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Abstract
This research delves deeply into the intricate dynamics of wetlands in Bangladesh,
with a particular focus on the haors, utilizing continuous monitoring to grasp the
nuanced temporal changes that occur. It introduces an innovative unsupervised se-
mantic segmentation methodology tailored for analyzing the yearly fluctuations in
wetlands. Leveraging the rich dataset provided by multi-temporal satellite imagery
and cutting-edge unsupervised learning algorithms, this approach stands poised to
revolutionize our understanding of wetland dynamics. At the heart of our method-
ology lies the strategic application of feature extraction and advanced clustering
techniques, with a notable inclusion being the decoder model. These techniques
enable the segmentation of wetland regions based on discernible patterns of expan-
sion and contraction. Moreover, our research extends beyond mere segmentation,
incorporating time series methods to forecast wetland fluctuations. By integrating
predictive analytics into our framework, we strive to provide not just a snapshot
of wetland conditions but also insights into their future trajectories. To validate
the efficacy of our approach, rigorous comparative analyses with actual data are
conducted. This empirical validation serves to enrich our comprehension of river
system dynamics and lends support to ongoing wildlife preservation initiatives. Our
methodology represents a significant advancement in unsupervised learning meth-
ods, adept at adapting to dynamic conditions without the constraints of labeled
training data. Furthermore, the incorporation of advanced clustering techniques
enhances our ability to pinpoint regions undergoing substantial changes, thereby
facilitating targeted conservation efforts. Crucially, the journey continues after seg-
mentation and prediction. Post-processing of segmentation results allows for metic-
ulous accuracy assessment, ensuring the reliability of our findings. Through a series
of meticulously designed experiments, we showcase the robustness and effective-
ness of our methodology and model. By pushing the boundaries of unsupervised
semantic segmentation and environmental research, we aspire to make meaningful
contributions to the broader scientific community and pave the way for informed
conservation strategies.

Keywords: Wetland, Semantic Segmentation, Unsupervised, Computer Vision, Im-
age Clustering, RAM, Grounding DINO, SAM, ARIMA, Gaussian Hidden Markov
Model
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Chapter 1

Introduction

Wetlands are mainly considered as the area of inland or coastal land partly saturated
and covered by water bodies. Wetlands are regions where water either consistently
covers the soil or is present either at or near the soil’s surface throughout the year,
including throughout the time of the growing seasons [35]. It encompasses a variety
of ecosystems, such as swamps, forested wetlands, bogs, wet prairies, prairie pot-
holes, mangroves, and different types of marshes (salt, brackish, intermediate, and
fresh), as well as vernal pools.

Figure 1.1: Wetland

Wetlands differ from rivers, lakes, etc, because of the differences in topology, soil
water chemistry, climate, and vegetation. This wetland acts as a water filter, giving
food to fish and wildlife. The large wetland may consist of several small wetlands
being vulnerable to many environmental factors. Some factors are climate change
and land use dynamics, which cause the wetlands to expand or shrink over time.
Many wetlands get dried around some time of the year, which can be disastrous for
living beings. For this reason, conservation efforts need to be made.
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1.1 Identifying Wetlands: Understanding Their
Characteristics

Wetlands are characterized in different ways and can influence different species of
animals and plants. Therefore, it is important for us to understand the importance
of its conservation as well as its identification.

Wetlands are primarily characterized by the presence of hydric soil, which remains
saturated or flooded for extended periods during the growing season, which creates
anaerobic conditions. This type of soil is typically dark and rich in organic material,
making the water have a darker color than usual, and also provides a fertile envi-
ronment for the growth of specialized vegetation. The water levels in wetlands can
fluctuate due to seasonal changes and groundwater growth. Water regime differs
from marshes, which are often changed to bogs and swamps to have a stable water
level. So, we can see that biodiversity is created within the wetland itself.

On the other hand, rivers, lakes, and other water bodies have different hydrology
properties. Unlike wetlands, rivers and lakes can maintain a stable presence of water
and do not have the presence of hydric soils. They may have a variety of aquatic
plants.

(a) A Wetland (b) A Lake

Figure 1.2: Identification of Wetlands. Here, we can see there is a difference of color
in the wetland and lake because of their soil properties.

Wetland plays a major role in the survival of both people and animals, being a
dynamic ecosystem that can undergo significant changes over time. These changes:
Shrinkage may indicate environmental stress or degradation, and Expansion could
be a signal recovery in water regimes. They also play a crucial role in water pu-
rification, flood control, and groundwater recharge, which maintains the ecological
balance, biodiversity, and overall health of our planet. Also, human beings’ local-
ization can be detected by the state of the wetland. Knowing the precise locations
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of shrinking or expanding the water resources can be managed more effectively, en-
suring ecological services are maintained.

(a) Shrunk State of Tanguar Haor,
Bangladesh in 1997

(b) Expansion State of Tanguar
Haor, Bangladesh in 1999

Figure 1.3: Fluctuation of Tanguar Haor. In Figure (a), in the year 1997, Tanguar
Haor had a state of shrinkage, indicating environmental stress. and in Figure (b),
the year 1999 Tanguar Haor had improved and expanded.

In addition to water management, wetlands act as carbon sinks, storing large amounts
of carbon that help to mitigate climate change. Localizing the changes in wetland
areas assists in assessing their role in carbon sequestration and developing strategies
to enhance their capacity to combat climate change.

This ecosystem provides a habitat for thousands of species, both aquatic living and
terrestrial. It also helps to fight climate change. Wetland saves us from many nat-
ural hazards. For example, it incepts high tide, spreads the force of water that is
incoming, and also, when heavy rain occurs, it absorbs the water into the porous
ground which is beneath the wetland surface. Unfortunately, wetlands are being
destroyed in various ways. Because of the climate, it is destroyed, and sometimes
pesticides also cause the wetland to be distorted. Pesticides and fertilizers can mi-
grate to wetlands, causing the wetlands to be distorted.

In Bangladesh, the Teesta River Basin (TRB) is crucial for agriculture in the down-
stream area. However, water shortages have been created in recent years, which
challenges the local farmers. A study [48] was held to measure water shortages and
identify crop-related problems and their impact on agriculture. The severity of the
water shortage in the Teesta River Basin was starkly evident in the data collected
from four villages in the Nilphamari district in April 2015. Over the past 15 years,
there has been a significant decrease in the river’s water levels. This shrinkage has
led to higher irrigation costs, making farming more expensive and less profitable.
The farmers’ reports of increased irrigation expenses underscore the urgency of the
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situation. Due to water scarcity, many farmers are growing maize and tobacco in-
stead of rice. They are also facing soil contamination due to decreased soil fertility.
The cost of fertilizers also increased. Shrinkage affected crop production and caused
a problem in the sustainability of agriculture in the region.

A recent study conducted by the U.S. Fish and Wildlife Service (USFWS) has re-
vealed that agricultural pesticides are causing substantial harm to wild ducklings
in the prairie pothole region of the United States [1]. The insecticides are either
”acutely toxic to waterfowl, to the aquatic vertebrates on which the adult and ju-
venile waterfowl depend for food, or both” [1].
From 1970 to 2015, approximately 35% of the world’s wetlands vanished, and this
decline is still speeding up. In fact, wetlands are disappearing three times quicker
than forests [2], [41].

With this concern, to effectively segment wetlands, we focus on its key identity
feature, hydric soil, which can be recognized by its dark color or organic richness
through water bodies. By identifying the element in unsupervised data, we can ac-
curately map and analyze wetland areas and aid in their conservation and manage-
ment. Our research gives a detailed explanation of methodology by mixing spatial
and spectral information. It also incorporates advanced clustering techniques and
temporal analysis.

Figure 1.4: Wetland Segmentation

Unsupervised learning is beneficial, as it ensures the scalability of the approach,
which can be implemented in various geographical locations. We are using unsuper-
vised semantic segmentation as it automatically categorizes and identifies objects
and regions without labels, making the process more convenient. Unlike supervised
segmentation, which requires annotated and labeled regions, this method does not
need a specific training dataset as they are designed to be like this. This convenience
is particularly beneficial for the dynamic and diverse nature of wetlands, where vari-
ations in water level and types of vegetation are common. This method allows the
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capture of uncommon spectral signatures of various wetland features and also al-
lows a relationship among pixels, which improves the accuracy of the boundaries
of wetlands. Also, it allows temporal analysis, which observes the place or object
for a long time to detect the changes that it has undergone throughout time. We
can learn a lot of advanced clustering techniques through this research as well, for
example, k-means clustering or hierarchical clustering which are used in unsuper-
vised semantic segmentation. It supports semantic segmentation by grouping the
pixels with the same characteristics. Unsupervised semantic segmentation helps in
scalability, as well as dealing with extensive wetland areas. By using unsupervised
semantic segmentation, we can gain a proper insight into the changes in wetlands.
With the powerful tool of unsupervised semantic segmentation, we can identify the
wetland status and determine the shrinkage and expansion of the wetland. This
knowledge can be instrumental in saving the ecosystem and making people aware
of the situation. We can actively contribute to the restoration and conservation of
wetlands, a cause that is crucial for our environment and future.

Semantic segmentation is a challenging task in automatic image processing, so imple-
menting unsupervised semantic segmentation can be tricky. Semantic segmentation
is a process by which an object from an image can be identified at a much finer
granularity than the classification. It reduces the difficulty of labeling the training
data as it does not require labeled data. To put it simply, segmenting an image
can require over 100 times more effort for a human annotator compared to simply
defining or drawing bounding boxes [17]. Moreover, in intricate fields like biology,
astrophysics, or medicine, the ground-truth segmentation labels may be unclear,
unknown, or demand specialized expertise to establish [16].

Figure 1.5: Wetland Segmentation with PaliGemma Vision Language Model

Incorporating unsupervised semantic segmentation with time series analysis predic-
tion, we can better understand the pattern and predict the fluctuation over time.
As we move forward, we will integrate sophisticated models and real-time moni-
toring to ensure the sustainability and resilience of wetland ecosystems, ultimately
contributing to our planet’s health and future generations’ well-being.
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1.2 Research Problem
Wetlands are not static. They change their shape and sizes over the inter- and intra-
annual timescales, which affect aquatic life; the ecosystem also affects localization.
There are people whose livelihood depends on these rivers and lakes, etc., for which
they choose to stay near the wetland. The expansion and shrinkage of the wetland
affect their living, too.

In Dhaka, the spatial and temporal shift dynamics in wetlands were measured by
analyzing four Landsat images. They employed a supervised classification algorithm
and post-classification change detection technique within the Geographic Informa-
tion System (GIS) environment. The results of accuracy of the wetland maps gen-
erated from Landsat data ranged from 87% to 92.5% [4]. The research uncovered a
notable decline in the area of wetlands, rivers, and lakes within Dhaka city over the
past 30 years, with reductions of 76.67% and 18.72%, respectively [4]. As a result,
every year, city residents endure severe waterlogging issues during the rainy season.
In a report assessing the environmental strategy of Dhaka, waterlogging stands out
as a significant issue causing suffering to the city [4]. This affected the drainage
system in the city which created the water-logging. Therefore, we can see that the
shrinkage and expansion also affect city life. The wetland is decreasing faster than
the forest, which is very concerning. This is a global crisis and a nightmare for
living, breathing beings.

Figure 1.6: Wetland Segmentation Progress

Recent technologies, which include remote sensing technology and artificial intelli-
gence, have opened a new view in our journey to determine the dynamics of wetlands
[33]. The precise mapping and constant monitoring of wetlands require advanced
remote sensing techniques and image analysis methodologies. One of the main tasks
in wetland segmentation is semantic segmentation, which involves separating the
wetland area into different classes, for example, open water, bare soil, vegetation,
and many more. The traditional supervised methods for this wetland segmenta-
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tion rely on labeled training data sets. This labeled trained data can be expensive,
limited in scope, and time-consuming. However, this problem can be solved using
unsupervised semantic segmentation, which is an alternative to this method.

The primary goal of this unsupervised semantic segmentation research is to un-
cover and identify semantically meaningful categories within image collections, all
without any form of annotations. The algorithm needs to generate features that
have clear semantic meaning and are concise enough to create separate clusters for
each pixel. Various approaches have been introduced in semantic segmentation sys-
tems to acquire knowledge and learn from less precise forms of labels like bounding
boxes, scribbles, point annotations, classes, or tags [23]. However, only a handful of
studies have set forth into the realm of semantic segmentation without any human
supervision or reliance on motion cues. Approaches like DeepAqua [42], Invariant
Information Clustering (IIC) [24], and PiCIE [25] strive to acquire semantically
meaningful features by incorporating transformation equivariance coupled with a
clustering step to enhance feature compactness. Due to the absence of previous
knowledge of the task in computer vision, the models are required to be trained to
obtain our desired results, but with the help of this unsupervised semantic method,
it is now much easier to obtain the desired result as it does not require any labeled
data..

