
VISION DRIVEN LANE CHANGING SYSTEM OF SELF DRIVING

CAR

By

Mashook Mohammad Meshkat

ID: 20121006

Shehab Mustafa

ID: 20121009

Tahmid Al Deen

ID: 20121073

Mrinmoy Das

ID: 20121001

A Final Year Design Project (FYDP) submitted to the Department of Electrical and

Electronic Engineering in partial fulfillment of the requirements for the degree of

Bachelor of Science in Electrical and Electronic Engineering

Academic Technical Committee (ATC) Panel Member:

A. H. M. Abdur Rahim, PhD (Chair)

Professor, Department of EEE, BRAC University

Md. Mehedi Hasan Shawon (Member)

Lecturer, Department of EEE, BRAC University

Tasfin Mahmud (Member)

Lecturer, Department of EEE, BRAC University

Department of Electrical and Electronic Engineering

Brac University

December 2023

© 2023. Brac University

All rights reserved.

i

Declaration

It is hereby declared that

1. The Final Year Design Project (FYDP) submitted is my/our own original work while

completing degree at Brac University.

2. The Final Year Design Project (FYDP) does not contain material previously published or

written by a third party, except where this is appropriately cited through full and accurate

referencing.

3. The Final Year Design Project (FYDP) does not contain material which has been accepted,

or submitted, for any other degree or diploma at a university or other institution.

4. I/We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Mashook Mohammad Meshkat

20121006

Shehab Mustafa

20121009

Tahmid Al Deen

20121073

Mrinmoy Das

20121001

ii

Approval

The Final Year Design Project (FYDP) titled “Vision Driven Lane Changing System of Self

Driving Car” submitted by

1. Mashook Mohammad Meshkat (20121006)

2. Shehab Mustafa (20121009)

3. Tahmid Al Deen (20121073)

4. Mrinmoy Das (20121001)

of FALL, 2023 has been accepted as satisfactory in partial fulfillment of the requirement for

the degree of Bachelor of Science in Electrical and Electronic Engineering on 14-12-2023.

Examining Committee:

Academic Technical

Committee (ATC):

(Chair)

 A. H. M. Abdur Rahim, PhD

Professor, Department of EEE,

BRAC University

Final Year Design Project

Coordination Committee:

(Chair)

Abu S.M. Mohsin, PhD

Associate Professor, Department of EEE,

BRAC University

Department Chair:

Md. Mosaddequr Rahman, PhD

Chairperson and Professor, Department of EEE,

BRAC University

iii

Ethics Statement

While conducting this Final Year Design Project, we needed to do high amount of research.

The highest ethical standards have been upheld by FYDP Group 2. Any data or information

used in the FYDP has been collected, cited and used in an ethical manner, in accordance with

proper guidelines of IEEE. This FYDP by Group 2 has been conducted with honesty, integrity,

impartiality and objectivity and any potential conflicts of interest have been disclosed. The

sources used have been appropriately cited and acknowledged. Additionally, a Similarity check

has been conducted through Turnitin from Brac University by the help of the ATC Panel. The

similarity index achieved was 6%. Overall, the ethics statement serves as a clear and

transparent declaration of our commitment to conducting the study in a responsible manner and

in compliance with the applicable practices and standards set forth by the IEEE.

iv

Abstract/ Executive Summary

Accidents due to driver error persists despite road rules and regulations being updated

regularly, mostly because of reckless driving and non-measured actions while lane changing.

Therefore, the inclusion of a lane changing system in self-driving cars can greatly reduce these

fatal tragedies resulting in safer streets along with an easy mode of transportation for people of

all ages and conditions. The system we designed uses image processing which consists of

creation of region of interest, perspective transformation, threshold operations, canny edge

detections, histogram and various calculations for lane detection and lane maintenance. It

further recognizes object detection models to detect vehicles, stop signs and traffic signals

using the Haar cascade Deep learning method to make decisions and maneuver our vehicle

accordingly. The output of the analysis is deployed on a protype level build with the help of

Raspberry Pi 3B+ having integrated connection with Arduino and motor driver system.

