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Abstract

In sub-Saharan Africa, where agriculture is a major commercial activity, the secu-
rity of staple crops like beans is threatened by persistent diseases, notably bean
rust and angular leaf spot. Uromyces appendiculatus, the fungus that causes bean
rust, produces rust-colored pustules, whereas Pseudomonas syringae pv. phaseoli-
cola, the cause of angular leaf spot, produces recognizable angular lesions. It is
estimated that these diseases cost the agricultural sector millions of shillings each
year in Uganda due to reduced bean yields, increased costs for disease control mea-
sures as well as the need to remove infected bean crops. A 2017 study found that
Angular Leaf Spot caused a major yearly production loss of 384.2 tons especially
in the Eastern region of the country where over 63% of the people participate in
the activity, this raised major questions. In response to the demand for contempo-
rary, data-driven approaches, this study presents a Deep Learning-based approach
for the rapid and precise detection of angular leaf spot and bean rust by utilizing
CNN algorithms with the free and open-source TensorFlow package and a public
dataset of bean leaf images. This study has trained five models to detect bean
rust and angular leaf spot in bean leaves. The prediction accuracies of the models
were evaluated and the accuracies were 96%, 95%, 94%, 33% and 88% for Xcep-
tion, ResNet50, DenseNet201, VGG19 and InceptionV3 respectively. Additionally,
the performance of the models is evaluated using different metrics like F1-score,
Precision and Recall. The Xception model with the highest prediction accuracy
and Recall of 0.96 stood out as the top-performing model which was selected for
further usage where the model was tested on images of two unhealthy classes and
a healthy class. These algorithms demonstrate increased diagnostic accuracy and
present a viable way to reduce the financial burden that agricultural diseases im-
pose on Uganda and sub-Saharan Africa. Furthermore, the precise bean leaf disease
identification system uses explainable AI frameworks such as LIME (Local Inter-
pretable Model-Agnostic Explanations) to improve interpretability by visualizing
the layer-wise feature extraction. These frameworks present an understanding of
the attributes driving the categorization of diseases and provide details about the
Deep Learning models’ choices hence promoting trust in the diagnostic results.

Keywords: Deep Learning; Convolutional Neural Networks(CNN); Bean rust; An-
gular Leaf spot; Image processing; Classification
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Chapter 1

Introduction

Beans (Phaseolus vulgaris), a member of the legume family are an important com-
mercial crop[9] as well as a staple food. They are one of the most widely grown
crops in Uganda. In addition to being a valuable food source, beans are cultivated
because they can withstand soils with low nitrogen levels, which reduces the need for
excessive fertilizer application[8]. They are highly nutritious and provide important
nutrients such as fiber, antioxidants, minerals, vitamins, and protein. Surprisingly,
beans are the region’s second-largest source of protein for consumers after maize, and
they account for the third-largest portion of caloric intake after maize and cassava.
The Uganda Bureau of Statistics (UBOS) conducted a thorough study in 2017 that
highlights the widespread cultivation of beans, with over 63% [Jjagwe, K. et al, 2022]
of Ugandan households—particularly those in the Eastern region—engaging in the
practice. The majority of bean farmers in this area view bean farming as their main
source of income. The Food and Agriculture Organization (FAO)[11] has reported
that, despite widespread cultivation, crop production per unit area has decreased
over the past ten years due to problems like crop pests, diseases, and other factors.
This makes it necessary to investigate the causes of this decline in more detail and
to put strategic plans in place to deal with them and boost Uganda’s bean harvest.
Bean rust and angular leaf spot are examples of diseases that cause a significant
amount of losses in Uganda’s bean crop production every year, accounting for more
than 18.5%[12] of the total yield. In addition to lowering the earnings of farmers,
substantial crop losses from angular leaf spot and bean rust endanger food secu-
rity and constrain Uganda’s export revenues even in the face of present economic
recession. Several standard procedures, such as crowdsourcing apps[7] and smart
farming technologies, are available for early detection of bean rust and angular leaf
spot. Nevertheless, these processes require a testing facility, time, and technical
know-how.
The figure 1.1 below shows the annual crop distribution in Uganda with Beans
dominating all the other crops.
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Figure 1.1: Annual Crop Production in Uganda

This research aims to leverage deep learning algorithms for bean leaf disease detec-
tion and examine the various classifications. Getting a publicly accessible dataset is
the initial stage in our process. Next, we will augment the images to prevent over-
fitting and boost variety then we will train each individual CNN model on the
pre-processed images. We’ll start with a pre-trained model that has been trained on
a sizable dataset of pictures because we’ll be using the transfer learning approach.
After the CNN models are trained, we will assess how well they function using a test
set of pictures. Finally, a range of metrics, such as accuracy, f1-score, and recall,
will be used to assess the performance. This technology has the potential to aid in
early identification and treatment of bean rust and angular leaf spot, hence assist-
ing farmers and other stakeholders. Technological advancements can contribute to
increased treatment effectiveness and safeguard the overall health and yield of bean
crops by giving a prompt and precise diagnosis. By raising the health and yield of
beans and lowering the expense of treating these diseases, this approach can benefit
Uganda’s agricultural sector.

1.1 Motivation

Our goal is to provide an additional tool through the use of Deep Learning in the de-
tection of the Bean leaf diseases in Uganda. These technologies can be very helpful
in monitoring crop health and disease diagnosis, even though they are not meant to
replace agronomic diagnosis in an agricultural setting. This becomes particularly im-
portant during crop-affecting outbreaks or in situations where resources are scarce.
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Through acknowledgment and assistance from mentors and organizations, we hope
to progress our studies and improve accessibility via online and mobile platforms.
In addition to increasing awareness of possible crop illnesses, this improved acces-
sibility will add to the body of information pertaining to the intersection between
agricultural technology and intelligent machines.

1.2 Thesis Contribution

1.2.1 Problem Statement

The human-based diagnosis of bean crop diseases poses a serious problem to Uganda’s
agricultural industry, and the lack of an automated system for prompt identification
of diseases has a significant negative influence on crop production. When diseases
like angular leaf spot and bean rust are identified manually, it can result in errors, in-
consistencies, and disruptions. This lack of automated detection technologies makes
it more difficult for the agricultural society to take action quickly to new risks and
put preventative actions in place in a timely manner.As a result, the production of
bean harvests is hampered, which affects farmers and prevents the agricultural indus-
try’s total progress. In order to enable preventive and timely identification of bean
crop diseases in Uganda, it is essential that a dependable, automated system that
makes use of cutting-edge technologies—particularly deep learning algorithms—be
developed and put into place.

1.2.2 Solutions

Our work contributes significantly to the prompt detection of illnesses in bean leaves.
Using a publicly available dataset, we methodically trained deep learning models in-
tended to identify a class of healthy beans along with common diseases like angular
leaf spot and bean rust.We performed a thorough evaluation of these models’ perfor-
mances due to their varying degrees of accuracy, which include Xception, ResNet50,
DenseNet201, VGG19, and InceptionV3. A Flask web-based app was developed
to improve the accessibility and functionality. It functions as a simple user inter-
face for prediction and presenting disease classification results. Our contribution
transcends the technical domain by giving Ugandan stakeholders and agricultural
experts a useful tool. Our work aims to greatly enhance the effectiveness, precision,
and responsiveness of identifying diseases by providing a computerized approach to
the prevalent issue of human-based identification of diseases in bean fields. In the
end, this all-encompassing strategy may reduce financial losses, improve the pro-
ductivity of crops, and support the expansion of Uganda’s agriculture industry as a
whole.

1.3 Summary of Contributions

The study presents a unique method for the timely identification of diseases in
bean leaves by utilizing deep learning algorithms. By focusing on the common
problems of bean rust and angular leaf spot, the system successfully classifies three
types of bean rust, angular leaf spot, and healthy bean leaves with accuracy by
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using deep learning models that have been trained on a public dataset. By using a
Flask web application, user accessibility is improved in addition to predictions and
results being shown. This scientific technique offers a computerized and effective
way to recognize diseases that negatively impact bean crop yields, filling a major
gap in Uganda’s farming system where human-based detection methods fall short.
By providing farmers and other agricultural experts with a useful tool for controlling
and safeguarding bean crops, the suggested method advances precision agriculture.

1.3.1 Methodology

The research approach utilized in this study focuses on bean rust and angular leaf
spot, along with a healthy class of bean leaves and it uses deep learning algorithms
to detect diseases in bean leaves in a timely manner. The research focuses on train-
ing deep learning models that can distinguish between the three aforementioned
categories-using a public dataset. To improve the model’s capacity to generalize to
various contexts, image augmentation techniques are utilized. After training, the
models are incorporated into a Flask web application to enable accessible user in-
terfaces and instantaneous prediction. Further details regarding the methodology
including training parameters, model architectures, evaluation metrics are discussed
in the subsequent Chapters.

