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Abstract

The early and accurate diagnosis of brain tumors is a critical challenge in medi-
cal imaging, significantly impacting treatment outcomes and patient survival rates.
Despite the advancements in imaging technologies, the interpretation of MRI scans
remains a complex and subjective task. This research introduces a novel cross-
modality deep learning approach aimed at enhancing the performance of multiclass
brain tumor classification by leveraging superior imaging representations to guide
and improve the analysis of less effective modalities. Our methodology involves
the development of a guidance model that utilizes the robust representations de-
rived from high-quality imaging modalities to enhance the diagnostic accuracy of
more practical but less efficient modalities. Specifically, we employed deep learn-
ing techniques to process and analyze MRI and histology data, including Convolu-
tional Neural Networks (CNNs) such as ResNet50, EfficientNetB0, InceptionV3, and
DenseNet121. The guidance model integrates these representations to construct an
ensemble model that achieves superior performance. The results demonstrate that
our guidance model significantly improves the diagnostic accuracy of the subordinate
modality. In the case of brain tumor classification, the model not only surpasses the
performance of models trained solely on the superior modality but also achieves com-
parable results to those utilizing both modalities during inference with the guidance
ensemble accuracy of 94.61%. Compared to this, other models such as Efficient-
NetB0 achieved 94% and DenseNet121 achieved 93% test accuracy. This approach
offers a practical and efficient solution for enhancing diagnostic accuracy while mini-
mizing the reliance on more costly and less accessible imaging technologies. Overall,
our cross-modality deep learning model represents a substantial advancement in
the field of medical imaging, providing a more accurate, reliable, and cost-effective
method for the diagnosis of brain tumors.

Keywords: Magnetic Resonance Imaging (MRI); Convolutional Neural Networks
(CNNs); neuro-oncology; ResNet50; EfficientNetB0; InceptionV3; DenseNet121;
Ensemble models; Guidance model;
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Chapter 1

Introduction

A tumor in the brain is characterized by an atypical proliferation of cells, which can
be either benign or malignant, causing disruption to normal brain function. In the
United States, approximately 1 million individuals are currently affected by brain
tumors, and the relative survival rate stands at 35.7%.[43] Within the United States,
there are around 24,530 malignant tumors and 59,040 nonmalignant tumors in the
Central Nervous System (CNS). Unfortunately, approximately 18,600 individuals
will lose their lives due to this disease.[35]The detection of brain tumors is a critical
aspect of healthcare, as early and accurate diagnosis is crucial for treatment deci-
sions and patient prognosis.[14] Due to its exceptional capability to provide high
contrast resolution for soft tissues such as the brain, Magnetic Resonance Imaging
(MRI) has emerged as the primary imaging modality for the detection of brain tu-
mors [10]. However, the interpretation of MRI scans relies on radiologists’ expertise,
leading to subjective diagnoses and potential inconsistencies.
To address these challenges, deep learning models, specifically Convolutional Neural
Networks (CNNs), have emerged as a promising solution for automated and precise
tumor detection [37]. Conventional machine learning algorithms lack the ability to
make broad generalizations effectively.[4] In contrast, deep learning has emerged as
a prominent machine learning technique, addressing the limitations of traditional
algorithms. Deep learning, with its self-learning capabilities, enables automatic fea-
ture detection in MR images, reducing the need for extensive feature engineering.
Through multiple processing layers, deep learning extracts features, alleviating the
reliance on manual feature engineering. Deep learning approaches offer solutions to a
wide range of problems.[5] ResNet50, EfficientNetB0, InceptionV3 and DenseNet121
are four CNN models commonly used for this purpose. ResNet50 introduces skip
connections or shortcuts to address the problem of vanishing gradients in deep net-
works. This allows effective learning from limited training examples. EfficientNetB0
applies a compound scaling method that uniformly scales network dimensions while
maintaining balance, resulting in improved efficiency and accuracy. InceptionV3 em-
ploys a network within a network architecture, incorporating dimension reductions
and various filter sizes to enable efficient computation and a broader receptive field.
DenseNet121’s distinctive feature is its dense connectivity, in which every layer is
connected to each of its preceding layers. This architecture is designed to encour-
age efficient gradient propagation and maximize the reuse of features. These CNN
models analyze patterns and structures within MRI scans, learning to differentiate
between normal and abnormal brain tissues. They offer the potential for consistent
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and efficient evaluations, reducing dependence on individual practitioners and po-
tentially decreasing human error rates. The Ensemble model integrates the outputs
of the Guidance model and DenseNet121 to amplify overall effectiveness.
Multimodal machine learning aims to comprehend varied data in a way that is com-
parable to how animals analyze the world: by combining information from several
sensory sources. The complementing nature of multi-input data enables more ef-
fective navigation of situations than depending on just one signal. The widespread
use of digitalized sensors, along with the improved feature extraction capabilities of
machine learning, has lately reignited attention on this topic. [9] To make accurate
diagnoses and treatment decisions in clinical environments, healthcare profession-
als must conduct a thorough evaluation of the well-being of the patient, including
complementing biological data from many modalities. [26] For example, in current
clinical practice, it is common to collect both functional and anatomical imagery at
the same time, with functional data providing quantitative metabolic information
and anatomical data providing geographical context. Similarly, tumor diagnosis and
cancer prognosis are enlarging based on thorough evaluations of both phenotypic and
genotypic modalities. [22]
Although numerous modalities can help with clinical diagnosis, acquiring the most
efficient modalities for a certain activity, such as diagnosis, may be difficult owing
to considerations such as longer wait times, higher prices, slower acquisition rates,
increased exposure to radiation, and invasiveness. [13] As a result, compromises
are often required. For example, providing high-quality anatomical or functional
images may necessitate invasive procedures like surgery or ionizing radiation. Other
examples include the described anatomical information offered by computed tomog-
raphy (CT) versus the possibility of cancer associated with repeated X-ray exposure,
as well as the comprehensive cellular data gathered from histology versus invasive,
costly, and lengthy biopsy treatments with related risks of infection. Likely, the
pricey method often yields significant diagnostic information. [34]
To keep things simple, we’ll call the higher-performing but less readily available
modality the outstanding modality and the more practicable but lower-performing
one the lesser modality. It is vital to highlight that a modality deemed inferior in
one setting may be great in another. Magnetic resonance imaging (MRI) surpasses
ultrasound in identifying malignant lesions but is inferior to histology in evaluating
malignancy grade. As a result, it would be advantageous to employ weaker modali-
ties to lessen reliance on superior ones, but only when the former can deliver equally
useful information.

1.1 Research Problem

The enormous threat that brain tumors pose to human health globally highlights
the importance of early and precise identification in order to improve therapy out-
comes and patient survival. [23] The use of magnetic resonance imaging (MRI), a
crucial diagnostic tool that does not require invasive procedures, is widespread in
defining brain structure and identifying potential tumor formations. However, this
research project seeks to tackle the obstacles associated with the interpretation of
MRI scans. The time-consuming and perhaps subjective nature of MRI scan anal-
ysis is one significant barrier. Clinicians and radiologists must carefully examine
several MRI cross-sections, a task that not only puts them at risk for weariness
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but can also result in interpretive mistakes [41]. The diverse and intricate terrain
of the brain anatomy, which can make it difficult to clearly distinguish between
tumorous and non-tumorous tissues, adds to the complexity. The lack of a gen-
erally acknowledged MRI interpretation standard exacerbates this problem. This
frequently leads to disparate diagnostic findings across radiologists, which could un-
intentionally impair the efficacy of the advised treatment plans [38]. Additionally,
radiologists with less training may be unable to recognize subtle or complex tumor
signs, increasing the risk of misdiagnosis or delayed diagnosis [32]. Multiple MRI
sequences, including FLAIR, T1, T2, and T1-Gd, show brain tumors to be present.
Each sequence provides a distinctive perspective on the tumor, but it can be difficult
and time-consuming to combine this variety of information into a single diagnostic
finding. Convolutional Neural Networks (CNN), a recent advancement in the field
of deep learning algorithms, have sparked optimism for improving the precision and
effectiveness of medical picture interpretation [28]. However, there is still a clear
need for thorough research that assesses a range of CNN models on various MRI
sequences in order to identify the ideal combination for effective and accurate brain
tumor identification [31].
The accurate and early diagnosis of brain tumors is a critical factor in determining
effective treatment strategies and improving patient survival rates. Brain tumors
are inherently complex, with varied presentations that can make differentiation be-
tween tumor types challenging. Magnetic Resonance Imaging (MRI) is a commonly
employed non-invasive imaging technique for detecting brain tumors; however, the
interpretation of MRI scans remains highly subjective. [26] This subjectivity arises
from several factors, including the complexity of brain anatomy, the subtlety of tu-
mor characteristics, and the lack of standardized protocols for MRI interpretation.
Consequently, diagnostic inconsistencies and errors are frequent, potentially leading
to delayed or inappropriate treatment. [25]
Moreover, while high-quality imaging modalities such as advanced MRI techniques
provide superior diagnostic information, they are often expensive and not univer-
sally accessible, especially in resource-limited settings. This reliance on high-cost
imaging modalities restricts their widespread use and limits the ability of healthcare
providers to offer timely and accurate diagnoses to all patients. Therefore, there is
a pressing need for methods that can enhance diagnostic accuracy while mitigating
the dependency on these costly technologies. [11], [12]
To address these challenges, this research proposes the development of a guidance
model within a cross-modality deep learning framework. The guidance model is de-
signed to leverage the robust imaging representations obtained from superior quality
imaging modalities to enhance the diagnostic performance of more practical but less
efficient modalities. By integrating the strengths of different imaging modalities, the
guidance model aims to provide a more consistent and reliable diagnostic output.

