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Abstract

The research provides a deep exploration of cryptocurrency price dynamics by blend-
ing technical analysis, sentiment analysis, and backtesting, aiming to reveal the
hidden patterns, drivers, and irregularities in their price behaviors. As the field
of cryptocurrencies gains importance, characterized by extreme price volatility and
sensitivity to sentiment shifts, understanding these dynamics is vital for developing
effective financial models and investment strategies. Cryptocurrencies are infamous
for their unpredictable nature, often influenced by market sentiment as much, if not
more, than fundamental or technical indications. This study aims to bridge the
gap by evaluating the effectiveness of combining sentiment analysis with traditional
technical analysis to enhance predictive accuracy and investment returns. We use
various predictive models, including Support Vector Machine (SVM) and Random
Forest, to evaluate their performance in different scenarios. Our findings reveal that
the SVM model significantly outperforms other methods when sentiment analysis
is merged. Specifically, sans sentiment analysis, the Random Forest model achieves
an annual return of 3.59. Nevertheless, with sentiment analysis, the SVM model
generates a distinctly higher annual return of 10.112. These results underscore the
crucial role of sentiment analysis in boosting the predictive power of financial models
concerning cryptocurrencies. Backtesting these models offers pragmatic insights into
their effectiveness. The backtesting results show that including sentiment analysis
in financial models not only enhances return metrics but also improves risk man-
agement. The superior performance of the SVM model with sentiment analysis un-
derscores the impact of market sentiment on cryptocurrency prices, indicating that
investor sentiment is a potent force that should not be ignored. The implications
of these findings are substantial for both academia and practice. For researchers,
this study adds to the growing body of literature on financial modeling in unstable
and emerging markets, like cryptocurrencies. It presents empirical evidence sup-
porting the merging of sentiment analysis into predictive models, thereby advancing
theoretical understanding and methodological approaches in the field. For practi-
tioners, particularly investors and financial analysts, the results provide actionable
insights into optimizing investment strategies. By utilizing sentiment analysis, they
can develop sturdier models that better capture market movements and investor
behavior, leading to improved investment outcomes. The ability to predict price
movements with increased accuracy permits more effective portfolio management
and risk mitigation, which are crucial in the highly volatile cryptocurrency market.
Additionally, the research accentuates the importance of continuous innovation in
financial modeling techniques. As the cryptocurrency market evolves, so must the
methods employed to analyze and predict its behavior. The integration of sentiment
analysis represents a significant leap forward in this aspect, offering a robust tool
to navigate the complexities of this emerging asset class. This research highlights
the value of integrating sentiment analysis into financial models for cryptocurren-
cies. The findings indicate that such integration not only boosts predictive accuracy
but also enhances investment returns and risk management. By advancing financial
modeling techniques and providing practical insights for investment strategies, this
study presents a significant contribution to both academic research and practical
applications in the swiftly evolving world of cryptocurrencies.
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Chapter 1

Introduction

The world of cryptocurrency has captured the imagination of millions, offering a
glimpse into a decentralized financial future. However, for many, the volatile price
movements of these digital assets remain an enigma. It is important for financiers,
entrepreneurs, and everyone interested in developing this dynamic terrain to com-
prehend the factors behind these oscillations. It is important for financiers, en-
trepreneurs, and everyone interested in developing this dynamic terrain to com-
prehend the factors behind these oscillations. The economic ecosystem has been
significantly disrupted by cryptocurrencies, which are rewriting conventional ideas
about money, investing, and market behavior. The decentralized nature of cryp-
tocurrencies, underpinned by blockchain technology, has ignited a paradigm shift
in how financial transactions are conducted. As the market for cryptocurrencies
continues to evolve, so does the complexity of understanding and predicting price
movements within this dynamic ecosystem. While the field of cryptocurrency re-
search is relatively young, a burgeoning body of literature has emerged, reflecting the
growing interest and complexity of the cryptocurrency landscape. Previous studies
have delved into various aspects, contributing valuable insights that form the foun-
dation for this research. Early research in cryptocurrency markets often focused
on assessing market efficiency and identifying anomalies. Studies explored whether
traditional financial theories, such as the Efficient Market Hypothesis, hold in the
context of cryptocurrencies. Researchers sought to uncover patterns and behaviors
that deviate from the expectations of traditional financial models. Understanding
the drivers of cryptocurrency prices and the factors contributing to their inher-
ent volatility has been a central theme. Past studies investigated the impact of
macroeconomic indicators, regulatory developments, technological advancements,
and market sentiment on price movements. These inquiries laid the groundwork
for comprehending the intricate dynamics shaping cryptocurrency valuations. As
cryptocurrencies gained traction, researchers explored the factors influencing their
adoption and the behavior of users within the ecosystem. Studies examined user
motivations, the role of social networks, and the impact of educational initiatives on
fostering widespread acceptance and use of cryptocurrencies.

1.1 Aims and Objectives

The research contributes to the field of cryptocurrency analysis by integrating a
comprehensive methodology that encompasses technical indicators, sentiment anal-



ysis, and machine learning models to analyze cryptocurrency price movements. This
study goes beyond traditional approaches by incorporating sentiment data alongside
historical price data and technical indicators, offering a more nuanced understand-
ing of the factors influencing cryptocurrency markets. Specifically, the contribution
lies in the following key aspects:

1. Integrated Approach: The study adopts an integrated approach by combining
historical price data, sentiment data, and technical indicators. By integrating
these diverse sources of information, the research provides a more holistic
view of cryptocurrency price movements, capturing both market dynamics
and investor sentiment.

2. Sentiment Analysis: Leveraging Vader’s algorithm for sentiment analysis, the
study quantifies the positive and negative sentiment surrounding cryptocur-
rencies. This allows for a deeper analysis of how sentiment fluctuations impact
price movements, providing valuable insights for traders and investors.

3. Data Fusion: The research merges sentiment data with historical price data,
enabling the exploration of correlations between sentiment trends and cryp-
tocurrency price movements. By integrating sentiment analysis into the anal-
ysis framework, the study enhances the predictive capabilities of traditional
technical indicators.

4. Machine Learning Models: The study applies multiple machine learning mod-
els to forecast cryptocurrency price movements. The goal of the research is to
increase forecast accuracy and detect trends that might not be apparent using
only conventional analytic techniques by utilizing advanced algorithms.

5. Backtesting: Finally, the research conducts thorough backtesting to evaluate
the performance of the proposed methodology. By backtesting the integrated
approach against historical data, the study provides empirical evidence of its
effectiveness in analyzing cryptocurrency price movements and informing trad-
ing strategies.

1.2 Structure of the Study

Our study paper is structured into several sections and subsections to enhance clarity
and facilitate a thorough explanation of the various components included in our
research. We provide a concise overview of each section within this framework.
The Literature review section encompasses a review of existing academic research
published in papers. In the methodology section, we detail our proposed model and
research approach, covering key aspects such as data collection, preparation, and
feature extraction, as well as feature selection, backtesting, implementation, and
subsequent discussion of results. In the Result and discussions section, we analyze
the outcomes of our ensemble model architecture, dividing our analysis into two
subsections: performance metrics and discussion. Finally, in the conclusion section,
we summarize our research findings and outline our strategies for future endeavors.



Chapter 2

Related Work

Cryptocurrency markets have been a focal point of academic inquiry as the decen-
tralized digital assets continue to redefine the financial landscape. This literature
review synthesizes existing research on various aspects of cryptocurrency price move-
ments, emphasizing the integration of technical indicators, sentiment analysis, and
backtesting.

The analysis of trends and factors influencing cryptocurrency prices, such as Bitcoin,
Ethereum, and Ripple, has garnered considerable attention in recent research. Var-
ious methodologies have been proposed to enhance the predictability of cryptocur-
rency price movements. In [10], The authors has developed a statistical approach
based on the Random Walk theory, specifically focusing on forecasting the real-time
price of Bitcoin. Additionally, for currencies like Bitcoin, Ethereum, and Litecoin,
the methodology incorporates Multilayer Perceptron (MLP) and Long Short-Term
Memory (LSTM) networks. Expanding on this research, another study [11] em-
ploys noise-correlated stochastic differential equations to establish a framework for
understanding cryptocurrency price fluctuations, particularly in correlation with so-
cial media activities. The authors claim to forecast data over three months (April,
June, and August) by drawing parallels between cryptocurrency price dynamics and
those of traditional stock markets. Furthermore, [13] proposes a model for predict-
ing Bitcoin prices using various neural network approaches. However, a notable
drawback highlighted in this study is the independent prediction technique, which
necessitates the model to establish correlations with known data for quantifying pre-
dictions accurately.A multi-input architecture-based deep neural model for bitcoin
price prediction is presented in [23]. As said in [11], the study recognizes the extraor-
dinary fluctuation of the cryptocurrency market and stresses the need to consider
hidden variables like the dissemination of false information and the effect of social
media on price changes. In [21], the authors utilize three Recurrent-Neural-Network
models to forecast cryptocurrency prices: Bidirectional LSTM, Long Short-Term
Memory (LSTM), and Gated Recurrent Unit (GRU). Among these models, GRU
demonstrates superior performance. However, the study overlooks factors such as
trading volume and social media activity, which can significantly impact cryptocur-
rency prices. In [45], Hidden Markov Models (HMM) are proposed to describe pre-
vious cryptocurrency market trends, with a focus on incorporating new interaction
features to enhance price prediction accuracy. Additionally, the study suggests that
the Gradient Boosting Algorithm outperforms traditional machine learning mod-
els [27] due to its function-based optimization approach. Turning our attention to



