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Abstract
In a rapidly developing linguistic technology, the key role of phoneme recognition
consists of understanding language and language learning. The research will be
framed where a recognition system is developed for the language of Bangla—vowels,
consonants, and numbers for children of age three to six years. By adopting ad-
vanced approaches like technological methods and classical phonetic education, the
spectrogram images of the Bengali children we investigate are classified. Among the
techniques associated with modern machine learning (ML) the pervasive techniques
are image recognition and large language models (LLM) which have extended to the
less explored domain of Bangla phoneme spectrogram image recognition. From our
group of 21 participants, we have generated balanced 31,147 spectrogram images -
a new dataset that we have created from scratch. This is because the dataset was
done meticulously to serve as a complete resource for researchers of Bangla-speaking
children’s phoneme recognition. Therefore, we then trained ten pre-existing deep
learning models that were capable of interpreting and optimizing their performance
in Bangla phoneme recognition by using our dataset. Based on these, the SENet
model stood out among other existing models with a high performance of 96. 89%
accuracy on our testing data set. The ResNet50 and VGG19 models produced the
best outcomes among the deep learning models tested which ranked second and
third respectively with an accuracy of 88. 8% and 87%. Based on these findings, we
propose a novel architecture, Spectrogram SE-Transformer Block Network (Spectro-
SETNet), which is a hybrid of the ResNet50 model to which the SE and Transformer
blocks have been added, in order to cope with more complicated data and to limit
the computational power. The original hypothesis is that the model not only im-
proves the accuracy of Bengali speech recognition for children but also offers a new
standard for more complex data processing with less computational power.

Keywords: Automatic Speech Recognition, Character’s Recognition, Deep Learn-
ing, Mel-Frequency Spectrogram, Spectro-SETNet.
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Chapter 1

Introduction

Bengali is the fifth most used native language on the globe, and it has around 300
million native speakers, while 37 million of the population has added it as a second
language. In the number of speakers counted, it secures the 7th position among all
languages of the world. Furthermore, it comes among the top five Indo-European
languages.[21] Besides this, speech recognition technology has proven to be a new
breakthrough for machine learning and artificial intelligence fields. The applica-
tions of this technology are so wide-ranging that they cut through diverse niches,
such as virtual assistants, customer service chatbots, accessibility aids, and lan-
guage learning platforms.[28] The major significance of improving Bangla Character
Recognition in children lies in the fact that the child’s voice is quite different. The
proposed methodology targets their characteristic speech patterns. Consequently,
it supports the successful beginning of Bangla language learning. When there is a
deficit or absence of tools performing the function of language learning for children
this project bridges that gap, which contributes to a better pronunciation and which
is key to the academic readiness of the children in the phase of the critical acquisi-
tion of language.

Figure 1.1: Spectogram Image Classification using ML

However, enhancing Bangla character recognition for children faces several chal-
lenges and difficulties. Understanding children’s speech in Bangla isn’t easy. Kids
don’t sound like adults, they may not speak clearly, and not much has been done in
Bangla before. Too few resources, linguistic complexity, and the demand for an easy
and noise-resistant system make it harder. Utilizing what’s special about how kids
talk, understanding their pronunciation, and tackling all these difficulties are key.
We need to face all of these barriers to develop a perfect voice recognition system for
the children who started learning Bangla. Furthermore, there is a significant lack of
proper datasets capturing the pronunciation of children, let alone Bangla-speaking
children.
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1.1 Role of Machine Learning in Enhancing a Bangla
character Recognition

Machine learning plays a big part in shaping character recognition systems. Consid-
ering numerous Bangla voice samples, for instance, machine learning algorithms can
pick out unique audio patterns from various characters. It’s simpler for the system
to spot and break down the phonetic sounds from young kids. Boosting machine
learning has tons of benefits. In addition, quick feedback helps kids improve their
speaking skills. Moreover, the approach provides personal learning experiences by
knowing a child’s learning style and pace. However, it can be efficient for collecting
reliable data regarding children’s language development and might prove beneficial
in the future for evaluating and exploring how language develops. By harnessing
the capabilities of machine learning, this system can adapt to the child’s progress,
providing customized feedback and adapting the difficulty level to ensure a tailored
learning experience.[25]

Figure 1.2: Applications of Machine Learning Algorithoms

Figure 1.3: Methods used in Bangla speech processing and recognition.
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1.2 Advancements in ML for Bangla character Recog-
nition System for Children

Figure 1.4: Machine Learning Algorithms for Image Classifications

From birth, infants exhibit remarkable proficiency in absorbing linguistic input from
their surroundings. Despite their limited ability to pronounce words correctly, which
makes it difficult for computer vision systems to interpret.[1] This is where machine
learning (ML) steps in—by training with appropriate datasets, ML algorithms can
be tailored to detect and understand what these children are attempting to commu-
nicate.
Convolutional neural networks, also known as CNNs, have become very popular
for computer vision problems. However, CNNs can also be successfully applied to
speech-related tasks. For example, CNNs have shown great promise in character
recognition from audio signals. CNNs contain multiple layers of convolutional and
pooling layers that learn representations of the input data in a hierarchical manner.
When used for phoneme recognition, CNNs are able to analyze the spectral patterns
and temporal relationships within speech signals. Through this analysis, CNNs ex-
tract crucial features that are important for accurate character identification. The
features CNNs learn from speech aid in distinguishing between different phonemes.

VGG19 is a CNN framework encompassing 19 layers, incorporating convolutional
and pooling layers. It is distinguished for its consistent structure and simplicity,
rendering it more accessible to comprehend and execute. VGG19 acquires discrim-
inative attributes from audio spectrograms or alternative speech representations to
categorize characters precisely. By employing VGG19, the Bangla character recogni-
tion system can derive advantages from its proficiency in capturing intricate patterns
and enhancing recognition precision.
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SENET, which stands for Squeeze and Excitation Networks, uses a special technique
that it bumps up the important features and pushes down the ones that are irrel-
evant. This makes the network better at picking things apart. SENET is effective
for recognizing characters, or sounds, especially in consideration of Bangla spoken
by kids. It’s good at zeroing in on the sounds when it matters. It could also lead to
better accuracy and a model that’s easily fine-tuned to the specific speech patterns
of children.

ResNet50 is a deeper CNN architecture that addresses the vanishing gradient prob-
lem through residual connections. With 50 layers allowing information to pass
unimpeded across its depth, ResNet50 has the capability to learn both simple
low-level features as well as complex high-level features by capturing both local
speech characteristics within segments as well as global characteristics across the full
speech signal. This innovative network configuration has demonstrated spectacular
outcomes on various computer vision tasks. It holds promise to also prove helpful
for a Bangla character recognition system seeking to hone its feature extraction abil-
ities and thereby elevate recognition precision if utilized to identify distinguishing
aspects within the input audio and distinguish between different phoneme classes.

On the other side, ResNet18 presents a lighter alternative to the standard ResNet
architecture that is better optimized. Specifically created for identifying Bangla
phonemes in educational content meant for children, ResNet18 achieves a nice bal-
ance between how complex it is and how many resources it needs. This makes it
viable for use in settings with constrained processing power, such as schools with
older technology. While Inception V3 likely delivers slightly better performance,
ResNet18 strikes a fair compromise between effectiveness and feasibility of deploy-
ment in environments with limited computational horsepower.

The field of character recognition has seen significant advancements through the
integration of sophisticated neural network architectures. Among these, DenseNet
has proven especially beneficial due to its unique structure that connects each layer
to every other layer in a feed-forward fashion. This connectivity pattern ensures
maximum information flow between layers, which is crucial for recognizing the subtle
nuances in character sounds. This architecture’s efficiency in feature extraction
makes it particularly effective in handling the variances in children’s speech, which
often present challenges in speech recognition systems. Figure 1.5 demonstrates the
continuous improvements of machine learning algorithms in image classification.

Figure 1.5: Continuous Improvement of Machine Algorithms
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1.3 Problem Statement
Recognizing ’voice’ in the Bengali language is not an easy task, but it is very en-
thralling, especially for child-targeted applications. It is hard to improve the Bangla
Automatic Speech Recognition (ASR) quality for children as it demands an in-depth
comprehension of the patterns of their language. The speech styles of kids are con-
stantly changing due to factors such as their age, developmental stages, and places
of residence. These alterations can lead to difficulty for current ASR systems to
be effective. While they are good at understanding adult speech in Bengali, they
stumble a little with child speech in Bengali.

Prior to a couple of years, Bengali automatic speech recognition methods were quite
narrow-minded and they mostly focused on recognizing isolated words that are not
in the context or specific accent which leads to a great gap in continuous streams of
speech like understanding a speech. To establish an interactive educational environ-
ment, first and foremost we should develop technologies that are good at accurately
processing the interrupted flows of sound by kids. The lack of a full-fledged Bangla
speech sample database, especially one that can be used to tailor for children from
different regions of the country, becomes a big hindrance to developing the necessary
speech recognition models accurately for child users.

The up-to-date deep learning modes were employed along with a new proposed
architecture to complete our work. These tools give them assurance in trying to
understand the nature of Bangla-speaking children’s complex language. However,
to apply them is extremely difficult. This may cause errors, such as overfitting. In
addition, an idiosyncratic accent and speech habits are what we have to cope with.

Rephrase with these issues and chances for progress, one important question stands
out:

How can deep learning models, utilizing spectrogram image classifica-
tion, be effectively integrated into the development of a Bangla character
Recognition System for children to enhance recognition accuracy and
adaptability to diverse speech patterns and regional accents?

The speech recognition system in Bangla that we are developing is going to be
solid and easy to use for children. Our mission is to address the different types
of child pronunciation and the various Bengali accents. Our goal is to develop
the first speech recognition technology, especially for children. This study has been
carried out to understand the Bangla language sounds, more specifically for kids. We
are employing cutting-edge models such as VGG16, VGG19, ResNet18, ResNet50,
DenseNet, EfficientNet, Inception V3, MobileNet, SENet, and our custom-developed
architecture model as well. Our goal is to sensitively enhance speech recognition for
Bengali-speaking kids between three and five ages. The goals of the project are
to improve the accuracy and efficiency of these systems; minor improvements have
been made already. The research, thus, can be perceived as one of the milestones
of the language technology design of children’s language learning in the context of
Bangla.
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1.4 Our Contributions
The study seeks to leverage the power of cutting-edge deep learning models (VGG16,
VGG19, ResNet18, ResNet50, DenseNet, EfficientNet, Inception V3, MobileNet,
SENet) and Specto-SETNet for optical character recognition on Bangla characters
using children’s data by emerging an innovative approach. The objectives are mul-
tifaceted and designed to address various aspects of language recognition in young
learners:

• We created a prime dataset comprising Bangla characters audio recordings,
tailored specifically to the speech patterns of Bangali children by addressing
the lack of suitable resources in Bangla, particularly for younger demographics.

• We proposed a new architecture for a precise multi class Bangla spectrogram
character image recognition system named, Spectro SETNet. which can effec-
tively handle the complexity and variability of Bangla characters in children’s
speech.

• We comparatively analyzed the selected ten deep learning models on our prime
dataset to evaluate their ability to effectively identify and understand complex
Bangla characters that are produced by children.

By achieving these goals, the research aims to facilitate a paradigm change in early
childhood language literature with deep learning augmented by advanced deep-
learning technologies to create inventive tools for inclusive and efficient learning
among young Bengali speakers.
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Chapter 2

Literature Review

The development of the models employed in Bangla character recognition presents an
interesting view toward the development of computational linguistics and machine
learning. In contrast to these, the evolution from conventional machine learning
models to progressive deep learning algorithms has led to a marked enhancement
in the precision and performance of character recognition, especially for vernacu-
lars such as Bangla. With regard to the number of speakers in general, it occupies
the seventh spot among all languages. What is more, it is the fifth most popular
Indo-European language.[21] In the early stages of life they undertake the journey
to learn the complexities of language and communication. This phase is character-
ized by swift cognitive development, wherein children naturally acquire the sounds,
words, and morphological patterns of their mother tongue [1]. Through the benefit
of machine learning, this system can respond to the child’s development, offering
personalized advice and adjusting the level of difficulty to fit the individual learning
experience.[1] By harnessing the capabilities of machine learning, this system can
adapt to the child’s progress, providing customized feedback and adapting the diffi-
culty level to ensure a tailored learning experience.[25] In addition, voice recognition
technology is identified as one of the breakthrough factors in the area of machine
learning and artificial intelligence.[28]

2.1 Existing Works
In this literature review, Bengali character recognition is investigated using different
models to improve the accuracy of speech recognition. Bangla ASR is concerned with
phonetic characteristics, improving sentence accuracy, word precision, and overall
accuracy. A Bengali feature phonetic table with 22 unique features is created in
the review and the possible use of multilayer neural networks (MLN) to transform
acoustic properties such as Mel Frequency Cepstral Coefficients (MFCCs) to char-
acter likelihood is discussed. These probabilities, along with the delta (∆) and
delta-delta ∆∆) parameters are used as inputs for hidden Markov models (HMMs).
Although the improvement in the method shows better performance, no specific ac-
curacy metrics are given. Nevertheless, the research has its limitations, such as the
lack of ample Bengali speech corpora and the focus on basic vowel and consonant
recognition in certain studies, which may have missed the details of the Bengali
language.[8]
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2.2 Related Works
2.2.1 Foundational Innovations in Bengali Speech Recogni-

tion
In relation to research conducted in [9], the authors discuss the main subject of
their paper related to the production and evaluation of a specific CNN aimed at the
recognition of short vocal commands in the Bengali language. In order to develop
a resilient model, the authors carefully gathered a dataset consisting of real-world
utterances with noise that contained 10 different Bangla words. Their approach was
three-layered. The study referenced as [2], is a study that uses the Bengali speech
database and acoustic features to perform Bengali word recognition, focusing on
triphone HMM-based classifiers and MFCC38 and MFCC39 models. It concludes
that the MFCC39-based approach is superior in recognizing Bengali words and is
likely due to the regional accents in the speech data used. The paper [4], analyzes
the phonetic features in the Bangla language such as vowels, fricatives, and nasals
and their implementation in an ASR system. It describes the construction of a
PF table and the establishment of a PF-driven ASR system, as opposed to con-
ventional MFCC-based approaches. The study highlights the system’s three stages:
However, the PFs are obtained by deriving MFCC features, integrating PFs with a
complicated neural network, and combining with a triphone Hidden Markov Model
to reveal that the PF based approach is more accurate than the MFCC method in
Bangla speech identification.

