈email, alias〉

attrReq , 〈a1, a2, ..., an〉

proofReq , 〈a1, a2, ..., an〉

inviteReq , 〈urlI , Ni〉

serviceReq , 〈urlsi, [[inviteCookie, sessionCookie]]〉

didResp , 〈secret_refx, DIDx〉

inviteResp1 , 〈Ni, DIDI
U〉

inviteResp2 , 〈Ni, DIDU
I 〉

attrResp , 〈(att1, attv1)(att2, attv2)..., (attn, attvn)〉

credResp , 〈V CU
I 〉

proofResp , 〈V CU
I 〉

V CU
I , 〈(att1, attv1)(att2, attv2)..., (attn, attvn)K−1|U

I
〉

5.2.2 Algorithms
Now here is four important algorithms of our system where Algorithm 1 addOrg
handles Organizations to be a part of the Consortium, Algorithm 2 is proofStatus
which verifies V C and makes required attributes available, Algorithm 3 sends back
attributes and DIDI securely to the SP, and lastly Algorithm 4 verifies the received-
attributes, DIDI and gives User service.

21



Algorithm 1 Snippet for addOrg Function
1: function addOrg(request, response)
2: reference← SP’s reference from req body
3: sp_public_did← SP’s public DID
4: doc← search, retrieve reference doc
5: if doc then
6: blockchain_response← Resolve sp_public_did
7: data← I’s public DID and reference
8: ack_resp← sends data to ”SP − URL/federation− entry − ack”
9: if ack_resp then

10: sp_data← extract SP’s name, domain
11: doc← execute chaincode with sp_public_did, sp_data
12: end if
13: end if
14: end function

The initial step involves the exchange of secret reference codes and documents be-
tween Issuers and Service Providers. Following this, the respective administrators
of Issuers and Service Providers store each other’s reference, domain, and organi-
zation name in their local databases. The Service Provider’s administrator then
presents the Service Provider’s sp_public_did DID and reference via a registra-
tion form on the Issuer’s website triggering the execution of addOrg (Algorithm
1). It extracts the secret reference and DID from the request body, checks for a
profile in the local DB(Database) with the reference, resolves the DID from the
INDY blockchain that is, retrieved from the DIDDocSP and sends a request to the
”/federation−entry−acknowledgement” endpoint of the Service Provider with the
Issuer’s DID and secret reference. This endpoint undertakes similar actions as Al-
gorithm 1, that is it checks the reference, retrieves the DIDDocI and then executes
the Fabric chaincode function which creates a transaction with DIDI , issuer_data.
This function stores the data in the ledger by adding the transaction details to the
state database. If there was a failure in any of the steps then further steps do not get
executed. Finally, it sends a response indicating success or failure. If the response
from the SP’s endpoint indicates success then, the Issuer also executes the Fabric
chaincode function which creates a transaction with DIDSP , sp_data, storing the
data in the ledger by adding the transaction details to the state database.

Algorithm 2 Snippet for proofStatus function
1: function proofStatus(data)
2: response← present proof request to wallet with data and gets V CI

mobile−wallet

3: Retrieve: public DIDDocImobile−wallet,corresponding public KI
mobile−wallet

4: verfied← checkSignature(V CI
mobile−wallet,KI

mobile−wallet)
5: if verified then
6: global_attributes← extract revealed attributes from V CI

mobile−wallet

7: return True
8: end if
9: return False

10: end function

22



The proofStatus function (Algorithm 2) creates a present-proof request with re-
quired claims and sends it to the user’s wallet. If the user presents V CI

mobile−wallet,
this function will receive it. The Issuer DID of the V C is retreived from the pre-
sentation message. DIDDocImobile−wallet will be retrieved from INDY blockchain
and then the public key KI

mobile−wallet will be retrieved from there. Using the public
key, the digital signature of V CI

mobile−wallet will be checked. If nothing was tam-
pered with, then the revealed attributes get stored in global_attributes variable,
and Algorithm 2 returns true to requestProof (Algorithm 3).

