
Masked Face Identification Using Face Recognition

by

Tareq Hossen
18301133

Abbas Uddin
18301198

Niloy Barua
18301087

Chowdhury Azmain Faik
18101224

N/A
N/A

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University

May 2022

© 2022. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is our own original work while completing degree at
BRAC University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Tareq Hossen
18301133

Abbas Uddin
18301198

Niloy Barua
18301087

Chowdhury Azmain Faik
18101224

i

Approval
The thesis titled “Masked Face Identification Using Face Recognition” submitted by

1. Tareq Hossen (18301133)

2. Abbas Uddin(18301198)

3. Niloy Barua(18301087)

4. Chowdhury Azmain Faik(18101224)

Of Spring, 2022 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on May 29, 2022.

Examining Committee:

Supervisor:
(Member)

Md. Khalilur Rhaman, PhD
Associate Professor

Department of Computer Science and Engineering
BRAC University

Co-Supervisor:
(Member)

Shaily Roy
Lecturer

Department of Computer Science and Engineering
BRAC University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
BRAC University

ii

Abstract
This work intends to express one of the several well-known biometric authentications
entitled Masked Face Identification models by applying current Face Recognition al-
gorithms and public masked face raw data that predict beneficial use. At the end
of 2019, the COVID-19 pandemic has been exotically expanding worldwide, which
severely negatively harms people’s economies and well-being. Since using facial
masks in social environments is now an efficient system to stop the spread of viruses,
Nevertheless, appearance identification using facial masks is now a profoundly de-
manding duty because of the shortage of appropriate facial statistics. Here in our
approach, the Deep Learning method will be executed by us to recognize the masked
appearance by employing different face portions, some extra-superintendent and
some owned-superintendent multi-task training facial appearance spotters, which
can compact with different scales of appearance quickly and effectively. Addition-
ally, the features are extracted by us from the masked face’s eyes, forehead, and
eyebrow areas and merged with characteristics acquired from those methodologies
into a combined structure for identifying masked faces. In order to process, we will
perform various image processing techniques on our dataset to clean our data for
better accuracy. We will train our model from scratch to perform face-mask recog-
nition. The most important part of this project remains the data collection and
data cleaning process. Using a data-centric approach, we will systematically en-
hance our data-set to improve accuracy and prevent overfitting by performing data
augmentation and stratified sampling and keeping our model architecture constant.
Finally, our proposed systems will be compared by us with multiple unions of genius
appearance identification techniques among those advertised by CASIA, LFW, and
owned gathered raw data, which are managed from different sources. When wearing
a mask, a person’s face is hidden by 60–75%. Using only 30–40% of a person’s face,
we designed a face mask recognition model with an accuracy of 99.84%. Trained on
a modified CASIA dataset containing images with and without masks, the model
could successfully get the embeddings of 85743 people within a few minutes and
perform perfect face recognition with and without masks.

Keywords: Masked Face; Face Recognition; CNN; MTCNN; Deep Learning; ResNet
V1;

iii

Dedication
We dedicate the report to our parents. Without their participation, attention, and
support, we would not have gotten this far. We owe a debt of gratitude to them.
Many thanks to them.

iv

Acknowledgement
Firstly, all praise to the Great Allah for whom our thesis have been completed
without any major interruption. Secondly, to our Dr. Md. Khalilur Rhaman sir
and co-supervisor Shaily Roy ma’am for their kind support and advice in our work.
They helped us whenever we needed help. And finally to our parents without their
throughout sup-port it may not be possible. With their kind support and prayer we
are now on the verge of our graduation.

v

Table of Contents

Declaration i

Approval ii

Abstract iii

Dedication iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables x

Nomenclature xi

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Objectives . 3

2 Literature Review 4

3 Background Study 8
3.1 Face Verification vs Face Recognition 8

3.1.1 Verification - Is this the same person? 8
3.1.2 Face Recognition - Who is this person? 9

3.2 The One Shot Learning Dilemma . 9
3.3 Similarity Function . 10
3.4 Face Detection with SSD . 10
3.5 VGG-16 . 11
3.6 FaceNet . 12
3.7 Triplet Loss Function . 13
3.8 Inception Network . 13
3.9 Network in Network . 13
3.10 Inception with Dimension Reduction 14
3.11 Inception-Resnet V1 Network . 15
3.12 Object Localization and Object Detection 16

3.12.1 How dows it work? . 16

vi

3.12.2 How to know the bounding box is correct? 17
3.12.3 Anchor Boxes . 17

3.13 Non-Maximal Suppression (NMS) . 18

4 Methodology & Explanation 19
4.1 Data Pre-processing . 20

4.1.1 Data Cropping . 20
4.1.2 Data Cleaning . 20
4.1.3 Data Embedding . 23
4.1.4 Data Augmentation . 24
4.1.5 Custom Face Mask Dataset 25

4.2 Face Recognition using Facenet . 26
4.2.1 Triplet Loss Function . 27
4.2.2 Resnet Network . 30

4.3 Embedding . 33
4.4 Real-time Face Recognition . 33

5 Training Phase 36
5.1 First Training (Evaluation: No Mask Dataset) 36
5.2 Second Training with Data Augmentation 36

5.2.1 Evaluation: No Mask Dataset 36
5.2.2 Evaluation: Mask Dataset . 37

5.3 Third Training (Evaluation: Mask Dataset with Stratified Sampling) 37

6 Result and Discussion 40
6.1 Result on First Training (Evaluation: No Mask Dataset) 40
6.2 Result on second Training with Data Augmentation 41

6.2.1 Evaluation: No mask Dataset 41
6.2.2 Evaluation: Mask Dataset . 42

6.3 Result on third Training (Evaluation: Mask Dataset with Stratified
Sampling) . 43

7 Conclusion 46

Bibliography 48

vii

List of Figures

3.1 Face Verification . 8
3.2 Face Recognition . 9
3.3 Similarity Function process . 10
3.4 Crop with different margin . 11
3.5 VGG-16 architecture . 12
3.6 FaceNet Architecture Block Diagram 12
3.7 Triplet loss training . 13
3.8 1x1 convolution, Network in network 14
3.9 Inception network with some additional max pooling 15
3.10 Divide pictures into a 5x5 grid cells and predict value of y predict in

each individual cell . 16
3.11 Intersection over Union . 17
3.12 Anchor boxes for prediction . 17
3.13 Output of Non-Max Suppression . 18

4.1 Work Plan: A complete overview of our face detection and recogni-
tion process . 19

4.2 Cropped Image from the original one 20
4.3 Finding the mislabeled images . 20
4.4 Encoding between two images and calculating distinct two inputs . . 21
4.5 Calculating the average distances between the target image and the

reference image to find the mislabeled images 22
4.6 Finding mislabeled images in the dataset 23
4.7 Data Augmentation Process . 24
4.8 Creating masked face dataset using CASIA dataset to train and test

through LFW dataset . 25
4.9 Adding mask to face by using Dlib 26
4.10 Custom masked face dataset . 27
4.11 The anchor (in orange) pulls images of the same person closer and

pushes images of a different person further away 29
4.12 Face Recognition from dataset . 30
4.13 Face verification with Binary classification 30
4.14 Training error (left) and test error (right) on CIFAR-10 with 20-layer

and 56-layer “plain” networks . 31
4.15 Relu function . 31
4.16 Accuracy comparison between a simple network and residual network 32
4.17 Simple ResNet architecture of four ResNet blocks and four max pooling 32

viii

4.18 A function that, as its input, receives a picture and, as its output,
generates a face embedding (a summary of the face) 33

4.19 Face Recognition using Deep Learning 34
4.20 Real-time face recognition process . 34

5.1 Calculating Euclidean distance between mask and no mask, to get
the best match . 38

5.2 4 times augmentation . 39

6.1 Result on first training for no mask dataset 41
6.2 Result on second training with data augmentation for no mask dataset 42
6.3 Result on third training for mask dataset with Stratified Sampling . . 44
6.4 Higher Accuracy with Stratified Sampling after data augmentation . 44
6.5 Accuracy schema . 45

ix

List of Tables

4.1 Different accuracy on different embedding lengths 23

6.1 Training set accuracy . 40
6.2 Testing set accuracy . 40
6.3 Training set accuracy . 41
6.4 Testing set accuracy . 42
6.5 Accuracy before and after Data Augmentation 43
6.6 Training set accuracy . 43
6.7 Testing set accuracy . 43
6.8 Testing accuracy from the beginning 44

x

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

CNN Convolutional Neural Network

ICP Iterative Closest Point

LBP Local Binary Pattern

MTCNN Multi-Task Cascaded Neural Network

PCA Principal Component Analysis

SSD Single-Shot detector.

xi

Chapter 1

Introduction

As a result of rapid progress in modern science and technology, the world is contin-
ually expanding and changing. The significant advancement of digital technologies
has provided us with a wide range of new alternatives for advancing civilization
around the globe. We may use our understanding of fundamental development in
technology innovation to increase human wellbeing by reducing human effort and
resolving human problems. For example, computer vision, facial recognition, cam-
era networking, and artificial intelligence are all being used in our country to solve
various problems and crimes. Here, Face recognition is one of the most challenging
things in computer vision and identification. Using facial recognition technology,
Images, videos, and real-time videos can be used to identify a person. Face recog-
nition is also a component of biometric security [2]. After the announcement of
the COVID-19 virus as a pandemic by WHO, the whole world is going through a
COVID-19 pandemic. The COVID–19 infection can be transmitted through contact
or touch with infected surfaces. So, the old-style biometric frameworks dependent
on pins or fingerprints are now not safe. Facial recognition is safer since touch-
ing is not required. Besides, facial identification system is frequently a favorable
field in computer vision. Practically everyone wears facemasks at the time of the
COVID-19 pandemic. Facemasks conceal the lower part of a person’s face, thereby
rendering standard face identification technology on face recognition self-pickup cab-
inets nearly useless. On the other hand, using a facemask creates subsequent issues:
Fraudsters use the mask to invade and execute violations without being detected.
Again, face authentication gets extremely hard when a facemask conceals a signifi-
cant portion of the face. General face identification techniques are ineffective when
a facemask covers the face, as the entire facial region is not readable. During the
process of facial identification, exposing the facial region is crucial as it is utilized for
facial normalization, posture correction, and facial familiarization. Facemasks have
posed a substantial challenge to existing face recognition systems. As a result of
these issues, improving the effectiveness of remaining facial recognition technologies
for facemask identification is crucial. We approached the masked face recognition
system to handle these problems, aiming to detect the particular face based on the
eyes, ears, and the upper frontal head regions. We will handle this job using a deep
learning-based method. Besides, we came to know that there are several techniques
to complete this job like the Matching approach, Facial Landmarks, Image aug-
mentation, generating masked face using MaskTheFace open-source tool, FaceNet
model, Restoration approach, Discard occlusion based approach, ResNet V1, local

