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Abstract

Machine Reading Comprehension (MRC) is an artificial intelligence task that ex-
amines a given passage or text and answers queries regarding it. The objective is to
make an intelligent support system that has the ability to understand the contex-
tual information of the passage and give correct answers for multi-reasoning ques-
tions, commonsense based questions and multiple-choice questions, etc. One of the
main challenges faced by MRC models in commonsense based and multi-reasoning
questions is the need for understanding and reasoning beyond explicit textual infor-
mation. To enhance the capabilities of MRC systems in these areas, the research
focuses on the comparative analysis of state-of-the-art transformer-based models in-
cluding BERT, ALBERT, RoBERTa, DistilBERT, MobileBERT, and ELECTRA.
Our investigation specifically targets the enhancement of commonsense reasoning
within MRC frameworks. In regards to this, we have used a binary decision mak-
ing approach in our algorithm, in order to achieve a better outcome from these
transformer-based models. To evaluate the performance, the experiments were con-
ducted using CosmosQA dataset, which consists of narrative-driven questions that
necessitate commonsense understanding to resolve.

Keywords: Machine Reading Comprehension(MRC), artificial intelligence, con-
textual information, multi-reasoning questions, commonsense, transformer-based
models, BERT, ALBERT, RoBERTa, DistilBERT, MobileBERT, ELECTRA, Cos-
mosQA.
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Chapter 1

Introduction

Over the past few years, question-answering (QA) systems have made significant
improvements in natural language processing (NLP) and are now an important fea-
ture of many applications such as virtual assistants, chatbots for customer service
as well as data retrieval systems. Also by detecting the context and pulling rel-
evant information from a huge text, QA systems are providing detailed and brief
responses to the user inquiries. The management of multi-reasoning queries, when
responding to it, requires combining data from several sources or utilizing various
reasoning processes which is one of the most significant challenges encountered by
the QA systems. As they mainly rely on the exact matching of words or predeter-
mined rules, traditional QA methods like keyword matching or rule-based systems
frequently struggle with such inquiries by making them less successful at captur-
ing complicated interactions and nuanced reasoning. For NLP applications such as
machine translation, language modeling, and sentiment analysis, transformer-based
algorithms have become a strong answer. Transformers, introduced by Vaswani et
al. (2017)[7], have transformed the area of NLP by utilizing the parallelization ap-
proaches and self-attention processes. These models such as BERT (Bidirectional
Encoder Representations from Transformers) [10], ALBERT (A Lite BERT) [16],
RoBERTa (Robustly Optimized BERT) [13], DistilBERT (A distilled version of
BERT) [18], MobileBERT [19] and ELECTRA (Efficiently Learning an Encoder
that Classifies Token Replacements Accurately) [15] have established themselves as
the standard practice in many NLP applications due to their outstanding perfor-
mance across multiple benchmark datasets.

In this paper, we will be focusing on multi-reasoning and commonsense based ques-
tion answers using transformer-based algorithms to evaluate the performance by
conducting a few experiments on the CosmosQA[11] dataset. Our goal is to develop
a robust and efficient QA system that can handle complex queries and provide ac-
curate answers by effectively incorporating multiple reasoning processes. We aim to
explore and enhance the capabilities of transformer models to improve their perfor-
mance on multi-reasoning tasks. The outcomes of this research can have significant
possibilities in a variety of categories like education, healthcare, and information
retrieval, where these effective QA systems can greatly enhance the user experiences
and provide valuable insights from data in text.
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1.1 Problem Statement

Machine Reading Comprehension (MRC) is a great accomplishment in natural lan-
guage processing (NLP) which assists in extracting the desired answer or response
from a given text. Despite considerable improvements over the past few years, the
lacking in this field of work is quite significant; mainly in regards to the effective
extraction of data out of textual information.
The main hindrance in establishing the task is comprehending the accurate and pre-
cise inner meaning and representation of a complex textual representation. Ordinary
MRC models struggle to understand context-dependent meaning and structure be-
hind the natural language text. Thus, where a deep understanding is needed, the
performance and the analysis desirability degrades, and the credibility of getting
accurate answers to the questions also falls off.

Secondly, the generalization of MRC tasks is a mandatory part while answering
the multi-reasoning questions. Running the models on very few ordinary, unreli-
able datasets leads the model to become very much unadaptable while facing new
structural texts and results in inappropriate, undesirable answering.
Thus, there is a need for much more advanced, interpretable, and explainable MRC
models. Ordinary models lack in exploring the inner meaning perfectly, making
it difficult to see how the decisions are made to arrive at the solutions. Account-
ability is an unavoidable part of MRC. Crystal clear and accurate interpretable
answers/explanations are required in areas such as law or medical fields, in order
to gain trust. Furthermore, biases in the datasets can also be an issue. That can

result in answering biased or unfair predictions and so on. So, working with reliable
and many datasets to get rid of biases has to be another indispensable concern.
Therefore, This study proposes novel methodologies to overcome the MRC’s afore-
mentioned problems to enhance accuracy while answering the multi-reasoning or
commonsense related questions. By applying some great transformer-based algo-
rithms like BERT, ALBERT (A Lite BERT), RoBERTa, DistilBERT, MobileBERT
and ELECTRA , this research ensures that the best interpretability comparing these
models.
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1.2 Research Objective

The goal of this study is to evaluate and compare different transformer-based mod-
els to see how well they improve the abilities of machine reading comprehension
(MRC) systems, especially in terms of multi-reasoning and commonsense reason-
ing. By working with the CosmosQA dataset, which focuses on narrative-driven,
commonsense-based questions, we aim to identify which model performs best in this
dataset. Ultimately, we want to create a reliable, intelligent support system that
can understand and process complex information accurately, enhancing the overall
effectiveness of MRC models.The main objectives of our research are given below:

1. Improve the accuracy of commonsense based QA task.

2. Compare and analyze the performance of different transformer-based models
on commonsense reasoning QA tasks.

3. Measure each model’s performance using accuracy.

4. Evaluate the effectiveness of transformer-based models in handling multi-
reasoning and commonsense based questions.

3



Chapter 2

Literature Review

Transformer-based algorithms have emerged as useful tools in natural language pro-
cessing tasks in recent years.The fundamental justification for employing transformer-
based algorithms is that their attention mechanisms and contextual embeddings have
shown exceptional performance in a variety of NLP applications. We came across
some articles showing intriguing findings while researching MRC using transformer-
based algorithms. In this section, we go over some earlier research that employed
transfer learning to complete problems involving machine comprehension of text.