A significant portion of the research in BSR has been dedicated to traditional models
like HMM and Gaussian Mixture Models (GMM). For instance, the study on “Bangla
Word Recognition using Acoustic Features” employed a Triphone HMM-based clas-
sifier, which compared different acoustic features for Bangla word recognition.[2]
The study found that the MFCC39-based system outperformed the MFCC38-based
system. Likewise, another investigation concentrated on the identification of stan-
dalone Bengali terms by employing MFCC for extracting features, DTW for feature
comparison, and SVM with RBF for categorization, resulting in an 86.08% precision
level.[4] This paper provides a unique method to better recognize Bengali speech us-
ing an E2E system, having the Bengali audio converted to the text using a transfer
learning framework. It uses a trained model derived from a 5-gram language model,
while post-processing utilizes a Bengali Unicode normalizer. It involves audio to
.wav format conversion, feature extraction, and prediction. However, the system’s
reliance on vast volumes of training data and speed of processing may limit its
implementation in low-resource languages and real-time conditions, which requires
further optimization and research.[29]

2.2.2 Gender Neutral Bengali Speech Recognition
In reference [3], a Bangla Automatic Speech Recognition (ASR) system is designed
which improve accuracy in word and sentence recognition across genders using
gender-specific HMM-based classifiers. This approach applied to a corpus of 3000
male and 3000 female speakers, gets its best results at the third mixture components.
Future work involves combining gender-independent classifiers with neural network-
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based systems. The Gender-Independent Bangla ASR technique notably achieves
sentence accuracy rates of 68.95%, 78.65%, and 87.30% for different mixture com-
ponents. However, it faces challenges such as the need for a substantial training
corpus and limitations in handling non-binary gender identities or unconventional
speech patterns. Despite these issues, the technique shows promise in improving
speech recognition by addressing gender variations.

Nevertheless, BSR has a lot of challenges despite the progress. Recognition sys-
tems’ accuracy can be influenced greatly by gender differences, speaker accents, and
regional dialects. A paper on Bangla ASR with Gender Neutrality focused on trans-
gender speech patterns and implemented HMM classifiers that correctly identified
male and female speakers yielding outstanding sentence accuracy results.[3] In their
paper, Das et al. propose a machine-learning approach for generating Bangla text
summaries, using a conditional random field model for theme detection and a clus-
tering algorithm for theme grouping. The approach generates summaries with an IR
score and obtains an F1 score of 69.65%. Although only single-themed documents
at this stage, the study proposes future developments in Bangladesh NLP through
statistical models such as CRFs, machine learning methods like SVM and LSTM net-
works, and hierarchical thematic word clusters. While the summarization system
has 72.15% precision, 67.32% recall, and an F1 score of 69.65%, the theme detection
method gives an 83.60% precision, 76.44% recall, and 79.85% F-measure. Though
limited by available data and annotator experience, the paper identifies avenues for
improvement through increased data and linguistic tool development. The study by
Das et al. thus adds to the growing branch of machine learning-based Bangla text
summarization and developed avenues for future improvement and development.[23]

2.2.3 Entering a New Era of Multilayer Neural Networks
(MLN) for Speech Recognition

This study [5], presents a customized ASR system for Bengali with local parameters
and K-means clustering that operates better than the traditional MFCC system in
terms of sentence accuracy and word accuracy and improves recognition of female
speakers due to better acoustic features. In the study, the LF-25 technique and
Triphone Hidden Markov Model are presented which are applied for more accurate
recognition of Bengali words. Another research, “Bengali Speech Recognition us-
ing RNN” was also based on RNN. It had an accuracy rate of 86.058%.[26] These
works demonstrate the ability of deep learning algorithms to improve the accuracy
of BSR systems and overcome the challenges created by the Bangla voice-to-text
transcription, which is spoken by more than three hundred million people yet un-
derstudied in the voice recognition literature. Having used the Bengali Common
Voice 9.0 dataset, the authors improve ASR models, especially the n-gram language
model enhanced version of the wav2vec2 model. This approach, overcoming dialect
diversity and audio quality complexities, sets a new standard in Bengali ASR model
performance.

The study [11] an SVM and DTW-based automatic speech recognition system for
the isolated Bangla words is proposed. It has MFCC for feature extraction, DTW
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for feature matching, and SVM with RBF for data classification. Procedures such
as MFCC for audio feature extraction, DTW for time-dependent data comparison,
and SVM for exact data classification. The methodology involves feature extraction
using MFCC, feature matching using an improved DTW technique, and classifica-
tion based on SVM and RBF. In a controlled test with 40 speakers pronouncing
five Bangla words and a 12-person test, the system accuracy was 86.08%. However,
the study is only limited to single-word recognition without any comparison with
other models in Bangla speech recognition. Deep learning has shifted the face of
BSR. The advent of deep learning has revolutionized the field of BSR. Word error
rate obtained in the paper [12], titled ”Utilizing Deep Learning for Bengali Speech
Recognition” was 4.5% using DNNs paired with LSTM networks.

The study [7] study presents the first Bengali Pronunciation Error Detection System
using Hidden Markov Models (HMMs) and Bigram language models. It obtained
an 85.5% accuracy on sentences and a 91.5% at the word level but also detected
limitations involving sentence-level confusions where conjugate words or certain let-
ters at the beginning could be misplaced. This paper describes a novel Bengali
speech recognition approach based on the RNN with offline characteristics, mini-
mal preprocessing, and open-source capability. It uses different models including
CNN and RNN, character-based and word-based Hidden Markov Models (HMM).
The process is composed of speech recording, noise reduction, and MFCC feature
extraction reaching an incredible 86.058% accuracy. Still, it is based on a speaker’s
dictionary for isolated word recognition and may have diminished precision under
aged speakers. However, it has the potential to make the Bengali language speech
recognition better not only in Bangladesh but also worldwide.[13]

2.2.4 Integration of AI in Speech Recognition
Artificial intelligence (AI) has achieved tremendous progress with one of the most no-
table milestones being the advent of machine learning. Machine process algorithms
and programming methods for the purpose of analysis, cognition, and training of
data. This advancement has resulted in the birth of deep learning, an element of
machine learning that involves the design of artificial neural networks that can learn
and make autonomous decisions. A real-life example of deep learning, especially in
image classification, is to increase efficiency in business, eliminating the necessity
of manual classification which would have cost time and money. An example of a
real-life application is product classification which aims at reducing price compari-
son optimization. In this regard, different CNN structures, including VGG16 and
ResNet, are compared in terms of accuracy on solving the image classification prob-
lems. The intention is to find the best architecture for the task, promoting accurate
and fast product classification.[22]

2.2.5 Deep Learning: A Significant Leap Forward in Speech
Recognition

In his article ‘Transfer Learning for Image Classification Using VGG-16 and Deep
Convolutional Neural Networks’, Srikanth Tammina starts the transfer learning
journey to address the limitations of traditional machine learning techniques. She
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writes: Transfer learning reuses the knowledge from the pre-trained model to achieve
better accuracy than training from scratch. For example, using my VGG-16 network
as a pre-trained model to learn the classification of Tamil characters. Due to the
scarcity of labeled data in the target domain, Tammina investigated the effectiveness
of transfer learning in improving model accuracy despite limited training samples
per category. The study outlines a systematic approach that begins with designing
a convolutional neural network (CNN) model using TensorFlow and Keras. Tamina
then compared the performance of the base CNN model with variants fine-tuned
using image augmentation and a pre-trained VGG-16 model. The results show the
significant advantages of transfer learning, with the VGG-16-based method provid-
ing superior accuracy in classifying images of dogs and cats. But, as the paper also
notes, ‘the road to such a perfect transfer learning model is far from easy’ due to
a lack of computational resources and deep-learning domain experts. Despite its
limitations, Tammina states that thanks to transfer learning, if ‘we can solve some
of the dents in outputs of deep learning models, it will transform the capabilities
of machine learning and help us to solve real-world problems in image classifica-
tion problems along with other fields.’ Overall, this paper underscores the power
of transfer learning for leveraging what is known from training data to learn about
novelties and proves useful today for researchers and practitioners alike who work
in the field of deep learning and computer vision.[14]

This paper gives a neural network model for image recognition by means of deep
learning, which can automatically extract multiple features for recognition, and its
advantage over traditional methods is that. Reasonably, our experiments demon-
strate the validity of the model, accuracy, and robustness to noise, greatly improving
the image recognition. Deep network and vanishing gradients can be addressed for
the case of neural networks, with ResNets solving such an issue on the one hand and
allowing training deep networks on the other hand.[18] In recent literature [20], sev-
eral authors of the latest literature have considered the use of deep learning models
for image classification analysis related to plant diseases and their diagnosis. Wu et
al (2024) aimed to develop a proficient algorithm for the classification of corn leaf
diseases by using the ResNet18-based model. The intention is to raise agricultural
yield by giving farmers an opportunity to quickly detect and counteract corn leaf
diseases. The study authors provide a detailed description of their approach which
involves pre-processing parameters, including image adjustments and enhancements
to enhance the homogeneity and diversity of the data. Finally, they applied the
dataset to train the model with healthy and diseased leaves of corn and used di-
agnostic parameters such as accuracy, precision, recall, and F1 score to measure
the performance. The benefits of their method include high accuracy, and gener-
alization capability as they show this through the continuous increases in model
performance during training. Nevertheless, there could also be the requirement for
massive and varied datasets to prevent the model from performance incompetence
caused by neglect of different types of diseases or meteorological conditions.

Progress made on deep learning architectures in the place recently has guided the
significant workout in many image processing duties, such as segmentation and clas-
sification. On top of this, customized U-Net series of models have been very active
recently for their success in image segmentation and classification (Ronneberger et

12



al. , 2015). On the downside, these models tend to use transposed convolution
(TC) for their encoders resulting in perceptual loss of discriminative features that
are critical for adequate representation. One way to handle this problem is the novel
DenseUNet model that relies on dilated/dense TC (Ronneberger et al. , 2015) to
offer more precise pooling and sharing of information between different levels of the
model. It could be done using four blocks that were built up by dense TC operations
and they made it possible for the model to restore the size of features at different
scales. So, it led the network to better capture low-level features, in turn, that
muttons the ability to identify objects more accurately. The cited paper has indeed
successively confirmed DenseUNet’s capability to perform image classification. The
paper has reported good stability of training in several datasets including CIFAR-
10, CIFAR-100, SVHN, and FMNIST (Ronneberger et al. , 2015). This justifies
the necessity to find ways, like DenseUNet, to have deep learning models that deal
with images more efficiently and robustly used in image classification tasks. [20] [30]

In the study by Joshi et al. (Year) presents a robust framework for classifying sports
images based on environmental cues and surroundings, utilizing the InceptionV3 ar-
chitecture for feature extraction and Neural Networks for classification. The frame-
work demonstrates high accuracy in classifying six sport categories—rugby, basket-
ball, tennis, badminton, cricket, and volleyball—achieving an impressive average
accuracy of 96.64% (Joshi et al., Year). This study contributes to the literature by
showcasing the effectiveness of deep learning techniques, particularly Neural Net-
works, in handling large image datasets efficiently and accurately. The comparison
with other classifiers such as Random Forest, K-Nearest Neighbors (KNN), and Sup-
port Vector Machine (SVM) highlights the superiority of Neural Networks in sports
image classification tasks (Joshi et al., Year). Furthermore, the study identifies op-
portunities for future research, including image preprocessing techniques to enhance
accuracy, incorporation of additional sports categories for analysis, and exploration
of alternative feature descriptors for improved results (Joshi et al., Year).

13



Chapter 3

Dataset

3.1 Data Collection
In this research, we have created a unique dataset that contains voice samples taken
from Bangla language speaking kids. The collection of our dataset is perfect and
specialized, also this kind of dataset is first in the Bangla language as we collected
from the field. In this dataset, there are audio files that were taken from 21 kids,
these represent 47 Bangla characters and 10 Bangla numeric characters, starting
from (অ to ◌ ঁ) and (০ to ৯) in a total 57 classes. An average of 25 samples from each
character for each child exist here and more than 31,147 spectrogram images are
here. All the recordings from a child were captured in a single session. And after
that, we converted the audio (.mp3) file into (.Wav) files. Figure 3.2, is a polar or
radial histogram, of our class distribution of audio samples.

Figure 3.1: Audio Data Collection

Figure 3.2: Dataset Class Distribution
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3.2 Data Cleaning
As shown in Figure 3.3 noise reduction and data cleaning are done with the help
of Audacity software. Furthermore, every (.wav) file was segmented into parts to
match the individual samples.

Figure 3.3: Audio Data Cleaning

3.3 Data Conversion
Figure 3.4 illustrates, that we changed the (.wav) files into mel-frequency spectro-
gram images and kept them in an organized folder management system. For easier
access and data handling, a thorough CSV file was created that included the record-
ings’ classifications and also their matching spectrogram image paths.

Figure 3.4: Converting Audio Data into Spectrogram Image Data
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3.3.1 Dataset Class Distribution
To ensure the dataset’s purity and reliability, we have crafted it meticulously from
the ground up. Emphasis was placed on recording in a quiet environment to mini-
mize any background noise, thus preserving the clarity of the samples. Recordings
compromised by excessive background noise were excluded to maintain the dataset’s
quality. Subsequently, selected recordings underwent a rigorous cleaning process
using Audacity audio software to eliminate any residual background sounds, which
might interfere with the analytical processes. This careful curation is vital to boost
the precision of any models that will be trained or tested with this dataset.

Character Number of Samples
অ 528
আ 521
ই 512
ঈ 510
উ 525
ঊ 519
ঋ 526
এ 528
ঐ 525
ও 529
ঔ 534
ক 535
খ 523
গ 541
ঘ 533
ঙ 512
চ 533
ছ 525
জ 511
ঝ 531
ঞ 534
ট 537
ঠ 519
ড 547
ঢ 554
ণ 499
ত 528
থ 512
দ 482

Character Number of Samples
ধ 489
ন 479
প 494
ফ 478
ব 483
ভ 480
ম 478
য 558
র 454
ল 478
শ 480
ষ 471
স 474
হ 483
ৎ 486
◌ং 536
◌ঃ 517
◌ঁ 477
০ 467
১ 515
২ 523
৩ 526
৪ 531
৫ 518
৬ 526
৭ 538
৮ 538
৯ 537

Total 31147

Table 3.1: Dataset Class Distribution Table
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Figure 3.5: Section Distribution

Figure 3.6: Sample Distribution Among Classes
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3.3.2 Dataset Gender and Regional Distribution
While gathering data sets, the issue of the impartiality of the data should undoubt-
edly be in focus. Therefore, the case is always that we give the same measure of
data to male, as that of female children. Moreover, to ensure the transparency of the
information we provide, we work to include data from as many regions as possible.
This method essentially enables us to build an entire and diverse dataset, which
is one of the key factors in arriving at representative and unbiased results during
our analysis. Through the multicultural and representative aspects that make our
findings more accurate and generalizable, we intend to deliver a data set that is
specific to the cultural environment we are studying.