1

constrained dictionary learning method, etc. However, to do facial recognition, we
must first detect the face in the image. We can distinguish the individual after de-
tecting their face. It is simple for a human to recognize a face, but it is more difficult
for a computer to do so. As a result, we must first train the system to recognize
the facial component of pictures. After recognizing the face in the input picture, we
will apply the Pre-trained deep learning-based method to extract features from the
image, which will be used for further training.

1.1 Problem Statement
At the end of December 2019, there was a breakout of strange pneumonia indi-
cated by fever, dry cough, and weakness that emerged from China, resulting in an
intimidating outburst and expansion globally. The disease was named COVID-19
[12] formally. COVID-19 is a viral infection that spreads through inhalation or
contact with infected droplets. About fifty-one million people were infected, and
more than one million people died worldwide because of COVID-19[13]. WHO and
other health organizations strongly suggested that using a face mask can decrease
the transmission of COVID-19 by about 65 percent [10]. It was suggested that the
people cover their faces in crowded places to reduce the transmission of infection.
Because of this outbreak, our regular day-to-day life is also hampered to some ex-
tent. The COVID-19 outbreak also raised the question of some technology-based
security systems such as face recognition, Biometric fingerprint, Iris scanner, etc. As
wearing facemasks has become an essential part of our lives, it has become essential
to ensure maximum security in every institution. We know almost every institution
is dependent on technology-based security systems. Because of COVID-19 trans-
mission, some of the systems that need direct contacts, such as Fingerprint and Iris
Scanner, have become unusable to reduce transmission. However, face recognition
remains the only AI-based system that could provide contactless security. However,
it is very challenging to recognize faces and detect a person’s identity through face
recognition when a person is wearing a facemask. Moreover, it is very annoying and
also not hygienic enough to touch the mask very often to show the entire face every
time for face recognition.
Face recognition is easier when a face is open, and there is no occlusion in the face.
Nevertheless, when a face is heavily disguised, like wearing a facemask makes it chal-
lenging to detect faces. In institutions, face recognition is used not only to detect
faces but also to detect the identity of a person or employee. Some institutions also
use face recognition systems to attend to their employees and students. At present,
algorithms are unsuccessful on masked faces, which have been used to have success
in detecting unmasked faces. One of the significant drawbacks of identifying a face
that is not masked is that the entire face to recognize a person would be utilized
by the deep learning models. Nevertheless, in a masked face, the nose and mouth
remain covered. It breeds the complication of recognizing any individual utilizing
only the remaining facial region: eyes and, in some cases, the upper frontal region of
the head. Though forehead size also changes with the change in a person’s hairstyle.
When the initial goal will be recognizing faces when people are wearing caps, glasses,
and facemasks in addition to other items that can block portions of the face amidst
keeping other parts intact in those images; the basic facial identification algorithm
becomes finite[15].

2

When the features required to foresee the identity of any person accurately gets
minimized from the entire face to only the eye and, every so often, the upper frontal
region of the head, then it is a very demanding issue for any computer vision model
to recognize the identity of masked faces. The SSD FaceNet model and the Inception
ResNet-V1 architecture, which is trained on human faces, can be used in solving the
problem of recognizing an individual’s identity who is the masked person.

1.2 Research Objectives
Our ultimate objective is to develop a face detection system that will determine
the identity of humans wearing face masks using the Deep Learning Algorithm and
Inception ResNet-V1 Architecture. This system can further help us to identify
masked faces, and it will also ensure everyone’s safety on the streets by identifying
faces. We want to implement more accuracy in one of our research-based paper
applications. We want to create a system that will identify the masked faces with
fewer parameters and less power consumption with the help of training our dataset
and detecting face identity. To be more specific, our objective is to focus on the
following ideas to determine masked faces:

1. To gain an intense understanding of face recognition.

2. To deeply understand Deep Learning and its application.

3. To intensely learn about Inception ResNet V1 and other CNN models and
their applications.

4. To achieve a broader concept about deep learning.

5. To create a model that can detect a person’s identity wearing a facemask.

6. To evaluate the Deep Learning and Inception ResNet V1, whether these are
more reliable approaches in face detection or not.

7. To present feasible improvements on the masked and unmasked face recogni-
tion model.

Lastly, we want to introduce Transfer Learning differently in our research to ensure
more privacy for the data. Transfer learning will be beneficial in the case of data
processing between different kinds of models, and it will also ensure data privacy,
which is very important in the case of video data or image data set research.

3

Chapter 2

Literature Review

Nowadays, security and authentication are two standard terms in our daily life.
Moreover, we are using various authentication systems like face recognition, Irish
scanning, and biometric authentication to ensure robust workplace security. How-
ever, the current Covid-19 situation creates a big question about using these sys-
tems. WHO and other organizations strongly suggested that people use face masks
in public places and avoid direct contact. Consequently, Irish scanning and bio-
metric authentication are now unusable for reducing Covid-19 transmission because
these two systems need direct contact. So, some work has been directed in the field
of occlusion-based face recognition.
To detect and recognize a human face in real-time and improve the method’s ro-
bustness, the authors in paper [1] proposes a software framework based on real-
time activity detection and recognition. Researchers introduced intelligent control
and fail-over mechanisms to detect appearance and track a moving person’s face.
The detection process is herculean due to frame differences and feature correlation
techniques. Additionally, the author developed a scheme that employs the relative
positions of people, velocity, and individual trajectories as parameters for identify-
ing targeted stalker groups. This straightforward scheme can be used in place of
more complicated models. However, camera calibration errors and a lack of pixel
processing make paperless efficient in this paperless world.
In the article [3], a 3D face recognition system is used to restore portions of the face
that are covered. By utilizing the ICP Algorithm, the model takes 3D input of an
individual’s face. After implementing the PCA algorithm and using the restoration
technique, the covered portions of the face are identified.
In the article [4], the facial image is segmented into compact localized blocks. Then
the support vector machine is then incorporated to identify disguised parts of the
face and remove those. Again, the mean-based weight matrix determines the re-
maining partial face.
Wing at [6] marks out critical points on the disguised parts of the face, then removes
those parts of the face, and from those key points, he extracts features. Further-
more, alongside approximating the resemblance of the two facial images as the space
between two aligned attributes, a matching mechanism is being implemented to line
up extracted information with those in the gallery.
The article [7] depicts calculating crowd flux can be an extremely effective tool for
appearance detection. Prudent use of resolution can enhance surveillance’s dynamic
nature.Providing the exact resolution throughout the surveillance area can occasion-

4

ally result in a loss of resolution. Thus, using a constant population to determine
whether or not a space is crowded is a very noble idea. Different resolutions in the
dense zone can help ensure the model’s accuracy. Dividing the entire area into local
and global coverage zones is an excellent idea. This strategy ensures a minimum
resolution in each area segment, with an emphasis on the crowded zone, resulting
in a highly productive, cost-effective, and practical system. Another method of de-
termining if a location is crowded is to analyze a data set. Additional surveillance
of those problematic areas may make the approach more effective.
The research article [8] depicts an astounding Principal component analysis (PCA)
implementation on both masked and unmasked face recognition. According to the
authors, they have used the Viola-Jones algorithm to identify facial regions from the
image. After that, they extracted the facial features from face regions using PCA.
Then they train the model for face recognition. In the test phase, a target face
image is given to the system. In the beginning, computation is done for its PCA
representation. Hence, possible facial segments are distinguished. Then, the Ghost
faces are selected and used for recognition. By differentiating the chosen character-
istics from the aimed image, recognition is executed opposite to those chosen from
the correlated guided images.
Aqeel Anwar and Arijit Ray Chowdhury, in paper [9], propose a Face Recognition
System using Facenet architecture. Facenet generates integrated embedding of the
facial images and then differentiates the faces in the embedded space to bring out
the verdict. Here, the author used the VGGFace2 dataset to train Facenet. VG-
GFace2 dataset contains a large-scale face dataset. Some performance metrics have
been used to inspect the proficiency of the trained network.
The author [11] has primarily suggested a strategy that is based on person re-
identification association for masked face recognition. In addition, for the verifica-
tion purpose, we have also pioneered a specific face-masked pedestrian dataset using
real-world surveillance images. Experimentations outcomes demonstrate that their
proposed strategy can faithfully resolve the face-masked pedestrian’s individuality
with outlying more elevated exactness than the extant disguised appearance iden-
tification strategy. Nearly, the suggested approach delivers a viable explanation for
the difficulty of individuality recognition of entirely masked appearances.
In the article [14], they applied an illustration editing method highlighted to form
masked appearance models with a simple image structure. As a result, massive raw
data of 137,016 group, masked appearance pictures are designed and conveniently
on the web. MaskedFace-Net is observed as a standard raw data for designing ac-
cording to machine learning principles associated with the mask-dressing review;
prominently, identifying the appearance of using the facial mask or not analyzed
facial appearance pictures, the accurate or inaccurate costuming to identify con-
cealed appearances. Then, MaskedFace- Net will be applied to magnify observation
monitoring practices for several purposes, like monitoring the honor of regulations
related to mask-appearing or forming group stats. Furthermore, the mentioned pro-
cedure approached the shaping of MaskedFace-Net, which has been expressed as
sanctioning the formation of masked appearance illustrations by employing other
masks. Thus, this procedure has been constructed for inquiring about practices and
infection manners linked to the COVID-19. In addition, MaskedFace-Net has been
constructed to limit the range of COVID-19 by strengthening healthiness instruc-
tion. This procedure may be a stand to educate manners and contagion phenomena