1.2 Research Objective

The objective of this research is to develop and validate a cross-modality deep learn-
ing framework that enhances the diagnostic accuracy of multiclass brain tumor clas-
sification. This framework aims to leverage superior imaging representations from
high-quality imaging modalities to improve the performance of more practical but
less efficient modalities. Specifically, the study focuses on:
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• Utilizing advanced Convolutional Neural Networks (CNNs) such as ResNet50,
EfficientNetB0, InceptionV3, and DenseNet121 to analyze MRI and histology
data for brain tumor classification.

• Developing a guidance model that integrates the robust representations from
superior imaging modalities to augment the diagnostic capabilities of subor-
dinate modalities.

• Constructing an ensemble model based on the outputs of the CNN models to
enhance overall diagnostic performance.

• Evaluating the effectiveness of the proposed model through comprehensive
performance analysis, including confusion matrices and accuracy/loss curves,
to demonstrate improvements in diagnostic accuracy and consistency.

• Comparative Analysis: A comprehensive comparison of the four models and
the Ensemble model will be conducted to determine which model performs the
best in terms of accurately detecting brain tumors. This will involve comparing
the performance metrics of each model.

1.3 Contribution

In this study, we present a novel and highly effective guidance model aimed at en-
hancing the performance of less efficient imaging modalities by leveraging insights
from superior imaging technologies. Our guidance model uses the advanced repre-
sentations derived from a more effective imaging modality to inform and improve
the diagnostic accuracy of a more practical, yet less efficient, modality. This ap-
proach addresses the critical need for balancing clinical performance with practical
constraints such as cost, time, and patient comfort in medical imaging.

1.3.1 Superiority of the Guidance Model

The guidance model demonstrated in our research significantly surpasses the per-
formance of other models by achieving an impressive accuracy of 94.61%. This is
notably higher than the accuracies of other state-of-the-art models tested in similar
conditions, including individual models like InceptionV3 and DenseNet121. Specif-
ically, the ensemble model, which integrates multiple neural network architectures,
has shown superior precision, recall, and F1 scores across various classification tasks.
For the detection of brain tumors, the ensemble model, which includes our guidance
model, achieves a test accuracy of 94.61%. The breakdown of performance metrics
is as follows: Non-Tumor Class: Precision of 0.84, Recall of 0.99, F1-score of 0.91.
Tumor Class: Precision of 1.0, Recall of 0.93, F1-score of 0.96.
These metrics highlight the model’s balanced performance and high precision, par-
ticularly in identifying tumor cases, where it achieves 100% precision. This is a
significant improvement over other models that do not employ the guidance method-
ology.
The implementation of the guidance model involves using deep learning techniques
to integrate and process multi-sequence MRI and histology data. By guiding the
inferior modality (radiology) with insights from the superior modality (pathology),
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the model effectively improves diagnostic accuracy. The model’s ability to achieve
comparable results [11] to those using both modalities during inference further un-
derscores its efficiency and potential for practical applications.
In summary, our guidance model represents a substantial advancement in the field of
medical imaging diagnostics, offering a highly accurate, practical, and cost-effective
solution for enhancing the performance of less efficient imaging modalities. This
makes it a valuable tool for clinical applications where balancing diagnostic accuracy
with practical constraints is essential.
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Chapter 2

Related Work

The authors of ’A CNN-Based Approach to Classify MRI-Based Brain Tumors Em-
ploying Deep Convolutional Network’ [39] discuss In recent years, researchers have
developed a variety of methodologies for detecting brain cancers utilizing CNNs and
other deep learning algorithms using MRI images. SVMs and NN are frequently
utilized and have demonstrated remarkable performance. Other approaches include
Probabilistic Neural Networks (PNN), CNN-based deep learning models, ELM-
LRF, Generative Adversarial Networks (GAN), Multiple MKPC, Fuzzy C-Means
(FCM) combined with CNN, and Discrete Wavelet Transform (DWT) combined
with DNN. These methods have achieved high accuracy in classifying brain tumors,
ranging from 73% to 100%. They employ various techniques such as feature analysis,
different network architectures for classification, convolutional layers, transfer learn-
ing, and data augmentation. Some studies also focus on addressing data imbalance
issues and utilizing pre-trained models like GoogLeNet, ResNet, VGG-16, and In-
ceptionV3. Additionally, segmentation techniques such as the GrabCut method and
UNet architecture with ResNet50 as a baseline have been used to improve the accu-
racy of tumor segmentation. Researchers have also employed evolutionary methods
and reinforcement learning through transfer learning to achieve high accuracy in
categorizing brain tumors. Hybrid models, multi-level CNN models, and differen-
tial deep convolutional neural network models have been proposed, demonstrating
accuracy ranging from 91.8% to 99.89%.