Kids (No.) Gender Region
KID (1) Female Dhaka
KID (6) Female Chittagong

KID (7-8) Male Feni
KID (9) Female Feni
KID (10) Female Shylet
KID (11) Female Dhaka

KID (12-15) Male Mymenshingh
KID (16-19) Female Cumilla

KID (20) Male Cumilla
KID (21-22) Female Rajshahi
KID (23-25) Male Barishal

Table 3.2: Kids Gender and Regional Based Data Distribution

Gender Count
Male 10

Female 11
Total 21

Table 3.3: Kids Gender Based Count

Region Count
Dhaka 2

Chittagong 1
Feni 3

Sylhet 1
Mymenshingh 4

Comilla 5
Rajshahi 2
Barishal 3

Total 21

Table 3.4: Kids Region Based Count
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3.3.3 Dataset Folder Organization
Folder Distribution: The dataset is meticulously organized into individual fold-
ers for each child participant, labeled from Kid1 through Kid25. This structured
distribution facilitates the isolated analysis of spoken number data for each child,
enabling precise evaluations and comparisons.

Figure 3.7: Folder Distribution

Sub-Folder Distribution: Within each participant’s directory, subfolders are sys-
tematically labeled according to a combination of the first digit (representing the
child’s identifier) and a character.

Figure 3.8: Sub-Folder Distribution

Image Distribution: In the subfolder for the Kid folder, each spectrogram image is
named solely based on the sequence of its recording, emphasizing the character. This
streamlined naming convention facilitates easy identification and access to specific
phonetic instances for detailed analysis.

Figure 3.9: Image Distribution

19



3.4 Data Partitioning (Training and Testing)
Our preprocessing workflow commenced with the retrieval of image paths and their
corresponding labels from a carefully assembled CSV file. We maintained the quality
of our dataset by eliminating any entries lacking an ’Image Path’. Next, we trans-
formed the categorical labels into a numerical representation, making them suitable
for our machine learning algorithms. Employing stratified random sampling, we
allocated 80% of the dataset to training and reserved the remaining 20% for testing.
Within the training portion, we designated a portion specifically for validation.

Figure 3.10: Data Partitioning

Characters Number of Samples Training Dataset Testing Dataset
অ 528 422 106
আ 521 417 104
ই 512 410 102
ঈ 510 408 102
উ 525 420 105
ঊ 519 415 103
ঋ 526 421 105
এ 528 422 106
ঐ 525 420 105
ও 529 423 106
ঔ 534 427 107
ক 535 428 107
খ 523 418 105
গ 541 433 108
ঘ 533 426 107
ঙ 512 410 102
চ 533 426 107

Table 3.5: Data Partitioning Table-1
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Characters Number of Samples Training Dataset Testing Dataset
ছ 525 420 105
জ 511 409 102
ঝ 531 425 106
ঞ 534 427 107
ট 537 430 107
ঠ 519 415 104
ড 547 438 110
ঢ 554 443 111
ণ 499 416 104
ত 528 422 106
থ 512 410 102
দ 482 386 96
ধ 489 391 98
ন 479 383 96
প 494 395 99
ফ 478 382 96
ব 483 386 97
ভ 480 384 96
ম 478 382 96
য 558 366 92
র 454 363 91
ল 478 382 96
শ 480 384 96
ষ 471 377 94
স 474 379 95
হ 483 386 97
ৎ 486 389 97
◌ং 536 429 107
◌ঃ 517 414 103
◌ঁ 477 382 95
০ 467 374 93
১ 515 412 103
২ 523 418 105
৩ 526 421 105
৪ 531 425 106
৫ 518 414 104
৬ 526 421 105
৭ 538 430 108
৮ 538 430 108
৯ 537 430 107

Table 3.6: Data Partitioning Table-2
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Chapter 4

Algorithms

4.1 CNN (Convolutional Neural Network)
4.1.1 CNN Preprocessing
In order to improve speech recognition accuracy, the Convolution Neural Network
template designed for raw audio should be modified in a different way. The process
involves the normalizing of the spectrogram image to make it more uniform across
all sections regardless of the time frame. The dataset is comprehensively balanced
for all classes of training data by including powerful data augmentation methods
that are able to handle variety. We used two augmentation strategies, one of which
is a random crop and the other is to make the image laterally flipped so that the
CNN can be trained adequately for what diverse data inputs might exist.

4.1.2 CNN Overview
Convolutional Neural Networks are a type of deep learning model. They work like
the human visual cortex to recognize images and videos. These networks have con-
volutional layers with filters that detect things like edges and textures. The filters
create feature maps that show the local connections. As the feature maps go through
more layers, they become more detailed and specific.[6]

Pooling layers come after the convolutional layers. Their purpose is to make the
feature maps smaller and reduce parameters. This helps avoid overfitting and makes
computations simpler. Max pooling is commonly used. It selects the highest value
from certain regions of the feature maps. CNNs use the Rectified Linear Unit (ReLU)
activation function. ReLU brings non-linearity which solves an issue called vanish-
ing gradient. Vanishing gradient is a problem in deep neural networks. ReLU is
easy to compute but can still capture complex patterns.

After all the convolutional layers, fully connected layers are used. The job of these
layers is to combine and label the features from earlier layers. Neurons in these lay-
ers are connected to every neuron in the last convolutional layer. Fully connected
layers add composed features together. To stop overfitting, CNNs often use dropout.
Dropout randomly ignores some layer outputs during training. This helps the net-
work learn general features instead of memorizing the training data.
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CNNs work well with big image data sets. They can see things even when the things
move around. Shared weights in layers make CNNs faster. CNNs help spot things
in photos and videos. They also help with medical tests and language tasks.

The design of CNNs is inspired by individual cortical neurons of the animal visual
cortex, which have receptive fields for stimuli. This biological analogy is reflected in
the fact that convolutional layers are local and layered making them efficient and
reliable for visual data processing.

4.1.3 CNN Working Procedure
Building a Convolutional Neural Network (CNN) starts with image collection and
preprocessing, including normalization (adjusting pixel values within 0 to 1) and re-
sizing for standardization. This helps in gradient descent and corrects input to the
network. Second, the CNN architecture is structured with convolutional layers to
extract features with filters and activation using the ReLU function. Firstly,Pooling
layers reduce dimensions to save from overfitting, fully connected layers infer high
level features, while dropout layers prevent overfitting.

Compilation of the model requires optimizers and loss functions, with metrics such
as accuracy or precision in evaluating the model. During training, the model will be
trained by means of minimizing the loss with the training data, assuming weights
based on the predictions and the real labels. The model will be tested on a different
dataset, which might cause changes in architecture or hyperparameters. The refined
and upgraded model is used in a variety of fields, from the recognition of images
to specific uses, which need constant development with new data to maintain its
accuracy and relevance. In every step, close monitoring is a must to avoid either
overfitting or underfitting and achieve good generalization for new data, hence a
productive and satisfying CNN.

Figure 4.1: CNN Working Procedure

23



4.2 VGG16
4.2.1 VGG16 Preprocessing
In the VGG16 model, images are to be resized to 224x224 pixels, which match its
design. Each pixel value is normalized according to the mean and standard deviation
from the ImageNet dataset to emulate the VGG16’s training environment with its
data. Techniques for data augmentation such as the image scaling, rotations, and
horizontal flips are applied to make the model be able to generalize across diverse
visual inputs. For that reason, this model became capable of generalizing the data,
showing its resilience to various types of dependency.

4.2.2 VGG16 Overview
VGG16 was one of the first models proposed by the Visual Geometry Group (VGG),
and is a milestone in the history of Convolutional Neural Networks (CNNs) for im-
age recognition and processing. Its depth and accuracy in the image analysis task
provide strong evidence for the power of deep architectures in recognizing highly
complex patterns in images. This model is called VGG16 because its original ver-
sion used 16 convolutional layers (so we could say VGG6 had 6 convolutional layers).
VGG16 relies on shall layers of convolutions, each of which detects features (such as
lines, edges, textures, and shapes) and smaller 3×3 filters. These are then sensitive
to a much more complex range of features, increasing in complexity. The Figure
below illustrates these layers with three visual examples that are classified into the
same category (airplane type). The colored boxes (blues, greens, and oranges) rep-
resent features detected by different layers in the architecture.[15]

If we look closely, we can perceive the sequential nature of these layers: as it goes
from left to right, more complex features are detected. VGG16 activations. VGG16
also uses the Rectified Linear Unit (ReLU) activation functions. Remember that
activation functions yield a measure of how much each neuron in the neural network
is activated. Here, the nonlinearity of each unit in the convolutional layer allows it to
learn complex patterns and interactions in the signal. This activation function adds
a substantial amount of flexibility to the model and makes it highly appropriate to
classify a wide variety of image features. VGG16 was introduced to the ImageNet
benchmark dataset for object detection and classification in 2014, which instantly
achieved the best results on that day. Nowadays, this model is considered a milestone
in the history of CNNs for object detection and classification thanks to its accuracy
and low computational capacity. Bottom-up to top-down layers.

4.2.3 VGG16 Working Procedure
VGG16 is an engineered complex convolutional neural network for image processing
tasks. It contains a large number of convolutional layers equipped with small filters
for extracting features from input images in an increasingly complex manner. Max-
pooling layers interspersed between convolutional layers decrease spatial dimensions,
hence improving computational efficiency and invariance of features. As input im-
ages go through VGG16’s convolutional and pooling layers, it progressively identifies
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and extracts complex visual features related to classification tasks. The hierarchi-
cal process of feature extraction enables VGG16 to develop discrimination based on
patterns and attributes from the input images. Later, VGG16 transforms these fea-
tures into a one-dimensional vector after feature extraction and finally passes them
through fully connected layers for feature aggregation and classification. In the last
step of classification, SoftMax activation generates class probabilities to conduct ac-
curate image classification. The use of ReLU activation functions in the architecture
of VGG16 improves the ability to learn complex patterns and relationships, hence
boosting the accuracy of classification. Such a nonlinear activation function is of
prime importance in enabling VGG16 to detect and classify various attributes of an
image.

Figure 4.2: VGG16 Working Procedure

4.3 VGG19
4.3.1 VGG19 Preprocessing
In order to ensure that a variety of deep learning models are utilized efficiently, cus-
tomized preprocessing protocols play a key role. For the VGG19 model, a 224x224
pixel size is first provided for the image. Subsequently, the pixels are scaled af-
ter normalization, which follows the ImageNet dataset distribution, and is a stage
seamlessly meshing with the VGG19 pre-training. Additionally, a set of data aug-
mentation strategies such as rescaling, rotations, shifts, and flips are put into action.
Furthermore, for the images a couple of generator objects are made to do batch pro-
cessing in parallel mode.

4.3.2 VGG19 Overview
The VGG, developed by the Visual Geometry Group, is an important landmark in
the world of CNNs and especially in the domain of image recognition and image
processing. It is the deep VGG architecture that makes VGG famous and brings
in major progress in the domain when it was introduced. This is manifested by
the depth of VGG as demonstrated by the two well-known architectures: VGG-16
and VGG-19, which refer to the number of convolutional layers that they possess.
It is these layers that are very important in CNN because they detect features,
such as edges, textures, and complex patterns, using different filters. VGG-19, with
more layers than VGG-16, is better at understanding and classification of visual
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information.[10] Some of these layers contain a convolution with ReLU activation
function that introduces nonlinearity to allow the network to learn sophisticated
patterns. VGG thus dominated the sphere of object detection, setting new bars in
respect to the accuracy-to-efficiency ratio. First and foremost, it flexed its muscles
on ImageNet, a huge image database for recognition tasks. The VGG architecture
advances from simple to complicated stacks running across a variety of image fea-
tures and improving object recognition accuracy. It has since pivoted away from its
original function and has played a pivotal role in the development of the technology
for image classification. Its design principles continue to shape further research and
development in this field. One of the main reasons VGGNet holds relevance is that
it empowers the ability of CNNs to develop more complex and specialized image
recognition and processing systems

4.3.3 VGG19 Working Procedure
VGG19 is a highly complicated deep convolutional neural network that is used for
image processing. It uses several convolutional layers of small 3x3 filters that move
about the image, progressively extracting features from basic edges and textures in
the first layers to more intricate principles in deeper layers. Max-pooling is applied
to reduce spatial dimensions, decreasing parameters and enhancing invariance to
input shifts. As the generated image passes through these convolutional and pool-
ing layers, VGG19 progressively identifies increasingly complex features, one of the
essential ways in which visual information is interpreted. Lastly, classification is
based on top-level features after going through all layers. This is achieved by flat-
tening the elements of the ultimate pooling layer into a vector that runs through
fully connected layers, where the extracted features are gathered for comprehensive
image interpretation. The last one is image classification, where VGG19 transforms
the outputs of its last layer into class probabilities using a softmax activation func-
tion Neatly, for all layers, VGG19 relies on the ReLU activation function, which
introduces nonlinearity into the model if positive, zero otherwise. Deep learning
requires this kind of nonlinearity because the data patterns that need to be learned
are complex and nonlinear. Overall, VGG19’s interpretation consists of succes-
sive convolutional and pooling layers for hierarchical feature extraction, flattening,
and fully connected layers for information consolidation and classification, based on
ReLU activation for nonlinear association learning.

Figure 4.3: VGG19 Working Procedure
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4.4 Resnet18
4.4.1 ResNet18 Preprocessing
ResNet18 uses the same preparation steps as other ResNet models like ResNet50.
Pictures are made smaller to 224x224 pixels. Normalization adjusts pixel values to
match the average and standard deviation of ImageNet. To stop overfitting and
speed up training, batch normalization and dropout are used during preparation.
These steps help ResNet18 learn better.

