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Abstract

In the midst of rising urbanization and advancements in technology, Smart Cities
have developed as a crucial response to the complexities associated with urban liv-
ing. A significant contribution to the development of automated smart cities has
come from the fusion between IoT fog-based technologies. This integration facili-
tates instantaneous data processing, optimization of resources, and improved citizen
services. Nevertheless, as these systems get more complex and interconnected, they
become subject to many security threats. This thesis examines the major security
issues introduced by Fog Computing in Smart Cities. Fog Computing is an exten-
sion of cloud capabilities to the network infrastructure edge, resulting in enhanced
data privacy, decreases latency, and brings new risks that will require additional
investigation and mitigation. This study begins by providing a thorough expla-
nation of the fundamental principles underlying Smart Cities, the use of IoT and
Fog Computing in building said smart cities, thereby facilitating a comprehensive
comprehension of their interconnectedness. Subsequently, this paper investigates
the security vulnerabilities that threatens the use of Fog Computing with IoT based
Smart Cities, with a particular motif on the potential vulnerabilities pertaining to in-
fringements of data privacy, unauthorized access, network congestion, and associated
apprehensions such as Distributed Denial of Service (DDoS) attacks, the dissemi-
nation of malware, and physical manipulation. These strategies encompass resilient
authentication mechanisms, encryption protocols, intrusion detection systems, and
blockchain technology. Finally, this thesis analyzes Fog Computing security vul-
nerabilities in IoT-based Smart Cities and emphasizes the solutions for proactive
approaches to protect these revolutionary urban ecosystems’ integrity, privacy, and
resilience.

Keywords: Fog Computing, IoT, Smart Cities, Cloud, Network edge, Data Privacy,
Security Vulnerabilities
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Chapter 1

Introduction

The combined application of the Internet of Things (IoT) and fog computing tech-
nologies has significantly contributed to the advancement of the Smart Cities idea.
Fog Computing reduces latency and enhances data privacy by extending cloud ca-
pabilities to the network edge. In this particular instance, fog computing is imple-
mented to facilitate rapid data processing due to the inherent limitations in process-
ing capabilities of IoT devices. The core of the research issue revolves around the
potential for data privacy breaches, wherein sensitive information becomes vulner-
able to unauthorized access and manipulation throughout its transmission between
edge devices, Fog nodes, and central cloud servers. When Internet of Things (IoT)
devices are integrated into Smart Cities, a broad variety of security holes are created.
Hackers might exploit the security holes to have unauthorized access to sensitive in-
formation which will disrupt essential services such as public safety, healthcare,
transportation as well as overall quality of life in Smart Cities. Investigating the
application of Fog Computing technologies in IoT-based Smart Cities is a multi-
faceted and diverse task. This study primarily focuses on examining the notable
security risks detection and mitigation while incorporating Fog Computing into the
complicated structure of Smart Cities. In addition to this, it is necessary to have a
detailed grasp of the consequences that arise as a result of these security flaws.

1.1 Research Problem

When integrating Fog Computing technology within the framework of Internet of
Things (IoT)-based Smart Cities, the first step in the investigation of the study
comprises completing a comprehensive evaluation of the complex security risks that
develop as a result of this integration. Some of the vulnerabilities such as data
breaches, unauthorized access risks in network systems, and the possibility of phys-
ical tampering. These are some of the concerns raised. These vulnerabilities must
be identified and investigated to fully understand the research subject.
In addition, the current research investigates the existing network architecture of
fog computing as well as the vulnerabilities that exist inside the distributed net-
work environments. Besides, malevolent entities by the hacker on the vulnerabilities
might cause the disruption of service with manipulated data. The security of com-
munication channels and the integrity of data at each processing point would face
challenges due to the distributed nature of Fog Computing and those vulnerabilities
must be analyzed and solved with efficient security strategies.
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Within the physical security framework, the investigation is being continued on the
substantial security challenges surrounding the possibility of tampering or illegal
access to fog nodes and edge devices that are located within smart cities. So, it
becomes necessary to secure both the physical infrastructure and digital resources
for the overall operations of smart city systems. However, to ensure the integrity
of both components, it brings out the complexity of this research topic which ex-
plores innovative strategies to fulfill both cyber and physical infrastructure security
demands.
The study does not only work on the implications and identifications but also incor-
porates the problems and issues [4], while combining IoT with fog in smart cities.
Unauthorized access to computer systems can reveal the private information of the
people of smart cities which would cause the invasion of privacy with significant
financial damages. The unauthorized access to the system would interrupt bene-
ficial services which could put people’s safety, health, transportation, and overall
livelihood at risk. The research topic is further emphasized by considering the eco-
nomic consequences of security breaches, which encompass the costs associated with
recovery efforts to ensure safety.
The research subject at hand necessitates a comprehensive comprehension of the
difficulties involved, while also highlighting the pressing need for proactive actions
to safeguard and fortify Smart Cities in the age of technological advancement. In
summary, our research aims to uncover the hidden dangers that the IoT devices may
face in smart cities, particularly when fog computing is also involved.

1.2 Research Objective

The primary purpose of this research is to investigate and develop solutions for the
security concerns raised by the application of fog computing along with the Internet
of Things enabled in automated smart cities. This study aims to investigate the
objectives within the context of the dynamic urban landscape, where the use of IoT
and fog-based technologies holds significant importance. The objectives are:

1. To analyze Fog Computing’s fundamentals and its incorporation into IoT-
based Smart Cities.

2. To identify and analyze the security risks that come from Fog Computing in
urban areas.

3. To Review security steps like authentication, encryption, and intrusion detec-
tion to mitigate such threats.

4. To evaluate the effectiveness of proposed security solutions.

5. To give practical suggestions for improving the proposed solution to the secu-
rity of IoT-based Smart Cities.
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1.3 Research Contribution

Our thesis facilitates the following contributions:

• We analyze critical factors affecting the security of Fog computing environ-
ments in IoT-enabled smart cities, identifying various cyber threats and their
detrimental impacts on security measures.

• We develop a novel detection system along with comprehensive mitigation
strategies. This system is capable of identifying different types of malicious
attacks in real time and instantly mitigating them by dropping the malicious
packets.

• We create a new dataset for our model by extracting identical features from a
generated dataset based on the flow of simulation, similar to the CICIOT2023
dataset. This facilitates effective training and testing of our detection system.

• We design an innovative algorithm that can detect multiple types of attacks
in real time. The algorithm incorporates an instant mitigation strategy by
dropping malicious packets to prevent further damage.

• To implement our framework in a practical Fog computing environment, we
develop a virtual architecture using Mininet and integrate it with the RYU
controller. This setup allows us to simulate and evaluate the performance of
our detection and mitigation strategies in a controlled environment.

1.4 Thesis Structure

The thesis is being outlined for the enhancement of security measures in smart cities
through employing fog computing along with IoT technology. To begin with, chapter
1 portrays the introduction of the research depicting the necessity of highlighting the
security threats in the smart city environment. Afterward, chapter 2 represents the
literature review and explores the basic concepts of IoT, fog computing, and their use
cases in smart cities. It also provides an Idea of existing security threats and their
potential mitigation techniques. Furthermore, chapter 3, illustrates the proposed
model along with the analysis, identification, and mitigation of security threats
in addition to data collection, preprocessing, and decision-making based on the
accuracy of the model grounded on developed algorithm.Moreover, Chapter 4 shows
the details of the experimental setup along with the configuration of the Mininet
network emulator and Ryu controller for analyzing, monitoring, and mitigating the
security vulnerabilities against suspicious attacks and it also highlights experimental
results and findings comprising on 34 attack classes.Then, chapter 5 demonstrates
CIA Maintenance of proposed model and make a comparison with existing studies as
well as states the limitation. Finally, Chapter 6 concludes the thesis with an overall
summarization of the findings and future research opportunities emphasizing the
importance of the integrity and privacy of IoT-enabled smart cities against rising
security threats.
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Chapter 2

Literature Review

Fog computing works like a media or filter between cloud and IoT devices. Accord-
ing to [46], “A part of cloud computing, fog computing introduces data storage,
calculations, applications, and data analysis closer to IoT devices.” Another study
[4] found that, “The major capabilities in the framework of fog computing include
working close to the local nodes. The necessity of data transportation to cloud
servers has significantly diminished due to the prevalence of local computation for
most tasks. According to the study conducted by [46], “it is necessary to consider
several variables such as confidential information, cloud reachability, its application
latency, data preservation, transfer, and credibility in communication while dealing
with fog computing in this domain.” As found in [46], “in a range of applications,
fog computing gives up previously unthinkable possibilities, such as real-time nav-
igation, e-health services, manufacturing, and critical infrastructure control.” Fog
computing minimizes the need to send almost all the information to a single, cen-
tralized cloud-based server by allowing real-time handling and evaluation of this
information at the edge according to [41] and this might result in more rapid choices
and more rapid reactions. According to [46], there are several network and secu-
rity concerns with fog computing, including ”data processing, resource constraints,
trust, authentication, privacy, and many more.”