Natural Language Processing(NLP) and commonsense reasoning have come together
to create various complex models that can understand human narratives beyond
the actual meaning. Among the pioneering endeavors in this field, Huang et al.
(2019)[11] introduced CosmosQA which is a large-scale dataset aimed at advancing
machine comprehension through contextual commonsense reasoning. The dataset
has 35,588 multiple-choice questions derived from 21,886 unique paragraphs. Addi-
tionally, the dataset requires models to evaluate assumed narratives, hypothetical
scenario and the likely causes and effects within a given environment. The authors
experimented this benchmark dataset with different state-of-the-art neural archi-
tectures including their novel BERT with Multiway Attention model. Despite the
authors used advanced approaches, the research has a significant gap between hu-
man and machine performance. The highest score the model performed is 68.4%
and the human performance is 94% which indicates the path for future exploration
in the realm of commonsense machine comprehension. This gap not only draws
attention to the difficulties in combining reading comprehension with common sense
reasoning, but it also opens up opportunities for research on artificial intelligence
(AI) with the goal of bridging the complex comprehension that humans naturally
acquire.

A novel dataset designed by Talmor, A., Herzig, J., Lourie, N., and Berant, J.
(2019)[8] indicates focus on commonsense knowledge for answering questions for
specific contextual information.The CommonsenseQA dataset consists of 12,247
multiple-choice questions which need commonsense reasoning for accurate resolu-
tion. The main challenges the authors mentioned is the generation of the questions
that not only requires commonsense reasoning but also the level of difficulty that
is non-trivial for both traditional and advanced models including transformer based
models. The human accuracy on this dataset is 88.9%.The most accurate baselines
are BERT-LARGE and GPT, with respective accuracy of 45.5% and 55.9% on the
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random split (63.6% and 55.5% on the question concept split). This shows how
much easier the benchmark is for humans because it is significantly below human
accuracy. This finding is significantly greater than chance (20%) and indicates that
language models are capable of storing substantial amounts of data pertaining to
commonsense knowledge.

The paper that was released by the U.khanna and D.Mollá(2021)[22], experiments
in the BioASQ Task 9b Phase B challenge, specifically focusing on biomedical
question answering which requires multi-reasoning. They investigated the use of
transformer-based language models and techniques. Acknowledging the importance
of fine-tuning they stated that the fine-tuning approaches are important for learn-
ing distributions of the target task and improving the language model’s adaptability.
There are many challenges of fine-tuning on small datasets like BioASQ because it
can cause catastrophic forgetting and overfitting. Catastrophic forgetting refers to
the phenomenon where the model forgets what it learned previously which causes
performance drop when trained on a new task. Catastrophic forgetting is prob-
lematic in scenarios where the model needs to learn continuously to adapt to new
tasks while retaining knowledge from previous tasks. To overcome these challenges
they explored scheduling like gradual unfreezing, where model layers are fine-tuned
gradually instead of all at once. Based on the ALBERT and DistillBERT models
they described their two systems. At first they employed a staged fine-tuning on
the SQuAD2.0 dataset and then on the BioASQ9b dataset. The DistilBERT-based
system examines how a more compact, smaller transformer-based model responds
to gradual unfreezing. The paper provides insights into the pre-processing proce-
dures where it is needed to convert the BioASQ dataset into the SQuAD format for
training and evaluation. The factoids are considered as extractive QA tasks, with
the answers being taken directly from relevant snippets. They used Strict Accuracy
(SAcc), Lenient Accuracy (LAcc), and Mean Reciprocal Rank (MRR) evaluation
matrices. Their experimental results show that the ALBERT-based systems ranked
first in test batch 1 and fourth in test batch 2 for factoid questions. Surprisingly,
the DistilBERT systems outperformed the ALBERT variants in test batches 4 and
5, despite having significantly fewer parameters which was 81% fewer. The systems
”DistilBERT” and ”Unfreezing DistilBERT” have average MRR scores of 0.5209 and
0.5232 for test batches 2, 4, and 5, respectively, and the disparity is not statistically
significant. The accuracy of the model was not significantly affected by gradually
unfreezing in comparison to conventional fine-tuning, according to the authors.

K. Pearce, T. Zhan, A. Komanduri and J.Zhan (2021)[23], conducted a comparative
study of transformer-based language models on extractive question answering. They
aim to evaluate the generalizability of these models across different datasets with
diverse complexities, while also introducing a new model architecture called BERT-
BiLSTM for extractive question answering to examine if adding bidirectionality can
improve the model performance. Extractive question answering involves taking a
section of text from a provided context paragraph and using it as the response to
a given question. They described the integration of BERT [10] as an encoder layer
for tokenization which captures contextual information from the input text and uses
the self attention transformer to provide a deeper encoding than earlier embedding
models like Word2Vec[2] or Glove [4]. They discovered that BERT’s bidirectionality
makes it significantly more effective as an encoder than merely LSTM[1]. In order
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to improve the model’s comprehension and representation of the context needed to
respond to the queries, the authors also added a BiLSTM layer. They expressed
the input sequence into the language models as a question context single packed
sequence in order to augment the question and context together. In the experiment
part, four separate datasets which are NewsQA, SQuAD 2.0, QuAC, and CovidQA
are used to fine-tune a number of pre-trained language models, including XLNet,
BERT, RoBERTa, ALBERT, ConvBert, and BART. They emphasized the distinc-
tive features of each dataset, including open-ended questions, complicated reason-
ing requirements, dialogue exchanges, and unanswerable queries. Their findings
demonstrated that the models worked best on the SQuad 2.0 dataset, which con-
tained simple contexts, questions, and extracting replies. On the NewsQA dataset,
they did reasonably well, showcasing their outstanding reasoning abilities. On the
QuAC dataset, which was made up of open-ended questions requiring inference,
the models did badly, nevertheless. Due to the small amount of training data and
the short maximum sequence length restriction, the CovidQA dataset which con-
tains longer contexts, questions and responses, created a difficulty for the models.
RoBERTa and BART had the best performances out of all the models. Their sug-
gested model BERT-BiLSTM, performed 1% better than BERT basic. Therefore,
adding a bidirectional LSTM layer improves contextual representations and improves
performance in question-answering, claims their paper.

