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Abstract 

Dihydrofolate Reductase (DHFR) is a critical enzyme linked to tumor development in various 

cancers, including breast cancer. Breast cancer, a prevalent cancer diagnosed in approximately 

2.3 million people each year, arises from complex and unknown mechanisms. This study 

comprises of a two-part approach. The initial analysis investigated DHFR expression across 

diverse cancers. The elevated expression of DHFR in breast cancer demonstrated its role in 

tumorigenesis. Current DHFR inhibitors have a tendency to develop resistance. To address this, 

the second part of the study utilized molecular docking study with various FDA-approved drugs 

of different therapeutic classes. With methotrexate as a reference, the study identified 

clemastine, desloratadine and pexidartinib hydrochloride as potential candidates for breast 

cancer treatment due to their strong binding affinities to DHFR, superimposition results, amino 

acid interactions and pharmacokinetic properties. These findings need further validation 

through molecular dynamic simulation, biological assays and in vivo studies. 

Keywords: Dihydrofolate Reductase (DHFR); Breast Cancer; DHFR Expression; Molecular 

Docking 
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Targeting DHFR in Breast Cancer Treatment 

Chapter 1: Introduction 

1.1 Introduction to Breast Cancer 

Breast cancer (BC), a cancer characterized by abnormal and uncontrolled cell growth in the 

breast tissues. It is the most widespread cancer among women worldwide. With around 2.3 

million newly diagnosed cases and 685,000 deaths in 2020, it remains the most prevalent 

cancer globally (Breast Cancer Statistics and Resources | Breast Cancer Research Foundation, 

2023). The WHO has predicted a continued increase in global breast cancer cases worldwide 

highlighting the ongoing impact of this disease and a need for targeted treatment strategies. 

Breast cancer has been the main contributor to cancer-related mortalities in women, surpassing 

other female cancers in terms of the number of deaths (Breast Cancer, 2024). A major challenge 

associated with this cancer is its late diagnosis; it is frequently identified at an advanced stage, 

posing challenges for effective treatment and reducing survival probabilities (Breast Cancer 

Early Detection and Diagnosis | How to Detect Breast Cancer | American Cancer Society, 

2024). 

According to an American Cancer Society report, five-year relative survival rate for breast 

cancer is approximately 90%. This indicates that, on average, women with breast cancer have 

about a 90% likelihood of surviving for at least 5 years after diagnosis (Survival Rates for 

Breast Cancer | American Cancer Society, 2022.). Breast cancer is classified into four stages 

according to the degree of spreading: stage I is the initial phase; stage II signifies the beginning 

of cancer spread; stage III indicates a more advanced stage; and stage IV (metastasis) is the 

most advanced stage, denoting the spread of cancer to other body parts (Understanding Breast 

Cancer Survival Rates | Susan G. Komen®, 2024). If detected early (stage I), it has been found 
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to have an impressive 98%-100% overall survival rate. The diagnostic methods including 

screening, such as mammograms, ultrasounds, and biopsies, are crucial for early detection 

(Breast Cancer Early Detection and Diagnosis | How To Detect Breast Cancer | American 

Cancer Society, 2024).  The subtypes of Breast Cancer include HER2-positive, Basal Like 

Breast Cancer (BLBC), Luminal A and Luminal B. Luminal A tumors are characterized by 

estrogen receptor (ER) expression, boast the most favorable prognosis and responsive to 

treatment. Luminal B tumors, expressing hormone receptors (HR) and HER2, demand more 

aggressive treatment due to shorter survival compared to Luminal A. HER2-expressed tumors 

are marked by HER2 overexpression and low ER expression. They benefit significantly from 

targeted therapies, transforming poor prognoses. Basal-like cancers are predominant among 

triple-negative tumors, with high-grade features and they require the incorporation of 

biomarker data like- Basal cytokeratins (CK5/6, CK14, and CK17), vimentin, fascin, nestin 

and moesin for informed clinical management (Johnson et al., 2021). 

1.2 Risk Factors for Breast Cancer 

Breast cancer is a condition linked to various risk factors, such as specific genetic mutations, 

particularly in the BRCA1 and BRCA2 genes which has been identified as significant 

contributors to its development(BRCA Gene Mutations: Cancer Risk and Genetic Testing Fact 

Sheet - NCI, 2020).  

About 55-65% of women with a harmful BRCA1 mutation and 45% with a harmful BRCA2 

mutation are expected to develop BC by age of 70 (The Role of BRCA Mutations in Breast 

Cancer, 2022). These mutations significantly influence the prevalence of BC cases in women 

with a familial history of the disease (BRCA1 and BRCA2 (PDQ®) - NCI, 2024). A recent 

study reported elevated levels of DHFR in BRCA mutated Breast Cancers (Li et al., 2024). 
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Hormonal aspects, including the onset of menstrual periods and age at first pregnancy, also 

influence this risk. Conditions like obesity, excessive alcohol use, and tobacco consumption 

have been identified as significant contributors to an increased risk of breast cancer according 

to WHO reports (World Health Organization: WHO & World Health Organization: WHO, 

2023d). Additionally, lifestyle factors such as insufficient physical activity and 

postmenopausal hormone therapies such as estrogen-only HRT (hormone replacement therapy) 

and combined HRT (Estrogen + Progestin) also play a role in elevating the risk (CDC, 2023). 

Studies have shown that Dihydrofolate Reductase (DHFR) expression levels increase in BC  

(Nakano et al., 2017a; Raimondi et al., 2019).DHFR has an important role in folate metabolism 

and is the primary target for the chemotherapy drug, methotrexate (Nakano et al., 2017a). 

Although DHFR mutations alone do not cause breast cancer, they may interact with other 

genetic factors leading to BC progression. Individuals with specific DHFR variants may have 

altered susceptibility to BC based on their overall genetic makeup (Dalivandan et al., 2021). 

DHFR is an essential enzyme involved in the synthesis of tetrahydrofolate (Figure 1), a critical 

cofactor in DNA and RNA synthesis. Deregulation of folate metabolism caused by DHFR 

overexpression can impact its function, leading to altered cellular processes. RNA editing 

facilitated by ADAR1 modifies the binding sites for miR-25-3p and miR-125a-3p in the 3’-

UTR of DHFR mRNA, resulting in elevated DHFR expression. This increase in expression 

enhances cell proliferation and makes cells more resistant to methotrexate, the most commonly 

used DHFR inhibitor. This implies that RNA editing by ADAR1 functions as a post-

transcriptional mechanism that contributes to tumour resistance to methotrexate in BC by 

stabilizing DHFR mRNA and preventing its degradation (Nakano et al., 2017b).  
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1.3 Treatment Options for Breast Cancer 

The primary treatment for women diagnosed with advanced BC typically involves a combined 

approach, incorporating surgery to remove as much of the cancer as possible, followed by 

chemotherapy (Treatment of Stage IV (Metastatic) Breast Cancer | American Cancer Society, 

2024). 

Currently, depending on the BC subtypes, the following line of therapies are generally used. 