stock market forecasting, In b7, the author uses Random Forest, Bi-LSTM, and
LSTM models to link sentiment scores with stock prices. Various features including
stock prices, Gold prices, Oil prices, USD exchange rates, and Indian Government
Securities yields are considered for model training. In [7], a related study predicts
cryptocurrency prices through sentiment analysis using multiclassification using the
Keras library and a Random Forest regressor for prediction. Notably, Random For-
est exhibits superior accuracy compared to other models tested in the study, such
as Decision Tree, Support Vector Machine, and Naive Bayes. The authors suggest
potential improvements through techniques like Part-of-Speech (POS) tagging and
word weighing. In the domain of stock market analysis, research b7 utilizes histor-
ical stock prices from Yahoo Finance and incorporates sentiment scores to predict
stock prices. Various features including Open, High, Low, and Close prices, as well
as external factors like Gold prices, Oil prices, USD exchange rates, and Indian
Government Securities yields are considered. In [15], the author proposed an inno-
vative big data platform for price prediction that combines sentiment and pricing
with standard machine learning models. Tweets from Twitter were captured in real
time. The disadvantage was that deep learning models, such as RNN, were not
evaluated for prediction. In [16], the LSTM-GRU hybrid model was used to forecast
the price of Litecoin and Monero using different window widths. The hybrid model
helps to mitigate the loss. The disadvantages were dependency between bitcoin and
sentiment as a feature not considered. In [17], ARIMAX and LSTM-based RNNs
were used to forecast bitcoin prices. The disadvantages were that hybrid models
were not investigated, and feature fusion and sentiment were not examined. In [25],
a hybrid LSTM and GRU-based deep learning model beat cutting-edge approaches
in predicting the price of Litecoin and Zcash using the effect of big currencies like
as Bitcoin. The disadvantages were perspectives of major crypto currencies is not
regarded to predict the price of an impacted cryptocurrency. In [24], an ensem-
ble model comprising LSTM, GRU, and TSN (Temporal Convolutional Networks)
was employed to forecast the price of Ether using historical price data. Disadvan-
tages included cryptocurrency interdependence and features not being included as
a factor for predicting ether price. In [22], The author presented an LSTM and
GRU-based method for predicting the prices of Bitcoin, Ethereum, and Litecoin.
The price forecast was based on two types of data samples: Bitcoin, Ethereum,
and Litecoin. One of the most essential components of market analysis is sentiment
analysis, which is not included, as well as interdependence across currencies. In a
recent study by Giilmez (2023) [32], a novel approach to stock price prediction is
presented, leveraging a deep LSTM network optimized with the artificial rabbits op-
timization algorithm, highlighting its potential for improving forecasting precision.
In [2], the authors delve into the realm of cryptocurrency trading by employing
artificial neural network (ANN) methods to forecast the exchange rate between Bit-
coin and the American dollar. The significance of this work lies in its exploration
of predictive modeling techniques applied to a volatile and rapidly evolving asset
class like Bitcoin. By leveraging ANN methods, the study aims to provide insights
into the potential for forecasting cryptocurrency exchange rates, a task fraught with
challenges due to the unique characteristics of digital currencies. The utilization of
ANN methods in predicting Bitcoin exchange rates underscores the interdisciplinary
nature of the research, bridging computer science and finance domains. This inter-
disciplinary approach is increasingly relevant as digital currencies gain prominence



in global financial markets, necessitating innovative methodologies for analysis and
prediction. The paper contributes to the growing body of literature on cryptocur-
rency trading and forecasting techniques, shedding light on the applicability of ANN
methods in this context. As such, it serves as a valuable reference for researchers
and practitioners seeking to understand the dynamics of cryptocurrency markets
and develop effective trading strategies. In the broader context of algorithmic trad-
ing and financial market analysis, studies like this one highlight the importance of
leveraging advanced computational methods to navigate the complexities of mod-
ern financial systems. By incorporating insights from the paper into the literature
review, researchers can gain a comprehensive understanding of the evolving land-
scape of cryptocurrency trading and predictive modeling techniques. In [4], the
authors’ exploration of various machine learning models for Bitcoin price predic-
tion underscores the importance of employing advanced computational techniques
in understanding and forecasting the behavior of digital assets. By comparing the
performance of different models, the paper provides insights into the efficacy of
machine learning algorithms in capturing the complex dynamics of cryptocurrency
markets. The significance of this work lies in its practical implications for traders,
investors, and researchers seeking to navigate and capitalize on the fluctuations of
Bitcoin prices. By identifying the strengths and weaknesses of various machine learn-
ing approaches, the study offers valuable guidance for selecting suitable predictive
models in the context of cryptocurrency trading. In [5], the authors adopt a holistic
perspective in developing their predictive model, recognizing the interconnectedness
of various factors influencing cryptocurrency prices. By considering a wide range
of variables, including market sentiment, technical indicators, and macroeconomic
factors, the study aims to capture the complex dynamics driving cryptocurrency
price movements. This work is significant because it focuses on creating a strong
prediction model to help shed light on how the global Bitcoin market behaves. In-
tegrating multiple data sources and employing advanced analytical techniques, the
paper offers a novel approach to forecasting cryptocurrency prices, addressing the
inherent challenges posed by the volatile and decentralized nature of digital assets.
In [6], The authors’ hybrid model combines the strengths of both HMM and LSTM
networks, leveraging the temporal dependencies captured by LSTM networks and
the probabilistic framework offered by HMM to improve prediction performance. By
integrating these two techniques, the study addresses the challenges associated with
modeling the complex and non-linear nature of cryptocurrency price movements.
The significance of this work lies in its adoption of a hybrid approach, which reflects
the growing trend towards combining multiple methodologies to achieve more accu-
rate predictions in financial markets. The study provides a fresh approach to the
cryptocurrency price prediction problem by taking advantage of the complimentary
properties of HMM and LSTM networks, furthering the development of predictive
modeling methods in this field. The creators of [9] employ sentiment analysis, a
method for assessing the sentiment or emotion conveyed in textual data, to extract
valuable insights from news articles, social media, and other data sources about
cryptocurrency markets. The study aims to include market sentiment as a pre-
diction component in addition to conventional financial indicators by assessing the
mood surrounding cryptocurrencies. This paper is vital because it acknowledges
the influence of market condition on the dynamics of bitcoin prices. By integrat-
ing sentiment analysis into machine learning models, the authors provide a holistic



framework for forecasting price movements, capturing the influence of investor senti-
ment on market behavior. In [3], the authors apply the Adaptive Market Hypothesis,
which posits that financial markets are not inherently efficient but rather adapt and
evolve over time in response to new information and participant behavior. Through
an analysis of Bitcoin price data, Khuntia and Pattanayak examine the degree of
predictability in Bitcoin prices and how it evolves over different market conditions.
To reflect cryptocurrency markets’ intrinsic volatility and unpredictability, the au-
thors [12] suggest using stochastic neural networks, which combine neural network
topologies with stochastic processes. By incorporating stochasticity into the model-
ing process, the study aims to develop more robust and accurate predictive models
for cryptocurrency price movements. In [8], Sharma delves into the intricate con-
nection between the energy-intensive process of Bitcoin mining and its potential
impact on the cryptocurrency’s price. By analyzing the cost structure of Bitcoin
mining operations and considering factors such as electricity expenses and mining
difficulty adjustments, the article sheds light on how changes in mining costs may
influence Bitcoin’s market dynamics. In [18], Tran and Leirvik’s study examines
the efficiency of cryptocurrency markets by analyzing the speed and accuracy of
price adjustments to new information. By utilizing a variety of criteria and ap-
proaches, the authors evaluate market efficiency and provide insight into whether or
not exchange possibilities are present and the extent to which bitcoin prices accu-
rately represent all available information. The authors [1] examine how sentiments
about cryptocurrencies and the ensuing price fluctuations connect to news stories
and social media posts. By employing sentiment analysis techniques, the study
aims to uncover patterns and correlations that may inform predictive models for
cryptocurrency prices. The significance of this work lies in its innovative approach
to incorporating non-traditional data sources into financial analysis and prediction.
Lamon et al. recognize the growing influence of news and social media on investor
sentiment and market dynamics, highlighting the potential for sentiment analysis to
offer valuable insights into cryptocurrency price movements.

2.1 A Systematic Review

In order to determine trending algorithms and their influence on pricing variations,
we examined recent studies on Bitcoin price fluctuations. Our analysis uncovered
a range of approaches, including machine learning strategies like Random Forest,
SVM, and LSTM, which are well-liked right now for their high prediction accuracy.
Furthermore, deep learning techniques and hybrid models like Deep Q-Network and
BiLSTM have demonstrated great potential in enhancing prediction dependability.
The Table 2.1 summarizes the purposes of studies on predicting Bitcoin price move-
ments. The studies aim to Using the right techniques to avoid overfitting the data,
Using social media data and an end-to- end approach, Comparing the performance
of different models. The Table 2.2 description focuses on datasets used to predict
Bitcoin prices, integrating historical data, technical indicators, and social media sen-
timent. Sources include Yahoo Finance, Kaggle, and various exchanges like GDAX
and Binance, spanning from January 2012 to August 2023. The datasets range from
daily to minute-by-minute intervals, capturing extensive trading data and social
trends. These diverse data sources, featuring millions of records, are utilized to cre-
ate robust predictive models, leveraging time series data to analyze market trends



Table 2.1:

Key Purposes of The Reviewed Studies

Key Purpose Analysis Brief Description Reference

Type
Improve Bitcoin Fore- | Classification The right regularisation techniques and model evaluation methods to avoid [41]
casting overfitting
Improve Bitcoin Fore- | Regression Using hybrid technique to achieve best performance [42]
casting
Bitcoin Price Predic- | Regression Using social media and an end-to-end approach [34]
tion
Compare Bitcoin Pre- | Regression By comparing the performance of different models [44]
dictors
Compare Bitcoin Algo- | Classification Hybrid model that combines traditional time series analysis with advanced [37]
rithms techniques
Predict Bitcoin Fluctu- | Classification Acquiring an accurate forecast is crucial, and reaching this accuracy [39]
ations
Compare Bitcoin Fore- | Classification Make more dependable and precise forecasts about the direction of the price [33]
casters of bitcoin using a Deep Q-Network (DQN) model.
Enhance  Cryptocur- | Regression A pioneering methodology for time series prediction of Bitcoin [38]
rency Prediction
Bitcoin Price Predic- | Regression Developing an efficient framework for predicting Bitcoin prices using various [36]
tion machine learning algorithms
Predict Cryptocur- | Classification Machine learning approach using cryptocurrency market data to predict price [35]
rency Movements changes, emphasizing the importance of feature selection, model updating,

and efficient training methods

Compare Forecasting | Classification The ability of various machine learning models to forecast bitcoin values and [31]
Models the possible uses of these models in trading methods
Enhance  Cryptocur- | Regression Using the PELT algorithm to identify notable shifts in the price of cryptocur- [30]
rency Prediction rencies
Predict Bitcoin Fluctu- | Classification Investigating Bitcoin price fluctuation prediction problem [14]
ations