1.4 Thesis Outline

Chapter 1
A summary of the economic significance of beans (Phaseolus vulgaris) in Uganda
is given in this chapter. It highlights how important beans are as a commercial
crop and as an essential food supply. The chapter presents the central idea of the
thesis, which is leveraging deep learning models for the timely detection of bean
leaf diseases, with a focus on angular leaf spot and bean rust. It provides context
for the thesis by emphasizing the motivation, problem statement, and the thesis
contributions.

Chapter 2
In this chapter, a thorough assessment of the literature review is conducted with
an emphasis on studies that have used CNN algorithms—especially deep learning
approaches—to detect diseases in a variety of crops. The chapter provides insight on
the development and efficacy of deep learning techniques in the field of agricultural
disease detection by critically analyzing the various CNN model architectures used
in these research.

Chapter 3
This chapter turns its emphasis to a thorough examination of the dataset. It de-
scribes the repository from which the data was obtained and offers an understand-
ing of its components and characteristics. It also explores the image pre-processing
methods used, including augmentation, shedding light on the tactics used to improve
the quality and diversity of the dataset. In addition, the chapter reveals details of
the data splitting strategies used, providing a solid basis for further study and model
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training.

Chapter 4
A thorough description of the methodology, specifically the deep learning workflow
used in the study is given in this chapter. The study’s use of transfer learning models
is described in great length. Additional details regarding the model selection and
training parameters deepen the reader’s comprehension and provide context for the
analysis and results that follow.

Chapter 5
This chapter provides an illustrative and statistical focus as it details the study’s im-
plementation and results. The chapter explores performance measures with charts
showing losses and accuracies of the models. Extensive classification reports that
include important evaluation metrics such as recall, precision, and F1 score offer a
thorough analysis of the models. A detailed analysis of the models enhances the dis-
cussion by illuminating their respective benefits and drawbacks. In order to provide
a more sophisticated understanding of the models’ decision-making processes, the
chapter also adds a layer of interpretability through the use of LIME to visualize
image samples.

Chapter 6
This chapter discusses how the Flask web workflow is implemented, explaining its
features and its patterns of user interaction. It addresses limitations of the system
by providing an interactive investigation of integrating the trained models into a
user-friendly online application. This chapter functions as a link between complex
deep learning models and practical applications, offering insightful information on
the operations and possible drawbacks of the platform .

Chapter 7
This Chapter summarizes our Conclusions and describes our Future work. It sum-
marizes the main conclusions drawn from the research and suggests directions for
more investigation. Our goal is to come up with a scale-down version of the best-
performing model that can be incorporated into lightweight IoT devices. This
optimistic chapter highlights how the suggested system is still evolving and lays the
groundwork for future developments and useful applications.
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Chapter 2

Literature Review

Within the field of machine learning, deep learning (DL) attempts to extract sophis-
ticated features from unprocessed data. It is made up of several stages of neural
networks, with lower levels identifying basic components like margins and lines and
higher layers specializing in more complex qualities. The output of the layer before
it is used as the input for each subsequent layer. Bean yields are severely impacted
by diseases, which result in a loss of more than 18.5%[12] of the overall output.
Timely diagnosis and identification of afflicted plants is an essential approach for
dealing with this problem. The ability to predict and prevent diseases in bean
plants has greatly improved with the use of sophisticated Artificial Intelligence and
deep learning[25] classification techniques. By combining various classification algo-
rithms, diseases that harm bean leaves, such as Bacterial Blight or Rust, may now be
predicted to some extent. For instance, machine learning algorithms outperformed
conventional methods in a study when it came to forecasting outbreaks of bean
illnesses such bacterial blight. Experiments on plant disease detection techniques
were conducted , with an impressive accuracy rate of 96%[1]. With the use of pic-
ture datasets and different data classifiers, data engineers have been concentrating
their efforts on improving the identification, evaluation, and forecasting capacities of
diseases. The imaging interpretation that these studies focus on is done by CNNs,
a type of deep learning method. A model that has been trained with the initial
architecture and learnt weights unaltered is leveraged in this manner. Employing
the feature extraction expertise it acquired from its first training, the CNN algo-
rithm processes a set of photographs of a different type in this phase. That is, an
entirely fresh network that does the intended categorization task is built using the
features that were captured. This methodology is commonly employed in order to
avoid the substantial computational expenses linked with training extremely deep
networks from the very beginning or to maintain the development of significant fea-
ture extractors during the initial stage. A comprehensive literature review of earlier
research articles utilizing the same dataset is essential when using a previously pro-
cessed dataset for study. Analysis of the current literature provides us with crucial
insights on the methods, models, as well as strategies used by previous researchers.
This allows us to expand on their work, spot any limitations or discrepancies, and
add to the body of research already known in the area of study. In addition, examin-
ing the results and outcomes of earlier research gives us a benchmark that allows us
to measure the effectiveness and applicability of our chosen methodology. It enables
us to assess the accuracy of our outcomes, pinpoint areas in need of enhancement
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and to contrast the results we obtained with the ones of similar studies.
Currently, CNN algorithms have been able to attain human-like proficiency in sev-
eral complex pictures classifications, such as image analysis and identification. Since
Yann LeCun’s 1998 creation of LeNet[16], one of the first effective CNN designs,
which was used to recognize scribbled numbers, numerous CNN architectures have
been developed across the course of twenty years since then. LeNet is viewed as
a simple architecture with three convolutional, two average pooling, and two fully
linked layers, even if it is contrasted to more sophisticated CNN algorithms nowa-
days. In the parts that follow, a brief description of the CNN architectures used
in the examined research, their usage in identifying bean leaf illnesses, and their
finding results are given.