Saeedi, S., Rezayi, S., Keshavarz, H. et al. (2023) [42] talks about the goal of their
study is to identify brain tumors early utilizing MRI imaging. Six machine learning
strategies were compared with two deep learning methods: a 2D CNN and an auto-
encoder network. The 2D CNN outperformed machine learning techniques, achiev-
ing the best accuracy (96.47%) and recall (95%) rates. This means that radiologists
and other doctors could utilize it in a therapeutic setting.
“Image Processing Techniques for Brain Tumor Detection:” [1] this article delves
into the significance of MRI imaging in the examination, diagnosis, and planning
of treatment for brain tumors. It sheds light on the complexities involved in de-
tecting brain tumors due to the intricate structure of the brain and emphasizes the
superiority of MRI over other imaging modalities like CT, ultrasound, and X-ray.
The paper explores a range of image processing techniques, specifically focusing on
filtering, contrast enhancement, edge detection, histogram analysis, thresholding,
segmentation, and morphological operations, with MATLAB serving as the primary
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image processing tool. Extensive literature is reviewed, highlighting the various
methods and algorithms proposed by researchers for brain tumor detection using
MRI images. Notably, the review focuses on segmentation, thresholding, morpho-
logical operations, and neural network-based classification. The paper concludes
by underscoring the paramount importance of employing digital image processing
techniques to enhance MRI images, thus facilitating accurate brain tumor detection.
To summarize, this paper underscores the significance of MRI imaging in the realm
of brain tumor detection and explores a multitude of image processing techniques
applied to MRI images for preprocessing, post-processing, and analysis. It provides
a comprehensive review of pertinent literature, showcasing the diverse methods and
algorithms proposed by researchers in this domain.
Efficient classification of brain tumors using medical imaging techniques is crucial
for accurate diagnosis and treatment planning. Recent advancements have combined
convolutional neural networks (CNNs) with magnetic resonance imaging (MRI) to
automate brain tumor classification. This literature review highlights important
contributions in this field. This article focuses on the application of deep convo-
lutional neural networks (CNNs) for accurately segmenting brain tumors. Accu-
rate segmentation is crucial for diagnosis, treatment planning, and assessing tumor
growth rate. The challenges associated with segmenting brain tumors, particularly
diffuse and poorly contrasted gliomas and glioblastomas, are discussed. Tradition-
ally, segmentation algorithms relied on manual feature engineering and conventional
machine learning methods. However, the article proposes using CNNs to directly
learn task-specific features from the data. CNNs have shown impressive performance
in computer vision applications and have been applied to brain tumor segmentation
The article explores different CNN architectures, incorporating recent advancements
in design and training methods. It also investigates the use of various MRI modal-
ities to capture distinct tissue signatures. The goal is to identify abnormal areas
compared to normal tissue and segment tumor regions, including active tumorous
tissue, necrotic tissue, and edema. Advantages and disadvantages of different CNN
designs and training methods are discussed. A cascaded design is introduced as an
efficient alternative to structured output techniques. A two-phase training procedure
is proposed to address imbalanced label distributions. Experiments are conducted
using the MICCAI brain tumor segmentation challenge 2013 dataset, allowing com-
parison with other approaches. The article’s contributions include a promising fully
automatic method that ranked second in the challenge, faster processing time, novel
CNN architectures considering local details and context, and a two-phase training
procedure. Implementation details mention the use of the Pylearn2 library for deep
learning algorithms and GPU acceleration. Minimal preprocessing is applied to the
data. Real patient data from the BRATS2013 dataset is used in the experiments
and findings section. The conclusion highlights the improved accuracy and speed
of the best model compared to the current advanced technique. In summary, the
article demonstrates the effectiveness and advantages of using deep CNNs for auto-
matic brain tumor segmentation, offering improved accuracy and speed compared
to other approaches.
Kang J, Ullah Z, Gwak J. (2021) [29] talks about the strategy for classifying brain
tumors that this study offers mixes deep learning and machine learning. It extracts
deep features from MRI images using pre-trained neural networks, tests them with
different classifiers, and then aggregates the best features into an ensemble for clas-
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sification. Support vector machines (SVM) utilizing radial basis function (RBF)
kernels are extremely effective in this method, which considerably improves per-
formance, especially for larger datasets. This technique may improve the clinical
categorization of brain tumors.
Pereira et al. [2] proposed a CNN-based approach for brain tumor segmentation in
MRI images. Researchers have made notable strides in the detection of brain tu-
mors by training a CNN model using multi-modal MRI data. This method involves
categorizing each voxel in MRI scans as tumor or non-tumor, simplifying the seg-
mentation process. Integrating multimodal MRI data has significantly enhanced the
model’s ability to automatically segment brain tumors through improved discrimi-
nation capabilities. By incorporating various imaging techniques like T1-weighted,
T2-weighted, and FLAIR images, the CNN model gains a comprehensive under-
standing of tumor characteristics. Each imaging modality provides unique informa-
tion about the tumor’s appearance, location, and the surrounding tissue, enabling
the model to accurately differentiate between tumor and non-tumor regions. For ex-
ample, T1-weighted images emphasize anatomical structures, T2-weighted images
reveal edema and necrotic areas, while FLAIR images highlight the peritumoral re-
gion. This integration allows the model to capture a more complete representation
of the tumor and its surrounding context. An essential advantage of this approach
is the elimination of manual delineation, which is time-consuming and prone to in-
consistencies. Instead, the CNN model learns to automatically segment the tumor
by analyzing patterns and features present in the multi-modal MRI data. This not
only saves time but also reduces subjectivity and potential errors associated with
manual segmentation. Promising results have been achieved using this method, as
it enables accurate and efficient segmentation of brain tumors. The CNN model,
trained on multi-modal MRI data, effectively categorizes each voxel as either tumor
or non-tumor, facilitating precise delineation of tumor boundaries. Automated seg-
mentation has a broad range of applications, including planning, monitoring tumor
growth, and assessing response. Moreover, the elimination of manual delineation
enables faster processing of large datasets, facilitating extensive studies and clinical
applications. In summary, the incorporation of multi-modal MRI data in training
CNN models for brain tumor classification and segmentation represents significant
progress. This strategy harnesses the complementary information provided by dif-
ferent imaging modalities, enhancing the model’s discrimination capabilities and
enabling automated segmentation of brain tumors. The elimination of manual de-
lineation offers advantages in terms of accuracy, efficiency, and scalability, making
it a valuable tool in the field of brain tumor analysis.
In [40] authors mentioned the high cancer mortality rate related to late-stage detec-
tion is the topic of this research. It suggests using a Convolutional Neural Network
(CNN) trained on a Kaggle dataset for early cancer cell detection in MRI images.
With a 97.8% accuracy score, high specificity, recall, F1-score, and precision, the
CNN produced great results. The publication also contains graphical comparisons
of accuracy and loss for training and validation.

In [6] Kamnitsas et al. (2017) addressed the challenge of accurate lesion segmenta-
tion in their work. Their proposed approach introduces a novel method for segment-
ing brain tumors utilizing a combination of a multi-scale 3D CNN architecture and
a connected CRF. The main objective of their method is to enhance the accuracy
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of maps by effectively capturing contextual information at various scales and ensur-
ing spatial coherence in the results. The key innovation of their approach lies in
the utilization of a multi-scale 3D CNN architecture, which enables the processing
of volumetric data at different scales. This allows the model to extract intricate
details at different levels of granularity, enabling accurate segmentation of brain tu-
mors with diverse sizes and shapes. In addition to the multi-scale 3D CNN, their
method incorporates a fully connected CRF as a post-processing step to refine the
segmentation results. The fully connected CRF takes into account the relationships
between neighboring voxels and promotes smooth and coherent labeling, resulting in
visually consistent segmentation maps. By synergistically integrating the multi-scale
3D CNN architecture and the fully connected CRF, their proposed method achieves
improved segmentation accuracy. The ability to capture contextual information at
multiple scales empowers the model to effectively handle brain tumors with varying
characteristics. Furthermore, the inclusion of the fully connected CRF ensures spa-
tial coherence, enhancing the reliability of the segmentation results. Overall, their
novel approach offers a promising solution for the segmentation of brain tumors by
leveraging the advantages of both many scale 3D CNNs and fully connected CRFs.
Through the capture of contextual information and the enforcement of spatial coher-
ence, their method presents an effective and accurate approach to segmenting brain
tumors, which holds great potential for its practical application in clinical settings.

In [5]Havaei et al. (2017) developed a deep learning architecture for brain tumor seg-
mentation called ”U-Net.” The proposed approach in the paper introduces a novel
method for brain tumor classification using a fully convolutional network with dense
connections. This technique aims to enhance the accuracy of tumor delineation by
effectively capturing contextual information and improving the precision of the seg-
mentation process. Unlike conventional techniques, this approach incorporates dense
connections within the network architecture. These connections facilitate the seam-
less flow of data across different layers, allowing for the integration of information
from multiple levels of abstraction. By establishing direct connections between all
layers, the model can access and utilize features from earlier layers, enabling a more
comprehensive understanding of the tumor region. The utilization of dense connec-
tions is particularly advantageous in improving the reliability and accuracy of tumor
segmentation. It enables the network to leverage features extracted at various scales
and resolutions, thereby capturing fine details and contextual cues necessary for pre-
cise segmentation. This holistic approach helps to address common challenges such
as false positives and false negatives encountered in tumor segmentation tasks. The
fully convolutional nature of the network allows for the processing of input images
of varying sizes, making it adaptable to different imaging modalities and resolu-
tions. This flexibility is crucial in the context of brain tumor segmentation, where
tumors can exhibit significant variability in size and shape across different patients.
By leveraging the power of dense connections, the proposed method outperforms
conventional techniques in terms of segmentation accuracy. The integration of lo-
cal and global information through dense connections enables the model to gain a
comprehensive understanding of the tumor region, resulting in more precise and re-
liable segmentation. This advancement is crucial for applications such as treatment
planning and monitoring in clinical settings. In summary, the introduced method
for brain tumor classification using a full CNN with dense connections represents
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an outstanding advancement in the field. By effectively capturing contextual in-
formation and improving segmentation accuracy, this approach demonstrates the
potential of deep learning techniques to surpass traditional methods in brain tumor
analysis.

In [3] I sın, A., Direko glu, C. and S ah, M. (2016) The importance of automatically
segmenting brain tumors in MRI images is discussed in this research. It emphasizes
current developments while emphasizing the supremacy of deep learning techniques.
The study tackles the need for standardization in clinical practice and explores
cutting-edge algorithms.

The Convolutional Neural Networks (CNNs) used in this paper [16] unique brain
tumor classification methods are strengthened by ensemble techniques and Genetic
Algorithm (GA) optimization. It delivers outstanding results with 94.2% accuracy
in differentiating between different forms of brain cancers, including glioma, menin-
gioma, and pituitary tumors, and 90.9% accuracy in identifying glioma grades. This
method not only eliminates the need for trial-and-error in network architecture de-
sign but also shows how flexible and successful it is in potentially considerably
assisting early-stage brain tumor diagnosis in clinical practice.
Three specific subfields are highly relevant to our work: Multiclass categorization:
And many deep learning studies on multiclass prediction using coupled medical data
on classification problems that necessitate the use of many modalities during test-
ing. The major purpose of the study is to design the optimal fusion strategy for
evaluating when and when not to efficiently combine seemingly disparate and re-
dundant data. [17] While registered multimodal data enable fusion in entry-level
data, the majority of research uses feature hybrid due to mismatches in input di-
mensions and the flexibility that feature hybrid provides. Furthermore, numerous
studies employ decision-level fusion frameworks that combine ensemble learning ap-
proaches [25]. Simply most prevalent merging method to date is the simple con-
catenation of retrieved output. Recent research, however, aims to comprehend the
link between multimodal characteristics by applying techniques that leverage the
Kronecker product to describe paired feature contact and orthogonalization losses
to decrease duplication across multimodal data [21].
Image Translation: To transform the inferior modality into the superior one, one can
consider learning image translation to pictures. Multimodal medical imaging inter-
pretation remains problematic because of spatial variances and source-destination
differences, despite significant advances in the field. Furthermore, image translation
just optimizes the intermediate effort of translation, but our proposed technique
handles the ultimate categorization. [20], [27]
Students and educators’ learning, also known as distillation of knowledge (KD),
aims to transfer information acquired through a single model to a different one, typ-
ically in conditions with scarce or no annotations and model reduction. In contrast,
[11] proposes an intra-modal process of distillation that uses the instructor model’s
modality-specific representation to extract information for the learner model. While
the majority of these applications inspection on KD spanning coordinated both
auditory and visual data, distillation of knowledge techniques for different modal
medical picture analysis mostly focuses on categorization. In the paper [33] the
authors proposed a multimodal structure for classifying images of the chest, using
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language-based electronic healthcare records as educators and x-ray images as stu-
dents. However, unlike the suggested technique, the student network in this earlier
study just duplicates the instructor network without explicitly including its own
learned classification-based latent information. [8], [12], [18]
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Chapter 3

Methodology

• Obtain the RadPath 2020 dataset, which consists of MRI images of brain
tumors and corresponding labels.