Keywords: self-driving car, lane changing, machine learning, object detection, decision

criteria, image processing.

v

Dedication

This Final Year Design Project FYDP is entirely dedicated to the uncountable lives lost due to

road accidents. We pay portentous tribute towards all the martyrs whose journeys of life were

tragically cut short on the roads.

vi

Acknowledgement

Starting by the name of the Almighty, who has given us the strength and patience to

consistently work hard and make the ends meet. We would like to thank our parents for their

constant support, consistent encouragement and crucial sacrifices for which we are able to

reach this stage in life.

Firstly, we would like to thank our Academic Technical Committee Chair, Professor A. H. M.

Abdur Rahim, PhD Sir who had been consistently beside us in all our needs of logistics and

support. Special thanks to the Department Chairperson, Professor Md. Mosaddequr Rahman,

PhD Sir for assisting us with his invaluable guidance. Moreover, heartfelt gratitude to Abu

S.M. Mohsin, PhD Sir for his insightful feedback whenever we reached him for guidance. This

endeavor would never have been possible without them. We are as well grateful to Tasfin

Mahmud Sir for guiding and supporting us with his indispensable resources in Machine

Learning. We would also like to thank Research Assistant, Md. Jobayer for helping us with his

vital knowledge in Raspberry Pi.

We would always be indebted to Md. Mehedi Hasan Shawon Sir, who generously provided

invaluable expertise and guidance. Special thanks to him for his greatest contribution in

motivating us to work beyond our limits. We all pray for his long and fulfilling life.

Last but not the least we would like to thank MD Fiaz Islam Bhuiyan for lending his industry

level expertise to broaden our knowledge on the subject matter. Profound thanks to Md.

Gholam Mustafa Patwary for sparing his own time to bring us the required components from

abroad. Special heartfelt gratitude towards Aunt Raunak Jahan for letting us use her home to

work when the University was on Shifting schedule.