2.1 Deep Learning Algorithms

The emergence of artificial intelligence (AI) is revolutionizing the detection and
categorization of agronomic images enabling farmers to more successfully battle de-
structive bean diseases like angular leaf spot and bean rust. Computerized models
can outperform humans in time and precision when assessing everything from aerial
shots to close-up shots of leaves, allowing for swift diagnosis and prompt actions.
With its remarkable flexibility and lightning-fast responsiveness, precision agricul-
ture[29] can achieve enormous potential by enabling proactive disease prevention
and monitoring in real time. Food availability can be improved, environmentally
friendly agriculture can be encouraged, and losses in yield can be greatly decreased
by early diagnosis of angular leaf spot and bean rust. In the rapidly developing field
of artificial intelligence, deep learning is the foundation for image analysis, while
machine learning serves as the general data manipulator. Deep learning’s adapt-
ability and context-aware learning skills have made it a rising star in agricultural
research. Deep learning addresses the intricacies of data related to agriculture by
imitating the sharp vision of experienced farmers. It does this by extracting critical
elements that are necessary for the identification and diagnosis of grave bean diseases
like bean rust and angular leaf spot. The effectiveness of it is derived from three
primary learning techniques: unsupervised learning, which looks for hidden pat-
terns in unlabeled data, semi-supervised learning, which uses a combination known
and unlabeled information to forecast the disease and supervised learning[13] which
uses labelled data. A variety of techniques based on deep learning (DL) have shown
promise in recognizing and classifying a variety of diseases affecting bean leaves, such
as angular leaf spot and bean rust. Convolutional neural networks (CNNs) are par-
ticularly notable among them due to their outstanding image analysis performance.
CNNs have the potential to greatly increase the precision of disease detection[27]
algorithms by enhancing the visual quality of bean leaf pictures. But it’s important
to recognize that, despite the enormous potential that DL has to transform bean
disease management, there are still issues that need to be addressed through further
research and improvement in order to safeguard its broad and dependable use in
agricultural contexts. The rising threat to crop diseases, especially in the produc-
tion of maize, emphasizes the urgent need for effective management through prompt
identification and precise severity assessment. In order to improve feature represen-
tation, this paper presents a CNN model that combines features from the ResNet101
and Inception-V3 models for transfer learning[31].An attention layer concentrates
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on important disease-related characteristics to further improve performance. The
model’s impressive accuracy of 0.956 and high specificity of 0.985, obtained through
hyperparameter tuning and a 5-fold study, demonstrate the model’s effectiveness
in primary stage disease diagnosis. With the use of cutting-edge technologies, this
proactive approach tackles challenges associated with growing maize, underscoring
the paper’s commitment to the advancement of agricultural sustainability through
innovative disease diagnosis and control. Both the productivity and quality of mango
cultivation are seriously threatened by mango leaf diseases[30], which make accurate
diagnosis more difficult to achieve than with a casual observer. Recently, computer-
aided methods and machine learning have been used to classify diseases on mango
leaves. Unfortunately, these techniques’ efficiency has been hampered by issues in-
cluding increasing overfitting, computational cost, and feature dimensionality, in
addition to a deficiency of discriminative feature qualities. In order to overcome
these drawbacks, the present work presents a brand-new classification method for
diseases of mango leaves that includes four crucial phases: feature selection, learning
and classification, performance evaluation, and data processing.With 1,536 photos
from the open Kaggle database that are divided into categories of healthy and un-
healthy images, the dataset used by the suggested system has excellent performance
metrics. The top model, for example, has a sensitivity of 96.2% and an accuracy of
97.9%. These results highlight how well the system that was built was able to clas-
sify diseases of the mango leaf, providing a viable way to improve the production and
management of mango farming. According to the Ghana Statistical Service, cocoa
is a crucial cash crop that makes a substantial economic contribution to Ghana[33].
It accounts for around 3% of the country’s GDP and about 20% of all export earn-
ings. But recent obstacles, especially the spread of cocoa diseases like Black Pod
and Swollen Shoot, have threatened income and resulted in an 11% reduction in
crop yield. This research aims to strengthen early detection and diagnosis of these
major diseases affecting cocoa output by utilizing mobile technology and machine
learning (ML) approaches, realizing the need of action. The method entails creat-
ing a distributed mobile application that gives farmers the ability to film or take
pictures of their cocoa plantations. With a focus on Swollen Shoot and Black Pod,
the system uses deep Convolutional Neural Networks (CNNs) for image analysis,
classification, and illness diagnosis. Four different CNN models are trained using
an extensive dataset of 2,828 cocoa photos distributed among three class labels:
CenterNet ResNet50 V2, EfficientDet D0, SSD MobileNet V2, and SSD ResNet50
V1 FPN.SSD MobileNet V2 is the most effective and broadly applicable of these
models, with an impressive detection confidence score of about 88.0%. This study is
at the vanguard of using cutting-edge technology to manage cocoa diseases. It pro-
vides farmers with an easy-to-use tool for quick and accurate diagnosis, which will
increase the productivity and sustainability of Ghana’s cocoa production industry.
As a basic staple food for many nations, rice depends on consistent productivity,
and early detection of rice leaf diseases becomes essential to preserving this sustain-
ability. The conventional approaches of disease identification, which are primarily
manual and equipment-dependent, are time-consuming and ineffective, which adds
to the rising expenses of chemical testing and visual identification. By utilizing Deep
Learning (DL) and transfer learning approaches, this work aims to address these is-
sues by accurately identifying and classifying rice leaf diseases. A comprehensive
dataset of 5932 self-generated pictures of rice leaves[35] is curated by the research,
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supplemented with benchmark datasets, and classified into 9 classes that repre-
sent various disease states. These classes include leaves in varying stages of blast,
brown spot, blight, tungro, and health. To enhance image diversity, data augmen-
tation comes after meticulous manual labeling and dataset segmentation that has
been verified by horticulture specialists. Together with well-known transfer learning
techniques (VGG16, Xception, ResNet50, DenseNet121, Inception ResnetV2, and
Inception V3), the suggested customized Convolutional Neural Networks models
are carefully assessed. With a 99.94% generalization accuracy, the unique VGG16
model in particular performs exceptionally well, outperforming current state-of-the-
art benchmarks. Moreover, the study uses explainable AI to improve interpretability
by visualizing the layer-wise feature extraction. This research offers an effective and
precise way to reduce the difficulties associated with manual identification and chem-
ical testing in rice cultivation. By successfully fusing DL techniques with transfer
learning, it significantly advances the field of rice leaf disease detection. As a com-
mon grain crop in semi-arid areas, millets have drawn interest due to their possible
healing properties for cancer as well as their nutritional value, which includes fiber,
magnesium, phosphorus, zinc, and serotonin. In particular, it has been found that
Foxtail Millet Bran (FMBP)[28] has active ingredients that stimulate increased ROS
production, hence inhibiting the STAT3 pathway and slowing the proliferation of
cancerous cells in the intestine. The importance of millets in cancer therapy is in-
creased by their potential health benefits, notably the fact that they are gluten-free.
In the medical field, colonoscopy, histological image analysis, and magnetic reso-
nance imaging have historically been used to identify colon polyps. On the other
hand, manual methods are recognized for being less precise and time-consuming.
Remarkably, there is a marked deficiency in the availability of specialized models
designed to assess how well millet eating heals colon cancerous cell growth. By
putting out a deep learning-based MobileNet-V3 model for the identification and
categorization of histology images, this study seeks to close this gap. Researchers
and medical professionals will find the envisioned model useful as it has the poten-
tial to automate the evaluation of malignancy status both before and after millet
eating. This work presents a revolutionary way that could transform the assessment
of the therapeutic effect of millets on colon health by utilizing deep learning tech-
niques. This method offers a more accurate and efficient substitute for conventional
approaches. Plant diseases present a constant threat to agriculture, which is the es-
sential basis for human subsistence and greatly affects agricultural output. Though
widely used, traditional detection techniques are labor-intensive and prone to er-
rors, therefore it’s important to look into faster, more scalable, and more effective
alternatives. With a major focus on Convolutional Neural Networks (CNNs) and
MobileNet architectures, this research explores the revolutionary potential of Deep
Learning (DL) models[32] for the accurate and early diagnosis of plant diseases.
By showing these models’ decision-making processes, the integration of eXplainable
Artificial Intelligence (XAI) using GradCAM improves interpretability and provides
insights into disease indications in plant images. After undergoing extensive testing,
the CNN model shows an outstanding 89% accuracy rate, 96% precision and recall
rates, and a 96% F1-score. However, the accuracy achieved by the MobileNet design
is only 96%, while the precision, recall, and F1-scores are only marginally higher at
90%, 89%, and 89%, respectively. These findings highlight how DL is revolution-
izing plant disease detection strategies and offer a strong substitute for established

9



methods. By adding XAI, DL models become even more interpretable, boosting
decision-making confidence and bringing in a new era of enhanced agricultural se-
curity due to better disease detection capabilities.

The architectures of several deep learning models are thoroughly discussed in the
sections below, and their intricate details and guiding principles are clarified to
demonstrate how effective they are at transforming the detection of plant diseases.

2.1.1 MobileNetV2

In 2018, MobileNetV2, a convolutional neural network architecture specifically de-
signed for mobile and edge computing, was unveiled. It was an evolution of Google’s
original MobileNet. First presented in a research paper titled ”MobileNetV2: In-
verted Residuals and Linear Bottlenecks,”[10] the novel design approach of Mo-
bileNetV2 centers on maximizing the delicate balance between computational effec-
tiveness and accuracy of models.The use of inverted residuals and linear bottlenecks,
which combine lightweight depthwise separable convolutions and linear projections
to drastically cut computational costs while maintaining the fundamental strength
of representations, is its main innovation. Using 1x1 convolutions with linear ac-
tivation functions as linear bottlenecks accelerates channel dimensionality prior to
more complex processes, resulting in a smaller model size and improved computa-
tional performance. MobileNetV2, which is well-known for its scalable and modular
architecture, enables flexibility in adjusting the model size to meet the resource lim-
itations of various mobile and edge devices. With its ability to smoothly balance
the requirements of computational economy and model performance, this innovative
technique has driven MobileNetV2 into widespread usage and made it a cornerstone
in mobile applications. The system is ideal for effective field-based disease tracking
because it is built on top of MobileNetV2[37]. Figure 2.1 shows the architecture of
MobileNetV2 which was developed by Mark Sandler, Andrew Howard, Menglong
Zhu, Andrey Zhmoginov, and Liang-Chieh Chen, as introduced in their research
paper ’MobileNetV2: Inverted Residuals and Linear Bottlenecks’ (2018).

Y = ReLU(Wp(ReLU(WdX))) (2.1)
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Figure 2.1: Layer Visualization of the MobileNetV2 model

2.1.2 DenseNet201

Being a member of the DenseNet family, DenseNet201 is a convolutional neural
network architecture distinguished by its dense connectivity layout. DenseNet201,
created by Gao Huang, Zhuang Liu, and Laurens van der Maaten, expands on
the concept of strongly connecting each layer in a feedforward manner to every
other layer[5]. In addition to improving gradient flow throughout the network and
facilitating feature reuse, this architecture helps to mitigate the vanishing gradient
problem. Every layer in DenseNet201 receives direct input from every layer that
came before it, and every layer that came after it receives its output. DenseNet201
is especially useful for tasks involving big datasets because of its dense connection,
which enhances parameter efficiency, model compactness, and accuracy. The con-
nection structure and layer interactions are shown in the figure 2.2 below to help
visualize the DenseNet201 design. The DenseNet201 architecture’s authors, Gao
Huang, Zhuang Liu, and Laurens van der Maaten, designed this architecture dia-
gram.