For Hormone Receptor-Positive (HR+) and HER2-negative (ERBB2-), Aromatase Inhibitor 

plus CDK4/6 Inhibitor achieves an Objective Response Rate (ORR) of 53-59% and is used as 

first-line therapy. For later-line therapy, hormonal and/or targeted therapies are considered. If 

patients get resistant to several hormonal treatments, switching to a single chemotherapy drug 

is generally recommended. 

For patients with HER2-positive (ERBB2+) BC, the first-line therapy typically involves a 

combination of taxane, trastuzumab, and pertuzumab, achieving an overall response rate 

(ORR) of 80%. Some patients with hormone receptor-positive (HR+)/ERBB2+ disease may be 

given endocrine therapy combined with ERBB2-targeted treatment as their first-line of therapy. 

In subsequent treatment stages, ERBB2-targeted therapy along with chemotherapy or 

endocrine therapy may be utilized. For HR+ cases, trastuzumab combined with chemotherapy 

is a viable option. Additionally, trastuzumab with endocrine therapy or lapatinib with 

capecitabine could be considered for later-line therapies. 

For the triple-negative subtype, single-agent chemotherapy such as taxane (ORR = 36%), 

platinum (ORR = 31%), and anthracycline can be used as first-line treatment. In later lines of 

therapy for this subtype, single-agent chemotherapy including capecitabine, eribulin, 

vinorelbine, gemcitabine, olaparib, or talazoparib (in the presence of a germline BRCA1/2 

mutation) can be considered (Burguin et al., 2021). 
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Numerous clinical trials are in progress to assess the efficacy of different treatments for 

advanced BC (Research and Clinical Trials for Breast Cancer, 2024). For example, in a phase 

III clinical trial (NCT02470585), researchers are examining the effectiveness of veliparib when 

combined with carboplatin and paclitaxel for individuals newly diagnosed with advanced BC. 

However, BC treatment is rapidly transforming marked by notable progress in targeted 

therapies and personalized medicine. The identification of genetic mutations linked to breast 

cancer has not only improved our understanding of the disease but has also facilitated the 

development of more potent and precisely targeted treatments.  

1.4 Synthetic Pathway of Folate Metabolism 

DHFR facilitates the transfer of a hydride from the cofactor NADPH, acting as an electron 

donor, to DHF, inducing protonation to yield THF. Specifically, DHFR initiates the reduction 

of 7,8-DHF to 5,6,7,8-THF, employing reduced NADPH as a cofactor. Hence, DHFR 

associates with thymidylate synthase, which facilitates the reductive methylation of dUMP 

(deoxyuridine monophosphate) to dTMP (deoxythymidine monophosphate), utilizing 5,10-

Methylene THF as a cofactor (Raimondi et al., 2019).  

dTMP originates from dUMP through the action of the enzyme TS. TS transfers a methyl group 

from 5,10-Methylene THF to the C5 position of dUMP. This process is vital for thymine 

production, as thymine is not synthesized de novo, unlike the other three bases (Leclair, 2021). 

The formation of dTMP is a crucial step in DNA replication and a target for drugs like 

methotrexate and 5-fluorouracil, which hinder cell growth. These drugs disrupt the folate cycle 

and thymidylate synthase, leading to reduced dTMP and increased dUMP levels. This 

disruption causes DNA damage and cell death, especially in rapidly dividing cells (Zheng & 

Cantley, 2019).  
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The formation of dTMP is a crucial step in DNA replication and a target for drugs like 

methotrexate and 5-fluorouracil, which hinder cell growth. These drugs disrupt the folate cycle 

and thymidylate synthase, leading to reduced dTMP and increased dUMP levels. This 

disruption causes DNA damage and cell death, especially in rapidly dividing cells 

(Biochemistry Free & Easy (Ahern and Rajagopal) - Biology LibreTexts, 2023).  

 

 Figure 1: Normal function of DHFR protein 
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1.5 Structure of DHFR 

 

Figure 2: 3D structure of DHFR protein 

DHFR is a small, water-soluble protein with a molecular weight between 18,000 and 25,000 

Da. Over the years, extensive study and numerous efforts have been made to understand the 

structure of the DHFR isoforms. The primary structure of DHFR's polypeptide backbone 

folding is characterized by a central eight-stranded beta-pleated sheet. Among these strands, 

seven are parallel, while the eighth runs antiparallel. Connecting these beta strands are four 

alpha helices. The region spanning residues 9 to 24, referred to as "Met20" or "loop 1," along 

with other loops, constitutes a major subdomain surrounding the active site and this is where 

methotrexate binds to with DHFR (Osborne et al., 2001). Currently, the Protein Data Bank 

(PDB) has collected over one hundred structures derived from both eukaryotic and prokaryotic 

organisms either independently or in conjunction with various ligands. DHFR comprises eight 

sheets that create a stable framework, with seven sheets aligned in a parallel orientation and 

one in an antiparallel arrangement. All enzyme isoforms share a common structural feature of 

containing a minimum of four α-helices that intersect within the long loops of the sheets. 



24 
 

Moreover, one loop establishes the substrate binding site, while an additional two loops 

constitute the binding site for the coenzyme NADPH. DHFR lacks disulfide bridges and does 

not rely on metal ions to carry out its biochemical functions. It helps to stabilize the 

nicotinamide ring of NADPH, aiding in the transfer of hydride from NADPH to dihydrofolate. 

Additionally, it can open, close, or block the enzyme's active site. The amino acid Asp27 is 

essential as it helps protonate the substrate, keeping it in a favorable conformation for hydride 

transfer (Askari & Krajinovic, 2010).  

DHFR plays a vital role in normal physiological processes. THF is required for the function of 

folate-dependent enzymes, thereby being important for the synthesis of purines and 

pyrimidines, the fundamental components of DNA and RNA. THF is essential for the 

intracellular transformation of synthetic folic acid, found in supplements and fortified foods, 

into its active forms that can engage in folate/homocysteine metabolism. THF plays a role in 

the remethylation process of homocysteine to methionine, a crucial step in generating S-

adenosylmethionine (SAM), the primary methyl donor for the majority of biological 

methylation reactions. Methylation is critical for the modulation of gene expression, 

maintenance of DNA stability, and regulation of cellular differentiation (Askari & Krajinovic, 

2010). 

DHFR protein can be classified into two types: wild-Type DHFR and mutated DHFR. The 

unaltered form of dihydrofolate reductase (DHFR), known as the wild-type, is the standard, 

unmodified variant of the enzyme that is present in the normal physiological state. It plays a 

crucial role in various metabolic activities. On the other hand, mutated DHFR pertains to 

modified versions of the enzyme resulting from genetic alterations or mutations. These genetic 

changes can induce variations in the structure, function, or activity of the enzyme (Difference 

Between Wild Type and Mutant | Definition, Characteristics, Examples, Similarities, 2017). 
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Wild-Type DHFR is sensitive to drugs like methotrexate. On the other hand, mutations can 

cause resistance to drugs that target DHFR, such as trimethoprim (Bertino et al., 1996). 

Cancer cells differ from normal cells in several aspects. Normal cells become cancerous due to 

a series of mutations that cause uncontrolled growth and division (Witt & Tollefsbol, 2023). 