• Preprocess the dataset by performing standardization techniques such as re-
sizing, normalization, and augmentation to ensure consistency and improve
model performance.

• Select appropriate deep learning models for brain tumor detection, such as
ResNet50, EfficientNetB0, InceptionV3, DenseNet121, and Ensemble model
based on their prior success in similar studies or benchmark results.

• Divide the dataset into training, validation, and testing sets to train, test, and
evaluate the models effectively.

• Train each model using the selected optimizer, learning rate, and loss function
while monitoring the training process by assessing accuracy and loss metrics
at each epoch.

• Evaluate the trained models using the test sets and calculate performance
metrics, including accuracy, precision, recall, and F1 score, to assess their
effectiveness in detecting brain tumors.

• Visualize accuracy and loss curves during the training process to analyze the
model’s learning progress and identify potential issues such as overfitting or
underfitting.

• Generate confusion matrices to gain insights into the model’s performance in
differentiating between tumor and non-tumor cases.

• Conduct a comparative analysis to identify the strengths and weaknesses of
each model in brain tumor detection, considering their precision, recall, and
F1-score for tumor and non-tumor cases.

• Summarize the study’s findings, emphasizing the performance of each model
and their potential impact on automating brain tumor detection.

• Discuss the significance of the study in improving diagnostic accuracy and
patient outcomes, and propose future research directions, such as exploring
ensemble models or incorporating additional data modalities for further im-
provement in brain tumor detection.
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Figure 3.1: Workflow Diagram

3.1 Description of the Data

The RadPath 2020 dataset was contributed for the (CPM RadPath) Challenge,
which focused on brain tumor classification. The collection contains 325 paired
multi-sequence MRIs, digitized histopathology images, and patient-specific glioma
diagnostic labels. The diagnostic designations involve glioblastoma g = 115, oligo-
dendroglioma o = 96, and astrocytoma a = 106. MRI loops include T1, T2, T1-Gd,
and FLAIR 3D images with a diameter of 280×2266. The histopathology WSI are
TE-stained specimens of tissue scanned at 30× or 60× enlargements, with sizes up
to 7 × 95,000 × 95,000. In this setting, WSIs obtained from biopsies are regarded
as the superior modality because of their high accuracy in tumor diagnosis, whereas
MRI is the non-intrusive inadequate modality. We divided the collection of data
into 70 percent training samples, 10 approval samples, and 20 test samples, yielding
five different sets to evaluate the resilience of our methods over numerous splits.
The MRI scans are grouped into four categories:

• Fluid-Attenuated Inversion Recovery (FLAIR): FLAIR images are instrumen-
tal in detecting changes in water content and fluid-filled spaces, as they sup-
press fluid signals, thereby aiding in the identification of pathological lesions.
FLAIR images are particularly effective in visualizing peritumoral edema, a
common occurrence in brain tumors.

• T1-weighted images (T1): These high-resolution images are beneficial in view-
ing the finer structures of the brain, like white matter, gray matter, and cere-
brospinal fluid (CSF). Disruptions in these normal brain structures, of- ten
caused by tumors, can be detailedly viewed using T1 images.

• T2-weighted images (T2): Owing to their sensitivity to free water content, T2
images offer valuable information on edema, inflammation, and other patho-
logical conditions. They offer crucial details about tumor boundaries and
associated edema.
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Figure 3.2: (a) Flair (b) T1-Gd (c) T1 (d) T2

• T1-weighted images with Gadolinium contrast (T1-Gd): Utilizing a contrast
agent, Gadolinium, these images illuminate areas where the blood-brain barrier
is compromised, often resulting from pathological conditions like tumors. T1-
Gd images offer vital data about the size and extent of the tumor. The dataset
is partitioned into 19658 training images, 5685 validation images, and 2,843
testing images for each group, guaranteeing that the models possess sufficient
data for learning, adjusting parameters, and eventually being tested on unseen
data for an unbiased evaluation of performance.
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3.2 Data pre-processing

In this study, we explore the potential of utilizing multi-channel Magnetic Reso-
nance Imaging (MRI) data from the RadPath database to classify brain scans as
either containing or not containing brain tumors. The database consists of 3D MRI
scans, each with a volume of 240x240x240, and includes four distinct channels: T1,
T2, T1-Gd, and FLAIR.[36] To ensure the reliability of the collected data, images
with more than 80% background were excluded. Furthermore, a segmentation mask
was provided to enable a binary classification based on a comparison of the four
channels. The RadPath database provided an extensive collection of multi-channel
MRI scans, which we utilized for tumor classification. Each scan consisted of four
channels, providing complementary information about the brain tissues. The T1
channel highlights the anatomy, T2 provides information about edema, T1-Gd en-
hances the contrast of tumor tissues, and FLAIR emphasizes fluid accumulation.[38]
By leveraging this multi-channel data, we aimed to improve the accuracy of glioblas-
toma classification. To perform the binary classification, we employed a comparative
approach. The segmentation mask served as the ground truth, identifying tumor
regions within the scans. We compared the intensity values of each channel with the
corresponding regions in the segmentation mask. If the intensity values exhibited
significant deviations from the background, we categorized the scan as containing a
brain tumor. Otherwise, it was labeled as not containing a brain tumor. By com-
bining the information from all four channels, we aimed to capture a comprehensive
representation of tumor-related features and improve the accuracy of the classifica-
tion. Post these, we utilized two more functions [ get crop values() and augment()
]

• get crop values(): This function figures out where the important part of an
image starts and ends. It checks rows and columns to find the first and last
non-empty parts, then tells you where that part is located.

• augment(): This function randomly changes an image in different ways like
turning it, flipping it, or keeping it the same, and then gives you the changed
image.

3.3 Convolutional Neural Network

This study aims to evaluate the application and comparative performance of four
CNN models in identifying brain cancers using MRI data. By doing so, it meets a
pressing need in modern medicine for faster, more accurate, and more dependable
ways to identify brain cancers. These models have the potential to fundamentally
alter how we approach the detection and management of brain cancers and more
research is being done to improve them.[[24] It’s critical to understand that these
models do not take the place of healthcare professionals, despite the fact that they
provide important diagnostic tools. Instead, they serve as decision-making tools
that may improve the accuracy and reliability of the diagnoses made by doctors and
radiologists.[24]
The effectiveness of Convolutional Neural Networks (CNNs), a type of neural net-
work, has been proven in areas including image detection and classification. In addi-
tion to assisting vision in robotics and autonomous cars, CNNs have demonstrated
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Figure 3.3: Dataset after preprocessing

exceptional face, object, and traffic sign recognition abilities.
Convolutional, Pooling, and Fully-Connected Layers are the three main categories
of layers found in a standard CNN architecture.[24]

Figure 3.4: Building blocks of a CNN

Convolutional Layer:The core component of a CNN is this layer. This layer’s
parameters are made up of a number of trainable filters (or kernels) that have a
limited receptive field but cover the entire depth of the input volume. Each filter
computes the dot product between its entries and the input during the forward
pass and then convolves over the input volume’s width and height to create a 2-
dimensional activation map.
Pooling Layer:By merging the outputs of groups of neurons at one layer into a
single neuron at the following layer, pooling layers reduces the dimensionality of
the data. There are numerous pooling variations, including Average and Maximum
pooling.
Fully Connected Layer:Neurons have full connections to all activations in the
layer above when they are in a fully-connected layer. The class scores are computed
in this layer, producing a volume of size [1x1xN], where N is the total number of
classes.
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3.4 Machine Learning Model

ResNet50, EfficientNetB0, and DenseNet121 are prominent and extensively em-
ployed among the diverse range of Convolutional Neural Network architectures and
their Ensemble model that we will be leveraging for our research endeavors.
ResNet50: ResNet-50 is a convolutional neural network architecture that addresses
the challenge of training deep networks. It utilizes residual blocks with skip con-
nections to mitigate the problem of vanishing gradients. The structure of ResNet
shown in Figure 3.4. The network takes a 224x224 RGB image as input. The ini-
tial convolutional layer extracts features, followed by max pooling to reduce spatial
dimensions. The core component, residual blocks, are employed multiple times.
Identity blocks are used when input and output feature maps have the same dimen-
sions, while convolutional blocks handle different dimensions. Each block includes
convolutions, batch normalization, and ReLU activation. The network stacks mul-
tiple residual blocks, comprising three identity blocks and four convolutional blocks
with increasing filter sizes. Average pooling further reduces spatial dimensions to
1x1. Lastly, a fully connected layer with 1000 neurons and softmax activation clas-
sifies the input image. ResNet-50 achieves impressive performance due to its ability
to train deep networks effectively. By incorporating skip connections, it overcomes
the degradation problem in deep architectures, making it a powerful tool for image
classification tasks.