Now, some questions in hand can be noted with this research topic,

How can we leverage state-of-the-art (SOTA) machine learning tech-
niques to predict future fluctuations in wetland areas? What methods
can we use to segment wetland areas and analyze and forecast the defor-
mation of wetlands over time?

We contribute to solving the above problems with the help of our research. This
method of unsupervised semantic segmentation is more flexible and versatile as it
does not rely on the annotated images for training.

This thesis embarks on a pioneering exploration into the world of unsupervised se-
mantic segmentation with an amazing computational technique that promises to
explore the intricate puzzle of wetland shrinkage and expansion. With the help of
this model, we can identify the underlying semantic information within the wetland
image, which will help us classify many things in the ecosystem and delineate the
boundaries of the wetland without labeled training data made by humans. We aim
to develop an accurate and robust methodology that helps to identify and classify
the objects of wetlands in Bangladesh. The main goal is to provide land managers,
environmental scientists, and policymakers to understand wetland dynamics better
and make wise decisions for the restoration and conservation of these wetlands in
our country.
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1.3 Research Contributions
In this research, we developed an advanced to identify and map wetlands by using
high-dynamic images from satellites without pre-labeled data. Specifically, we pro-
pose a combined model designed and trained to enhance the accuracy of wetland
segmentation and track fluctuations over time. The main contributions of our work
are summarized as follows:

• We created a unique dataset by extracting image data from Google Earth,
focusing on Bangladesh’s wetlands, including Tanguar Haor, Hakaluki Haor,
Khorchar Haor, Hail Haor, and such. This effort provided a diverse and repre-
sentative sample of these ecosystems, spanning from 1983 to 2022, and fills a
gap as such datasets are not readily available elsewhere, marking a significant
contribution to ecological and environmental research.

• We built an inference that integrates the power of three distinct models—Rec-
ognize Anything Model (RAM), Grounding DINO, and Segment Anything
Model (SAM). This cohesive approach boosts and leverages the strengths of
each model, enhancing the overall accuracy and efficiency of wetland segmen-
tation and forecasting.

• We enhance wetland segmentation by fine-tuning with the Segment Anything
Model (SAM) and leveraging its zero-shot generalization design and decoder-
only model. This process utilizes prompts from Grounding DINO, bounding
boxes, and wetland descriptions to produce binary masks, augmenting segmen-
tation accuracy for diverse object categories and advancing ecological research.

• We made substantial modifications to the existing probabilistic set-level ap-
proach so that it suits our model. These modifications included refining the
probabilistic algorithms to improve their precision and reliability in finding
the total area of the segmented portion and predicting wetland fluctuation.

• We used time series approaches after segmentation with our proposed model
to forecast wetland area fluctuations in the year 2025 in Bangladesh. This
approach addresses a previously unattempted challenge, providing valuable
insights and predictions that are critical for wetland conservation and man-
agement.

• We compiled and curated a comprehensive dataset of Bangla tags tailored
for this research. This involved gathering relevant tags that are commonly
associated with wetland features and phenomena, thus adding a new language
to the existing tagging resources.

This detailed contributions section highlights each major achievement of our re-
search, showcasing the innovations and improvements made to existing methods
and how they specifically apply to wetlands in Bangladesh and demonstrating the
potential of state-of-the-art machine learning techniques in environmental monitor-
ing.
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1.4 Research Organization
In the upcoming chapters, we will delve into the methodology, theoretical functions,
and practical applications. We begin with a discussion of some related works on
wetland self-supervised data (Section 2.1). Followed by reviewing existing papers
on unsupervised semantic segmentation along with some self-supervised segmenta-
tion papers (Section 2.2). Afterward, we show our working plan in a top-view block
diagram throughout the research in Chapter 3 to Chapter 5.

9



Chapter 2

Literature Review

Supervised semantic segmentation, which involves human interaction with labeling
training data manually. This whole process is time-consuming and expensive, and
there can be human error because of errors that will result in incorrect predictions.
Supervised segmentation methods rely on these human-labeled data to learn and
classify pixels or areas to predict accurately on the test data. Meanwhile, the un-
supervised segmentation approach resolves this issue without relying on pre-labeled
or human-annotated data. The unsupervised semantic segmentation method has
emerged as a promising avenue that offers adaptability, automation, etc. The lit-
erature review helps us to find the key research findings and methods in the field
of unsupervised semantic segmentation by highlighting the challenges and oppor-
tunities. Through going through the papers, we got to see the perspective of the
methods in a different way; they underscore the potential of the methods to provide
accuracy in addressing the challenges.

2.1 Related Works
We now move to the wetland localization and found a fact that water extention is
a particular issue to look at. Water extension varies over time and space, which
results in multiple annotations for the exact same area [42].

With that in mind, Pena et al. introduced us to a model called DEEPAQUA that
uses cross-modal knowledge distillation. The model adopts the Normalized Differ-
ence Water Index (NDWI) to train a Convolutional Neural Network (CNN) for water
segmentation from Synthetic Aperture Radar (SAR) image data [42]. As a student
model, they used U-Net, and for the teacher model, NDWI. Their goal was to de-
tect vegetated water without manually annotated data. For the qualitative results
of their method, they used Pixel Accuracy (PA) and Intersection Over Union (IOU)
on their test set. Both metrics outperformed the best competitor model, Otsu. The
results were on Otsu 0.895, and 0.646 for PA and IOU respectively, and for DEEP
AQUA [42] it was a PA of 0.971 and an IOU of 0.890. This exhibits the effective-
ness of their approach in cross-modal knowledge distillation with unsupervised data.

Hu et al. explain a deep learning classification approach formed on CHRIS hy-
perspectral image in their paper, where they also mention the presence of fully
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connected methods to conduct their test on the Huanghe River Estuary coastal
wetland data [20]. The data categories included Reed, Tamarix, Spartina, Water,
Tidal Flat, and Farmland. They determined that performing K-L transformation,
subsequently a spectral-only feature, followed by a combination of spectral and tex-
ture features would result in a higher accuracy. Using a Deep Convolutional Neural
network (CNN), their model outperformed all other approaches by 4.15% [20].

Here in the paper, Hassan et al. use a digital elevation model (DEM) to determine
the slope of the area and the area where vegetation is needed. The research results
indicate the utilization of Landsat 5 (TM) images from 1989 and 2013 [5]. They
selected four channels, including RED, NIR, Blue, and Green, to extract spectral
information for surface water and vegetation in the study area where the Landsat
data were obtained freely from the GLCF (Global Land Cover Facility). On the flip
side, they obtained an ASTER (Advanced Spaceborne Thermal Emission and Re-
flection Radiometer) Digital Elevation Model (DEM) through a collaborative effort
between NASA and the Japan Space System [5]. In this research, DEM data was em-
ployed to calculate slope and drainage networks. To delineate the study area within
the Landsat image, a vector polygon map of the Sirajganj district was acquired
from the Bangladesh Local Government and Engineering Department (LGED). To
achieve the objective, they employed the NDWI method, which proved to be the
most effective in extracting surface water. This process included identifying both
the primary water channels and smaller water bodies, resulting in the classification
of approximately 60,000 hectares, equivalent to 24% of the total study area. Addi-
tionally, they generated slope and drainage density maps using DEM data. Among
these, the slope map with values less than 20% was selected as the most suitable
topographic factor for ecological restoration.

Mark Hamilton et al. affirmed that modern self-supervised visual backbones can
produce state-of-the-art results in Semantic segmentation without supervision [32].
Their architecture is inspired by demonstrated correlations between deep features
and ground truth label co-occurrence. Their approach utilizes an unsupervised learn-
ing signal by introducing us to a contrasting loss that highlights feature correspon-
dences. Their system, STEGO, creates accurate semantic segmentation predictions
from low-rank representations. They demonstrate that STEGO’s loss is equivalent
to MLE in Potts, linking it to CRF inference. Models across our entire dataset
of pixels. They also show that STEGO significantly outperforms previous state-
of-the-art models in semantic segmentation, achieving a +14 mIoU improvement
for CocoStuff and a +9 mIoU improvement for Cityscapes. The architectural deci-
sions of STEGO are supported by an ablation study on the CocoStuff dataset. The
authors provide a concise overview of their primary findings pertaining to the 27
categories of CocoStuff.

The STEGO method outperforms the previous leading technique, PiCIE, by a sig-
nificant margin [25], in terms of both linear probe and clustering metrics in un-
supervised learning. The STEGO method shows significant improvements when
compared to competing methods like PiCIE and DINO. Specifically, it achieves a
+14 boost in unsupervised mean Intersection over Union (mIoU), a +6.9 increase
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in unsupervised accuracy, a +26 improvement in linear probe mIoU, and a +21
increase in linear probe accuracy. Additionally, it demonstrates a substantial +8.7
enhancement in unsupervised mIoU and a +7.7 improvement in unsupervised ac-
curacy on the Cityscapes validation dataset. The results of these two experiments
illustrate that, despite the absence of fine-tuning the backbone for the datasets in
question, the self-supervised weights of DINO on ImageNet [3] are sufficient to ef-
fectively address both scenarios simultaneously. Furthermore, STEGO outperforms
plain feature clustering from unmodified DINO, MoCoV2, and ImageNet-trained
ResNet50 backbones. This study highlights the benefits of including a segmentation
component during training to improve feature matching.

2.2 Background of Unsupervised and Self-Supervised
Learning

Mathilde et al. proposed a method called DeepCluser for convnets that works with
any clustering algorithm like k-means and Power Iteration Clustering (PIC) [15].
They focused on k-means clustering where their approach requires minimal addi-
tional steps. Their method was to alternate between clustering of images and up-
dating the weights of convents by predicting cluster assignments that get labeled
as ‘pseudo-labels’ to optimize previous clustering. They show their work for train-
ing convents from scratch to image classification. They trained DeepCluster on a
training set of ImageNet, and to measure the impact, they used the YFCC100M
dataset [11], [12] for the pre-training. The model outperforms previous unsuper-
vised methods on 3 tasks. For classification, it outperforms 73.7%, detection 55.4%,
and segmentation 45.1%. The largest improvement was 7.5% over the state-of-the-
art segmentation task. Also, DeepCluster [15] performs slightly better than other
unsupervised methods in detecting.

Like Mathilde et al., many authors have combined clustering algorithms with deep
learning. However, combining clustering with learning methods can often lead to
debased solutions [15]. To work on this issue, Ji et al. introduce a new scalable
clustering method, Invariant Information Clustering (IIC), for unsupervised learn-
ing of convents [21]. They performed their experiments on large datasets, i.e., STL,
CIFAR, and COCO-Stuff, with results of 59.6%, 61.7%, and 72.3%, respectively,
beating the closest competitors like ADC[19], DAC [13] (53.0%, 52.2%, 54.0%). The
IIC model outperformed DeepCluster in unsupervised segmentation on the COCO-
Stuff-3 dataset with 72.3%, whereas DeepCluster’s result was 41.6%. Overall they
outperformed all previous methods by 18.3% for the COCO-Stuff-3 dataset.

Cho et al. introduced an innovative framework for semantic segmentation, leverag-
ing invariance and equivariance within clustering [25]. They introduced a technique
that incorporates geometric consistency as an inherent bias, enabling the model to
grasp both invariance and equivariance principles for photometric and geometric
variations. Through their learning objective, their framework becomes proficient in
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capturing high-level semantic concepts. Their approach, PiCIE (Pixel-level feature
Clustering using Invariance and Equivariance) [25], stands out as the first method
that can segment both ’stuffs’ and ’things’ categories without the need for hyperpa-
rameter tuning or task-specific pre-processing. PiCIE significantly outperforms cur-
rent benchmarks on COCO [8] and Cityscapes [10], achieving a remarkable +17.5%
increase in accuracy and a +4.5% improvement in mean Intersection Over Union
(mIoU). They showed that PiCIE gives a good standard of training and better per-
formance.

Shanghua et al. introduce new challenges in the domain of sizeable unsupervised
learning [36]. Their objective was to build up the performance of semantic segmen-
tation in real-world settings by manipulating a wide range of diverse and extensive
data. This study suggests a benchmark for Large-Scale Unstructured Semantic
Search (LUSS) that deals with a wide range of data showcases significant diversity,
defines a well-defined task objective, and includes a broad evaluation framework.
Moreover, the research states that they introduced a great approach to Labeling
Unsupervised Semantic Segmentation (LUSS) [36]. They label pixels by learning
category and shape features from a big dataset, all without needing human an-
notations. Their method uses improved learning and pixel-level labeling with pixel
attention. The method is evaluated in their study. They used different testing meth-
ods to see how well LUSS performs in pixel-level tasks like semantic segmentation.
They also test it with unsupervised learning and partially supervised segmentation
techniques. Again, they provide an overview of the obstacles and potential avenues
for future research in the field of LUSS. The observed improvements in performance
attained by their method, compared to SwAV and PixelPro, are respectively 1.7%
and 1.2% in mean average precision (mAP) for object detection.