2.1 Background

2.1.1 IoT Devices:

The IoT (Internet of Things) enables widespread device connectivity, sharing of
data, and open communication. The proliferation of IoT devices across a range of
sectors, from smart homes and healthcare to transportation and industrial automa-
tion, has enabled unprecedented connection and convenience by a survey [48]. IoT
gadgets present unprecedented levels of connectedness and convenience, but they
also pose serious security threats. Securing these devices and the networks they use
is crucial for defending against online threats. Significant security issues, such as
unauthorized access, data breaches, and malicious attacks, have been brought up by
the IoT devices’ quick expansion. In order to safeguard private data and maintain
the integrity of IoT networks, it is now vital that IoT devices be secured [49].
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Figure 2.1: Fog Computing

2.1.2 Smart City :

It is anticipated that intelligent cities would improve livability, encourage environ-
mentally conscious growth, and boost the effectiveness of government operations.
According to [13], “A smart city’s infrastructure is interconnected with billions of
devices that, through a variety of applications, including smart homes, smart sur-
roundings, smart environments, and healthcare, can be mutually beneficial for cit-
izens.” The most crucial issue arises when operating a huge amount of Internet of
Things (IoT) facilities in a smart city environment. To deliver innovative services,
thousands of smart things, cars, phones, and people connect with one another, from
a communication and information context, the architecture of fog computing can
be quite beneficial. The communication network’s latency must be addressed in a
coordinated manner because it can cause the network to perform poorly. According
to the findings in [36], “it is evident that fog computing holds promise as an essential
factor in facilitating low-latency access for Internet of Things (IoT) applications.”
As stated in the literature [4], “a fog computing-enabled architecture serves as a
simplistic computational layer that bridges the gap between the cloud and Inter-
net of Things (IoT) layers, effectively tackling the challenges associated with this
integration.” Moreover, according to the findings of [38], it has been observed that,
“computationally intensive data processing tasks can be moved from the cloud-based
layer to the fog-based layer of a system through the establishment of a functional
layer with reduced complexity.” Additionally, the fog layer can also function as a
gateway to other higher-level layers.

2.1.3 Security Threats:

The Fog platform’s functionality introduces a new point of vulnerability between
end users and cloud services, which might possibly be used for malicious activities
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Figure 2.2: IoT-based architecture for a smart city

[8]. As seen in [13], “by using contemporary attacks like background knowledge
attacks, collusion attacks, eavesdropping attacks, likability attacks, spam attacks,
Sybil attacks, inside curious attacks, outside forgery attacks, and identity attacks it
is possible to hack nearly all smart applications that are connected to fog.”
The most recent challenges caused by the rapidly changing smart applications, in
addition to these issues, are the ones listed below found by various studies.

1. IoT Botnet Activities: The recently created IoT botnets pose a severe
threat to the IoT network. A good instance of this is the Mirai bot-net, which
has the ability to infect a broad range of heterogeneous IoT devices, including
printers, routers, DVRs, printers, IP cameras, and webcams, spread infection,
and then conduct DDoS attacks against selected servers.

2. Concerns about privacy in virtual reality: Virtual reality, or VR tech-
nology, has been used by a large number of institutions and entities in digital
smart cities, including municipal planning agencies, medical professionals, and
the manufacturing sector. The usage of accessible without encryption com-
munications in virtual reality and the sharing of confidential information with
third parties, however, both increase the potential for privacy issues.

3. Threats Posed by AI: Artificial intelligence (AI) technologies are essential
for a wide range of intelligent applications, including the autonomous manage-
ment of trading platforms, household appliances, and pacemakers. A research
done in [13] made the following suggestion: “For instance, internet service
providers and device manufacturers might use data mining technologies to
thoroughly analyze personal data and to collect sensitive data beyond what is
necessary to achieve the fundamental objectives of the related services.”

4. MITM (Man in The Middle): This sort of attack can quickly propagate
throughout a fog computing system. In this type of attack, legitimate gateways
that also serve as Fog devices can get exploited or spoofed. Customers of KFC
or Star Bar are two examples who have connected to illegal access points
that provide false service set identifiers as public trustworthy ones. Once the
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attackers seize control of the gateways, victims’ private communications will
be hacked, as proposed by another study [14].

5. Mirai: It is an attacking process which turns into an attacking botnet from
a malware to infect IoT devices by launching a severe DDoS attack. The
malware finds vulnerabilities of IoT devices, and afterwards, it exploits weak
credentials to get the control of the device executing the attacks [27] Largest
DDoS attack is possible to generate due to the Mirai even though on well-
defended targets. Moreover, it is becoming a growing concern that the rapid
growth of vulnerable IoT devices is going to face the potential harm by Mirai
[7]. That’s why a combination of technical interventions is necessary, which is
stated in this study.

6. DNS spoofing:

It is an attack which works through a resolution process by manipulating the
Domain Name System diverting the web requests to unintended destinations.
Then compromising the DNS infrastructure attackers redirect the request to
malicious websites or steal confidential information or launch a malicious virus
bypassing security measures [45].

7. Recon: This attack gathers detailed information about the target system
by exploiting network and data breaches without even directly engaging with
the target system. It uses the techniques of scanning, and footprinting with
enumeration of the vulnerabilities of the victim systems as well as devices [56].
Different automated tools like FireCompass are intended to expose cloud data,
databases, and ports to the attackers. This study evolves in detecting Reckon
attacks and continuous monitoring to mitigate the security risks with new edge
techniques.
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2.2 Related Works