Unlike normal cells, which usually remain in their original location, cancer cells can invade 

nearby tissues and spread to distant parts of the body. In contrast to normal cells, which 

typically stay localized, cancer cells possess the capability to both invade neighboring tissues 

and spread to distant regions of the body (Witt & Tollefsbol, 2023). Mutation at different 

position of DHFR may cause resistance to different drugs e.g., N51I mutation is correlated with 

resistance to pyrimethamine. C59R mutation is similarly associated with pyrimethamine 

resistance. S108N mutation is another mutation that contributes to resistance against 

pyrimethamine. I164L mutation is connected to resistance against high-grade sulfadoxine-

pyrimethamine, although absent in the isolates examined in the study (Jiang et al., 2019). 

Cancer cells go through genetic mutations that transform the cell from its normal state into a 

cancerous one. The genetic mutations can either be inherited or developed gradually with aging 

as genes undergo wear and tear, or arise due to exposure to factors that damage genes, such as 

ultraviolet (UV) radiation from the sun, alcohol or cigarette smoke (How Cancer Starts, Grows 

and Spreads | Canadian Cancer Society, 2021).  

Cancer cells need a significant amount of energy for their growth and division as their 

metabolism is often different from that of normal cells. They also have the ability to escape the 

immune system, which typically identifies and eliminates abnormal cells (Cancer Cells: Types, 

How They Form, and Characteristics, 2023-b). Just like any other cells, cancer cells also 

require DHFR enzyme for functioning. As a result, anticancer drugs use DHFR enzyme as a 

target. DHFR is also target for antifolate medications, like methotrexate (MTX), that are used 
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in the treatment of cancer and certain inflammatory conditions. Through the inhibition of 

DHFR, antifolate drugs reduce the cellular reservoir of THF, leading to slowing down of DNA 

synthesis and cell proliferation (Askari & Krajinovic, 2010) which is a hallmark of cancer cells. 

1.6 Causes and Effects of DHFR Mutation 

DHFR protein can be mutated in several ways: 

i. Increased expression: In certain cancer cells, such as BC there is more Dihydrofolate 

Reductase (DHFR) to make sure there is enough nucleotides for the cells to grow and divide 

rapidly. This helps the cells meet the high demands for building blocks needed during their 

rapid multiplication (DHFR Gene Mutation - MTHFR Gene HealthTM, 2023).  

ii. Antifolate Resistance: Antifolate drugs (e.g., trimethoprim, methotrexate) target DHFR. 

However, mutations in DHFR can reduce drug binding affinity, leading to resistance. Cancer 

cells with mutated DHFR may evade the effects of antifolate therapies (DHFR Gene Mutation 

- MTHFR Gene HealthTM, 2023). 

iii. Structural Alterations: Specific mutations can disrupt the active site of DHFR, affecting its 

catalytic function. For example, the L80F mutation destabilizes the DHFR protein or disrupts 

NADPH binding (Nakano et al., 2017). Other mutations may alter the binding affinity for 

diaminoheterocyclic molecules (Nakano et al., 2017b). 

This study targets the overexpression of DHFR in BC. 

1.6.1 Mutations Lead to Breast Cancer 

DHFR is a crucial enzyme for the metabolism of folate, playing a notable role in progression 

of BC (Expression of DHFR in Breast Cancer - The Human Protein Atlas, 2021). The 

expression of DHFR in BC has been examined and observed through antibody staining 

(Expression of DHFR in Breast Cancer - The Human Protein Atlas, 2021).  



27 
 

Research reported in The Journal of Biological Chemistry revealed that adenosine-to-inosine 

RNA editing, facilitated by ADAR enzymes, may influence DHFR expression. The study 

demonstrated that ADAR1 has a positive regulatory role in DHFR expression through the 

editing of binding sites for miR-25-3p and miR-125a-3p in the 3' UTR of DHFR. This editing 

process enhances cellular growth and methotrexate resistance. An increased cellular DHFR 

expression is a factor contributing to tumour resistance to methotrexate (Nakano et al., 2017). 

1.6.2 Mechanism of Action of Methotrexate- A Known DHFR Inhibitor 

Methotrexate (MTX) demonstrates potent anti-cancer activity through a distinct mechanism. 

Operating as an anti-metabolite of folic acid (Vitamin B9), MTX interrupts cell division by 

inhibiting folate-related enzymes, particularly Dihydrofolate Reductase (DHFR). DHFR which 

converts dihydrofolate to tetrahydrofolate (THF) is a crucial coenzyme in nucleotide synthesis 

pathways essential for DNA and RNA production. Through DHFR inhibition, MTX hinders 

the crucial precursors required for cell proliferation, particularly in actively dividing cells and 

rapidly proliferating cancer cells. The drug's cytotoxic impact is most notable during the S 

phase of the cell cycle. Additionally, MTX, in its polyglutamated form, functions as an 

effective anti-folate agent, not only inhibiting DHFR but also influencing other enzymes like 

thymidylate synthase and AICART (Aminoimidazole Carboxamide Ribonucleotide 

Transformylase) involved in nucleotide synthesis. This disruption in DNA synthesis pathways 

ultimately induces cell apoptosis. Overall, MTX's anti-cancer effectiveness lies in its ability to 

selectively target rapidly dividing cells, rendering it a valuable chemotherapy agent for various 

malignancies (Koźmiński et al., 2020). 
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Figure 3: Mechanism of action of methotrexate 

1.7 Drug Repurposing using In Silico Methods: 

Drug repurposing (also known as drug repositioning or reprofiling), involves finding new 

therapeutic uses of existing medications. This approach has several advantages like reduced 

costs, time, and risk of failure compared to traditional drug discovery. It potentially enhances 

safety and efficacy when coupled to biological assays and in vivo studies. Despite these 

benefits, drug repurposing encounters challenges, including intellectual property issues, 

regulatory obstacles, and market incentives. 

In silico methods and computational techniques using mathematical models and databases, play 

a vital role in drug repurposing.  

These methods come in various types: 
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i.  Target-based approaches identify new targets for existing drugs or vice versa using 

techniques like molecular docking, pharmacophore modelling, network analysis, or machine 

learning. 

ii.  Phenotype-based approaches find new uses for existing drugs or identify new drugs for 

known uses using gene expression analysis, text mining, clinical data mining, or drug 

repositioning networks. 

iii. Integrative approaches combine diverse data types and methods, such as genomics, 

proteomics, metabolomics, and phenotypic data, to generate hypotheses or validate predictions 

for drug repurposing. 

In silico methods enable high-throughput screening of multiple approved drugs and targets 

within a short timeframe, and their adaptability allows for easy integration of new data. 

Moreover, these methods are cost-effective and accessible, as they do not demand expensive 

laboratory equipment, making them available to researchers with diverse backgrounds. 

Importantly, in silico methods offer interpretability and transparency by providing mechanistic 

insights and evidence for drug repurposing. These findings can be subsequently verified 

through experimental testing or clinical trials, ensuring robust and reliable outcomes in the drug 

development process (Hodos et al., 2016).  