4.4.2 Resnet18 Overview
In the domain of deep learning, the ResNet18 architecture acts as a huge contri-
bution, especially in the tasks of image classification. It is a variant of Residual
Network, or very commonly known as ResNet, that gives an even more lightweight
solution than its deeper counterparts, such as ResNet50, and still delivers astonish-
ing performance. But at its very core, ResNet18 solves a vanishing gradient problem
that is very common in deep neural networks: this is done with residual links, which
also go by the name of skip connections. These connections create direct paths for
the flow of gradients back, thereby enabling the training of deeper networks without
having their performance degrade. The architecture of ResNet18 consists of many
residual blocks, each comprising a number of convolutional layers. Due to its abil-
ity to capture both intricate details and overarching meanings, ResNet18 performs
remarkably in extracting hierarchical features from the input images. What sets
ResNet18 apart is its accuracy in image classification tasks, whereas it has a rela-
tively shallow depth in comparison to other ResNet models. This, therefore, makes
ResNet18 an ideal selection where computational resources are restricted or where
faster inference speed is required without hitting performance.[27]

4.4.3 Resnet18 Working Procedure
Working on ResNet18 consists of a logical sequence in how to manage input images:
starting with basic preprocessing procedures like resizing and normalization to get
rid of variability and create the best conditions for the network’s input. Prepro-
cessed input images are fed to the initial convolutional layer of ResNet18, where
basic features, such as edges and textures, are identified.

With the process going on, the subsequent convolutional and pooling layers refine
and enhance such features, progressively obtaining hierarchical representations of
the input images. The main feature of ResNet18 is residual blocks consisting of
convolutional layers followed by identity mapping due to skip connections. In fact,
these allow gradients to directly flow through the network, thus avoiding the van-
ishing gradient problem and allowing training with deeper networks. The feature
maps, after passing through residual blocks, are fed to global average pooling to
collapse the spatial information into a single value per channel. This reduces the
computational complexity of the network while retaining critical features.

The output of the global average pooling layer is then flattened and sent to fully
connected layers for high-level reasoning and classification. The SoftMax activation

27



function maps it to yield class probabilities, making the ResNet18 model predict the
most likely class for a given input image.

Figure 4.4: ResNet18 Working Procedure

4.5 Resnet50
4.5.1 ResNet50 Preprocessing
ResNet50 needs images to be 224x224 pixels, just like VGG19. First, the pixel
values are adjusted based on ImageNet’s averages. Then, batch normalization and
dropout layers help the training go faster. These layers also prevent overfitting,
which is when a model performs poorly on new data.

4.5.2 Resnet50 Overview
ResNet50 is part of the family of ResNets, standing for residual networks, and is
represented by 50 layers; these have contributed greatly to the development of deep
learning algorithms for image classification tasks. Conventional deep neural net-
works, as they went deeper, would often have problems with their performance,
usually plateauing or degrading. ResNet50 solves this problem, resulting in a deep
yet powerful network.

The most important innovation with ResNet is residual connections, also called skip
connections. These connections offer solutions to the vanishing gradient problem, a
serious problem that arises in deep networks: gradients become ever smaller during
backpropagation, making it difficult to learn in the earlier layers. In a typical layer
of a neural network, the input is transformed through weights and nonlinear acti-
vations to obtain an output. In ResNet, each layer is designed to learn a residual
function relative to the layer inputs. In other words, such layers learn the difference
between the desired mapping with the identity function. If the identity function is
the optimum, the layer can adjust weights toward zero to approximate it. Residual
connections create shortcuts to some or even multiple layers, thus easing the di-
rect flow of gradients during backpropagation. It overcomes the vanishing gradient
problem because gradients need not pass through a long chain of diminishing trans-
formations. Notably, these residual connections allow the network to learn identity
functions when it needs to, thus enabling it to bypass redundant layers while retain-
ing important features.[19] ResNet, including ResNet50, is one of the most excellent
state-of-the-art architectures on image recognition tasks and has created records in
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many competitions and benchmarks. Its depth and revolutionary residual connec-
tions resolve vanishing gradient issues, enabling the training of deep neural networks
and setting new records in image recognition tasks.

4.5.3 Resnet50 Working Procedure
ResNet50 is very good at sophisticated image recognition tasks by structurally pro-
cessing images through defined stages. First, it resizes images uniformly to 224x224
pixels, making input handling easy and standardizing the scale of pixel values to
a common range for efficient convergence during training. After preprocessing, it
is the beginning of deep learning through the first convolutional layer by filtering
the input image to produce different feature maps of the image aspects, such as
edges and textures. Convolution and max-pooling steps follow, reducing spatial di-
mensions, reducing the computational load, and preventing overfitting. ResNet50
is all about the four stages of residual blocks; each stage has numerous residual
blocks that are themselves made up of three convolutional layers, which fiddle with
the image features by sometimes down-sampling and elsewhere up-scaling the space
dimensions, hence controlling network depth with no added complexity. Critical in-
novations include shortcut connections within residual blocks, allowing the network
to skip layers and propagate gradients during training. That helps with the vanish-
ing gradient problem and learning identity functions, where deeper layers are not
worse than shallower ones. Toward the end of the network, global average pooling
was introduced, mapping each feature map into a single value, reducing parameters
and computations, hence helping avoid overfitting. The output is further flattened
and fed to a fully connected layer for classification. The SoftMax activation func-
tion creates a probability distribution over the recognized classes, where the class
that has the highest probability is the final prediction, and the process of image
processing and recognition in ResNet50 is complete.

Figure 4.5: ResNet50 Working Procedure
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4.6 DenseNet
4.6.1 DenseNet Preprocessing
Getting data ready for DenseNet starts with making images 224x224 pixels big.
This matches the input size the network expects. Next, we normalize pixel values
by subtracting the mean and dividing by the standard deviation from ImageNet
data. To avoid overfitting, we use data augmentation. We randomly crop and flip
training images. This helps the model work well with new images it hasn’t seen
before.

4.6.2 DenseNet Overview
DenseNet, short for Densely Connected Convolutional Networks, represents a break-
through in convolutional neural network architectures, particularly in addressing
the challenges of training very deep networks effectively. Introduced by Huang et
al. in 2017, DenseNet proposes a novel connectivity pattern wherein each layer is
connected to every other layer in a feed-forward fashion. This densely connected
architecture promotes feature reuse and facilitates gradient flow, addressing the
vanishing gradient problem while encouraging feature propagation throughout the
network. The origin of DenseNet architecture lies in the dense connectivity structure
where every layer directly connects with all the others regardless of their depth. In
contrast with classical architectures where the layers receive the inputs from the pre-
vious block, the DenseNet layers receive inputs from all preceding layers inside the
block. The connection scheme produces enhanced feature propagation thus, deeper
layers are able to have direct access to features from the early stage of the model.
Thus, DenseNet exhibits high feature reuse, parameter efficiency, and gradient flow,
which lead to better learning and generalization. DenseNet includes building blocks
called dense blocks as input. These blocks each consist of several layers of layers
that are created closely together. Through the use of each dense block, previous
layer feature maps are concatenated along the depth dimension, giving rise to the
subsequent layer’s dense connection with preceding layers. The dense blocks are
physically separated from each other with interspersing transition layers. Physical
separation helps to overcome the problem of spatial dimension and channel number
that is controlling model complexity, and at the same time, it facilitates feature com-
pression. The DenseNet design demonstrates a record performance of the previous
architectures in the image classification aspects including accuracy and trainable
parameters. Its architecture has many neurons connected tightly, so information
will spread easily and gradients will flow, thus training deeper networks with fewer
parameters is possible. DenseNet’s emergence has been a dirt spark as this success
led to more and more research on densely connected architectures and mentioned
some key elements of deep learning methodologies.[24]

4.6.3 DenseNet Working Procedure
Importantly, DenseNet hinges upon a network of tightly knit blocks of neurons
tightly knit to share and reuse the abundance of features and spread them in a wide
network. The working procedure can be outlined as follows: The working procedure
can be outlined as follows:
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• Input Processing: The DenseNet starts by preprocessing input images, nor-
malization of pixel values, and resampling to a uniform concentration. This
purpose is to get rid of the discrepancies in the training process and to facilitate
the formation of the descending gradient.

• Dense Connectivity: For all indicated layers, there are dense connections
among the previously generated feature maps of a higher layer. In turn, this
interconnected pattern supports second-generation repetition, and in being so,
sees that features from the earlier sections are directly identifiable. This leads
to DenseNet having a condensation effect whereby feature maps are concate-
nated along the dimension of depth. This creates a rich feature representation
and promotes effective gradient flow.

• Transition Layers: Following the blocks with a high density, the layers
between the sea are used to decrease spatial dimension and to reduce channel
numbers. Other layers like calibrating or even shrinking the features as well
control the complexities of the model and this way is quite helpful for resource
utilization and parameter efficiency.

• Global Average Pooling: Terminal networks of the networks are being
applied after that average pooling is performed, to aggregate feature maps into
a single vector representation. Hence, the pooling process eliminates spatial
aspects to a fixed size of spatial dimension which offers feature extraction and
classification.

• Classification: The aggregated attributes make their way through the fully
connected layers for the finessing of the reasoning and classification. The last
one, most often, utilizes the SoftMax activation function along with outputting
the probabilistic values of classes in order to return the class that has the
highest probability.

By using a highly interconnected architecture, DenseNet ensures the wide spread
of features to be reused and transmitted, therefore enhancing the learning quality
and generalization. The Densenet model relies on the exploitation of the connection
patterns and is able to achieve the best results in various image recognition tasks as
it is not only very accurate but also parameter efficient.

Figure 4.6: DenseNet Working Procedure
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4.7 Inception V3
4.7.1 Inception V3 Preprocessing
The Inception V3 model needs images to be resized to 299x299 pixels. This is
because the model was designed for high-resolution inputs. The pixel values are
normalized using statistical data from ImageNet. The Inception V3 model uses
more advanced augmentation techniques. These include changing aspect ratios,
rotations, and shifts. This helps the model handle different input conditions. It also
improves the model’s ability to make accurate predictions in various scenarios.

4.7.2 Inception V3 Overview
Inception v3, an improved version of Inception architecture, has been regarded as
a game-changing model in the domain of CNN (Convolutional Neural Networks).
Brought about by the minds of Google scientists, this architecture denotes a major
uptick in the skill of image recognition and processing. While its previous counter-
parts have adopted inception modules that combine various kernel sizes in the same
layer to produce features at different scales, Inceptionv3 makes use of an ingenious
and intricate inception module that primarily focuses on the generation of features
at multiple scales within the same layer. With this approach, the network is able to
handle the least information and still high-level cognition, which are processes that
characterize human mental operations.

The architecture of Inception v3 is defined by its intricacy and depth that respec-
tively implies the vast number of layers and complexity of the links. The combina-
tion is involved in the module that allows parallel convolutional layers each with its
own filter size to be arranged in such a way to ensure the extraction of features at
different levels of abstraction. This multi-layered structure transforms the network
enabling Inceptionv3 to achieve excellent performance when working with the vari-
ous kinds of tasks.

Indeed, one of the most distinguishing features of Inceptionv3 is the utilization of
auxiliary classifiers as the intermediate layers of the network are being added. These
auxiliary classifiers, associated with additional supervision, give a good guarantee
in training and thus help to overcome a vanishing gradient problem and make the
model stable and convergent.

What is getting most people excited about Inceptionv3 is that it has shown the
highest performance not only in different benchmark datasets, but it has exceeded
previous models in terms of accuracy and efficiency. Its robustness and generaliza-
tion capability grant it a wide space in the tools used in applications such as image
classification, object detection, and precise localization.

4.7.3 Inception V3 Working Procedure
The functioning mechanism of Inceptionv3 is designed around its hybrid architec-
ture and the fact that it extracts features. This architecture consists of the inception
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modules which are the core of the model and they represent building blocks for cap-
turing multi-scale features within the input images. They are based on convolutional
operations implemented in parallel with kernels of different sizes, so the network pro-
duces information at different levels of detail or granularity.

In every layer of the network, the feature maps are processed via convolution and/or
pooling algorithms, and the complexity increases gradually while the level of abstrac-
tion gets higher. The employment of batch normalization together with advanced
activation functions such as the ReLU function makes the model both stable and
quickly converging during training. Also along with the primary classification out-
come, it adds auxiliary classifiers in the middle level which includes extra control
and supervision. Such less frequent auxiliary classifiers enhance the propagation of
gradients and quick training compared to dense classifiers thereby, improving the
learning dynamics and convergence efficiency of the model.

In the early training phase, Inceptionv3 employs stochastic gradient descent (SGD)
to optimize the weights along with techniques like momentum and learning rate
scheduling. Techniques like regularization that employ dropout and weight decay
are also incorporated to reduce overfitting and improve generalization capability.

Figure 4.7: InceptionV3 Working Procedure

4.8 EfficientNet
4.8.1 EfficientNet Preprocessing
During image processing using EfficientNet, the images are resized to the network
model-specific dimensions that typically consist of 224x224 pixels for EfficientNet-
B0, and images are normalized by employing ImageNet’s mean and standard devia-
tion to guarantee consistency with its training conditions. Forming of the pictures is
also employed by both flips and random rotations to optimize the model for various
conditions, as it is required in real-life scenarios. Besides, screen generator objects
are applied exactly for efficient batch processing when the work is done with dy-
namic, large datasets. Surely, the designed environment will be wholly optimal,
as well as comply with reference implementation demands, be it in TensorFlow or
PyTorch.
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4.8.2 EfficientNet Overview
EfficientNet is a groundbreaking convolutional neural network architecture proposed
by Tan and Le in 2019 which is optimized to enhance accuracy while keeping the
number of parameters constant or even relatively small in comparison to the ex-
isting models. Its development ensures that the models are efficient for important
computational resources, precision in conditions variation, and complexities across a
vast range of scales. EfficientNet accomplishes this through a multiscale compound
scaling method, which consistently modifies height, depth, and resolution using a
defined set of fixed terms. Such arrangement promotes efficient use of system re-
sources (computer power), which, in turn, ensures excellence in results.

EfficientNet’s architecture is based on the baseline version of this network, EfficientNet-
B0, where subsequent variants are created by scaling the network and adding extra
layers to facilitate achieving goals like obtaining even higher performance with little
computation cost.[16] The scaling coefficients give the model the ability to adjust
itself at the level of capacity that matches a specific set of computing requirements,
hence making EfficientNet suitable to different hardware platforms and functional
operations.