Figure 3.5: ResNet50 Model Architecture Yu˙Nishio˙2022

EfficientNetB0: EfficientNet-B0 is a convolutional neural network architecture de-
veloped by Google to achieve a favorable balance between accuracy and efficiency.
Figure 3.5 shows a model architecture of EfficientNet-B0. It is part of the Efficient-
Net family and focuses on optimizing the trade-off between model size and perfor-
mance. EfficientNet-B0 takes 224x224 RGB images as input and begins with a stem
consisting of convolutional layers. It then employs blocks composed of multiple lay-
ers to capture hierarchical features.[19] The main building block, called MBConv,
combines depth-wise separable convolutions, squeeze-and-excitation (SE), and skip
connections.One unique feature of EfficientNet is resolution scaling, which adjusts
the input resolution while keeping other dimensions fixed. This scaling enhances the
model’s accuracy and efficiency across different sizes. The network also incorporates
global average pooling to reduce spatial dimensions, followed by a fully connected
layer for classification. EfficientNet-B0’s architecture enables a good balance be-
tween accuracy and efficiency, making it highly suitable for various computer vision
tasks.[19] Its utilization of resolution scaling and efficient convolutions contributes
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to its effectiveness. EfficientNet models, including EfficientNet-B0, have gained sig-
nificant attention and popularity due to their favorable performance characteristics.

Figure 3.6: EfficientNet-B0 Model Architecture

InceptionV3: InceptionV3 is a convolutional neural network architecture devel-
oped by Google for computer vision tasks. It enhances accuracy and efficiency com-
pared to its predecessor, Inception. The network takes variable-sized RGB images
as input. The ”stem” phase involves multiple convolutional layers and max pool-
ing. The core component, Inception modules, employs parallel convolutional layers
of different sizes to capture multi-scale features. Several variations of Inception
modules are utilized, concatenating their outputs for diverse spatial information[7].
InceptionV3 also incorporates auxiliary classifiers to aid training and gradient prop-
agation. It applies global average pooling to reduce spatial dimensions, followed by
a fully connected layer for classification. InceptionV3’s strength lies in its ability to
effectively capture multi-scale features and its modular architecture, enabling effi-
cient training and inference. It has been widely employed in research and industry
for various computer vision applications.

DenseNet121: DenseNet-121 stands as a distinct neural network architecture
renowned for its exceptional performance in the realm of computer vision tasks.
Its departure from conventional networks lies in its incorporation of dense connec-
tions between layers, a paradigm shift that enhances the flow of information and
encourages extensive feature sharing. Operable on 224x224 RGB image inputs,
DenseNet-121 adopts a structural approach composed of densely interwoven blocks,
each housing multiple layers intricately interconnected. This dense network topology
empowers the model to discern intricate image features effectively. By incorporat-
ing bottleneck layers, computational efficiency is further optimized. DenseNet-121
excels in detecting intricate patterns and nuanced image details, making it a highly
sought-after choice for a wide range of computer vision applications. The network’s
concluding layers are dedicated to image classification, ensuring precise predictions
while judiciously managing computational resources.

Ensemble Model:
The ensemble method combines the outputs of multiple models to enhance the over-
all performance by leveraging the strengths of each individual model. In this study,
we have employed an ensemble method that integrates DenseNet121 and the guid-
ance model to improve the detection accuracy of brain tumors from MRI images.
DenseNet121 was chosen due to its distinctive neural network architecture, which is
renowned for its exceptional performance in computer vision tasks. It incorporates
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dense connections between layers, facilitating better information flow and extensive
feature sharing, which enhances its capability to detect intricate patterns and de-
tails in images. The guidance model, on the other hand, is specifically designed
to improve diagnostic performance by guiding the feature extraction process based
on the superior modality, thereby reducing the dependency on the inferior modal-
ity. This model translates the latent representations of inferior modality images to
those of the superior modality, providing a more accurate basis for classification.
By combining DenseNet121 and the guidance model in an ensemble, we can harness
the detailed feature extraction capabilities of DenseNet121 along with the superior
guidance provided by the guidance model. This ensemble approach results in a more
robust and precise detection of brain tumors, achieving an accuracy of 94.61

3.5 Guidance Model

The training set M consists of N pairs of images from different modalities, each
with corresponding baseline labels O. Our objective is to construct a (F) that
transfers new occurrences of the weaker modalities to the specified labels. The
set M = {MI ,MS} is defined as MI = {mi

I}
N

i=1 and MS = {mi
S}

N

i=1. Training

labels are written as O = {oi}Ni=1. oi ∈ L, where o L and L = {l1, l2, . . . , lK},
represents the power source set of K alternative labels for each class. The function
F , parameterized by θ, predicts ô from m̂, that is, ŷ = F (xI ; θ).

3.5.1 Optimization of the model

Our method comprises three major steps: (i) Developing classifiers TIand TS to
predict labels o from mI and mS , respectively; (ii) Developing a guidance model G
We go over these stages in detail below.
We train two classifiers YI and YS separately using paired pictures (mi

I ,m
i
S) and

their accompanying labels. Yclassifies pictures from the inferior modality, whereas
Ysidentifies images on the superior modality m. These classifiers predict y, respec-
tively.

ôiI = YI
(
mi

I
)

ôiS = YS
(
mi

S
)

The classifier comprises an encoder E that converts the high-dimensional input pic-
ture into a compact representation, and maps this representation to a label Y in O
with a decoder D. The E and D of C Iare denoted as E Iand D I, respectively, while
those of Y S as E S are denoted.

ôiI = DI ◦ EI
(
mi

I ; θEI

)
ôiS = DS ◦ ES

(
mi

S ; θES

)
The symbol signifies function composition. These are the encoder parameters.
Encoders generate latent representations z, specifically:
siI and siS are inputs to corresponding decoders DI and DS .
The guiding model (G) is trained to translate the inferior image’s latent represen-
tation (I) to the superior image’s latent representation (S). The estimated latent
coding is:

ŝiS = G
(
ziI ; θG

)
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The final model (F) merges the guiding model (G) with the categorization model
(Y) (I). This enables Y I to benefit from the expertise of Y S, who was trained in
the better modality. As a result, F may anticipate using only the inferior modality
and generate representations similar to the superior modality. Both guided repre-
sentations are used during inference.
To train a common decoder D cwith parameters D c, the original representation s
I iare concatenated.

ô = Dc

([
G
(
EI

(
mi

I ; θEI

)
; θG

)
EI

(
mi

I ; θEI

)]
; θDc

)
.

3.5.2 Implementation

For our baseline MRI classifier, we employ the same 3D DenseNet model as the
RadPath 2019 competition winners. We apply CLAM, a recently developed multiple
occurrence learning-based data-efficient model, for the WSI classifier. Our guiding
model employs an AE architecture in each set of examinations, with 512 neurons
serving as a roadblock on the RadPath dataset. To train the guiding model, we
minimize the MSE loss between S and s. To deal with class imbalance in the final
merged classifying model, we adopt a weighted cross-entropy loss.
DenseNet121 was chosen for the guidance model due to its unique architectural
advantages for 3D imagery as the RadPath dataset contains 3D data for multiple
modalities and proven effectiveness in computer vision tasks. Unlike traditional con-
volutional neural networks, DenseNet121 utilizes dense connections between layers,
which enhances information flow and promotes extensive feature reuse. This archi-
tecture mitigates the vanishing gradient problem, allowing for more efficient training
and improved performance.
Furthermore, DenseNet121 has been demonstrated to capture intricate and nuanced
features in medical imaging, making it particularly well-suited for tasks involving
detailed and complex data such as MRI scans. Its ability to maintain high per-
formance with fewer parameters compared to other deep learning models makes it
a computationally efficient choice, aligning with the project’s requirements for ro-
bust and scalable implementation. In summary, DenseNet121’s dense connectivity,
efficient training capabilities, and proven success in medical imaging applications
justify its selection as the core architecture for the guidance model in this study
PyTorch was utilized for all tests on the RadPath dataset. RadPath’s base models
have run on an NVIDIA GeForce RTX 3050 GPU. We have included additional
tables including the values of the hyperparameters used in various experiments.
These tables display the entire batch sizes, optimization settings, loss measurements,
and early stopping parameters.
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Table 3.1: RadPath findings. Radiology MRI patterns (O) are guided by pathology
(M). Only the most successful model based on ALL MRI episodes is employed, which
explains the ’-’ in row 1. In row 2, just M is utilized instead of MRI, resulting in
’*’. O is the inferior (I), whereas M is the superior (S).