Xl + 1 = Hl([X0, X1, X2, ..., Xl]) (2.2)

11



Figure 2.2: Layer Visualization of the DenseNet201 model

2.1.3 ResNet50

According to Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun’s publica-
tion ”Deep Residual Learning for Image Recognition” (2016)[4], ResNet50, which
refers to Residual Network with 50 layers, is a deep convolutional neural network
design. A member of the ResNet family, ResNet50 rose to prominence when it solved
the vanishing gradient issue and improved the training of extremely deep neural net-
works.The inclusion of residual blocks, which provide skip or shortcut connections to
the conventional convolutional layers, is one of ResNet50’s key characteristics. The
gradient can move through the network more directly thanks to these shortcuts,
which makes training remarkably deep networks easier.ResNet50 primarily consists
of 50 convolutional layers pooling and fully connected layers subsequently, in ad-
dition to convolutional, activation, and batch normalization layers. As a popular
model in the computer vision society, the architecture achieves outstanding results
on a variety of image classification tasks.
Xiangyu Zhang, Shaoqing Ren, Jian Sun, and Kaiming He developed ResNet50, a
groundbreaking deep convolutional neural network design. They invented the idea
of residual blocks and greatly enhanced the training of deep neural networks with
their ground-breaking work on residual learning, which is described in the paper
”Deep Residual Learning for Image Recognition” (2016). With its distinctive use of
residual blocks for improved performance, ResNet50’s architecture is shown in the
figure 2.3 below.

y = F (x, (Wi)) + x (2.3)

12



Figure 2.3: Layer Visualization of the ResNet50 model

2.1.4 Xception

Xception, which stands for ”Extreme Inception,” is an architecture for a deep neu-
ral network that uses depthwise separable convolutions. While it draws inspiration
from the Inception architecture, depthwise separable convolutions are used in place
of normal convolutions to produce a more parameter-efficient system. Depthwise
separable convolutions are made up of a pointwise convolution (a 1x1 convolution
to aggregate information across channels) after a depthwise convolution (a single
filter applied to each input channel). This division keeps expressive power while
lowering the number of parameters.
In the academic paper ”Xception: Deep Learning with Depthwise Separable Convo-
lutions[6], François Chollet presents the ground-breaking Xception deep neural net-
work architecture (2017). The Xception architecture is shown in the figure 2.4 below
with reference to the above author, which also highlights the creative way in which
depthwise separable convolutions are used to improve computing efficiency.

y = a(DW (x)) ∗ PW (a(x)) (2.4)

13



Figure 2.4: Layer Visualization of the Xception model

2.1.5 InceptionV3

The popular convolutional neural network architecture InceptionV3 was first pre-
sented by the research team of Google researchers Christian Szegedy, Sergey Ioffe,
and Vincent Vanhoucke[3]. The aforementioned design is a development of Incep-
tionV1, its predecessor, and it integrates new technologies to enhance model per-
formance and training speed. The usage of inception modules, which are made up
of several parallel convolutional procedures with different kernel sizes, by Incep-
tionV3 is well recognized. The system can gather and interpret data at various
spatial scales thanks to the use of a number of inception modules by InceptionV3.
These modules include pooling techniques and convolutions of sizes 1x1, 3x3, and
5x5, which enable the extraction of various features. The design of InceptionV3
strikes a compromise between expressive power and computational efficiency. To
enhance gradient flow, the architecture incorporates additional auxiliary classifiers
and factorized 7x7 convolutions during training. When it comes to image classifi-
cation challenges, InceptionV3 has performed better in general. The InceptionV3
architecture, which was introduced by Christian Szegedy, Sergey Ioffe, and Vincent
Vanhoucke from Google Research, is shown in figure 3.5 below.

Inception(X) = [Concat(Branch1(X), Branch2(X), Branch3(X), Branch4(X))]
(2.5)
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Figure 2.5: Layer Visualization of the InceptionV3 model

2.1.6 EfficientNet

The EfficientNet family of convolutional neural network designs was presented in
the 2019 research paper ”EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks” by Mingxing Tan and Quoc V. Le[14]. With the goal of increas-
ing efficiency in terms of both model size and computational cost, EfficientNet is
intended to offer a methodical and fundamental strategy for convolutional neural
network scaling.The depth, width, and resolution of the network are all consistently
scaled thanks to a compound scaling technique introduced by EfficientNet. To max-
imize model performance, these scaling factors should be balanced. The architecture
starts with a baseline network and scales it up or down according to a compound
coefficient that the user defines. Because of its ability to adapt efficiently to varying
resource restrictions, EfficientNet is especially well-suited for a broad spectrum of
devices and applications.EfficientNet has maintained effectiveness while achieving
state-of-the-art performance on a variety of image classification tasks. Because the
architecture strikes a compromise between accuracy and resource needs, it has been
widely utilized for edge computing and mobile applications.
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The architecture of EfficientNet, developed by Quoc V. Le and Mingxing Tan, is
shown in Figure 2.6

CompoundCoefficient : n = bC ∗ p (2.6)

Figure 2.6: Layer Visualization of the EfficientNet model

2.1.7 VGG19

Introduced by the University of Oxford’s Visual Geometry Group (VGG), VGG19
is a deep convolutional neural network design. The VGG16 architecture, which
was first introduced in the 2014 publication ”Very Deep Convolutional Networks for
Large-Scale Image Recognition” by Karen Simonyan and Andrew Zisserman[2], is
expanded upon herein. VGG19 has a consistent architecture and is defined by its
simplicity. Its 19 layers include 3 fully linked layers and 16 convolutional layers.
Max-pooling layers with 2x2 filters are used for spatial down-sampling, and the
convolutional layers use tiny 3x3 filters with a stride of 1. The architecture is
renowned for having a deep, uniform structure that makes it simple to comprehend
and use. Even though VGG19 may not be as computationally efficient as other later
architectures, it is nevertheless a popular choice and a reliable starting point for a
variety of computer vision problems.
The figure 2.7 below illustrates an overview of the VGG19 architecture which was
developed by the Visual Geometry Group at the University of Oxford.

Y = a(WX + b) (2.7)
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Figure 2.7: Layer Visualization of the VGG19 model

2.2 Related Works

For effective plant disease forecasting Sutaji and Yıldız suggested LEMOXINET[22],
an ensemble model that combines Xception and MobileNetV2. Xception improves
MobileNetV2, designed for mobile devices, to capture important aspects, leading to
higher accuracy. Having an accuracy of 99.10% on the data set from Plant Village,
the ensemble model outperformed each of the models. Relative to other designs,
this method allows mobile incorporation with smaller sample files and variables and
it outperforms seven current CNN models.

Aarizou and Merah presented a study at the 7th International Conference on Image
and Signal Processing and its Utilization (ISPA) in 2022[20].Their research focused
on using transfer learning to identify plant diseases in intricate picture data. The
utilization of transfer learning approaches to improve the efficacy of infectious disease
identification algorithms was investigated by the writers.

Utilizing several deep learning-powered already trained models—MobileNetV2, Ef-
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ficientNetB6, and NasNet. Singh, Chug, and Singh looked at the categorization of
illnesses plaguing bean leaves. The influence of different ways to optimize on various
Convolutional Neural Network (CNN) models was investigated by scientists using
transfer learning techniques[21] on a dataset of 1295 bean leaf images with three
different classifications, encompassing bean rust and angular leaf spot disorders. Ef-
ficientNetB6 surpassed other models, according to the experimental investigation,
which showed an accuracy of 91.74%. The work offers tangible uses of the optimal
model for farmers, enabling timely preventive interventions and avoiding plant yield
loss, in addition to shedding light on the roles played by various optimizers on CNN
models. Growth in the economy and increased agricultural output could result from
this.

Joel Kennedy, Joshua Alfred, and Karthik published a paper in Ecological Informat-
ics that presented a novel method for detecting coffee leaf disease[23]. Understanding
how important a precise diagnosis is to maintaining the health of coffee plants and
producing high-quality beans, the researchers created a deep learning-based classifi-
cation system. To accomplish accurate disease categorization, the suggested network
combines global context, multi-head interest, and inception modules. Multiple-scale
feature extraction is made possible by Inception modules, while high-level context-
based data is obtained by channel attention in the General Context Block. Sophis-
ticated pattern interactions are captured by the multiple focus heads module, which
strengthens the input’s interpretation. The suggested network beat previous models
after being trained on the BRACOL dataset, with an astounding accuracy of 98.57%
and an F1 score of 98.55%.
The academic publications that we analyzed, together with the models they used
and their estimated accuracy, are listed in Table 2.1.
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Ref Author
CNN
Model

Crop
Type

Dataset Accuracy

[15] Abed, S. et al.
Dense-
Net121

Beans

Manually
collected
Bean
Leaves

98.31%

[27] Vimal, A. et al.
Efficient-
NetB6

Beans
Dataset
of 1295
images

91.74%

[23] Karthik, J. et al.
Inception
modules

Coffee
BRACOL
dataset

98.57%

[22] Deni Sutaji, O. et al.
Mobile-
NetV2

Various
plants

Plant
Village
dataset

98.30%

[22] Deni Sutaji, O. et al. Xception
Various
plants

Plant
Village
Dataset

99.10%

[19] Sahu, P. et al. VGG16 Beans
1296
Leaf
Images

95.31%

[26] Abebech, A. et al.
CNN-
LSTM

Various
plants

Many
Datasets

92.55%

[34] Marriam, T. et al. CoffeeNet Coffee

Arabica
coffee
leaf
repository

98.54%

[38] SERTTAŞ, S. et al. ResNet50 Beans
1295
images

98.33%

[24] Koklu, M. et al
Dense-
Net201

Dry
Beans

60
images

100%

[17] ChowdhurY, M. et al.
Efficient-
Net-B4

Tomatoes
18,161
images

99.89%

[18] Rakesh, M. et al
VirLeaf-
Net-1

Vigna
mungo

Manually
collected
leaves

91.234%

[18] Rakesh, M. et al.
VirLeaf-
Net-2

Vigna
mungo

Manually
collected
leaves

96.429%

[18] Rakesh, M. et al.
VirLeaf-
Net-3

Vigna
mungo

Manually
collected
leaves

97.403%

[36] Vivek, A. et al ClGanNet Maize
Real
Field
Images

99.97%

Table 2.1: Research papers on Disease Detection of Various crops using Deep Learn-
ing
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While our work builds on previous research, it stands out by addressing issues
that other studies have frequently ignored. Although prior studies mostly used
pre-trained models, they seldom took the time to thoroughly analyze the complex
structures that underlie these models. Our work, on the other hand, attempts to
close this gap by carefully examining the architectures and illuminating the intri-
cacies that affect the models’ functionality such as the number of layers and kernel
sizes of the models. We are dedicated to analyzing the complexities of these deep
learning models, which will enable a better comprehension and more accurate ap-
plication in the context of bean disease detection. Our work goes beyond simple
application of the models.