Computational in silico models have the capacity to merge information from diverse sources, 

examine hypotheses that may be challenging to validate through experiments, and offer insights 

into the mechanisms and dynamics of cancer. These in silico models find utility in various 

areas, including the identification of biomarkers, drug targets, and optimal treatment strategies 

(Edelman et al., 2010). 
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1.7.1 Success of In Silico Methods in Cancer  

The development of in silico models stands to gain from progress in data gathering and 

analysis, model integration and standardization, and collaborative efforts. Future enhancements 

may involve incorporating greater biological realism and complexity, encompassing elements 

like epigenetics, metabolism, and immunology (Edelman et al., 2010). 

In silico methods were used on hydroxychloroquine (HCQ), an antimalarial medication. 

Researchers have utilized computational models to look into two critical aspects regarding 

HCQ's pharmacodynamics. Firstly, by employing a computational model of human atrial 

cardiomyocytes, they have analyzed HCQ's impact on atrial electrophysiology. Their findings 

hint at a promising antiarrhythmic role for low-dose HCQ in mitigating atrial fibrillation (AF). 

Secondly, in silico docking studies have been used to see HCQ's interactions with proteins of 

the SARS-CoV-2 virus. These investigations have revealed HCQ's increased binding affinity 

with essential viral proteins such as the spike glycoprotein and PLPRO protein, suggesting its 

potential as a candidate for antiviral drug development. Through these computational 

approaches, researchers continue to unravel the multifaceted pharmacological implications of 

HCQ, offering insights that could inform clinical decisions and therapeutic strategies.  (Rao & 

Subash, 2020). 

Target-Based In Silico Methods offer speed, efficiency, and predictive insights by leveraging 

computational simulations. These approaches reduce costs and aid rational drug design. On the 

other hand, Drug Repurposing capitalizes on existing drugs, minimizing risks, shortening 

development timelines, and maintaining cost-effectiveness. Both strategies contribute 

significantly to efficient drug discovery and development (Rao & Subash, 2020).  

In silico methods can help researchers to identify unique signatures for target-specific 

amplification and detection of pathogens. It can also optimize the design and performance of 
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assays by reducing the number of iterations, empirical optimization, and validation steps. 

Furthermore, it reduces the time and cost of assay development and validation by utilizing 

available databases of whole genome sequences and bioinformatics tools (Lucia et al., 2020).  

1.8 Rationale of the Study 

Breast cancer, the second leading cancer globally presents a significant challenge in the field 

of oncology due to its widespread prevalence, aggressive characteristics, and tendency to 

develop resistance to existing drugs over time. DHFR is an essential enzyme in the folate 

metabolism pathway, and thus in the production of nucleotides. Rapidly dividing cancer cells 

need a constant supply of nucleotides for DNA synthesis and cell growth. A few studies have 

shown that breast cancer tissues demonstrate elevated levels of DHFR compared to healthy 

tissues. The first part of the study aims to explore the expression patterns of DHFR in breast 

cancer tissues and normal tissues. It was hypothesised in the study that this increased 

expression makes the cancer cells more dependent on DHFR for survival and inhibiting the 

enzyme would help manage the disease by hindering the growth of cancer cells.  

Despite the availability of several drugs that target DHFR proteins for breast cancer treatment, 

the challenge of drug resistance remains a major challenge to achieving successful outcomes. 

The second part of the study explored around 200 existing FDA approved drugs from various 

therapeutic classes such as anti diabetic drug, anticancer drugs, antihistamines, NSAIDs, 

antihypertensive drugs, statins and some natural compounds to screen and propose potential 

options that can effectively target DHFR protein and thus help in breast cancer treatment. 

Having a greater and comprehensive drug pool would help to overcome the challenge of drug 

resistance in patients with breast cancer.  
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2. Methodology  

This section outlines the steps involved in the study.  

2.1 Expression of DHFR in Breast Cancer  

The following online tools were used to analyse the expression of DHFR in Breast Cancer. 

i. UALCAN: UALCAN works as a comprehensive online tool for the analysis of cancer 

OMICS data. It has a portal facilitating the exploration, analysis, and visualization of genomic, 

transcriptomic, and proteomic data related to cancer (Chandrashekar et al., 2022a). UALCAN 

enables to investigate, analyze, and visually represent genomic, transcriptomic, and proteomic 

data sourced from The Cancer Genome Atlas (TCGA). With UALCAN, users have the 

capability to assess how gene expression influences patient survival across 33 different cancer 

types (Chandrashekar et al., 2022b).  UALCAN was used in this study to get easy access to 

cancer related data and to perform pancancer gene expression analysis. 

ii. GTEx: The Genotype-Tissue Expression (GTEx) Project shows the role of genetic 

variations in common human diseases. GTEx offers a comprehensive map of gene expression 

in diverse human tissues, enabling researchers to investigate how inherited genetic changes 

impact health (Genotype-Tissue Expression Project (GTEx), 2020). Evaluation of DHFR 

expression in normal breast tissues was conducted using data from the public GTEx in this 

study. 

iii. Kaplan Meier Plotter: The Kaplan Meier plotter is a powerful tool used to study the link 

between gene expression and survival rates across various cancer types, examining over 35,000 

samples. With the capability of conducting 18,000 analyses daily, it is a widely respected 

platform for discovering and validating survival markers. Unlike other tools, it performs 

calculations in real-time without relying on pre-calculated data. The database integrates gene 

expression and clinical information to assess the prognostic significance of a gene. Patient 
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samples are divided into groups based on different expression levels, and their survival rates 

are compared using Kaplan-Meier plots, providing hazard ratios and confidence intervals. 

Regular updates ensure the database's accuracy and comprehensiveness (Kaplan-Meier Plotter, 

2024). The Kaplan-Meier plot is a statistical tool used in cancer research to estimate and 

visualize patient survival rates over time. Kaplan Meier plotter was used in this research to 

compare the OS and PFS of BC cells with high DHFR expression and BC cells with lower 

DHFR expression. 

2.2 Preparation of Protein and Ligands 

2.2.1 Protein Preparation 

The protein structure (PDB ID: 1U72) was obtained from the protein data bank in the PDB 

format. Using PyMOL, the water molecules and the co crystallized structure, methotrexate 

(MTX) was removed from the protein (Yuan et al., 2017). Hydrogen atoms were added; then 

atom types and Kollman charges were assigned; energy minimization followed by optimization 

of the structure was carried out using AutoDock Tools (Tang et al., 2022). The curated protein 

was then saved as a PDBQT format file. 

2.2.2 Ligand Molecules Preparation 

The 3D structures of the ligand molecules were downloaded as SDF files 

(https://pubchem.ncbi.nlm.nih.gov/) and PDB files (https://go.drugbank.com/). The SDF 

format ligands were converted to PDB format using PyMOL. All the structures were converted 

to PDBQT format using AutoDock Tools and assigned charges. 

2.3 Molecular Docking with AutoDock Vina 

The potential binding site was identified and defined using PyMOL. Based on the 

identification, a grid box was generated around the binding site by setting the center and size 

https://pubchem.ncbi.nlm.nih.gov/
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parameters in the AutoDock Vina configuration file.  The grid file and config.txt file based on 

the values obtained from the grid.txt file was saved. Each ligand folder then had 2 PDB files 

of the protein and ligand, 2 PDBQT files of the protein and ligand, the config.txt file, and the 

grid.txt file. 