Cloud computing has been a very popular topic amongst the consumers, and the
number of businesses utilizing this technology has increased significantly. Yet, the
users have faced some new problems related to this novel technology. For example,
the latency and bandwidth of cloud computing are a lot more demanding than
newer and more efficient models like fog computing. By serving as an intermediate
node between the end user and the cloud, this new technology in [21] reduces task
latency by bringing compute capacity closer to the user. As fog computing is an
even newer topic so very little research has been done to assess its security. But
still, there are some noteworthy papers that have made significant progress in this
field. Amongst which [18] carried out a survey that successfully identified important
security issues in the architectures used in fog computing, further reviewed these
issues, and provided solutions as well as direction for future research regarding the
topic.
The implementation of fog computing in modern healthcare is immense, various IoT
devices are already being used in the field and to integrate them, the fog comput-
ing approach is highly considered. One of the most crucial responsibilities in the
healthcare industry is keeping a tab on the patient’s vital signs. A lot of models
are available for this purpose and one such method is that proposed in [10] which
uses an inexpensive fog based monitoring system and using this technology, “The
Internet of Things (IoT) devices may quickly gather different patient health data,
deliver it to the appropriate parties, and provide an automated review for the conve-
nience of the doctor.” Another method that tries to mitigate any security concerns
related to these IoT devices and the previous model is a security protocol from [3],
“It adds a layer of fog-based software between the cloud and the IoT device and
makes use of a cloud access security broker to bolster edge node security.” On the
other hand [5] suggested, “a novel fog computing-based architecture that can man-
age time-sensitive healthcare data. This design makes use of a sizable geographically
scattered system to guarantee data accuracy, consistency, and low latency.”
In smart cities utilizing IoT devices, to mitigate against software-based network
attacks, [22] has come up with “a new intrusion detection method using decision
trees and CNN’s”. This method [22] has proven to be able to detect abnormal
traffic through the IoT network in the smart cities, particularly in the smart traffic
management system. The utilization of voice data in smart cities is another use
of fog computing. The work done by [6] is able to use speech data collected from
the user’s smartwatch and send it over to the cloud via a low powered fog-based
system. By collecting and processing most of the data in the fog system as shown
in [10], the data can be very easily stored in the cloud to carry out the user’s
request. As smartwatches are relatively low powered devices, the main purpose of
the architecture in [6] is to make it easy for the user to issue commands and tasks
to the IoT devices by the cloud.
Further improving the work done by [3], the research done by [15] aims to improve
the role of IoT devices in smart healthcare systems implemented in smart cities.
Also, by using the data collected from the patients as suggested in [17] they are
able to assess the time by which the patient will check out and prepare the payment
gateway beforehand so that it becomes less of a hassle for the patient. In order to
reduce the security issues in fog computing [25] has done an in-depth research on
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human behavior and created a decoy based system that generates fake data that
seems reliable enough to pass along as real data using fake documents. This data
may be generated at a moment’s notice if any attacker is able to infiltrate the users
network and download any data, then this fake data will be sent and the attacker will
download them believing them to be real. This is only possible due to the behavior
predicting technology, that maintains a close relationship with the real users data,
and thereby helps to keep malicious actors from harming the user. Additionally,
tracking packages may be added to the fake dummy data so that the attacker may
be tracked and further attacks prevented. Furthermore, [1] proposed the use of logs
to handle the security threats that arise in some applications of fog computing in
smart cities. By gathering and analyzing different logs of users about how they tend
to use the devices gives us the required insight as to where the possible vulnerabilities
may be and how to overcome them.
A recent development is the use of machine learning in fog-based systems. For that
reason, it is common practice to apply ML in smart cities. So, researchers [19] have
done their survey in this field. They tried to determine the capabilities of ML in
fog computing and IoT. According to their argument, fog-based ML apps may offer
strong end-user and high-service layer capabilities, resulting in more perceptive and
intelligent replies to the necessary tasks. Resource allocation, correctness, and reli-
ability constitute the core elements of computational fog, and this article presents a
thorough summary of the most recent developments in ML approaches. The study
also covers additional ML-related viewpoints, including different software assisting
models, methodological frameworks, and datasets. Using these datasets, the IoT
devices are able to improve themselves constantly, and the system becomes more
reliable. A lot of researchers have been involved in the development of countermea-
sures against the security threats involving fog computing. A research done in [14]
shows, “the implication of fog computing in IoT based smart cities and identified
some crucial areas like traffic, smart grid, automated delivery and such that require
special attention.” They classified their approach based on these security threats
and proposed a lot of innovative ideas and furthered the research. Other studies
done by [9] also did various research in this field and have contributed to opening
new viewpoints to approaching the security threats. Other academics, including [2],
have shifted their focus to look for novel threats in the fog computing sector. To
ensure that any new threats are able to be resolved quickly, journals like [20] also
opened the door to new comparisons between fog and cloud computing, diversifying
the field of fog computing even more [21].
The study [43] proposed a model implementing a hybrid detection and mitigation
process of IoT botnet attacks like Mirai, Satori, and ZeroAccess using HIDPS and
NIDS structure of federated learning. However, it is a hybrid approach of Intrusion
Detection System (IDS) Integrating Network Based Intrusion Detection(NID) and
Host Based Intrusion Detection System (HIDS). It can identify encountered zero-day
attacks in an IoT environment through federated learning as well as enhance security
by mitigating attacks with a fog computing orchestrator. This model Minimized sin-
gle point errors by reducing training overload and prioritizing privacy. Furthermore,
this model shows efficiency due to its decentralized training architecture utilizing
the federated learning model of 1D-CNN.
In the paper [12], the author implemented Intrusion Detection System (IDS) and
Intrusion Prevention System (IPS) in terms of preventing man in the middle attack
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in fog computing. Deploying the IDS nodes, The research focuses on monitoring and
analyzing the behavior of fog nodes inside distributed fog networks. The proposed
model aims to detect and prevent various MitM (Man in the Middle) attacks such as
wormhole attacks, packet modification, etc by utilizing lightweight encryption tech-
niques. Also, this study focuses on energy sufficient security measures with lower
latency due to the limited resources in fog devices inside fog computing environ-
ments.
The research [31] stated a framework for the network based solution using DNS proxy
server for the detection and prevention against DNS-based attacks such as DNS
spoofing, data exfiltration, DNS tunneling using machine learning based detection
as well as enabling real-time analysis for attack detection capabilities. By integrating
the visualization process, the Machine learning algorithm classifies and analyzes the
attack in real time and further provides a robust defense against the DNS attack.
In terms of prevention, the system analyzes the DNS queries, further, It blocks the
malicious request setting the domain IP address redirecting to 0.0.0.0. By caching
and redirecting domains, the system provides a proactive prevention mechanism
mitigating the risks imposed by DNS attacks.
The study [37] emphasizes a defensive deception strategy against reconnaissance
attacks in the cloud as well as the IoT environment using Deep Reinforcement
Learning (DRL). Their goal was to provide an efficient as well as impactful deception
strategy that would outface reconnaissance, increasing attack costs, and hide system
assets. By formulating utility functions, They customized DRL agents so that they
could generate an efficient deception procedure to find the common vulnerability
within operating systems associated with clouds. Also, They were able to hide
cloud assets up to 20.58% and increased attacking costs up to 40.40%. The study
highlighted Potential defensive deception against reconnaissance attacks integrating
artificial intelligence techniques for enhancing cloud security for IoT devices.
The study [16] further highlighted the current challenges and feasible solutions of
utilizing fog computing in IoT infrastructure. There are some challenges like safe-
guarding data against the integrity of fog nodes with malicious IoT devices, further
identifying authentication, and building decentralized, secure infrastructure associ-
ated with securing fog computing in IoT. There are some approaches to handle those
threats including data integrity protection protocol along with anomalous intrusion
detection systems with homomorphic encryption techniques. By ensuring data in-
tegrity, the decentralized Internet of Things safeguards user privacy by identifying
possible dangers. To secure privacy of fog computing. The research [24] proposed
a framework for enhancing privacy in Fog layer by discharging security processing
tasks by developing secure communication channels with encryption mechanisms.
The framework ensures data protection of user credentials by utilizing fog as an
intermediary between IoT devices and the cloud. Moreover, the framework follows
advanced encryption techniques for user controlled access and safeguards user infor-
mation against potential threats.
The authors of [42] discussed a number of solutions related to the real-time secu-
rity challenges in Fog based IoT networks. They propose authentication techniques
that include identity based or anomaly based authentication, next they talk about
authorization solutions that use trust based and role based access control to limit
access to trusted individuals only. These are highly effective solutions that work