The paper IIC [21] by Ji et al., was based on Mutual Information, restricting the
prediction field to only patches instead of the entire image which might affect the
clustering. Robert Harb and Patrick KnÖbelreiter recognized this limitation and in-
troduced a model called InfoSeg, which incorporates global high-level features across
the entire image [25]. To suppress local noise and encourage to encoding of high-
level information, they use Local Deep InfoMax. From their dataset, they take the
input and send it for feature representation then they compute the MIV. Afterward,
they choose each spatial position of the MIV and pass it to the segmentation. To
maximize the MIV they perform Mutual Information Neural Estimation (MINE) to
maximize the lower bounds parametrized by Deep Neural Networks. Robert Harb
and Patrick KnÖbelreiter provide a quantitative comparison with their method and
a few others, i.e., IIC, Isola, InMARS, and K-Means with COCO-Stuff, Potsdam
datasets [25]. Their model InfoSeg outperformed the mentioned methods, resulting
in COCO-Stuff-3 and Potsdam-3, 73.8 and 71.6 Pixel-Accuracy (PA), respectively.

Seong et al. proposed a method, Contrastive learning by discovering hidden posi-
tives that learn pixel-level semantic clusters without limitations [44]. They deter-
mine their method to be free of limitation that relies solely on a predetermined
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backbone, mostly limited, not for segmentation tasks. Their method ensures con-
textual consistency along the patches with the same semantics. They train their
model with contrastive learning with two types of hidden positives: i) global (dis-
covered from samples in mini-batch) and ii) local (discovered from subsets of sur-
rounding patches). In contrast to existing state-of-the-art methods, their model
outperformed. The results were compared among COCO-Stuff, Cityscapes, and
Potsdam-3 datasets. Hidden Positives (HP) improved over previous models in al-
most all cases with a 56.1% Accuracy and 23.2% mean Intersection Over Union
(mIoU) in unsupervised COCO-Stuff data. In the unsupervised Potsdam-3 dataset,
their model HP gave an accuracy of 82.4% [44].

On the other hand, Chieh Chen et al. took a different approach, using DeepLabv2,
and made three key contributions with significant practical benefits [14]. First, they
employed unsampled filters, also known as atrous convolution, as a potent technique
for dense prediction tasks. This technique enabled them to expand the filters’ field
of view, capturing a broader context without adding more parameters or computa-
tional load. They proposed a method called atrous spatial pyramid pooling (ASPP)
to better detect objects of different sizes. ASPP uses filters at various sampling
rates and viewing angles, helping to capture both objects and the bigger picture in
the image. Finally, by combining the method of DCNN and probabilistic graphical
models, they improved the localization of the object boundaries. The combination
of downsampling and max pooling in the DCNNs archive has gained invariance but
it created a problem with localization accuracy. They overcame this problem by
combining the responses from the final layer of the deep convolutional neural net-
work (DCNN) with a fully connected Conditional Random Field (FCCRF). This
approach was demonstrated to enhance localization performance both qualitatively
and quantitatively. They introduced the ’DeepLab’ dataset during the PASCAL
VOC-2012 semantic image segmentation task, achieving a 79.7% mean intersection
over union (mIOU) on the test set. They also improved results on three other
datasets: PASCAL-Context [6], PASCAL-Person-Part [7], and Cityscapes [10].

A paper by M. Schmitt et al. utilizes the SEN12MS dataset and data from the
IEEE-GRSS 2020 Data Fusion Contest to address the challenge of developing se-
mantic segmentation models for global land cover mapping, even in the presence
of imperfect and imprecise labels [24]. While standard shallow and deep learning
approaches have shown promising mapping capabilities, the current results fall short
of being deemed suitable for practical, off-the-shelf solutions. Therefore, they assert
that the development of particular models within the world of weakly supervised
machine learning is imperative. They predict that these models will significantly
enhance the efficacy of a comprehensive and entirely automated satellite-based sys-
tem for monitoring global land cover. It is mentionable that three classes, namely
Shrublands, Wetlands, and Barren, consistently show poor metrics across all classi-
fication methods. Among the classes in the SEN12MS dataset, these three are the
least frequent, with the exception of the understandably rare Snow/Ice class. In
contrast, it is observed that the DFC2020 validation set shows a significant over-
representation of Wetlands.
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Eliasof et al. proposed an innovative approach that harnesses recent develop-
ments in unsupervised learning by integrating Mutual Information Maximization
(MIM), Neural Superpixel Segmentation, and Graph Neural Networks (GNNs) into
an end-to-end framework [30], [31]. In order to learn semantically meaningful im-
age restoration, they combined compact representations of superpixels and GNNs.
They demonstrated that enhancing their GNN-based approach enabled the model to
capture interactions between distant pixels in the image, serving as a robust prior
compared to existing CNNs. When comparing their approach to current meth-
ods across four popular datasets, their experiments exhibit both qualitative and
quantitative advantages. They immediately saw an accuracy improvement of 4.6%,
showing the significance of superpixel information. Finally, by considering the full
model includes both the SPNN and GNN components, a further accuracy gain of
2.6% is obtained.

In Chaurasia et al. paper, they proposed a novel deep neural network architecture
known as ENet (efficient neural network) [31], which is designed for tasks that re-
quire quick processing. ENet is up to 18x faster, needs 75x fewer FLOPs for less
computation, has 7x fewer parameters, and provides similar or 9x better results to
existing methods. They conducted tests using two datasets, namely CamVid and
Cityscapes [10], as well as SUN datasets. They compared their approach with cur-
rent state-of-the-art methods, weighing the trade-offs between network accuracy and
processing speed. The research also includes performance measurements of their ar-
chitecture on embedded systems and offers recommendations for potential software
enhancements to further improve the speed of ENet [31]. It was built to run faster
achieving over 10 frames per second (fps) on the NVIDIA TX1 board using an input
image size of 640x360, making it suitable for real-world road scene parsing analysis.
This can prove its usefulness in data-center applications when especially processing
with a large set of high quality images.

Liu et al. propose a method for semantic image segmentation that integrates a
variety of information into the Markov Random Field (MRF) [9], including high-
order relationships and a mix of label contexts. They addressed the MRF problem
by introducing the Deep Parsing Network (DPN), a Convolutional Neural Network
(CNN). This innovation allows for deterministic end-to-end computation in a single
forward pass, departing from earlier methods that relied on iterative algorithms for
optimizing MRFs. DPN builds upon a modern CNN architecture to handle Unary
terms and incorporates carefully designed additional layers to approximate the mean
field algorithm for pairwise terms, yielding several advantageous properties. Unlike
recent approaches that merge MRF and CNN, which demand numerous MF algo-
rithm iterations during backpropagation for each training image, DPN stands out
by delivering improved performance with just one MF algorithm iteration [9]. Fur-
thermore, DPN encompasses various pairwise term representations, encompassing
many prior works as specific instances. Finally, DPN simplifies the parallelization of
MF, resulting in improved speed on a Graphical Processing Unit (GPU). We exten-
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sively tested DPN using the PASCAL VOC 2012 dataset, achieving a segmentation
accuracy of 77.5% with just one DPN model [9].

In the paper of Chevitarese et al., they introduced a deep neural network architec-
ture designed for segmentation, demonstrating promising results on seismic data.
This architecture builds upon the foundation of existing work on Fully Convolu-
tional Networks (FCNs) [18]. In their paper, they introduced a newly discovered
deep neural network architecture modified for the semantic segmentation of seismic
images, requiring minimal training data. To achieve this, they innovatively employed
a transposed residual unit in place of the conventional dilated convolution for the
decode block. Instead of relying on predefined shapes for upscaling, their network
learns the entire process of feature upscaling from the encoder. They conducted
training using the Penobscot 3D dataset, an authentic seismic dataset acquired off
the coast of Nova Scotia, Canada. Their approach was benchmarked against two
established deep neural network architectures: the Fully Convolutional Network
and U-Net. In their conducted experiments, it is demonstrated that their method
consistently attains a mean intersection over Union (mIoU) metric of over 99%, out-
performing existing models. Furthermore, the qualitative results indicate that the
model produces masks closely resembling human interpretation with minimal dis-
continuity. By conducting a comparative analysis of two tables, it was determined
that Danet-FCN2 emerges as the model striking the optimal equilibrium between
performance and efficiency. This model boasts the least number of operations and
nearly five times fewer parameters than Unet, all while achieving mIOU values sur-
passing 89% across all scenarios with 80 x 120 tiles.

According to Li et al., They reached higher segmentation performance without re-
training and achieved performance on the PASCAL VOC 2012 dataset, highlighting
the excellence of ACSeg through its adaptive conceptualization approach [38]. In
line with this, they introduced ACSeg, which can be seen as a transition from self-
supervised image-level models to dense prediction tasks. This approach leverages
the pre-trained models’ extracted representations while also acquiring new ones. It
is seen that on PASCAL VOC, COCO, dataset ACG outperforms IIC [21], PiCIE
[25], ImageNet, etc. by 47.1 and 16.4 in mIoU. Also in the case of speed, comparing
it with k-means, spectral, AP, Agglomerative, ACG performs better which is by
149.2 per second.
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Chapter 3

Segmentation Techniques and
Tools

The first stepping stone of our whole research project is to get familiar with the
concept of Segmentation techniques. This will also help us to be more certain about
the importance of our research. To do that, we are going through related methods,
specifically on unsupervised semantic segmentation, along with methods that are
similar to our field of research. While studying the approaches, we summarize the
methods and models that can be used for image segmentation.

There are many methods for unsupervised semantic segmentation through which im-
age classification and segmentation can be done. Some basis models are vanilla CNN
(convolution neural network) (Section 3.1), Inception (Section 3.2), and K-means
clustering (Section 3.3). Along with some Vision architectures like LLaVa (Large
Language and Vision Assistant) (Section 3.4), LISA (Large Language Instructed
Segmentation Assistant) (Section 3.5), and DeepAqua (Section 3.6).

3.1 Convolutional Neural network (CNN)
Convolutional Neural network processes structured grid data, it is considered as a
deep learning model. It gives effective results in computer vision tasks, image seg-
mentation, and object detection. It automatically and adaptively learns high-level
representations of the visual data. There are many key components of CNN, which
include convolutional layers, fully connected layers, and pooling layers. It acts as
the fundamental building block of the CNN.

Figure 3.1: Convolutional Neural Network (CNN)

A layer of convolution operations is applied to input data using kernels or filters,
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which helps produce a feature map. It captures spatial hierarchies in the data. It is
used for object detection, medical image analysis, facial recognition, etc.

Another component is the Activation function, which is usually applied after the
convolution operations. A nonlinearity is introduced to the network. One of the
activation functions is ReLu (including Rectified Linear Unit). It replaces negative
values with zeros, which helps the network to learn complex relationships among the
data. The pooling layer is also another component that downsamples the dimension
of spatial in feature maps. As a result, it enhances the translation invariance of the
network. Commonly used methods are max pooling and average pooling. Another
component is fully connected layers (Figure 3.2). By connecting every neuron to an-
other neuron of the next layer it gives us a final prediction. Previous layers extract
the high-level features.

Figure 3.2: Fully Connected Layer (FCNN)

Then, the feature maps are flattened into one dimension vector. It helps in format-
ting the neural network suitable for traditional. The output feature map F of a
convolutional layer can be expressed as:

F
(k)
ij = σ

(
M∑

m=1

N∑
n=1

C∑
c=1

W(k,c)
mn X

(c)
i+m−1,j+n−1 + b(k)

)
(3.1)

Where:

• F
(k)
ij is the value of the k-th feature map at position (i, j).

• σ is the activation function (e.g., ReLU).

• M and N are the height and width of the convolution kernel.

• C is the number of input channels.

• W
(k,c)
mn is the weight of the kernel at position (m,n) for the c-th channel and

k-th feature map.
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• X
(c)
i+m−1,j+n−1 is the value of the input at position (i+m− 1, j+n− 1) for the

c-th channel.

• b(k) is the bias term for the k-th feature map.
The CNNs use backpropagation which helps in training the dataset using labels.
It adjusts the parameter to lessen the comparison between predicted and actual
results. This works like a stochastic gradient descent which helps in optimizing a
loss function. CNN gives an exceptional performance in a huge range of fields. It
makes them well suited for the tasks because of their ability.

3.2 InceptionV3
Inception is a deep CNN architecture, which is also known as GoogLeNet, which is
developed by Google researchers. This model took inspiration from V2, V3, and V4
of the Deep Learning method. It allows the capture of multi-scale features in the
network efficiently. They also have some key features, including,

1. Inception module: This module incorporates filters that differ in sizes (1x1,
3x3, 5x5). It also pools operation continuously. It gives us a more effective
representation of input data.

2. 1x1 convolution: This network uses 1x1 convolutions (Figure 3.3). On the
other hand, spatial features are captured by 5x5 and 3x3 convolutions. This
plays an important role in reducing dimensionality and aggregation of channel-
wise features and also helps in parameter reduction.