A model and data collection called WebSRC were created by Lu Chen et al.[20] for
answering questions about websites. Their main goal was to effectively highlight
the challenges of understanding web page content and emphasizes the importance
of considering both text and structural information. For instance, if you are given a
query and a web page, the goal is to find the answer on that website. Their proposed
dataset WebSRC is a novel Web-based dataset for structural reading comprehension
that includes 400k question-answer pairs that were gathered from 6.4K web pages.
For each web page, the dataset contains HTML code, screenshots, and information.
Each segment’s questions were carefully crafted by the authors, and the replies were
either text extracts from the web page or yes/no responses. The increased size and
inclusion of HTML documents and images of the WebSRC dataset are highlighted
in comparison to other datasets that contain HTML documents. The experimental
setup involves training baselines on the dataset and evaluating their performance.
Comparisons were performed between baselines using different combinations of text,
HTML tags and screenshots. The findings demonstrate that including more con-
text information enhances performance, with models using HTML components and
screenshots outperforming models that only use text. They reported the result of
SQuAD model on their dataset without fine-tuning. Therefore the exact match
score is only 29.68 which means the texts from HTML are highly different from
the normal textual passages. The authors realized the need for more sophisticated
technology to model the HTML structure because, although virtually matching the
performance of the version without pretraining in all metrics, the fine-tuned models
still perform quite differently in the textual QA dataset. The improved perfor-
mance of ELECTRA-based models is seen in the comparison of BERT-based and
ELECTRA-based models, highlighting the difficulties the WebSRC dataset presents
for pre-trained language models at the moment. They highlighted the necessity of
future research into the use of structural information and emphasized the significance
of combining layout features with textual contents for web page understanding.
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The authors Hu Xu, Bing Liu, Lei Shua, and Philip S. Yu(2019)[14] provided a
thorough analysis of the performance of BERT in review-based tasks because they
recognize the value of question answering in e-commerce as it gives customers the
opportunity to actively seek out crucial information about products or services in
order to aid their purchase decision. Their main objective is to transform customer
reviews into a significant knowledge base that can be used to address customer
questions. They explored the effectiveness of post-training BERT on tasks such
as Review Reading Comprehension (RRC) and Aspect-based Sentiment Analysis
(ASA). Highlighting the challenges and significance of understanding review-based
tasks in natural language, the authors identified three research questions(RQs) from
the basis of their experiments. These RQs revolve around the performance gain
achieved by BERT post-training, the performance of BERT’s pre-trained weights
without domain and task adaptation and the individual contributions of domain
knowledge post-training and task-awareness post-training to the overall performance
gain. They conducted their experiments for RRC, AE, and ASC tasks using exist-
ing datasets such as SemEval and SQuAD[6]. To guarantee high-quality data, they
used an exacting annotation method.For post-training domain knowledge, they use
Yelp Dataset Challenge and Amazon laptop reviews[5], and SQuAD 1.1 for post-
training task awareness. The researchers compare various BERT models as well as
current state-of-the-art models for AE and ASC tasks. BERT-DK (post-training
on domain knowledge), BERT-MRC (post-training on SQuAD 1.1), and BERT-PT
(proposed joint post-training algorithm) are some of the variants. A baseline ap-
proach, DrQA, and DrQA+MRC (fine-tuning on ReviewRC with training weights)
are also included. The results show that BERT post-training, specifically with
the suggested joint post-training method (BERT-PT), outperforms state-of-the-art
models and BERT’s pretrained weights alone in RRC and ASA tasks. The authors
emphasize how well BERT post-training works to enhance performance on review-
based tasks. Their recognition of the contributions of task awareness and domain
knowledge post-training adds complexity to the subject and has implications for
further study.

When it comes to applying BERT-based models to process lengthy texts, Xueqiang
Lv et al.(2021)[25]provide an innovative method. The impact of entirely natural
language processing tasks has been elevated with the development of a large-scale
pre-training model based on the transformer model. These models, however, struggle
to absorb lengthy texts because of the great complexity of the transformer’s self-
attention mechanism. To efficiently manage lengthy texts, the authors suggested
a technique dubbed HBert that combines the strength of BERT and hierarchical
attention mechanisms. They claimed that techniques including truncation, seg-
mentation, compression, and structural alterations had limitations when used to
handle lengthy texts with BERT. The authors suggested using the segmentation-
based HBert method to get over these drawbacks. The lengthy text is broken up
into several sentences and in order to create sentence vectors, each sentence is BERT
and word attention layer encoded. The sentence encoder then uses a transformer
and sentence attention to retrieve the article vector. For further tasks like text
classification and question answering, the produced article vector is employed. The
outcomes of the experiments show how effective the HBert approach is. On a variety
of open datasets, including as the WikiHop QA dataset[9], Hyperpartisan news[12],
and IMDb movie reviews, it surpasses the state-of-the-art longformer model in both
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text classification and QA tasks. With 95.7% in longer text classification tasks and
75.2% in QA tasks, HBert’s F1 scores are remarkable. In their paper the authors
also included ablation experiments to evaluate the significance of various model
constituents. By resolving the difficulties of capturing word-level and inter-sentence
semantic information, these tests demonstrate that word attention and sentence
attention significantly contribute to the model’s performance. The research also
analyzes the memory requirements of the HBert model and shows that it is less
complex than the BERT and RoBERTa models.
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Chapter 3

Description of the Models

3.1 Introduction to Transformer Model Architec-

ture

A transformer is a neural network architecture which has the ability to capture
highly complicated dependencies and relationships in any complex tasks. These
models have parallelization which makes the computation more efficient for tasks
having long-sequences. Thus, for question answering problems, transformer models
are mostly used as they can facilitate better results.
The architecture of the transformer plays a crucial role for its enhanced performance
compared to other architectures. Among the tasks it can perform, one is the ques-
tion answering task. This is due to its ability to understand complex contextual
information and how it can analyze as well as generate answers in respect to it.
It can also handle long sequences quite efficiently. In order for this transformer
to understand the sequence at first the dataset needs to be trained in the model.
Therefore, to ensure this the dataset is firstly tokenized into tokens. The tokens are
then passed over to the transformer layers where the training of the tokens takes
place. The inputs of the models, the tokens, are separately created. One token is
for the questions and the other for the contexts. To identify the tokens from one
another a special token [SEP] also known as the separator token, which is added
in front of the question and context sequences. Another type of special token is
present [CLS] which is known as the classification token and this particular token
is the first token to enter before the input sequence as this helps to understand the
relationship between part of the data and in order to distinguish between the begin-
ning of a new set of data.The fig. 3.1 shows the basic architecture of transformer.
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Figure 3.1: Basic Transformer Architecture [7]

The architecture of the transformer models in which the tokens are passed over has
the following layers:

1. Embedding Layer: The sequence, having undergone tokenization for input,
traverses through this stratum of the transformer architecture, facilitating the
conversion of tokens into high-dimensional vectors.