Table 2.2: A Synopsis of the Information Used in the Contextual Literature

Data Source Data Volume Literature
1. Historical Prices from Yahoo Finance 2. | 1. Complete Dataset: Data from 17/09/2014 [41]
Technical Indicators 3. Daily tweets about | to 10/06/2021 2. Reduced Dataset: Data from
Bitcoin & Google search trend data 10/06/2020 to 10/06/2021 3. Validation Set: Data
from 11/06/2021 to 09/08/2021
Bitcoin Historical Data from Kaggle competi- | January 2012 to September 2020 at 1 minute interval [42]
tions
1. Historical Prices from Yahoo Finance 2. | 1. Not Specified 2. Accounts that have more than [34]
Sentiments expressed on Twitter 100k followers 25,64,350 rows, divided among three
.csv files with approximately 8,54,783 rows each
Bitcoin Historical Dataset from Kaggle From November 2014 to December 2021, or around [44]
2700 samples
Bitcoin Historical Dataset from Kaggle January 2012 to March 2021 [37]
1. Conventional statistics on pricing and vol- | Collected on an hourly basis [39]
ume 2. On-chain analytics that show the net-
work activity that underpins Bitcoin 3. Social
media metrics from Google Trends and Twit-
ter
Sentiment scores from social media platforms | Collected on an hourly basis [33]
like Twitter and Google Trends
Historical price data Hourly and daily price data [38]
Collected from multiple sources including trad- | 1 minute interval trading data over six years. Dataset [36]
ing platforms like Bitstamp 1: Bitcoin price data from 2014 to 2021. Dataset 2:
Bitcoin price data from 2014 to 2022. Dataset 3, 4, and
5: Specific details about these datasets are not explic-
itly mentioned in the document sections reviewed, but
they also pertain to Bitcoin’s historical price data and
potentially include similar features
GDAX exchange WebSocket API Order flow data: 61,909,286 records, Ticker data: [35]
128,593 data points, Level-2 data: 40,951,846 records
From Investing.com The document does not specify the exact size of the [31]
dataset, but it mentions daily time-series data cover-
ing several cryptocurrencies over a substantial period,
including the post-pandemic period (from January 1,
2020, to August 31, 2023)
From a reputable cryptocurrency exchange Bitcoin price statistics every day between January [30]
2020 and April 2023
Huobi, Coinbase, Binance, Bitstamp, and | August 2017 to May 2020, with an interval of 1 minute [14]
Bitfinex

and enhance the accuracy of Bitcoin price forecasting. The most recent develop-
ments (Table 2.3) in methodology used to forecast changes in Bitcoin price movement




Table 2.3: A Summary of the Algorithm Used in the Literature

Algorithm Evaluation Results Reference
LTSM, SVM, ANN, Random Forest Accuracy (87.10%) [41]
ARIMA, LSTM, FB-prophet, XG Boost, LSTM-GRU, LSTM- | RMSE (83.408) & MAE (9.140) [42]
1D_CNN
Logistic Regression, Ridge Regression, Elastic Net Decision, | MAPE (8.49%) [34]
Tree Regression, Random Forest Regression, AdaBoost Re-
gression, Gradient Boost Regression, XGBoost Regression
Stochastic Gradient Descent (SGD) Regression, Ridge Regres- | Two algorithms LSTM and RNN [44]
sion, Elastic Net, Decision Tree Regression, Random Forest | should be used, (LR) had the highest
Regression, AdaBoost Regression, Gradient Boosting Regres- | mean absolute error (MAE) of 2476.9
sion, XGBoost Regression
Linear Regression, Logistic Regression, K-Nearest Neighbors | Accuracy (98%) [37]
(KNN), Seasonal Autoregressive Integrated Moving Average
(SARIMA)
Deep Q-Network (DQN) F1 score (95%) 39
Deep Q-Network (DQN) algorithm with novel reward function | F1 score (95%) 33
Performer neural network and BiLSTM Lower MSE & higher R-Square values 38
Linear Regression, Random Forest, AdaBoost, Decision Tree, | Linear Regression was optimal for the 36
K-Nearest Neighbors (KNN), Gradient Boosting, Constant | first dataset, Random Forest for the
Predictor, Neural Network, and Support Vector Machine | second and fourth datasets, AdaBoost
(SVM) for the third dataset, and Linear Re-
gression again for the fifth dataset
LSTM F1 score (78%) [35]
AdaBoost, LightGBM, Simple RNN, GRU, LSTM, ARIMA | 72.49% directional accuracy [31]
combined with MLP and LSTM
Long Short-Term Memory (LSTM) network combined with | PELT algorithm outperformed the [30]
the Pruned Exact Linear Time (PELT) algorithm baseline LSTM model in terms of all
evaluation metrics
Adaptive and Locally-Excited Network Model Accuracy: 61.15% , Precision: 61.10%, [14]
Recall: 60.93%, F1 score: 61.01%

are presented in this report. Among the methods are SARIMA, K-Nearest Neigh-
bors, Logistic Regression, Linear Regression, and sophisticated neural networks like
RNN and LSTM. Combinations like LSTM with PELT and cutting-edge algorithms
like Deep Q-Networks are examples of notable developments. Evaluation criteria
including as accuracy, RMSE, MAE, and F1 scores demonstrate the effectiveness of
these methods; some models reach up to 98% accuracy and achieve state-of-the-art
performance. This review summarizes the many innovative technology approaches
used in current studies to improve model resilience and prediction accuracy.

We verify the efficacy of our techniques by means of thorough backtesting, guaran-
teeing their resilience and dependability in actual situations. Our goal is to provide
investors with actionable knowledge so they can make wise decisions and confidently
adjust to changing market conditions. In order to help investors reach their goals
in the constantly changing world of cryptocurrency trading, our strategy strategi-
cally aligns investment decisions with market sentiment and technical research. This
approach aims to generate portfolio development and financial success.

Our study, which is especially designed for the volatile cryptocurrency market, com-
bines sentiment analysis, backtesting, and technical indicators to solve a typical
machine learning classification issue. Our goal is to maximize investor profits and
minimize risk by utilizing these technologies to optimize investing strategies. Our
method enables investors to buy, hold, or sell assets with confidence by continuously
monitoring important variables and making well-informed decisions. This helps in-
vestors efficiently manage market swings. Our technique offers useful insights to
improve portfolio performance and take advantage of profitable opportunities while
limiting possible losses by methodically examining market patterns and sentiment.



Chapter 3

Methodology

The model architecture illustrated in Figure 3.1 offers a comprehensive and struc-
tured depiction of our research methodology, crucial for understanding the intricate
steps involved in our study. Beginning with data collection, both historical and
sentiment data are gathered to form the foundation of our analysis. Subsequently,
the data undergoes meticulous preparation and feature extraction, incorporating
technical indicators and rigorous data cleaning processes to ensure the integrity of
the dataset. Feature selection techniques, including Maximum Relevance Minimum
Redundancy, are then applied to refine the feature set, optimizing the model’s pre-
dictive capabilities.

Data Collection

Technical
Indicators

Data Prepara-
tion & Feature
Extraction

Data Cleaning

Maximum

Feature Relevance

Selection Minimum
Redundancy

{ Without

Sentiment

{With Sentiment

Traditional
Model Machine

Specification Learning
Algorithm

Figure 3.1: Top Level Overview of the Proposed Architecture



The model is further specified, distinguishing between scenarios with and with-
out sentiment analysis integration, thereby accommodating different analytical ap-
proaches. Traditional machine learning algorithms are then deployed for model
training and prediction, leveraging the insights gained from the refined dataset. Fi-
nally, the model’s efficacy is evaluated through rigorous backtesting procedures using
the Zipline library. This methodical approach ensures a robust analysis of financial
data, while the integration of sentiment analysis adds an additional layer of insight
to enhance predictive accuracy and decision-making capabilities.

3.1 Data Collection

Bitcoin (BTC) stands as the pioneering cryptocurrency, commanding significant at-
tention and market dominance. In this study, BTC serves as the primary focus due
to its widespread adoption, liquidity, and historical data availability. The method-
ology encompasses data collection and analysis from multiple sources to provide a
comprehensive understanding of BTC price movements.

3.1.1 Historical Data

Historical (OHLCV) data for BTC are collected from the CoinMarketCap[19] Cryp-
tocurrency Aggregate (CCCAGG) APIL.

Table 3.1: Historical Data

Features | Description
Date The specific date associated with the historical data point. This

could be in various formats such as YYYY-MM-DD or as a times-
tamp.
Open The price of the financial instrument (e.g., stock, cryptocurrency)
at the beginning of the time interval.

High The highest price reached during the time interval.

Low The lowest price reached during the time interval.

Close The price of the financial instrument at the end of the time interval.
Volume | The total amount of the financial instrument traded during the
time interval.

The data spans from January 1, 2021, to October 9, 2023, capturing various market
conditions and trends over the selected timeframe.

3.1.2 Sentiment Data

Sentiment data from different authors and sources are collected to gauge market
sentiment regarding BTC. The sentiment data cover various categories, including
Markets, Finance, Technology, and others, to capture diverse perspectives and in-
fluences on cryptocurrency markets. Sentiment data were primarily collected from
CoinDesk, a prominent cryptocurrency news platform, to ensure a comprehensive
representation of sentiment across different categories. The sentiment data range
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from January 1, 2021, to October 9, 2023, aligning with the latest available senti-
ment analysis resources.

Table 3.2: CoinDesk Data

Features Description
Date The specific date associated with the CoinDesk data point. This
could be in various formats such as YYYY-MM-DD or as a times-
tamp.

Category CoinDesk’s news platform encompasses a variety of content cat-
egories, including podcasts, market updates, and technology in-
sights.

News Content | CoinDesk provides diverse news content covering the latest devel-
opments in the cryptocurrency and blockchain industry.

Authors It provides a diverse roster of authors comprising seasoned journal-
ists, industry insiders, and subject matter experts.

3.2 Data Preparation and Feature Extraction

Several technical indicators are used in this study to fully examine the price move-
ments of cryptocurrencies. Technical indicators offer insights into market trends,
momentum, volatility, and possible reversal points using mathematical computa-
tions based on past price, volume, or sentiment data. There are several technical
indicators that each show distinct facets of price action and market momentum. In-
dictor selection is influenced by the trader’s approach, the state of the market, and
their level of risk tolerance. Volume-based indicators (accumulation/distribution
Line), Oscillators (RSI, Stochastic Oscillator), Moving Averages (SMA, EMA), and
Volatility indicators (Bollinger Bands) are examples of frequently used indicators.
Trading techniques include technical indicators to offer objective standards for en-
tering and exiting deals. Traders evaluate the performance of certain indicators and
adjust settings by backtesting their techniques using past data. Traders may adjust
to shifting market circumstances and improve their tactics over time by consistently
checking their indicators. Even though technical indicators provide insightful infor-
mation, they are not perfect and might provide erroneous signals, particularly in
erratic or turbulent markets. Risk management strategies are crucial to preserve
money and reduce losses, including sizing positions according to volatility and es-
tablishing stop-loss orders. Traders should use technical indicators as a component
of an all-encompassing risk management strategy that is customized to meet their
unique risk tolerance and trading goals.