great in real-time situations with low to no latency. Similar to the method proposed
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in [43], this paper also uses a host based IDS to stop malicious traffic. A secure
cryptographic key management system is used to mitigate Sybil attacks in the case
of large scale data analysis scenarios. Now, looking into the Industrial IoT envi-
ronment where very large scale data is processed every moment, a novel approach
is introduced in [54] to combat the security threats in an efficient manner. This
model is called the Efficient Execution of Offloaded IIoT Trusted Tasks, or EEOIT
for short. EEOIT works by offering a trust management system using Fog nodes
in these large environments. This system is able to differentiate between malicious
and regular tasks by using a mixed trust based evaluation technique. The trust
value, work size, and deadline are used as features to determine the priority of the
task using the technique for Order Preference by Similarity to the Ideal Solution
(TOPSIS) algorithm, thus ensuring that high priority tasks get completed first. By
increasing job execution on fog nodes, this method enhances overall performance
and keeps malevolent nodes from compromising system integrity. To combat the
risk of unauthorized access to the IoT system, the study done in [35] introduces a
Data Security Management Model (DSMM). By using an extensible authentication
protocol and density control weighted election, the proposed model improves data
security and privacy in data transfer across IoT devices. DSMM mitigates security
risks and ensures that only authorized organizations can access the data by effec-
tively clustering data and implementing authentication processes. This lowers the
possibility of unauthorized access and attacks.
The method described in article[11] defends the IoT system from DDoS attacks by
employing a two-tiered security layer. In the first layer, a Virtual Private Server
is used to ensure secure communication with IoT devices, after which a challenge-
response authentication system is used to prevent ant malicious traffic from entering.
This integrated approach ensures the security of the IoT system, thus preventing
any potential DDoS attacks. Now, evolving from the two layered architecture, [23]
proposes a faster and more accurate three level design that helps to deal with DDoS
attacks in IoT environments. Like the previous approach, in this model, the first
layer also acts as a firewall that filters out any malicious data by comparing it with
known malicious signatures. To make this process work in real-time, the firewall is
placed closer to the end devices in the Fog node. After that, the malicious data is
blocked and sent to the Virtual Servers where they use virtualized network functions
to further analyze the data and update the malicious signature database if required.
Based on predefined patterns, these servers analyze the incoming data and identify
possible DDoS attacks. Finally, data from several local servers are coordinated and
merged by the central cloud server. The cloud server analyzes the information to
detect subtle attack patterns and improve the overall detection accuracy. In paper,
[30] the proposed fog computing DDoS mitigation framework includes an anomaly-
based intrusion detection approach as well as a database. The framework detects
DDoS attacks using a classification method called k-Nearest Neighbors (KNN). By
deploying the mitigation framework, the fog computing resources are used to address
the resource limitations of IoT devices. Network traffic is scanned by the framework
against attack signatures recorded in a database. The administrator receives an
alert and the flow is stopped if an attack is found. In the event that the traffic is
normal, it is provided using a classifier that makes the distinction between suspicious
and regular traffic, the regular traffic is allowed to go to the end device and the
suspicious data is recorded and the database signatures are updated using them.
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The model demonstrated in [55] uses a technique called FASA to detect TCP-SYN
Flood DDoS attacks. This method has a detection phase and a prevention phase.
In the detection stage, an adaptive neuro-fuzzy inference system (ANFIS) is used
to detect the malicious traffic, while in the prevention stage, the SDN controller
drops the malicious packets and blocks the hosts port to stop further attacks. This
prevents the attacker from doing more harm.
The use of Deep Learning models in IoT environments has been an efficient way
to detect security threats. This has been the case for [44] where IDS is used along
with Deep Learning models to track and analyze the malicious traffic. Analyzing
these helps the IDS to strengthen the security of the IoT system and stop policy
breaches. The IoT ecosystem’s overall security posture is improved by the detection
of numerous attack types, including replay, sinkholes, and denial of service assaults,
made possible by IDS integration with IoT systems. Furthermore, according to the
research in [51], there are a number of methods to ensure security in the Internet of
Things. These include using feature engineering and optimization to improve secu-
rity attributes, rule-based systems to make intelligent decisions based on extracted
rules, classification and regression techniques to predict and categorize security in-
cidents, and deep neural network learning-based approaches like MLP, CNN, and
RNN to build sophisticated security models. Another model proposed in [57] acts in
the host level for the purpose of detecting intrusions in end devices; the suggested
Multi-Stage Intrusion Detection System (MS-IDS) uses Machine Learning (ML)
models in addition to kernel-level and end device data to identify different kinds
of attacks. Here nine layers of security measures are taken to ensure the integrity
of the network. The study conducted in [29] also employs Deep Learning models
such as SVM, MLP, and CNN for intrusion detection purposes in IoT environments.
Random Forest is used in the case of large amounts of data and CNN is used to re-
duce the information attributes, helping to quickly and effectively detect suspicious
traffic and resolve them. The research in [47] further works on the previous research
and uses Deep Learning models such as LSTM and CNN’s to identify any intrusion
in the system. In particular, the model uses Gated Recurrent Units (GRU), Long
Short-Term Memory (LSTM), and Convolutional Neural Networks (CNN) for this
purpose. After testing this model in IoT environments, the researchers observed that
the detection capability of these models was far better compared to other machine
Learning models.
This paper [26] provides the insight of securing IoT devices in smart city environ-
ments to enhance living through traffic management, public health, and resource
management by IoT technologies. The author’s goal was to address Security is-
sues of IoT devices which have been growing in numbers exponentially. So, they
stated their concern about the vulnerability of those devices. Against cyber attacks
and also analyzed various security breaches in the IoT environment such as Cyber-
warfare and DDoS attacks on the internet. Moreover, they also presented preventive
responses against those threats.
In the Study of [52], the authors proposed a model which incorporates multilevel
authentication infrastructure for the attack detection and mitigation in the IoT envi-
ronment. They stated that traditional ways of prevention against cyber attacks are
not being useful anymore. That’s why they introduced a multi-level authentication
process which includes a verification process by hashing, Chebyshev polynomial To
enhance the security of the IoT environment in smart cities.
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The research of [53] analyzed the vulnerability of IoT systems and implemented ad-
vanced security measures using NodeMCU-ESP8266 for a real-time reaction against
cyber threats. It also offers hardware based security models such as Hardware Se-
curity Modules (HSMs) along with Zero Trust Architecture (ZTA). It emphasized
its goal of providing cyber threat detection and also took preventive measures for
protecting sensitive data in the IoT environment.
The author of the Research paper [34] discussed challenges that occurred by DDoS
attacks which affect critical services within the network by raising traffic from nu-
merous compromised devices. The author has utilized two datasets of SDN and
CICDDoS2019 in order to train and test eight individual models integrating Deep
Neural Network (DNN) to detect DDoS attacks over the system to enhance security
measures on the SDN network.
The proposed model of this paper [33] focused on intrusion detection as well as
mitigation framework for SDN-controlled IoT networks consisting of three major
components such as IDS sensors, IDS manager to evaluate network traffic, and SDN
controller to enhance safety standards. By leveraging the dynamic reconfigurabil-
ity characteristics of SDN, this model is highlighted in detecting cyber threats by
ensuring secure communication among IoT applications.
The paper [39] proposed a model of a machine learning algorithm for Intrusion De-
tection and Prevention Systems (IDPS). Moreover, it analyzes the vulnerabilities
of the current IoT environment and focuses on developing effective defense mecha-
nisms, especially against Mirai and Bashlite botnets. The research also highlights
robust security measures like firmware updating, and network control to prevent
attacks for developing a safer IoT ecosystem.
In the study of [32], the study proposed a model which integrates Deep Learning(DL)
along with Software-Defined Networking (SDN) and developed a real-time middle-
ware solution to detect cyber attacks and further goes for prevention in smart homes.
It used Raspberry Pi, and Zodiac-Fx SDN switch and also utilized deep learning
classifier to detect and mitigate attacks like DDoS in smart home’s IoT environment.
Its goal was to build up a low cost effective security framework which accurately
identifies and prevents cyber threats and enhances the reliability of IoT networks in
smart cities.
The authors of [40] proposed a framework integrating with deep learning which
generates a cyber kill chain model to detect multi step attacks using four components
IoTDSCreator(dataset generator), IoTEDEF (anomaly detection of multi agent), for
predicting attack as well as management IoTPredictor and IoTAtM. Its goal was to
build a self-evolving system which detects early stage attacks and mitigates them.
The paper [28], highlighted a framework of Intrusion Detection System (IDS) to
enhance fog layer security using machine learning models. It worked on the KDD
Cup’99 dataset utilizing the models of K-Means, Decision Trees, and Random Forest
algorithms to detect attacks. It focused on the limitations of cloud-based IDS and
further leveraged fog computing by reducing latency while improving detection effi-
ciency and it found K-Means as the most impactful algorithm with higher accuracy
and fastest computing time in IoT environments.
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Chapter 3