2. Encoder Layer: Within this layer, the computation of positional encoding,
which involves discerning the position of the tokenized data within the se-
quence, takes precedence. Additionally, this layer incorporates a dual-mechanism
configuration. The initial mechanism involves a self-attention process, empow-
ering the models to adeptly grasp the contextual nuances embedded within the
input sequence. Subsequently, the subsequent layer features a feed-forward
neural network, wherein non-linear transformations unfold to meticulously
capture the intricate syntactic details existing between the input sequence
and the interplay among the tokens.

3. Decoder Layer: In this layer, the encoded input sequence is passed over
and then three mechanisms take place which are the masked multi-head self-
attention, encoder-decoder attention and another feedforward networks. The
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first one is responsible of applying mask to the above self-attention mechanism
for preventing the positions to visit the next position. The next mechanism
ensures to calculate an attention score between the encoder’s output and the
decoder layers input, finally combining the results for the input sequence.
Lastly, there is a feed-forward neural network which works similar to the one
mentioned in the encoder layer.

4. Linear Layer: The linear layer is also the outer layer of the model and
here the ultimate hidden state of the [CLS] token undergoes a transformative
process. This token possesses the remarkable capacity to comprehend the input
sequence, having traversed through the encoder layer. In this transformation,
the initially high-dimensional vector representing the [CLS] token is skillfully
mapped to a vector of a size precisely matching the total count of distinct
classes integral to the given classification task.

5. Softmax Function: The raw output values that we have received till now,
will be converted to class probabilities by this function.The softmax function,
as defined in Equation 3.1, is crucial for transforming logits into probabilities,
which is fundamental in the classification tasks performed by the model.

Softmax(QKT )i =
exp((QKT )i)∑N
j=1 exp((QKT )j)

(3.1)

6. Prediction: Prediction is the final stage here. This step will ensure the class
possessing the utmost probability, obtained via the application of the softmax
function, is designated as the input sequence instrumental in determining the
ultimate prediction.

3.2 BERT

BERT(Bidirectional Encoder Representations from Transformers) is one of the cen-
tral models in this investigation [10] . This model marks a pivotal advancement
in the realm of natural language processing (NLP). Its strength lies in its capac-
ity to comprehend contextual details. BERT is well renowned for its bidirectional
technique. This technique enables the model to take into account both preceding
and subsequent words within a sentence when deciphering word significance and
context. One crucial part of BERT’s training involves the Next Sentence Prediction
(NSP) task. This task helps the model grasp the connection between consecutive
sentences, thereby improving its ability to understand context. This helps BERT
achieve a high level of expertise in grasping the subtleties of language, establishing
it as a fundamental component in numerous NLP assignments. The fig. 3.2 below
illustrates the architecture of BERT model.
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Figure 3.2: BERT Architecture [10]

3.2.1 Architecture of BERT

The structure of BERT comprises several Transformer layers. Each of the layers
contains a multi-head self-attention mechanism and a feedforward neural network.
The model BERT employs a bidirectional strategy, enabling it to grasp contextual
information by taking into account both preceding and following words in a sen-
tence [10].The bottom row in fig. 3.2 shows the input tokens [CLS], [SEP], Tok1,
Tok2, . . . , TokN.The final hidden state of BERT model can be used as the ag-
gregate sequence representation for classification tasks.The inputs are represented
as a pair of sentences (A and B). Here, the sentence pairs are either consecutive
sentences from a corpus to help learn sentence relationships or randomly paired
sentences, which does not represent a direct relationship.The input tokens include
special tokens such as [CLS] (used at the beginning and for classification tasks),
[SEP ] (used to separate the sentences) and tokens from sentences A and B. Each
token in BERT model is at first converted into embedding vector.These vectors are
shown as E[CLS], E1, . . . , EN , E[SEP], E

′
1, . . . , E

′
M in the fig. 3.2. During pre-training,

the random tokens in the input are masked or replaced with a special [MASK]
token and the model learns to predict the original token based only on its context.
The model predicts whether the second sentence in the pair follows the first sentence
logically and sequentially. This helps BERT learn relationships between sentences.
The central large block labeled “BERT” in the fig. 3.2 represents the multiple layers
of the transformer model. Each layer consists of multiple self-attention heads and a
feed-forward neural network. The transformer block processes the input embeddings
and produces outputs that are fed into the next layer.The outputs of the transformer
blocks for each token is shown as T1, . . . , TN , T

′
[SEP], T

′
1, . . . , T

′
M in the fig. 3.2.

These outputs are the transformed representations of each input token after consid-
ering the context provided by other tokens in the sequence.The input during fine-
tuning is adapted to specific tasks.This includes pairs of a question and a paragraph
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for question answering tasks such as CosmosQA. The outputs of the BERT model
are labeled accordingly depending on the task.For instance, in a question-answering
task, the labels would indicate the start and end of the answer in the context para-
graph. The transition in the fig. 3.2 indicates the transition from pre-training to
fine-tuning.The pre-trained model which has learnt a rich representation of language
features and relationships, is fine-tuned using a smaller amount of task-specific data
to tailor its predictions to specific NLP tasks.

3.3 ALBERT (A Lite BERT)

ALBERT is developed based on the strengths of BERT while addressing some of
its resource intensive characteristics[16]. It delivers similar performance to BERT
while requiring significantly less computational resources. ALBERT is a great choice,
especially when dealing with limited computational resources, without compromising
on the quality of results. The fig. 3.3 shows the architecture of ALBERT model.

Figure 3.3: ALBERT Architecture [17]

3.3.1 Architecture of ALBERT

ALBERT uses two methods for parameter reduction to accomplish this. A factorized
embeddings parameterization is the first method and the second method is shared
cross layer method. In addition, ALBERT employs a self-supervised loss function for
Sentence Order Prediction (SOP). The fundamental objective of the SOP (Sentence
Order Prediction) is to enhance the coherence between sentences. It aims to rectify
the shortcomings of the Next Sentence Prediction (NSP) loss introduced in the
actual BERT model. [16].