3.2.1 Technical Indicators

Technical analysis relies heavily on indicators[29], which provide traders with impor-
tant information about price movements, trends, momentum, and volatility in the
financial markets. These instruments are available in several formats, such as indi-
cators based on signals and indicators based on numerical values. Relative Strength
Index (RSI) and Moving Average Convergence Divergence (MACD) Histogram are
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two examples of signal-based indicators that provide traders with precise buy and
sell signals based on predetermined criteria, assisting them in identifying possible
entry and exit positions. Conversely, traders may more accurately assess the inten-
sity and direction of market moves thanks to numerical value-based indicators like
Simple Moving Averages (SMA) and Exponential Moving Averages (EMA), which
provide quantitative evaluations of price trends and momentum. For traders at any
skill level, indicators are vital tools that support risk management, decision-making,
and the creation of trading plans that are specific to each trader’s preferences and the
state of the market.For traders looking to efficiently pass through financial markets
and take advantage of trading opportunities, indicators are essential tools, whether
they are employed alone or in conjunction with other analytical approaches. Listed
below is a selection of indicators.

1. SMA: The average price of an asset over a certain time period is determined
by the SMA, usually using closing prices. By removing short-term swings, it
helps to normalize pricing data and spot patterns. Higher SMA values imply
an uptrend, while lower values show a downturn, as the SMA value indicates
the average price for a certain period of time. SMA crossovers are a common
tool used by traders to indicate bullish momentum when shorter-term SMAs
cross above longer-term SMAs and vice versa.

2. EMA: The EMA, like the SMA, determines the average price of an asset
over a given time frame. Nonetheless, it is more sensitive to the state of
the market since it places greater weight on recent prices. Because of this,
EMAs respond to price fluctuations faster than SMAs. EMA crossovers are
used by traders, much like SMAs, to identify possible buy or sell opportunities.
Bullish momentum is indicated when shorter-term EMAs cross above longer-
term EMAS, and vice versa.

3. Chaikin Oscillator: The difference in the values of the Accumulation/Distribution
Line over the short and long terms is measured by this momentum indicator.
It shows how strong the market’s purchasing and selling pressure is. Increased
selling pressure is indicated by negative numbers, and increased purchasing
pressure is suggested by positive ones. Depending on the trader’s approach and
the state of the market, crossings above zero may indicate possible purchase
chances, while crosses below zero may indicate potential sell opportunities.

4. MACD: [29] The MACD The histogram shows how the signal line and the
MACD line differ from one another. It offers information about a trend’s
momentum as well as possible trend reversals. Whereas negative histogram
values imply bearish momentum, positive values indicate bullish momentum.
In order to identify possible buy or sell opportunities, traders frequently search
for histogram crosses above or below the zero line.

5. Williams Percent Range (%R): A momentum oscillator that gauges the current
close in relation to the high-low range over a certain time period is the Williams
Percent Range (%R). It fluctuates between -100 and 0, with readings below -80
indicating an oversold situation and values over -20 indicating an overbought
one. To determine if an asset is potentially overbought or oversold, traders use
%R readings. possible purchase opportunities may be indicated by crossings
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above -50, while possible sell opportunities may be indicated by crosses below
-50.

(Hiy = C)

%R = ~14 ")
T (Hu— L)

x —100 (3.1)

Where:

%R : William Percent Range

Hy4 : Highest price in the last 14 periods

L4 : Lowest price in the last 14 periods
C' : Closing price

. CCI: A momentum-based oscillator that gauges the relationship between an as-
set’s price, moving average, and standard deviation is the Commodity Channel
Index (CCI) [29]. It shows the strength of the trend and possible overbought
or oversold circumstances. Bullish momentum is indicated by CCI values over
0, whilst bearish momentum is suggested by values below 0. When searching
for possible buy or sell opportunities, traders frequently watch for crossovers
above or below the zero line.

B TP — SMA
"~ 0.015 x Mean Deviation

CClI (3.2)

where:

TP = Typical Price
_ High + Low + Close

3
SMA = Simple Moving Average of TP

>or, |TP; — SMA,|
n

Mean Deviation =

. Stochastic Oscillator: As a momentum indicator, the stochastic oscillator con-
trasts the closing price of the market today with the range of prices over a
certain time frame. It is composed of two lines: %K and %D. %K shows the
price position as of right now in relation to the price range, and %D is the
moving average of %K. Stochastic oscillator signals, such %K crossings above
or below %D, are used by traders to determine whether to buy or sell.

. Keltner Channels: Three lines make up Keltner Channels, an upper and lower
band based on Average True Range (ATR) and an Exponential Moving Aver-
age (EMA) in the center. Based on volatility, these channels seek to discover
possible buy and sell signals. Breakouts below the lower band may indicate
possible oversold conditions and point to a buy opportunity, while breakouts
above the upper band might indicate possible overbought conditions and point
to a sell opportunity.
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9.

10.

11.

12.

Triple Exponential Average (TRIX): The Triple Exponential Average (TRIX)
is a momentum oscillator that measures the percent rate of change of a triple
exponentially smoothed moving average. It aims to filter out short-term fluc-
tuations and identify long-term trends. TRIX values crossing above zero may
signal potential buy opportunities, while crosses below zero may suggest po-
tential sell opportunities, indicating shifts in momentum.

TRIX = EMA,, (EMA,,(EMA, (Close))) (3.3)
where:

Close = Closing Price

EMA,, = Exponential Moving Average
2
n+1

with smoothing factor a =

Accumulation/Distribution: The Accumulation/Distribution [29] indicator mea-
sures the flow of money into or out of a security by analyzing price and volume
data. It accumulates volume based on whether the close is higher or lower
than the previous close and adjusts for the trading range. Increasing A/D
values suggest buying pressure, while decreasing values suggest selling pres-
sure. Crosses above or below its moving average can signal potential buy or
sell opportunities.

Donchian Channels: Donchian Channels consist of upper and lower bands
that represent the highest high and lowest low over a specified period. These
channels aim to capture the price’s trading range and identify potential buy
and sell signals. Breakouts above the upper band may signal potential buy
opportunities, while breakouts below the lower band may signal potential sell
opportunities, indicating shifts in market momentum.

RSI: RSIis a momentum oscillator that measures the speed and change of price
movements. It oscillates between 0 and 100 and indicates potential overbought
or oversold conditions. RSI values above 70 indicate overbought conditions,
while values below 30 suggest oversold conditions. Crosses above 70 or below
30 may signal potential sell or buy opportunities, respectively, depending on
market conditions.

100

[ =100 —
RS 00 1+ RS

(3.4)

where:

RS — Average Gain
Average Loss
Average Gain = Average of gains over a specified period

Average Loss = Average of losses over a specified period
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13.

14.

15.

Bollinger Bands: Bollinger Bands are made up of three lines: upper and lower
bands determined by standard deviations of price movements, and a center
band that represents a SMA. The purpose of these bands is to record price
fluctuations and spot possible buy and sell signals. Breakouts below the lower
band may indicate possible oversold conditions and point to a buy opportunity,
while breakouts above the upper band might indicate possible overbought
conditions and point to a sell opportunity.

Average True Range (ATR): Calculating the average range between high and
low prices over a certain period of time allows the Average True Range (ATR)
to be used to quantify market volatility. It offers information about possible
price reversals as well as the extent of price movement. Greater volatility
and possible buy or sell opportunities are indicated by higher ATR readings.
ATR level breakouts or breaks below them might indicate future shifts in the
market’s momentum.

L
ATR = - ; max (

high, — low,,

|lhigh, — close;_1],

[low; — close;_1]) (3.5)

Where:

ATR = Average True Range
high, = Highest price of the ith period
low; = Lowest price of the ith period
close; 1 = Closing price of the previous period

n = Number of periods

FSO: In order to find possible buy and sell signals, the FSO computes %K
and %D based on previous price movements. A moving average of %K is
represented by %D, and the current price position in relation to the price
range is represented by %K. possible purchase opportunities may be indicated
by a cross of %K above %D, while possible sell opportunities may be indicated
by a cross below %D, which would indicate a change in momentum.

3.2.2 Signal-Based Indicators

The Stochastic Oscillator, Williams Percent R, and Moving Average Convergence
Divergence (MACD) Histogram are examples of signal-based indicators that shed
light on overbought and oversold situations as well as possible trend reversals.
Traders utilize the indications produced by these indicators to guide their selec-
tions. For instance, a crossing over 80 on the Stochastic Oscillator suggests over-
bought conditions and may be a buy signal; a crossover below 20 suggests oversold
conditions and may be a sell signal. Similar to this, crossings between the MACD
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Table 3.3: Comparison of Indicators

Technical Parameters

Indicators Signal Numercial Value
SMA period=20 period=20
EMA period=20 period=20

Chaikin Oscillators

short period=3
long period=10

short period=3
long period=10

MACD short period=12 short period=12
long period=26 long period=26
signal period=9 signal period=9

%R period=30 period=14
CCI period=14 period=14

Stochastic Oscillator

%k period=14
%d period=3

%k period=14
%d period=3

Keltner Channels

ema period=20
atr period=10
atr multiplier=2

ema period=20
atr period=20
atr multiplier=2

%d period=3

TRIX ema period=15 ema period=15
(A/D) period=50 n/a
Donchian Channels | lookback period=60 | lookback period=20
RSI period=14 period=14
Bollinger Bands period=20 period=20
std multiplier=2 std multiplier=2
ATR period=20 period=14
FSO %k period=14 %k period=14

%d period=3

line and the signal line provide the basis for the buy and sell signals produced by
the MACD Histogram. These indicators are useful for determining the sentiment of

the market and spotting short-term trading opportunities.

3.2.3 Numerical Value-Based Indicators

The SMA, EMA, and RSI are examples of numerical value-based indicators that
offer numerical values that indicate particular characteristics of the price movement
or momentum of a securities. Quantitative insights into trends, momentum, and
volatility are provided by these indicators. An upward trend, for example, is sug-
gested by a rising SMA or EMA, whereas a downward trend is shown by a dropping
SMA or EMA. The RSI, which has a range of 0 to 100, measures how strongly prices
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move and indicates whether an asset is overbought or oversold. circumstances that
are overbought are indicated by a number above 70, and oversold circumstances
are indicated by a rating below 30. These numerical figures are used by traders
to evaluate the intensity and direction of trends, pinpoint possible entry and exit
locations, and efficiently manage risk.

3.2.4 Data Cleaning

After computing technical indicators from historical data, the subsequent step in-
volves the identification and removal of null values and outliers. Null values, often
stemming from missing or incomplete data, can distort analysis results and com-
promise the integrity of the study. Likewise, outliers, which are data points sig-
nificantly different from the rest of the dataset, can skew statistical measures and
mislead analysis outcomes. By systematically filtering out null values and outliers,
researchers ensure the dataset’s reliability and enhance the accuracy of subsequent
analyses. This preprocessing step is crucial for maintaining data quality and in-
tegrity, enabling researchers to derive meaningful insights into cryptocurrency price
movements with greater confidence.