Model T1 T2 T3 FLAIR
BA↑ F1↑ BA↑ F1↑ BA↑ F1↑ BA↑ F1↑

1. M + O [11] - - - - - - - 0.621
2. M [30] * * * * * * * 0.593
3. O [15] 0.539 0.613 0.582 0.648 0.574 0.682 0.491 0.576

4. Guidance(O) 0.472 0.564 0.614 0.723 0.521 0.609 0.431 0.532
5. G(UidanceO) + O 0.621 0.634 0.678 0.713 0.641 0.721 0.595 0.681

6. ∆ (%) +8.2 +3.4 +9.6 +2.3 +6.7 +3.9 +16.4 +10.5
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Chapter 4

Result Analysis

4.1 Performance Measure

4.1.1 Visualize through Confusion Matrix

The confusion matrix is a structured representation that reflects the efficacy of a
classification model. It gives a brief assessment of the model’s performance by show-
ing its number of true positives, true negatives, false positives, and fake negatives.
This matrix is an effective tool for analyzing the accuracy and assessing the mistakes
caused by a classification system.

Accuracy: The accuracy measure assesses the model’s forecasts in terms of
overall correctness. Accuracy is (TP + TN) / (TP + TN + FP + FN).
Precision: Precision measures the model’s ability to properly recognize positive
predictions. Precision = TP/(TP+FP)
Recall (Sensitivity, True Positive Rate): Recall assesses the model’s ability to
correctly discover positive cases among all truly positive instances. Recall =
TP/(TP + FN)
F1 Score: The F1 score combines accuracy and recall to provide a single
statistic that provides a fair assessment of the performance of the model.F1
Score: 2 * (Precision * Recall) / (Precision + Recall)

Precision assesses the model’s ability to correctly identify positive predictions by
dividing genuine positive predictions by the total of true positives and false posi-
tives. Recall, on the other hand, assesses the model’s capacity to properly identify
positive occurrences out of all real positive events by multiplying the total amount
of true positive projections by the combined number of actual positives and false
negatives. The F1 score, which is derived as the harmonic average of accuracy and
recall, provides a fair assessment of the model’s performance. These metrics pro-
vide important details about a categorization model’s strengths and flaws. While
accuracy measures overall performance, accuracy, ability to recall and F1 score em-
phasize specific characteristics of true and false positives. Analyzing these metrics
from the confusion matrix helps understand the model’s predictive abilities and
make informed decisions regarding its effectiveness.
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Figure 4.1: Confusion Matrix for ResNet50

Figure 4.2: Confusion Matrix for EfficientNetB0
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Figure 4.3: Confusion Matrix for InceptionV3

Figure 4.4: Confusion Matrix for Ensemble
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Figure 4.5: Confusion Matrix for DenseNet121

4.1.2 Multiclass Analysis

In this section, we delve into the multiclass analysis of brain tumor classification
models, utilizing a confusion matrix to evaluate their performance. A confusion
matrix is a powerful tool that helps us understand the classification capabilities of
our models by comparing actual class labels to predicted class labels.
A confusion matrix displays the performance of a classification model by presenting
a summary of correct and incorrect predictions. The matrix is structured such that
each row represents the actual class, and each column represents the predicted class.
The diagonal elements of the matrix indicate the number of correct predictions for
each class, while the off-diagonal elements show misclassification.
Our confusion matrix demonstrates the effectiveness of our multiple classes brain
tumor classification approach. Each row represents the actual class, while each
column indicates the anticipated class. The diagonal elements denote correct pre-
dictions, but the off-diagonal elements suggest misclassification. By evaluating the
distribution of these predictions, we obtain information about the model’s capacity
to reliably categorize different forms of brain tumors.
By analyzing the confusion matrix, we gain insights into the model’s ability to
distinguish between different types of brain tumors. The key metrics derived from
the confusion matrix include precision, recall, and the F1 score for each class. These
metrics help in understanding the model’s strengths and weaknesses in classifying
various tumor types.
The performance metrics for the DenseNet121 model, which is one of the models
evaluated in this study, are summarized in Table 4.1. The table provides precision
(P), recall (R), and F1 score (F1) for each tumor type as well as the overall test
accuracy.
From these metrics, we can observe the following:
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Figure 4.6: Confusion Matrix for Multiclass Analysis

Table 4.1: DenseNet Multiclass Model Accuracy

P Rl F1
glioma 0.90 0.98 0.91

meningioma 0.94 0.95 0.95
no tumor 1.00 0.96 0.98
pituitary 0.93 0.95 0.96
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Figure 4.7: The first figure shows the loss curves for the training and validation
datasets. The training loss curve decreases steadily over time, indicating that the
model is learning. The validation loss curve also decreases, but it fluctuates more
than the training loss curve. This is because the validation dataset is smaller and
more susceptible to noise.

Figure 4.8: The second figure shows the accuracy curves for the training and valida-
tion datasets. The training accuracy curve increases steadily over time, indicating
that the model is learning. The validation accuracy curve also increases, but it
fluctuates more than the training accuracy curve. This is because the validation
dataset is smaller and more susceptible to noise.

Figure 4.9: Overall, the figures show that the model is learning and can generalize
well to the validation dataset. The model’s performance is impressive, given the size
of the dataset for validation.
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• Glioma: The model achieves a high recall of 0.98, indicating it is very effective
at identifying glioma cases. However, the precision is slightly lower at 0.90,
suggesting there are some false positives.

• Meningioma: The model performs consistently well with high precision (0.94)
and recall (0.95), resulting in a robust F1 score of 0.95.

• No Tumor: This category has the highest precision (1.00) and a very high F1
score (0.98), reflecting the model’s strong ability to correctly identify cases
with no tumor.

• Pituitary: Similar to meningioma, the model shows balanced performance with
high precision (0.93) and recall (0.95), leading to an F1 score of 0.96.

Test Accuracy 0.97713641

The confusion matrices for the models, including DenseNet121, are illustrated in
Figure 4.6. These visual tools help in quickly identifying the model’s classification
patterns and pinpointing areas of improvement. The multiclass analysis using the
confusion matrix demonstrates that our brain tumor classification models, partic-
ularly DenseNet121, are highly effective in distinguishing between different types
of brain tumors. The high accuracy and strong performance metrics across various
classes validate the robustness of our approach. This detailed analysis not only high-
lights the strengths of our models but also provides a pathway for further refinement
to enhance their predictive capabilities.

4.2 Performance Analysis of the Deep Learning

Models

The initial assessment section endeavors to present an exhaustive evaluation of the
experiments conducted employing ResNet50, EfficientNetB0, InceptionV3, DenseNet121,
and the Ensemble model for brain tumor identification from MRI images. Metrics
such as Accuracy, Precision, Recall, and F1 score are calculated and visualized
through accuracy/loss curves over training and validation sets and confusion ma-
trices. The comparative analysis between the channels and the segmentation mask
allowed us to discern subtle variations that are indicative of tumor presence. By ex-
ploiting the unique characteristics of each channel, we achieved higher precision and
reduced false positives. The binary classification into brain tumor and non-tumor
categories facilitated the effective sorting of the scans, enabling efficient treatment
planning and prognosis prediction. Each model underwent a distinct experiment,
all sharing a similar configuration. With the Adam optimizer set to a learning rate
of 0.001 and implementing the Sparse Categorical Cross-Entropy (CE) as the loss
function, the ResNet50 model was trained over 50 epochs. The same configuration
was maintained while training the EfficientNetB0, InceptionV3 and DenseNet121
models.
Accuracy/loss curves during the training and validation stages were plotted to
closely observe the evolving behavior of each model during the learning process.
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The graphical portrayal of these curves facilitates an understanding of how the pre-
diction accuracy of the models advanced through training iterations and how the loss
was reduced as the models honed their weights. The comparative analysis between
the channels and the segmentation mask allowed us to discern subtle variations that
are indicative of tumor presence. By exploiting the unique characteristics of each
channel, we achieved higher precision and reduced false positives. The binary clas-
sification into brain tumor and non-tumor categories facilitated the effective sorting
of the scans, enabling efficient treatment planning and prognosis prediction.
The confusion matrix provides a tabular representation of the model’s predictions
by breaking them down into true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN). This matrix allows us to analyze the types of errors
made by the model and assess its effectiveness.