3.4 RoBERTa

RoBERTa is a derivative model inspired by BERT[13]. This model has garnered
recognition for its strong performance across various NLP applications. Its excel-
lence is attained through extensive pre-training on extensive text collections and
subsequent fine-tuning on a range of practical tasks. RoBERTa’s flexibility and
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proficiency position it as a formidable contender for tackling intricate MRC difficul-
ties.The fig. 3.4 shows the architecture of RoBERTa model.

Figure 3.4: RoBERTa Architecture [26]

3.4.1 Architecture of RoBERTa

RoBERTa shares a similar resemblance to BERT in terms of architecture but places
a strong emphasis on extensive pre-training[13]. It involves more extensive training
on vast text collections and dispenses with BERT’s next sentence prediction task, re-
sulting in enhanced performance [13].In RoBERTa, the input consists of two special
tokens which are [CLS] and [SEP].Each of these tokens is converted into embed-
ding vector.These embeddings (E[CLS], E1, . . . , EN , E[SEP], E

′
1, . . . , E

′
Y ) in the fig. 3.4

serve as the input features for the transformer blocks. They encapsulate both the se-
mantic meaning of the tokens and their positional information. RoBERTa processes
the embeddings by the transformer blocks, which apply self-attention mechanisms
by allowing the model to consider other tokens in the sentence while processing a
specific token. This helps in understanding the context around each word. The
fig. 3.4 shows intermediate token representations (T1, . . . , Tx, T[SEP], T

′
1, . . . , T

′
Y ) af-

ter processing through one or more transformer blocks.The top-most layer is either
a linear or a softmax layer that takes the transformed [CLS] representation and
outputs a class label. This label can represent categories like sentiment, entailment,
agreement, depending on the specific task.

3.5 MobileBERT

MobileBERT is particularly designed for resource limited environments such as mo-
bile devices and it is also a lite version of BERT model [19]. This model not only
reduces the size and the computational units but also maintains a high level perfor-
mance of larger models like BERT. Therefore, the mobileBERT model is an appro-
priate choice for the devices or applications that need advanced Natural Reading
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Comprehension(NLP) abilities but has limited hardware capabilities such as smart-
phones and other portable devices.The fig. 3.5 shows the architecture of Mobile-
BERT model.

Figure 3.5: MobileBERT Architecture [19]

3.5.1 Architecture of MobileBERT

The architecture of MobileBERT is especially designed for devices which have limited
resources like mobile phones. This compressed version of the BERT model has
approximately 25M parameters.The inverted-bottleneck structures of MobileBERT
enhance the feature map size and also ensure the information is correctly preserved
[19]. This model has a similar number of layers but the layers are narrower than
BERT and the depth and width are also balanced for optimal language processing.
Additionally, the embedding layer usually large in models like BERT is compacted
using dimensionality reduction techniques, adding to MobileBERT’s reduced overall
size while maintaining robust NLP capabilities.

3.6 DistilBERT

DistilBERT is a transformer-based model and a lighter version of BERT [18]. Dis-
tilBERT dispensing Teacher-Student distillation architecture allows it to reduce the
size of a BERT model by 40%, while retaining 97% of its lingual comprehension
capabilities and being 60% faster than BERT. This attenuated model having half
(6 layers) of the layers of BERT (12 layers) and nominal 66 million parameters, not
only outperforms BERT but also outsails GPT2 with 1.5 billion parameters and
RoBERTa with 355 million parameters. Reduced parameters and eliminated layers
by performing distillation architecture led this model to converge impetuously.The
fig. 3.6 shows the architecture of DistilBERT model.
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Figure 3.6: DistilBERT Architecture [24]

3.6.1 Architecture of DistilBERT

DistilBERT utilizes Teacher-student learning architecture. Where the teacher im-
plies the conventional BERT model with frozen weights and as a predefined model.
Whereas, the student implies the DistilBERT model which is privileged with the pre-
defined weights and comprehension from the teacher (BERT) and converges faster
utilizing the loss functions (misapprehension and learning) [18]. However, the dis-
tillation loss on the soft targets of the teacher and student model implies that the
largest prediction coming from the teacher model is passed onto a softmax function
with temperature and that provides with y. In the same manner, the rest of the
predictions from the student model emerge y. This distillation loss assists calcula-
tion of entropy loss. Nevertheless, since the pooler layer and token-type embeddings
along with 5 other layers (6 in total) are eliminated from BERT, therefore, Masked
Language Modeling (MLM) loss is computed [18]. Here, input sentences are given
to the model, and a few tokens are masked or hidden and the model is expected
to output the complete original sentences. Thereby, it learns to guess the masked
tokens. Eventually, end up comprehending the semantics of all the tokens that occur
in the sentences. Thereafter, the cosine similarity of the hidden layers of buildings
between the teacher and the student is compared. Mostly Teacher dissipation loss
and teacher cosine similarity transfer knowledge to the student model weighted av-
erage of all these losses that are considered for finding the final loss, which is then
used to back-propagate the student model.
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3.7 ELECTRA

ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements
Accurately) is a model like BERT but with a new pre-training approach which was
developed in order to provide a faster learning thus making it more computationally
efficient unlike BERT [15]. This alternative transformer model was introduced not
only for the mentioned reason but also for considering the amount of cost and ac-
cessibility. The model works by detecting the corrupt tokens that generally arise in
BERT as these tokens are one of the reasons for the longer computation cost. More-
over, the model outperforms BERT and RoBERTa. These large language models
are learned towards contextual representations regardless of having the same data,
size and compute(but uses ¼ of their pre-training computes). The approach trains
two neural networks; one is a generator, G, and the other one is a discriminator, D.
The fig. 3.7 shows the architecture of ELECTRA model.

Figure 3.7: ELECTRA Architecture [21]
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3.7.1 Architecture of ELECTRA

The architecture of the ELECTRA model is the discriminator one and the generator
can be any other model, usually a small masked language model, and both of the
models consist of an encoder [15]. In the generator part, the encoder maps the input
tokens into a sequence of contextualized vector representations. During these map-
ping steps, few tokens get corrupted by the [MASK] token as the generator performs
masked language modeling technique. The generator randomly selects some mask-
ing position to mask the input tokens. Afterwards, the mapped vectors are passed
over for further training where the generator learns to predict the original position
and the identity of the masked tokens. The discriminator is trained to distinguish
tokens in the data from tokens that have been replaced by generator samples[15].
At first the discriminator is responsible for creating a corrupted, which solves the
mismatched outputs of BERT, example by replacing the masked-out tokens with
the generator’s sample and then trains the discriminator to predict from each token
whether it is an original or a replacement. An advantage of this task is that it learns
from all the input tokens instead of the small masked subset of it. The discriminator
uses the sigmoid function to determine if a token is original or a replacement, as
shown in Equation 3.2.