3.3 Feature Selection

In this study, OHLCV data, denoting Open, High, Low, Close, and Volume, is
employed as the primary dataset for analysis. OHLCV data encapsulates essen-
tial information about financial instruments over a given time frame, including the
opening and closing prices, highest and lowest prices reached, and the trading vol-
ume within that period. The Close price is selected as the primary feature for its
significance in financial analysis, representing the final price at which a security was
traded during the period.

Fifteen popular indicators are chosen for analysis, comprising various technical anal-
ysis tools widely used in financial markets. These indicators serve dual purposes:
signal generation and numerical value computation. Signal generation refers to the
identification of potential trading opportunities based on specific conditions derived
from the indicators, while numerical value computation involves extracting quan-
titative information from these indicators to supplement the analysis. The chosen
indicators include but are not limited to Moving Averages, RSI, Stochastic Oscil-
lator, and MACD . Each indicator contributes one feature for signal generation,
resulting in a total of 15 features. However, certain indicators, such as Keltner
Channels, Bollinger Bands, and Donchian Channels, introduce variations that lead
to an expanded feature set for numerical value computation. For instance, Keltner
Channels consist of an upper and lower channel, while Bollinger Bands include upper
and lower bands, and Donchian Channels also encompass upper and lower channels.
Hence, the total number of features for numerical value computation amounts to
18. Additionally, the feature set includes the 3-day percentage change of the Close
price, which provides insight into short-term price dynamics and market volatility.
The target variable is defined based on the percentage change of the Close price
over the specified period. If the percentage change exceeds 2.5%, a buy signal is
generated (labeled as 1), indicating a potential bullish trend. Conversely, if the per-
centage change falls below -2.5%), a sell signal is generated (labeled as -1), suggesting
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a potential bearish trend. If the percentage change falls within the range of -2.5%
to 2.5%, a hold signal is assigned (labeled as 0), indicating a neutral or uncertain
market condition.

Upon completing the feature calculations, we amalgamated various elements to form
a comprehensive dataset. This amalgamation included incorporating the closing
price and percentage data alongside 15 distinct features derived from signal gener-
ation processes, complemented by an additional 18 features representing numerical
values. Consequently, the dataset was enriched with a total of 35 features, excluding
the target variables. This meticulous consolidation process ensured that the dataset
encapsulated diverse aspects relevant to our analysis, laying a solid foundation for
subsequent investigations and modeling endeavors.

3.3.1 MRMR Classifier

The Highest Significance A feature selection technique used in machine learning for
classification applications is the Minimum Redundancy (MRMR) classifier. In or-
der to minimize redundancy among the selected characteristics, it seeks to identify
a subset of features from a broader collection of features that are most pertinent
to the target variable. Features with the highest relevance to the target variable
are chosen by MRMR. Stated differently, it gives priority to characteristics that are
most useful in differentiating across groups or classifications. MRMR not only max-
imizes relevance but also reduces duplication among the chosen characteristics.This
implies that instead of choosing several characteristics that communicate the same
information, it aims to incorporate elements that offer distinct and complimentary
information. With a vast number of features, high-dimensional data sets may be
handled well by MRMR. It lessens the chance of overfitting and increases classi-
fication process efficiency by choosing a small subset of pertinent characteristics.
Support vector machines (SVM), neural networks, decision trees, and other classifi-
cation methods may all be used with the versatile feature selection technique known
as MRMR. It is adaptable to many machine learning models and is not dependent
on any particular classifier.

The MRMR classifier operates in two main steps: Feature Ranking - In the first
step, MRMR computes a relevance score for each feature based on its correlation or
mutual information with the target variable. Features are ranked in descending order
of relevance. In the second step, MRMR selects a subset of features that maximize
relevance while minimizing redundancy. This is achieved through iterative selection
of features that offer the highest marginal relevance (i.e., the most informative) while
considering the redundancy with previously selected features.

To select features using MRMR principles, we typically compute relevance (R) and
redundancy (D) scores for each feature and then select features that maximize rele-
vance while minimizing redundancy. One way to do this is through the use of mutual
information.

The relevance score for feature ¢ with respect to the target variable Y can be com-
puted as:

R, = I(X;;Y) (3.6)

Where (X;;Y) represents the mutual information between feature X; and the target
variable Y.
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The redundancy score for feature ¢ with respect to the previously selected features
S can be computed as:

1
D; == Y I(X; X;) (3.7)
5] 4
JES

Where |S| represents the number of previously selected features, and I(X;; X;) rep-
resents the mutual information between feature X; and feature X;.
Finally, we select features based on a criterion that balances relevance and redun-
dancy, such as:

MRMR score; = R; — A - D; (3.8)

Where ) is a parameter that controls the trade-off between relevance and redun-
dancy. Features with higher MRMR scores are preferred for selection.

Figure 3.2: Treemap of Top 5 Technical Indicators by MRMR Feature Selection
Method

Following the initial feature selection process, a total of 35 features were identified,
excluding the target feature. However, through meticulous data cleaning procedures
involving the removal of anomalies and null values, the dataset was refined to 1901
entries. Employing MRMR (Minimum Redundancy Maximum Relevance) classi-
fier, the feature set was further reduced to 5, excluding the target variable. Within
this refined set, 3 features were attributed to signal generation, while 2 features
represented numerical values. The remaining features encompassed data related to
closing prices and percentage changes. This systematic approach not only facilitated
the reduction of irrelevant features but also ensured the retention of those most per-
tinent to the analysis, thereby enhancing the robustness and efficiency of subsequent
modeling and predictive tasks.
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3.4 Sentiment Analysis

CoinDesk stands as a premier platform in the cryptocurrency space, renowned for
its authoritative coverage, insightful analysis, and up-to-date news regarding Bit-
coin and other cryptocurrencies. It is a leading source of blockchain and crypto
news, meticulously curated sentiment data from January 1st, 2021, to April 4th,
2023. This comprehensive dataset provides a daily reflection of authors’ statements
regarding Bitcoin across various categories, including podcasts, market updates,
and technological insights. Authored by journalists, industry insiders, and subject
matter experts, these statements offer invaluable insights into Bitcoin’s evolving nar-
rative. Across this timeframe, we diligently collected data reflecting the sentiments
expressed by different authors within the specified categories. Each day brought
forth a diverse array of opinions, analyses, and forecasts, reflecting the dynamic
nature of the Bitcoin ecosystem. From bullish market projections to critical techno-
logical developments, the daily statements encapsulate the multifaceted discussions
surrounding Bitcoin.

3.4.1 Sentiment Analysis Using VADER

A key component of this research is sentiment analysis[43], which uses the VADER
tool to classify the sentiment of news stories taken from CoinDesk. For our research,
we used Vader’s Sentiment analysis, a robust tool for gauging sentiment in textual
data. This analysis allowed us for the calculation of a compound score, indicating
the overall sentiment conveyed by each statement. Furthermore, each statement was
categorized as neutral, positive, or negative based on its compound score. Examin-
ing the sentiment data over the specified timeframe reveals intriguing patterns and
trends. Bullish sentiments may surge following significant technological advance-
ments or positive regulatory developments. Conversely, negative sentiments may
emerge in response to market volatility or regulatory uncertainty. Furthermore, the
diversity of authors contributing to this sentiment data adds richness to the analysis.
Journalists provide objective reporting, industry insiders offer insider perspectives,
while subject matter experts provide deep insights into the technological intricacies
of Bitcoin.

Bullish sentiments may surge following significant technological advancements or
positive regulatory developments. Conversely, negative sentiments may emerge in
response to market volatility or regulatory uncertainty. Furthermore, the diversity of
authors contributing to this sentiment data adds richness to the analysis. Journalists
provide objective reporting, industry insiders offer insider perspectives, while subject
matter experts provide deep insights into the technological intricacies of Bitcoin.
However, amid this wealth of data, instances of missing information arose due to
the absence of specific statements from authors on certain days. To address this
challenge, we adopted a different approach. Any missing data points were treated as
neutral, acknowledging the lack of sentiment conveyed in the absence of statements.
A compound score of zero was assigned to these instances, ensuring a balanced
interpretation of Bitcoin’s sentiment landscape.
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Figure 3.3: Distribution of Sentiment Categories Identified by VADER Sentiment
Analysis

Figure 3.4: Exploring Bitcoin’s Sentiment Trends from March to April 2023
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Figure 3.5: Unveiling Bitcoin’s Sentiment Trends Leading into March 2023

3.4.2 Data Fusion with Historical Data

The sentiment features derived from VADER analysis are seamlessly integrated with
OHLCV (Open, High, Low, Close, Volume) data based on matched publication dates
(Table 3.4). This integration enables a holistic analysis framework that incorporates
both market data and sentiment signals, empowering predictive modeling and anal-
ysis of Bitcoin price movements in relation to sentiment dynamics. By integrating
sentiment data with OHLCV data, researchers can explore the intricate interplay
between market sentiment, news events, and Bitcoin price dynamics. Whether it’s
examining the impact of sentiment spikes on short-term price volatility or identify-
ing long-term sentiment trends correlating with market trends, this integrated ap-
proach offers a comprehensive understanding of the relationship between sentiment
and Bitcoin price movements. This comprehensive methodology ensures a robust
and nuanced analysis of Bitcoin sentiment, drawing upon data from CoinDesk, so-
phisticated sentiment analysis techniques, and integration with market data to offer
valuable insights into the complex dynamics shaping the cryptocurrency landscape.

3.4.3 Impact of Sentiment on Price Movements

From Table 3.5, The correlation research over a six-month period shows interest-
ing connections between sentiment measures and market dynamics. First, there are
large negative correlations between the sentiment counts—both positive and neg-
ative—and the closing price, suggesting that the closure price tends to decline as
sentiment rises. On the other hand, a different trend may be seen in the 3-day clos-
ing price’s % change. This statistic has a positive correlation with positive sentiment
counts, suggesting that higher levels of positive sentiment frequently correspond with
larger percentage changes in the closing price over a three-day period. Its lesser link
with negative sentiment counts, however, points to a less significant influence on
short-term price fluctuations. A clear association between sentiment and the target
variable is evident from the strikingly perfect positive correlation that the target
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Table 3.4: Final Feature List

Features

Description

Williams Percent R (Values)

Technical Indicator

ATR (Values)

Technical Indicator

Bollinger Bands (Signal)

Technical Indicator

EMA (Signal)

Technical Indicator

Keltner Channels (Signal)

Technical Indicator

Close Price

The price of the financial instrument at the end of the time interval

Percentage Change

3 days percentage change of closing price

Compound Score

This is a single normalized score that represents the overall sentiment

of the news. It ranges from -1 (extremely negative) to 1 (extremely
positive)

The proportion of the news that falls into the positive sentiment cat-
egory. If positive then 1 else 0

The proportion of the news that falls into the negative sentiment
category. If negative then 1 else 0

The proportion of the news that is considered neutral. If neutral then
lelse 0

A buy signal (1) indicates a bullish trend, a sell signal (-1) indicates
a bearish trend, and a hold signal (0) indicates a neutral market con-
dition.