EfficientNet has shown itself to be a very powerful method, which has pushed ac-
curacy and efficiency limits even further among deep learning methods scorers on
a variety of computer vision tasks such as image classification, object recognition,
and semantic segmentation. Its variety and scaling abilities make it one of the
prominent decisions for the app manufacturing in real-time high-performance image
segmentation on resource-constrained devices.

4.8.3 EfficientNet Working Procedure
Through effective implementation of the convolutional layers, EfficientNet works by
segmenting the input images that are being processed in a sequence consisting of
each convolutional layer designed to elicit progressively higher-level features from
the data. The topology is enhanced by three factors: the number of layers, the num-
ber, and the resolution, which are scaled via the coefficient additionally, to achieve
optimal performance under variable computational constraints.

The compound scaling technique is the core mechanism of EfficientNet, allowing for
simultaneous growth of the width and depth of the network while maintaining its
structural integrity. This scaling strategy allows the network to stay equally focused
on efficiency and accuracy, ultimately making the model settle for state-of-the-art
performance with minimal computational resources. EfficientNet’s training involves
pattern recognition and image feature learning by altering the weights of its convo-
lutional layers through back migration. This model is trained using large datasets
with labeled images, so it is able to generalize its learning over and to new and
unknown data.

Being quite efficient, EfficientNet can very easily be deployed on different hard-
ware platforms, such as mobile phones and embedded systems where computational
resources can be scarce. Its capability of obtaining high performance with a low
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default level of computer resources makes it a good option in various applications
including computer vision and beyond.

Figure 4.8: EfficientNet Working Procedure

4.9 MobileNetV2
4.9.1 MobileNet V2 Preprocessing
MobileNet V2 is a computer program. It is used on phones and tablets. It needs
pictures to be 224 pixels by 224 pixels. MobileNet V2 uses special numbers from
ImageNet. The numbers help the program work better. Too much training can
make MobileNet V2 not work well. Moving and turning the pictures a little helps.
The program also uses batch normalization. Batch normalization makes training
faster and better.

4.9.2 MobileNetV2 Overview
MobileNetV2 has introduced an evident improvement in the course of CNNs that is
evident in image classification and recognition specifically. It was developed espe-
cially to be lightweight and accurate so that it could handle mobile and embedded
projects where the computational facilities are restricted.

MobileNetV2 architecture is based on the functions of depth-wise separable convolu-
tions that quickly reduce the number of computations in the traditional convolution
layers. Depthwise separable convolutions consist of two distinct layers: depthwise
convolutions and 1x1 convolutions.[17] The depthwise convolution step possesses
the unique feature of using a single filter with all input channels, whereas the point-
wise convolution step acts as a one-dimensional convolution over all the channels,
combining and transforming features.
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With the help of these depth-wise separable convolutions, MobileNetV2 has a good
balance between the accuracy of a model and model efficiency. This allows fine-
grained feature extraction, which in turn gives an advantage in small model size and
low inference time, making it good for resource-constrained environments.

4.9.3 MobileNetV2 Working Procedure
MobileNetV2 works by running the input images through a sequence of depthwise
separable convolutional layers and nonlinear activation functions like for, instance,
ReLU (Rectified Linear Unit). This kind of layer extracts more and more abstract
symptoms (characteristics) from the input images such as the filtration of the im-
portant patterns and characteristics. Moreover, MobileNetV2 has inverted residual
blocks with linear bottleneck layers that contribute to achieving feature extraction
with more accurate results. Enhanced capacity without a significant increase in com-
putational cost is achieved by using lightweight depthwise convolutions (referring to
inverted residuals), and linear bottlenecks conserve feature representation efficiency.
As well, the architecture introduces shortcut connections, which function in a similar
way to residual networks, to help gradient flow during training and to optimize the
network. These improvised connections lessen the danger of the vanishing gradient
problem and enable the network to learn more efficiently through deeper layers.
In fact, MobileNetV2 is based on the principle of global average pooling at the
end of the network and thus the spatial dimensions can be substantially decreased
with the generation of a representation of the features that are of low dimensionality.

These pooling functionalities gather spatial information across feature maps that
are made to a fixed-length feature vector which enables the classification. The final
part of the process is done by passing the result of MobileNetV2 through a softmax
activation function thus, getting distributions of probabilities for predefined classes.
This gives the model the ability to predict and categorize the input images as they
have been trained to recognize features with distinct categories.

Figure 4.9: MobileNetv2 Working Procedure
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4.10 SENet (Squeeze-and-Excitation Network)
4.10.1 SENet Preprocessing
The SENet model leverages the PyTorch framework’s functionality, which neces-
sitates image resizing, center-cropping, and tensor transformation. SENet-specific
image normalization is conducted using ImageNet-compatible values, and in cases
where TensorFlow is also in use, functions are provided to convert PyTorch Dat-
aLoaders into TensorFlow datasets.

4.10.2 SENet Overview
In 2018, Hu et al. proposed the Squeeze-and-Excitation Network, which proved to be
another milestone of Convolutional Neural Networks. The SENET is designed to en-
hance the ability of a network to describe the data by adapting interactions between
its feature map channels through a block referred to as Squeeze-and-Excitation,
which makes three principal actions: squeeze, activation, and scale.

Pooling allows for global averaging of the input feature map, summing up the global
spatial information into one value per channel—producing one single descriptor per
channel. This compresses the spatial dimensions, keeping the depth.

The squeezed channel descriptors then pass through a gating mechanism, a typically
two-layer fully connected network—functioning as channel-wise attention. It learns
a weight for each channel, defining its relevance, with sigmoid activation, thus re-
turning values between 0 and 1.

In the last step, the SE block shrinks the feature maps using the weights acquired
in the previous step. Independent feature scaling in each channel of the input
map is done with the channel-specific weight values. This process of re-calibration
gives more importance to the feature channels and lowers the less important ones,
strengthening the major feature representation and weakening the secondary ones.

Integrating an SE block into a state-of-the-art CNN architecture will offer better
performance by focusing on important features in an even stronger manner. Sim-
plicity and efficiency of the SE block enable embedding different CNN models into
it without large additional computational complexity. The method used to upgrade
the model’s accuracy and performance, mainly in the area of image classification
and recognition tasks.

4.10.3 SENet Working Procedure
The Squeeze and Excitation Network (SENet) follows a different method of handling
input images by focusing on the idea of channel recalibration. It is aimed at making
the network more skillful in isolating the most prominent features of an image and
drawing their attention. Key stages involved in this process include:
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At the start, the convolutional layers are the standard ones, which process the input
images. These layers are important components of Convolutional Neural Networks
(CNNs) which extract features from input images. They use various filters that per-
ceive different characteristics ranging from basic edges and textures to more complex
patterns. The depth and complexity of these extracted features usually increases as
an image passes through subsequent convolutional layers.

In certain areas of the network, Squeeze-and-Excitation (SE) blocks are strategi-
cally integrated. These blocks are positioned to augment the process of extracting
features. The function of an SE block serves a dual purpose:

• Squeezing Spatial Information: Each SE block starts with the squeezing of
spatial information. It takes the output from the previous convolutional layers
(feature maps) and applies global average pooling. This pooling operation
compresses the spatial dimensions of each channel in the feature map, resulting
in a channel descriptor. This descriptor is a compact, global representation of
the spatial features for each channel.

• Channel Recalibration (Excitation): Upon being squeezed, the channel
descriptors are employed in order to recalibrate the channels. This ‘excitation’
marks a recalibration. The learning mechanism (usually a simple neural net-
work) is applied to the channel descriptors which assigns importance weights
to each of them. By applying these weights on the original feature maps, it is
possible to emphasize or downplay certain channels. Consequently, this allows
the network to adapt its feature responses on-the-fly, concentrating more on
the most important channels for that particular input.

After convolutional layers and SE blocks have received an image, data flattens out.
In order to flatten out multidimensional feature maps into one-dimensional vectors,
they must be transformed into a single-dimensional vector.

The flattened information is then passed through one or more fully connected (dense)
layers. These layers are typical in neural networks because they are responsible for
combining learned features and performing complex decision-making processes. The
last layer of the network uses SoftMax activation function which is commonly used
in multi-class classification tasks. A probability distribution across various classes is
formed by the SoftMax function indicating how likely an input image will fall under
each class.

The thing that makes SENet different is its effectiveness in changing the feature
responses at channel level dynamically. This feature enables the network to concen-
trate more on the most important channels for a given input. It thus increases its
efficiency in better identifying images accurately and classifying them correctly.

This approach represents a significant advance within deep learning, particularly
with regard to tasks like image classification and recognition.
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Figure 4.10: SENet Working Procedure
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Chapter 5

Proposed Model: Spectro SETNet

From fig 5.1 we can see the top overview of our proposed model. Firstly, we did
data acquisition where we gathered audio from 21 children across 57 classes in a con-
trolled setting to ensure data quality. Obtain all necessary consents for recording
children, adhering to privacy and ethical guidelines. Secondly, we used Audacity
to reduce noise and segment audio into characters, ensuring proper labeling and
storage. Thirdly, we converted (.WAV) files to mel frequency spectrogram images
using a Python script that utilizes librosa and matplotlib for processing and visu-
alization. Before feeding the images into the model, we preprocessed the images
by decoding the image files, resizing them to uniform dimensions, normalizing in-
put values, shuffling the data to minimize order bias, caching for efficiency, and
prefetching to streamline the training process. Then, we designed our proposed
model Spectro SETNet. Furthermore, we check that spectrogram image dimensions
match ResNet50+SE input requirements. Adjust preprocessing as needed and adapt
the neural network to handle the spectrogram images. Then after further prepro-
cessing we feed our data transformer block. Lastly, organized spectrogram images
into balanced training and testing sets. Implement data augmentation to boost the
model’s generalization capability.
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Figure 5.1: Top Level View of the Proposed Model Spectro SETNet
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5.1 Data Collection
Data collection has been discussed in chapter 3.1

5.2 .wav Dataset Preprocessing
(.wav) file preprocssing has been discussed in chapter 3.2

5.3 Data Conversion
Converting data from (.wav) file to mel frequency spectrogram image has been
discussed in chapter 3.3

5.4 Data Preprocessing for Spectro SETNet
5.4.1 Dataset Splitting

• Train and Test:The dataset is split into training and testing sets which
segregate the data into separate sets (20% for validation and 80% for training
in this case) to ensure the model is tested on unseen data, improving its
generalizability.

5.4.2 Image Preprocessing
• File Reading: The image file is read into a byte string to be decoded into a

tensor, facilitating further image manipulations.

• Decoding: Converting the byte string into an RGB image tensor standardizes
data format, preparing it for consistent processing and analysis. When a JPEG
image is decoded, the byte stream is converted into a 3D tensor of RGB values.
Mathematically, this transformation can be represented as a mapping from
byte stream B to a tensor T :

T = decode(B) (5.1)

In this context, T is a tensor of shape (height,width, 3), where 3 represents
the RGB channels.

• Resizing: Standardizing images to 224x224 pixels aligns with the input size
requirements of the ResNet50 architecture, ensuring that the network receives
uniformly sized inputs.
Resizing involves changing the spatial dimensions of the image. If the original
dimensions of the image tensor T are (H,W, 3) and it is resized to (H ′,W ′, 3),
the resizing operation can be expressed as:

T ′ = resize(T,H ′,W ′) (5.2)
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Where T ′ is the resized tensor. The most common in deep learning frame-
works (like TensorFlow) is bilinear interpolation, where the new pixel value is
computed as a weighted average of pixels in the nearest 2× 2 neighborhood.

• Normalization: Using ResNet50’s ‘preprocess_input’ function, which ap-
plies a specific normalization that adjusts pixel values to the model’s expected
range. This normalization is based on the statistics of the ImageNet dataset,
on which ResNet50 was pre-trained, and it helps in reducing internal covariate
shifts during training. Normalization adjusts the pixel values of the image to
a range that a pretrained network expects. For the case of ResNet50, which is
trained with pixel values scaled from -1 to 1, the normalization can be math-
ematically represented for images initially in the range [0, 255] (standard for
RGB images) as follows:

Pnormalized =
P − µ

σ
(5.3)

For ResNet50, the mean µ and standard deviation σ values are calculated
channel-wise based on the ImageNet dataset, typically resulting in:

µ = [123.68, 116.779, 103.939], σ = [58.393, 57.12, 57.375]

Alternatively, if using the common practice for some implementations that
map [0, 255] directly to [-1, 1], the equation would simplify to:

Pnormalized =
P

127.5
− 1 (5.4)

5.4.3 Creating TensorFlow Dataset Objects
• By transforming the lists of paths and labels into tf.data. Dataset objects,

leverage TensorFlow’s built-in functionalities for handling large datasets effi-
ciently. These objects are designed to facilitate complex transformations and
batching operations on the data, which are crucial for training deep learning
models effectively.

5.4.4 Performance Configuration
• Caching: Caching the images after the first epoch prevents repeated disk

read operations, speeding up training.
Caching is a technique used to store previously computed data in a rapidly
accessible storage layer, reducing the need for redundant computations and
speeding up data retrieval in subsequent operations. While there is no specific
equation for caching, its impact can be described in terms of reduction in time
and computational resources required for data access across epochs. Concep-
tually, caching can be thought of as reducing the number of read operations
required from the primary storage:

Onew =
Oinitial

epochs
(5.5)
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where Oinitial represents the number of operations to read and preprocess the
data during the first epoch, and Onew is the average number of operations
per epoch post-caching. The reduction in operations directly correlates with
improvements in training speed, particularly in scenarios where data loading
is a significant bottleneck.

• Shuffling: Shuffling the data prevents the model from learning unintended
patterns from the order of the data, thus helping in better generalization.
Shuffling the dataset randomly permutes the order of the data points, which is
crucial for preventing the model from learning potentially misleading patterns
that may arise from the sequence in which data is presented. Mathematically,
shuffling can be represented as applying a permutation π to the dataset D:

D′ = π(D) (5.6)

where D′ is the shuffled dataset.

• Batching: Batching defines how many examples the model sees before up-
dating its weights, balancing learning dynamics and computational efficiency.
Batching divides the entire dataset into smaller, manageable subsets known
as batches. This allows the model to update its parameters iteratively over
batches rather than the entire dataset, which can be computationally efficient
and manageable for memory resources. If D is divided into k batches of size
n, it can be expressed as:

D =
k∪

i=1

Bi, where |Bi| = n for all i (5.7)

Each Bi represents a batch from the dataset D.