Methodology

3.1 Proposed Model

The major goal of this research is to use machine learning to identify potential secu-
rity threats and identify security weaknesses in Smart Cities. Analyzing the security
threats will help the Fog Computing of IoT devices to take necessary steps to miti-
gate the security threats. The data collection process is the most vital task in this
work. As we aim to detect Security Threats related to the use of fog technology in
IoT based smart cities using different activities of user interaction and data will help
us to analyze the activity within the IoT devices. After data collection, processing
needs to be ensured where we will sanitize, scale, and standardize the collected data.
We can now apply qualitative and quantitative data analysis to process and inter-
pret the collected data. After data analysis, we will be able to identify the common
threads, and patterns which will specify the security vulnerabilities in fog comput-
ing. Based on the analysis we can figure out the mitigation strategies to defer the
vulnerabilities. After the data has been preprocessed to make it appropriate for
training using a security model, the model will go through the training and testing
phases, and the results will be received. The performance accuracy of our model will
be determined based on the results we obtain. If the accuracy is high the trained
model will be considered as a successful model to detect security threats. On the
contrary, if the accuracy is low, the data will be sent to the processing stage again.
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Figure 3.1: Proposed Model
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Finding Uses of Fog Computing in Smart Cities: Finding and document-
ing the applications of fog computing within smart cities, Research analyzes how
fog computing works with IoT devices to enhance overall services and infrastruc-
ture. This can include traffic management, smart grids, hospital management, and
environmental monitoring.
Finding Related Security Vulnerabilities Finding out potential security threats
associated with the uses of fog computing. Review the literature and conduct risk
assessments to compile some vulnerabilities. Consider threats like data unauthorised
access, breaches, and denial of service attacks, Mirai attack and more.
Data Collection Accumulation of relevant data from various sources, user inter-
actions with IoT devices, network traffic, sensor outputs, Medical data. Ensure
extensive data coverage to support the data analysis. Research methods include
surveys, logs, and databases.
Processing Input Data Sort the collected data by removing errors, duplicates,
and irrelevant information. For ensuring consistency, scale the data to normalise it.
Organised the data to follow a certain format and structure and make it suitable for
the data analysis. This step confirms data usability and efficiency.
Data Analysis Apply both qualitative and quantitative analysis methods to in-
terpret the processed data.By using different tools like, statistical tools, machine
learning algorithms, and other techniques.
Security Vulnerability Assessment Identify and detect common vulnerabilities
and security weaknesses among Iot devices. By using the analysed data to find out
specific areas of concern within the particular environment. Generate a detailed
report of potential security threats and their connection.
Consequence Analysis Check the possible impact of the security threats. Con-
sider the seriousness and probability of threats exploiting these vulnerabilities. Anal-
yse how these security threats could affect smart city operations and services.
Decision: Accuracy Evaluate the accuracy of the security model developed in
those mentioned steps. If Low Accuracy: Mitigation Strategies Development: Create
strategies to detect and mitigate vulnerabilities. This includes updating security
measures. Loop back to Processing Input Data to process and improve the data,
and analyse it again. If High Accuracy: Proceed to the next step.
Mitigation Strategies Development Establishment strategies and measures to
mitigate the particular threats and attacks. This could require implementing new
security protocols, shifting to a new software, increasing encryption methods, or
improving access controls.
Security Model Development Generate a security model to detect and counter
some particular security threats. Train the model using the processed and analysed
data.Also ensure the model is competent in threat detection and mitigation within
the particular environment.
Validation & Testing Validate and test the developed security model. Run the
model on test datasets to assess its performance, accuracy, and authenticity. Make
necessary adaptations to improve its effectiveness.
Pass If the security model achieves high accuracy, it is considered successful. The
model is ready to detect and mitigate security threats in fog computing environments
within smart cities.
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3.2 Dataset Description

Our collected dataset is being originated from the CIC network of IoT which is avail-
able combining in both pcap and csv format capturing original data from various
scenarios [50]. Here, Pcap file accommodates all packets of the feature extraction
detail whereas csv file contains the simplified version of features. This dataset com-
prehends attacks, necessary data generation, and extraction and labeling it for the
further ML assessment. Various tools are being used to capture the attack on real
time IoT scenarios of network traffic and further, the result is being captured in
a pcap file. Later, TCPDUMP and DPKT are being used for preprocessing with
feature extraction and conversion to store in the dataset. CSV datasets show the
feature combinations and facilitates the attack detection and classifications based on
machine learning models. This dataset contains large data of around 13 GB which
needs to be further encountered for comprehensive processing including data clean-
ing to discard incomplete packets. In addition, this CICIoT2023 dataset presents
a valuable foundation for IoT security utilizing ML models stating the relevance of
characteristics, mean values, and statistical measures for future research.

mean std min 25% 50% 75% max
flowduration 5.707423 272.545466 0 0 0 0.105109 218108.739996
Header Length 76685.740945 460930.919192 0 54 54 286.2 9907147.75
Protocol Type 9.066693 8.944772 0 6 6 14.44 47
Duration 66.351042 14.019758 0 64 64 64 255
Rate 9063.656307 99518.349428 0 2.093149 15.768890 117.738154 8388608
Srate 9063.656307 99518.349428 0 2.093149 15.768890 117.738154 8388608
Drate 0.000006 0.008684 0 0 0 0 29.715225
fin flag number 0.086606 0.281257 0 0 0 0 1
syn flag number 0.207280 0.405358 0 0 0 0 1
rst flag number 0.090533 0.286944 0 0 0 0 1
psh flag number 0.087694 0.282850 0 0 0 0 1
ack flag number 0.123378 0.328871 0 0 0 0 1
ecef lag number 0.000001 0.001184 0 0 0 0 1
cwr flag number 0.000001 0.000941 0 0 0 0 1
ack count 0.090559 0.286432 0 0 0 0 7.4
syn count 0.330221 0.663398 0 0 0 0.06 12.87
fin count 0.099085 0.326948 0 0 0 0 248.32
urg count 6.243520 71.843823 0 0 0 0 4312.5
rst count 38.488735 325.448905 0 0 0 0.01 9613
HTTP 0.048204 0.214198 0 0 0 0 1
HTTPS 0.055139 0.228252 0 0 0 0 1
DNS 0.000130 0.011406 0 0 0 0 1
Telnet 0 0.000192 0 0 0 0 1
SMTP 0 0.000272 0 0 0 0 1
SSH 0.000042 0.006463 0 0 0 0 1
IRC 0 0.000384 0 0 0 0 1
TCP 0.573770 0.494528 0 0 1 1 1
UDP 0.212020 0.408739 0 0 0 0 1
DHCP 0.000002 0.001345 0 0 0 0 1
ARP 0.000066 0.008136 0 0 0 0 1
ICMP 0.163673 0.369979 0 0 0 0 1
IPv 0.999887 0.010634 0 1 1 1 1
LLC 0.999887 0.010634 0 1 1 1 1
Tot sum 1308.633248 2615.082056 42 525 567 567.54 116053.4
Min 91.608917 139.720449 42 50 54 54 5858
Max 182.047585 524.388465 42 50 54 55.26 41814
AVG 124.690882 241.122562 42 50 54 54.049618 11600.474325
Std 33.356670 160.454938 0 0 0 0.371910 10996.260915
Tot size 124.718095 241.730018 42 50 54 54.06 13098
IAT 83186023.3826 17048700.777 0 83071565.7 83124522.02 83343908.46 167639436.04
Number 9.498647 0.819275 1 9.5 9.5 9.5 15
Magnitue 13.122379 8.630164 9.17 10 10.392305 10.396715 145.390447
Radius 47.139697 226.936791 0 0 0 0.505921 15551.061321
Covariance 30767.167317 324891.301223 0 0 0 1.344216 143542736.693839
Variance 0.096447 0.233044 0 0 0 0.08 1
Weight 141.516561 21.070656 1 141.55 141.55 141.55 244.6