Figure 3.3: 1x1 Convolution

3. Global Average pooling: Inception implies global average pooling instead
of fully connected layers at the end of the network. It helps in averaging
the feature map also helps in dimension reduction, also helps in reducing
overfitting, which is very effective.

GAP(X) =
1

H ×W

H∑
i=1

W∑
j=1

Xijk (3.2)

where:
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• X is the input tensor with dimensions H ×W × C.
• H and W are the height and width of the input tensor.
• Xijk is the value at position (i, j) in the k-th channel.

4. Auxiliary Classifiers: This works in the intermediate layers of training
data. It helps in vanishing the gradient problem. It also adds additional su-
pervision to the lower layers.

Ltotal = Lmain + αLaux (3.3)

Where:

• Lmain is the loss from the main classifier.
• Laux is the loss from the auxiliary classifier.
• α is a weight factor that determines the contribution of the auxiliary loss.

5. Batch normalization: This helps to accelerate training and also helps in
stabilizing by normalizing. It normalizes the input values in mini-batches.
This results in converging faster.

x̂i =
xi − µbatch√
σ2

batch + ε
(3.4)

yi = γx̂i + β (3.5)

Where:

• xi ←input value.
• µbatch →mean of the batch.
• σ2

batch →variance of the batch.
• ε →a small constant added for numerical stability.
• γ and β →learnable parameters that scale and shift the normalized value.

3.3 K-means
K-means algorithms are used in clustering to partition a dataset into distinct, non-
overlapping subsets. It groups data of similar data points and then comprises distinct
clusters. It represents a centroid. The algorithm follows a straightforward iterative
process: Initialization, Assignment, Update, Repeat. It first uses the initialization
technique. Then, each data is assigned to a cluster that has the closest centroid
distance. Mainly, the Euclidean distance is used. After this assigning the algorithm
updates the centroid.

The centroid is updated by using by calculating the mean of data points that are
present in the cluster. The steps are repeated until convergence. It iterates until
it gets a suitable clustering solution. Then, it determines the optimal numbers of
clusters by using some methods, for example, The elbow method, Silhouette score,
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etc.

The algorithm aims to minimize the within-cluster sum of squares, which is the sum
of the squared distances between each data point and its assigned centroid. This
objective can be mathematically expressed as:

j = argmin
S

k∑
i=1

∑
x∈Si

‖xj
i − µi‖2 (3.6)

Where:

• j →objective,

• k →the number of clusters,

• Si →set of points in cluster i,

• x →a data point,

• µi →the centroid of cluster i.

K-means is good for scalability and efficiency as it is suitable for a large number of
datasets. This algorithm runs multiple times using different initializations and then
chooses the best result. So we can say that k means gives us effective results.

3.4 LLaVa: Large Language and Vision Assistant
LLaVa [39] is an AI system that combines the strengths of computer vision and
natural language processing (NLP). As an advanced multimodal model, LLAVA ex-
cels at understanding images and answering questions about them. This end-to-end
trained Large Multimodal Model (LMM) processes both text prompts and images
containing rules or instructions. This integration allows LLaVa to perform complex
visual reasoning tasks, making it a robust tool for applications requiring both visual
and textual understanding.

LLaVa combines the CLIP [29] visual encoder with the Vicuna chatbot to form an
end-to-end multimodal pipeline that yields state-of-the-art results. Here, the net-
work architecture utilizes the strengths of a pre-trained large language model (LLM)
and the visual Vicuna model as the LLM because of its exceptional ability to follow
instructions. This integration not only boosts the system’s ability to interpret vi-
sual and textual information but also guarantees that it delivers precise and relevant
responses to user queries.

The CLIP (Contrastive Language-Image Pre-Training) (Figure 3.4) model bridges
the gap between visual and textual understanding, leveraging large-scale datasets of
images and their corresponding textual descriptions to learn a unified representation
of both modalities. Unlike traditional models that require extensive labeled data,
CLIP is trained using a contrastive learning technique where it learns to match im-
ages with their corresponding textual descriptions.
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This innovative model can understand and generate descriptions for a wide variety
of images by aligning the features of images and text in a shared latent space. The
training process maximizes the similarity between the correct image-text pairs and
minimizes the similarity between incorrect pairs. As a result, CLIP excels at zero-
shot learning, meaning it can recognize and categorize new images without needing
specific training for each new task.

Figure 3.4: CLIP Approach

Vicuna chatbot’s one of the key features is its ability to follow complex instructions
and engage in meaningful dialogue, which is driven by its underlying architecture
incorporating powerful language models that have been fine-tuned on vast amounts
of conversational data. As a result, Vicuna (Figure 3.5) can handle nuanced queries,
provide detailed explanations, and even exhibit a degree of contextual awareness that
makes interactions more fluid and engaging.

Figure 3.5: Vicuna Approach

The integration of the Vicuna chatbot within the LLaVa system exemplifies its
strengths. By combining the CLIP model’s visual understanding capabilities with
Vicuna’s conversational prowess, the system can interpret visual cues and respond
to related questions effectively. This synergy not only enhances the user experience
but also ensures that responses are both accurate and contextually relevant.
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The Multimodal Instruction Following the Data Creation process enhances the
model’s ability to follow complex instructions across different modalities. The data
used to train LLaVa is based on three different types of instructions:
1. A brief description of the image content; 2. A long, detailed explanation of the
image, and 3. Logical reasoning about the image content.
The model architecture involves users interacting by inputting text prompts and
images. The language model tokenizer processes the text prompt, while the vision
encoder tokenizes the image.

For input images visual features extraction, the pre-trained CLIP visual encoder
ViT-L14 is used, which is then converted into language embedding tokens through
a fine-tuned trainable projection matrix (W).

Figure 3.6: Network Architecture of LLaVA

Training the model involves generating multi-turn conversations for each input im-
age, including responses and a series of prompts. Initially, both vision and text
inputs are contained in the first prompt, followed by text inputs in subsequent
prompts, training the model to respond to text prompts about the image. A simple
linear layer is used to connect image features to word embedding space that allows
for quick data-centric experiments.

3.5 LISA: Large Language Instructed Segmenta-
tion Assistant

To overcome some of the LLaVa challenges, a Reasoning Segmentation via Large
Language Model LISA [47], built an approach to semantic segmentation that uses
the capabilities of multi-modal large language models (LLMs) (Figure 3.7) to under-
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stand and analyze visual scenes which allows to segment objects in an image based
on instructions given in natural language.

Figure 3.7: LLM Application Diagram

The model performs a reasoning segmentation task that involves understanding and
interpreting implicit human instructions. It shows strong zero-shot performance on
the reasoning segmentation task, even when trained exclusively on datasets that do
not involve reasoning. LISA follows a two-stage process: (1) visual feature extrac-
tion and (2) language-guided reasoning and segmentation.

Figure 3.8: LISA Architecture

The model takes both an image and user input texts as inputs. The image is
processed through the Vision Backbone model and a Multi-modal Large Language
Model (LLM). Simultaneously, the text input is processed through the same Multi-
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modal LLM, enhanced with LoRA (Low-Rank Adaptation of Large Language Mod-
els).

Figure 3.9: LoRA Reparametrization [28]

The outputs from the Vision encoder and the LLM are then combined and used to
decode and generate a segmented image.

3.6 DeepAqua: Self-Supervised Semantic Segmen-
tation of Wetland Surface

The framework of DeepAqua [43] operates using a dual model having a teacher
model and a student model where the teacher model, knowledge distillation archi-
tecture, functions as a thresholding model, and the student model employs a U-Net
architecture.

Figure 3.10: DeepAqua Model Architecture

The teacher model creates water masks from optical images using the Normalized
Difference Water Index (NDWI), while the student model generates segmentation
masks from Synthetic Aperture Radar (SAR) images.
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Both models are jointly trained by minimizing the Dice loss between their outputs.
They utilize different data types: the teacher model extracts water surface infor-
mation from optical images to produce segmented images, which the student model
then tries to replicate using radar imagery.

Figure 3.11: Training Process

The core of the model is the cross-modal knowledge distillation process, where knowl-
edge, the detailed NDWI water mask from the teacher model, is transferred to the
student model to create a segmentation mask. For backpropagation, Dice Loss is
calculated to update the weights of the student model based on the results while
training. The goal of the cross-modal knowledge distillation is to minimize the Dice
loss between the NDWI mask and the segmentation mask which ensures that both
of the masks closely resemble each other.

It is important to note that advanced tools such as the Segment Anything Model
(SAM) and the Recognize Anything Model (RAM) have demonstrated superior per-
formance in various applications. Recognizing their potential, we have integrated
these models into our workflow. The detailed process of incorporating these and
their specific contributions to our research are thoroughly explained in the method-
ology section that follows.
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Chapter 4

Methodology

In the following section, we present a detailed top-level view block diagram that out-
lines the workflow of our Wetland fluctuation Localization research, which provides
a visual representation of each step involved in the process, from data pre-processing
to analysis and final evaluation.

Figure 4.1: Top Level Block Layout of Proposed RAM-Grounded-SAM
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The Top Level Block Layout (Figure 4.1) outlines the detailed process for predicting
wetland area fluctuations by 2025. Starting with image pre-processing using NDWI,
HDR, and CLAHE techniques for enhancing quality, followed by normalization to
maintain dataset consistency. Next, the enhanced images undergo segmentation
with the RAM-GROUNDED-SAM method, which is then evaluated through met-
rics like Precision, Recall, F1-Score, Pixel Accuracy (PA), and Intersection over
Union (IoU). The segmentation results are used in a Probabilistic Level Set Algo-
rithm, applying various time series models and assessed using error metrics, and
these models produce the final output predicting wetland area fluctuations for 2025.

4.1 Dataset Description
We are using MLRSNet Dataset to localize wetlands as our primary source, which
is publically available in Mendeley Data [22]. This dataset is composed of high spa-
tial resolution optical satellite images comprising more than 100000 remote sensing
images. The images have a fixed size of 256×256 pixels, which has various pixel res-
olutions (10m to 0.1m). These are the images we are using for image segmentation.

(a) Louisana Land (b) Western Canada (c) Khuvsgul Lake

(d) Sen River (e) Ganga (f) Nile Lake (g) Haigmill Lake

Figure 4.2: MLRSNet Dataset of Satellite Wetland Images. Figures (a), (b), (c),
(d), (e), (f), and (g) illustrate samples from the MLRSNet dataset, which we use to
apply pre-processing techniques and localize wetlands.

Additionally, for our research, we collected our dataset (Figure 4.3) by extracting
image data from Google Earth [49], explicitly focusing on the wetland areas in
Bangladesh. Our dataset includes images from various haors, such as Tanguar Haor,
Hakaluki Haor, Hail Haor, and other significant wetland regions (Figure 4.3). The
images range from 15 meters per pixel for older and broader coverage areas to 30
centimeters per pixel for more recent and detailed satellite images. High-resolution
satellite images, such as those from the WorldView-3 satellite, have resolutions as
satisfactory as 31 centimeters per pixel.
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(a) Hakaluki Haor,
Sylhet

(b) Dekhar Haor,
Gazinagar

(c) Korchar Haor,
Bishwamvarpur

(d) Tanguar Haor,
Sunamganj

Figure 4.3: Hoars of different districts in Bangladesh

These datasets are not readily available elsewhere, underscoring our work’s unique-
ness and value. By creating a custom dataset, we have made a major contribution
to ecological and environmental research. Utilizing the timelapse feature of Google
Earth, we compiled a comprehensive dataset spanning the years 1983 to today. This
extensive timeline enables us to analyze long-term changes and patterns in these crit-
ical wetland ecosystems, providing insights crucial for understanding their dynamics
and informing conservation efforts.

This meticulous data collection effort has allowed us to capture a diverse and repre-
sentative sample of these vital ecosystems. The ability to observe and analyze over
four decades of environmental changes offers an unprecedented perspective that is
vital for addressing contemporary environmental challenges.

Our dataset, therefore, fills a significant gap in the availability of long-term ecological
data for Bangladesh’s wetlands, and it serves as a valuable resource for researchers,
policymakers, and conservationists who are working to protect these essential habi-
tats. This pioneering effort enhances our understanding of wetland dynamics and
sets a foundation for future research and informed decision-making in wetland man-
agement and conservation.

4.2 Dataset Pre-processing
With our unsupervised satellite images, we saw that a few images from MLRSNet
were a bit white-washed and blurry; hence, to handle these, we experimented with
some pre-processing techniques before feeding them to our model. We use different
methods to test out which one of the pre-processing techniques will work better for
our case.

4.2.1 Histogram Equalization
First, we applied a histogram. We used sharpening, Adaptive Histogram Equal-
ization (AHE), and Contrast Limited Adaptive Histogram Equalization (CLAHE).
But we saw that for our case, CLAHE (Figure 4.4) is better as it does not destroy
the resolution and gives us more details in the image. It is an effective tool for
improving the visibility of details in such images.
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The 256x256 images are first divided into small blocks of 8x8 tiles with a batch size
of 32 using OpenCV2, and each of the tiles is histogram equalized with an added
contrast limit of 2.0. When any tile histogram bin crosses the contrast limit, also
called clip limit=2.0, OpenCV2 clips those pixels and distributes them uniformly to
other bins, and then performs Histogram equalization. A clipping limiting factor is
applied as it maintains a more neutral appearance. Then, bilinear interpolation is
performed to remove any artifacts found in tile borders. The interpolation methods
are used to smooth out these transitions.