Algorithm 3 Snippet for requestProof function
1: function requestProof(req, res)
2: required_sp_attributes← from SP’s request body
3: data← createPresentProofRequestTemplate(required_sp_attributes)
4: proofstatus← proofStatus(data)
5: if proofstatus then
6: revealed_attributes← revealed attributes from global_attributes
7: revealed_attributes.did← Issuer’s public DID
8: queryString ← createQueryStringWithHmac(global revealed attributes)
9: Redirect to ”SP − URL/callback” with querystring

10: end if
11: if not proofstatus then
12: Redirect to error page
13: end if
14: end function

The requestProof function (Algorithm 3) first extracts the Service Provider’s re-
quired attributes from the request body and stores it in the required_sp
_attributes variable. Then it creates an Aries Present Proof Request template with
required_sp_attributes and calls Algorithm 2. If Algorithm proofStatus function
returns True, then it creates a payload object revealed_attributes with the stored
revealed attributes from global_attributes variable and Issuer’s public DID. A hash
of the payload is created with Issuer’s secret reference HMAC-SHA256(referenceI ,
revealed_attributes). Then the user is redirected to ”SP−URL/callback” endpoint
and the hash, and the original payload is passed in a query-string.

23



Algorithm 4 Snippet for callback function
1: function callback(req, res)
2: data← extractData(queryString)
3: received_hmac← Extract hmac from data
4: Delete hmac from data
5: issuer_did← extractDID(data)
6: match← verifyHmac(data, receivedHmac))
7: if match && matchDID(issuer_did) then
8: session_cookie← data
9: redirect to service

10: else
11: redirect back to signup_with_issuer page
12: end if
13: end function

The callback function (Algorithm 4) gets executed in Service Provider’s back-end.
It first extracts the original payload and stores it in a data variable. Next, it ex-
tracts the hash from the query-string and stores it in received_hmac and then
deletes the hash from the data storage. It also extracts Issuer’s DID and stores it
in issuer_did. Then it regenerates a hash with Issuer’s secret reference HMAC-
SHA256(referenceI , data) and compares this generated hash with the hash in
received_hmac. If the hashes match, then it proceeds to check if the DID in
issuer_did is present in the Fabric state database. If it is, then a session for the
user is created, and the user is redirected to the service access page. Otherwise, the
user is redirected to the sign-up page.

5.2.3 SP & I external connection form Identity Federation
Now we will discuss the use case of Identity Federation among the Issuer and Verifier
organization before the SSI protocol starts and this is based on the Algorithm 1.
Table 5.3 shows the protocol flow of this use case.

Table 5.3: External Identity Federation Protocol

M0 SP ↔ I : SP and I share and store each-others secret_ref,
Domain, Organization name

M1 SP → I : [N0, didReq(secret_refSP ,DIDSP )]HTTPS

M2 I → B : [N1, didResolve(DIDSP )]HTTPS

M3 I → SP : [N1, didResp(secret_refI ,DIDI)]HTTPS

M4 SP → B : [N0, didResolve(DIDI)]HTTPS

M5 SP → Cc : [N0, reqRegister(domainSP ,orgSP ,DIDI)]HTTPS

M6 SP → I : [N1, registeredACK]HTTPS

M7 I → Cc : [N1, reqRegister(domainI ,orgI ,DIDSP )]HTTPS

From the presentation of Table 5.3 and the sequence diagram in Figure 5.3 interac-
tions start:

24



I. The flow starts with SP and I first communication with each other and agree-
ing on terms to connect with each other with the help of some secret codes
and identifiers so that even online they can verify and identify themselves.
After this is completed the SP will first go to the I website and will first fill
necessary values shown in Figure 5.2 which actually correspond to the request
shown in M1. in Table 5.3.

Figure 5.2: Add reference to Chaincode and System storage.

II. The I will match the secret value provided to its own registry and acquire the
SP ’s DID for which it can identify this SP at a later time in response to this
the I will send back a similar request in the form of a response with the same
format of values in step M2,3.

III. The resolving procedure is the same as M2 for the M4 step and the SP then
stores the DID of I for later verification usage.

IV. Finally, both the SP and I consequently store the resolved DID with the help
of the same Chaincode but in their private storage systems. In this case, SP
actually responds with an Acknowledgment to I that it has added the I as a
trusted organization, and then finally I does the same too which completes
steps M5, M6, and M7.

25



IssuerSP Blockchain Chaincode 

1. [N0, DIDreq(secret_ref_sp,
DIDsp )]
HT T P S

6. [N0, registeredACK]
HT T P S

2. [N1, didResolve(DIDsp )]
HT T P S

3. [N1, DIDresp(secret_ref_i,
DIDi )]HT T P S

4. [N0, didResolve(DIDi )]HT T P S

5. [N0, reqRegister(domain,org,DIDi )]HT T P S

7. [N1, reqRegister(domain,org,DIDsp )]HT T P S

Figure 5.3: SP and I identity federation Sequence Diagram.