vii

Table of Contents

Declaration …………………………………………………………………………………..... i

Approval …………………………………………… ……………………………………….. ii

Ethics Statement ………………………………………………………………….…………. iii

Abstract/ Executive Summary ……………………………………………………………….. iv

Dedication ……………………………………………………………………………………. v

Acknowledgement …………………………………………………………………..………. vi

Table of Contents …………………………………………………………………………… vii

List of Tables ……………………………………………………………………………….. xii

List of Figures …………………………………………………………………………….... xiii

List of Acronyms ………………………………………………………………………….... xvi

Glossary …………………………………………………………………………................ xvii

Chapter 1: Introduction ………………………………………………………………………. 1

 1.1 Introduction …………………………………………………………………………….. 1

 1.1.1 Problem Statement ……………………………………………………………... 1

 1.1.2 Background Study …………………………………………………………….... 1

 1.1.3 Literature Gap ………………………………………………………………….. 3

 1.1.4 Relevance to current and future Industry ………………………………………. 3

 1.2 Objectives, Requirements, Specification and constraints ……………………………… 5

 1.2.1 Objectives ……………………………………………………………………… 5

 1.2.2 Functional and Non-functional Requirements …………………………………. 6

 1.2.3 Specifications ………………………………………………………...………… 7

 1.2.4 Technical and Non-technical consideration and constraint in design process …. 9

 1.3 Applicable compliance, standards, and codes …………………………………………. 10

 1.4 Systematic Overview/summary of the proposed project ……………………………… 11

 1.5 Conclusion ……………………………………………………………………………. 11

Chapter 2: Project Design Approach ……………………………………………….……….. 12

 2.1 Introduction …………………………………………………………………………….12

 2.2 Multiple Design Approach ……………………………………………………………. 12

viii

 2.2.1 Design Approach-1 (Rule-Based) …………………………………………….. 12

 2.2.2 Design Approach-2 (Machine Learning) ……………………………………… 13

 2.3 Description of multiple design approach …………………………………………..….. 14

 2.3.1 Description of Methodology Approach-1 (Rule-Based) ……………………… 14

 2.3.2 Description of Methodology Approach-2 (Machine Learning) (Software) …… 15

 2.3.3 Methodology Approach-2 (Machine Learning) for hardware ………………… 20

 2.4 Analysis of multiple design approach ………………………………………………… 25

 2.4.1 Analysis of Design-1 (Rule-Based):…………………………………………… 25

 2.4.2 Design-2 (Machine Learning) in CARLA ……………………………………. 28

 2.5 Conclusion ……………………………………………………………………………. 42

Chapter 3: Use of Modern Engineering and IT Tool ……………………………………….. 43

 3.1 Introduction …………………………………………………………………………… 43

 3.2 Select appropriate engineering and IT tools …………………………………………… 43

3.2.1 CARLA Simulator 0.9.14 ……………………………………………………... 43

3.2.2 Python 3.7 ………………………………………………………………….….. 44

3.2.3 Sublime Text 3 …………………………………………………………….….. 44

3.2.4 Anaconda Prompt ………………………………………………………….….. 44

3.2.5 Google Collab ………………………………………………………………… 44

3.2.6 Proteus ……………………………………………………………………….... 44

3.2.7 Arduino IDE …………………………………………………………………... 45

3.2.8 Cascade Trainer GUI. ………………………………………………………… 45

3.2.9 CodeBlocks …………………………………………………………………... 45

3.2.10 C++ Programming Language ………………………………………………... 46

3.2.11 VNC Viewer ………………………………………………………………… 46

3.2.12 PuTTY ……………………………………………………………………….. 46

3.2.13 Geany Programming Editor ………………………………………………….. 46

3.2.14 OpenCV …………………………………………………………………...… 46

 3.3 Use of modern engineering and IT tools ……………………………………………… 46

 3.3.1 CARLA Simulator 0.9.14 ……………………………………………………... 46

ix

 3.3.2 Python 3.7 ……………………………………………………………………... 46

 3.3.3 Sublime Text 3 ………………………………………………………………… 47

 3.3.4 Anaconda Prompt ……………………………………………………………... 47

3.3.5 Google Collab ………………………………………………………………… 47

3.3.6 Proteus ………………………………………………………………………… 47

3.3.7 Arduino IDE ………………………………………………………………...… 47

3.3.8 Cascade Trainer GUI. …………………………………………………………. 47

3.3.9 CodeBlocks ………………………………………………………………...… 48

3.3.10 C++ Programming Language ……………………………………………...… 48

3.3.11 VNC Viewer ………………………………………………………………… 48

3.3.12 PuTTY ……………………………………………………………………….. 48

3.3.13 Geany Programming Editor ………………………………………………….. 48

3.3.14 OpenCV ……………………………………………………………………... 48

 3.4 Conclusion ……………………………………………………………………………. 48

Chapter 4: Finding the Optimal Solution and Optimization of the Optimal Solution ………. 49