Positive Score

Negative Score

Neutral Score

Target

variable (weekly) shows with sentiment counts.

From Table 3.6, Correlation research over a six-month period reveals interesting
correlations between sentiment compound scores and market trends. First, there is
a significant negative correlation (-0.975096) between the close price and the posi-
tive compound score, indicating that the close price tends to decline as the positive
sentiment score rises. On the other hand, the negative compound score and the clos-
ing price have a substantial positive connection (0.980856), suggesting that higher
close prices are associated with more negative sentiment. When analyzing the 3-
day closing price percentage change, the negative compound score shows a somewhat
negative association (-0.743289), which suggests that the percentage change tends to
drop as negative sentiment increases. Conversely, the positive compound score has
a positive correlation with the percentage change (0.831411), indicating that greater
percentage movements in the closing price over a three-day period correspond with
more positive sentiment.

Table 3.5: Analysis of Sentiment Volume and Correlation with Market Prices

Correlation Period Positive Sentiment | Negative Sentiment
Close Price 6 Month -0.949954 -0.986723
Percentage Change of 3 Days Closing Price | 6 Month 0.949011 -0.509276
Target Weekly 1 1

Table 3.6: Correlation of Sentiment Compound Scores with Price Dynamics

Correlation Period Positive Compound Score | Negative Compound Score
Close Price 6 Month -0.975096 0.980856
Percentage Change of 3 Days Closing Price | 6 Month -0.743289 0.831411

These findings emphasize the intricate correlation between emotion compound scores
and market dynamics, underscoring the need of taking into account both positive
and negative attitudes when examining price fluctuations. Gaining an understanding
of these relationships can help you anticipate market movements and make wise
financial choices.
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Figure 3.6: Exploring the Bitcoin Price Dynamics Through Sentiment Analysis Over
Years

3.5 Model Specification

In this section, we delve into the process of model building and analysis for predict-
ing Bitcoin price movement. Our study focuses on investigating the significance of
sentiment features extracted from news articles in enhancing the predictive perfor-
mance of machine learning models. We explore the effectiveness of various classifiers
and their parameter configurations to discern the impact of sentiment on model ac-
curacy and robustness. The dataset utilized in our analysis comprises 647 records,
each characterized by 12 features excluding the target feature, obtained through
the integration of sentiment data with OHLCV (Open, High, Low, Close, Volume)
data. These features encapsulate various aspects relevant to Bitcoin market dynam-
ics, providing a comprehensive basis for predictive modeling. We employ a range of
machine learning classifiers to build predictive models for Bitcoin price movement.
Specifically, we consider five distinct models: Support Vector Machine (SVM), Ran-
dom Forest, Logistic Regression, Naive Bayes, and Decision Tree. To optimize model
performance, we tune the hyperparameters of each classifier using cross-validated
grid search.

3.5.1 Support Vector Classification (SVC)

A supervised learning approach used for classification problems is called Support
Vector Classification, or SVC [28]. It is a member of the Support Vector Machine
(SVM) family of machine learning models, which are strong and adaptable and able
to handle decision boundaries that are either linear or nonlinear. The main goal of
SVC is to identify the hyperplane in the feature space that best divides the various
classes. In order to maximize the margin—that is, the distance between the hyper-
plane and the closest data points from each class—also referred to as support vectors,
this hyperplane was selected. In order to facilitate the identification of a separate
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hyperplane, SVC operates by converting the input data into a higher-dimensional
space.In order to maximize the margin—that is, the distance between the hyper-
plane and the closest data points from each class—also referred to as support vectors,
this hyperplane was selected. In order to facilitate the identification of a separate
hyperplane, SVC operates by converting the input data into a higher-dimensional
space. A kernel function is used to carry out this transformation; it efficiently com-
putes the inner products of data points in the higher-dimensional space without the
need to explicitly compute the transformation. In SVC, the choice of kernel func-
tion is essential since it shapes the decision boundary and, consequently, the model’s
capacity to represent intricate connections in the data.In order to maximize the mar-
gin—that is, the distance between the hyperplane and the closest data points from
each class—also referred to as support vectors, this hyperplane was selected. In order
to facilitate the identification of a separate hyperplane, SVC operates by converting
the input data into a higher-dimensional space. A kernel function is used to carry
out this transformation; it efficiently computes the inner products of data points in
the higher-dimensional space without the need to explicitly compute the transfor-
mation.In SVC, the choice of kernel function is essential since it shapes the decision
boundary and, consequently, the model’s capacity to represent intricate connections
in the data. Sigmoid, polynomial, linear, and radial basis function (RBF) kernels
are frequently utilized kernel functions. In actuality, binary classification problems
involving small to moderately big datasets are very well-suited for SVC. It has sev-
eral benefits, including as resistance to overfitting, handling high-dimensional data,
and efficiency in capturing nonlinear correlations. The regularization parameter C,
which regulates the trade-off between maximizing the margin and reducing the clas-
sification error, is one of the key hyperparameters to modify while training an SVC
model. The model’s performance may also be impacted by the kernel selection and
the parameters that go along with it (such as the kernel width for an RBF kernel).
All things considered, SVC is a strong and adaptable classification algorithm that
can be used to solve a variety of issues, making it an invaluable tool in the toolbox
of a machine learning practitioner. The ideal hyperplane that divides the classes
in the feature space is the goal of support vector classification. The issue may be
expressed mathematically as follows:

1 n
minimize 5|yw|y2 + C;& (3.9)
subject to (3.10)
yi(w-x; +b) > 1-¢, (3.11)
>0, i=1,...,n (3.12)

In this formulation:
e w represents the weight vector defining the hyperplane.

e (' is the regularization parameter controlling the trade-off between maximizing
the margin and minimizing the classification error.

o & are slack variables representing the classification error for each data point.

e y; represents the class label of the i-th data point (y; = {—1,1}).
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e x; represents the feature vector of the i-th data point.
e b is the bias term.

The objective function seeks to minimize the norm of the weight vector w while
penalizing misclassifications with the term C')_" | . The constraints ensure that
each data point is correctly classified or lies within a margin of at least 1 from the
decision boundary, with slack variables &; allowing for some degree of misclassifica-
tion. This formulation captures the essence of the SVC algorithm, providing a clear
mathematical representation of its optimization problem for classifying data points
into distinct categories.

3.5.2 Random Forest

A popular and adaptable machine learning approach for both classification and re-
gression applications is the Random Forest classifier. It is a member of the ensemble
learning family, which enhances resilience and predictive performance by combining
many independent models. The fundamental principle of Random Forest is to build
a large number of decision trees in the training stage and then aggregate their pre-
dictions using an averaging (for regression) or voting mechanism (for classification).
By using a random subset of the training data and features, each decision tree is
trained separately; this technique is referred to as bootstrap aggregating or bagging.
Comparing Random Forest to individual decision trees reveals several benefits, such
as: Decreased overfitting: Random Forest increases its resilience to noisy or sparse
data by reducing the likelihood of overfitting by averaging forecasts from several
trees. Enhanced stability: When compared to a single decision tree, Random Forest
is often less sensitive to changes in the training data and more stable. By offering a
measure of feature relevance, Random Forest enables users to pinpoint the charac-
teristics that have the most influence on the classification process.A Random Forest
model’s hyperparameters, such as the number of trees in the forest (n_estimators),
the maximum depth of each tree (max_depth), and the amount of features taken
into consideration for each split (max_features), can be adjusted to maximize per-
formance. Random Forest is extensively utilized in many different fields and ap-
plications, including as image classification, natural language processing, finance,
and healthcare. When looking for high-performance classification models, many
machine learning practitioners choose it because of its robustness, scalability, and
user-friendliness. To increase predictive performance, the Random Forest classifier
integrates the predictions of many decision trees. The Random Forest classifier’s
mathematical prediction is represented as follows:

Let T1,T5, ..., T, denote the individual decision trees in the forest.

For classification tasks, the predicted class ¢ for a given input vector x is determined
by a majority vote of the predictions of the individual trees:

g = mode (T (x), T5(x), . .., T,,(x)) (3.13)

where mode represents the most frequent class prediction among the trees.
For regression tasks, the predicted value g for a given input vector x is determined
by averaging the predictions of the individual trees:
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i=1
where n is the total number of trees in the forest.
In the training phase, each decision tree 7T; is trained independently on a random
subset of the training data and features, a process known as bootstrap aggregating
(bagging). Additionally, each node in the tree is split based on the best feature
among a random subset of features, adding further randomness and reducing over-
fitting. The hyperparameters of the Random Forest classifier, such as the number of
trees in the forest (n_estimators) and the maximum depth of each tree (max_depth),
can be tuned to optimize predictive performance. The Random Forest classifier offers
several advantages, including reduced overfitting, increased stability, and the ability
to measure feature importance, making it a popular choice for various classification
and regression tasks.