D(x, t) = sigmoid(wThD(x)t) (3.2)

To deduce the following description of the models, the research meticulously assesses
the effectiveness of these transformer-based models using CosmosQA Dataset. The
main aim is to identify the model that outperforms others in the domain of common-
sense based reasoning challenges, potentially advancing the field of Machine Reading
Comprehension. These discoveries provide further insight into the substantial influ-
ence that transformer-based models can have on MRC, pushing the limits of natural
language processing capabilities.

18



Chapter 4

Description of the Data

4.1 CosmosQA

CosmosQA is one of the significant datasets which is specially designed for machine
reading comprehension and commonsense reasoning in Natural Language Process-
ing. The primary objective of this is to check NLP models or machines that can
understand the information from the narrative texts as humans do. Additionally,
this dataset generally focuses on the complexity and demand of commonsense rea-
soning [11]. The dataset is curated from various narratives from real life scenarios
such as blogs and personal stories. Each context of the CosmosQA dataset is a
narrative passage that provides the backdrop for the questions posed which range
from straightforward to intricate by challenging the depth of comprehension of NLP
models [11].

There are multiple choice questions in the dataset that require understanding be-
yond the text and tapping into the unspoken or implicit information. Unlike other
datasets that focus solely on extractive question answering. CosmosQA dataset in-
cludes questions that are answerable only through inference and deduction exactly
the way humans read between the lines. This dataset has three main components:
a large number of narratives that comprise the instruction collection, a validation
group for fine tuning the models and a test section designed to evaluate the gener-
alization capabilities of NLP models to novel situations. So the evaluation of the
CosmosQA dataset serves an important role in the advancement of Natural Lan-
guage Processing(NLP) particularly those involving machine reading comprehension
and complex question answering.The CosmosQA dataset was collected from the AI2
Leaderboard, which is a good resource for benchmarking and accessing various NLP
datasets.The dataset files are in JSON format, which makes it straightforward to
parse and preprocess the data for model training and evaluation.

As mentioned and explained previously on the paper, the dataset being used to
carry out this research is CosmosQA. This is publicly accessible commonsense based
question answering dataset which is being used to evaluate the performance of the
transformer models. The figure 4.1 shows a example of the type of data present in
the commonsense dataset, which includes a context, a question and four multiple-
choice answers. The highlighted green lines represents the correct answer to the
following questions.
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Figure 4.1: Example of CosmosQA dataset.

4.2 Data Exploration

The CosmosQA dataset consists of 35,210 samples from a diverse range of questions
and answers generated from thousands of passages taken from both real-world and
fictional sources.It is divided into 25,262 training, 6963 testing and 2985 validation
samples. It covers various topics, from science to literature and history. CosmosQA
has multiple-choice questions that are answerable only through inference and de-
duction exactly the way humans read between the lines. In general, the answers
demand reasoning and understanding mettle. For instance, questions like “What
will happen if the incident x. . . ”, “What might be the possible reasons for. . . ” etc
make a bid to comprehend the entire context line by line and respond similarly to
the human brain processes.This dataset has three main components: a large num-
ber of narratives that comprise the instruction collection, a validation group for
fine-tuning the models, and a test section designed to evaluate the generalization
capabilities of NLP models to novel situations. Furthermore, all queries are tied
with a paragraph(context), context ID that includes the options(probable correct
answers-set), and the correct answer(label). Miscellaneous questions exist based on
each context(paragraph/text). All contexts in the dataset have miscellaneous ques-
tions alike. Consequently, the CosmosQA dataset demonstrates superior efficiency
in effectively managing complex inquiries. Hence, modeling the meaning of the of-
fered text and situation is crucial. The fig. 4.2 shows the word cloud of CosmosQA
dataset which indicates the frequency of different words.
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Figure 4.2: Word Cloud of CosmosQA Dataset

The distribution of context,question and answer lengths in the CosmosQA dataset
are shown in fig. 4.3 ,fig. 4.4 and fig.4.5 . From the fig.4.3,we can see that the modal
range for context paragraph lengths is approximately between 40 to 60 words. This is
evidenced by the peak frequency within this interval, as indicated by the histogram’s
tallest bars. Moreover, the distribution is right-skewed which means there are more
shorter paragraphs than longer ones and the frequency gradually decreases as the
length increases.

Figure 4.3: Context Length

The fig.4.4 shows the distribution of question lengths which is measured in the
number of words.The modal range for question length is approximately 8 to 12
words, with the highest peak at around 10 words.The distribution is right-skewed
which means shorter questions are more common than longer ones.The frequency
gradually decreases as the question length increases. The questions longer than 20
words are rare in this dataset which indicates that most questions are concise and
focused.
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Figure 4.4: Question Length

On the other hand, fig. 4.5 indicates that short answers are very common in the
CosmosQA dataset, especially answers that are only 1 or 2 words long. As the
answers get longer, they become much less common. After about 10 words, it’s
rare to see answers that are longer and there are hardly any answers longer than 20
words.

Figure 4.5: Answer Length
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Chapter 5

Methodology

5.1 Working Plan

In order to carry out a comparative study of these algorithms, a good structured plan
is necessary. Every step in the work plan should be done very carefully for extracting
the most accurate results. Thus, here is a brief overview of the processing.

One of the first steps that needs to be fulfilled is to understand the problem of the
given task. This step can be done by looking at the requirements for solving this
issue. Afterwards, we need to collect a dataset and start with the data preprocess-
ing. In this research, the primary benchmark dataset utilized is CosmosQA[11].The
preprocessing which is conducted on this dataset includes tokenizing and organizing
the data in a way which is suitable for the transformer based models to carry out the
necessary tasks. In the next step, the preprocessed data is fed to the transformer
models (BERT, ALBERT, RoBERTa, DistilBERT, MobileBERT and ELECTRA)
to check their performance and to select the best performing transformer among
them. The data is prepared for the selected model by converting the text into em-
beddings. The model is then trained on the prepared dataset by initializing the
model with fine-tuning. The next step would be to evaluate performance of the
model on the QA tasks. This procedure is performed by calculating the accuracy of
the models. The transformer model is evaluated on the CosmosQA[11] to enhance
its efficiency. Lastly, the model is optimized to reduce the size and data inefficiencies
are also checked. Furthermore, regular monitoring and maintenance of the deployed
model is also required to keep it updated on new corpuses, to ensure the model does
not degrade in performance.