To initiate the docking, the Windows "run" command was opened by typing 'cmd' in the Start 

menu and clicking 'OK.' This action opened a command prompt 'cd' followed by the space and 

the location of the files for docking were typed. Upon pressing 'Enter,' the desired directory 

was reached. Subsequently, a docking command was used. The command used for docking is 

given below: 

"C:\Program Files (x86)\The Scripps Research Institute\Vina\vina.exe" --receptor 

protein.pdbqt --ligand ligand.pdbqt --config config.txt --log log.txt --out output.pdbqt.  

The respective binding affinities were generated after the command was entered for each 

ligand.  

2.3.1 Selection of Docking Results 

At first, the co crytallised structure methotrexate was docked with our selected DHFR protein 

(PDB ID-1U72) and the binding affinity obtained was designated as the cut off value or the 

reference value since methotrexate is a known inhibitor of DHFR. The binding affinity of 

methotrexate to DHFR was found to be -9.1 kcal/mol. All the other values were compared to 

that of methotrexate. Better binding affinity values were chosen for the subsequent steps.  

2.3.2. Superimposition of Selected Drugs with Methotrexate in the Binding Pocket 

Superimposition of the selected drugs with the reference drug methotrexate was done in 

PyMOL to assess whether the selected drugs effectively bind into the targeted binding site of 

the enzyme.  
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2.3.3. Checking the Interactions using Discovery Studio 

Discovery Studio (v 16.1.0.15350) was then used to check the amino acids involved in the 

binding interaction with DHFR (Adewole et al., 2022). Drugs that had higher numbers of 

common amino acids to methotrexate were chosen as these represented drugs binding to the 

same binding pocket of DHFR as methotrexate. The initial step involved opening the curated 

protein and the specific drug's output file in Discovery Studio (v 16.1.0.15350). Subsequently, 

the entire ligand group from the output file was chosen and transferred on the curated protein 

file. Hydrogen atoms were added. The receptor and ligand were defined. Next, the ligand 

interactions option was chosen. The ligand interactions with DHFR were found. Following 

these steps, a comprehensive display of all interactions was displayed. 

The work that was done for molecular docking can be summarized using the following 

flowchart (Figure 4). 

2.3.4 Pharmacokinetic Profile Analysis 

The predicted pharmacokinetic properties of the selected drugs were then calculated using 

QikProp, Schrodinger (Hasan et al., 2022).   

 

 

 

 

 

 

 



36 
 

3. Results  

3.1 DHFR Expression Analysis  

3.1.1 Pancancer Mapping of DHFR in Breast Cancer 

Initial analyses of DHFR expression in both normal and tumor tissues was conducted across 

31 cancers using GEPIA (add acronym) with TCGA datasets (Figure 4). The findings showed 

elevated DHFR expression in most cancers compared to normal tissues, except for Acute 

Myeloid Leukemia (LAML). There was a notable increase in DHFR expression in Breast 

invasive carcinoma (BRCA) (*P≤0.05), indicating DHFR overexpression in Breast Cancer 

(BC). 

 

Figure 4: DHFR gene expression in normal and tumour tissues based on GEPIA data; Red: Tumour; Black: 

Normal tissues. Abbreviations: ACC: Adrenocortical carcinoma; BLCA: Bladder Urothelial Carcinoma; BRCA: 

Breast invasive carcinoma; CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; 

CHOL: Cholangio carcinoma; COAD: Colon adenocarcinoma; DLBC: Lymphoid Neoplasm Diffuse Large B-

cell Lymphoma; ESCA: Esophageal carcinoma; GBM: Glioblastoma multiforme; HNSC: Head and Neck 

squamous cell carcinoma; KICH: Kidney Chromophobe; KIRC: Kidney renal clear cell carcinoma; KIRP: 

Kidney renal papillary cell carcinoma; LAML: Acute Myeloid Leukemia; LGG: Brain Lower Grade Glioma; 

LIHC: Liver hepatocellular carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; 

MESO: Mesothelioma; OV: Ovarian serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma; PCPG: 

Pheochromocytoma and Paraganglioma; PRAD: Prostate adenocarcinoma; READ: Rectum adenocarcinoma; 

SARC: Sarcoma; SKCM: Skin Cutaneous Melanoma; STAD: Stomach adenocarcinoma; TGCT: Testicular Germ 

Cell Tumours; THCA: Thyroid carcinoma; THYM: Thymoma; UCEC: Uterine Corpus Endometrial Carcinoma; 

UCS: Uterine Carcinosarcoma; UVM: Uveal Melanoma. TPM: transcripts per million. 
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3.1.2 DHFR Expression in Normal Gynecological Tissues using The Genotype-Tissue 

Expression (GTEx) 

After that, an examination of DHFR expression in normal breast tissues was conducted using 

data from the public GTEx (Figure 5). The data revealed the presence of DHFR mRNA in 

normal breast (mammary) tissues. From a sample size of 459, the median expression was found 

to be 5.190 transcripts per million. Among them, 168 were female with the median expression 

5.530 TPM and 291 were male with the median expression found to be 5.032 TPM. This 

suggests that the expression is slightly higher in females than males. 

 

Figure 5: Expression of DHFR in normal tissues; Pink: female; Blue: male 

3.1.3 Comparison of DHFR Expression in Normal and Breast Cancer tissues using 

GEPIA 

The data suggests that the expression of DHFR increases significantly in the cancer tissues 

compared to the normal tissues. 
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Figure 6: Comparison of expression of DHFR using TGCA datasets in Breast Cancer; Cancer: red; Normal: 

ash. A significant increase in DHFR expression was observed for BC (*P≤0.001). TPM: Transcripts per 

million; n(T): sample size of tumours; n(N): sample size of normal tissues. 

 

3.1.4 Overall Survival and Progression Free Survival using Kaplan Meier (KM) plotter 

Overall Survival (OS), a primary endpoint in cancer clinical trials shows how long patients 

survive after starting a particular treatment. Researchers look closely at OS to see how a 

treatment affects the overall life expectancy (Royle et al., 2023).  

Progression-Free Survival (PFS) refers to the duration a group of people with cancer remain 

disease-free after a certain treatment. PFS is commonly used as a goal in controlled trials for 

cancer treatments. Unlike OS, which looks at deaths from any cause, PFS specifically focuses 

on the progression of the disease. Measuring PFS helps researchers understand the impact of 

diseases and treatments that do not necessarily lead to death, like pain, and disruptions in daily 
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life. It is useful for getting quicker trial results (What Progression-Free Survival Means After 

Cancer, 2023). 

The predicted OS and PFS as a function of time has been illustrated in Figure 4 using the KM 

plotter. The patients were grouped as “BC patients with high DHFR expression” and “BC 

patients with low DHFR expression”. The probability for OS is less in patients having DHFR 

overexpression. 

The data suggest that the OS for patients with BC with low DHFR expression was 120 months 

whereas the OS for patients having high DHFR expression was 69.6 months. Similarly, the 

PFS for patients with BC with low DHFR expression was 39.25 months whereas the OS for 

patients having high DHFR expression was 24.96 months. 