5.2.4 Modified-SSI Interactions among all the Entities
U to I Interactions for VC to start SSI:

This use case shows how before U even requests for a service it first goes to the I to
get V C for later usage and how the first steps of our modified-SSI implementation
occur. Table 5.4 demonstrates the use case’s protocol flow.
From the presentation of Table 5.4 and the sequence diagram in Figure 5.9 interac-
tions start from I domain:

I. User first on the I domain and selects the Generate Invitation service which
requires the U to fill in minimal credentials like showed in M3 and this is how
the first three steps work.

II. Now the I interface shows a QR code to the U like Figure 5.4 which U has
to scan with their Mobile Wallet App and then an offer like Figure 5.6 will be
shown in the app which the U will accept this invitation which is step M4.

26



Table 5.4: Web-SSI Protocol for VC

M1 U → I : [N1,Generate Invitation]HTTPS

M2 I → U : [N2, credReq]HTTPS

M3 U → I : [N2,Fill email, alias]HTTPS

M4 I → U : [N3, inviteReq]HTTPS

M5 UW →M : [I,N3, inviteResp1]

M6 M → I : [N3, inviteResp1]

M7 I →M : [U,N3, inviteResp2]

M8 M → UW : [N3, inviteResp2]

M9 I → U : [N4,Credenital Fillup Form]HTTPS

M10 U → I : [N4, Submit Credential Request]HTTPS

M11 I → UW : [N5, attrReq]HTTPS

M12 UW → I : [N5, attrResp]HTTPS

M13 I →M : [U, {N5, credResp}KI
U
]

M14 M → U : [{N5, credResp}KI
U
]

Figure 5.4: Invite QR Presentation

III. The wallet now generates key pair KI
U & K

−1|I
U and also the DID of the U

with the help of key pairs. The DID Doc is pushed to the blockchain to get
it registered for further use and trustworthiness. The wallet and this point
generates inviteResp1 & inviteResp2 which contains specific DIDs so that
a connection can be established with the wallet and all these steps could be
done with the help of M . This is how steps M5, M6, M7, and M8 took place.

IV. At this point the I shows a Form like Figure 5.5 where U fills up valid cre-

27



dentials of themselves according to the SP ’s format so that later the U can
access it. After filling up the U clicks the Submit button thus finishing the
steps M9, M10, M11, and M12. Now like Figure 5.7 the mobile wallet would
show this notification which the U needs to confirm.

Figure 5.5: Credential Fillup Form

V. The I now with the credentials prepares the VC and a credResp with the
VC which then is sent to the U via M in steps M13 and M14. The wallet
also checks the signature of the VC using the Public key of the I for this
connection which was previously generated and stored in the wallet app. If
the whole process is successful then the VC will be stored and something like
this will be shown. (Figure 5.8)

28



Figure 5.6: Invita-
tion Proposal

Figure 5.7: Creden-
tial Offered

Figure 5.8: Creden-
tial Details

IssuerUser Mediator User Wallet

1. [N1, Generate Invitation]
HT T P S

10. [N4, Submit Credential 
Request]HT T P S

4. [N3, inviteReq]
HT T P S

2. [N2, credReq]
HT T P S

3. [N2, Fill email, alias]
HT T P S

5. [I, N3, inviteResp1]

6. [N3, inviteResp1]

7. [U, N3, inviteResp2]

8. [N3, inviteResp2]

9. [N4, Credenital 
Fillup Form]HT T P S

11. [N5, attrReq]HT T P S

12. [N5, attrResp]HT T P S

13. [U, {N5, credResp}K^I_U ]

14. [{N5, credResp}K^I_U]

Figure 5.9: User and Issuer interactions to get VC Sequence Diagram.

U to SP Modified SSI interactions to access Service:

This use case shows how U interacts with SP to get Service access where the first
steps of SSI or VC generation aren’t mentioned as it is already done in Table 5.4
which is a modification. A few other interactions are also modified which will be
covered soon to make our system complete which are a part of Algorithm 2, Algo-

29



rithm 3, and Algorithm 4. Table 5.5 shows the protocol flow for this use case.