To summarize all the procedures, a flow-chart representation of the working plan is
provided in fig. 5.1
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Figure 5.1: Work plan flowchart

5.2 Data Preprocessing

The preprocessing of the dataset consisted of several layers of task, in order to
show an improvement in our work. The dataset, as previously mentioned, is a
commonsense reasoning dataset and thus to achieve good performance from it a
separate class was created for the model. However, before delving into the model
file, the main preprocessing steps need to be discussed.

At first, the separate datasets for training, validation and testing were created by
unravelling the data from the dataset folder which were shuffled beforehand and
then unzipped. Afterwards, the input sequences were created and special tokens
were added in front of each type of sequence: context, question and answer. In
addition to that, two different lists were created, one for storing the contents of
the datasets and the other one assigned for the labels. The labels section of the
dataset contain all the options for the accurate answers. And hence while storing
the information of the label dataset in the labels list, one-hot encoding method was
used. Over here, if the correct answer for the input sequence is mentioned in labels,
that position of the correct answer is denoted as a 1 and the rest positions as a 0,
and this is also encapsulated in a list. The size of the list or the number of positions
depends on the number of choices present in the dataset. A binary approach has
been used in the model class, as it can facilitate the improvement of the model’s
performance and helps to bring flexibility in understanding contextual part of the
QA dataset. It further helps reduce the dependency of multiple candidate answers.
Furthermore, after the created datasets, the dataset loaders were also created. These
data loaders are then passed over to the train and evaluation function where the
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training takes place. For the training process of the dataset, the model uses the
content and label class which is passed into the model as batch.

5.3 The Binary Approach within a Multi-Class

Framework

The Model class is constructed to perform sequence classification with a focus on
selecting the correct answer from multiple choices provided for each question. It em-
ploys a transformer model, AutoModelForSequenceClassification, which is pre-
trained on a large corpus and fine-tuned here to classify individual answer choices
as correct or incorrect. The model’s architecture and forward propagation logic are
specifically designed to handle the inputs structured for multiple-choice formats,
making it highly suited for datasets such as CosmosQA.
Traditional multi-class classification directly computes a single output vector where
each entry corresponds to the probability of each class. The class with the highest
probability is selected as the prediction. In contrast, a binary approach within a
multi-class framework treats each class decision as a separate binary classification
task. Here, the model predicts whether each answer in contexts like question an-
swering is correct or not, independently of the others.
In the traditional approach,the entire input sequence is formatted as [CLS] Context

[SEP] Question [SEP] Answer A [SEP] Answer B [SEP] and so on, which is passed
through the transformer models and a softmax layer at the end provide output prob-
abilities for each answer.
In the binary approach,each answer is considered independently in a binary manner
(correct or not).

• [CLS] Context [SEP] Question [SEP] Answer A [SEP]

• [CLS] Context [SEP] Question [SEP] Answer B [SEP]

• [CLS] Context [SEP] Question [SEP] Answer C [SEP]

• [CLS] Context [SEP] Question [SEP] Answer D [SEP]
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Figure 5.2: Flowchart of the Binary Decision Approach

The fig.5.2 shows how each sequences is processed through the model to predict a
binary outcome (correct or incorrect). A binary classifier at the end of each sequence
determines the likelihood of each answer being correct. The final decision is made by
comparing these probabilities and selecting the answer with the highest probability
as the correct one.

5.4 Hyperparameters

During the training of the transformer models multiple hyperparameters were im-
plemented. The models were loaded from the hugging face transformer library and
pytorch was used to import tools to facilitate the training of the models. To op-
timize the training of our model we have used the AdamW [3] optimizer for all of
the models, and have used a learning rate of 3e-6 to 5e-6 in order to determine the
outcome of our models. Moreover, the number of epochs assigned for training the
dataset was 3 and a batch size 8 was used and lastly the maximum sequence length
was kept at 512.
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Chapter 6

Results and Analysis

For model evaluation purposes, the metric we are using for our comparative analysis
of the models is the accuracy score. In this case, we are comparing the results
achieved from the two accuracy scores, validation and test. The accuracy score is a
metric which determines how frequently a machine learning algorithm can accurately
predict the desired output. The intention behind using only accuracy score is to
rationalize the performance of the models because the dataset class is imbalanced
and hence the F1 score tends to be quite low compared to the accuracy score in
this regard. The main paper of focus, which is the CosmosQA, carried out their
performance evaluation on the basis of the accuracy score. The Equation 6.1 shows
the mathematical representation of accuracy score.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

where:

• TP (True Positives) are the number of correct predictions that an instance is
positive,

• TN (True Negatives) are the number of correct predictions that an instance
is negative,

• FP (False Positives) are the number of incorrect predictions that an instance
is positive,

• FN (False Negatives) are the number of incorrect predictions that an instance
is negative.
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6.1 Model Evaluation

The Table 6.1 shows the result from six transformer models-BERT, ALBERT, Dis-
tilBERT, RoBERTa, MobileBERT and ELECTRA; to evaluate the performance
on commonsense reasoning using the CosmosQA dataset. Glancing at the outputs
achieved in Table 6.1 the result indicates that even though the accuracy score from
the validation dataset is high for both the RoBERTa and the ELECTRA model,
being above 80%, the test dataset score is quite low, both around 65%. The model
BERT and DistilBERT have slightly less inconsistency but are still quite noticeable,
however ALBERT and MobileBERT do not have much difference and are consistent
with good results of around 75% from both the models. The Table 6.1 shows the
evaluation output we achieved so far.