Table 3.1: Dataset Description

The flow duration feature is essential for differentiating between malicious connec-
tions that end quickly and extended user communications because it shows the
complete amount of time a network flow is active. The variable Header Length
measures the overall length of all packet headers, suggesting the possibility of packet
fragmentation or extra options that may be typical of specific attacks. The term
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Protocol Type refers to the type of communication protocol being used, such as
ICMP, TCP, or UDP, each of which has unique usage patterns and vulnerabili-
ties. Rate specifies the quantity of packets transmitted per second and helps in
the detection of floods where packet rates are unusually high. Duration indicates
the active length of the flow in seconds and provides a metric for session analysis.
The terms Srate and Drate refer to the number of packets transmitted per second
from the source to the destination, respectively between which, abnormally high
rates suggest the possibility of DDoS attacks. Specific functions are served by TCP
flags such as fin, syn, rst, psh, ack, ece, and cwr, as well as their corresponding
counts (ack count, syn count, fin count, urg count, rst count), which are altered in
a variety of attack scenarios. Application-level protocols such as HTTP, HTTPS,
DNS, and others have binary signals that indicate how the protocol is used inside
the flow. These signals are essential for detecting certain application-layer attacks.
TCP, UDP, DHCP, ARP, ICMP, and other network and transport layer protocol
indicators are crucial to different network behaviors and vulnerabilities. In order
to identify network anomalies, statistical indicators such as Tot sum, Min, Max,
AVG, and Std are crucial as they offer an overview of the intensity and variability of
the flow. By measuring the intervals between packets in a flow, IAT (Inter-Arrival
Time) reveals unusual patterns that are frequently observed in network scanning or
attacks. Number detects flooding attacks and large-scale transfers by counting all
of the packets in a flow. For a multidimensional study of flow properties, advanced
statistical measures including Magnitude, Radius, Covariance, Variance, and Weight
are utilized.
In this research, We intend to detect several attacks on IoT devices and that’s why
we are working on the related data that contains various attacks being faced by IoT
devices in a particular network. Our collected dataset is being constructed by exam-
ining 105 devices against 33 attacks on an IoT topology. Moreover, those 33 attacks
(DDoS-ICMP Flood, DDoS-UDP Flood, DDoS-TCP Flood, DDoS-SYN Flood,
DDoS-PSHACK Flood, DDoS-RSTFINFlood, DDoS-SynonymousIP Flood, DoS-
UDP Flood, DoS-TCP Flood, DoS-SYN Flood, Mirai-greeth flood, Mirai-udpplain,
Mirai-greip flood, DDoS-ICMP Fragmentation, MITM-ArpSpoofing, DDoS-
UDP Fragmentation, DDoS-ACK Fragmentation, DNS Spoofing, Recon-Host-
Discovery, Recon-OSScan, Recon-PortScan, DoS-HTTP Flood, VulnerabilityScan,
DDoS-HTTP Flood, DDoS-SlowLoris, DictionaryBruteForce, BrowserHijacking,
Sql-Injection, CommandInjection, XSS, Backdoor Malware, Recon-PingSweep, Up-
loading Attack) are being distinguished into 7 classes such as Mirai, spoofing, Web-
based attack, brute forcing, DoS, and DDoS.
This dataset contains 27 million rows with 47 columns which would be a data heavy
evaluation We tested our models to detect the attack using a machine learning
algorithm splitting the dataset of 80% for training the models and the remaining
20% are utilized for testing.
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Figure 3.2: Dataset Prepossessing

Then We further categorized the data in 2 classes as well as 34 classes in 3.2 to make
the comparison more precise to detect whether it is an attack or benign. Moreover,
before running the model, we dumped the null values and converted categorical
values to binary according to the requirement of the model.

3.3 Dataset Analysis

The system’s architectural development and its ability to predict the suspicious
attacks upon the security breaches define the Precision ability of the system against
the unusual occurrences. It should have to be discussed the ratio between the pre-
prediction of the attack (True positive Count as TPC) and the exact outcome after
prediction [TPC + FPC(False Positive Count)]. It can be described mathematically
by this equation given below,

PrecisionCount =
TPC

TPC + FPC
(3.1)

Recall Detection: It defines the capability of the network to recognize the attack
on the currently active network. It can be expressed mathematically using True
Negative Count (TNC) and False Negative count (FNC) by this equation,

RecallDetection =
TNC

TNC + FNC
(3.2)

Accuracy: it refers to the framework’s capacity to accurately identify a normal
packet as a ”normal packet” and a malicious packet as an ”attack packet.” It de-
scribes the proportion of successful forecasts across the entire set of samples. It is
represented logically by Equation (3):

Accuracy =
(TPC) + (TNC)

TPC + FPC + TNC + FNC
(3.3)

F1 - score: is equivalent to the precision count and Recall detection’s harmonic
mean. For standard and malicious traffic, it indicates the percentage of precise
forecasts in the test data set. Equation (4) provides a logical definition for it.

F1Score = 2 ∗ PrecisionCount ∗RecallDetection

PrecisionCount+RecallDetection
(3.4)
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Figure 3.3: Performance comparison of different models for 34 classes

By analyzing the dataset with the label of 34 classes, the performance of different
models is shown using the figure 3.3. The Gaussian Naive Bayes model provides us
with the lowest result for the accuracy which is 71.43% and opposite to that, the
Decision tree and Random Forest model provide us with a good accuracy of 99.26%
and 99.25% respectively.

20



Figure 3.4: Performance comparison of different models for 2 classes

Furthermore, the dataset with label of 2 classes, the performance of different model
is shown using the figure 3.4. We can see that the Gaussian Naive Bayes model
is not suitable for this dataset. We know that, the Gaussian Naive Bayes model
does not perform well when the features are highly correlated. Though, there is
remarkable progress on other models.
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Figure 3.5: Confusion matrix of Decision Tree for 34 classes
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Figure 3.6: Confusion matrix of RandomForest for 34 classes
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Figure 3.7: Confusion matrix of Naive bayes for 34 classes
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Figure 3.8: Confusion matrix of MLP for 34 classes
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Figure 3.9: Confusion matrix of KNN for 34 classes
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(a) Decision Tree (b) Random Forest

(c) Gaussian Naive Bayes (d) KNN

(e) MLP

Figure 3.10: Confusion matrix of different models for 2 classes

The confusion matrix derived from our classification models for 34 classes figure
3.5, 3.6, 3.7 3.8, 3.9 and 2 classes figure 3.10. The number of true positive count
(TPC), true negative count (TNC), false positive count (FPC), and false negative
count (FNC) cases is represented by each cell in the matrix.
With respect to 2 classes, the accuracy of the models such as KNN, Decision tree,
Random forest, MLP, and Naive Bayes are respectively 94.38%, 99.26%, 99.25%,
98.52%, 71.43% .
Likewise, In respect to the 34 classes, the accuracy for those models are respectively
99.1%, 99.59%, 99.70%, 99.38%, 53.44%. To compare the outcome based on 34 and
2 classes, the accuracy for each model is nearly the same. Also, it indicates that we
can detect those attacks precisely whether it is on the parameter of 2 or 34 classes
which would completely depend on the architecture or complexity of the network
but the detection result would be very close to each other.
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3.4 Algorithm

We have implemented the algorithm to simulate attack detection and mitigation
techniques specifically designed for Fog Computing in IoT-enabled smart cities. Our
method creates a realistic network environment where different kinds of network
attacks are produced and monitored using mininet and ryu controller. Our system
can efficiently detect and mitigate malicious activities by utilizing machine learning
classifiers, which improves the security and resilience of Internet of Things devices
with limited computing capacity.

Algorithm 1 Topology

1: DEFINE class MyTopo(Topo):
2: METHOD build():
3: ADD switches s1 to s6 with OpenFlow 1.3 support
4: ADD hosts h1 to h18 with specific MAC addresses, IP addresses, and CPU

allocation
5: ADD links between:
6: Each host and its corresponding switch
7: Switches in a linear topology
8: DEFINE function startNetwork():
9: CREATE instance of MyTopo

10: DEFINE remote controller c0 with IP ’ . . . ’ and port
11: START the network
12: OPEN Mininet CLI for user interaction
13: STOP the network
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Algorithm 2 Controller

Require: Network traffic flows, trained machine learning models
Ensure: Detection and mitigation of network attacks
1: Initialization:
2: Initialize classifiers:
3: Start monitoring thread
4: Datapath State Management:
5: function state change handler(ev)
6: datapath← ev.datapath
7: if ev.state == MAIN DISPATCHER then
8: Register datapath in datapaths

9: else
10: Unregister datapath from datapaths

11: end if
12: end function
13: Network Monitoring:
14: while True do
15: for each dp in datapaths.values() do
16: request stats(dp)
17: end for
18: end while
19: Request Flow Statistics:
20: function request stats(datapath)
21: Send flow stats request to datapath
22: end function
23: Process Flow Statistics:
24: function flow stats reply handler(ev)
25: for each stat in ev.msg.body do
26: Calculate flow features
27: Append features to stats df

28: flow predict([flow features], ev.msg.datapath)
29: end for
30: end function
31: Train Machine Learning Model:
32: function flow training
33: for each classifier do
34: Train and evaluate accuracy
35: Update best model
36: end for
37: end function
38: Predict and Mitigate Attacks:
39: function flow predict(flow features, datapath)
40: Predict traffic type using the best model
41: if malicious flow detected then
42: install drop flow(datapath, match)
43: end if
44: end function
45: Install Drop Flow:
46: function install drop flow(datapath, match)
47: Create flow mod message to drop packets
48: Send flow mod message to datapath
49: end function
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Chapter 4