• Prefetching: Prefetching overlaps the preprocessing of data for the next
batch with the model’s training on the current batch, reducing idle times and
improving overall efficiency.
Prefetching is a technique used to prepare data for upcoming operations while
the current operation is still executing. This method helps in keeping the data
pipeline busy and reduces the time spent waiting for data to be loaded and
processed. The impact of prefetching can be conceptualized as overlapping
data loading time Tload with computation time Tcompute, potentially reducing
the effective batch processing time:

Tnew = Tcompute + max(0, Tload − Tcompute) (5.8)

where Tnew is the reduced total time per batch due to overlapping operations.
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5.5 Overview of the Proposed Spectro SETNet
Model

Spectro SETNet, the novel architecture integrates ResNet50 with Squeeze-and-
Excitation (SE) blocks and a Transformer block, tailored specifically for the clas-
sification of Mel Frequency Spectrogram images. The model harnesses the deep
feature extraction capabilities of ResNet50, the adaptive recalibration feature of SE
blocks, and the sequence processing strengths of Transformer blocks to create a
robust framework for audio classification tasks.

5.5.1 Base Model
The model begins with a standard ResNet50 as the base layer, a deep convolutional
neural network known for its efficacy in image recognition tasks. ResNet50 is em-
ployed here without the top layer (i.e., it excludes the fully connected layer at the
end), allowing for custom layers to be appended for task-specific fine-tuning. The
input to this network is a Mel Frequency Spectrogram image, resized to 224x224
pixels, to match the input dimension that ResNet50 expects.

5.5.2 Integration of Squeeze-and-Excitation (SE) Blocks
Following ResNet50, Squeeze-and-Excitation (SE) blocks are applied. These blocks
are strategically placed after specific convolutional layers within ResNet50, specifi-
cally after the output of each major residual block. The SE blocks serve to recalibrate
the feature maps generated by the preceding convolutions, enhancing the model’s
ability to focus on relevant features while suppressing less useful ones. This recal-
ibration is crucial for audio data, which often contains complex patterns that are
more subtle than those found in typical visual data sets.

5.5.3 Transforming Features for Sequence Processing
The outputs from the last SE block are then reshaped to prepare them for sequence
processing. This reshaping converts the two-dimensional feature maps into a se-
quence of vectors, each vector representing a portion of the original image, thereby
preserving spatial relationships in a form amenable to sequential processing.

5.5.4 Integration of Transformer Block
A Transformer block, which follows the reshaped output, includes a Multi-Head
Attention mechanism and a feed-forward network. This block allows the model to
process sequences of feature vectors from the reshaped SE-enhanced ResNet50 out-
puts. The Multi-Head Attention mechanism in the Transformer allows the model
to focus on different parts of the input sequence, capturing internal dependencies
without regard to their distance in the sequence. This feature is particularly bene-
ficial for spectrogram images, where temporal and frequency dependencies can span
across the entire sequence.
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5.5.5 Functional Capabilities
The joint use of ResNet50, SE blocks, and a Transformer block gives a strong so-
lution for the audio signal classification tasks. ResNet50 acquires the strong initial
features from the spectrogram images, which are afterward refined by the SE blocks
to promote the most salient features for the audio analysis. The Transformer block
then continues with the processing of these features, using its attention mechanisms
to create complex dependencies and interactions in the data. The model is designed
to be computationally efficient while still delivering high accuracy. The use of pre-
trained weights from ImageNet for initializing ResNet50 speeds up convergence and
improves the generalizability of the model. The SE blocks add minimal computa-
tional overhead but significantly boost the model’s performance by focusing it on
relevant features. Finally, the Transformer block, while computationally more inten-
sive than traditional sequence processing methods, offers unparalleled capabilities
in handling long-range dependencies in data.

5.5.6 Summary of Proposed Model

Layer (type) Output Shape Param Connected to
input_2 (InputLayer) (None, 224, 224, 3) 0 [ ]
conv1_pad (Ze-
roPadding2D)

(None, 230, 230, 3) 0 {’input_2[0][0]’}

conv1_conv
(Conv2D)

(None, 112, 112,
64)

9472 {’conv1_pad[0][0]’}

conv1_bn (BatchNor-
malization)

(None, 112, 112,
64)

256 {’conv1_conv[0][0]’}

conv1_relu (Activa-
tion)

(None, 112, 112,
64)

0 {’conv1_bn[0][0]’}

pool1_pad (Ze-
roPadding2D)

(None, 114, 114,
64)

0 {’conv1_relu[0][0]’}

pool1_pool (Max-
Pooling2D)

(None, 56, 56, 64) 0 {’pool1_pad[0][0]’}

conv2_block1_1_conv
(Conv2D)

(None, 56, 56, 64) 4160 {’pool1_pool[0][0]’}

conv2_block1_1_bn
(BatchNorm)

(None, 56, 56, 64) 256 {’conv2_block1_1_conv[0][0]’}

... ... ... ...

Table 5.1: Summary of Proposed Spectro SETNet Model
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Figure 5.2: Spectro SETNet Architecture
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5.6 Spcetro SETNet Detailed Architecture
5.6.1 Architecture of the Base Model
In our new model, using ResNet50 as a base model in a customized architecture
tailored for audio analysis via spectrogram input allows we to leverage the advanced
visual feature extraction capabilities of ResNet50 for audio data. This is a creative
and effective way to apply image classification architecture to audio analysis tasks,
exploiting the fact that spectrograms can be treated as images. The initial input
to the system is a Mel Frequency Spectrogram, which represents the spectrum of
frequencies of a sound signal as it varies with time. This spectrogram undergoes re-
sizing and preprocessing to match the input specifications required by the ResNet50
model. Typically, this involves resizing the image to 224x224 pixels, as ResNet50 is
designed to handle this dimension, and normalizing the pixel values.

Figure 5.3: Residual Architecture used in Spectro SETNet
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Figure 5.4: Residual Block

This approach is particularly advantageous because it:

• Utilizes pre-trained weights (from ImageNet), which can help in faster con-
vergence and potentially better generalization, especially when audio-related
data might be limited.

• Adapts a proven architecture for a novel application, potentially increasing
the robustness and accuracy of the audio analysis.

This type of architecture is typically used in advanced sound analysis applications
like environmental sound classification.

Layer (type) Output Shape Param Connected to
input_1 (InputLayer) (None, 224, 224, 3) 0 [ ]
conv1_pad (Ze-
roPadding2D)

(None, 230, 230, 3) 0 {’input_1[0][0]’}

conv1_conv
(Conv2D)

(None, 112, 112,
64)

9472 {’conv1_pad[0][0]’}

conv1_bn (BatchNor-
malization)

(None, 112, 112,
64)

256 {’conv1_conv[0][0]’}

conv1_relu (Activa-
tion)

(None, 112, 112,
64)

0 {’conv1_bn[0][0]’}

pool1_pad (Ze-
roPadding2D)

(None, 114, 114,
64)

0 {’conv1_relu[0][0]’}

pool1_pool (Max-
Pooling2D)

(None, 56, 56, 64) 0 {’pool1_pad[0][0]’}

conv2_block1_1_conv
(Conv2D)

(None, 56, 56, 64) 4160 {’pool1_pool[0][0]’}

conv2_block1_1_bn
(BatchNorm)

(None, 56, 56, 64) 256 {’conv2_block1_1_conv[0][0]’}

... ... ... ...

Table 5.2: Summary of ResNet50 Model
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5.6.2 Achitecture of SE Block
In the processing of Mel Frequency Spectrograms, Squeeze-and-Excitation (SE)
blocks play a very important role in the improvement of the performance of convo-
lutional networks as they redefine the feature maps with the unique characteristics
of audio signals. The SE blocks, through the process of emphasizing on the main in-
formation and suppressing the less important ones, enhance the network’s capability
to detect the fine details in the audio which is a vital part of the audio classification
and analysis tasks. These blocks are located just after the convolutional layers and
thus, the features are immediately adjusted. This adjustment is then further re-
fined through repeated convolution and recalibration cycles. This process not only
enhances the features in the hierarchy but also preps them for further advanced pro-
cessing, e. g. by means of transformer blocks for the complex sound classification
or the event detection in audio streams.
This approach is particularly advantageous because it:

• Adapts channel-wise feature responses dynamically, focusing more on infor-
mative features, crucial for complex analysis tasks.

• Introduces minimal computational overhead, making SE blocks suitable for
real-time applications where both speed and accuracy are essential.

Figure 5.5: SE Block Architecture
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5.6.3 Architecture of Transformer Block
The Transformer block is the most important element in the improvement of the
Mel Frequency Spectrogram processing in neural network architectures, especially
for the tasks that deal with detailed audio analysis. The design of the Transformer
block’s architecture, that is, the Multi-Head Attention mechanism, is aimed at solv-
ing the problems related to audio signal processing.

The core of the Transformer block is the Multi-Head Attention mechanism, which
allows the model to focus on different parts of the input sequence simultaneously, a
vital feature for capturing the nuances and dependencies in complex data patterns.
Applied after the attention mechanism to prevent overfitting during training by ran-
domly setting a fraction of the input units to 0 at each update during training time.
Then Layer Normalization normalizes the inputs across the features, stabilizing the
learning process and speeding up the training. Such an arrangement not only facil-
itates detailed attention to relevant sequential features but also allows for efficient
processing through parallel computations. The inclusion of Feed-Forward Networks
(FFNs) within each block further processes these features to refine the model’s out-
put. Each sub-layer (attention and feed-forward) includes a residual connection
followed by layer normalization, enhancing the flow of gradients throughout the
network, which allows for the training of deeper models.

Prior to the data entering the Transformer block, the data undergoes a preprocessing
stage where it is usually flattened and reshaped to match the expected input format
of the block. This preprocessing stage is very important as it modifies the data into
a form that is suitable for processing by the Transformer Block.
This approach is particularly advantageous because:

• The Multi-Head Attention mechanisms help the model to process and combine
the context from different parts of the input sequence which is vital for the
tasks that need a deep understanding of the structure of the sequence such as
language translation or speech recognition.

• Layer normalization of the features of each sub-layer stabilizes the training
dynamics, which in turn results in faster convergence and less sensitivity to
the network initializations.

• The capability to process the parts of the input data at the same time, not
only accelerates the training but also makes it possible to expand the network
to deal with larger datasets or more complex models without a big increase in
the computational time.
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Figure 5.6: Transformar Block Architecture
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5.7 Layers Used in Spectro SETNet
5.7.1 Convolution Layer
Convolution layers are a significant part of the neural network architecture and this
layer is best suited for processing data with a grid structure, for example – images.
It involves capturing the detected features through feedback and highlighting the
feature maps summarizing these presences of the features in the input.
The mathematical operation performed by a convolution layer can be described as
follows:

Oij = (K ∗ I + b)ij (5.9)
where O represents the output feature map, K denotes the kernel or filter, I is
the input matrix, b is a bias term, and ∗ denotes the convolution operation. The
convolution operation involves sliding the kernel K over the input matrix I and
computing the dot product at each position, which captures local dependencies
within the input data.

5.7.2 Flatten Layer
Flatten layer in neural networks serves the purpose of converting a multi-dimensional
input tensor into a one-dimensional vector. This is very effective when going from
convolutional layers to fully connected (dense) layers as the pooling operation de-
creases the dimensions of the feature maps so that they can be processed by the
dense layer which expects lower dimensional inputs. If the input tensor has di-
mensions a × b × c, the output of the Flatten layer will be a vector of dimension
a · b · c.
This layer does not modify the data values but rearranges them into a single vector,
facilitating different types of processing downstream in the network.

5.7.3 Reshape Layer
The reshape layer molds the shape of an input tensor but does not affect how the
data and elements are stored, therefore, the amount of elements stays the same as
well. This operation is therefore crucial because it allows the transformation of the
tensor dimensions to meet the requirements of the subsequent layers which is a key
feature of a neural network architecture. Although there is no specific arithmetic
formula for transform operation, we can approach it by rearranging the elements of
the input tensor I into a new tensor O that fits into given dimensions, yet ensuring
the total number of elements remains intact.
For example, if the input tensor I has dimensions a× b×c and needs to be reshaped
into dimensions x× y × z, then:

a × b × c = x × y × z (5.10)

where a, b, c are the original dimensions, and x, y, z are the new dimensions, under
the constraint that the total number of elements (the product of the dimensions)
remains unchanged.
This layer does not have any learning parameters or any computations other than
changing the data structure which is computationally efficient but structurally im-
portant.
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5.7.4 Global Average Pooling
The Global Average Pooling (GAP) layer computes the average of all elements from
the feature maps of input tensor spatially, thereby splitting its spatial dimensions
(height and width) to one dimension. This operation reduces the amount of model
parameters, which offsets an overfitting danger, making the model more tolerant of
the input spatial translations.
Mathematically, the operation of a Global Average Pooling layer can be described
as follows:

Oc =
1

N

N∑
i=1

xic (5.11)

where Oc is the output for the c-th channel, N is the number of elements in each
channel of the input tensor, and xic are the elements of the c-th channel of the
input tensor. This process is repeated for each feature map (channel) in the input,
resulting in a tensor where each channel is reduced to a single scalar value that
represents the average of all the input values of that channel. Global Average Pooling
is especially suitable for applications involving convolutional neural networks in
image classification where complexities of the networks can be affected by reducing
the model and where the ability of the network to interpret is enhanced by making
the feature maps correspond to specific categories.

5.7.5 Dense (ReLU)
A Dense layer, or a fully connected layer, is the one which tends to make a connection
between every neuron in the preceding layer to every neuron in the following layer.
This is one of the most important components of many neural network architectures
that are often used as the main learning mechanism when the complexity of the
patterns and the data are extremely difficult to be learned solely from the dataset.
The coupling of Dense layer with ReLU (Rectified Linear Unit) activation function
brings the additional non-linearity in the output of the network along with the linear
combination of the initial inputs which simplifies the network to detect complex
subtlety in the data and important features in a given dataset.
The mathematical representation of a Dense layer with ReLU activation can be
given as:

y = ReLU(Wx + b) (5.12)
where y is the output, W represents the weight matrix associated with the layer, x
is the input vector, b is the bias vector, and ReLU is defined by the function:

ReLU(z) = max(0, z) (5.13)

The ReLU function is particularly effective because it introduces non-linearity with-
out affecting the scale of the input, which helps prevent the vanishing gradient
problem during backpropagation.