Table 5.5: Modified Web-SSI Protocol

M1 U → SP : [N1, serviceReq(urlS1)]HTTPS

M2 SP → U : [N2, Issuer Options (SSI)]HTTPS

M3 U → SP : [N2, Select Issuer (IX)]HTTPS

M4 I → U : [N3,Connection Page]HTTPS

M5 U → I : [N3,Fill Email Identifier]HTTPS

M6 I → U : [N4, Show Attribute Page]HTTPS

M7 U → I : [N4,Approve Requested Attributes]HTTPS

M8 I →M : [U,N5, proofReqKI
U
]

M9 M → UW : [N5, proofReqKI
U
]

M10 UW →M : [I,N5, proofRespKU
I
]

M11 M → I : [N5, proofRespKU
I
]

M12 I → U : [N6, attrResp]HTTPS

M13 I → SP : [N6,U, attrResp, DIDI ]HTTPS

M14 SP → Cc : [N7,matchDID(DIDI)]HTTPS

M15 SP → U : [N1, urlS1, sessionCookie]HTTPS

From the presentation of Table 5.5 and the sequence diagram in Figure 5.15 inter-
actions start from SP domain:

I. The U requests a service to an SP at the service urlSi
. SP then shows a

dropdown list of trusted I like Figure 5.10 who have a connection with the
SP . U will select the I that he/she already has V C from or will get a V C
from. (M1, M2, M3)

Figure 5.10: Issuer Selection

II. If the U has the V C following the previous protocol of Table 5.4 then an in-
terface like Figure 5.11 will appear where U will just enter a minimal identifier
which in this case is the unique Email and login with it. (M4, M5)

30



Figure 5.11: Reconnect with I.

III. Now the I will show an interface like Figure 5.12 where a list of attribute fields
will be shown which the U will approve. It is completely up to the U if he/she
wants to consent to these attributes for accessing the SP or just terminate
the whole process. We are assuming the U approves the requested attributes
which completes steps M6, and M7.

Figure 5.12: Approval of attributes.

IV. I now generates a proofReq which is sent to the U wallet app through the
M . On the mobile wallet a notification like Figure 5.13 will pop up and U will
view the request. Since the parsing part was already done while generating
the V C the wallet will show the V C to the U for approval like Figure 5.14.
After approval, the wallet will send back a proofResp using this V C to the I
completing steps M8, M9, M10, and M11.

V. As in our modification the SP doesn’t match the V C so only an encrypted
version of it with DIDI and reference is sent to the SP following M12 and
M13.

31



VI. SP will match only the DIDI with its chaincode if the I is trusted or not and
if it is true the U is taken to the requested service url with a sessioncookie.
This is how our whole system is implemented by finally completing steps M14
and M15.

Figure 5.13: Proof Re-
quest.

Figure 5.14: Share at-
tributes for proof.

SP Mediator ChaincodeUser
WalletUser

6.[N4, Show Attribute Page]HT T P S

4. [N3, Connection Page]HT T P S

2. [N2, Issuer Options (SSI)]
HT T P S

1. [N1, serviceReq(urlS1)]
HT T P S

3. [N2, Select Issuer (Ix )]
HT T P S

5.[N3, Fill Email Identifier]HT T P S

7. [N4, Approve Requested Attributes]HT T P S

Issuer

8. [U, N5, proof Req
_{K^I_U} ]

9. [N5, proof Req
_{K^I_U} ]

10. [I, N5, proof Res
_{K^U_I} ]

11. [N5, proof Res
_{K^U_I} ]

12. [N6, attrResp]HT T P S

13. [N6, U, attrResp,
 DIDi ]HT T P S

14. [N7, matchDID(DIDi )]HT T P S
15. [N1, urlS1, 
sessionCookie]

HT T P S

Figure 5.15: User and SP service access interactions Sequence Diagram.

32



Chapter 6

Discussion

6.1 Requirement Analysis

6.1.1 Functional Requirements:
Our system fulfills all of our mentioned functional requirements. The external trust
layer we present mitigates the issue of the Issuer and Verifier trusting each other so,
F-1 is fulfilled. The user interacts with the Issuer before even the SSI connection
starts and provides credentials with consent and those credentials are stored not on
the Issuer platform nor on the Verifier platform as a result we can say the user has
complete control over their credentials. Moreover, as the Issuer and Verifier don’t
even have user credentials the privacy issue is also mitigated so through the use of
Wallet App which contains the VC the F-2 and F3 requirements have been met. In
our system, there is no separate entity only an inner layer of Chaincode is used, and
entities like IdP, SP, Issuer, and Verifier stay as they are with slight modifications for
the betterment of usage thus not changing the structures of both FIM and SSI. As
a result, even with the modifications F-4 is fulfilled. Using blockchain technologies
enabled the system to remain immutable where needed and keep track of all activities
moreover, as there was the use of private blockchains there was hardly any delay
so, it completed F-5. The identity management system on the base of our system is
SSI which follows the laws of decentralized identities moreover we used no data silos
letting us further enable that and fulfilling F-6 as well as all functional requirements.