Experimental Evaluation

4.1 Experimental Settings

4.1.1 Ryu Controller

The included Ryu controller script incorporates an enhanced Ryu program that
extends the functionality of a basic switch to include monitoring of networks and
detection of attack features. Using the OpenFlow protocol, this Ryu program, called
Monitoring42, monitors network flows dynamically, gathers information, and applies
security measures depending on traffic behavior. The script initially defines a col-
lection of classifiers for machine learning and creates a data frame to gather and
analyze network information. It has a monitoring feature that periodically asks net-
work switches for flow statistics. These are used afterward to gather detailed infor-
mation on network traffic, such as the number of bytes and packets transported, the
length of the flow, and different TCP segment flags. The script also computes cer-
tain parameters that are essential for differentiating between normal and abnormal
behaviors, such as protocol types and service-specific traffic (HTTP, HTTPS, DNS,
etc.). After the data is gathered, methods for preprocessing like scaling and impu-
tation are used to get it ready for machine learning analysis. Labeled data is used
to train the machine learning component to identify patterns linked to various kinds
of network assaults. The script takes preventive measures by dropping malicious
traffic when it detects an attack based on the patterns of traffic and the predictions
made by the machine learning models. This involves generating an OpenFlow rule
that aligns with the attributes of the malicious flow, such as IP addresses and TCP
flags. Other OpenFlow rules can also be applied, targeting various parameters like
Ethernet type, VLAN ID, IP protocol, and ports for TCP/UDP, along with ICMP,
ARP details, and more. Possible actions range from directing packets to a des-
ignated port, assigning queue IDs, altering packet attributes, to managing VLAN
and MPLS tags, and modifying TTL values. The install drop flow function creates
a flow modification command without any specified actions, effectively instructing
the switch to block packets that meet the identified criteria. This command is then
transmitted to the pertinent switch, which implements the rule in its flow table.
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4.1.2 Mininet

Mininet is a network emulator that uses Linux namespaces for process virtualization
to generate a realistic virtual network on a single system, enabling fast simulation
of a large number of network nodes [58]. It is very advantageous for researchers
and developers to create and test network applications and protocols in a controlled
environment. Using Python script in Mininet we were able to create a custom
network topology class which is derived from the Topo class.

Figure 4.1: Topology

The topology 4.1 consists of numerous hosts and switches, with each host allotted a
portion of CPU resources, a unique MAC address, and an IP address. For advanced
network management and control, the switches are set up by using the OpenFlow1.3
protocol. The code develops network topology by defining the network connections
between these nodes using a series of links between hosts and switches. The program
is started by establishing a connection to a remote controller and instantiating the
custom topology using the Mininet class. After that, the network is turned on
and users can communicate with it using the Mininet CLI. This enables real-time
configuration, testing, and evaluation of network behaviors as well as the effects of
various protocols and applications. It offers a practical experience that emphasizes
experimentation and learning in a dynamically controllable setting.

4.2 Experimental Results

We used customized programs and special scripts to generate different kinds of net-
work traffic, including normal traffic and attacks like DDoS, Mirai botnet, and ARP
spoofing. This traffic data was gathered by the Ryu controller, which also obtained
relevant metrics like as packet counts, byte counts, and flow time. Preprocessing
was done on the gathered data, followed by feature extraction to find important
indicators of network behavior, normalization to standardize feature values, and
treatment of missing values by imputation or elimination. After the dataset was an-
alyzed, it was used for testing, and the CICIoT2023 trainset was used. A number of
machine learning models, such as multilayer perceptrons (MLP) and decision trees,
were trained and tested.
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Figure 4.2: Performance comparison of different models of result

(a) Decision Tree (b) Random Forest

(c) MLP (d) KNN

Figure 4.3: Confusion matrix of different models result

The outcome of the machine learning models figure 4.2 which are used to check net-
work traffic data collected with a Ryu controller propose some important changes
along with gaps regarding how the system is now set up to identify network issues.
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The accuracy, precision, recall, and F1 scores of each model—Random Forest, Deci-
sion Tree, MLP, and KNN—alter. These metrics are crucial for evaluating the way
that classification models perform in security-sensitive situations.
First of all, the models developed to be mostly precise at identifying the data into
the appropriate categories (attack vs. benign) based on the high accuracy scores
detected throughout most models, especially Random Forest and KNN. True posi-
tive rates indicate that these models are only so good at correctly recognizing actual
attacks as random guessing, which is represented by the precision scores being near
0.5. This indicates that although the models successfully classify entities in general,
they are not accurate in precisely identifying individual network attack cases.
The recall scores provide an additional level of understanding. The MLP model
has a greater recall rate, indicating a comparatively higher level of effectiveness in
recognizing the relevant instances of threats (also known as true positives). How-
ever as its lower precision score indicates, this occurs at the expense of more false
positives. The F1 score is significantly greater for MLP, indicating that even with
its limitations, it could continue to be the more successful model of all the models
tested for verifying suspicions of network attacks in a mixed data environment such
as the one gathered by the Ryu controller.

4.3 Experimental Findings

These results could be influenced by several factors:
Class Imbalance: In network security, this is a common issue where the amount of
benign traffic is significantly greater than the amount of attack instances. This type
of data may cause models to become biased in favor of the majority class, which
would hinder the ability to recognize attacks against the minority class.
Feature Selection: It is possible that the selected features do not have the dis-
criminating ability needed to distinguish between malicious and benign traffic. This
problem could result in fail to detect small but significant changes in network activity
that point to intrusions.
Overfitting of the Model: When a model performs well on training data but is
unable to generalize to new, unknown data, it may be overfitted. This is shown by
high accuracy combined with low precision and recall. This is especially troublesome
in network security, because attack paths and behaviors change rapidity.
MLP Model Strengths: Higher recall and F1 scores for the Multilayer Perceptron
(MLP) model demonstrated its capacity to identify more true positive assault cases.
Although it generated more false positives due to its poorer precision, this trade-off
is frequently justified in security conditions where failing to detect an attack might
have a greater negative impact than incorrectly reporting innocuous traffic.
Decision Tree Model Balance: With moderate precision and recall scores, the
Decision Tree model performed in a more balanced way. Its balance makes it a
helpful tool for fog computing environments’ real-time threat detection. Under-
standing the decision-making process is made easier by its interpretability, which is
advantageous when it comes to modifying and enhancing security rules.
Need for Improved Detection Strategies: The results indicate the need for
ongoing development of methods of detection. Robust security in fog computing
systems requires periodic updates to training data with new patterns of attack,
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researching advanced machine learning algorithms, and utilizing more sources of
data from IoT devices.
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Chapter 5

Discussion

5.1 CIA Maintenance

Confidentiality:
By ensuring that all potential risks are identified and mitigated, improved feature
selection, constant advancement in detection methodologies, and improved detection
of rare attacks all contribute to the identification and prevention of unauthorized
access to confidential information. Sensitive data is shielded against unwanted access
by unauthorized parties due to high recall in models like MLP, which ensures that
the majority of possible threats are identified.
Integrity:
The integrity of data within the structure of smart cities is maintained by precisely
recognizing and reacting to threats, ensuring that data isn’t interfered with or al-
tered. Maintaining the integrity of the data is handled and preserved is ensured by
detecting and mitigating defects that may point to data manipulation.
Availability:
The availability of smart city facilities is maintained by the effective detection of
attacks, which stops them from growing more serious and disrupting normal opera-
tions. By preventing overfitting, models are ensured to be capable of detecting and
mitigating new forms of attack, hence ensuring service availability. Service avail-
ability is maintained by minimizing false positives while retaining good recall, which
ensures that benign traffic is not overly stopped.
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5.2 Comparison with existing studies

Table 5.1: A qualitative comparison with existing studies

Research study
Use of

Algorithm
Focus on
Attack

Platform Used/
Simulated

Detecting
Attack

Mitigating
Attack

Multiple
Attack

Detection

[16]
Various
Security
Mechanisms

Not specific Fog Computing, IoT Yes No No

[55] ANFIS, SDN TCP SYN Flood Fog Computing, SDN Yes Yes No

[30]
Anomaly-based
Detection

, k-NN DDoS Fog Computing Yes Yes No

[11]
VPN, Challenge-
Response
Authentication

Man in
the Middle
(MitM), DDoS

Fog Computing Yes Yes No

[37]
Deep
Reinforcement
Learning

Reconnaissance Cloud Platforms Yes Yes No

[31] Visualization, Machine Learning
DNS
Tunneling, Data
Exfiltration

Custom DNS Proxy Server Yes Yes No

[43]
Federated
Learning

Botnet IoT Networks Yes Yes No

[12]
Intrusion
Detection
and Prevention

Man in the
Middle
(MitM)

OMNET++ Yes Yes No

Our Proposed Model

Advanced
Machine
Learning
Techniques

Various
Security
Threats

Fog Computing
in IoT-Enabled
Smart Cities

Yes Yes Yes

The table 5.1 summarizes a number of research publications along with our pro-
posed model that address security measures for various cyberattack scenarios in fog
computing and IoT environments. Each section specifies the attack type addressed,
the technique that was employed, the platform that was used for simulation or im-
plementation, and if the article deals with attack detection, attack mitigation, or
multiple attack detection. The applications include IoT networks, fog, and cloud
computing systems, and the methodologies range from machine learning approaches
to deep reinforcement learning.