 

Figure 7: Kaplan‑Meier plots showing the effect of DHFR expression in Breast Cancer (a) 

Overall survival (OS) in BC, (b) PFS in BC; HR represents Hazard Risk Ratio 

 

If the Hazard Ratio is more than 1, it means there's a higher risk in the treatment group than in 

the control group. Whereas, if the Hazard Ratio is less than 1, it means there's a lower risk in 

the treatment group compared to the control group. The results show that the hazard ratio is 



40 
 

higher with higher DHFR expression (Hazard Ratio: Interpretation & Definition - Statistics By 

Jim, 2023).  

 

3.2 Docking Analysis 

3.2.1 Molecular Docking Results 

Around 200 ligands were docked with DHFR and the results were compared to the binding 

affinity of methotrexate. Binding affinity values better than the reference drug were chosen. 

Methotrexate was chosen as the reference drug due to its effectiveness against DHFR protein 

(Teachey et al., 2008). The binding affinity of methotrexate was found to be 9.1 kcal/mol. 

There were 68 drugs which showed better binding affinity to DHFR compared to methotrexate 

(Table 1). 

Table 1: Binding affinity values of reference drugs and selected drugs with DHFR (AutoDock 4) 

SI 

No 

Drugs Binding 

Affinities 

(kcal/mol) 

1 Methotrexate (Reference drug)      -9.1 

2 Imatinib mesylate (TKI) -10.2 

3 Ripretinib (TKI) -9.6 

4 Tucatinib (TKI) -11.7 

5 Tivozanib hydrochloride (TKI) -10.1 

6 Bosutinib (TKI) -9.7 

7 Axitinib (TKI) -10.1 

8 Asciminib hydrochloride (TKI) -9.6 

9 Pexidartinib hydrochloride (TKI) -10.0 
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10 Infigratinib phosphate (TKI) -9.8 

11 Dasatinib (TKI) -9.8 

12 Regorafenib (TKI) -10.0 

13 Abemaciclib (TKI) -10.5 

14 Azelastine (Antihistamine) -10.6 

15 Desloratadine (Antihistamine) -10.2 

16 Clemastine (Antihistamine) -9.4 

17 Hydroxyzine (Antihistamine) -9.7 

18 Niraparib (PARP inhibitor) -9.5 

19 Rucaparib (PARP-inhibitor) -9.7 

20 Meloxicam (NSAID) -9.3 

21 Rofecoxib (NSAID) -9.2 

22 Topotecan (Anti-cancer drug) -9.3 

23 Doxorubicin Hydrochloride (Anti-cancer drug) -9.7 

24 Belzutifan (Anti-cancer drug) -9.4 

25 Duvelisib (Anti-cancer drug) -9.3 

26 Enasidenib Mesylate (Anti-cancer drug) -9.6 

27 Tamoxifen Citrate (Antiestrogen) -9.5 

 

3.2.2 Superimposition Results 

By superimposing molecules in the binding pocket with the reference drug, we can evaluate if 

a drug fits into the active or targeted binding site of the enzyme, aiding in the prioritization of 

molecules for further experimentation. The following figures show some of the 

superimposition results (Figure 8-10). Clemastine, desloratadine and pexidartinib 
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hydrochloride superimposed with methotrexate in the DHFR binding pocket. The interactions 

of the mentioned drugs obtained from Discovery Studio (v 16.1.0.15350) are also displayed. 

(a)                                                                                (b) 

Figure 8: Superimposed binding mode of Methotrexate (red) and Clemastine (blue) with DHFR (visualized in 

PyMOL) (b)2D diagram of DHFR-Clemastine interaction (visualized in Discovery Studio version 16.1.0.15350) 

 

                                    (a)                                                                                (b) 

Figure 9: Superimposed binding mode of Methotrexate (red) and Desloratadine (blue) with DHFR (visualized 

in PyMOL) (b)2D diagram of DHFR-Desloratadine interaction (visualized in Discovery Studio version 

16.1.0.15350) 
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(a)                                                                                 (b) 

Figure 10: Superimposed binding model of Methotrexate (red) and Pexidartinib Hydrochloride (blue) with 

DHFR (visualized in PyMOL) (b) 2D diagram of DHFR-Pexidartinib Hydrochloride interaction (visualized in 

Discovery Studio version 16.1.0.15350) 

3.2.3 Discovery Studio Results 

Discovery Studio (v 16.1.0.15350) was used to check the protein-ligand interactions in order 

to determine whether the chosen drugs bind to the same pocket as the reference drug. In 

addition, the types off bonds were also determined. The common amino acids involved in the 

DHFR protein-ligand interaction are given in the table below (Table 2). 

 

Table 2: Common amino acids involved in binding with the reference drug (Discovery Studio v 16.1.0.15350) 

Drugs Amino Acids 

Methotrexate (Reference drug) ASN64, ARG70, GLN35, THR146, SER59, 

LEU22, ILE60, ILE16 

Imatinib mesylate (TKI) SER59, LEU22, ILE60 

Ripretinib (TKI) SER59, THR146, ILE16, LEU22 
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Tucatinib (TKI) SER59, ILE60, ILE16 

Tivozanib hydrochloride (TKI) SER59, ASN64, ILE60 

Bosutinib (TKI) GLN35, SER59, ASN64, LEU22, ILE60 

Axitinib (TKI) ILE60, ILE16, THR146 

Asciminib hydrochloride (TKI) ASN64, SER59, GLN35 

Pexidartinib hydrochloride (TKI) SER59, ASN64, THR146, ILE60, ILE16 

Infigratinib phosphate (TKI) THR146, ILE60, LEU22, ILE16 

Dasatinib (tyrosine kinase inhibitor (TKI)) THR146, ILE16, LEU22 

Regorafenib (TKI) SER59, ILE16, ILE60, LEU22 

Abemaciclib (TKI) THR146, LEU22, ILE60, ILE16  

Azelastine (Antihistamine) LEU22, ILE60 

Desloratadine (Antihistamine) SER59, LEU22, ILE 16 

Clemastine (Antihistamine) ILE16, LEU22, ILE60 

Hydroxyzine (Antihistamine) THR146, ILE16, LEU22, ILE 60 

Niraparib (PARP inhibitor) SER59, LEU22, ILE60 

Rucaparib (PARP-inhibitor) THR146, SER59, LEU22 

Meloxicam (NSAID) SER59, THR146, LEU22 

Rofecoxib (NSAID) SER59, ILE16, LEU22, THR146 

Topotecan (Anti-cancer drug) SER59, ILE16, LEU22, ILE60 

Doxorubicin hydrochloride (Anti-cancer 

drug) 

THR146, SER59, LEU22, ILE60 

Belzutifan (Anti-cancer drug) THR146, SER59, ILE16, LEU22 

Duvelisib (Anti-cancer drug) GLN35, ASN64, ILE60, LEU22 

Enasidenib mesylate (Anti-cancer drug) SER59, THR146, ILE60, LEU22 
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Tamoxifen citrate (Antiestrogen) SER59, LEU22, ILE60, ILE16 

 

The protein-ligand interaction was visualized using Discovery Studio (v 16.1.0.15350). The 

amino acids involved in the binding of methotrexate with DHFR are as follows: ASN64, 

ARG70, GLN35, THR146, SER59, LEU22, ILE60 and ILE16. The drugs that showed common 

amino acids include ripretinib (TKI), bosutinib (TKI), pexidartinib hydrochloride (TKI), 

infigratinib phosphate (TKI), regorafenib (TKI), abemaciclib (TKI), hydroxyzine 

(Antihistamine), rofecoxib (NSAID), topotecan (Anti-cancer drug), doxorubicin hydrochloride 

(Anti-cancer drug), belzutifan (Anti-cancer drug), duvelisib (Anti-cancer drug), enasidenib 

mesylate (Anti-cancer drug), tamoxifen citrate (Antiestrogen).  This shows that the mentioned 

drugs bind to the same pocket of DHFR as methotrexate. 