6.1.2 Security Requirements:
In our system there is clear use of SSI and an external trust layer enables it to become
more trustworthy which is one of our main concerns. Moreover, only trusted entities
with valid DID are allowed in the consortium as a result there is no issue of tampering
either thus fulfilling both S-1 and S-2 of the security requirements. The issue of the
Issuer faking creating the VC for a user is a flaw in our protocol as the SP doesn’t
verify the VC. As a result, the requirements of S-2 are partially met. This system is
configured in this manner the SP or Verifier doesn’t read the VC rather it believes
the Issuer to fulfill their prerequisite and provide a valid VC if that is fulfilled. To
add to that, the Issuer doesn’t store the VC so they are not necessarily keeping any
attributes thus fulfilling S-3. As DoS attacks are prone to every web service our
system is indifferent in this regard so, additional steps are needed to solve it. So,

33



this S-4 is out of our scope to fulfill. As the user both needs the Wallet App and
Issuer web services to be verified so, verification of an unauthorized user is highly
unlikely as records are there to keep track. On the other hand, Issuers and Verifiers
are trusted as they first form a contract before any of the services are accessed so,
the S-5 requirement is fulfilled. Lastly, for fulfilling S-6 we can only give the user
control over getting the VC and consenting to use it other processes are taken care
of by the Issuer and Verifier.

6.1.3 Privacy Requirements:
The user or identity holder in our system uses their own Wallet App while acquiring
VC and even while sending it to the Issuer. Here, only the user can control their VC
and mainly the deletion and creation of VC so, it fulfills the privacy requirements
P-1, P-2.

6.2 Research Objective Analysis
The implemented system of ours completely fulfils the research objectives in the
following ways:

• RO1, RO2: We have reviewed already working Identity Federation, SSI mod-
els, and even different interpretations of it. This allowed us to find out the
ideal model for our prospect which is the combination of both Identity Fed-
eration and SSI. Moreover, we also found the lackings of other models and
systems which helped us to mitigate them in our own model. We showed our
findings through a comparison table between these papers to get a better un-
derstanding of this thus finalizing that we have achieved these two research
objectives.

• RO3, RO4: We explicitly wanted to provide a user-centric federated identity
federation system. The usual FIMs are still being used but, they hardly look
at the user’s control aspect of it. We provided this in our system by keeping
the base with a user-centric identity management system which is obviously
SSI. The SSI authentication process is also very robust using VCs and we have
kept that in our system with the user at its core. The user gives the values
for their VC but they are not stored anywhere since we didn’t want any data
siloes this also completing our these two research objectives.

• RO5: The system we built has an external trust layer which was a key mo-
tivational aspect of our research. This trust layer was built with the help of
Fabric registry services and handled through Aries which are both well-known
Hyperledger Foundation projects. The layer gives our system structure the
touch of Identity Federation which SSI leaked so fulfilling a really important
research objective.

• RO6: This research objective has been achieved through the detailed archi-
tecture, protocol, and use case implementations we have presented in this
research paper.

34



6.3 Advantages & Limitations
The new system of Identity Management we proposed has several advantages which
are discussed here:

1. The external layer we provided gives a sense of trustworthiness towards our
system. Trust in this case does not only cover the Issuer and Verifier but also
the User too. Because users do not have to think about their credentials being
misused, as the Issuer and Verifier don’t have it due to the trust model.

2. If multiple Verifiers or SPs require different credentials attributes, the user
doesn’t need to create separate VCs but rather use the same one. For this to
function more effectively the Verifiers and Issuers should agree on the same
VC format to make the whole system easier and more accessible.

3. Even if there is an attack on the system from any adversaries the chance of
identity theft is close to none. To start, the system is based upon SSI making
it decentralised, and to add to that the VC which has user identity is there
with the user and not any other entity. Moreover, cryptographic techniques
have been used for data transmission which is safe in itself.

4. We have used ACA-PY which can communicate with public blockchains and
also Fabric, and Indy which are private blockchains. So, our system is capable
of working with both Public and Private blockchains.

5. There is no single point of failure or central authority in our system, more-
over, it could be said that the whole system is rather user-centric. The user
can initiate the verification procedure and even the management of VCs thus
entrusting more to the users than other systems.

Even with all these advantages, there are some limitations to our PoC which are
discussed below:

1. Our system is somewhat complex as SSI itself is not integrated into most
services that include identification. To add to that, our external trust layer
piles up on that complexity. For a non-technical user, this may be hard to
start.

2. The use of Wallet App in our system is necessary and if that fails there is no
backup system. Moreover, users might not want the task of managing their
credentials which is a disadvantage for some.