5

in the state of the emerging novel virus becoming a related conveyance type.
According to [15], two main propositions are used in this scenario. One is the dis-
card occlusion-based approach, and another one is the restoration approach. Based
on the images in training, the restoration approach reforms the occluded portions of
the face images. So far, Face recognition is now the only steadfast AI-based security
and authentication system available. Nevertheless, there remains a concern about
Facial Recognition as everyone has to wear face masks. Face masks cover the sig-
nificant areas of a face like the mouth and a nose which leads to failure to identify
an individual with a 5% to 50% error rate of some widely used facial recognition
algorithms.
In a research article [16], ResNet-50 has been used to determine the identity of the
masked face. ResNet-50 is a CNN-based architecture that is fifty layers deep [5].
The author trains the ResNet50 architecture and then identifies the faces with masks
developing a deep learning-based model. A transfer learning technique applies a sys-
tem designed for another face recognition task to their own project. The transfer
learning is implemented on ResNet-50 architecture. After applying transfer learn-
ing, the parameters are fine-tuned on the dataset of faces without masks. Then, the
model is being run on the faces, which are masked and finely tweaked the system
depending on the results. The goal was to identify a masked individual, followed by
training the data on facial images that are not masked. Furthermore, as an alter-
native approach, the occluded part of the face on the masked face was cropped as
it was pointed out that the model was challenged because of the occlusion on the
facial region where there was a reduction in the number of attributes on the faces
as well as masks which represents a non-uniform feature mapping. In the discard
occlusion-based approach, the occluded parts are being declined altogether to skip a
poor reconstruction procedure. After that, the feature extraction and classification
process use existing parts of the face.
The article [17] used a method that combines Local Binary Pattern (LBP) char-
acteristics and deep learning models into a united skeleton to detect the masked
appearance. Their applied method uses deep models and decoctions of face points
connected with LBP characteristics extracted from eyebrows and eyes for detect-
ing a face. A practical operation is directed to verify the applied strategy. Their
evaluation outcomes have illustrated that the applied approach is notably exceeded
the rare case of performance face identification strategy, together with InsightFace
and Dlib on the advertised Essex metadata and their self-assembled raw-data CO-
MASK20, with has an efficiency of 87% f1-score on the owned gathered raw data
from institutions COMASK20, and 98% f1-score on the declared Essex raw data.
Thus, it designated the strength and appropriateness of the suggested strategy. Fur-
thermore, they have engineered to optimize the recommended model for forthcoming
works, including lessening parameters and potential waste for efficiently operating
the model on movable and transportable tools that will be expanded to check the
classroom at instructional systems.
The article [18] introduced a contactless distribution cabinet, incorporating a masked
face recognition algorithm. The delivery cupboard is an essential carrier self-pickup
tool as Covid-19 transmits through human touch. The proposed device works
founded on a concentration mechanism. It is incorporated in this research to re-
fine the masked face image recognition rate. RMFRD and SMFRD are also used
in this system as experimental databases. Firstly, a provincial restrained dictionary

6

learning technique is implemented to differentiate the masked faces. After that, an
enlarged twist methodology is employed to lessen the resolution contraction. After
that, an attention mechanism is applied to extract multiple features by following the
critical face image features like eyes and eyebrows. Different algorithm approaches
are also compared through both the RMFRD and SMFRD databases which depict
that the proposed algorithm of this study has superior accuracy in facial recognition.
Proposals for supervision-based masked face identification with face difficulties in
selecting appropriate detecting patterns and a lack of appropriate data sets. Exist-
ing models are insufficiently capable due to their higher percentage of false positives
and lack of accuracy. To address these issues in our proposal, we will attempt to
use these parameters in our model. The above deliberation shows that researchers
used different CNN-based methods and other mechanisms for detecting facial iden-
tification. Moreover, there are significant differences between those methods and
mechanisms. Nevertheless, we have to select the idiosyncratic and most acceptable
approach from the above articles. For instance, Inception ResNet-V1 architecture is
more advanced than FaceNet architecture in terms of masked face detection. Fur-
thermore, OpenCV and Dlib is more robust and triumphant analytical technique
and broadly used algorithm, and ResNet50 architecture has better time and memory
performance than other CNN models like VGGNet19 and DenseNet121.

7

Chapter 3

Background Study

3.1 Face Verification vs Face Recognition

3.1.1 Verification - Is this the same person?
Face verification is quite simple. By taking FaceID, for example, which will be used
to unlock phone or at the airport when scanning passport and verifying if it is really
that person. It works in 2 steps:

• Taking image or the ID of a person as input

• Verify if the output is the same as the claimed person.

Figure 3.1: Face Verification

Figure 3.1 defines it is a 1:1 problem. It is expected to have a high accuracy of the
face verification system nearly 99% - so that it can be further used into the face
recognition system.

8

3.1.2 Face Recognition - Who is this person?
Face recognition is much harder than face verification. It is used mainly for atten-
dance system in offices, or when Facebook automatically tags friend. The process
is as such:

• Having a database of K persons.

• Taking the image of a person.

• Give the ID as output if the image is any of the K persons or if it is not.

Figure 3.2: Face Recognition

Figure 3.2 introduced Face recognition, which is a 1:K problem where K is the
number of persons in database.

3.2 The One Shot Learning Dilemma
The problem with face recognition is that a particular person is recognized from
only one image. Since there will be only one picture of each individuals, the system
should be able to recognize the person again.
If there is 100 individuals, then one simple solution would be to take that one image
and feed it into a CNN and output a Softmax unit with 101 outputs (100 outputs
are for the individuals and the one left is to indicate none). However, this would
not work well for two reasons:

• It will not be possible to train a robust neural network.

• If another individuals were added, the output will needed to be increased and
retrain the Conv-Net.

Instead, the neural network should learn a similarity function.

9

3.3 Similarity Function
The similarity function takes as input two images and output the degree of difference
between the two images - d(img1,img2)

• For two images of the same person, d(img1,img2) should be small.

• For two images of different person, d(img1,img2) should be big.

So this is the way to address the face verification problem:

• If d(img1,img2) ≤ τ , it is predicted as same.

• If d(img1,img2) > τ , it is predicted as different, where τ is a threshold.

Given a new image, the function d is used to compare against the images in the
database. If the image pairs are different, then it would be a large number, and if
they are the same, then it would be a small enough number which will be less than
the τ threshold.

Figure 3.3: Similarity Function process

In Figure 3.3, if someone is not in the database, when pairwise comparison will be
done and the function d will be computed, then a very large numbers for all the pairs
will be generated as shown. The d function solves the one shot learning problem
whereby if someone new joins the team then adding that new person’s image will
only be needed to the database and it would work just fine.

3.4 Face Detection with SSD
The job of detecting numerous things inside an image and creating a bounding box
around each of those objects is known as ”object detection.” Initially, researchers
developed R-CNN for object detection, localization, and classification. The output
is a bounding box surrounding the object detected with the classification result of

10

the object. With time, we improved the R -CNN network and came up with Fast
R-CNN and Faster R-CNN. However, one major drawback of the network was that
the inference time was too long for real-time object detection. New architectures,
such as YOLO and the ones described below, are better suited for real-time object
detection. There are several methods for face detection:

• SSD

• MTCNN

• Dlib

• OpenCV

Figure 3.4: Crop with different margin

The goal of this research is to use a face detection algorithm to detect faces and
crop it with margin 20 or 40 as shown in Figure 3.4.
While MTCNN is more widely used, SSD performs faster inference, but has low
accuracy. SSD makes use of layers with a lower resolution in order to identify things
on a greater scale. It does this by removing the need for the regional proposal net-
work to be used, which speeds up the process.There are three primary components
that make up SSD’s architecture:

• Base network - VGG-16

• Extra feature layers

• Prediction layers

3.5 VGG-16
The ImageNet dataset, which contains over 14 million photos and 1000 different
categories, is used to train it. The fact that it consists of 16 different layers is
where the term VGG-16 originates from. Convolutional layers, Max Pooling layers,
Activation layers, and Fully Connected (fc) layers are some of the layers that are
included.

Figure 3.5 represents VGG-16 architecture. The total number of layers is 21, yet
there are only 16 weight layers despite the fact that there are 13 convolutional layers,

11

Figure 3.5: VGG-16 architecture

5 Max Pooling layers, and 3 Dense layers. In this study, the VGG-16 was chosen
as the base network, and the only feature mappings (FMs) that were taken into
consideration were those at the very last convolutional layer, which is also referred
to as channels. This layer is being utilized as a feature extractor, and its output will
be used for the quantization in the stage that comes after this one.