3.5.3 Logistic Regression

Logistic Regression stands as a cornerstone in the domain of machine learning and
statistical modeling, providing a powerful and interpretable framework for binary
classification tasks. Despite its name, Logistic Regression is not a regression al-
gorithm but rather a classification method, adept at predicting binary outcomes
based on input features. Unlike linear regression, which predicts continuous values,
Logistic Regression outputs probabilities bounded between 0 and 1, making it well-
suited for scenarios where discrete outcomes are of interest. At its heart, Logistic
Regression operates on the principle of modeling the probability that a given sam-
ple belongs to a particular class. This is achieved through a mathematical function
known as the sigmoid or logistic function. The sigmoid function transforms the
linear combination of input features and associated weights into a probability score,
effectively mapping the input space onto the interval [0, 1]. The decision boundary
separating the two classes is typically set at 0.5, with samples above the threshold
being classified as positive and those below as negative. One of the key strengths
of Logistic Regression lies in its interpretability. Unlike some black-box machine
learning algorithms, Logistic Regression provides transparent insights into the rela-
tionship between input features and the target variable. The coefficients associated
with each feature indicate the direction and magnitude of their impact on the log-
odds of the outcome. This interpretability makes Logistic Regression particularly
valuable in applications where understanding the underlying factors driving classi-
fication decisions is paramount, such as in healthcare, finance, and social sciences.
Moreover, Logistic Regression is known for its robustness and efficiency. It can han-
dle large datasets and high-dimensional feature spaces with relative ease, making
it suitable for real-world applications with varying scales of data. Despite its sim-
plicity, Logistic Regression tends to perform well in practice, especially when the
relationship between predictors and the response variable is approximately linear.
However, like any modeling technique, Logistic Regression has its limitations and
assumptions. One notable assumption is the linearity between the log-odds of the
outcome and the input features. While this assumption holds true in many cases,
it may not capture complex nonlinear relationships present in the data. Addition-
ally, Logistic Regression may struggle with imbalanced datasets, where one class is
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significantly more prevalent than the other, leading to biased predictions. Despite
these limitations, Logistic Regression finds widespread application across diverse
domains. In healthcare, it is used for predicting patient outcomes and diagnosing
diseases based on medical test results. In finance, Logistic Regression aids in credit
scoring and fraud detection by assessing the risk associated with loan applicants or
financial transactions. In marketing, Logistic Regression informs customer segmen-
tation and targeting strategies by predicting the likelihood of customer response to
marketing campaigns. Logistic Regression stands as a pillar of classification mod-
eling, offering a blend of interpret-ability, robustness, and efficiency. Its simplicity,
coupled with its ability to provide actionable insights, makes it an invaluable tool in
the data scientist’s toolkit. By leveraging Logistic Regression effectively, practition-
ers can unlock the potential to make informed decisions and drive impact outcomes
in a wide range of applications. Logistic Regression is a probabilistic model used
for binary classification tasks. Its mathematical formulation can be expressed as
follows: Given a set of input features x = (1, s,...,2,), the probability that a
sample belongs to class y = 1 is modeled using the sigmoid function:

1
1 + efw-xfb
where w represents the weight vector, b denotes the bias term, and e is the base of

the natural logarithm.
Similarly, the probability that the sample belongs to class y = 0 is given by:

Py =1|x) = (3.15)

P(y=0|x)=1— P(y = 1|x) (3.16)

These probabilities are then used to make binary predictions based on a chosen
threshold (e.g., 0.5), where samples with predicted probabilities above the thresh-
old are classified as positive (class 1) and those below as negative (class 0). The
parameters w and b of the Logistic Regression model are typically learned through
optimization techniques such as gradient descent or Newton’s method. The objec-
tive is to maximize the likelihood of the observed data given the model parameters, a
process known as maximum likelihood estimation. Logistic Regression offers several
advantages, including interpretability, robustness, and efficiency. However, it also
has limitations, such as the assumption of linear relationship between features and
log-odds of the outcome.

3.5.4 Naive Bayes Gaussian

A probabilistic classifier based on the Bayes theorem and supposing feature indepen-
dence is called a naive Bayes Gaussian. In spite of its ease of use, the Naive Bayes
Gaussian algorithm is a potent and effective tool for classification tasks, especially
those involving sentiment analysis, spam filtering, and text categorization. Funda-
mentally, the Naive Bayes Gaussian algorithm uses Bayes’ theorem to determine the
conditional probability of a class given a collection of characteristics. In its name,
”Gaussian” denotes the presumption that the characteristics’ probability distribu-
tion is Gaussian, or normal.This assumption increases the algorithm’s computing
efficiency and makes calculating probabilities easier, particularly when working with
continuous-valued data. Estimating the Gaussian distribution’s parameters for ev-
ery feature in every class is the fundamental principle of the Naive Bayes Gaussian
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algorithm. The mean and standard deviation of the feature values within each class
are commonly included in these parameters. Based on the observed feature values
and estimated parameters, the classifier can forecast the likelihood that a sample
will belong to each class. The feature independence assumption of the Naive Bayes
Gaussian is one of its distinguishing traits.This "naive” assumption suggests that
the likelihood of one feature being or not doesn’t change depending on the existence
or nonexistence of another characteristic. Naive Bayes Gaussian frequently works
remarkably well in reality, especially when the features are conditionally indepen-
dent given the class label, albeit this assumption may not hold true in all real-world
cases. The interpretability and ease of use of the Naive Bayes Gaussian algorithm
is another benefit. Even those with no background in machine learning may use
the classifier since it is simple to comprehend and use. Additionally, Naive Bayes
Gaussian resists overfitting, which makes it a good match for noisy or tiny datasets
when more intricate models would not perform well. The Naive Bayes Gaussian has
drawbacks despite its advantages.In datasets where features are heavily linked, the
assumption of feature independence may result in inferior performance. Further-
more, non-Gaussian features may cause difficulties for the algorithm, while this is
typically avoidable with the use of feature engineering or other preprocessing meth-
ods. Naive Bayes Gaussian is a widely used statistical method in many fields. For
example, it is applied in text classification to categorize documents into groups like
spam or ham; in sentiment analysis, it is used to predict the sentiment of textual
data; and in medical diagnosis, it helps identify diseases based on patient symp-
toms.The Naive Bayes Gaussian classifier is a straightforward yet efficient algorithm
that utilizes the Gaussian distribution and the Bayes theorem to provide probabilis-
tic predictions. Naive Bayes Gaussian is still a useful tool in the machine learning
toolbox because it strikes a mix between simplicity, efficiency, and interpretability
for classification tasks—even if its assumptions might not always hold true in prac-
tice. A probabilistic classifier based on the Bayes theorem and supposing feature
independence is called a naive Bayes Gaussian. The following is how it may be
stated mathematically:

Given a set of input features x = (x1, 9, ..., x,) and a class label y, the conditional
probability of observing the feature vector x given the class label y is modeled as a
multivariate Gaussian distribution:

P(x|y) = W €xp (—%(X - uy)Tilgl(x — uy)) (3.17)

where: - g, is the mean vector of the feature values for class y. - 3, is the covariance
matrix of the feature values for class y. - d is the dimensionality of the feature space.
The prior probability P(y) of class y is estimated from the training data as the
proportion of samples belonging to class y.

Given a new sample x*, the posterior probability of class y given x* is calculated
using Bayes’ theorem:

where P(x*) is the evidence probability, obtained by summing the probabilities of
x* across all classes. The class label for x* is then assigned based on the class with
the highest posterior probability. Naive Bayes Gaussian classifier assumes that the

(3.18)
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features are conditionally independent given the class label, allowing for efficient
parameter estimation and classification.

Decision trees are a popular and versatile machine learning algorithm that can be
used for both classification and regression tasks. They offer a transparent and
intuitive approach to modeling complex relationships in data, making them widely
applicable across various domains.
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Chapter 4

Results and Discussion

Because algorithms can execute trades quickly and with little human involvement,
they are becoming more and more common in financial markets. But before being
implemented, algorithmic trading techniques must undergo extensive testing and
assessment in order to be successful. Evaluating the feasibility and efficacy of these
techniques heavily relies on backtesting, the practice of modeling transactions using
past market data. Because of their strong backtesting capabilities, platforms such
as Zipline have become more and more popular among researchers and traders in
recent years. The importance of Zipline backtesting in improving algorithmic trading
techniques is examined in this research.Quantopian created Zipline, an open-source
Python backtesting tool that offers a comprehensive and adaptable framework for
assessing trading algorithms. Fundamentally, Zipline uses historical market data
to replicate transactions, giving customers the ability to evaluate how well their
strategies work in different market scenarios. The framework is appropriate for a
variety of trading techniques since it covers a multitude of asset classes, such as
futures, cryptocurrencies, and stocks. In addition to a comprehensive comparison
analysis, the outcomes that our proposed model generated provide valuable insights
into the patterns and deviations.

4.1 Performance Matrices

The performance scores for our models that were run were assessed in terms of F1
Score, Accuracy, Precision, Recall, Sharpe Ratio, Cumulative Return, Annualized
Return and Maximum Drawdown. In addition, we performed multiple runs of each
model to determine the variance in the performance ratings. We utilized the zipline
Python library for backtesting [40] the predicted signals and subsequently analyzed
the results based on key performance metrics to measure the effectiveness of our
approach.

1. One typical statistic used to assess how well categorization models function is
accuracy. It may be defined as the proportion of accurate forecasts to all of
the model’s predictions. Accuracy in mathematics (Acc) can be expressed as:

Number of Correct Predictions
Total Number of Predictions

Accuracy = (4.1)

2. In classification, precision is a statistic used to assess how well a model predicts

31



positive outcomes. It calculates the percentage of accurately predicted positive
cases, or true positive predictions, out of all the instances the model predicts
as positive.

Mathematically, precision is defined as:

Precisi True Positives (4.2)
recision = .
True Positives + False Positives

where:

e The cases that the model accurately predicts as positive are known as
true positives.

e False Positives are situations that the model predicts as positive while,
in reality, they are negative.

. In classification, recall—also referred to as sensitivity or true positive rate—is
a statistic that assesses a model’s accuracy in identifying positive cases. It
calculates the ratio of all real positive cases to genuine positive forecasts, or
positively anticipated instances.

Mathematically, recall is defined as:

Recall — True Positives ( n 3)

True Positives 4 False Negatives

where:

e True Positives are the instances that are correctly predicted as positive
by the model.

e False Negatives are the instances that are incorrectly predicted as nega-
tive by the model (they are actually positive).

. A statistic called the F1 score is used in classification to integrate recall and
accuracy into a single number. It offers a balance between the two metrics
and is the harmonic mean of accuracy and recall.

Mathematically, the F1 score is defined as:

2 x Precision x Recall
F1 = 4.4
seore Precision + Recall (44)

where:

e Precision is the proportion of true positive predictions among all instances
predicted as positive.

e Recall is the proportion of true positive predictions among all actual
positive instances.
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5. An investment or trading strategy’s risk-adjusted return is measured by the
Sharpe ratio. It is frequently employed to assess how well investment portfolios
are performing. The ratio of the investment’s (or portfolio’s) excess return
above the risk-free rate to the excess return’s standard deviation is known as
the Sharpe ratio.

Mathematically, the Sharpe ratio is defined as:
R, — Ry

Op

Sharpe ratio = (4.5)

where:

e 7, is the average return of the investment or portfolio.
e Ry is the risk-free rate of return.
e 0, is the standard deviation of the excess return of the investment or

portfolio.

6. An investment’s success over a certain time period is assessed using the Cumu-
lative Return. It shows the whole percentage change in the investment’s value
during the specified time period, taking into account any dividends or interest
earned in addition to capital appreciation (or depreciation). The cumulative
return (C'R) may be computed mathematically as follows:

CR— (% - 1> < 100% (4.6)

0
where:

e P, is the initial price of the investment.

e P, is the price of the investment at time ¢.