CLAHE operates by applying histogram equalization to contextual regions in the
image. The contrast in each region is enhanced so that the histogram of the output
region approximately matches the histogram specified by the contrast limit. The
process is given by:

poutput(i, j) = T (pinput(i, j)) =
CDF(pinput(i, j))− CDFmin

1− CDFmin

· (L− 1) (4.1)

Where:

• poutput(i, j) is the output pixel intensity at location (i, j),

• pinput(i, j) is the input pixel intensity at location (i, j),

• T is the transformation function,

• CDF(pinput(i, j)) is the cumulative distribution function of the input pixel
intensity within the local region,

• CDFmin is the minimum non-zero value of the cumulative distribution func-
tion,

• L is the number of possible intensity levels in the image.

As for the limiting factor, the amplification by clipping the histogram at a prede-
fined value (clip limit) redistributes the excess pixels uniformly across the histogram
bins.

The clipped histogram Hclip is computed as:

Hclip(k) =

{
H(k) if H(k) ≤ ClipLimit
ClipLimit if H(k) > ClipLimit

(4.2)

Where:

• H(k) is the histogram value for bin k,

• ClipLimit=2.0 is the maximum allowed value for the histogram bins.

Then the excess pixels clipped are redistributed equally among all histogram bins:

Hredistribute(k) = Hclip(k) +
TotalExcess

N
(4.3)

Where:
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• Hredistribute(k) →the redistributed histogram value for bin k,

• TotalExcess →the total number of clipped pixels,

• N →number of histogram bins.

This is how we implemented the CLAHE for our images,

Algorithm 1 CLAHE Implementation
Require: image
Ensure: image_clahe

procedure apply_clahe_color(image, clip_limit, grid_size)
lab_image← convert_color(image,BGR_TO_LAB)
(l_channel, a_channel, b_channel)← split_channels(lab_image)
clahe← create_clahe(clipLimit, tileGridSize)
l_channel_clahe← apply_clahe(clahe, l_channel)
lab_image_clahe← merge_channels(l_channel_clahe, a_channel, b_channel)
image_clahe← convert_color(lab_image_clahe,LAB_TO_BGR)
return image_clahe

Corresponding images after using CLAHE,

(a) Louisana Land (b) Western Canada (c) Khuvsgul Lake

(d) Sen River (e) Ganga (f) Nile Lake (g) Haigmill Lake

Figure 4.4: Images after applying CLAHE. Figures (a), (b), (c), (d), (e), (f), and
(g) are the outputs after using CLAHE; we can see that it enhances the contrast of
images, which helps us to differentiate between different features and areas among
wetlands images of MLRSNet data.

4.2.2 Normalized Difference Water Index (NDWI)
The NDWI (Normalized Difference Water Index) is a tool that is used to track
changes in water content in lakes, rivers, reservoirs, and other water bodies.
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Water bodies absorb a lot of light, especially in the visible and infrared parts of
the spectrum; hence, NDWI leverages this characteristic by using data from the
green and near-infrared (NIR) bands of satellite images to make water bodies stand
out more clearly, which helps to easily identifying and monitoring water bodies in
satellite images. NDWI values usually range from -1 to 1. Here, positive values
indicate water bodies, while negative values represent non-water areas like soil and
vegetation.

NDWI =
(Band)

(Band+NIR)
(4.4)

where,

• Band is Green Band of Wetland Image,

• NIR is the Near Infrared band.

For our unsupervised images, first of all, green and NIR bands are read. Then, we
converted the Green channel and NIR bands to float32 when it performs arithmetic
operations to ensure precise calculation. Afterward, NDWI (Figure 4.6) is com-
puted using error handling. NDWI values were normalized to the range [0,255] for
visualization.

Algorithm 2 Computing NDWI
Require: green_band, nir_band
Ensure: ndwi_contrast

procedure compute_ndwi(green_band, nir_band)
ndwi← equation
ndwi_normalized← ((ndwi+ 1)× 127.5).astype(np.uint8)
ndwi_contrast ← cv2.normalize(ndwi_normalized,None, alpha = 0, beta =

255, norm_type, dtype)
return ndwi_contrast

Original Images,

Figure 4.5: Images before using NDWI
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Corresponding output after NDWI,

Figure 4.6: Images after using NDWI

4.2.3 High Dynamic Range (HDR)
In this pre-processing technique, the range of luminosity is increased. Here, we sim-
ulated HDR through a tone mapping algorithm, Reinhard Algorithm, to enhance
the dynamic range of the image.

Figure 4.7: Reinhard Tone Mapping

The transformations for the three channels (L, α, and β) are given by the following
equations:

Channel L,

OL =
σL
t

σL
c

(cL − µ(cL)) + µ(tL) (4.5)

Channel α,
Oα =

σα
t

σα
c

(cα − µ(cα)) + µ(tα) (4.6)

Channel β,

Oβ =
σβ
t

σβ
c

(cβ − µ(cβ)) + µ(tβ) (4.7)

Where:

• O represents the output channel value
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• c represents the content image channel value

• t represents the target image channel value

• µ denotes the mean

• σ denotes the standard deviation

This is how we implemented HDR pre-processing,

Algorithm 3 HDR Implementation
Require: image
Ensure: hdr_image

procedure apply_clahe_color(image, clip_limit, grid_size)
display_image(hdr_image)
return hdr_image

if image is not None then
exposure1← convert_to_float32(image)/255.0
tonemap← create_tonemap_reinhard()
hdr_image← process_tonemap(tonemap, exposure1)
hdr_image← convert_to_uint8(hdr_image ∗ 255)
display_image(hdr_image)

We converted the image to its float32 format and normalized it by dividing it by
255. The Reinhard tone mapping is applied to simulate an HDR effect (Figure 4.9)
to adjust the contrast and brightness. This makes the image to have more details
in both shadows and highlights. Then, we convert the processed image back to an
8-bit format and display it.

Original Images,

Figure 4.8: Images before using HDR
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Corresponding output after HDR,

Figure 4.9: Images after using HDR

The goal of performing HDR is to capture the details in both darker and lighter
areas of the images.

4.3 Model Specification
Our research focuses on using unsupervised satellite image data to localize the expan-
sion and shrinkage of wetlands. In pursuit of doing that, we came across challenges
led by existing frameworks that are primarily operated on supervised data. Some of
the models were very good with segmenting, but they needed annotation to segment.
To overcome this hurdle, we are taking a step-by-step approach by integrating three
models, the Recognize Anything Model (RAM) [46], Grounding DINO (GD) [40],
and Segment Anything Model (SAM) [37], calling it RAM-Grounded-SAM, each
having its own purpose of execution to enhance the abilities of SAM to mask our
targeted perimeter making it possible to work with unsupervised data.

4.3.1 Segment Anything Model (SAM)
The Segment Anything Model (SAM) [37] is a transformer-based model that lever-
ages the power of self-attention mechanisms to segment objects in a highly efficient
and flexible manner.

Figure 4.10: Segment Anything Model (SAM) Architecture
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It intertwines the principles of both computer vision and natural language process-
ing (NLP) by representing a significant stride to tackle the promotable segmentation
task.

The notion of prompting techniques of NLP inspires the model task, revolving
around generating a valid segmentation mask based on a given prompt. These
prompts are multimodal and embrace various forms of information such as fore-
ground, background points, rough bounding boxes, and free-form texts about which
part of the input image should be segmented. SAM uses zero-shot learning with
prompting instead of re-training with three components structured into an image
encoder, flexible prompt encoder, and fast mask decoder.

Figure 4.11: Overview of Segment Anything Model (SAM)

The image encoder is used to generate embedding for the segmented input im-
age. This portion was motivated by flexibility in processing high-resolution in-
puts and consisted of a masked autoencoder (MAE) pre-trained Vision Transformer
(ViT). Meanwhile, the prompt encoder is used to generate embedding for two sets
of prompts. One represents sparse, including points, boxes by positional encod-
ings, and texts using a text encoder from CLIP [29]. Another represents the Dense
prompt, which is masks having spatial correspondence with the image, which is
summed up with convolutions.

The last component, the Mask Decoder, is made by modifying the Transformer de-
coder block that updates all embeddings by using self-attention and cross-attention
in two directions. Image and unmask embedding are fused using element-wise sum-
mation and put through a mask decoder. As for output, to avoid ambiguity, three
output scores are shown rather than one.
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4.3.2 Grounding DINO
Grounding DINO [40] is an open set object detector with a dual-encoder single-
decoder architecture by performing vision-language-modality fusion that outputs
multiple object boxes and noun phrases for a given image or text pair.

Figure 4.12: Architecture of Grounding DINO

The architecture is sectioned into a Feature encoder, feature enhancer, language-
guided query selection, and cross-modality decoder. First of all, with the feature
encoder, image and text features are extracted with Swin-T and BERT, respectively.
Then, these extracted features are fed into the feature enhancer layer to perform
cross-modality feature fusion, which includes multiple feature enhancer layers. As
Grounding Dino takes images and detects specified input text, the authors have
built a language-guided query selection module. Then, the cross-modality decoder
is used to combine image and text modality features, and each cross-modality is fed
into a self-attention layer and into the image cross-attention layer and text attention
layer for combining image and text, respectively. Auxiliary loss is computed after
each decoder layer and encoder outputs, and final losses between ground truths and
matched predictions are calculated. Finally, the outputs of the last layer are used
to predict the object boxes to extract phrases.
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4.3.3 Recognize Anything Model (RAM)
Recognize Anything Model (RAM) [46] is a strong foundational model for image
tagging that can identify important tags better than other models without over-
looking crucial details. It enables generalization to previously unseen categories by
incorporating semantic information into label queries.

The image tags are extracted through text semantic parsing without manual anno-
tations. Similar to the text2tag model, RAM has three components: image encoder,
image-tag recognition decoder, and text generation encoder-decoder.

Figure 4.13: Recognize Anything Model (RAM) Architecture

In the earlier stage, for feature extraction, cross-attention layers are passed through
an image-tag interaction encoder with generation and through an image-tag recog-
nition decoder with tags. As the image encoder, Swin Transformer (Swin-T) is used
over ViT. To perform prompt ensembling, CLIP is used as a text encoder and also as
an image encoder to distill image features to improve recognition ability on unseen
categories, unlike the text2tag model. During the training phase, the recognition
head focuses on understanding and predicting tags that are extracted from text.
Then, it takes on a dual role in the real-world application or inference phase. At
first, it acts as a crucial bridge between images and tags that helps to transform
them into meaningful labels, which further enhances the process of generating image
captions with detailed semantic guidance through the tags that were predicted.
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4.4 Proposed Model: RAM-GROUNDED-SAM
In our comprehensive research study, the main focus and goal is to segment wetland
areas with the primary objective of effectively localizing and thoroughly analyzing
the patterns of shrinkage and expansion over time. Here, we feed our model satellite
image data collected from MLRSNet and Zoom Earth [52]. Then, we test it out on
the Google Earth [49] satellite HD images from the year 1983 to 2023.

In order to apply that, we started off with the Segment Anything Model (SAM).
While studying the model and testing it on our data, we found that it uses Zero-Shot
Transfer [34] and that it needs labels or classes for masking and captioning. Since we
are working on Unsupervised data and found that the Recognize Anything Model
(RAM) does not necessarily need annotated data, we decided to combine them. In
addition, we incorporated Grounding DINO to build boxes on our segmented mask
accurately. Therefore, our proposed model architecture is a fusion of 3 models with
three stages along which we build an inference, where each of the models has its
own specified functions and strengths.

Figure 4.14: Proposed Model Architecture
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In the first stage, we use the Recognize Anything Model (RAM), passing the im-
age through an image encoder, Swin-T, a transformer model, for feature extraction.
Here, visual and language features are extracted using 12-layer transformers for text
generation and two 2-layer transformers for tag decoder. These layers collaborate
to extract higher-level features from the input image incrementally. Initially, in the
early layers, low-level features like edges and textures are detected, and gradually,
as the layers progress, the features build up to more complex features, such as object
parts and shapes in the later layers.

After the features are extracted from the image, the output of the encoder, which is
a feature map, is split into 2 sections: Generation and Tagging, using cross-attention
where generation goes into the Image-Tag Interaction Encoder, and Tagging goes
into the Image-tag Recognition Decoder. The Image-Tag-Text Generation Decoder
puts the tag in textual form for captioning. On the other hand, the CLIP text
encoder, prompt engineering, is employed to provide the model with a set of textual
prompts for the object of interest in the image (Algorithm 4). In our case, these
prompts can be ”water,” ”land,” ”footprint,” ”puddle,” ”tree,” and so on.