3.6 FaceNet
FaceNet is a deep neural network used for extracting features from an image of a
person’s face. It was proposed in 2015 by three Google Researchers, Florian Schroff,
Dmitry Kalenichenko, and James Philbin, in the paper titled FaceNet: A Unified
Embedding for Face Recognition and Clustering. It achieved state-of-the-art results
in the many benchmark face recognition dataset such as Labeled Faces in the Wild
(LFW) and Youtube Face Database. FaceNet is able to learn a mapping from face
pictures to a compact Euclidean Space, in which the distances directly correlate
to a scale of face similarities. Then it uses the Triplet Loss function to train this
architecture. FaceNet is capable of achieving state-of-the-art performance (record
99.63 percent accuracy on LFW, 95.12 percent on Youtube Faces DB) while only
requiring 128 bytes per face to store each face. FaceNet seeks an image embedding
f(x) into feature space Rd (where d is typically 128) such that the squared L2 distance
between all face photos of the same identity is modest, while the range between a
set of face images from different identities is significant.

Figure 3.6: FaceNet Architecture Block Diagram

12

3.7 Triplet Loss Function
Unlike other losses, which urge all faces of the same identity to converge on a single
point in Rd, the triplet loss also seeks to impose a buffer between each pair of faces
from one person (anchor and positive) and all other people’s faces. Other identities
are discriminated against by this margin.

Figure 3.7: Triplet loss training

Here in Figure 3.7 in order to train a model to classify, triplet loss to minimize
the distance between images of the same person can be used and also the distance
between images of different people can be maximized. In FaceNet, all the images are
processed and encoded into a 128-dimensional vector which contains the coordinates.
Using the Triplet Loss function, the images of the same person and images of different
people only with the distance can be identified. If the distance between two images
is low, then they are images of the same person. On the other hand, if the distance
is high, then the images belong to different people.

3.8 Inception Network
When designing a layer for a convNet, the type of filters should be picked: 1x1, 3x3
or 5x5 or even the type of pooling. To get rid of this conundrum, the inception
layer allows us to implement them all. For example, our image will be of the same
dimension but the target in the image may be of different sizes, i.e, a person may
stand far from the camera or one may be close to it. Having different kernel size
allow us to extract features of different size. By understanding the Naive version of
the Inception model, different types of kernel on an input is applied and the output
is concatenated. The idea is instead of selecting the filter sizes, using them all and
concatenate their output and let the NN learn whichever combination of filter sizes
it wants. However, the problem with this method is the computational cost. Deep
Convolutional Networks are computationally expensive. Also, very deep networks
are susceptible to over fitting - it is hard to pass gradient updates through the entire
network.

3.9 Network in Network
The computational cost of the 5x5 filters of the 28x28x192 input volume is 120M
multiplies to perform. It is important to remember that this is only for the 5x5
filter and computation is needed for the other 2 filters and pooling layer. A solution
to this is to implement a 1x1 convolution before the 5x5 filter that will output the
same 28x28x32 volume but will reduce the number of multiplies by one-tenth.

13

Figure 3.8: 1x1 convolution, Network in network

Here in Figure 3.8, A 1x1 convolution also called a Network in network will take
the element-wise product between the 192 numbers (example above) in the input
and the 192 numbers in the filter and apply a relu activation function and output
a single number. A number of filters will be generated. So the output will be
HxWx#filters. To reduce the height and width of an input pooling can be done.
However, to reduce the number of channels of an input (192), a 1x1x#channels filter
can be used with the numbers of filters equal to the number of channels of output
needed. In the example above in the middle section, the channel is needed to be 16,
so 16 filters will be used. A bottleneck should be created by shrinking the number of
channels from 192 to 16 and then again increased it to 32. This allows to diminish
dramatically the computational cost which is now about 12.4 M multiplies. The 1x1
convolution is an important building block in the inception network which allows
to go deeper into the network by maintaining the computational cost and learning
more features.

3.10 Inception with Dimension Reduction
To reduce the computational cost the architecture should be modified and 1x1 con-
volution should be added to it. As shown above, the 1x1 filters will allow to have
fewer weights therefore fewer calculations and therefore faster inference.

14

Figure 3.9: Inception network with some additional max pooling

In Figure 3.9 there are 9 of the inception block concatenate to each other with some
additional max pooling to change the dimension. It should be noted that the last
layer is a fully- connected layer followed by a softmax layer to make predictions
but there is also two side branches coming from the hidden layers trying to make
predictions with a softmax output. This helps to ensure that the features computed
in the hidden layers are also good to make accurate predictions and this helps the
network from over fitting.

3.11 Inception-Resnet V1 Network
A hybrid inception module was suggested, inspired by the ResNet’s performance.
Inception ResNet is divided into two versions: v1 and v2. The computational cost of
Inception-ResNet v1 is equivalent to that of Inception v3, while the computational
cost of Inception-ResNet v2 is similar to that of Inception v4. Below are some
features of the Inception ResNet architecture:

• It is necessary for both the input and the output after convolution to have the
same dimensions for residual addition to work. Therefore, in order to make the
depth sizes consistent, 1x1 convolutions is applied after the first convolutions
(Depth is increased after convolution).

• The pooling mechanism that took place inside the major inception modules
was changed to focus on the residual connections instead.

• If the number of filters surpassed 1000 in a network that had residual units
further in the design, the network would “die”. As a result, in order to make the
system more stable, the scientists scaled the residual activations by a number
that was somewhere between 0.1 and 0.3.

It was found that Inception-ResNet models were able to achieve higher accuracies
at a lower epoch. This network will be used to train and test the Face Recognition
with Masks model.

15

3.12 Object Localization and Object Detection

3.12.1 How dows it work?
To perform object localization whereby if a person’s face detection in a picture is
needed, it should be known where in the picture is the face located. There might be
other objects in the picture, for example a car, this also be needed into consideration.
Now the CNN softmax output will not just contain the object class label but also
the parameters below:

y =

p
c1
c2
x
y
w
h

(3.1)

here,

• p: “0” if no object and “1” if object

• c1: “1” if face, “0” otherwise

• c2: “1” if car, “0” otherwise

• x: x-position - center point of object

• y: y-position - center point of object

• w: width of bounding box

• h: height of bounding box

Figure 3.10: Divide pictures into a 5x5 grid cells and predict value of y predict in
each individual cell

Here in Figure 3.10, For the first grid cell which does not contain an object, p = 0
is the first parameter in y value and for the rest, “?” is used to represent them. For
the third grid cell, an object and a face is detected, so out p = 1 and c1 = 1, and
the x,y,w and h represent values for the bounding box. During training, network
output will be similar vectors. SSD does not employ a pre-defined area proposal
network. Instead, it uses modest convolution filters to calculate both the location

16

and class scores simultaneously. In order to produce predictions, SSD first extracts
the feature maps from each cell, and the n applies 3 x 3 convolution filters on each
of those maps.

3.12.2 How to know the bounding box is correct?
IoU(Intersection over Union) is used to measure the overlap between two bounding
boxes.

Figure 3.11: Intersection over Union

Here in Figure 3.11, green border illustrates the Ground Truth and orange border
illustrates the prediction. Normally if the IoU is greater than or equal to 0.5 it is
deemed to be a correct prediction. But to be more stringent the threshold can be
increased where 1 is the maximum value.

3.12.3 Anchor Boxes
Problem 1: It is not possible for one object to be strictly within one grid cell. And
when it is not, how to determine which cell to associate to the object.
Problem 2: Each of the grid cells can detect only one object. But there might be one
grid cell containing more than one object. How to handle multiple center points?

Figure 3.12: Anchor boxes for prediction

17

In Figure 3.12, both objects have their counterpoint in the same cell. So setting a
tall anchor box that can be used to predict a standing person and a wide anchor
box can be used to predict a car. These anchor boxes are used in each of the grid
cell and output one vector y for every anchor box. The solution for problem 1 is to
associate the cell which contains the center point of the bounding box of the object.
Also, the solution of problem 2 is, a bigger grid - 19x19 - instead of a 5x5 can be
used which reduces this problem. Also, to predefined anchor boxes and associate
prediction with the anchor boxes is needed to be done. Previously, each object was
assigned to a grid cell that contained that object’s midpoint. Now, each object is
assigned to a grid cell which contains that object’s midpoint and anchor box for the
grid cell with the highest IoU (similar shape).

3.13 Non-Maximal Suppression (NMS)
SSD contains 8732 default boxes. During the process of inference, there are 8732
boxes allocated to each class (because the output is a confidence score for each box).
The vast majority of these checkboxes are negative, and even among the positive
ones, there is a high chance that several of the boxes will overlap. Non-Maximal
Suppression, abbreviated as NMS, is a technique that eliminates overlapping box
instances per class.

Figure 3.13: Output of Non-Max Suppression

In Figure 3.13, it illustrates the NMS technique. It works such as:

• Arrange the checkmarks in descending order of confidence.

• Select the category that has the highest level of confidence.

• Get rid of all the other projected boxes if their Jaccard overlap is more than
the NMS threshold (0.45 here).

• Continue with step 3 until all of the boxes have been covered.

In short, the network is quite sensitive to the default boxes, and it is critical to
choose the default boxes in accordance with the dataset on which it will be employed.
Because early layers, which are responsible for detecting tiny things and have smaller
receptive fields, are too shallow, SSD does not perform well with items that are on
the smaller side.

18

Chapter 4

Methodology & Explanation

Before we explain our proposed methodology, we want to explain about dataset.
These following datasets from online source and an amount of raw data are used by
us:

1. CASIA-Webface Dataset to train our model: This dataset contains 494,414
images of 10,575 people. This dataset does not provide any bounding boxes
for faces or any other annotations.

2. LFW Dataset for evaluation of Face Recognition without Masks: This dataset
contains more than 13,233 images of faces collected from the web of 5,749
people. Each face has been labeled with the name of the person pictured.
1,680 of the people pictured have two or more distinct photos in the data set.

3. 1% of the MS-Celeb-1M dataset for evaluation of Face Recognition with Masks:
This dataset has 8,456,240 images of 99,892 celebrities.

4. Some amount of data of our friends that were collected form different social
handle.

Figure 4.1: Work Plan: A complete overview of our face detection and recognition
process

19

4.1 Data Pre-processing
Our data pre-processing contains data cropping, data cleaning, data augmentation
and data embedding.