2.3 Chapter Summary

To sum-up, this chapter, which focuses on CNN models and deep learning algo-
rithms, offers an in-depth review of previous research in the field of agricultural
disease identification. Although previous studies have achieved great progress us-
ing pre-trained models, our work aims to stand out by using these models together
with a more in-depth analysis of their architectures. This strategy is expected to
fill important gaps in the literature by offering fresh perspectives and improving
the effectiveness of deep learning models in the context of prompt and precise bean
disease diagnosis.
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Chapter 3

Dataset

For our study, we used a large dataset that included 5,000 initial pictures that were
then further enhanced by augmentation to produce a total of 10,000 images. Train-
ing powerful and effective deep learning models requires a wide and representative
dataset, which is made possible by the augmentation process. With its large image
collection, this dataset was made publically available in order to further research
and applications in the areas of agricultural optimization and efficient bean crop
disease control. Easily obtainable via the Makerere University Artificial Intelligence
Laboratory Repository(published on July 20, 2022). Researchers and practitioners
interested in investigating novel approaches for the identification of bean rust and
angular leaf spot in beans can use this invaluable resource . With healthy bean leaf
pictures acting as a control experiment, our models identify patterns and variances
in pixel values linked to distinct classes during the learning phase. The dataset
is essential for training our algorithms to correctly detect and classify images as
having bean rust, angular leaf spot, or being healthy.Figures 3.1 and 3.2 show a
few examples of images taken from the used dataset before and after augmentation
respectively.

Figure 3.1: Image samples before Augmentation
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Figure 3.2: Image samples after Augmentation

3.1 Data pre-processing

The 5,000 images in the dataset are split into three classes; angular leaf spot, healthy
and bean rust images and data augmentation is achieved through random transfor-
mations and perturbations, encompasses a range of techniques aimed at generating
”new” training samples from existing ones, all while preserving the original class la-
bels. The primary objective of data augmentation is to enhance the model’s ability
to generalize. By introducing slight modifications to input images without altering
their class labels, data augmentation increases the number of images to 10,000 hence
it proves to be a logical and straightforward approach for image processing tasks.
Although various data augmentation techniques are commonly employed to enhance
model performance, in our case, we specifically employ the ”Dataset generation and
expansion” approach to address the highlighted problem and provide a solution.
The key objective is to maintain a reasonable ratio (train, test, validate), and this
entails increasing the number of diseased images during the augmentation process.
The workflow follows a series of steps to accomplish this task. Initially, all input
images are loaded from the disk. Subsequently, the ImageDataGenerator is applied
to augment the input data. The class is instantiated, and various data augmentation
parameters are customized within the class constructor. Multiple strategies, along
with pixel zooming techniques, are then implemented. After manually processing
each image, an array is constructed, which is subsequently fed into the datagen ob-
ject using the flow method to handle these numerous images efficiently. Throughout
training, these enhancements increased the dataset with every epoch in addition
to adding new variants to the pictures. The table 3.1 below summarises the pre-
processing techniques that were applied to the dataset.

3.2 Data Splitting

To ensure accuracy and appropriate image dimensions, the input data is separated
into three categories (training, testing, and validation) after it has been enhanced.
80% is allocated to training, 10% is allocated to validation and 10% to testing, as
shown in figure 3.2 below.
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Model compilation
Model optimizer=’Adam’
Loss Method=’binary-Cross Entropy’

Iteration set EPOCHS=50

Data Augmentation

Preprocessing function = preprocessing input,
rotation range = 40,
width shift range = 0.2,
height shift range = 0.2,
shear range = 0.2
zoom range = 0.2
horizontal flip=True

Table 3.1: Procedure for preprocessing

Figure 3.3: Dataset Distribution
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As seen in Table 3.2, the dataset has been grouped for greater efficiency while train-
ing and evaluating the models. 8020 samples are included in the training stage, while
1202 and 802 samples are included in the testing and validation stages, respectively.
By organizing the processes in portions, the model during training and evaluation
processes become more computationally efficient. In order to guarantee that the
Convolutional Neural Network algorithms are reliable and competent of correctly
classifying the bean leaf classes, the methodical dataset segmentation combined
with layered splits provides a solid basis for the models’ testing and training.

Class Train Test Validation
Angular Leaf Spot 2669 404 268
Bean Rust 2655 398 266
Healthy Leaves 2696 400 268
Total 8020 1202 802

Table 3.2: Summary of the Dataset

3.3 Chapter Summary

We explored the details of our dataset acquisition in this extensive chapter, offering
explanations for its source and accessibility via a public repository. Stressing the
importance of having a large and varied image collection, we described the pre-
processing techniques we used, such as the augmentation process that increased
the size of our dataset to 10,000 photos. We also provide insights into the careful
dataset separation methods used to guarantee successful model training. In search of
efficient bean crop identification and agricultural productivity, this chapter provides
a foundational overview, outlining the key elements that form the basis for our more
advanced deep learning approaches.
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Chapter 4

Methodology

This section outlines the thorough approach that reinforces our suggested technique
for the identification and diagnosis of bean rust and angular leaf spot in beans. Our
approach combines modern deep learning methods to create a strong model that can
recognize subtle signs that are symptomatic of these prevalent bean infections. The
emphasis is on systematic and practical considerations, describing the techniques
and tactics used to ensure precise and effective disease diagnosis.

4.1 Deep Learning Workflow

Following the image augmentation from chapter 3, the goal is to enhance the model
ability to generalize to new and unknown images. Training robust and flexible
models depends critically on this augmentation process therefore the resulting aug-
mented image dataset is carefully split using predetermined split ratios of 80%,
10%, and 10% for training, testing, and validation sets, respectively. Through the
provision of discrete datasets for training, testing, and validation, this methodolog-
ical division guarantees a neutral assessment of the models’ performance. Within
the framework of the current classification problem, the input data is divided into
three separate classes: angular leaf spot, bean rust, and healthy. Five advanced
neural network designs are used to perform the classification task: ResNet50, In-
ceptionV3, DenseNet201, Xception, and VGG19. After evaluating each model’s
distinct architectural strengths, each is chosen based on its proven performance in
picture classification tasks. Utilizing the updated datasets, the neural network mod-
els undergo extensive training, testing, and validation processes. Vital parameters
including batch size, image height, and width are closely monitored during this pro-
cedure. For accurate predictions to be made and for the models to be optimized for
the given dataset, these parameters are essential. In order to enhance the models, a
thorough fine-tuning procedure is employed. The process of fine-tuning entails mod-
ifying the models to optimize their performance on the particular dataset, taking
into account aspects like batch size, image width, and height. The iterative process
of fine-tuning guarantees that the models develop to comprehend complex patterns
and the details present in the dataset, hence improving their overall performance.
The empirical results highlight the effectiveness of using a variety of neural network
models—DenseNet201, ResNet50, InceptionV3, VGG19, and Xception—in conjunc-
tion with reliable data augmentation methods. In picture classification tasks, the
combination of these models and augmentation procedures works wonders to achieve
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high precision. This all-encompassing strategy, which includes a variety of neural
network topologies as well as careful parameter optimization, validates the models’
ability to correctly classify images into the assigned categories. The figure below
represents the proposed deep learning workflow.

Figure 4.1: Proposed Deep Learning workflow
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4.2 Working Plan

With the assistance of our thesis instructor, we were able to locate a suitable dataset
after examining numerous datasets. As seen in Figure 2, that dataset includes leaves
with bean rust, angular leaf spot, and healthy leaves. Next, in order to increase the
diversity of the dataset and improve the model’s capacity to apply its expertise to
new or unfamiliar material, we employed pre-processing techniques including data
augmentation. The model was able to learn broader features from many versions of
the original photos by applying techniques such as rotation, scaling, and flipping to
create novel variants of the initial images.