Common side-effects were taken into consideration as the more serious side-effects are not that 

common and so are left out of consideration. Rofecoxib was screened out as this drug is no 

longer available due to its association with an increased risk of heart attacks and strokes. 

imatinib mesylate was screened out as it may cause tumor lysis syndrome and cause issues in 

urination. Ripretinib was also screened out as this drug might elevate the blood pressure. 

Axitinib was screened out as its common side effects include elevation of blood pressure. 

Asciminib hydrochloride was screened out as it may commonly lower the blood cell counts. 

Infigratinib phosphate was screened out as it commonly causes changes in the liver function. 

Regorafenib was left out as it commonly causes high blood pressure. Niraparib was not selected 

because it can cause sleep issues. Topotecan was screened out as it lowers blood cell counts. 

Doxorubicin hydrochloride causes hair loss and so was screened out. Belzutifan was screened 

out as it causes anemia and increases blood pressure. Duvelisib was left out as it lowers blood 

cell counts. 
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The drugs left after screening the other drugs out due to having serious side effects include 

azelastine, abemaciclib, bosutinib, clemastine, dasatinib, desloratadine, enasidenib, 

hydroxyzine, meloxicam, pexidartinib hydrochloride and rucaparib. 

QikProp Results 

The pharmacokinetic parameters were analyzed using QikProp, Schrodinger (Table 3) 

Table 3: Analysis of pharmacokinetic parameters 

Molecules Absorption                   Distribution CNS permeability 

 %HOA QPPCaco QPPMDCK QPlogKhsa CNS QPlogBB PSA 

Methotrexate 

(Reference-

drug) 

 

 

100 

 

 

   0.064     0.024     -0.903 

 

 

-2 

 

 

   -4.703  232.803 

Azelastine 100 1063.613 1390.976 0.933 2 0.647 39.805 

Abemaciclib 77.439 123.567 173.578 0.795 1 0.31 68.001 

Bosutinib 73.73 100.404 248.227 0.501 1 0.201 77.957 

Clemastine 

100 

2194.519 3155.986 0.985 

2 0.722 

10.95 

Dasatinib 

83.991 

152.464 259.089 0.162 

-1 -0.726 

108.579 

Desloratadine 

100 

988.051 1331.585 0.77 

2 0.768 

24.788 

Enasidenib 

100 

912.342 4220.167 0.373 

-1 -0.548 

92.723 

Hydroxyzine 

84.542 

175.342 227.401 0.081 

1 0.39 

40.357 

Meloxicam 86.447 

285.547 

220.429 -0.39 -2 -1.064 107.033 

https://pubchem.ncbi.nlm.nih.gov/compound/5328940
https://pubchem.ncbi.nlm.nih.gov/compound/26987
https://pubchem.ncbi.nlm.nih.gov/compound/3062316
https://pubchem.ncbi.nlm.nih.gov/compound/124087
https://pubchem.ncbi.nlm.nih.gov/compound/89683805
https://pubchem.ncbi.nlm.nih.gov/compound/3658
https://pubchem.ncbi.nlm.nih.gov/compound/54677470
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Pexidartinib 

hydrochloride 100 859.786 4837.662 0.872 0 -0.459 64.382 

Rucaparib 84.597 204.26 176.398 0.395 0 -0.157 68.842 

*Percentage of human oral absorption (%HOA), intestinal permeability (QPPCaco2) in nm/s, Coefficient of 

binding to human serum albumin (QPlogKhSa), Central Nervous System activity (CNS), Van der Waals surface 

area of polar nitrogen and oxygen atoms (PSA), IC50 on QPlogHERG, renal permeability (QPPMDCK) in nm/s, 

brain/blood partition coefficient (QPlogBB). 

 

Percentage of Human Oral Absorption, denoted as %HOA, represents the proportion of an 

orally administered drug that reaches the systemic circulation (Drug Absorption - Clinical 

Pharmacology - Merck Manuals Professional Edition, 2023). Projected human oral absorption 

on a scale from 0 to 100% is estimated using a quantitative multiple linear regression model. 

This characteristic typically aligns closely with Human Oral Absorption, as they both assess 

the same trait. Values over 80% is considered satisfactory  (User Manual, 2012).  

Estimated Caco-2 cell permeability in nm/sec was predicted using QikProp, Schrodinger. 

Caco2 cells mimic the gut-blood barrier. QikProp predictions are for non-active transport. A 

value greater than 500 nm/sec was considered satisfactory  (User Manual, 2012).  

Predicted MDCK cell permeability in nanometers per second (nm/sec) was taken into account. 

MDCK cells are recognized as a reliable representation of the blood-brain barrier. QikProp 

predictions are specifically for non-active transport. A value greater than 500 nm/sec was 

considered within the range (User Manual, 2012). 

Binding to human serum albumin is anticipated, with a specified range between -1.5 and 1.5 

(User Manual, 2012). 

Predicted brain/blood partition coefficient was calculated. The required range spans from -3.0 

to 1.2. Predicted central nervous system activity was assessed on a scale from -2 (inactive) to 

+2 (active). The van der Waals surface area of polar nitrogen, oxygen, and carbonyl carbon 

https://pubchem.ncbi.nlm.nih.gov/compound/25151352
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atoms was determined. The accepted range is between 7 and 200 square angstroms (Å2) (User 

Manual, 2012). 

The pharmacokinetic characteristics were then analyzed to propose drug candidates for Breast 

Cancer. For azelastine, %HOA was 100%. The QPPCaco was 1063.613 nm/sec which is better 

than the recommended range. QPPMDCK value was greater than 500 nm/sec which fell under 

the recommended range. The QPlogKhsa is between the range of –1.5 – 1.5 kcal/mol. The 

QPlogBB is between the range of –3.0 – 1.2 and the CNS value is 2. The PSA value is also 

within the range of 7-200 Å. So, azelastine fulfills all the pharmacokinetic parameters and was 

selected. For Abemaciclib, the %HOA was 77.439 which was below the 80%, so it was 

screened out. For bosutinib, the %HOA was below the required 80% and so it was screened 

out. For clemastine, the %HOA value was over the required 80%. The QPPCaco value was 

also over 500 nm/sec. The QPPMDCK value was over the required 500 nm/sec. The 

QPlogKhsa value was also between the recommended range –1.5 – 1.5. The QPlogBB is also 

between the desired value of –3.0 – 1.2. The CNS value is also 2 which is between the desired 

value. The PSA value range was within the recommended range (7-200 Å2). So, clemastine 

could also be a potential candidate.  