4.1.1 Data Cropping
We have used our trained facemask detection algorithm to crop the pictures. The
bounding box is adjusted to crop the images with the help of SSD FaceNet.

Figure 4.2: Cropped Image from the original one

Figure 4.2 is representation of the cropped images. To perform it, the .pb file is
loaded with a default margin of 40 and GPU-ratio of 0.1 . Then, we have restored
the model to get the nodes and get the input shape which is used to resize the images.
In the inference function used is sess.run to get the detection boxes, the detection
scores. Then we have decoded the bounding boxes and do the non-max suppression.
In order to draw the bounding box the (xmin,ymin) and (xmax,ymax) coordinates are
needed. Our bounding boxes are unit coordinates in the range [0,1]. We had to make
them to real sizes. Then, the width of the bounding box is calculated using (xmax -
xmin) and height is calculated using (ymax - ymin). Our original image is 250x250 so
the cropped face image should be over 100x100. This enables to detect faces which
is well aligned (the main person in the image). Two thresholds is used for the width
and height. In an if condition it is checked if the width of our bbox is more than the
width_threshold and the height is more than the height_threshold then the height
of the cropped image is bbox[1] : bbox[1] + bbox[3] and width is bbox[0] : bbox[0]
+ bbox[2]. Then the file is saved and the images are being displayed.

4.1.2 Data Cleaning
After cropping the pictures, now performing the data cleaning process is needed to
remove the mislabeled images.

Figure 4.3: Finding the mislabeled images

20

While checking the folders and it has been seen that folder 057 got one mislabeled
image as shown in Figure 4.3. This signifies that the CASIA dataset is not cleaned
and there may be other instances of mislabeled images. To check each of the 10,575
folders individually we need an algorithm that will do this work. We can set a
process of removing mislabeled images using the distance function d described in
Siamese Network.

Siamese Network

A Siamese Neural Network is a kind of neural network that is created by applying
two similar convolutional neural networks to two distinct inputs and then analyzing
the results of both networks.

Figure 4.4: Encoding between two images and calculating distinct two inputs

In Figure 4.4, after running a series of convolutions, pooling, and fully connected
layers on an image of a human, we are left with a feature vector that has 128
individual values. These 128 numbers are represented by f(x(i)) and are called the
encoding or embedding of the image where img(i) = x(i). Then, a face recognition
system is built to have a second picture feed into that same CNN and compare their
two 128 feature vectors. Then we need to define the function d which computes the
norm of the difference between the two encodings:

d(x(i), x(j)) = ||f(x(i))− f(x(j))||2 (4.1)

In short,

• Our neural network defines a 128-dimensional encoding of an image.

• The parameters are acquired in such a way that if two photographs are the
same, then there should be little difference in their encodings.

• For two different images, distance should be large.

While changing the parameters of the different layers of the NN, it ends up with
different encodings. But we want to learn a specific set of parameters such that the
above two conditions are met.
To remove the mislabeled images, the distance function d is used which is shown in
Figure 4.5.

21

Figure 4.5: Calculating the average distances between the target image and the
reference image to find the mislabeled images

1. In a subfolder in the main directory, we have selected images one by one as
the target image and the other images become the reference images.

2. The average distance between the target image and the reference image is
calculated.

3. The average distance shows that, when a correct image is selected as the target
image, is not much as compared to when the mislabeled image is selected as
the target image. Also, there might have been more than one mislabeled image
in a folder. That is the reason why we make each image the target image and
calculate the average distance. Note: The distance between a target image
and itself is zero.

4. The average distances to a threshold is compared.

5. The target image(mislabeled image) is removed when its average distance
exceeds the threshold.

We have also used the pre-trained weights of Inception Resnet V1 trained on the
VGGFace dataset and have an accuracy of 0.9965 on the LFW dataset. We start
by restoring the .pb file and creating a function img_removal_by_embed to do the
following processes:

1. Collecting all folders from the root directory.

2. Initializing our model by restoring from pb.

3. Setting the method to calculate the distance d by using default tf_graph
and configuring GPU settings that help to initialize the TensorFlow global
variables.

4. Process each folder and create subfolders to move the mislabeled images.

5. Calculate the embedding.

6. Calculate the average distance by using the embedding.

22

Figure 4.6: Finding mislabeled images in the dataset

7. Remove the mislabeled images if the average distance is greater than the
threshold (1.25).

We got 3981 folders after running and checking the folders which had 20079 wrong
images in total as shown in Figure 4.6. In the folders, we see that our algorithm
correctly identified the wrong person in Linda Hamilton’s folder, and in Bill Mur-
ray’s folder, we had more than one mislabeled image. However, the algorithm also
removed the images of the correct label. Mainly because the images were blurred or
fuzzy, or the subject had sunglasses in them or there were pictures when the person
was too young or too old. Nevertheless, data cleaning will now allow our NN to
train on a more accurate dataset to make better predictions.

4.1.3 Data Embedding
After finishing the data cleaning, now performing data embedding is needed. Using
a vector of 128 numbers, our AI will try to compress all the necessary features of
a face into this space. The process of transforming high-dimensional input, such as
photographs, into such low-dimensional forms (embedding) is what will allow us to
give each face an ID. As such, the embedding of faces with similar characteristics is
comparable - a person can have only one ID.

How to know the correct embedding dimension?

FaceNet experimented with different embedding dimensionalities and 128 remains
the best performing one. In this work our embedding length will be a constant 128
feature vector.

Dimensions Values
64 86.8% ± 1.7
128 87.9% ± 1.9
256 86.7% ± 1.9
512 85.6% ± 2.0

Table 4.1: Different accuracy on different embedding lengths

23

4.1.4 Data Augmentation
With a first initial training, the accuracy of the model was moderate. One possible
way to increase the accuracy would be to have more data. Instead of finding new
images, we have created these images using Data Augmentation techniques. We
have used five data augmentation techniques namely:

1. Random Crop

2. Random Noise

3. Random Rotation

4. Random Horizontal Flip

5. Random Brightness Augmentation

Instead of using TensorFlow’s Data Augmentation API, we have created the scripts
and generated the images using OpenCV packages and NumPy.

Figure 4.7: Data Augmentation Process

Figure 4.7 refers to our data augmentation techniques which are following:

Random Crop

We want to create a script to crop randomly our images to become 150x150. We
have created a frame of this size in a small 10x10 square on the top left. Then, we
generated random points and used this as the first x-y values of the frame. Then,
we position the frame and crop the image.

Random Noise

For the random noise, a mask is created which is a NumPy array of the same
size as the image with only one channel. A uniformly-distributed array of random
numbers is created. If the number of pixels exceeds a threshold (240), it is set to
255, otherwise, it is set to 0. If the mask pixel value is 255, we use cv2.bitwise_and()
operation else we pass.

24

Random Rotation

The angle range is set from -60 to 60 degrees. Then, we define our center point of
rotation and use cv2.warpAffine to get the result.

Random Horizontal Flip

We don’t want to flip our image vertically as it is not expected to see someone upside
down when doing inference. So only Flip_type = 1 is used for the horizontal flip.

Random Brightness Augmentation

The mean brightness is calculated and set to a 30% variation range: 0.3xnp.mean
(img). Then, we find a number in the range as the new brightness and normalize
the image by dividing by the average value. Here, np.clip() is used to apply the
brightness. Since our data has now been doubled, we divide the batch size by 2 in
order to have the same number of data in one batch as before. We also reverse the
paths of the sub-folders in the directories of the CASIA mask and without mask
such that in half a batch, so that we have the original images and in the other half
we have the data augmented images. Then, the model is re-trained.

4.1.5 Custom Face Mask Dataset
Our end goal is to be able to recognize faces with masks. The CASIA dataset
already has half a million pictures of faces and By using the Inception Resnet V1
model we can create a face recognition model. What we want to do now is have the
same CASIA dataset with the same folders and same pictures but with the persons
wearing a mask. But we don’t have such a dataset. So creating one is needed. We
want to show our AI the picture of a person without a mask, then a picture of the
same person with a mask and tell him that it is the same person.

Figure 4.8: Creating masked face dataset using CASIA dataset to train and test
through LFW dataset

In order to achieve the process in Figure 4.8, our mask should be in png format.
PNG format has 4 channels. The fourth channel is used to describe transparency.
We need to use the Dlib library which is pre-trained to recognize 68 landmark points
that cover the jaw, chin, eyebrows, nose, eyes, and lips of a face.

Figure 4.9 shows the landmarks numbers 48 to 68 for the mouth. According to
the figure, we start by creating a function detect_mouth which will be used to
read the face landmarks from 48 to 68 and calculate the coordinates. In another

25

Figure 4.9: Adding mask to face by using Dlib

mask_wearing function, we first process the folders and create directories for each
folder in the main folder. Then we randomly select a PNG mask image from the
folder. Then, the image is read with cv2.IMREAD_UNCHANGED to make sure the
image has 4 channels. We resize it based on our mouth detection coordinates found
before. We use cv2.threshold to make the values of the image of the mask 0(black) or
255(white), i.e, we have the image of a white mask with black background. We use
cv2.bitwise_and to create the mask of the face mask. We declare the coordinates
of our Region of Interest (ROI) from the mouth detection values. We create an
inverted mask with cv2.bitwise_not of the face mask and then use cv2.bitwise_and
to mask the face mask onto the person’s face. Then, two images are added: face
mask and face.

Figure 4.10 shows that, the face masks have successfully been added to the images.
Although there is some side face images, we cannot really modify the mask to fit in
each image correspondingly. So it is a satisfying result.