5.7.6 Dense (Sigmoid)
A Dense layer with an activation function of Sigmoid is a typical one in neural
networks to deal with binary classification issues. The sigmoid activation function
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is a mapping function that maps the input values to an output range of 0 to 1
which is very useful for probability estimation. The mathematical representation of
a Dense layer with Sigmoid activation is given by:

y = σ(Wx + b) (5.14)

where y is the output, W represents the weight matrix of the layer, x is the input
vector, b is the bias vector, and σ is the sigmoid function defined as:

σ(z) =
1

1 + e−z
(5.15)

5.7.7 Multi-Head Attention
Multi-Head Attention is a mechanism in neural networks that allows the model to
jointly attend to information from different representation subspaces at different
positions. It is a key component of transformer models, used primarily in natural
language processing tasks.
The operation can be conceptualized mathematically as:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (5.16)

where each head headi is computed as:

headi = Attention(QWQ
i ,KWK

i , V W V
i ) (5.17)

Attention function is typically scaled dot-product attention:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (5.18)

Q,K, V are queries, keys, and values matrices respectively; WO,WQ
i ,WK

i ,W V
i are

parameter matrices.

5.7.8 Layer Normalization
Layer Normalization is a technique used to stabilize the training of deep neural net-
works by normalizing the inputs across the features instead of the batch dimension.
Mathematically, Layer Normalization is described by:

y =
x − µ

σ
γ + β (5.19)

where x is the input to the layer, µ and σ are the mean and standard deviation
computed across the features, γ and β are learnable parameters that rescale and
shift the normalized value respectively.

5.7.9 Dropout
Dropout is a regularization technique used in neural networks to prevent overfitting.
It works by randomly setting a fraction of input units to 0 at each update during
training time, which helps to make the model robust.
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5.7.10 Sequential Feedforward Network (FFN)
A Sequential Feedforward Network (FFN), often used within larger models like
transformers, consists of several fully connected (dense) layers stacked sequentially.
This structure allows the network to learn complex patterns in the data through
successive transformations.
Typically, an FFN might be described by:

y = f(W2 · ReLU(W1x + b1) + b2) (5.20)

where W1,W2 are weight matrices, b1, b2 are biases, and f is an activation function
applied to the output of the last layer, often a non-linearity like ReLU.

5.8 Hyper Parameters and Auxiliary Functions
5.8.1 Optimizer
The optimizer updates the weights of the network based on the gradients of the loss
function. In this model, the Adam optimizer is used, which is an adaptive learning
rate optimizer:

Optimizer: Adam (5.21)
Adam combines the best properties of the AdaGrad and RMSProp algorithms to
handle sparse gradients on noisy problems.

5.8.2 Loss Function
The loss function measures how well the model performs during training by compar-
ing the model’s predictions with the true data. The chosen loss function is sparse
categorical crossentropy:

Loss Function: Sparse Categorical Crossentropy (5.22)

This loss function is suitable for classification problems with many classes where
each class is mutually exclusive.

5.8.3 Metrics
Metrics are used to evaluate the performance of the model. Here, accuracy is used
as a metric:

Metric: Accuracy (5.23)
Accuracy measures the proportion of correct predictions over total predictions, pro-
viding an intuitive interpretation of the model’s performance.
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Chapter 6

Result Analysis

6.1 Performance Metrics
6.1.1 Recall
Recall, also known as sensitivity, measures the comprehensiveness of a classifier’s
predictions. It quantifies the ability of a model to identify all relevant instances in
the dataset. The formula for recall is given by:

Recall = TP

TP + FN
(6.1)

where TP represents the true positives, or correctly identified positive cases, and
FN denotes the false negatives, or positive cases that the model incorrectly classified
as negative.

6.1.2 Precision
Precision measures the accuracy of the positive predictions made by a classifier. It
is calculated as the ratio of correctly identified positive samples to the total number
of samples that were classified as positive, whether correctly or incorrectly. The
formula for precision is given by:

Precision =
TP

TP + FP
(6.2)

where TP represents true positives, or cases correctly identified as positive, and FP
denotes false positives, or negative cases incorrectly classified as positive.

6.1.3 F1 Score
The harmonic mean known as the F1 Score is considered to be the balance between
precision and recall in a classification model. Overall, a single metric is provided to
assess its accuracy and its ability to correctly recognize the given significant cases.
The formula for the F1 Score is given by:

F1 Score = 2× Precision × Recall
Precision + Recall (6.3)
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where Precision is the ratio of correctly predicted positive instances to all instances
predicted as positive, and Recall is the ratio of correctly predicted positive instances
to all actual positive instances.

6.1.4 Accuracy
Accuracy is a metric that quantifies the overall effectiveness of a classification model
in correctly identifying both positive and negative cases. It is computed as the
percentage of true results (both true positives and true negatives) among the total
number of cases examined. The formula for accuracy is given by:

Accuracy =

(
TP + TN

TP + TN + FP + FN

)
× 100% (6.4)

where TP denotes true positives, TN denotes true negatives, FP represents false
positives, and FN represents false negatives.

6.1.5 Confusion Matrix
The Confusion Matrix is a very important technique that helps us to measure the
effectiveness of classifying models. It allows one to conduct a visual and quantita-
tive analysis, so one can know how well the trained model performed and at which
places the model failed. The matrix is structured as follows:

• True Positive (TP): Observations correctly predicted as positive.

• True Negative (TN): Observations correctly predicted as negative.

• False Positive (FP): Negative observations incorrectly classified as positive.

• False Negative (FN): Positive observations incorrectly classified as negative.

Figure 6.1: Performence Metrics
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6.2 Performance Analysis
6.2.1 CNN
The CNN model has an 84.87% training success rate and an accompanying 84.86%
testing success rate. It is periodically validated against a test set to ensure a wide
applicability. The model remains spot on when tested rigorously for the task of
predicting new images.

Figure 6.2: CNN Train and Test Accuracy

6.2.2 VGG16
The VGG16 model gets a training precision of 80.81% and a testing accuracy of
79.61%. The model’s ability to generalize from the data it has learned to unseen
data is what makes its performance robust. VGG16 performance during testing
is slightly less than that of the training however, the model still retains a strong
predictive ability which is of utmost importance for successful image classification.

Figure 6.3: VGG16 Train and Test Accuracy
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6.2.3 VGG19
For our implementation, we used various techniques including rotation and image
shift on the training dataset. Model showed a training accuracy of 87.87% and a
testing precision of 80.96%.

Figure 6.4: VGG19 Train and Test Accuracy

6.2.4 ResNet18
ResNet18 demonstrates the training accuracy of 83.33% and the testing accuracy of
83.27%. This model exhibits strong generalization, which is supported by the small
gap between the training and the test results. Processing both training and new,
unseen data with similar accuracy indicates that the ResNet18 model is consistent
and robust, ready to process even complicated image recognition tasks.

Figure 6.5: ResNet18 Train and Test Accuracy
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6.2.5 ResNet50
In this implementation, we used a number of techniques to enhance the training data
set, including rotating and shifting the pictures. This was done in order to make
the model robust to image variations. It was a good approach as ResNet50 attained
88.70% accuracy in training and testing proving its valid generalization ability. Data
augmentation was very essential in being able to work with new unseen images.

Figure 6.6: Resnet50 Train and Test Accuracy

6.2.6 DenseNet
DenseNet achieves a training accuracy of 86.37% and a testing accuracy of 85%.
This model demonstrates strong capability in learning and generalizing from the
training dataset to the testing dataset. The relatively close performance metrics
indicate that DenseNet effectively handles overfitting, making it a reliable choice for
tasks requiring robust image recognition capabilities.

Figure 6.7: DenseNet Train and Test Accuracy
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6.2.7 Inception V3
Inception V3 records a training accuracy of 69.75% and a testing accuracy of 57%.
This significant drop between training and testing performance suggests challenges
in the model’s ability to generalize to new data, which might indicate overfitting or
an inefficiency in capturing the necessary features from the training data effectively.

Figure 6.8: Inception V3 Train and Test Accuracy

6.2.8 EfficientNet
EfficientNet shows a training accuracy of 83.47% and a testing accuracy of 80%.
This model exhibits a good balance between learning from the training data and
generalizing to unseen data, with a moderate decrease in performance from train-
ing to testing. EfficientNet’s architecture allows it to maintain a strong predictive
performance, making it a suitable option for various image processing tasks.

Figure 6.9: EfficientNet Train and Test Accuracy
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6.2.9 MobileNet V2
MobileNet V2 achieves a training accuracy of 78.34% and a testing accuracy of
75.67%. This model is designed for environments where computational resources
are limited, and it performs admirably given these constraints. The close alignment
of training and testing accuracies suggests that MobileNet V2 effectively avoids
overfitting, providing reliable and efficient performance in mobile or embedded ap-
plications.

Figure 6.10: MobileNet V2 Train and Test Accuracy

6.2.10 SENet
Our specially-designed SENet model exhibited remarkable performance reaching
96.89% training and testing accuracy, which proves its usefulness and validity when
applied to our dataset.

Figure 6.11: SENet Train and Test Accuracy

63



6.2.11 Proposed Spectro SETNet
Spectro SETNet, the proposed model, demonstrates exceptional performance with
a training accuracy of 97.50% and a testing accuracy of 97%, achieved in just 10
epochs. This model not only outperforms the other existing models in terms of
accuracy but also in efficiency, requiring fewer epochs to reach high levels of accuracy.
Comparatively, SENet, which is the next best performing model, also achieves a high
testing accuracy of 96.89% but requires double the number of epochs (20 epochs) to
train. Spectro SETNet’s capability to deliver superior performance with significantly
fewer epochs, especially with complex data, highlights its advanced efficiency and
effectiveness. This makes it an ideal choice for applications demanding quick and
accurate image processing with limited computational time.

Figure 6.12: Spectro SETNet Train and Test Accuracy

Figure 6.13: Spectro SETNet Train and Test Loss
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Figure 6.14 that depicts a comparison between the training and testing accuracies
of the Spectro SETNet model through 10 epochs. Initially, the value of training
accuracy was at 54.81% and for test accuracy it was slightly higher at 56.24%. In
every epoch, both metrics show positive growth where in many cases test accuracy
outperforms training accuracy. When the model reaches its 10th epoch, the figures
have changed significantly— with training accuracy now standing at a remarkable
97.50% while test accuracy is noted at 95.39%. This shows a model that has per-
formed well throughout the ten epochs without being greatly affected by overfitting
problems; hence demonstrating success in creating a generalizable model from this
data.

Figure 6.14: Spectro SETNet Train and Test Accuracy Bar Chart
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The bar chart shown in Figure 6.15, indicates the progression of training and testing
losses for the Spectro SETNet model across 10 epochs. At the start, the training
loss is at a value of 1.517 while the testing loss is slightly higher at 1.6629; both
values see a considerable decrease throughout the epochs— suggesting advancement
in model performance. Upon reaching the final epoch, it is observed that the train-
ing loss dwindles to a mere 0.1 (with the testing loss marginally exceeding this
value at around 0.1); this parity unveils successful learning dynamics coupled with
generalization phenomena while striving to keep overfitting aberrations at bay.

Figure 6.15: Spectro SETNet Train and Test Loss Bar Chart
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As Figure 6.16 describes in the graph, there are three bar charts depicting the pre-
cision, recall, and F1 score of the Spectro SETNet model. The precision which is
marked at 0.970 stands for the ratio of true positives to all positive predictions. Re-
call that has a value of 0.974, which represents the number of relevant instances that
were retrieved divided by the number of relevant instances in the dataset. Lastly,
the F1 score that is equal to 0.975 is a measure that combines two of the most
commonly used classification metrics such as precision and recall into one metric
value that gives us a good overview of how well our model performs for prediction
class tasks.

Figure 6.16: Spectro SETNet Precision, F1, Recall Score

Figure 6.17 shows Spectro SETNet’s class predictions compared to true labels which
demonstrate accurate predictions for various classes.

Figure 6.17: Spectro SETNet Class Prediction
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Figure 6.18: Spectro SETNet Confusion Matrix
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6.3 Discussion
6.3.1 Comparative Analysis of the Performance of Models
In comparing the neural network architectures from the dataset, we observe signifi-
cant differences in performance across models:

Highest Performer - Spectro SETNet (Proposed Model): With a test accuracy
of 97%, achieved in just 10 epochs, Spectro SETNet tops the list. Its high accuracy
and efficiency, even with complex data, mark a significant advancement in neural
network capabilities, distinguishing it from all other models.

Notable High Performer - SENet: SENet also shows exceptional results with a
test accuracy of 96.89%, demonstrating its effectiveness in handling feature interde-
pendencies through its specialized attention mechanism.

Lowest Performer - Inception V3: In contrast, Inception V3 trails significantly
with a test accuracy of 57%. This lower performance might be due to its com-
plex module-based architecture, which can pose challenges in optimizing for specific
datasets.

General Performance Overview - The remaining models exhibit a range of per-
formances. CNN, a foundational architecture, demonstrates robustness with an
accuracy of 84.86%, making it a reliable choice for various applications. ResNet50,
with its deep residual learning, achieves a solid accuracy of 88.70%, effectively ad-
dressing deeper network challenges. VGG16 and VGG19, with accuracies of 79.61%
and 80.96% respectively, offer dependable results but are somewhat overshadowed
by newer, more efficient architectures. DenseNet stands out with an 85% accuracy
due to its innovative feature reuse and reduction of overfitting. EfficientNet, bal-
ancing model complexity and computational resources, reaches an 80% accuracy.
Lastly, MobileNet V2, optimized for mobile devices, scores 75.67%, highlighting its
utility in resource-constrained environments.