For dasatinib, the % HOA was above the required 80% but the QPPCaco value was less than 

500 nm/sec and so it was screened out.  For desloratadine, the %HOA value was over the 

required 80%. The QPPCaco value was over 500 nm/sec. The QPPMDCK value was over the 

required 500 nm/sec. The QPlogKhsa and QPlogBB were also within the range (–1.5 – 1.5 

kcal/mol and–3.0 – 1.2 respectively). The CNS value was satisfactory. The PSA value range 

also matched the desired range which is between 7-200 Å2. So, desloratadine was selected. For 

hydroxyzine, rucaparib and meloxicam, although the %HOA value is over the required 80% 

but the QPPCaco and QPPMDCK values were well below the required 500 nm/sec mark and 

they were discarded from consideration. For pexidartinib, the %HOA, QPPCaco, QPPMDCK, 
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QPlogKhsa, QPlogBB and CNS values were excellent. The PSA value range also matches the 

desired range which is between 7-200 Å2. So, Pexidartinib hydrochloride was also considered. 

3.3 Discussion 

DHFR, under normal physiological state catalyzes the reduction of dihydrofolate to 

tetrahydrofolate, a critical step in DNA, RNA, purine and pyrimidine synthesis. 

Tetrahydrofolate is vital for one-carbon unit transfer in various biosynthetic processes, 

establishing DHFR as a key enzyme in cellular metabolism and growth. However, in certain 

cancers, the expression of DHFR increases markedly contributing to abnormal growth and 

proliferation in cancer cells (Expression of DHFR in Cancer - Summary - The Human Protein 

Atlas, 2021). 

This study explores the expression of DHFR in BC tissues. Initially, an expression analysis 

was conducted to assess the significant upregulation of DHFR in BC patients, particularly in 

Breast Invasive Carcinoma (BRCA), emphasizing DHFR overexpression in BC. Using GEPIA 

it was found that the expression of DHFR significantly increases in BC tissues compared to 

normal tissues. Morales et al. have shown the increase of DHFR in BC (Morales et al., 2009). 

Genotype-Tissue Expression (GTEx) results showed that DHFR expression in normal breast 

tissues is markedly higher in females compared to males, which explains why females are more 

prone to having BC compared to males. The Kaplan-Meier plot (Figure 7) results show that the 

OS for patients with BC with high DHFR expression is almost half as OS for patients with BC 

with low DHFR expression. The Kaplan‑Meier plots also suggest that, PFS for patients with 

BC with low DHFR expression was significantly higher compared to OS for patients with high 

DHFR expression. These results highlight the importance of inhibiting DHFR in BC. 

For this study, methotrexate, a known DHFR inhibitor, was selected as the reference drug. 

Molecular docking was performed to identify molecules with higher binding affinity to DHFR. 
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The results were compared to methotrexate. Drugs with good binding affinity values were 

chosen for subsequent study (Table 1). It is crucial that these drugs bind to the same DHFR 

binding pocket as methotrexate, so superimposition of the drugs to methotrexate in the binding 

pocket was carried out. Discovery Studio (v 16.1.0.15350) was used to assess the types of 

bonds, amino acids involved in the binding to DHFR.  

From the data from Discovery Studio (v 16.1.0.15350), the following drugs were selected: 

ripretinib (TKI), bosutinib (TKI), pexidartinib hydrochloride (TKI), infigratinib phosphate 

(TKI), regorafenib (TKI), abemaciclib (TKI), hydroxyzine (Antihistamine), rofecoxib 

(NSAID), topotecan (Anti-cancer drug), doxorubicin hydrochloride (Anti-cancer drug), 

belzutifan (Anti-cancer drug), duvelisib (Anti-cancer drug), enasidenib mesylate (Anti-cancer 

drug).  

Next, an assessment of pharmacokinetic parameters using QikProp, Schrodinger was 

conducted. Inadequate absorption in the body renders a drug ineffective. Compounds 

exhibiting less than 80% absorption were excluded. Evaluation of distribution parameters 

ensured proper drug dissemination throughout the body. Drugs crossing the Blood-Brain 

Barrier (BBB) were eliminated from consideration due to potential adverse effects. The drugs 

should also be properly excreted from the body and if they are not excreted and stay in the body 

for long period of time, it can be detrimental for the body.  

Finally, after analysing all the data, clemastine, desloratadine and pexidartinib hydrochloride 

were proposed for BC based on their binding affinities, superimposition results, interactions 

and pharmacokinetic profiles. Clemastine formed a carbon hydrogen bond, two alkyl bonds 

and a pi-alkyl bond in the common amino acids of methotrexate with the protein. Desloratadine 

formed a pi-donor hydrogen bond, an alkyl bond and two pi-alkyl bonds in the common amino 

acids of methotrexate with the protein.  Desloratadine formed a pi-donor hydrogen bond, an 
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alkyl bond and two pi-alkyl bonds in the common amino acids of methotrexate with the protein. 

Pexidartinib hydrochloride formed two conventional hydrogen bond, halogen (fluorine), a 

conventional hydrogen bond and two pi-alkyl bonds in the common amino acids of 

methotrexate with the protein. Hydrogen bonds are considered strong interaction (Przybysz et 

al., 2016). 

This study has a few limitations. Only around 300 drugs were used for the study. Using a larger 

library could improve the findings of the study. Second, molecular dynamic simulation was not 

carried out, which could have helped confirm and strengthen our findings from the docking 

experiments. Consideration of these factors in future research could enhance the overall 

reliability of the study. 
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4. Conclusion: 

The first part of the study demonstrated high expression of DHFR in breast cancer. It also 

demonstrated that elevated DHFR expression can lead to lower overall and progression free 

survival. 

The study proposes clemastine (antihistamine), desloratadine (antihistamine) and pexidartinib 

hydrochloride (TKI) as suitable candidates for treatment of BC based on the molecular docking 

study results. The binding affinities of these drugs were -9.4 kcal/mol, -10.2 kcal/mol and -10.0 

kcal/mol respectively which were better than the binding affinity of the reference, methotrexate 

(-9.1 kcal/mol).  Methotrexate interacted with ASN64, ARG70, GLN35, THR146, SER59, 

LEU22, ILE60, ILE16 which were considered to be part of the binding pocket of DHFR. 

Clemastine and desloratadine were found to interact with three amino acids that were in 

common with methotrexate. Pexidaritinib hydrochloride had five amino acids in common with 

methotrexate. Clemastine formed a carbon-hydrogen bond, two alkyl bonds, and a pi-alkyl 

bond within the common amino acids of methotrexate with the protein. Desloratadine formed 

a pi-donor hydrogen bond, an alkyl bond, and two pi-alkyl bonds with the common amino acids 

of methotrexate with the protein. Pexidartinib hydrochloride formed two conventional 

hydrogen bonds; halogen (fluorine), a conventional hydrogen bond, and two pi-alkyl bonds 

with the common amino acids of methotrexate with the protein, indicating strong interactions. 

They all demonstrated satisfactory predicted pharmacokinetic properties as well. Further 

validation can be done using biological assays using cell lines followed by in vivo studies. 
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