3. Our system relies on external services of the Hyperledger Foundation like
Aries, Fabric, Indy, etc. which are still in development and may turn out to
be points of failure if dependencies don’t match.

6.4 Challenges
These are the challenges that we faced during the implementation:

35



1. The documentation for using the aries-cloud agent python is very poor and
mostly non-existent. Moreover, it is very platform-dependent. Similarly, the
instructions to build the Aries Bifold mobile wallet application are not very
clear, and it is certainly not production-ready because of the slowness.

2. When building a multiple-organization fabric network, there are a lot of limita-
tions regarding adding more organizations and the Certificate Authority (CA)
permissions. Moreover, if we run the network on virtual machines, obtaining
permission for external ports and sending requests from one node to another,
including TLS certificates, proves to be a challenge.

6.5 Future Work
These are the future opportunities of this research which we would like to work on:

1. There is a constant need to use a mobile wallet app for our system and we
need to work on a system that doesn’t require this and works like a backup
system of this wallet mechanism.

2. The use of zero-knowledge proofs can be implemented in our system to make
it more secure and easily accessible.

3. Integrate this system in various domains like Univerisity, E-Governance, etc.
to see its actual usability and the scalability factor so that if the number of
users gets drastically increased, it will act so that we can make it better.

4. We could try to adopt our trust layer or system attributes over already widely
used Identity Federation systems such as SAML, OAuth, and OpenID to make
the transition to using SSI more convincing.

36



Chapter 7

Conclusion

Online services still mostly use centralized or, federated identity management sys-
tems where data silos are in use. In both of these systems, the third parties have
user attributes and can exploit them if they want; moreover, these systems are prone
to attack due to the data silos. Even in recent days a lot of people suffered due to
major data breaches on these systems. Now if big organizations actually pay heed
and the user base cares about their personal information from being jeopardized
identity management systems should switch to a decentralized setup. Moreover,
even where entities provide users digital credentials like the IdP in FIM and the
Issuer in SSI there should be a pre-existing trust among the service provider and
these VC issuing entities as organization-level fraud can also happen. In all of these
cases the user suffers the most so, the web identity management systems should be
user-centric rather than only thinking about the benefits of the organizations.

The system we propose mitigates these issues since the digital credential or VC issu-
ing entity has a trust relationship beforehand with the SP and even the issuer itself
does not contain these VCs. So, the underlying issues most identity management
systems have are not in our system. Only the integration of systems like ours should
bring significant downfall to data breaches, information theft, and even mass-level
hacking. In addition, it will also introduce users to the use of digital identity wal-
let apps in their day-to-day activities. We have started to use e-wallets for buying
things so, it shouldn’t be too hard to presume that using web services is also similar
to that and the use of digital identity wallets is necessary.

Like the real world, the online world is also a necessary part of our lives where trust
is necessary. The main hurdle in this trust for online life is the ease of impersonating
another person and the amount of online profile that goes on. If practices of SSI
and Blockchain technologies could be widespread almost all of these issues could
be mitigated and our model goes one step further in that regard which also thinks
about the user’s security and privacy. The model we present can make accessing
web services much better and user-friendly with the notion of trust, security, and
privacy. With our contributions, we believe this could bring in a new domain of
research.

37



Bibliography

[1] K. Cameron, “The laws of identity,” 2005.
[2] A. Jøsang, J. Fabre, B. Hay, J. Dalziel, and S. Pope, “Trust requirements

in identity management,” ser. ACSW Frontiers ’05, Newcastle, New South
Wales, Australia: Australian Computer Society, Inc., 2005, pp. 99–108, isbn:
1920682260.

[3] A. Jøsang and S. Pope, “User centric identity management,” Jan. 2005.
[4] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. Tobarra, “Formal

analysis of saml 2.0 web browser single sign-on,” Oct. 2008, pp. 1–10. doi:
10.1145/1456396.1456397.

[5] P. Arias Cabarcos, F. Almenárez Mendoza, A. Marín-López, and D. Díaz-
Sánchez, “Enabling saml for dynamic identity federation management,” in
Wireless and Mobile Networking, J. Wozniak, J. Konorski, R. Katulski, and
A. R. Pach, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 173–
184, isbn: 978-3-642-03841-9.

[6] J. Lewis, “Web single sign-on authentication using saml,” IJCSI International
Journal of Computer Science Issues, vol. 2, Sep. 2009.

[7] A. Armando, R. Carbone, L. Compagna, and G. Pellegrino, “Automatic secu-
rity analysis of saml-based single sign-on protocols,” 2011.