CLIP text encoder is responsible for embedding the tag list (textual prompts) into
a high-dimensional vector space, which creates Textual label queries for the image
to be put through the Image-Tag Recognition Decoder. We utilized two types of
tag lists: one in English and the other in Bengali, which we created ourselves. The
embeddings are combined with the visual features extracted by the encoder with
corresponding textual prompts to effectively learn recognition and generate the tags
to be segmented later on.

Algorithm 4 RAM and Tagging Model Inference
Require: image, tagging_model, tagging_model_type, specified_tags,

do_det_seg . representing image, tagging_model, tagging_model_type,
specified_tags, do_det_seg as a, b, c, d, e respectively

Ensure: tags_result, caption_result, det_seg_result
procedure inference_tagging_model(a, b, c, d, e)

if c is ”RAM” then
res← inference_ram(a, b)
tags← replace first index of res
print(”Tags: ”, tags)

else
res← inference_tag2text(a, b, d)
tags← replace first index of res
caption← third index of res
print(format(”Tags: tags”))
print(format(”Caption: caption”))

if not e then
if c is ”RAM” then

return replace(tags, ”, ”, ” | ”), caption, None
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After the tagging and captioning part, the second stage is to build object segmenta-
tion boxes (Algorithm 5) for each tag generated by RAM. In this stage, Grounding
DINO takes the input image and tags from the previous stage (RAM) instead of
relying on its pixel-level labels to identify and describe objects within the image.

Here, the model gets the predictions of confidence scores and bounding boxes to
detect the tag. These predictions are filtered by applying a threshold to remove
the low confidence scores and keep only the high confidence scores to enhance the
reliability of the features retained for further processing.

ci =
ezi∑N
j=1 e

zj
(4.8)

where,

• ci is the confidence score for tag i.

• zi is the raw output (logits) for predicted tags from RAM.

• N is the total number of tags.

Then, the captions are tokenized, and the model generates phrases. The image and
text features are passed through the Cross-Modality decoder to detect objects by
comparing the predictions to these tokens.

Algorithm 5 GroundingDINO Inference and Box Transformation
Require: tags, image, device, grounding_dino_model, box_threshold,

text_threshold, iou_threshold, sam_model . representing these as a, b, c, d, e,
f, g, h respectively

Ensure: all_boxes, all_pred_phrases
procedure process_tags(a, b, c, d, e, f, g, h)

for each tag in split(a, ’,’) do
image_tensor ← convert_to_tensor(b, dtype = float32)to(b)
(boxes_filt, scores, pred_phrases)← GDO(d, image_tensor, strip(tag), e, f, b)

. get_grounding_output as GDO, image_tensor as iTen
nms_idx← nms(boxes_filt, scores, g).numpy().tolist()
boxes_filt← boxes_filt[nms_idx]
pred_phrases← [pred_phrases[idx] for idx in nms_idx]
transformed_boxes ← apply_boxes_torch(h, boxes_filt, shape(b)[:

2])to(b)
extend(all_boxes, boxes_filt to CPU)
extend(all_pred_phrases, pred_phrases)−

From the last decoder layer, a set of bounding boxes, confidence scores, and descrip-
tive phrases is used to predict object boxes that highlight and describe the objects
in the image, effectively grounding the textual description in the visual data. Here,
the tags with high confidence scores get selected to be passed forward for setting
bounding boxes.
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So far, we have obtained the tags and bounding boxes. Moreover, we now move on
to the final stage, where we generate the segmentation mask. In this stage, we use
the Segment Anything Model (SAM) to segment and draw a mask on the specific
element to annotate images with masks visually. The masks highlight the area of
interest by drawing points over all non-zero pixels in a mask, using either a specified
color or a random color if we specify it.

Algorithm 6 SAM Model Mask Prediction
Require: sam_model, transformed_boxes, device, size . represent as a, b, c, d

respectively
Ensure: out_image

procedure predict_and_draw_masks(a, b, c, d)
(masks,_,_) ← predict_torch(a, point_coords = None, point_labels =

None, boxes = to(b, c),multimask_output = True)

mask_image← create_new_image(′RGBA′, size, color = (0, 0, 0, 0))
mask_draw ← create_image_draw(mask_image)
for each mask in masks do

draw_mask(convert_to_numpy(cpu(mask[0])),mask_draw, random_color =
True)

out_image← convert_to_RGBA(raw_image)
alpha_composite(out_image, mask_image) return(out_image)

The masking process uses a transformer decoder, which has a unique ability to focus
on important parts of the image using its self-attention mechanism. This means that
it can zero in on the visual features that matter, guided by the prompts that it got
from the RAM stage. This allows us to highlight the relevant objects while ignoring
the background noise. The decoder works in steps and continuously improves its
understanding of the objects along the way by looking at different parts of the image
and refining its segmentation. This step-by-step refinement enables the model to
accurately capture the complex shapes and boundaries of the objects it identifies,
resulting in precise and well-defined segmentation masks.

To integrate the three models effectively, we developed an inference mechanism that
acts as a bridge between the models and freezes the sections that are not necessary
for our specific task.

For instance, in the image encoder section, we decided to use the Swin-T [50] ar-
chitecture from RAM, as it performs better for our purposes than the Masked Au-
toencoder (MAE) [27] pre-trained Vision Transformer (ViT) [26], [51] used in SAM.
So, we utilize the Swin-T encoder for our dataset because it allows us to process the
data more effectively compared to using ViT.

Another thing to note is that, after obtaining the extracted tags with the RAM, if we
were to feed the output directly from stage 1 to stage 3, which is SAM for masking,
we might segment all the tags extracted in the first stage. However, our inference
strategy ensures that only the relevant features and sections, in our case, ’water,’
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’wetland,’ ’river,’ ’lake,’ and any water and wetland-related tags, are passed along,
maintaining the precision and efficiency of the segmentation process. By carefully
coordinating the models, we can use each one’s strengths while avoiding unnecessary
computations and redundancy, which results in more accurate and reliable segmen-
tation outcomes.

Segmentation output with our proposed Model,

(a) Segmentation of
Hakaluki

(b) Segmentation of Nile
Lake

(c) Segmentation of Koilar
Beel

(d) Segmentation of Lake
Baikal

(e) Segmentation of Wa-
mala

(f) Segmentation of Hanhi-
jarvi

Figure 4.15: Wetland Segmentation with our Proposed Model. The output tags are
area, image, land, sea, satellite, terrain, and water. Before performing the confidence
matrix, the NMS box was 7, and water had the highest confidence score with 0.61,
0.65, 0.53, 0.65, and 0.53, respectively; the NMS box became 1. After the RAM
phase, Grounding DINO passed the water box to SAM, and the water body was
masked. The segmented images are mix of the MLRSNet, and our dataset.
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Chapter 5

Model Implementation and Result
Analysis

In this chapter, we start analyzing the theoretical concepts and put them into prac-
tice with Zoom Earth [52] and Google Earth [49] data while detailing how we im-
plemented various models, algorithms, and methods discussed earlier. Here, we
thoroughly look at the process of building inference for combining the three mod-
els, training after fine-tuning with additional layers, and testing our models using
Zoom Earth and Google Earth of the years 1983-2024. Additionally, we implement
probabilistic methods on the segmented images generated by our model to find the
fluctuation of the areas. Through a detailed examination and experiment, we aim
to validate our hypotheses, address research questions, and make significant contri-
butions to our field of study.

5.1 Model Implementation and Experiments
To implement the model, we used specified pre-train checkpoints: 1) Ram and
tag2text use Swin Large 14m Transformer [49], 2) Grounding DINO uses SwinT_OGC,
and 3) SAM uses MAE pre-trained ViT-H [49]. RAM-Grounded-SAM was trained
on the MLRSNet and a few Zoom Earth satellite image Datasets.

5.1.1 Training Phase
For our training phase, we prepared a custom function to load our data efficiently,
which is designed to handle specific formats while preprocessing the data. While in
the preprocessing stage, we applied histogram, Normalized Difference Water Index,
and High Dynamic Range and chose Contrast Limited Adaptive Histogram Equal-
ization, which is integrated into our custom function to apply CLAHE on the images
and send it for the training phase.

In the RAM recognize section, it takes the output of CLAHE and starts feature
extracting where we did not freeze anything and let it run.

During the fine-tuning process with the Segment Anything Model (SAM), we con-
tributed to generating binary masking using prompt engineering that distinguishes
the object of interest (wetland) from the background, which SAM was not used to
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doing. For each epoch SAM takes the prompts based on the previous steps, converts
to Embedding vector space feed to model and predicts the pixels of interest, and
draws a mask on it, finally giving us the segmented output. As SAM is designed
primarily for zero-shot generalization and a decoder-only model, it can proficiently
create segmentation masks using prompts it got from Grounding DINO, bounding
boxes, and text descriptions specifying wetland property.

Algorithm 7 Binary Mask Generation with SAM
Require: sam_model, image, prompt . SAM model, input image, segmentation

prompt
Ensure: binary_mask

procedure generate_binary_mask(sam_model, image, prompt)
segmentation_mask ← sam_model.segment(image, prompt) . Generate

segmentation mask
binary_mask ← convert_to_binary(segmentation_mask) . Convert to

binary format
return binary_mask

This algorithm takes the SAM model, input image, and segmentation prompt from
Grounding DINO as input and returns a binary mask. It first generates a segmen-
tation mask using the SAM model and then converts this mask into a binary format
to distinguish between the wetland property and the background.

In essence, our training phase established a solid foundation for data preprocessing
and model preparation. The integration of SAM during fine-tuning presents an
avenue to enhance segmentation accuracy tailored to distinct object categories.
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5.2 Model Comparison
In this portion of our research, we conduct an in-depth comparison between the
segmentation capabilities of the PaliGemma [53] and our proposed model, RAM-
Grounded-SAM.

5.2.1 PaliGemma vs RAM-Grounded-SAM (Proposed Ap-
proach)

PaliGemma, which leverages the SigLIP [45] vision and Gemma language model
inspired by PaLI-3, is a lightweight open vision-language model (VLM) designed for
various segmentation tasks. Our objective is to evaluate the performance of both
models in segmenting water bodies from different types of imagery.

To start with, we test and analyze PaliGemma’s segmentation efficiency using a
Google Earth image of a river. Below, the first image on the top shows the origi-
nal Google Earth image, while the second image on the bottom demonstrates the
segmentation output produced by PaliGemma.

Figure 5.1: Segmentation of PaliGemma on Google Map Image. The prompt was
given ’segment the river’ and a paligemma-3b-mix-224 model with greedy decoding.

As we can see, PaliGemma can segment the river ideally because it recognizes the
water body pattern in the Google map-like view, which indicates that the model
effectively utilizes its prior knowledge from seen images data to recognize and seg-
ment rivers in Google Earth imagery.
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Next, we assess the performance of PaliGemma segmentation on a satellite image
from our dataset. The following images showcase the original satellite image on the
left and the segmentation output by PaliGemma on the right.

Figure 5.2: Segmentation of PaliGemma on Satellite Image. The prompt was given
’segment the wetland’. The model used was paligemma-3b-mix-224 with greedy
decoding.

In this case, the model struggles significantly when given the prompt to segment
wetlands or rivers, masking the entire image. The challenges faced while segment-
ing satellite imagery could be due to the different characteristics and complexities
of such images compared to the Google Earth images it was trained on or familiar
with. When we pass the Google Earth image through our model, it showcases profi-
cient segmentation capabilities and effectively maps out various features within the
image. Additionally, our model outperforms PaliGemma when applied to satellite
imagery, demonstrating superior segmentation accuracy and refinement.

Figure 5.3: Segmentation of RAM-Grounded-SAM on Google Earth Map-like Image
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Through this comparative analysis, we highlight the strengths and limitations of
PaliGemma, emphasizing the necessity for a robust model like RAM-Grounded-
SAM, which we propose to overcome these challenges. As Paligemma is totally new,
it needs very curated data, but our model can segment on satellite or drone-capture
data, which is why it achieves more accurate and reliable segmentation across various
types of imagery.

5.3 Forecast of Wetland Fluctuations With Prob-
abilistic Method

In this research stage, we used Time Series methods with the Probabilistic Level Set
Approach following the segmentation to accurately determine the localized regions.
This step helps us to identify the total area that is segmented from the image. We
ran the Probabilistic Level Set method on our test image data from Google Earth
[49] within the year 1983 to 2022 that was segmented by our model.

5.3.1 Probabilistic Level Set Approach
Probabilistic Level Set methods integrate statistical information from image data
into their framework, which helps to enhance the robustness and accuracy of the
segmentation process. The level set function is calculated over the region of interest
to determine the area of a segmented object. In these approaches, object boundaries
are defined by the zero-level set of a higher-dimensional function. The Chan-Vese
segmentation algorithm from Probabilistic Level Set methods aims to divide images
into regions based on criteria like intensity uniformity. The segmented area refers
to the count of pixels within the identified region the algorithm has distinguished
from the rest of the image. We modified the approach for our research since we had
already segmented the image with our proposed model. We freeze the Chan-Vase
method and incorporate our segmented image into the area calculation approach
with ’cv2.countNonZero’, which finds the clustered pixels (Algorithm 8). Also, the
algorithm has determined to be part of the image’s object or region of interest, in
our case, the segmented water area.