4.2.1 ResNet50:

When training ResNet50, we evaluate the accuracy and loss on the training, vali-
dation, and test sets after each epoch (Total 50 epochs). These evaluations help us
monitor the model’s performance during training and testing.
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Figure 4.10: Accuracy/Loss curves for ResNet50

Initially, the training accuracy starts at a relatively low value, around 60%, and loss
at around 69%. As training progresses, the accuracy gradually increases and loss
decreases, demonstrating the model’s learning capability, reaching around 98.39%
training accuracy and 4.19% loss at the training set. On the validation set, the
accuracy starts lower, around 65%, but also shows an upward trend as the model
learns from the training data. Though typically lagging behind the training accu-
racy, it still exhibits a rising trend, reaching around 93.41% validation accuracy. At
the beginning of training, the loss is high around 81.97%, indicating the model’s
initial inaccuracies. As the training continues, the loss steadily decreases to 26.15%,
indicating the model’s initial inaccuracies. Close attention should be paid to signs
of overfitting, such as a significant decrease in training loss while the validation loss
begins to increase or stabilize.

Table 4.2: ResNet50 Model Accuracy

P Rl F1
0 [No ] 0.83 0.96 0.89
1 [Yes ] 0.98 0.92 0.95

Test Accuracy 0.93319653

After the training was complete, we performed testing and got the test accuracy of
0.9331965344277245 for the ResNet50 Model.

4.2.2 EfficientNetB0

Before Augmentation: During the training process, EfficientNetB0 is trained on
the training set, and the accuracy and loss are evaluated on both the training and
validation sets after each training epoch. The curves represent the average values
across all epochs.
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Figure 4.11: Accuracy/Loss curves for EfficientNetB0

Initially, the accuracy curve starts at a relatively low value and as training pro-
gresses, the accuracy gradually improves, indicating the model’s ability to learn
from the training data. The curve demonstrates consistent advancements, reach- ing
a higher training accuracy of 98.15% on the training set. Although the validation
accuracy may not be exactly the same as the training accuracy, it shows an increasing
rate, reaching 93.52% accuracy. The training loss decreases rapidly and achieves
lower values at 4.71% compared to the validation loss which is 22.5%.

Table 4.3: EfficientNetB0 Model Accuracy

P R F1e
0 [No] 0.85 0.95 0.90
1 [Yes] 0.98 0.94 0.96

Test Accuracy 0.94072047

After performing testing, we can say that the test accuracy is 0.9407204742362061
for the EfficientNetB0 Model.

4.2.3 InceptionV3

The accuracy and loss curves for InceptionV3 provide a visual representation of the
model’s performance. The accuracy curve demonstrates the gradual improvement
in accuracy over training epochs for both the training and validation datasets where
training accuracy reaches over 98.05% eventually. The loss curve, on the other
hand, shows the decreasing trend in loss values as the model learns and makes
better predictions where the training loss value gets to 5.02% and validation loss at
22.46%.
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Figure 4.12: Accuracy/Loss curves for InceptionV3

Table 4.4: InceptionV3 Model Accuracy

P R F1-
0 [No] 0.82 0.98 0.89
1 [Yes] 0.99 0.93 0.95

Test Accuracy 0.93547651

After the training was complete, we performed testing and got the test accuracy of
0.9354765161878705 for the InceptionV3 Model.

4.2.4 DenseNet121

DenseNet121 is trained on the training set, and the accuracy and loss are evaluated
on both the training and validation sets after each training epoch (50 epochs total)
during training phase. The curves represent the average values across all epochs.
The training accuracy starts at a relatively low value, around 64.9% and loss at
around 63.36%. As training progresses, the accuracy gradually increases and loss
decreases, demonstrating the model’s learning capability, reaching around 97.94%
training accuracy and 5.18% loss at the training set.
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Figure 4.13: Accuracy/Loss curves for DenseNet121

Table 4.5: DenseNet121 Model Accuracy

P R F1
0 [No] 0.81 0.97 0.88
1 [Yes] 0.99 0.92 0.95

Test Accuracy 0.93023255

After completion of the training, we performed testing and got 0.9302325581395349
test accuracy for the DenseNet121 Model.

4.2.5 Ensemble Model

Following comprehensive training and rigorous testing of four distinct convolutional
neural network models, we strategically integrated their outputs into a unified En-
semble model. This ensemble fusion aimed to improve accuracy and overall perfor-
mance by capitalizing on the unique strengths of each model. The Ensemble model
served as a collective hub where individual model insights converge to enhance clas-
sification accuracy.
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Table 4.6: Ensemble Model Accuracy

P R F1
0 [No] 0.84 0.99 0.91
1 [Yes] 1.00 0.93 0.96

Test Accuracy 0.94619243

After testing, we got an accuracy of 0.9461924304605563 for the Ensemble Model.

The initial assessment enables a comprehensive comparison and review of the ResNet50,
EfficientNetB0, DenseNet121, InceptionV3 models’ and the Ensembled Models’ ef-
fectiveness in the detection of brain tumors. The inclusion of both quantitative
metrics and graphical representations provides a clear understanding of each model’s
strengths and drawbacks. From analysis,

• ResNet50: ResNet50 exhibits a balanced performance in detecting brain tu-
mors. It achieves a precision of 0.83 for the “No Tumor” class, meaning that
83% of the predicted non-tumor cases are correct. The recall for this class is
0.96, indicating that 96% of the actual non-tumor cases are correctly identified.
The F1-score for this class is 0.89, reflecting a harmonized measure of precision
and recall. For the “Has Tumor” class, ResNet50 achieves a high precision of
0.98, indicating that 98% of the predicted tumor cases are accurate. The recall
for this class is 0.92, meaning that 92% of the actual tumor cases are correctly
detected. The F1-score for this class is 0.95, representing a balanced measure
of precision and recall. Overall, ResNet50 achieves a test accuracy of 93.31%.

• EfficientNetB0: EfficientNetB0 shows differing performance in detecting
brain tumors. For the “No Tumor” class, it achieves a precision of 0.85, in-
dicating that 85% of the predicted non-tumor cases are true negatives. The
recall for this class is 0.95, meaning that only 95% of the actual non-tumor
cases are correctly identified as negatives. The F1-score for this class is 0.9,
providing a balanced measure of precision and recall. On the other hand, for
the “Has Tumor” class, EfficientNetB0 demonstrates a high precision of 0.98,
accurately identifying 98% of the predicted tumor cases. The recall for this
class is 0.94, indicating that 94% of the actual tumor cases are correctly de-
tected. The F1-score for this class is 0.96, representing a balanced measure
of precision and recall. Overall, EfficientNetB0 achieves a test accuracy of
94.07%.

• InceptionV3: InceptionV3 exhibits variable performance in detecting brain
tumors. For the “No Tumor” class, it achieves a precision of 0.82, indicating
that 82% of the predicted non-tumor cases are true negatives. The recall for
this class is 0.98, meaning that 98% of the actual non-tumor cases are correctly
identified as negatives. The F1-score for this class is 0.89, providing a balanced
measure of precision and recall. For the “Has Tumor” class, InceptionV3
demonstrates a high precision of 0.99, accurately identifying 99of the predicted
tumor cases. The recall for this class is 0.92, indicating that 92% of the
actual tumor cases are correctly detected. The F1-score for this class is 0.95,
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representing a balanced measure of precision and recall. Overall, InceptionV3
achieves a test accuracy of 93.54%.

• DenseNet121: DenseNet121 exhibits a balanced performance in detecting
brain tumors. It achieves a precision of 0.81 for the “No Tumor” class, meaning
that 81% of the predicted non-tumor cases are correct. The recall for this
class is 0.97, indicating that 97% of the actual non-tumor cases are correctly
identified. The F1-score for this class is 0.88, reflecting a measure of precision
and recall. For the “Has Tumor” class, DenseNet121 achieves a high precision
of 0.99, indicating that 99% of the predicted tumor cases are accurate. The
recall for this class is 0.92, meaning that 92% of the actual tumor cases are
correctly detected. The F1-score for this class is 0.95, representing a balanced
measure of precision and recall. Overall, DenseNet121 achieves a test accuracy
of 93.02%.

• Ensemble Model: Ensemble model also exhibits a balanced performance in
detecting brain tumors. It achieves a precision of 0.84 for the “No Tumor”
class, meaning that 84% of the predicted non-tumor cases are correct. The re-
call for this class is 0.99, indicating that 99% of the actual non-tumor cases are
correctly identified. The F1-score for this class is 0.91, reflecting a harmonized
measure of precision and recall. For the “Has Tumor” class, the Ensemble
model achieves a high precision of 1.0, indicating that 100% of the predicted
tumor cases are accurate. The recall for this class is 0.93, meaning that 93%
of the actual tumor cases are correctly detected. The F1-score for this class
is 0.96, representing a balanced measure of precision and recall. Overall, the
Ensemble model achieves a test accuracy of 94.61%.