4.2 Face Recognition using Facenet
FaceNet is used to implement our Face Recognition with mask model. We have
already done Face Detection to perform Face Alignment whereby we cropped the
images with a margin value of 40. We will not build an Anti-Spoofing or Face
Liveness Detection for now. We will train our model for the first time and then
use various Data Augmentation techniques to improve the training accuracy. As
FaceNet is able to learn a mapping from face pictures to a compact Euclidean Space,
in which the distances directly correlate to a scale of face similarities. Then it uses
the Triplet Loss function to train this architecture. FaceNet is capable of achieving
state-of-the-art performance while only requiring 128 bytes per face to store each
face.

26

Figure 4.10: Custom masked face dataset

4.2.1 Triplet Loss Function
During the process of Triplet Loss, we are going to be looking at three separate
pictures at the same time: an anchor, a positive image (which is an image that is
comparable to the anchor image), and a negative image (one who is different from
the anchor image). We want there to be as little space as possible between the
anchor and the positive picture, and as much space as possible between the anchor
and the negative image. For a robust face recognition, we want the following :

||f(A)− f(P)||2 ≤ ||f(A)− f(N)||2 (4.2)

where,
d(A,P) = ||f(A)− f(P)||2

and,
d(A,N) = ||f(A)− f(N)||2

The equation can also be written as,

||f(A)− f(P)||2 − ||f(A)− f(N)||2 ≤ 0 (4.3)

Here, The anchor is denoted by the letter A, positive as P and negative as N.

To make sure the neural network does not output zero for all the encodings, it does
not make all of the encodings equivalent. We had to modify the above equation such
that the difference between d(A,P) and d(A,N) should be 0 – α where α is called a
margin. Finally, the equation becomes:

||f(A)− f(P)||2 − ||f(A)− f(N)||2 + α ≤ 0 (4.4)

27

For example, if we have d(A,N) = 0.50 and d(A,P) = 0.49, then the two values are
too close to each other and it is not good enough. We want d(A,N) to be much
bigger than d(A,P) like 0.7 instead of 0.50. To achieve this gap of 0.2, we have
introduced a margin which helps push d(A,N) up or push d(A,P) down to achieve
better results.

To define our loss function on a single triplet we need 3 images: A, P and N:

L(A,P,N) = max(||f(A)− f(P)||2 − ||f(A)− f(N)||2 + α, 0) (4.5)

We take the max of the loss because as long as,

||f(A)− f(P)||2 − ||f(A)− f(N)||2 + α ≤ 0, the loss = 0

However if,
||f(A)− f(P)||2 − ||f(A)− f(N)||2 + α > 0,

then, the loss,
||f(A)− f(P)||2 − ||f(A)− f(N)||2 + α

We will have a positive loss. To define our cost function :

J =
m∑
i=1

= L(Ai, P i, N i)

We need at least more than 1 picture of a person as we need a pair of A and P in
order to train our NN.
Figure 4.11 illustrates,

• One of the anchor images is chosen at random (orange border).

• We randomly select an additional photograph of the same individual who
serves as the positive anchor photograph (green border).

• As the negative anchor image, we will use a picture of a different individual
who will be chosen at random (red border).

• We put our model through its training and make adjustments to the parame-
ters such that the positive picture is located as near to the anchor as possible
and the negative image is located as far away as possible.

• We repeat that process above so that all images of the same person are close
to each other and further from the others.

One of the problems when we choose A,P and N randomly is that the condition
||f(A) − f(P)||2 − ||f(A) − f(N)||2 + α ≤ 0 is easily satisfied and the NN will not
learn much from it.
To do this, we choose triplets that are challenging to practice on. In order to satisfy
this condition: d(A,P) + α ≤ d(A,N), we want d(A,P) ≈ d(A,N) .

28

Figure 4.11: The anchor (in orange) pulls images of the same person closer and
pushes images of a different person further away

Now the NN will try hard to push d(A,N) and push d(A,P) up so that there is at
least a margin between the two components. Thus, it is important to understand
that it is only by choosing hard triplets that our gradient descent will really do some
learning of the similarity and differences in the images.
After receiving training, our artificial intelligence will be able to recognize a person
on an unviewed picture by computing the picture’s embedding and then using this
embedding to compute the distances to photos of known persons. When the face
embedding of this picture is sufficiently similar to the embedding of person A (Rowan
Atkinson), we assert that this image includes the face of person A. [Figure 4.12] In
our dataset, we have more than 2000 individuals and more than 20,000 images
(10 pictures of each individual), then we take these 20,000 pictures and generate
triplets of (A, P, N) and then train our learning algorithm by using gradient descent
to minimize the cost function defined above. This will have the effect of back-
propagating to all of the parameters in the NN in order to learn an encoding such
that d(x(i), x(j)) is small when comparing photographs of the same person to images
of other people and large when comparing images of different people.

Face Verification with Binary Classification

In addition to the Triplet Loss Function, we also have the option of using the Siamese
Network and asking it to calculate the 128 dimensional embedding. This information
can be sent to a logistic regression unit, to use to create predictions.

• Same person: ŷ = 1

• Different person: ŷ = 0

The output ŷ will be a sigmoid function applied to the difference between the two sets
of encodings. The formula below computes the element-wise difference in absolute

29

Figure 4.12: Face Recognition from dataset

values between the two encodings:

ŷ = σ(
128∑
k=1

wi

∣∣f(x)ik − f(x)jk
∣∣+ b)

Figure 4.13: Face verification with Binary classification

In Figure 4.13, we have created a training set of pairs of images where target label
= 1 of same person and target label = 0 of different person. As FaceNet uses
Zeiler & Fergus architecture and GoogLeNet style Inception model as its underlying
architecture. Since we will be using the Inception ResNet V1 Network, we start by
ResNet Network.

4.2.2 Resnet Network
In Figure 4.14, a 56-layer CNN gives more error rate on both training and testing
datasets than a 20-layer CNN architecture. This happens due to the phenomenon

30

Figure 4.14: Training error (left) and test error (right) on CIFAR-10 with 20-layer
and 56-layer “plain” networks

of the Vanishing gradient during back-propagation whereby the gradient becomes 0.
The deeper network has higher training error, and thus test error.

Figure 4.15: Relu function

In order to solve the vanishing gradient problem (due to the use of L1 and l2 regu-
larize), the architecture introduced the skip connections which skips training from
a few layers and connects directly to the output [Figure 4.15]. This will avoid that
problem as gradient can back-propagate via the skip connection. Even if the main
path is zero, performance will not degrade as information will flow through skip
connection during forward propagation.
Figure 4.16 show how a simple network compares to a residual network in terms of
accuracy. It’s worth noting that the accuracy of a 34-layer simple network reaches
saturation sooner than ResNet’s. We propose this simple ResNet architecture of
four ResNet blocks and four max pooling. We flatten our layer and feed it into a
FC of 128 units to represent our embedding.

31

Figure 4.16: Accuracy comparison between a simple network and residual network

Figure 4.17: Simple ResNet architecture of four ResNet blocks and four max pooling

To perform Figure 4.17, we start by building our Resnet Block which will be du-
plicated 4 times in the whole architecture. In our function resnet_block, we define
a kernel size of 3 x 3, 32 filters, with padding = “same”, a l2 regularizer and a
relu activation function. Next, we define a function simple_resnet where we will
design the whole architecture. We implement the first Resnet block and the max
pooling layer, where kernel size was 3, number of filters was 16, max poolsize was
2x2 and the number od stride was 2. Then, we got the shape of first pool. Then, we
duplicate the above method by increasing the number of filters (16, 32, 48, 64) by
keeping their same size of kernel, max pool and strides we go deeper. We then flatten
our layer to get the flatten shape. Then, we feed into into a fully connected layer
with dropout and units = 128 which represent the encoding.We use the TensorFlow
implementation of the Inception ResNet V1 architecture proposed by David Sand-

32

berg. He proposed two models, one trained on the CASIA-Webface dataset and the
other on the VGGFace2 dataset. They achieved an accuracy of 99.05% and 99.65%
respectively. We will not use the pre-trained model as we will train our model from
scratch but we will definitely use the metrics as a benchmark for our model.

4.3 Embedding
During the training phase, we don’t provide our NN any explicit instructions for
what the numbers in the vector should represent; rather, our sole requirement is
that the embedding vectors of faces that are similar have comparable values (i.e.
close to each other). It is up to our NN to find out a way to represent faces using
vectors in such a way that the vectors representing different persons do not resemble
one another, but the vectors representing the same person do. In order for this to be
the case, our NN has to be able to recognize the distinguishing characteristics of a
person’s face that set it apart from other people’s faces. During the training process,
our NN is using a wide variety of various combinations of these characteristics in
order to determine which ones perform the best. The way that our neural network
represents features in a picture is different from the way that humans do (distance,
size, etc.) and it is better this way as this enables it to do a far better job than us
humans.

Figure 4.18: A function that, as its input, receives a picture and, as its output,
generates a face embedding (a summary of the face)

The process of training a convolutional neural network to generate face embedding
calls for a significant amount of data as well as the processing capacity of a computer.
It took us roughly 46 hours of consistent practice before we could achieve decent
accuracy. However, after it has been trained, the network will be able to provide
measures for any face, including ones that it has never seen before. Therefore, we
only need to do this step once.

4.4 Real-time Face Recognition
Our objective is to recognize a person who is behind the mask. We start by reading
the image from a camera input.

33

Figure 4.19: Face Recognition using Deep Learning

Figure 4.20: Real-time face recognition process

Figure 4.20 depicts that, we need to process the image from BGR to RGB. Using
our pre-trained face mask SSD model we had, we perform face detection and crop
the face. Then, we send this image to our face recognition model for face matching.
If a face is detected, our face mask detection model will draw a rectangle showing
if the person is wearing a mask or not. We use the face coordinates from the face
detection model to crop the image, and our face recognition model will perform the
embedding and assign a name to the image with the least distance. The process is
divided into three phases:

1.Real-Time streaming

In a function called stream, we have a while loop which will stream video directly
from our webcam.