[8] J. Jiang, H. Duan, T. Lin, F. Qin, and H. Zhang, “A federated identity man-
agement system with centralized trust and unified single sign-on,” in 2011 6th
International ICST Conference on Communications and Networking in China
(CHINACOM), 2011, pp. 785–789. doi: 10.1109/ChinaCom.2011.6158260.

[9] M. S. Ferdous, M. Chowdhury, M. Moniruzzaman, and F. Chowdhury, “Iden-
tity federations: A new perspective for bangladesh,” May 2012. doi: 10.1109/
ICIEV.2012.6317397.

[10] M. S. Ferdous and R. Poet, “A comparative analysis of identity management
systems,” in 2012 International Conference on High Performance Computing
Simulation (HPCS), 2012, pp. 454–461. doi: 10.1109/HPCSim.2012.6266958.

[11] A. Shostack, Threat Modeling: Designing for Security, 1st. Wiley Publishing,
2014, isbn: 1118809998.

[12] M. S. Ferdous, “User-controlled identity management systems using mobile
devices,” Ph.D. dissertation, Jun. 2015. doi: 10.13140/RG.2.1.3905.3287.

[13] P. Coelho, A. Zúquete, and H. Gomes, “Federation of attribute providers
for user self-sovereign identity,” Journal of Information Systems Engineering
Management, vol. 3, Nov. 2018. doi: 10.20897/jisem/3943.

38

https://doi.org/10.1145/1456396.1456397
https://doi.org/10.1109/ChinaCom.2011.6158260
https://doi.org/10.1109/ICIEV.2012.6317397
https://doi.org/10.1109/ICIEV.2012.6317397
https://doi.org/10.1109/HPCSim.2012.6266958
https://doi.org/10.13140/RG.2.1.3905.3287
https://doi.org/10.20897/jisem/3943


[14] J. Bernal Bernabe, J. L. Canovas, J. L. Hernandez-Ramos, R. Torres Moreno,
and A. Skarmeta, “Privacy-preserving solutions for blockchain: Review and
challenges,” IEEE Access, vol. 7, pp. 164 908–164 940, 2019. doi: 10 .1109/
ACCESS.2019.2950872.

[15] D. van Bokkem, R. Hageman, G. Koning, L. Nguyen, and N. Zarin, Self-
sovereign identity solutions: The necessity of blockchain technology, 2019.
arXiv: 1904.12816 [cs.CR].

[16] M. S. Ferdous, F. Chowdhury, and M. O. Alassafi, “In search of self-sovereign
identity leveraging blockchain technology,” IEEE Access, vol. 7, pp. 103 059–
103 079, 2019. doi: 10.1109/ACCESS.2019.2931173.

[17] A. Grüner, A. Mühle, and C. Meinel, “An integration architecture to enable
service providers for self-sovereign identity,” in 2019 IEEE 18th International
Symposium on Network Computing and Applications (NCA), 2019, pp. 1–5.
doi: 10.1109/NCA.2019.8935015.

[18] R. Belchior, B. Putz, G. Pernul, M. Correia, A. Vasconcelos, and S. Guerreiro,
“Ssibac: Self-sovereign identity based access control,” in 2020 IEEE 19th Inter-
national Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom), 2020, pp. 1935–1943. doi: 10.1109/TrustCom50675.
2020.00264.

[19] S. Hong and H. Kim, “Vaultpoint: A blockchain-based ssi model that com-
plies with oauth 2.0,” Electronics, vol. 9, p. 1231, Jul. 2020. doi: 10.3390/
electronics9081231.

[20] S. Figueroa-Lorenzo, J. Añorga Benito, and S. Arrizabalaga, “Modbus ac-
cess control system based on ssi over hyperledger fabric blockchain,” Sensors,
vol. 21, no. 16, 2021, issn: 1424-8220. [Online]. Available: https://www.mdpi.
com/1424-8220/21/16/5438.

[21] A. Preukschat and D. Reed, Self-Sovereign Identity: Decentralized Digital Iden-
tity and Verifiable Credentials. Manning, 2021, isbn: 9781617296598. [Online].
Available: https://books.google.com.bd/books?id=Nh4uEAAAQBAJ.

[22] H. Yildiz, C. Ritter, L. T. Nguyen, B. Frech, M. M. Martinez, and A. Küpper,
“Connecting self-sovereign identity with federated and user-centric identities
via saml integration,” in 2021 IEEE Symposium on Computers and Commu-
nications (ISCC), 2021, pp. 1–7. doi: 10.1109/ISCC53001.2021.9631453.