In summary, while all four models and the ensemble model show varying levels of
effectiveness in detecting brain tumors, their individual performances might differ.
ResNet50 exhibits a balanced performance between non-tumor and tumor cases,
EfficientNetB0 shows higher precision for non-tumor cases and higher recall in both
cases and also has better F1-score, InceptionV3 and DenseNet121 excel in accurately
detecting tumor cases while having relatively lower performance in tumor cases. The
Ensemble model has the 100% precision for tumor case and has the best F1-score
for both cases. These models demonstrate similar overall accuracies but differ in
their precision, recall, and F1 scores for each class. It’s important to consider these
performance metrics and choose a model based on the specific requirements and
trade-offs for the given brain tumor detection task.

4.3 Guidance Model Analysis

The accuracy of the classification results for the RadPath databases are shown in
tables, correspondingly. We present the balanced accuracy (BA) and F1 score (F1)
for diverse tasks using different input modalities and guiding methodologies. These
include employing both outstanding and lesser modalities providing input (S +
I), outstanding alone (S), lesser independently without guidance (I), guiding infe-
rior (G(I)), and guiding inferior combined with lesser (G(I)+I). RadPath’s inferior
modality is radiology (O), which may include any combination of T1, T2, T1-Gd,
FLAIR, or ALL, while pathology (M) is the outstanding modality.

35



Superior Modality Outperforms Inferior: Results from both studies’ preliminary
models suggest that the outstanding modality is more reliable for detecting illnesses.
Table 1 shows that classifier M outperforms MRI classifiers separately and is some-
what better than the aggregated ALL classifier. Table 2 demonstrates that classifier
D performs better than classifier C among all demonstrated criteria, evaluation, and
overall inference.
Integrated Modalities surpass Superior Alone (row 1 vs 2): In the RadPath scenario,
using both modalities for classification improves performance over using simply the
superior modality, showing the usefulness of MRI. However, as previous research has
shown, the combined effectiveness of the predictor does not convincingly warrant
including the inferior modality. This redundancy of knowledge from clinical imaging
encourages the use of the outstanding modality to guide the lesser modality.

Table 4.7: RadPath Results

Performance Metrics
7-point criteria DIAG MEL Inference AUROC
BA↑ F1↑ BA↑ F1↑ BA↑ F1↑ BA↑ F1↑ t = 1 t = 3

1. D + C [11] 0.542 0.662 0.399 0.416 0.581 0.584 0.709 0.432 0.620 0.674
2. D [11] 0.528 0.645 0.382 0.398 0.569 0.572 0.698 0.418 0.611 0.662
3. C [11] 0.479 0.583 0.348 0.366 0.522 0.525 0.667 0.386 0.592 0.642
4. G(C) 0.462 0.578 0.334 0.352 0.499 0.502 0.645 0.356 0.579 0.629

5. G(C) + C 0.478 0.595 0.357 0.370 0.512 0.515 0.658 0.376 0.594 0.644
6. ∆ (%) +1.3 +0.8 +3.0 +3.5 (5.2) +1.9 +1.4 +3.1 +2.0 +1.9

Guided Inferior Separately does Neither Outperform Inferior Itself (rows 3 and 4):
In all datasets, our guided model, which was trained using an MSE loss to translate
inferior characteristics to superior features, performs worse than the initial inferior
model. This inferior performance implies an imprecise reconstruction of the better
characteristics, most likely due to the tiny sample sizes. As a result, our suggested
technique recognizes the relevance of the lower modality, as seen below.
Guided Inferior in combination with Inferior outperforms Inferior alone: Our pro-
posed model, which includes both inferior inputs and established outstanding char-
acteristics with model G, outperforms the initial approach in row 3 in all five
radiology models. Row 6 of both sets display the percentage gain ∆ in performing
attained using the proposed technique over the initial, weaker classifier (row 3).
Guided Inferior using Inferior Matches. Performance of RadPath Modal Combi-
nations (row 1 vs. 5). Furthermore, the model we advocate with Both sequences
surpasses the superior paradigm system while staying comparable to the model that
tests both inferior and perceptions. We suggest that the effectiveness of Z + I
serves as an upper constraint on the performance of G(M)+I because G(M) seeks
to reproduce the subsequent representation associated with the superior modality.

4.4 Model Comparison

The bar chart compares the accuracy of different models on a specific task. The
x-axis shows the model names, while the y-axis shows the corresponding accuracy
values.
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• Highest Accuracy: The model with the highest accuracy is ”Ensembled
with Guidance (Our)” with an accuracy of 94.619243%.

• Lowest Accuracy: The model with the lowest accuracy is ”DenseNet121”
with an accuracy of 93.023255%.

• Average Accuracy: The average accuracy across all models is 93.751614%.

Figure 4.14: Comparison of the model in terms of accuracies

4.4.1 Observations

• The ”Ensembled with Guidance (Our)” model significantly outperforms all
other models in terms of accuracy.

• The ”Guidance Model [11]” also achieves a relatively high accuracy, but still
falls short of the ”Ensembled with Guidance (Our)” model.

• The remaining models have comparable accuracy values, with ”Resnet50” and
”EfficientNetB0” performing slightly better than ”InceptionV3” and ”DenseNet121”.

Based on this comparison, the ”Ensembled with Guidance (Our)” model is the best
choice for achieving the highest accuracy on this specific task.
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Chapter 5

Conclusion and Future Work

This investigation showcased the potent capabilities of Convolutional Neural Net-
works (CNNs) in facilitating the identification of brain tumors. Avenues for sub-
sequent research could encompass enhancing precision metrics and examining the
adaptability of these models to different domains within medical image analysis.
In this study, the potential of CNN models, namely ResNet50, EfficientNetB0,
DenseNet121, InceptionV3 and their Ensemble model has been harnessed to ad-
vance the field of automated brain tumor detection from MRI scans. Each model
showed promising results, demonstrating both the robustness and adaptability of
CNNs when dealing with complex imaging data.
Despite these positive outcomes, there is always room for enhancing the performance
of these models. Future research could focus on optimizing model configurations,
introducing more sophisticated data augmentation techniques, or integrating addi-
tional relevant information into the models. These improvements could potentially
lead to increased accuracy rates, which are essential for diagnostic applications.
Moreover, the success of CNN models in this study invites curiosity about their
potential application in other facets of medical imaging. It would be interesting for
future investigations to evaluate their efficacy in different tasks such as anomaly
detection in other types of scans, recognition of various diseases, or even predicting
the progression of certain conditions.
Motivated by the realization that highly efficient modalities for medical imaging
are sometimes difficult to get, we developed a unique strategy aimed at improving
the effectiveness of less accessible but clinically relevant modalities. Our strategy,
based on the student-teacher paradigm, uses information extracted from superior
modalities to direct and enhance the academic achievement of inferior modalities.
Through rigorous evaluations of two independent medical diagnosis tasks utilizing
multimodal neuroimaging brain tumor diagnosis, we demonstrated the usefulness
of our strategy in improving the accuracy of classification when just one inferior
modality is provided. Our achievement in the brain tumor classification challenge
is particularly notable, as our system, which uses guided unimodal data, achieves
results comparable to models that use both superior as well as inferior multimodal
information. This highlights the possibility of our method to reduce the need for
costly or intrusive image acquisitions. Moving forward, our research will focus on
expanding our method’s applicability to meet cross-domain continuous learning dif-
ficulties and investigating its usefulness across a wide range of applications.
Moving ahead, our research roadmap includes numerous intriguing areas for fur-
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ther investigation. One significant objective is to extend our technique to meet
cross-domain continuous learning difficulties. This includes modifying the model to
accommodate changing data distributions across domains while keeping previously
learned information. Furthermore, while our technique has shown success in medical
evaluation tasks, its usefulness may expand to other sectors outside healthcare. Ex-
ploring its usefulness in a variety of applications, including remote sensing, robotics,
and natural language processing, might lead to discoveries and breakthroughs. Fur-
thermore, improving the robustness and generalizability of our strategy is critical
for real-world implementation. Future research will focus on enhancing the model’s
adaptability to different imaging situations, patient demographics, and disease pre-
sentations. Furthermore, incorporating interpretability and explainability methods
into our system will be critical for increasing confidence and openness, especially
in healthcare contexts. Finally, seamless integration into existing healthcare work-
flows is required for practical application. Working with healthcare professionals to
personalize the approach to their requirements and processes will be a top empha-
sis. By addressing these issues, we want to improve the applicability, robustness,
and efficacy of our technique, opening the path for its widespread acceptance and
influence across other disciplines.
Overall, the findings of this study underscore the power of machine learning and,
more specifically, convolutional neural networks, in advancing the field of medical
image analysis, opening up new horizons for more accurate, efficient, and automated
diagnosis processes.
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