Algorithm 8 Calculating Area of Segmented Objects
Require: segmentation_mask
Ensure: areas

procedure calculate_area_level_set(segmentation_mask)
areas← create_empty_list()
threshold← 135
max_value← max(segmentation_mask)
for each i from threshold to (max_value+ 1) do

object_mask ← (segmentation_mask == i).astype(uint8)
area← count_non_zero(object_mask)
append(areas, area)−
return (areas)−
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5.3.2 Wetland Fluctuation Forecast
Once we have successfully retrieved the total area for each segmented image, the
next critical step in our research process is to integrate this data into time series
models. This involves a systematic approach to converting the spatial information
derived from the segmented images into a temporal dataset that allows us to analyze
and forecast fluctuations and patterns over time. We explored and experimented
with different time series methods to choose what was best for our approach.

Linear Regression (LiR)

Linear regression models the relationship between a dependent variable and 1 or
more independent variables to find the best-fitting straight line through the data
points. We used it as a baseline model to establish a reference point to gauge the
added values of AutoRegressive Integrated Moving Average (ARIMA), Gaussian
Hidden Markov Model, or Long Short-Term Memory (LSTM) while comparing.
The equation linear regression uses,

y = β0 + β1x+ ε (5.1)

Here, ε is the error term. And β0, β1 are estimated using the least squares method
to minimize the sum of the squared differences between the observed and predicted
values.

Minimize
n∑

i=1

(observed_values− ˆobserved_values)2 (5.2)

where ˆobserved_values represents the predicted values.

Linear Regression predicts a wetland fluctuation of 76292.9709639954 on our test
time series dataset in June 2025.

Figure 5.4: Linear Regression Prediction Plot
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Decision Tree Regressor (DTR)

Decision Trees (DT) split the data into subsets based on the value of input features,
wetlands segmented total area of each image, which is done recursively to form a
tree-like structure of decisions and then to the prediction of the target variable.
The splitting process continues until it reaches certain conditions, like reaching a
maximum tree depth, having a minimum number of samples to split a node, or when
there’s no further improvement in information gain. The equation to the Decision
Tree,

Gini impurity = 1−
n∑

i=1

p2i (5.3)

In the case of the regression decision tree, the prediction is made by averaging the
values of the training examples in the leaf node. Decision Trees predicts a wetland
fluctuation of 87592.0 on our test time series dataset in June 2025.

Figure 5.5: Decision Trees Prediction Plot

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM), a type of recurrent neural network (RNN), can
learn long-term dependencies, which makes them suitable for tasks where the pre-
vious context is important. As we want to predict the fluctuation of the next year
and which depends on the fluctuation of the previous years, we used LSTM.

LSTMs use 3 gates: the input gate, the forget gate, and the output gate, to regulate
the addition or removal of information from the cell state that allows the network
to retain information over long periods.
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The equation for Forget Gate is 5.1.

ft = σ(Wf · [ht−1, xt] + bf ) (5.4)

The equations for the Input Gate are the following: 5.2 and 5.3.

it = σ(Wi · [ht−1, xt] + bi) (5.5)

C̃t = tanh(WC · [ht− 1, xt] + bC) (5.6)

The equation for the Cell State Update is 5.4.

Ct = ft · Ct−1 + it · C̃t (5.7)

The equations for the Output Gate are the following: 5.5 and 5.6.

ot = σ(Wo · [ht−1, xt] + bo) (5.8)

ht = ot · tanh(Ct) (5.9)

Linear Regression predicts a wetland fluctuation of 83751.9 on our test time series
dataset in June 2025.

Figure 5.6: Long Short-Term Memory (LSTM) Prediction Plot
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AutoRegressive Integrated Moving Average (ARIMA)

ARIMA, AutoRegressive Integrated Moving Average, is a statistical method for
time series regression analysis and forecasting. Maximum likelihood estimation or
least squares algorithms are used to estimate the coefficients of ARIMA. It com-
bines three components: 1) AutoRegressive (AR), 2) Integrated (I), and 3) Moving
Average (MA) to model a wide range of time series data and to forecast future points.

Starting with AutoRegressive (AR) involves regressing the time series on previous
values, and the current value of the series is expressed as a linear function,

Xt = c+

p∑
i=1

φiXt−i + εt (5.10)

Here,

• Xt is the total area of a segmented image,

• c is a constant,

• p is the order of the AR model (the number of lagged values included),

• φi are the coefficients,

• εt is white noise.

To make the time series stationary, integrate part (I) is fused with a constant mean
and variance over time, which is a requirement for many time series models. Differ-
encing involving subtraction of the previous observation from the current observation
can be applied one or more times until stationarity is achieved if the original series
is not stationary.

Yt = Xt −Xt−1 (5.11)

Here, Yt is the differenced series. The number of times differencing is applied is
denoted by the value of d in the order of integration. If d is 1, it means differencing
is applied once, and If d is 2, differencing is applied twice, and so on.

The final component, the Moving Average (MA) Component, models the error term
as a linear combination of past error terms. Here, the current value of the series is
expressed as a linear function of previous white noise terms.

Xt = c+ εt +

q∑
i=1

θiεt−i (5.12)

Here,

• q is the order of the number of lagged forecast errors included,

• θi are the coefficients,

• εt is white noise.
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These 3 components, AutoRegressive, Integrate, and Moving Average, are combined
to work as a single framework, An ARIMA model which can be expressed as,

x′
time = I+α1x

′
t−1+α2x

′
t−2+· · ·+αpx

′
time−p+etime+θ1etime−1+θ2etime−2+· · ·+θqetime−q

(5.13)

• x′
t represents the value of the time series at time,

• I →constant,

• αi →coefficients of the autoregressive component,

• x′
t−i →the lagged values of the time series,

• etime is the error term with the given time,

• etime−i →lagged value of the error term,

• θq →coefficients of the moving average component.

ARIMA predicts a wetland fluctuation of 80877.87 on our test dataset in June 2025.

Figure 5.7: AutoRegressive Integrated Moving Average (ARIMA) Prediction Plot

Gaussian Hidden Markov Model (GHMM)

Gaussian Hidden Markov Model, a statistical tool, models sequences, and time series
data, and the system being modeled are assumed to be a Markov process with hid-
den states. In our research, we are excited to harness the Gaussian Hidden Markov
Model (GHMM) capabilities to delve into patterns within segmented data. By do-
ing so, we anticipate gaining valuable insights into ecological dynamics, which will
greatly inform decision-making processes in conservation efforts.

A Hidden Markov Model (HMM) combines two key components: 1) a Markov chain
to model the hidden states, which transitions probabilistically, and 2) a probability
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distribution to model the observations given the hidden states. In Gaussian HMM,
the observations are modeled using Gaussian distributions.

The Markov chain begins with a set of hidden states, and the transition proba-
bilities between these states adhere to the Markov property. This means that the
probability of moving to the next state depends solely on the current state, without
considering the sequence of previous states.

P (st+1 = sj | st = si) = aij (5.14)

Here, aij is the transition probability from state si to state sj, and the sum of tran-
sition probabilities from any state to all possible next states is,

N∑
j=1

aij = 1 (5.15)

In addition to the transition probabilities, there is an initial state distribution, which
gives the probability of the system starting in each state,

P (s1 = si) = πi (5.16)

Next, the observation model, which, in the case of GHMM, assumes that the ob-
servations are generated from Gaussian distributions. For each hidden state, there
is an associated Gaussian distribution with mean and variance. Combining these
components, a Gaussian HMM is characterized by,

P (xt | st = si) =
1√
2πσ2

i

exp

(
−(xt − µi)

2

2σ2
i

)
(5.17)

where,

• N Number of hidden states,

• aij state transition probability matrix,

• π →initial state distribution,

• µi is the mean of the Gaussian distributions for each state,

• σ2
i is the variance of the Gaussian distributions for each state.

This formulation enables the GHMM to capture complex patterns and fluctuations
within the observed data.
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Using a Gaussian Hidden Markov Model, we predict a wetland fluctuation of 81059.44024
on our test time series dataset in June 2025.

Figure 5.8: Gaussian Hidden Markov Model (GHMM) Prediction Plot

We can see in the time series graph of LSTM (Figure 5.6) and GHMM (Figure 5.8)
that there will be a shrinkage in the next year, 2025, and ARIMA (Figure 5.7)
predicts an expansion, where the decision tree remains unbiased, predicting that
there will be no change. We chose linear regression as our base model, and we
could say that most of the prediction models align with our base model. So we
get a prediction of shrinkage in the following year. Also, out of all the models,
GHMM gave us the best results of predictions because of its flexibility, robustness,
and ability to handle unpredictability. Below, we show the results of all the methods
we used for Fluctuation Prediction,

Table 5.1: Time Series Predicted value for June Year 2025 in Wetland Fluctuation.
The best result is highlighted in bold.

Model Prediction
Linear Regression (LiR) 76292.97

Decision Tree Regressor (DTR) 87592.0
Long Short-Term Memory (LSTM) 83751.95

AutoRegressive Integrated Moving Average (ARIMA) 80877.87
Gaussian Hidden Markov Model (GHMM) 73654.86

According to the assessment outcomes depicted in Table 5.1, it’s evident that each
model yields distinct forecasts for the time series data related to wetland fluctua-
tions. Among the models evaluated, GHMM stands out with the lowest predicted
value of 73654.86, indicating that it has effectively captured the underlying patterns
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and dynamics within the wetland data, resulting in a more accurate prediction com-
pared to other models. While the LiR predicts 76292.97 and DTR predicts 87592.0,
these models may oversimplify the complex relationships inherent in the data, lead-
ing to less precise forecasts. On the other hand, LSTM and ARIMA offer predictions
of 83751.95 and 80877.87, respectively. While these models demonstrate competitive
performance, they may need to fully capture the intricate temporal dependencies
present in the wetland data.

Therefore, the Gaussian Hidden Markov Model (GHMM) emerges as the most
promising choice for predicting wetland fluctuations in June 2025 for our test dataset,
offering the highest level of accuracy among the models considered. It is noteworthy
that although the performance of GHMM in predicting values for 2022, 2023, and
2024 was not as effective as other models, it outperformed all others in the normal
prediction of 2025.

5.3.3 Predicting Future Values and Validation with Actual
Data

In this section, we try another approach to assess our models’ performance. We set
our models to predict wetland area values for the upcoming years 2022, 2023, and
2024.

To assess the accuracy of our predictions, we will validate the forecasted values for
2022 against observed data. Leveraging information up to the year 2021, our initial
step involves predicting the wetland area value for 2022. Subsequently, this fore-
casted value will serve as input for predicting the wetland area values for 2023 and
2024 iteratively. By comparing the predicted values with actual data for 2022, we
aim to gain valuable insights into the precision and reliability of our model, thereby
ensuring a robust evaluation of its predictive capabilities.

Linear Regression prediction plot for years 2022, 2023, and 2024.

Figure 5.9: Linear Regression Prediction Plot
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Decision Tree prediction plot for years 2022, 2023, and 2024.

Figure 5.10: Decision Trees Prediction Plot

Long Short-Term Memory (LSTM) prediction plot for years 2022, 2023, and 2024.

Figure 5.11: Long Short-Term Memory (LSTM) Prediction Plot
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AutoRegressive Integrated Moving Average (ARIMA) prediction for years 2022,
2023, and 2024.

Figure 5.12: AutoRegressive Integrated Moving Average (ARIMA) Prediction Plot

Gaussian Hidden Markov Model prediction for years 2022, 2023, and 2024.

Figure 5.13: Gaussian Hidden Markov Model Plot
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Predictions for years 2022, 2023, and 2024 are shown in the tables below.

In 2022, there is a discernible variance between the predicted and actual values
across all models.

Table 5.2: Time Series Predicted Value vs Actual Value for June Year 2022 in
Wetland Fluctuation. The closest predicted value of the Actual Value is highlighted
in bold.

Model Prediction of 2022 Actual of 2022
LiR 77011.20677 79448

DTR 87522.0 79448
LSTM 80193.2890 79448

ARIMA 74234.4677 79448
GHMM 72146.0201 79448

Notably, in Table 5.2, LSTM provides a close estimate, projecting 80,193 units
compared to the observed 79,448 units. Similarly, linear regression offers a rela-
tively precise approximation at 77,011 units. However, Decision Tree, ARIMA, and
GHMM exhibit slight deviations from the actual value, with forecasts ranging from
87,522, 72,146 to 72146.0201 units.

Table 5.3: Time Series Predicted Value vs Actual Value for June Year 2023 in
Wetland Fluctuation. The closest predicted value of the Actual Value is highlighted
in bold.