[23] M. S. Ferdous, A. Ionita, and W. Prinz, “Ssi4web: A self-sovereign identity (ssi)
framework for the web,” in Blockchain and Applications, 4th International
Congress, J. Prieto, F. L. Benítez Martínez, S. Ferretti, D. Arroyo Guardeño,
and P. Tomás Nevado-Batalla, Eds., Cham: Springer International Publishing,
2023, pp. 366–379, isbn: 978-3-031-21229-1.

[24] M. K. B. Shuhan, S. M. Hasnayeen, T. K. Das, M. N. Sakib, and M. S. Ferdous,
Decentralised identity federations using blockchain, 2023. arXiv: 2305.00315
[cs.CR].

[25] V. Dzhuvinov, OpenID Connect Federation 1.0 - draft 29 — openid.net, https:
//openid.net/specs/openid-connect-federation-1_0.html, [Accessed 23-May-
2023].

39

https://doi.org/10.1109/ACCESS.2019.2950872
https://doi.org/10.1109/ACCESS.2019.2950872
https://arxiv.org/abs/1904.12816
https://doi.org/10.1109/ACCESS.2019.2931173
https://doi.org/10.1109/NCA.2019.8935015
https://doi.org/10.1109/TrustCom50675.2020.00264
https://doi.org/10.1109/TrustCom50675.2020.00264
https://doi.org/10.3390/electronics9081231
https://doi.org/10.3390/electronics9081231
https://www.mdpi.com/1424-8220/21/16/5438
https://www.mdpi.com/1424-8220/21/16/5438
https://books.google.com.bd/books?id=Nh4uEAAAQBAJ
https://doi.org/10.1109/ISCC53001.2021.9631453
https://arxiv.org/abs/2305.00315
https://arxiv.org/abs/2305.00315
https://openid.net/specs/openid-connect-federation-1_0.html
https://openid.net/specs/openid-connect-federation-1_0.html


[26] D. Hardt, RFC 6749: The OAuth 2.0 Authorization Framework — data-
tracker.ietf.org, https://datatracker.ietf.org/doc/html/rfc6749#section-1,
[Accessed 23-May-2023].

[27] Hyperledger, Aries mobile agent react native, https://github.com/hyperledger/
aries-mobile-agent-react-native, Accessed: 2024-05-15.

[28] Hyperledger, Hyperledger aries, https://www.hyperledger.org/projects/aries,
Accessed: 2024-05-15.

[29] Hyperledger, Hyperledger aries cloud agent - python, https://github.com/
hyperledger/aries-cloudagent-python, Accessed: 2024-05-15.

[30] Hyperledger, Hyperledger Fabric, https://www.hyperledger.org/projects/fab-
ric, Accessed: 2024-05-15.

[31] Hyperledger, Hyperledger indy, https://www.hyperledger.org/projects/indy,
Accessed: 2024-05-15.

[32] IMI, Federated Identity Management Challenges - Identity Management Insti-
tute® — identitymanagementinstitute.org, https://identitymanagementinstitute.
org/federated-identity-management-challenges/, [Accessed 23-May-2023].

[33] Node.js, Node.js, https://nodejs.org/en/, Accessed: 2024-05-15.

40

https://datatracker.ietf.org/doc/html/rfc6749#section-1
https://github.com/ hyperledger/aries-mobile-agent-react-native
https://github.com/ hyperledger/aries-mobile-agent-react-native
https://www.hyperledger.org/projects/aries
https://github.com/hyperledger/aries-cloudagent-python
https://github.com/hyperledger/aries-cloudagent-python
https://www.hyperledger.org/projects/indy
https://identitymanagementinstitute.org/federated-identity-management-challenges/
https://identitymanagementinstitute.org/federated-identity-management-challenges/
https://nodejs.org/en/

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Introduction
	Problem Statement
	Research Objectives
	Structure

	Background
	Literature Review
	Threat Modeling & Requirements
	Threat Modeling
	Requirement Analysis
	Functional Requirements
	Non-Functional (Security) Requirements
	Non-Functional (Privacy) Requirements


	System Model & Architecture
	Architecture & Implementation
	Use-case & Protocol Flow
	Data Model
	Algorithms
	SP & I external connection form Identity Federation
	Modified-SSI Interactions among all the Entities


	Discussion
	Requirement Analysis
	Functional Requirements:
	Security Requirements:
	Privacy Requirements:

	Research Objective Analysis
	Advantages & Limitations
	Challenges
	Future Work

	Conclusion
	Bibliography