We also read through a number of research articles concerning the outcomes of deep
learning algorithms. Then, because to their excellent performance, we selected Xcep-
tion, Inception-v3, VGG19, DenseNet201, and ResNet50 for our transfer learning
model. DenseNet201 was chosen because of its improved feature and reuse capabil-
ities, which are made possible by its dense connections, which also make it possible
to employ features from earlier layers more effectively. It provides parameter effi-
ciency and captures fine-grained information, demonstrating promising outcomes in
tasks of a similar nature. VGG-19 was selected due to its ease of interpretation and
simplicity. Its simple architecture, consisting of stacked pooling and convolutional
layers, facilitates comprehension and analysis. VGG-19 is a popular choice for a
variety of image classification problems due to its strong generalization capabilities.

ResNet50 was picked for its deep architecture and the inclusion of residual connec-
tions to the network. By reducing the vanishing gradient issue, these connections
make it possible to train deeper networks successfully. Strong performance, excellent
accuracy, and suitability for transfer learning using pre-trained models have all been
demonstrated by ResNet50. Because of their creative inception modules—which use
several filter sizes within a single layer—InceptionV3 and Xception were selected.
This allows the network to handle both large-scale and fine-grained patterns in the
input, allowing it to capture characteristics at multiple scales. In comparison to
other deep architectures, the inception modules reduce the number of parameters,
allowing for a more effective use of computational resources.

4.3 Transfer Learning

In the field of deep learning, transfer learning is a very useful method that has shown
to be very successful in agricultural image analysis, including the task of crop dis-
ease identification. In this case, transfer learning is using pre-existing models that
were previously trained on large datasets, such as millions of annotated photos in
different categories found in ImageNet. These pre-trained models are able to cap-
ture crucial visual patterns because they have acquired complex and discriminative
characteristics from their training data.

There are various advantages of transfer learning. Initially, pretrained models have
previously been trained on big datasets like ImageNet, which comprise a variety of
photos from different categories. Furthermore, the problem of insufficient training
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data is mitigated via transfer learning. Deep learning models may not be readily
accessible for training when an extensive amount of labeled data is needed, such as
for specific tasks like bean leaf disease identification. Using pretrained models to
start, we can refine our learned representations on the comparatively smaller image
dataset. By applying its learned characteristics to the current task, the model can
perform better by employing this method.

We took advantage of the information and representations discovered from exten-
sive image datasets by applying pretrained models like DenseNet201, Inception-v3,
Xception, VGG19, and ResNet50. The approach that has been presented involves
initializing the pretrained models with their parameters and fine-tuning them by
freezing every layer until the final one. The last layer is particularly trained for the
bean disease detection task, while the first several layers are frozen to guarantee that
the models maintain their learnt representations and do not change during training.
By substituting an alternative configuration for the last layer of the models, we
intended to improve its suitability for our objective of identifying angular leaf spot
and bean rust.

4.3.1 DenseNet-201

DenseNet201 is very well suited for bean leaf disease detection, as its architecture
(Chapter 2.1.2) illustrates. Its architecture’s densely connected blocks facilitate ef-
ficient information flow and feature propagation, which is useful for detecting little
disease-related trends in bean plants. The complex spatial associations that the
densely connected layers demonstrate are in line with the subtle ways that dif-
ferent bean diseases present themselves. Moreover, DenseNet201’s compact and
parameter-efficient architecture, as seen in Figure 2.2 in particular, improves its
capacity to identify intricate disease patterns while maximizing computational re-
sources. DenseNet201 is an outstanding choice for precise and resource-efficient bean
disease diagnosis because of its structure, which makes effective use of gradient flow
and feature reuse possible.

4.3.2 ResNet-50

ResNet50 provides significant benefits for bean leaf disease detection, as its unique
architecture is described in Chapter 2.1.3. Residual connections help information go
through the network more easily, which mitigates the problem of vanishing gradients
and makes it possible to successfully understand complex patterns linked to differ-
ent bean diseases. As seen in Figure 2.3, ResNet50’s deeper architecture enables the
model to capture hierarchical features, which are crucial for differentiating intricate
disease presentations. Furthermore, the residual blocks support the stability of the
model, which helps the model to manage the variation in disease manifestations
among various bean plants. ResNet50 is an ideal choice for reliable and accurate
bean disease detection because of its deep representation abilities and robust ar-
chitecture, particularly in situations where diagnosis depends on hierarchical and
complex patterns.

28



4.3.3 VGG-19

As discussed in Chapter 2.1.7, VGG19 offers a simple yet efficient architecture for
the identification of bean leaf diseases. An organized method to feature extraction is
provided by the uniformity and simplicity of the VGG19 design, which consists of 19
layers, including numerous convolutional layers and fully connected layers. The use
of tiny 3x3 convolutional filters makes it easier to capture localized patterns, which is
important for identifying distinct bean leaf indications. Moreover, the recognition of
disease-related features by the model is improved at different scales due to the spatial
down-sampling that is accomplished by max-pooling layers. VGG19 is appropriate
for situations where interpretability and a hierarchical understanding of disease traits
are crucial because of its distinct layer structure, which is shown in Figure 2.7. The
simplicity and versatility of VGG19 may be useful for efficient and transparent bean
disease detection, even with its slightly higher computational cost. This is especially
true in situations where a clear hierarchy of characteristics is essential for diagnosis.

4.3.4 Inception-V3

With its complex and multi-scale architecture, InceptionV3, as explained in Chapter
2.1.5, is a desirable choice for bean leaf disease detection. The model can effectively
capture features at numerous spatial scales because of the inception modules, which
perform concurrent convolutional operations with different kernel sizes. This is
especially helpful in identifying various bean disease presentations, as signs might
differ in complexity and magnitude. As illustrated in Chapter 2.1.5, the factorised
7*7 convolutions and auxiliary classifiers improve training stability and gradient
flow, which are essential for identifying subtle illness patterns. Bean leaf diseases are
complicated and varied, but InceptionV3 is capable of managing them thanks to its
flexibility and adaptability, which are demonstrated in its architecture in Figure 2.5.
Because of its capacity to handle data at several scales concurrently, InceptionV3 is
presented as a reliable option for thorough and accurate bean leaf disease diagnosis.

4.3.5 Xception

The detection of bean leaf diseases can benefit from Xception’s distinct and effective
architecture, which is covered in depth in Chapter 2.1.4. The neural network can
record intricate spatial hierarchies and patterns within bean leaves since it makes
use of depthwise separable convolutions. Because of the factorized convolutions,
Xception can be used in situations where processing power is scarce. Furthermore,
as described in Chapter 2.1.4, Xception’s fine-grained detail capability is useful for
identifying small visual clues linked to a variety of bean leaf disorders. Figure 2.4’s
architecture, which demonstrates the novel approach to the model creation, makes
Xception a viable option for precise and resource-efficient bean disease diagnosis,
especially when lightweight feature and computational efficiency are crucial.

The architectural features of the Transfer Learning Models are displayed in Table 2.
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Model Architecture Number of Layers Filter Sizes(Examples)
DenseNet201 201 1*1, 3*3, 5*5

Xception
Varied(depthwise separable
convolutions)

Varied, relies on depthwise
separable convolutions

ResNet50 50 1*1, 3*3
VGG19 19 3*3
InceptionV3 Varied Varied

Table 4.1: Architectural characteristics of the Transfer Learning models

4.4 Chapter Summary

The deep learning methodology utilized for the prediction algorithms was thoroughly
described in this chapter. We offered a thorough working plan that outlined the
several stages we took while conducting our research. In order to improve the
effectiveness of our leaf image disease prediction mechanism, we also concentrated
on transfer learning models and used pre-trained neural networks. We talked about
the selection of transfer learning models and explained the models we trained on our
dataset. The objective of the chapter was to guarantee transparency and consistency
in our study by elucidating the methodical approach that was followed.
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Chapter 5

Deep Learning Implementation
and Results

5.1 Implementation

To choose the algorithm that performs best in identifying angular leaf spot and bean
rust in the bean image dataset, the process of implementation involves examining
the five pre-trained(ResNet50, XCception, VGG19, DenseNet201 and InceptionV3)
models’ performances. Following the path specification, the model is initialized and
its state dictionary is loaded. A DataLoader object is utilized to load the benchmark
dataset. We use the eval() method to set the model to evaluation mode. On the
basis of the test images, it then creates predictions as it goes through the test loader.
The confusion matrix and classification report are generated using the features of
scikit-learn and the NumPy library once the predicted labels and true labels have
been gathered. All stages of implementation, testing, and validation involved the
use of Keras deep learning classifiers By showing the proportion of accurate and
inaccurate predictions, the confusion matrix heat map offers insights into the model’s
performance and allows for a thorough knowledge of the model’s accuracy and loss
rates. In order to give a thorough overview of the model’s assessment metrics, the
classification report is printed and contains measures like precision, recall, F1-score,
and support. The model’s learning progress is visualized by plotting the accuracy
and loss curves for training and validation against the number of epochs.To show
the results in terms of accuracy and loss, we used the MATLAB software suite.
The DESKTOP-5PJD0IA with an Intel(R) Core(TM) i7-7700 CPU @3.60GHz and
16.0GB RAM is used for all experiments. It runs Windows 10 pro Single Language.