Model Prediction of 2023 Actual of 2023
LiR 76380.84 74528

DTR 87522.0 74528
LSTM 83751.95 74528

ARIMA 78207.48 74528
GHMM 74350.18 74528

Moving forward to 2023 (Table 5.3), the GHMM model demonstrates the closest
prediction, estimating 74350.18 units against the observed 74,528 units, performing
slightly closer to the actual value than the previous year. Likewise, linear regression
and ARIMA provide a reasonably accurate forecast of 76,380 and 78,207 units, re-
spectively. However, both Decision Tree and LSTM show slight disparities from the
actual value, predicting values between 87522.0 and 83,752 units.
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Table 5.4: Time Series Predicted Value vs Actual Value for June Year 2024 in
Wetland Fluctuation. The closest predicted value of the Actual Value is highlighted
in bold.

Model Prediction of 2024 Actual of 2024
LiR 75750.48 87592

DTR 87522.0 87592
LSTM 83751.95 87592

ARIMA 72447.32 87592
GHMM 59211.81 87592

In the subsequent year, 2024 (Table 5.4), the Decision Tree model maintains its con-
sistency by providing the closest prediction at 87,522 units. Conversely, both linear
regression and ARIMA demonstrate deviations from the actual value, with fore-
casts ranging from 75,750 to 72,447 units. The LSTM model also deviates slightly,
estimating 83,752 units. Notably, GHMM presents a significant variance from the
actual value, forecasting 59,212 units.

It is noteworthy that although the performance of GHMM in predicting values for
2022, 2023, and 2024 was not as effective as other models, it outperformed all others
in the normal prediction of 2025.
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5.4 Result Analysis with Evaluation Metrices
In this section of our chapter, we delve into the various evaluation metrics uti-
lized in unsupervised semantic segmentation of wetland area fluctuations. For the
segmentation evaluation, we compared it with DEEPAqua in both qualitative and
quantitative aspects.

5.4.1 Segmentation Quantitative Results
We explored many options to choose the right evaluation metrics for our case. For
instance, in image segmentation tasks, metrics like Intersection over Union (IoU)
and Dice Coefficient provide insights into the spatial accuracy of segmentations. At
the same time, precision and recall balance the understanding of false positives and
negatives. These metrics help identify how well the segmented outputs align with
the actual wetland regions, capturing the extent and the intricacies of their bound-
aries.

Precision

Precision measures the accuracy of the positive predictions made by our proposed
model, which tells us what proportion of the items the model labeled as positive are
actually positive.

Precision =
True Positives

True Positives + False Positives
(5.18)

A high precision means when our model predicts a positive water pixels, it is very
likely to be correct.

Recall

Recall, sensitivity, or the true positive rate, gauges the model’s capacity to accurately
detect all pertinent instances within the image dataset. It indicates the proportion
of actual positives that the model successfully identified.

Recall = True Positives
True Positives + False Negatives

(5.19)

A high recall indicates that the model is successfully capturing most of the positive
instances to find water pixels in ground truth.

F1-Score

The F1 score serves as the harmonic mean of precision and recall, offering a unified
metric that weighs both aspects equally. Therefore, it proves particularly beneficial
in situations where we need to give equal importance to both precision and recall.

F1 Score = 2 · Precision · Recall
Precision + Recall

(5.20)
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Ranges from 0 to 1, with 1 being the best possible score. It helps to assess how well
the model balances the trade-off between precision and recall, especially when one
metric is low and the other is high.

Pixel Accuracy (PA)

Pixel Accuracy (PA) measures the proportion of correctly classified pixels out of the
total pixels in our wetland images.

Pixel Accuracy =
Number of Correctly Classified Pixels

Total Number of Pixels
(5.21)

High pixel accuracy indicates that a large proportion of the wetland image pixels
are correctly segmented.

Intersection over Union (IoU)

Intersection over Union (IoU), the Jaccard Index, calculates the ratio of the inter-
section to the union of the predicted and ground truth areas. This provides a more
nuanced understanding of the overlap between the predicted and actual segments.

IoU =
Intersection Area

Union Area
(5.22)

A high IoU indicates a strong overlap between the predicted and ground truth seg-
ments, meaning the segmentation is accurate.

To assess the performance of our methods, we have compiled the quantitative evalu-
ation results with Precision, Recall, F1 score, Pixel Accuracy (PA), and Intersection
over Union (IoU) into a comprehensive Table 5.5. This table highlights the effective-
ness of our approaches across various metrics, providing a clear and concise summary
of the results.

Table 5.5: Semantic Segmentation Results of Various Models over Area in
Bangladesh. The last row is the performance of our Proposed Model.

Model Precision Recall F1 Score PA IoU
DeepAqua-NDWI 0.97 0.88 0.98 0.90 0.93

DeepAqua-MNDWI 0.97 0.85 0.95 0.89 0.92
DeepAqua-AWEI 0.97 0.84 0.98 0.85 0.91
DeepAqua-HRWI 0.97 0.86 0.97 0.88 0.92

RAM-Grounded-SAM 0.99 0.89 0.94 0.98 0.95

Table 5.5, where we have gathered all the data and put it together, assesses how well
our segmentation model performs. We have compared our results with those of the
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DeepAqua model to get a clear picture of how practical our approach is, especially
when it comes to identifying different features in Bangladesh’s landscapes.

The DeepAqua model shines in terms of precision, recall, and F1 scores across
different indices. It can pinpoint water bodies using various spectral indices like
NDWI (Normalized Difference Water Index), MNDWI (Modified Normalized Differ-
ence Water Index), AWEI (Automated Water Extraction Index), and HRWI (High-
Resolution Water Index). It consistently achieves high precision scores, around 0.97,
and recall scores above 0.85 for each index, showing it is great at accurately spotting
water bodies. Moreover, its F1 scores, which measure the balance between precision
and recall, are mostly above 0.95, indicating solid performance.

In comparison, our proposed combined model, RAM-Grounded-SAM, exhibits (in
Table 5.5) superior performance with a precision of 0.99, a recall of 0.89, an F1
score of 0.94, a pixel accuracy (PA) of 0.98, and an Intersection over Union (IoU)
of 0.95. Our model has attention mechanisms that allow dynamic focus on specific
parts of the image that are most relevant to the task at hand instead of processing
the entire image uniformly. We focus on IoU because it gives a fine-grained eval
between predicted and ground truth.

5.4.2 Segmentation Qualitative Results
For the qualitative results, we tested our model on some images that DeepAqua used
and got a segmentation of wetlands closer to the ground truth.

Figure 5.14: Qualitative Results of RAM-Grounded-SAM. The SAR image and
DeepAqua segmentation results were achieved from the DeepAqua paper [42].

These results demonstrate that our model matches and surpasses DeepAqua in sev-
eral key metrics, particularly intersection over union and segmentation.
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Overall, while the DeepAqua model showcases impressive capabilities in semantic
segmentation tasks, our RAM-Grounded-SAM model provides a more accurate and
efficient solution. This superior performance highlights the potential of our model to
offer more detailed and reliable insights into wetland dynamics, making a significant
contribution to wetland conservation and management efforts in Bangladesh.

5.4.3 Time Series Evaluation Metrices
In the realm of time series analysis, particularly for forecasting wetland area fluc-
tuations, metrics such as Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and Mean Absolute Percentage Error (MAPE) are crucial. These metrics
assess how closely the model’s predictions align with observed data, highlighting the
accuracy of the forecasts.

Mean Absolute Error (MAE)

Mean Absolute Error (MAE) measures the average magnitude of errors between
predicted and observed values, calculating the absolute difference between each pre-
dicted value and its corresponding observed value.

MAE =
1

n

n∑
i=1

|xi − x̂i| (5.23)

A lower MAE indicates better model performance, as it reflects smaller deviations
between predicted and observed values.

Root Mean Squared Error (RMSE)

Root Mean Squared Error (RMSE) emphasizes larger errors by taking the square
root of the average of the squared differences between predicted and observed values.

RMSE =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2 (5.24)

Mean Absolute Percentage Error (MAPE)

Mean Absolute Percentage Error (MAPE) measures the average percentage differ-
ence between predicted and observed values, calculating the absolute percentage
difference between each predicted value and its corresponding observed value, then
averages these differences.

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (5.25)
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We have compiled the quantitative evaluation results of the time series evaluation
into a comprehensive table. The table highlights the effectiveness of our approaches
across various metrics, providing a clear and concise summary of the results.

Table 5.6: Time Series Prediction Evaluation Results of Various Methods. The best
results are highlighted.

Model Mean Absolute
Error (MAE)

Root Mean
Squared Error

(RMSE)

Mean Absolute
Percentage

Error (MAPE)
LiR 20503.91 24901.10 22.24%

DTR 17739.42 21477.54 21.76%
LSTM 18067.34 22059.11 21.19%

ARIMA 18842.89 22909.65 21.39%
GHMM 21665.26 26342.08 22.99%

Looking at the results (Table 5.6), it is evident that each method has its strengths
and weaknesses. The LSTM model, for example, shows a Mean Absolute Error
(MAE) of 18067.34 and a Root Mean Squared Error (RMSE) of 22059.11, with a
Mean Absolute Percentage Error (MAPE) of 21.19%. ARIMA shows a Mean Abso-
lute Error (MAE) of 18842.89 and a Root Mean Squared Error (RMSE) of 22909.65,
with a Mean Absolute Percentage Error (MAPE) of 21.39%. Similarly, the Decision
Tree Regressor and Linear regression models also demonstrate competitive perfor-
mance, 21.76% and 22.24%, respectively. With all the evaluation calculations, we
get about 80 percent accurate results.

Interestingly, the Gaussian Hidden Markov Model (GHMM) has slightly higher error
metrics than the other models. However, it is worth noting that GHMM previously
provided a promising prediction for next year’s fluctuation, indicating its potential
to capture subtle patterns and nuances in the data that other models might miss.

Considering all factors, including the GHMM’s previous success in prediction, we
can confidently say that the Gaussian Hidden Markov Model gave us a prediction
result of 73654.86 and is the best choice for our data. This indicates that in Tanguar
Haor, a fluctuation will decrease in June 2025. Despite its marginally higher error
metrics in this evaluation, its ability to capture complex temporal dependencies and
provide accurate predictions for future fluctuations makes it a valuable tool for our
analysis.
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Chapter 6

Conclusion and Future Work

Using unsupervised semantic segmentation helps identify the wetland’s condition
and assess its shrinkage and expansion. Our research is a contribution to the restora-
tion and conservation of the wetland.

The primary objective of this unsupervised semantic segmentation research is to
identify and pinpoint meaningful objects within collections of images without using
any annotations. The algorithm must generate features for each pixel that take
control of semantic significance and are sufficiently concise to establish detectable
clusters. Several studies have introduced semantic segmentation systems that can
learn from less precise label forms, including classes, tags, bounding boxes, scrib-
bles, or point annotations [17]. Nevertheless, a limited number of studies address
the task of semantic segmentation without relying on human supervision or motion
cues. Efforts such as Independent Information Clustering (IIC) [16] and PiCIE [23]
strive to acquire semantically significant features by ensuring transformation equiv-
ariance. Additionally, these approaches incorporate a clustering process to enhance
the efficiency of the acquired features. The absence of prior knowledge in computer
vision necessitates the training of models in order to achieve desired outcomes. How-
ever, using unsupervised semantic methods has facilitated attaining desired results
without needing labeled data. This method does not necessitate manual annotation
as it automatically assigns it.

This research begins with the initiative to explore the world of unsupervised se-
mantic segmentation using a remarkable computational technique that promises to
figure out the complex puzzle of wetland contraction and expansion. We can learn
and understand the natural semantic information within the wetland image by uti-
lizing this model.

Our objective is to prepare and formulate a precise and resilient methodology that
facilitates the identification and categorization of wetland objects in our nation. The
main objective is to enhance the understanding of wetland dynamics among land
managers, environmental scientists, and policymakers, helping them make informed
decisions regarding the restoration and conservation of wetlands within our nation.
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6.1 Future Work
We aim to further enhance our combined model approach with further modification
to increase its capability to detect wetland areas.

Firstly, we plan to incorporate more diverse datasets around Bangladesh and world-
wide to improve our model’s generalizability in different wetland environments. We
also intend to integrate real-time data feeds from satellite imagery to enable dy-
namic monitoring and forecasting of wetland changes.

In addition to these improvements, we will fine-tune the RAM Tag2Text model to
function with a specially designed Bangla tag list. This fine-tuning process will
involve adjusting and training the model parameters on Bangla-specific data and
transforming visual data into text descriptions in tags and captions. This will en-
hance the model’s ability to generate accurate and contextually relevant descriptions
for the local ecosystem.

Lastly, we will focus on publishing our findings in scientific journals and presenting
our work at relevant conferences to contribute to the broader scientific community.
Through collaboration with environmental agencies and research institutions, we
hope to apply our research in practical conservation and management efforts, ulti-
mately aiding in preserving critical wetland ecosystems.
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