Table 6.1: Results on CosmosQA dataset

Models Accuracy(Validation) Accuracy(Test)
BERT-base 76.60% 66.05%

ALBERT-base 74.98% 74.92%
DistilBERT-base 76.52% 67.64%
RoBERTa-base 80.13% 65.02%
MobileBERT 75.00% 75.00%

ELECTRA-base 81.86% 63.63%

6.1.1 Comparative Analysis of the Models

In order to make a comparative analysis of the models, the results from the Table
6.1 can be addressed. The differences between the accuracy scores indicates that
overall the model is not performing that well as expected. One of the reasons for
these discrepancies to occur is due to the architecture of the models. The RoBERTa
model is an optimized version of the BERT model which was trained across a larger
dataset than BERT and thus the model is highly dependent on the training data
which may lead to the model to overfit on the validation dataset. On the other
hand, the ELECTRA model due to its discriminator-generator architecture, the
model might become sensitive to the characteristics of the validation dataset thus
leading to a poor test dataset result. Moreover, due to the models being large with
more than 100 million parameters and the dataset being small, one another reason
would be that overfitting occurred on the validation dataset which hence lead to
poor generalization of the test dataset causing a poor performance score.
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Figure 6.1: Graphical Representation of Model Performance

Analysis between models, BERT and DistilBERT can also be deduced from the
Table 6.1 and the graph 6.1 as the two models showed a quite similar result on
the CosmosQA dataset[11].The model BERT is a large and complex model hence
it may not generalize tasks well on nuanced understanding. However, the accuracy
score for the validation dataset using binary decision making approach which we
used for the CosmosQA dataset gives a better score of around 76.60% whereas the
result achieved using the multiway attention mechanism in the original paper for
the dataset is 68.3%. Eventhough the result achieved from the validation dataset,
is good which indicates the model is performing well but a drop in the test result,
to 66.05%, shows that the overall performance of the model is not that good. The
reason for this is because the model is overfitting on the validation dataset. Further-
more, the difference between the result achieved for the test dataset is also around
2%, the result even though is slightly higher in the original paper at around, 68.4%,
using multiway attention but the binary decision making approach still performs well
since the result is close of around 66.05%. Here, the slight difference in the scores
might arise due to the hyperparameters used. As the hyperparameters used by the
original paper are unknown it makes it harder to determine where the changes need
to be made for a much better output and was well-suited. Additionally, the Dis-
tilBERT model also performed well on the validation set however the performance
dropped once it evaluated the test set, even so the accuracy score on the test result
is on par to the best result obtained from the original paper with around 68%. Even
still, the issue with discrepancies relies strongly on the architecture of the model as
this led to the overfitting issue on the validation dataset and the hyperparameters
used. Moreover, DistilBERT tends to capture less complexity patterns as this vari-
ant of BERT has fewer layers which might have also resulted this model to perform
moderately on the test set compared to models like ALBERT and MobileBERT.

Finally an analysis of the models, ALBERT and MobileBERT can be made. Both
the models gave the best performance compared to the other models on this com-
monsense dataset. ALBERT gave 74.98% on the validation set whereas MobileBERT
scored 75%. Moreover, the accuracy score on the test set was also 74.92% for AL-
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BERT and MobileBERT outputs a result of 75%, like the validation set, which also
indicates that no overfitting occurred for these two models. Moreover, among the
two models, despite the results being very close MobileBERT slightly outperforms
ALBERT by 0.008%. The scores achieved from these two models shows that the
binary decision technique is a better approach in terms of dealing with and optimiz-
ing results from lightweight models which use smaller numbers of parameters more
efficiently. The outcome obtained from these two models outperforms the highest
result achieved on the original paper of the CosmosQA dataset. The transformer
models ALBERT and MobileBERT contributed to a better result, of almost around
7% more, using binary decision approach than what BERT achieved following the
multiway attention mechanism. Now, to give an overview on multiway attention,
this is a technique which is a more extended approach to the traditional attention
mechanism of the transformer models. This mechanism tends to handle multiple
instances of input sequence and vectors at the same time. Whereas the binary
approach separately handles the contents of the dataset for each multiple choice
answers to understand the context better and gives a prediction based on it.

Now the reason why ALBERT and MobileBERT outperforms the rest is due to
several factors, including how suitable the model is with the complexity and un-
derstanding of the dataset. Not all models would adapt well to different datasets,
the interpretability depends on the models architecture and how well it generalizes
the contents of the dataset. In this case, ALBERT yields a higher accuracy score
because the model shares parameters across the layers in the model and hence even
with fewer parameters it efficiently helps to generalize the contextual information
better. To add on, the model uses SOP(Sentence Order Prediction) which pushes
the model to understand more complex datasets sentence wise, which is very suitable
for a commonsense structured dataset as this can facilitate the performance of such
models by generating logical statements that are required to tackle the MCQ based
dataset. SOP enhances the models ability to understand contextual relationships
and can suggest inferences so that it can recognize better sentence patterns. Mo-
bileBERT, on the other hand, is a lightweight model which is suitable for capturing
sequences of small datasets such as CosmosQA. This can lead to high performance
efficiency due to smaller, faster and more agile architecture. It embeds the attributes
of larger models such as BERT while giving a more optimized result in training due
to proper usage of smaller parameters. Thus, these are some of the reasons why
these two models, particularly, have outperformed the other models.
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Chapter 7

Conclusion

Here, we have tried to address the challenges in understanding and answering com-
plex textual information, commonsense and multi-reasoning questions by machine
reading comprehension (MRC) systems. In order to improve the performance of
MRC algorithms on CosmosQA dataset, we have explored the use of transformer-
based models, including BERT, ALBERT, RoBERTa, DistilBERT, MobileBERT
and ELECTRA. We had the vision of finding the perfect model that provides the
best results for multi-reasoning and commonsense based tasks, comparing the per-
formance of the models. The findings of this study can guide through the way of
the development process of more effective, accurate, and efficient QA systems that
can robustly handle complex questions and provide answers with closest accuracy.
The study also provides an insight of how a binary decision approach in a multi-
class framework gives a boost in the performance of the models in the commonsense
field, where models typically tend to perform poorly. Furthermore, the challenging
dataset showed a comparatively good result in lightweight models and the best per-
formance result was attained from MobileBERT model with an accuracy of 75%.
In conclusion, we can say that transformer-based algorithms have shown great po-
tential in improving the performance of MRC systems and advancing the field of
natural language processing.

For further research work, our main focus is to build a hybrid model out of the
best two performing models in order to give a boost in the performance for this
benchmark dataset. Therefore, we plan to achieve by storing the output values from
one model and feeding the result across a different transformer model for a better
F1 and accuracy score. The intention for our future work is to make the models
more suitable in regards to tackling problem on commonsense based questions, as
this type of questions can be very hard to understand by transformer models due to
complexity in understanding the question pattern. Hybrid models thus in this case
might facilitate the performance as these models tend to combine the best outputs
leading to an improvement in the performance of the models. Additionally, some
of the transformer models (BERT, RoBERTa, ELECTRA and DistilBERT) tend to
overfit in our current approach, hence we would want to make sure to avoid this
overfitting and the class imbalnce, which arises due to the miscalculation of the
minory class, issues with a more refined technique during our future work.
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