2.Adding Face Mask Detection

We upload the face mask model from our pb file and create two variables named
as margin and i2dclass. Here margin = 40 and id2class = 0: ‘Mask’, 1: ‘NoMask’.
Then, we initialize our face detection model. After that, we need to convert our
image from BGR to RGB and do normalization. After normalization, we resize our
image and increase the dimension by 1. At the end, we perform the inference and

34

check if we detect a mask or not. Here draw a green rectangle if we detect one(mask)
and if not a red rectangle. We display the information just above the rectangle.

3.Adding Face Recognition

For the third phase, we have the Microsoft Celebrity dataset to test our model,
which contains 85,742 persons’ faces. We also insert our raw images in the database
and check if the model can recognize us among all these people. We restore our
face recognition model from our pb_model.pb file and initialize our face recognition
model. Then, we read the images from the database. We then use a batch data of
32 to read our images, normalize the data and get the embeddings. After using a
batch data of 32 to read our images, we normalize the data and get the embeddings.
Then, we set our Euclidean distance equation to calculate the distance. After the
face detection step, if a face is detected we get the face coordinates to crop the image,
resize and change the dimension to 4. After getting the embeddings, the distance
is calculated and then we get the index of the image of the smaller distance. If the
distance of this particular index is also smaller than our threshold (0.8), we conclude
we have a match. We also get the name of our image file which is initially an empty
variable and display it on top of the rectangle. After executing the program and it
took 307.093s (about 5 min) to get the embeddings of 85743 people and the test is
successful.

35

Chapter 5

Training Phase

5.1 First Training (Evaluation: No Mask Dataset)
Now we train our model on the CASIA dataset with no masks and the custom CASIA
dataset we made with masks. We have to evaluate the performance of our model
on the LFW dataset, which contains images with no masks. The hyper-parameters
which we need to tune are as follows:

• model_shape : [None, 112, 112, 3] or [None, 160, 160, 3].

• infer_method : inception_resnet_v1 or inception_resnet_v1_reduction.

• loss_method : cross_entropy or Arcface.

• opti_method : adam.

• learning_rate : 0.0001 or 0.0005.

• embed_length : 128 or 256.

• epochs : 40 or above.

• GPU_ratio : [0.1, 1].

• batch_size : 32 or 48 or 96 or 128.

• ratio : [0.1, 1.0].

5.2 Second Training with Data Augmentation

5.2.1 Evaluation: No Mask Dataset
After performing data augmentation on our pictures, we train the model and fine
tune the hyper parameters as before. We use the LFW as our validation set when
training the model. Below are the parameters to be tuned:

• model_shape : [None, 112, 112, 3] or [None, 160, 160, 3]

• infer_method : inception_resnet_v1

36

• loss_method : cross_entropy or Arcface

• opti_method : adam

• learning_rate : 0.0002 or 0.0005

• embed_length : 128 or 256

• epochs : 40 or 60 or 100

• GPU_ratio : None

• batch_size : 32 or 96 or 196

• ratio : 0.1 or 0.4

• process_dict : ’rdm_flip’: True, ’rdm_br’: True, ’rdm_crop’: True, ’rdm_an-
gle’: True, ’rdm_noise’: True

5.2.2 Evaluation: Mask Dataset
Whatever we have been doing till now is training our images on the CASIA dataset
with masks and without masks and then testing them on our without mask LFW
dataset. The accuracy we got before was for face recognition without masks. We
propose another method for the evaluation of faces with masks. The steps are as
follows:

1. Be using novel datasets for FaceNet training that has never been used before.

2. Choose 1000 distinct class photos (1000 individuals) for our face database
((reference data: ref data): No Mask Folder).

3. In these 1000 class images make them wear masks - these images will be used
as test images (target data: tar_data): Mask Folder

4. We calculate the embeddings of both images (masks and without masks) and
use them to do face matching.

In Fig 5.1, here, these images contain 3-dimensional embedding. Calculating the
Euclidean distance using the d function as explained before for the target image
(image with masks) and the images in our No Mask folder. If the indexes of both
images match and the distance is below a threshold (0.3), we conclude after having
a correct match.

5.3 Third Training (Evaluation: Mask Dataset
with Stratified Sampling)

In the previous training, we introduce a sampling bias. For example, our first class
has 100 images in our CASIA dataset and the second class has 10 images, then
when uses a ratio of 0.4. We take 40 from the first folder and only 4 from the second
folder. This disparity in the number of images in the folders creates this sampling
bias. A better method ensures the test set represents all of the different classes

37

Figure 5.1: Calculating Euclidean distance between mask and no mask, to get the
best match

in the dataset. As a result, stratified sampling is used. The classes are separated
into homogenous sections named strata, and the appropriate numbers of photos are
selected from each stratum to ensure the test dataset is illustrative of the whole
dataset. We begin by exploring how many classes have fewer than 10 images and
how many have more than 100 images. We get 195 for the first condition and 859
for the second condition. While it is challenging to remove classes with fewer than
10 images, we cannot remove both sets of classes as we lose about 1000 classes.
At this stage, we randomly select a constant x (2 or 5 or 15) number of images
from all the different classes. By doing so, the numbers of images are reduced and
training process still ongoing, also gain the training time. More data augmentation
are performed to increase our data (since we are selecting only (2 or 5 or 15) images
from all the classes) for each image we have selected. Then, we create a copy of four
images on which we do data augmentation. For example, from a folder of 10 images,
we select only 5 images, then we see that we have reduced by 50% the number of
images on which the AI will train. However, we perform data augmentation on each
of the 5 images such that the 5 images will multiply by 4 to become 20 images
Fig 5.2 follow these principles

• Original image without mask

• Original image without mask with Data augmentation

• Original image with random mask with Data Augmentation

• Original image with random mask with Data Augmentation

We change our get_4D_data function to accommodate the changes describe above.
Creating a variable aug_times and assign it the value of 4 since each image are
augmented with 4 pictures. Here, we have a dictionary p_dict_1 where we input the

38

Figure 5.2: 4 times augmentation

type of data augmentation which has been done. The variables are enumerated by
us to apply those data augmentations. After creating another variable.select_num,
that will input the number of images whichever we want to select from each class.
We check either it is an integer and greater than 1. If so, we reset our training
paths and labels. paths is a list because we use append to collect images from
each folder. We shuffle that list and use np.min() to find the minimum between
select_num and len(paths), i.e., we take all pictures in the latter case. Finally, the
list are transformed to a NumPy array and shuffled it.

39

Chapter 6

Result and Discussion

6.1 Result on First Training (Evaluation: No Mask
Dataset)

Using only 20% of the dataset for testing purposes, we get low values for the training
and testing accuracy and some weird-looking graphs as expect. Then, we increase
the ratio (ratio of images of the whole dataset)to 0.01 but reduce the batch size
to 32 as our GPU run out of memory and the results start to be promising, with
the test accuracy at nearly 72.9%. However, we see our training accuracy at 100%,
which is ideal, but we suspect over fitting of data. In order to avoid this, we need
to feed the model more data, so the ratio is increased to 0.1. The training accuracy
is increased slightly, but the testing accuracy is increased by nearly 20%.

Epoch Accuracy
100 52.31%
25 100%
40 99.993%

Table 6.1: Training set accuracy

Epoch Accuracy
64 65.21%
16 72.9%
3 86.93%

Table 6.2: Testing set accuracy

40

Figure 6.1: Result on first training for no mask dataset

Figure 6.1 illustrates the testing accuracy never exceeded the training accuracy.
With only a testing accuracy of 86.93%, the model would work, but it is not a
reliable one. So, we need to have an accuracy of nearing 98% or 99% in order to
be used in an industry setting. However, our GPU (GTX 1050 Ti-4GB memory)
ran out of memory, so we have to stop the training for the time being till we find
another way of training the model.

6.2 Result on second Training with Data Aug-
mentation

6.2.1 Evaluation: No mask Dataset
At this stage, setting the ratio to 0.4 and the batch size to 196, the accuracy is
increased from 86.93% from our last training to a whopping 92.07%, which is an
increase of nearly 6%. Using the same settings, we only change the learning rate to
0.0002, and the testing accuracy went up a little to 0.9618.

Epoch Accuracy
28 79.41%
5 79.57%
50 79.98%
83 79.98%

Table 6.3: Training set accuracy

41

Epoch Accuracy
21 96.17%
2 95.97%
24 96.18%
57 96.18%

Table 6.4: Testing set accuracy

Figure 6.2: Result on second training with data augmentation for no mask dataset

In Figure 6.2, we clearly see a great improvement in our testing accuracy, but we
need to do more tests to ensure the robustness of the model.

6.2.2 Evaluation: Mask Dataset
When evaluating the pre-trained weights of the model 20180408-102900 on our mask
dataset, we get only an accuracy of 16.3% at a threshold of 0.7 and nearly thrice
that at a threshold of 0.8. The same is seen for the model 20180402-114759, with
slightly better accuracy. This clearly shows that we have not use the model for face
recognition with masks. Our model before data augmentation has a shockingly low
accuracy on both thresholds. However, since we reach only an accuracy of 0.8693
of the LFW dataset, we can conclude the model was not that robust.After data
augmentation, our model accuracy increase sharply on both the LFW dataset and
the masks dataset, with a maximum accuracy of 99.98% at a threshold of 0.8. Our
model surpassed the accuracy of the pre-trained weights of the original Inception

42

ResNet V1 model and has been optimized to perform better at recognizing faces
with masks. While the accuracy values may seem promising, we suspect we may

Threshold
Model Name Architecture Training Dataset LFW Accuracy Testing Dataset 0.7 0.8

2018408-102900 Inception ResNet V1 CASIA 0.9905 With & Without Masks 0.16321 0.45212
2018402-114759 Inception ResNet V1 VGGFace2 0.9965 With & Without Masks 0.33528 0.60711

Our_model_before_aug Inception ResNet V1 CASIA+CASIA with Masks+Cropped 0.8693 With & Without Masks 0.06161 0.20396
Our_model_after_aug Inception ResNet v1 CASIA+CASIA with Masks+Cropped+Data Augmentation 0.9618 With & Without Masks 0.99870 0.99979

Table 6.5: Accuracy before and after Data Augmentation

still be over fitting the data and this is due to the unbalanced CASIA dataset which
we have. As we will explain below, we think we should do a fairer sampling of our
data for training.