5.2 Model Results

5.2.1 ResNet50

Using input data, the ResNet50 model achieves 95% accuracy after 50 epochs. The
confusion matrix for the model has been created following the execution of all
training parameters. The number of occurrences that were accurately classified as
positive for each of the labels is known as True Positive (TP). In this instance, it
was determined that 596, 597, and 682 cases had angular leaf spot, bean rust, and
healthy, respectively. The number of cases that were accurately classified as negative
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is known as True Negative (TN), and in a multi-class classification, it is determined
by adding the values of all columns and rows other than the class for which we are
calculating the values. In this case, it is 684,687 and 1269 for Angular leaf spot, Bean
rust and healthy respectively. The number of cases that were incorrectly reported as
positive is known as False Positive (FP), and it is equal to the total of the values in
the relevant column with the exception of the TP value. The incorrectly identified
instances for angular leaf spot, Bean rust and healthy were 69,58 and 3 respectively.
The number of instances that were incorrectly listed as negative is known as the
False Negative (FN) and is determined by adding the values of all related rows,
excluding the TP value. They were 41,38 and 51 for Angular leaf spot, Bean rust
and healthy respectively.
This study’s training and validation accuracy graphs offer a thorough analysis of
the model’s performance and assist in identifying possible problems like overfitting
or underfitting.
Figure 5.1 shows a graphic illustration of the accuracy and loss(b) for the ResNet50
model as well as the visual representation of the heatmapx(a).

Figure 5.1: (a)Heatmap Visualization (b)Accuracy and Loss plots for ResNet50

Classification Report

Table 5.1 below displays the classification report, which summarizes this model’s
performance on the test data set for which the true values are known. Precision,
recall, F1-score, and support are the measures that are employed and displayed.
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Precision Recall f1-score Support
Angular-spot 0.95 0.93 0.94 665
Bean-rust 0.96 0.93 0.95 655
Healthy 0.94 0.98 0.96 685
Accuracy 0.95 2005
macro avg 0.95 0.95 0.95 2005
weighted avg 0.95 0.95 0.95 2005

Table 5.1: Classification Report for ResNet50

5.2.2 DenseNet201

The DenseNet201 model demonstrated 94% accuracy for comparison analysis after
50 epochs using input data. This shows that the model is gaining knowledge from
the training set and is capable of making good generalizations to newly developed,
untested data. After executing every training setting for that model, the confusion
matrix has been created. The number of occurrences in each prediction category
is shown by the values in the confusion matrix(a). The number of occurrences
that were accurately classified as positive for each of the labels is known as True
Positive (TP). In this instance, it was determined that 596, 597, and 682 cases had
angular leaf spot, bean rust, and healthy, respectively. The number of cases that
were accurately classified as negative is known as True Negative (TN), and in a
multi-class classification, it is determined by adding the values of all columns and
rows other than the class for which we are calculating the values. In this case,
it is 684,687 and 1269 for Angular leaf spot, Bean rust and healthy respectively.
The number of cases that were incorrectly reported as positive is known as False
Positive (FP), and it is equal to the total of the values in the relevant column with
the exception of the TP value. The incorrectly identified instances for angular leaf
spot, Bean rust and healthy were 69,58 and 3 respectively. The number of instances
that were incorrectly listed as negative is known as the False Negative (FN) and is
determined by adding the values of all related rows, excluding the TP value. They
were 41,38 and 51 for Angular leaf spot, Bean rust and healthy respectively.

To create predictions, the DenseNet201 model focuses on specific portions of the
image, as shown in Heatmap(a) and plots(b). Knowing where the model is making
conclusions and identifying possible areas for improvement may both benefit from
this. Furthermore, a simple way to compare the model’s performance is to look at
Figure 5.2, which shows the accuracy graphically.
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Figure 5.2: (a)Heatmap Visualization (b)Accuracy and Loss plots for DenseNet201

Classification Report

Table 5.2 below displays the classification report, which summarizes this model’s
performance on the test data set for which the true values are known. Precision,
recall, F1-score, and support are the measures that are employed and displayed.

Precision Recall f1-score Support
Angular-spot 0.94 0.90 0.92 665
Bean-rust 0.94 0.91 0.93 655
Healthy 0.93 1.00 0.96 685
Accuracy 0.94 2005
macro avg 0.94 0.93 0.93 2005
weighted avg 0.94 0.94 0.93 2005

Table 5.2: Classification Report for DenseNet201

5.2.3 Xception

The Xception model demonstrated 96% accuracy for comparison analysis after 50
epochs using input data. This shows that the model is gaining knowledge from
the training set and is capable of making good generalizations to newly developed,
untested data. After executing every training setting for that model, the confusion
matrix has been created. The number of occurrences in each prediction category
is shown by the values in the confusion matrix. The number of occurrences that
were accurately classified as positive for each of the labels is known as True Positive
(TP). In this instance, it was determined that 640, 614, and 673 cases had angular
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leaf spot, bean rust, and healthy, respectively. The number of cases that were
accurately classified as negative is known as True Negative (TN), and in a multi-
class classification, it is determined by adding the values of all columns and rows
other than the class for which we are calculating the values. In this case, it is 647,695
and 1298 for Angular leaf spot, Bean rust and healthy respectively. The number
of cases that were incorrectly reported as positive is known as False Positive (FP),
and it is equal to the total of the values in the relevant column with the exception
of the TP value. The incorrectly identified instances for angular leaf spot, Bean
rust and healthy were 25,41 and 12 respectively. The number of instances that were
incorrectly listed as negative is known as the False Negative (FN) and is determined
by adding the values of all related rows, excluding the TP value. They were 42,14
and 22 for Angular leaf spot, Bean rust and healthy respectively.

To create predictions, the Xception model focuses on specific portions of the image,
as shown in the Heatmap(a) and plots(b). Knowing where the model is making
conclusions and identifying possible areas for improvement may both benefit from
this. Furthermore, a simple way to compare the model’s performance is to look at
graphs(b), which shows the accuracy and loss graphically.

Figure 5.3: (a)Heatmap Visualization (b)Accuracy and Loss plots for Xception

Classification Report

Table 5.3 below displays the classification report, which summarizes this model’s
performance on the test data set for which the true values are known. Precision,
recall, F1-score, and support are the measures that are employed and displayed.
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Precision Recall f1-score Support
Angular-spot 0.94 0.96 0.95 665
Bean-rust 0.98 0.94 0.96 655
Healthy 0.97 0.98 0.98 685
Accuracy 0.96 2005
macro avg 0.96 0.96 0.96 2005
weighted avg 0.96 0.96 0.96 2005

Table 5.3: Classification Report for Xception

5.2.4 InceptionV3

The accuracy of the InceptionV3 model after 50 epochs of input data is 88%. The
classification and identification results of the model are displayed in a heatmap of
the confusion matrix. Plots representing the model’s accuracy throughout training
and validation are visualized.

Figure 5.4 shows the visual presentation of the accuracy and loss plots(b) for the
InceptionV3 model as well as the visual representation of the heatmap(a).

Figure 5.4: (a)Heatmap Visualization (b)Accuracy and Loss plots for InceptionV3

Classification Report

Table 5.4 below displays the classification report, which summarizes this model’s
performance on the test data set for which the true values are known. Precision,
recall, F1-score, and support are the measures that are employed and displayed.
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Precision Recall f1-score Support
Angular-spot 0.89 0.86 0.88 665
Bean-rust 0.94 0.77 0.85 655
Healthy 0.82 0.99 0.90 685
Accuracy 0.88 2005
macro avg 0.88 0.87 0.87 2005
weighted avg 0.88 0.87 0.87 2005

Table 5.4: Classification Report for InceptionV3

5.2.5 VGG19

The accuracy of the VGG19 model after 50 epochs of input data is 33%. The
classification and identification results of the model are displayed in a heatmap of
the confusion matrix. Plots representing the model’s accuracy throughout training
and validation are visualized.

Figure 5.5 shows the visual representation of the accuracy and loss plots(b) for the
VGG19 model as well as the visual representation of the heatmap(a).