5.3 Limitation

1. The observed disparity between high accuracy and lower precision/recall scores
shows there are problems with generalization between various data subsets,
emphasizing a constraint in the model’s capacity to function reliably in a
range of network environments.

2. The models can fail to identify complicated patterns in the data which suggest
highly developed attack vectors due to their limitations with the existing set
of features.

3. Network traffic is dynamic by nature and is subject to large fluctuations. Static
models might not be able to adjust to newer attack types or modifications in
safe traffic patterns quickly enough.

4. Real-time analysis and mitigation might prove difficult, which could delay the
detection and response to attacks, based on the computational complexity of
the models and the volume of traffic.
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Chapter 6

Conclusion and Future work

The importance of Smart Cities in tackling the problems caused by urbanization
and technological progress is explored in this thesis. By allowing real-time data pro-
cessing, resource optimization, and improved citizen services, it demonstrates how
the combination of IoT and fog computing has dramatically affected the creation of
smart cities. It also highlights the interconnection and expanding complexity of these
systems, making them vulnerable to various security risks. To lay the groundwork
for understanding the relationships between Smart Cities, IoT, and Fog Comput-
ing, the research starts by giving a thorough review of each. At that moment, the
discussion turns to the security characteristics of Fog Computing in IoT-enabled
Smart Cities. The key security issues are data privacy breaches, unauthorized ac-
cess, network congestion, and related issues including Distributed Denial of Service
(DDoS) assaults, virus spread, and physical manipulation. The thesis investigates
alternative remedies for these problems, such as robust authentication techniques,
encryption protocols, intrusion detection systems, and the use of blockchain tech-
nology. The ultimate objective is to guarantee the resilience, integrity, and privacy
of these creative urban ecosystems. This work facilitates the development of mul-
tiple future works i.e. the implementation of different attack mitigation strategies
in the Fog Computing environment. In conclusion, the thesis investigates the secu-
rity issues generated by the use of fog computing in the environment of IoT-driven
Smart Cities and offers proactive ways to safeguard both their functionality and
security. Our future research should be focused on combining more discriminative
features which will be able to better analyze between benign and malicious traffic.
Advanced machine learning techniques, such as deep learning models can be utilized
for the improvement in detection accuracy and robustness along with overcoming
class imbalance and can be developed as a seamless integration model with existing
security systems.
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[41] V. Božić, Applications of fog computing for smart sensors, 2023.

[42] M. Burhan, H. Alam, A. Arsalan, et al., “A comprehensive survey on the coop-
eration of fog computing paradigm-based IoT applications: Layered architec-
ture, real-time security issues, and solutions,” IEEE Access, vol. 11, pp. 73 303–
73 329, 2023.

[43] F. L. de Caldas Filho, S. C. M. Soares, E. Oroski, et al., “Botnet detection
and mitigation model for IoT networks using federated learning,” en, Sensors
(Basel), vol. 23, no. 14, p. 6305, 2023.

[44] A. Heidari and M. A. Jabraeil Jamali, “Internet of things intrusion detection
systems: A comprehensive review and future directions,” en, Cluster Comput.,
vol. 26, no. 6, pp. 3753–3780, 2023.

[45] B. Hubert, Spoofing DNS with fragments, May 2023. [Online]. Available: https:
//blog.powerdns.com/2018/09/10/spoofing-dns-with-fragments.

[46] N. Kaliya and D. Pawar, “Unboxing fog security: A review of fog security and
authentication mechanisms,” en, Computing, 2023.

[47] M. Kumar and S. K. Dubey, “Network intrusion detection for IoT devices
using deep learning,” in 2023 10th IEEE Uttar Pradesh Section International
Conference on Electrical, Electronics and Computer Engineering (UPCON),
IEEE, 2023.

[48] C. Mongare, “Securing the internet of things (iot) devices,” vol. 1, May 2023.

[49] P. Mubashir, R. khan, and M. Farooq, “Stout implementation of firewall and
network segmentation for securing iot devices,” Indian Journal of Science and
Technology, vol. 16, pp. 2609–2621, Sep. 2023.

[50] E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and A. A.
Ghorbani, “Ciciot2023: A real-time dataset and benchmark for large-scale at-
tacks in iot environment,” Sensors, vol. 23, no. 13, 2023, issn: 1424-8220.
doi: 10.3390/s23135941. [Online]. Available: https://www.mdpi.com/1424-
8220/23/13/5941.

[51] I. H. Sarker, A. I. Khan, Y. B. Abushark, and F. Alsolami, “Internet of things
(IoT) security intelligence: A comprehensive overview, machine learning solu-
tions and research directions,” en, Mob. Netw. Appl., vol. 28, no. 1, pp. 296–
312, 2023.

[52] K. Singh and N. Singh, “Analysis of IoT attack detection and mitigation,” in
2023 International Conference on Artificial Intelligence and Smart Commu-
nication (AISC), IEEE, 2023.

41

https://blog.powerdns.com/2018/09/10/spoofing-dns-with-fragments
https://blog.powerdns.com/2018/09/10/spoofing-dns-with-fragments
https://doi.org/10.3390/s23135941
https://www.mdpi.com/1424-8220/23/13/5941
https://www.mdpi.com/1424-8220/23/13/5941


[53] A. Srivastava and U. Jain, “Securing the future of IoT: A comprehensive frame-
work for real-time attack detection and mitigation in IoT networks,” in 2023
14th International Conference on Computing Communication and Networking
Technologies (ICCCNT), IEEE, 2023.

[54] A. N. Alvi, B. Ali, M. S. Saleh, M. Alkhathami, D. Alsadie, and B. Alghamdi,
“Secure computing for fog-enabled industrial IoT,” en, Sensors (Basel), vol. 24,
no. 7, p. 2098, 2024.

[55] R. Bensaid, N. Labraoui, A. A. Abba Ari, et al., “Toward a real-time TCP
SYN flood DDoS mitigation using adaptive neuro-fuzzy classifier and SDN
assistance in fog computing,” en, Secur. Commun. Netw., vol. 2024, pp. 1–20,
2024.

[56] A. Khan, Reconnaissance in cyber security, Apr. 2024. [Online]. Available:
https://intellipaat.com/blog/reconnaissance-in-cyber-security/.

[57] K. S. Rani, G. Parasa, D. Hemanand, et al., “Implementation of a multi-
stage intrusion detection systems framework for strengthening security on the
internet of things,” MATEC Web Conf., vol. 392, p. 01 106, 2024.

[58] M. Project, MiniNet: An instant virtual network on your laptop (or other PC)
- MiniNet. [Online]. Available: http://mininet.org/.

42

https://intellipaat.com/blog/reconnaissance-in-cyber-security/
http://mininet.org/

	Declaration
	Approval
	Abstract
	Table of Contents
	List of Figures
	Introduction
	Research Problem
	Research Objective
	Research Contribution
	Thesis Structure

	Literature Review 
	Background
	IoT Devices:
	Smart City :
	Security Threats:

	Related Works

	Methodology
	Proposed Model
	Dataset Description
	Dataset Analysis
	Algorithm

	Experimental Evaluation
	Experimental Settings
	Ryu Controller
	Mininet

	Experimental Results
	Experimental Findings

	Discussion
	CIA Maintenance
	Comparison with existing studies
	Limitation

	Conclusion and Future work