7. The Annualized Return measures the average annual percentage return of the
investment over the backtesting period. Mathematically, the annualized return

(AR) can be calculated as:
I
AR= (-] -1 4.
& (Po) 40

where:

e P, is the initial portfolio value.
e P, is the portfolio value at the end of the backtesting period.
e 1 is the number of years in the backtesting period.
8. The Maximum Drawdown measures the largest drop in the value of the in-
vestment from a peak to a trough during a specific period of time. It provides
insight into the risk of an investment by quantifying the largest loss expe-

rienced. Mathematically, the maximum drawdown (M D) can be calculated
as:
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P_p
MD = max (%) (4.8)

i.j1j >0
where:

e P, is the portfolio value at time 1.
e P; is the portfolio value at time j.

e The maximum drawdown is the maximum of all relative drawdowns ob-
served between time ¢ and time j, where j > i.

4.2 Result Analysis

In the realm of machine learning-based financial modeling, selecting the right al-
gorithms can significantly impact the effectiveness of investment strategies. In
our study, we sought to identify the most reliable models for predicting financial
outcomes by evaluating several popular algorithms, including Random Forest and
Support Vector Machine (SVM)[20]. These models have consistently demonstrated
robust performance across various domains, making them compelling choices for our
analysis. To ensure a comprehensive comparison, we conducted a comparative anal-
ysis involving other notable multivariate models, such as Naive Bayes Gaussian and
Logistic Regression[26]. Our objective was to identify the models that excel in differ-
ent scenarios, particularly concerning the presence or absence of sentiment analysis.
The results of our analysis, as summarized in Table 4.1, revealed interesting insights
into the performance of different models.

Support Vector Machine emerged as the top performer in scenarios involving sen-
timent, exhibiting superior test accuracy compared to other models. On the other
hand, Random Forest demonstrated exceptional accuracy in sentiment-absent situa-
tions, outperforming its counterparts in this context. Beyond accuracy, we also eval-
uated various performance metrics to gain a holistic understanding of each model’s
capabilities. These metrics encompassed measures such as precision, recall, and F1-
score providing valuable insights into the models’ predictive power and robustness.
Encouraged by the promising results of our comparative analysis, we proceeded to
backtest the two top-performing models—Random Forest and Support Vector Ma-
chine—using their predicted data. Backtesting serves as a crucial step in assessing
the real-world applicability of machine learning models in financial decision-making.
Table 4.2 presents the backtesting findings, showcasing the performance of the two
distinct models applied to financial data, with and without sentiment analysis in-
tegration. Let’s delve deeper into the implications of these results and the factors
contributing to the observed performance disparities.

When utilizing the Random Forest model without sentiment analysis integration,
our strategy yielded promising annual returns of approximately 3.59%. These re-
turns translated into cumulative gains of 4.726%, indicating the model’s effective-
ness in generating consistent profits over time. Despite the commendable returns,
it’s essential to assess the risk associated with the strategy. The Sharpe Ratio, a
widely-used measure of risk-adjusted return, stood at 1.95, reflecting a favorable
balance between returns and volatility (Figure 4.1).
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Table 4.1: Model Performance

Metric Support Logistic Random | Naive
Vector Regres- Forest Bayes
Machine | sion Gaussian
Train Accuracy 0.989879 0.959514 1 0.6417
Train Accuracy (with Senti- | 0.989879 0.959514 1 0.6417
ment)
Test Accuracy 0.963636 0.948485 0.978788 0.730303
Test Accuracy (with Senti- | 0.972727 0.945455 0.89697 0.730303
ment)
Precision 0.965412 0.953726 0.97932 0.777284
Precision (with Sentiment) | 0.972789 0.949912 0.905383 0.779327
Recall 0.963636 0.948485 0.978788 0.730303
Recall (with Sentiment) 0.972727 0.945455 0.89697 0.730303
F'1 Score 0.963562 0.94848 0.978701 0.719489
F1 Score (with Sentiment) | 0.97271 0.945383 0.897602 0.718739

Table 4.2: Back Testing Result

Backtest Model Annual Cumulative Sharpe | Maximum
Returns | Returns (%) Ratio Draw
(%) down (%)

Without Random 3.59 4.726 1.95 -0.704
Sentiment Forest

With Support 10.112 13.445 2.81 -1.003
Sentiment Vector

Machine

However, it’s worth noting that the strategy encountered a maximum drawdown
of -0.704%, suggesting periods of downturns where significant losses were incurred.
The robust performance of the Random Forest model underscores its suitability
for generating stable returns in sentiment-neutral market conditions. By leveraging
ensemble learning techniques and aggregating predictions from multiple decision
trees, Random Forest effectively captures complex patterns in financial data, leading
to reliable predictions. In contrast, employing the Support Vector Machine model
with sentiment analysis integration resulted in substantially higher annual returns
of about 10.112% (Figure 4.2).

The integration of sentiment analysis enhanced the model’s predictive capabilities,
enabling it to capitalize on market sentiment trends and make more informed invest-
ment decisions. The cumulative returns generated by the SVM model reached an
impressive 13.445% (Figure 4.3), highlighting the efficacy of incorporating sentiment
analysis into financial modeling. By considering not only numerical data but also
qualitative information related to market sentiment, SVM demonstrated superior
predictive accuracy and profit potential. Moreover, the strategy based on the SVM
model exhibited an improved Sharpe Ratio of 2.81, indicating superior risk-adjusted
returns compared to the Random Forest approach.

The lower maximum drawdown of -1.003% (Figure 4.4) further reinforces the re-
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Figure 4.1: Sharpe Ratio Comparison between Strategies with and without Senti-
ment Analysis

Figure 4.2: Comparative Analysis of Portfolio Returns

silience of the SVM model in mitigating downside risk, thereby enhancing portfolio
stability. The significant performance disparities between the Random Forest and
SVM models underscore the importance of considering contextual factors, such as
market sentiment, in financial modeling. While Random Forest excels in sentiment-
neutral environments, SVM leverages sentiment analysis to gain a competitive edge
in sentiment-driven markets. The findings from our backtesting exercise highlight
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Figure 4.3: Comparison of Cumulative Returns

Figure 4.4: Comparative Maximum Drawdown Analysis with Sentiment Analysis
Influence

the transformative impact of sentiment analysis on financial modeling and invest-
ment strategies. By incorporating sentiment data into machine learning models,
investors can gain valuable insights into market sentiment trends and adjust their
strategies accordingly. One of the key advantages of sentiment analysis integration
is its ability to capture qualitative information that traditional financial metrics may
overlook. Market sentiment, driven by factors such as news sentiment, social media
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Figure 4.5: Top Drawdown Periods in Backtesting

activity, and investor sentiment, can exert a significant influence on asset prices and
market dynamics. By leveraging advanced natural language processing (NLP) tech-
niques, sentiment analysis algorithms can analyze vast amounts of textual data from
news articles, social media posts, and financial reports to gauge market sentiment
accurately. This nuanced understanding of sentiment enables machine learning mod-
els to make more informed predictions and identify profitable trading opportunities.
Furthermore, the integration of sentiment analysis enhances risk management prac-
tices by providing early warning signals for market downturns and sentiment-driven
volatility. By incorporating sentiment-based indicators into risk models, investors
can better anticipate market movements and implement proactive risk mitigation
strategies.

4.3 Discussion

Table 4.1 shows that the SVM model outperformed the other models in terms of
sentiment. All performance indicators, including recall, accuracy, precision, and F1
score, were 97%. On the other hand, Random Forest outperformed other models
in the absence of sentiment. Additionally, it received 97 on all criteria, including
recall, accuracy, precision, and fl score. While logistic regression did well among
the other two models, it did not perform as well as SVM and RF. Nonetheless,
it outperforms the naive Bayes model. The results of Naive Bayes were not very
good. Its accuracy of 73% is extremely low when compared to other models. We
extracted the anticipated data from these models and backtested it for further anal-
ysis. According to Table 4.2, when sentiment was present, the maximum drawdown
decreased by 0.2% (Figure 4.4), the annual return rose to 6.5%, the cumulative re-
turn was 8.7% (Figure 4.3) and the sharpe ratio was 0.86%. The only indicator that
underperformed was maximum drawdown; in terms of emotion, other metrics such
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as the sharpe ratio, cumulative return, and annual return did well. As a result, these
indicators helps in the decision-making of investors. In Figure 4.1, The six-month
rolling sharpe ratio rose significantly in terms of sentiment. Figure 4.5 illustrates
the highest drawdown periods, which are from January 2023 to February 2023 and
from November 2022 to December 2022.
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Chapter 5

Conclusion

Our research has demonstrated the effectiveness of utilizing machine learning mod-
els, particularly Random Forest and Support Vector Machine (SVM), in predicting
financial market movements. Through a comprehensive comparative analysis, we
found that SVM performs best when sentiment analysis is incorporated, while Ran-
dom Forest excels in situations where sentiment data is absent. These models, when
backtested, have shown promising results in terms of annual returns and cumula-
tive returns. Specifically, employing the Random Forest model without sentiment
analysis yielded notable annual returns of approximately 3.59%, with cumulative
returns reaching 4.726%. Despite experiencing a moderate Sharpe Ratio, the strat-
egy demonstrated favorable risk-adjusted returns, albeit with occasional downturns.
On the other hand, integrating sentiment analysis with the Support Vector Machine
model significantly improved performance metrics. This approach generated sub-
stantially higher annual returns of about 10.112%, resulting in cumulative returns
reaching 13.445%. Moreover, the strategy exhibited an improved Sharpe Ratio and a
mitigated maximum drawdown, indicating superior risk-adjusted returns and lower
downside risk. These findings underscore the importance of incorporating senti-
ment analysis techniques into financial modeling, as evidenced by the substantial
enhancements observed in both return metrics and risk management. The integra-
tion of sentiment analysis with machine learning models holds significant promise for
bolstering investment strategies and optimizing portfolio performance. For future
work, several avenues present themselves for further exploration and refinement.
Expanding the scope of sentiment analysis to include a broader range of sources,
such as social media platforms, news articles, and market sentiment indices, could
provide deeper insights into market dynamics. Additionally, exploring advanced
machine learning techniques, such as deep learning algorithms, ensemble methods,
or reinforcement learning, may further enhance predictive accuracy and robustness.
Furthermore, conducting robustness tests and sensitivity analyses across different
market conditions and time periods would provide a more comprehensive under-
standing of model performance. Incorporating real-time data feeds and implement-
ing dynamic model updating mechanisms could improve adaptability to changing
market conditions and enhance decision-making capabilities. Overall, continued re-
search in this direction holds promise for advancing the field of financial modeling
and improving investment outcomes.
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