6.3 Result on third Training (Evaluation: Mask
Dataset with Stratified Sampling)

We start training the model with a large epoch number of 100. We reduced our
batch size to 96 to avoid our GPU running out of memory. We have a select_num
= 2 for faster training and we keep all the other parameters unchanged. After 33
hours of training, we managed to get a decent accuracy of 0.9693. Now we can be
sure we are not over fitting as much when solving the bias sampling issue.

Epoch Accuracy
100 75.74%
97 94.19%

Table 6.6: Training set accuracy

Epoch Accuracy
93 95.51%
89 96.93%

Table 6.7: Testing set accuracy

43

Figure 6.3: Result on third training for mask dataset with Stratified Sampling

Table 6.8 is the test results for our whole training process till the beginning.

Threshold
Model Name Architecture Training Dataset LFW Accuracy Testing Dataset 0.7 0.8

2018408-102900 Inception ResNet V1 CASIA 0.9905 With & Without Masks 0.16321 0.45212
2018402-114759 Inception ResNet V1 VGGFace2 0.9965 With & Without Masks 0.33528 0.60711

Our_model_before_aug Inception ResNet V1 CASIA+CASIA with Masks+Cropped 0.8693 With & Without Masks 0.06161 0.20396
Our_model_after_aug Inception ResNet V1 CASIA+CASIA with Masks+Cropped+Data Augmentation 0.9618 With & Without Masks 0.99870 0.99979

Our_model_after_data_aug : select_num=2 Inception ResNet V1 CASIA+CASIA with Masks +Cropped + Data Augmentation +Strata 0.9693 With & Without Masks 0.99233 0.99849
Our_model_after_data_aug : select_num=5 Inception ResNet V1 CASIA+CASIA with Masks +Cropped + Data Augmentation +Strata 0.9661 With & Without Masks 0.99470 0.99860
Our_model_after_data_aug : select_num=15 Inception ResNet V1 CASIA+CASIA with Masks +Cropped + Data Augmentation +Strata 0.969 With & Without Masks 0.99416 0.99892

Table 6.8: Testing accuracy from the beginning

Figure 6.4: Higher Accuracy with Stratified Sampling after data augmentation

Here in Figure 6.4, we observe that the difference when selecting 2 or 5 images from
each class and 15 images from each class is very small (0.9947 compared to 0.9941).
However, the average time of one epoch was 65 min with a GPU of GTX 1050 Ti.
We see that when we selected only 2 images from each folder and performed data
augmentation, then our accuracy was nearly the same and our average time for one
epoch was only around 10 min. We can now achieve high accuracy even when our
selected number is small because we have solved the data imbalance problem.

44

Figure 6.5: Accuracy schema

Figure 6.5 explains the final schema which resumes our whole training and testing
accuracies.

45

Chapter 7

Conclusion

This paper started with a simple face detection algorithm and incorporated SSD
to create a masked face identification model. Inception ResNet V1 architecture
was implemented to train that model from scratch and test the accuracy. To avoid
overfitting, data augmentation techniques were performed, and it achieved 96.18%
accuracy from 86.93%. Due to the imbalance of data, a stratified sampling was
implemented which takes more than 3 hours of data coupled with data augmenta-
tion so as not to decrease the training dataset. Achieving an accuracy of 99.84%
after performing data augmentation and stratified sampling, the model is ready to
be deployed. The Data-Centric approach - holding the model fix and iteratively
improving the quality of the data - seemed to be fruitful in the end. By constantly
enhancing the dataset with data augmentation and a more appropriate sampling
technique, it was possible to build a robust, scalable model. About 80% of the time
has been spent on data preparation. Injecting more and more data into that model
without a proper cleaning process, sampling technique, or data augmentation pro-
cess would never have created a good performing AI model. The Data-centric AI
model was the key to building this masked face identification model, and more data
processing will improve the prediction accuracy.

46

Bibliography

[1] W. Niu, J. Long, D. Han, and Y.-F. Wang, “Human activity detection and
recognition for video surveillance,” in 2004 IEEE international conference on
multimedia and expo (ICME)(IEEE Cat. No. 04TH8763), IEEE, vol. 1, 2004,
pp. 719–722.

[2] A. V. Ponkia and J. Chaudhari, “Face recognition using pca algorithm,” In-
venti Rapid: Image & Video Processing Journal, vol. 4, no. 1, pp. 519–524,
2012.

[3] P. Bagchi, D. Bhattacharjee, and M. Nasipuri, “Robust 3d face recognition
in presence of pose and partial occlusions or missing parts,” arXiv preprint
arXiv:1408.3709, 2014.

[4] G. N. Priya and R. Wahida Banu, “Occlusion invariant face recognition using
mean based weight matrix and support vector machine,” Sadhana, vol. 39,
no. 2, pp. 303–315, 2014.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[6] R. Weng, J. Lu, and Y.-P. Tan, “Robust point set matching for partial face
recognition,” IEEE transactions on image processing, vol. 25, no. 3, pp. 1163–
1176, 2016.

[7] N. Bisagno, N. Conci, and B. Rinner, “Dynamic camera network reconfigura-
tion for crowd surveillance,” in Proceedings of the 12th International Confer-
ence on Distributed Smart Cameras, 2018, pp. 1–6.

[8] M. S. Ejaz, M. R. Islam, M. Sifatullah, and A. Sarker, “Implementation of
principal component analysis on masked and non-masked face recognition,”
in 2019 1st international conference on advances in science, engineering and
robotics technology (ICASERT), IEEE, 2019, pp. 1–5.

[9] A. Anwar and A. Raychowdhury, “Masked face recognition for secure authen-
tication,” arXiv preprint arXiv:2008.11104, 2020.

[10] D. K. Chu, E. A. Akl, S. Duda, K. Solo, S. Yaacoub, H. J. Schünemann,
A. El-harakeh, A. Bognanni, T. Lotfi, M. Loeb, et al., “Physical distancing,
face masks, and eye protection to prevent person-to-person transmission of
sars-cov-2 and covid-19: A systematic review and meta-analysis,” The lancet,
vol. 395, no. 10242, pp. 1973–1987, 2020.

47

[11] Q. Hong, Z. Wang, Z. He, N. Wang, X. Tian, and T. Lu, “Masked face recog-
nition with identification association,” in 2020 IEEE 32nd International Con-
ference on Tools with Artificial Intelligence (ICTAI), IEEE, 2020, pp. 731–
735.

[12] L. Schnirring, Global covid-19 total tops 51 million as us hospital cases rise,
https://www.printfriendly.com/p/g/GRyFMb, 2020.

[13] Y.-C. Wu, C.-S. Chen, and Y.-J. Chan, “The outbreak of covid-19: An overview,”
Journal of the Chinese medical association, vol. 83, no. 3, p. 217, 2020.

[14] A. Cabani, K. Hammoudi, H. Benhabiles, and M. Melkemi, “Maskedface-net–a
dataset of correctly/incorrectly masked face images in the context of covid-19,”
Smart Health, vol. 19, p. 100 144, 2021.

[15] W. Hariri, “Efficient masked face recognition method during the covid-19 pan-
demic,” 2021.

[16] B. Mandal, A. Okeukwu, and Y. Theis, “Masked face recognition using resnet-
50,” arXiv preprint arXiv:2104.08997, 2021.

[17] H. N. Vu, M. H. Nguyen, and C. Pham, “Masked face recognition with con-
volutional neural networks and local binary patterns,” Applied Intelligence,
pp. 1–16, 2021.

[18] G. Wu, “Masked face recognition algorithm for a contactless distribution cab-
inet,” Mathematical problems in engineering, vol. 2021, 2021.

48

https://www.printfriendly.com/p/g/GRyFMb

	Declaration
	Approval
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Problem Statement
	Research Objectives

	Literature Review
	Background Study
	Face Verification vs Face Recognition
	Verification - Is this the same person?
	Face Recognition - Who is this person?

	The One Shot Learning Dilemma
	Similarity Function
	Face Detection with SSD
	VGG-16
	FaceNet
	Triplet Loss Function
	Inception Network
	Network in Network
	Inception with Dimension Reduction
	Inception-Resnet V1 Network
	Object Localization and Object Detection
	How dows it work?
	How to know the bounding box is correct?
	Anchor Boxes

	Non-Maximal Suppression (NMS)

	Methodology & Explanation
	Data Pre-processing
	Data Cropping
	Data Cleaning
	Data Embedding
	Data Augmentation
	Custom Face Mask Dataset

	Face Recognition using Facenet
	Triplet Loss Function
	Resnet Network

	Embedding
	Real-time Face Recognition

	Training Phase
	First Training (Evaluation: No Mask Dataset)
	Second Training with Data Augmentation
	Evaluation: No Mask Dataset
	Evaluation: Mask Dataset

	 Third Training (Evaluation: Mask Dataset with Stratified Sampling)

	Result and Discussion
	Result on First Training (Evaluation: No Mask Dataset)
	Result on second Training with Data Augmentation
	Evaluation: No mask Dataset
	Evaluation: Mask Dataset

	Result on third Training (Evaluation: Mask Dataset with Stratified Sampling)

	Conclusion
	Bibliography