Figure 5.5: (a)Heatmap Visualization (b)Accuracy and Loss plots for VGG19

Classification Report

Table 5.5 below displays the classification report, which summarizes this model’s
performance on the test data set for which the true values are known. Precision,
recall, F1-score, and support are the measures that are employed and displayed.
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Precision Recall f1-score Support
Angular-spot 0.33 1.00 0.50 665
Bean-rust 0.00 0.00 0.00 655
Healthy 0.00 0.00 0.00 685
Accuracy 0.33 2005
macro avg 0.11 0.33 0.17 2005
weighted avg 0.11 0.33 0.17 2005

Table 5.5: Classification Report for VGG19

5.3 Comparison and Analysis

Given an accuracy of 96% after 50 epochs with the input dataset, the Xception
model output the best results. The accuracy of the ResNet50 model was 95%, that
of DenseNet201 was 94%, that of InceptionV3 was 88%, and that of VGG19 was
33%. In general, the Xception model outperformed the other four models, showing
that it is the best model overall. Due to its cutting-edge performance on image
classification metrics and its versatility in handling an extensive variety of image
sizes and scales from the other four models, the Xception model proved to be an
especially powerful and appropriate model for this purpose. Based on photos of
the bean leaves, this implies that the model can learn from the input information
efficiently and forecast the health state of the beans.
The Xception model’s modular architecture and application of picture augmenta-
tion techniques like various activation functions and fine-tuning probably helped
the model do well on this assignment. Additionally, Wider kernels, intricate struc-
tures, and greater non-linearity allowed ResNet50 and InceptionV3 to perform well.
Whereas InceptionV3’s varied filter widths and effective feature recycling enhanced
its learning capabilities, ResNet50’s disconnected connections maintained essential
data. This demonstrates how crucial model selection is for particular tasks like bean
rust and angular leaf spot identification.

However, the VGG19 model’s accuracy drastically declined when it came to identi-
fying individual instances of angular leaf spot and bean rust in the confusion matrix.
This shows that it tripped over these particular diseases, largely because of its weak
irregularities that struggle to understand complex symptomatic correlations and its
narrow development that misses important information. Xception performed ex-
ceptionally well in these domains, demonstrating the influence of model selection
on disease diagnosis, thanks to its wider kernels and increased non-linearity. In ad-
dition to highlighting the need for focused research on difficult diseases, VGG19’s
difficulties provide insight into the development of specific models for reliable bean
disease categorization.
The model comparison is displayed in the table 5.6 and figure 5.6 below.
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Classification Algorithm f1-score Precision Recall Accuracy
Xception 0.96 0.96 0.96 96%
ResNet50 0.95 0.95 0.95 95%
DenseNet201 0.93 0.94 0.94 94%
InceptionV3 0.87 0.88 0.87 88%
VGG19 0.17 0.11 0.33 33%

Table 5.6: A Comparison Table of the Models’ Performances.

Figure 5.6: Histogram showing a comparison of the model accuracies

5.4 Visualization

Although classifying bean diseases with remarkable accuracy is obviously impor-
tant, it’s also important to have more knowledge of the models’ fundamental mech-
anisms for making decisions. This is when the useful Explainable Artificial Intel-
ligence(XAI) frameworks like LIME (Local Interpretable Model-agnostic Explana-
tions) come into play, revealing the precise visual details in the bean image structure
that have a big impact on the projected outcomes of the model. Unlike the black-box
model, LIME offers clear and contextualized justifications for every categorization.
LIME displays the precise physical cues—like small color shifts in angular leaf spot
or distinctive texturing features in bean rust—that inform the model’s choices by
emphasizing each of the pixels and zones that are significant within each bean leaf.
This smooth understanding goes beyond specific image examinations, creating an
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auditory language of illness indicators throughout the collection.

Further than clarification, LIME’s potency is demonstrated by its ability to promote
real-world applications across a range of industries. Farmers can identify earlier
illness indicators and take prompt action by using its easily understood graphic de-
scriptions as an instructional tool. LIME’s insights can drive model structures to
concentrate on the essential causes of illnesses instead of external details, and they
may additionally guide focused data gathering tactics for the creation of potential
models. This will ensure that relevant and useful visual aspects are recorded. LIME
essentially creates a link that connects the comprehensible realm of images and the
transparent results of models. LIME changes bean disease identification from an
accuracy-driven task to a based on knowledge route by simplifying the grid layout
selection procedure. This reveals the complex visual representation of disease and
opens the door for future developments in creating models and farming methods.
Figure 5.7 shows the procedures involved in creating the explanation for the predic-
tion of an input instance inform of a functional block diagram.

Figure 5.7: Functional Block Diagram Of LIME

The grid arrangement of this image dataset is shown in Figure 5.8.

Figure 5.8: Grid Layout of the image samples
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5.5 Chapter Summary

This chapter describes how we implemented deep learning models on our local sys-
tem and showed their performance using both informative heatmaps and accuracy
and loss graphs. For clarity, the evaluation method included a comprehensive anal-
ysis of each model utilizing many metrics, including F1-score, recall, and precision,
which were combined into a classification table. A tabular comparative analysis
provided a brief summary of the performance of each model. In addition, our study
of Explainable Artificial Intelligence (XAI) methods—most notably LIME—gave us
a better understanding of the models’ interpretability, shedding light on how they
make decisions and improving transparency in the complex field of deep learning.
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Chapter 6

Website Deployment

This web application uses the Flask web framework, a Python web framework, in its
architecture to provide a reliable web server. Flask makes it easier to manage HTTP
requests and routes them to particular views and routes inside the application. Users
can easily submit images because of the user-friendly interface that is offered to them.
After being submitted, these images go through a processing stage before being
shown on the online interface. The system stores the uploaded pictures in a special
directory on the server to guarantee effective file management. The application’s
core engine uses transfer learning techniques to enable the model to perform complex
picture analysis and inference tasks. This entails applying a pre-trained model that
has been adjusted to meet the particular needs of the application. The results
of this analysis procedure appear as evaluations that match the predictions of the
model. After that, these rankings are displayed on the original images, providing
viewers with insightful information about the examined pictures.Users can view the
processed images, which are enhanced with details about the degree of infection on
bean leaves and their anticipated class. In addition to improving user experience,
this thorough integration of Flask, transfer learning, and result visualization also
demonstrates the potential of fusing web frameworks with cutting-edge deep learning
methods for significant image analysis as well as classification in the context of bean
disease detection.
The process of this implementation is shown in Figure 6.1.
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Figure 6.1: Workflow of the flask website

Figure 6.2 shows how the website uses the image categorization model in practice.
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Figure 6.2: Flask Website Implementation
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6.1 Limitations

Creating a web application to help farmers identify diseases in bean leaves is ham-
pered by limited access to technology. Farmers in rural areas of Uganda might not
have access to smartphones, or a dependable internet connection. This restriction
reduces the potential impact and reach of the online application by preventing them
from utilizing digital tools for disease detection. Creating a lightweight, offline-
capable application, taking into account substitute devices like feature phones, and
putting awareness campaigns into place to encourage farmers in these areas to adopt
technology are some of the measures needed to overcome this obstacle.

6.2 Chapter summary

We centered on the FlaskWeb deployment for bean leaf image disease prediction in
this chapter. It offered a thorough analysis of the deployment pipeline, describing the
procedures needed to enable user access to the web-based application. We dug into
the web application’s practical implementation, showing how image processing helps
the software accurately predict leaf diseases. However, we also tackled particular
limitations, most notably the obstacles associated with GPU utilization in Uganda’s
remote regions. In spite of the deployment’s effectiveness, the chapter emphasizes
the necessity to take these geographic limitations into account and overcoming them
in order to guarantee the predictive model’s broad accessibility and influence in areas
with insufficient GPU resources.
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Chapter 7

Future Work and Conclusion

7.1 Conclusion

By examining the bean leaves dataset, our study on these deep learning models has
demonstrated their ability to predict if a bean leaf is infected or not. Furthermore,
the performance of Xception and ResNet50 is almost identical, with exceptional
evaluation metrics across all classes and good accuracy overall although Xception
achieves somewhat better evaluation metrics for every class. For all classes, VGG19’s
overall prediction accuracy is the least among the models due to its difficulty in
distinguishing between the leaves infected with bean rust and angular leaf spot as
both classes have almost similar physical characteristics. Based on these criteria,
we are therefore convinced that our transfer learning models—which include our
top five performing models—have a high predictive accuracy in detecting diseases
that affect bean leaves. Finally, by creating a prediction accuracy score, we try to
offer more thorough justifications for the predictions made by our transfer learning
model.

To sum up, a viable way to mitigate the financial burden of these diseases on the
agricultural sector in Uganda and other sub-Saharan African nations is the suggested
system for detecting bean rust and angular leaf spot in beans using Deep Learning
techniques. The system’s goal is to identify such diseases quickly and accurately
by offering a prompt and precise identification and diagnosis, which will ultimately
save expenses and increase treatment effectiveness.

7.2 Future Work

In the future, we plan to implement a resource-effective deep learning system on
resource-constrained IoT devices for real-time bean disease identification. The
Xception approach, although incredibly effective, requires modification to integrate
smoothly into these small systems. Employing real-time images acquired by the IoT
device’s camera, we hope to develop an economical Xception component that can
quickly identify diseases through strategies like information distillation. Growers
are empowered with practical information for timely action and enhanced yields
thanks to this feedback in real time loop, which can be viewed via an extensive
online application.
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