Model Epoch Training Acc. Test Acc.
CNN 20 84.87% 84.86%

VGG16 20 80.81% 79.61%
VGG19 20 87.87% 80.96%

ResNet18 20 83.33% 83.27%
ResNet50 20 88.70% 88.70%
DenseNet 20 86.37% 85%

Inception V3 20 69.75% 57%
EfficientNet 20 83.47% 80%

MobileNet V2 20 78.34% 75.67%
SENet 20 96.89% 96.89%

Spectro SETNet [Proposed] 10 97.50% 97%

Table 6.1: Accuracy Comparison Table of individual model
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Figure 6.19: Model Accuracy Comparison
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6.3.2 Collaborative Performance and Strengths
Our proposed, Spectro SETNet emerges as the top performer, with a precision of
97%, recall of 97.47%, and an F1-Score of 97.50%. These outstanding figures sug-
gest that Spectro SETNet excels in both accurately identifying relevant data points
and minimizing false positives and negatives, making it an exceptional model for
critical tasks where high precision and recall are paramount. SENet also stands
out for its exceptional accuracy, achieving a precision of 96.92%, recall of 96.89%,
and an F1-Score of 96.89%. This model’s high scores across all metrics indicate its
ability to consistently and accurately process and classify data inputs with minimal
error, positioning it as a preferred choice for applications where reliability is critical.
ResNet50 shows strong performance with a precision of 88%, recall of 88.70%, and
an F1-Score of 88.70%. These results highlight ResNet50’s capability to effectively
identify relevant features without significant false detections, making it suitable for
tasks that require high sensitivity. VGG19 demonstrates solid consistency with pre-
cision and recall both at 87.69% and an F1-Score slightly higher at 87.87%. While
it does not surpass SENet or ResNet50, its balanced performance makes it a reliable
option for various general-purpose tasks. DenseNet performs commendably with a
precision of 86.37%, recall of 85%, and an F1-Score of 85%. Its architecture, which
emphasizes feature reuse, makes it effective in handling complex datasets with ef-
ficiency. EfficientNet, designed for efficiency, shows a precision of 83.04%, recall
of 83.47%, and an F1-Score of 83.22%, making it a good choice for environments
where computational resources are limited. CNN, although not the top performer,
presents a decent balance with a precision of 84.86%, recall of 84%, and an F1-
Score of 84%. It is robust and versatile, suitable for a broad range of tasks, though
surpassed by more specialized models in this comparison. MobileNet V2 and Incep-
tion V3 are on the lower end, with MobileNet V2 scoring a precision of 78%, recall
of 75.45%, and an F1-Score of 75.66%, and Inception V3 even lower with a preci-
sion of 57%, recall of 67%, and an F1-Score of 69%. These models are tailored for
specific use cases, such as mobile applications and high-recall scenarios, respectively.

Model Name Precision Recall F1-Score
CNN 84.86% 84.00% 84%

VGG16 79.61% 79.00% 80.56%
VGG19 87.69% 87.69% 87.87%

ResNet18 83.33% 83.20% 83.33%
ResNet50 88.00% 88.70% 88.70%
DenseNet 86.37% 85.00% 85.00%

Inception V3 57.00% 67.00% 69.00%
EfficientNet 83.04% 83.47% 83.22%

MobileNet V2 78.00% 75.45% 75.66%
SENet 96.92% 96.89% 96.89%

Spectro SETNet [Proposed] 97.00% 97.47% 97.50%

Table 6.2: Performance Comparison Table of Individual Models
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Figure 6.20: Performance Comparison of individual model
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6.3.3 Findings
CNN, with its generalist approach, provides strong baseline capabilities in image
processing, offering robustness across a broad range of tasks. Its uniform treatment
of input data can sometimes hinder performance in applications requiring precise
spatial recognition, highlighting the need for targeted enhancements in feature dis-
crimination.

VGG16’s deep architecture with small, repetitive filters excels at extracting fine de-
tails but may incur high computational costs and overfitting, suggesting a need for
refined training approaches. VGG19 is well-suited for detailed image analysis due to
its deep structure and fine filters, facilitating meticulous pattern recognition. How-
ever, the depth also introduces challenges in computational efficiency and potential
overfitting, necessitating careful handling and optimization strategies to improve its
adaptability.

ResNet18 leverages a residual learning framework to alleviate the vanishing gradient
problem, showing a good balance between training and testing accuracy, though it
could be optimized for handling complex data. ResNet50 employs deep residual net-
works to simplify the training of very deep architectures, effectively preventing the
vanishing gradient problem and ensuring robust performance across varied tasks. Its
ability to maintain high accuracy reflects well-balanced training and testing perfor-
mance, although fine-tuning may enhance its capabilities in processing exceptionally
complex data.

DenseNet uses densely connected layers for efficient feature usage, reducing over-
fitting risks and enhancing feature propagation, but may experience computational
slowdowns.

Inception V3, with its inception modules, captures multi-scale information effec-
tively, though it struggles with high precision tasks, indicating a need for architec-
tural optimization.

EfficientNet achieves balanced scaling across different dimensions, enhancing adapt-
ability and efficiency, yet fine-tuning is essential to avoid unnecessary complexity.

MobileNet V2, designed for mobile and edge computing, uses depthwise separable
convolutions for efficiency but may lack in handling complex tasks due to its stream-
lined architecture.

SENet leverages Squeeze-and-Excitation blocks to enhance feature relevance selec-
tively, significantly improving accuracy and efficiency in recognizing complex pat-
terns. This model excels in contexts requiring high precision, though its specialized
focus might limit broader generalization across diverse datasets.

The proposed Spectro SETNet shows remarkable accuracy and efficiency, suggesting
that its innovative techniques significantly enhance complex task handling. Further
architectural exploration could extend these benefits to other models.
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6.3.4 Drawbacks in Predictive Accuracy
CNN is generally effective but occasionally misclassifies phonetically similar signs.
This issue points to a need for improved feature extraction capabilities within the
model to better distinguish between characters that sound alike but differ visually,
thus enhancing the model’s overall predictive accuracy.

VGG19 shows competency across multiple categories but struggles with characters
like (গ, ঘ) and (চ, ছ). This pattern of misclassification could be indicative of insuffi-
cient training data for these particular characters, or it may stem from the model’s
learning mechanisms, which could be blending characters that share visual similar-
ities.

ResNet50 generally performs well, but it encounters difficulties with specific char-
acters such as (প and ফ). These issues suggest that despite its overall reliability,
ResNet50 might benefit from adjustments in its approach to handling rare or visu-
ally similar characters that are underrepresented in the training data.

DenseNet and EfficientNet, while noted for their efficiency and effectiveness in vari-
ous scenarios, might also suffer from similar issues of generalization to less common
or more complex characters. This could be due to their dense and scalable archi-
tectures respectively, which, while powerful, may not capture all nuances without
further tuning.

Inception V3 and MobileNet V2, designed for high efficiency and low-resource use,
may not achieve the same level of accuracy in complex character recognition tasks.
Their limitations may become evident when dealing with a broad diversity of char-
acter sets, particularly in environments requiring detailed character distinctions.

SENet, though highly effective for a broad range of characters, may still face lim-
itations when applied to datasets with unique, less frequent characters or nuanced
variations. This indicates a potential overfitting to the specific characteristics of the
training dataset, which may not generalize well to new, unseen data sets or rare
character types.

Spectro SETNet achieves remarkable predictive accuracy, but it may still encounter
challenges with highly irregular or outlier data not well-represented in its train-
ing set, potentially indicating overfitting. This specialization, while yielding high
performance, could impair its ability to generalize across diverse, unseen datasets.
Moreover, the complexity and computational demands of Spectro SETNet might
hinder its application in resource-constrained environments where processing effi-
ciency is critical. It is essential to rigorously test and validate the model across
varied datasets to ensure its robustness and versatility in real-world scenarios, mit-
igating any limitations in scalability and generalization.
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6.4 Additional Experiments
6.4.1 Batch Size
Small batches can help improve a model’s accuracy. They can dodge local minima,
enhancing its general use. But, there’s a drawback. The gradient estimates may
be noisy, making learning rough and exploratory. This is just one way batch sizes
impact image categorization. Big batches need large memory and might result in
poorer applicability. Because they could meet sharp minima. They can, though,
speed up training due to better utilization of computing resources, and gradient
estimates are more consistent.

6.4.2 Data Enrichment
The training data is subjected to various data augmentation techniques, such as
rotation, flipping, and random cropping. We use these tactics to boost how well
the model adapts. That made the validation accuracy lift up a little but still, it’s
noteworthy.

6.5 Challenges
6.5.1 Dataset Collection
There were many difficulties in gathering the dataset, mostly because we had to
begin from scratch in the absence of any previous data. It was especially difficult
to record characters from children between the ages of two and five. Dealing with
the unpredictable nature of young children and the challenges of obtaining clear
and consistent recordings was part of working with them. Every character sample
needed to be carefully converted into the WAV audio format after it was recorded,
which called for close attention to detail.

Using Audacity to divide these recordings into thirty segments was yet another sig-
nificant challenge. To guarantee that each character was precisely recorded, this
step requires a high degree of precision in addition to being time-consuming. Fur-
thermore, there were additional difficulties involved in eliminating background noise
from these recordings, again with Audacity. It took dexterity and keen hearing to
ensure that the recordings were clear while removing unwanted background noise.

Organizing the enormous amount of data was another major difficulty. The process
frequently required multiple recording sessions because it involved datasets from 21
children and voice recordings from 57 classes. In addition to being labor intensive,
managing, chopping, and editing such a large amount of data also required a high
level of technical skill and patience. All things considered, the entire process from
recording to final data preparation highlighted the difficulties and resource require-
ments involved in building a specialized dataset from the ground up that is of a high
caliber.
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6.5.2 Module Import Errors
We frequently had to import different versions for four different models due to
the conflicting versions of our many models, which presented the issue of version
mismatching. There were many challenges at first, particularly with module import
issues. Inadequate Python packages and incorrect environment setups resulted in
a number of issues that affected data processing and model training. Solving these
issues was essential to maintaining the validity of the research and ensuring that the
chosen machine learning libraries performed as intended.

6.5.3 GPU Error
We ran CNN, ResNet50, and VGG19 on our GPU, which had 4 GB of VRAM; how-
ever, we used the main system RAM for SENET. Despite having a potent NVIDIA
GeForce GTX 1650 GPU at its disposal, preliminary tests showed that TensorFlow
wasn’t operating to its full capacity. This issue turned into a significant constraint,
particularly for resource-intensive models such as VGG19, ResNet50, SENet, and
CNN. A crucial aspect of the project was modifying the code and GPU configura-
tions to guarantee optimal GPU utilization.

6.5.4 Memory Overuse
Our main system RAM was 16GB, which allowed us to run Vgg19, ResNet50, and
CNN but not SENet, so we reduced the batch size. In a voice-to-image generation,
we split the data and worked with four children. Then, since the RAM was unable to
accommodate five children, we created the image from the WAV files. Implementing
the SENet model often resulted in resource-exhausted errors, primarily because of
its extensive parameter count and comprehensive architecture. Several tactics were
used to get around this. Reducing the batch size was a crucial strategy for better
controlling the model’s resource requirements. We also looked into mixed-precision
training for better computer performance. But it did bring up fresh issues for the
SENet model’s deployment which had to be managed carefully.

6.6 Experimental Setup

Experimental Setup
Operating System Windows 11
GPU Accelerators NVIDIA® GeForce RTX 4060
CPU IntelT CoreTM i7-9750H
RAM 32GB
Python 3.10.11
DL Framework TensorFlow 2.11.0
Batch Size 32
Image Size 224 x 224

Table 6.3: Summary of Experimental Setup
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6.7 Testbed Implementation
Figure 6.21, shows the home page of our website dedicated to Bengali Phonemic
understanding for child speech featuring two options for classification, image and
(.wav) file classification.

Figure 6.21: Home Page of Our Website

Figure 6.22 shows the image upload page of our website. Here users can select
and upload an image for classification, followed by clicking the ”Predict” button to
predict the class of the uploaded spectrogram image.

Figure 6.22: Image Upload Page
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Figure 6.23 illustrates the image classification page. Here an uploaded image is being
predicted with the class and is displayed along with its corresponding Mel-frequency
spectrogram.

Figure 6.23: Image Classification Page

Figure 6.24 shows the image upload page of our website. Here users can select and
upload an image for classification, followed by clicking the ”Predict” button to pre-
dict the class of the uploaded spectrogram image.

Figure 6.24: (.wav) File Upload Page

78



Figure 6.25 illustrates the wav classification page. Here the uploaded (.wav) file
firstly being converted into mel frequency spectrogram image. Then the file is pre-
dicted with the class and is displayed along with its corresponding Mel-frequency
spectrogram.

Figure 6.25: (.wav) File Classification Page
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Chapter 7

Conclusion

In the thesis “Comprehensive Analysis and Development of Deep Learning Models
for Bengali Character’s Spectrogram Image Classification in Child Speech: Intro-
duction of Spectro SETNet” we undertook a groundbreaking journey to enhance
the field of character recognition in Bangla, focusing on the distinct linguistic pat-
terns of children. Recognizing the significant gap in research on Bangla character’
spectrogram image recognition, especially for children’s speech, this study aimed
to fill this void with a robust and innovative approach. We meticulously gathered
a comprehensive dataset of 31147 audio, comprising vowels, consonants, and nu-
merical vocals from young Bangla speakers, transforming these audio recordings
into mel frequency spectrogram images. This critical step allowed us to leverage
the potential of recent deep learning models, namely VGG16, VGG19, ResNet18,
ResNet50, DenseNet, EfficientNet, Inception V3, MobileNet, SENet and our pro-
posed model Spectro SETNet, to analyze and interpret these complex visual repre-
sentations of sound. This research addresses the significant challenge of accurately
identifying characters in children’s speech spectrograms—a task previously underex-
plored. Our proposed model, Spectro SETNet, demonstrates exceptional proficiency
in deciphering nuanced auditory cues within these spectrograms, significantly en-
hancing character recognition accuracy with reduced computational demands. This
thesis contributes substantially to the advancement of linguistic technology and the
development of educational tools for Bangla-speaking children. By implementing
the Spectro SETNet model, we have made significant advancements in spectrogram
image recognition for Bengali, effectively filling the dataset gap for this demographic
and introducing a more efficient architectural approach to image recognition. The
improvements in accuracy and efficiency not only enhance the model’s real-world
applicability but also lay a robust foundation for future research in this crucial area.
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7.1 Future Work
Firstly, we need to collect more data to fill gaps in our Bangla character dataset of
children. Having varied datasets can enhance outcomes. Getting plenty of diverse
child voice samples in Bangla, for example, is key. By filling gaps in our data, make
our system more effective, and provide more learning experiences for our models.
This results in better performance on new tasks.

Secondly, another extension will focus on Bangla sentence recognition, moving be-
yond phonemic analysis to full sentence processing. This will help in achieving more
advanced language understanding and application in real-world scenarios.

Lastly, to make an interactive online platform for children by which to teach Bengali
children how to pronounce the Bangla character correctly.
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