 4.1 Introduction …………………………………………………………………………… 49

 4.2 Identification of optimal design approach …………………………………………….. 49

 4.3 Optimization of optimal design approach …………………………………………….. 50

 4.3.1 Optimization of the optimal design in Software ……………………………… 50

 4.3.2 Optimization of the optimal design in Hardware ……………………………… 52

 4.4 Performance Evaluation of Developed Solution ……………………………………… 52

 4.4.1 Performance Evaluation for Software design …………………………………. 52

 4.4.2 Performance Evaluation for Hardware design ………………………………… 52

 4.5 Conclusion ……………………………………………………………………………. 54

Chapter 5: Completion of Final Design and Validation …………………………………….. 55

 5.1 Introduction ………………………………………………………………………...… 55

 5.2 Completion of Final Design ………………………………………………………..…. 55

 5.2.1 Image Processing ……………………………………………………………… 56

 5.2.2 Object Detection using Haar Cascade Algorithm …………………………….. 56

x

 5.2.3 Decision Model ……………………………………………………………….. 57

 5.3 Evaluation of the solution to meet desired needs …………………………………….. 58

 5.3.1 Maintaining Lane ……………………………………………………………... 58

 5.3.2 U-Turn Operation at Lane End ……………………………………………….. 58

 5.3.3 Lane Change operation at car detection ………………………………………. 61

 5.3.4 Traffic Signal operation ………………………………………………………. 62

 5.3.5 Stop Sign operation …………………………………………………………… 63

 5.3.5 Performance Analysis ………………………………………………………… 64

 5.4 Conclusion …………………………………………………………………………..... 65

Chapter 6: Impact Analysis and Project Sustainability ………………………………….….. 66

 6.1 Introduction …………………………………………………………………………… 66

 6.2 Assess the impact of solution ………………………………………………………….. 66

6.2.1 Safety Impact ………………………………………………………………….. 66

6.2.2 Societal Impact ……………………………………………………………...… 66

6.2.3 Environmental Impact ………………………………………………………… 67

6.2.4 Economical Impact …………………………………………………………… 67

6.2.5 Legal Impact …………………………………………………………………... 67

 6.3 Evaluate the sustainability …………………………………………………………….. 67

 6.4 Conclusion ……………………………………………………………………………. 68

Chapter 7: Engineering Project Management ………………………………………………. 69

 7.1 Introduction …………………………………………………………………………... 69

 7.2 Define, plan and manage engineering project ………………………………………… 69

 7.2.1 Initiation ……………………………………………………………………..... 69

7.2.2 Planning ………………………………………………………………………. 69

7.2.3 Execution …………………………………………………………………...… 70

7.2.4 Monitoring and Control ………………………………………………………. 70

7.2.5 Closure ……………………………………………………………………...… 70

 7.3 Gantt Chart/Project Timeline …………………………………………………………. 70

 7.4 Conclusion ……………………………………………………………………………. 71

xi

Chapter 8: Economical Analysis ……………………………………………………………. 72

 8.1 Introduction …………………………………………………………………………... 72

 8.2 Economic analysis ………………………………………………………………….… 72

 8.2.1 Budget for working prototype ………………………………………………… 72

 8.2.2 Estimated Cost ………………………………………………………………… 72

 8.3 Cost benefit analysis ………………………………………………………………….. 74

 8.4 Evaluate economic and financial aspects ……………………………………………… 74

 8.5 Conclusion ……………………………………………………………………………. 75

Chapter 9: Ethics and Professional Responsibilities ………………………………………… 76

 9.1 Introduction ………………………………………………………………………...…. 76

 9.2 Identify ethical issues and professional responsibility ………………………………… 76

9.2.1 Informed Consent ……………………………………………………………... 76

9.2.2 Privacy and Confidentiality Protection ……………………………………….. 76

9.2.3 Acknowledgement of Proper Sources ………………………………………… 76

9.2.4 Approval from Respective Bodies ……………………………………………. 76

 9.3 Apply Ethical Issues and professional responsibility …………………………………. 77

9.3.1 Informed Consent …………………………………………………………...… 77

9.3.2 Privacy and Confidentiality Protection ……………………………………….. 77

9.3.3 Acknowledgement of Proper Sources ………………………………………… 77

9.3.4 Approval from Respective Bodies ……………………………………………. 77

 9.4 Conclusion ……………………………………………………………………………. 77

Chapter 10: Conclusion and Future Work …………………………………………………... 78

10.1 Project summary ……………………………………………………………….. 78

10.2 Future work ……………………………………………………………………. 78

Chapter 11: Identification of Complex Engineering Problems and Activities ……………… 79

 11.1 Attributes of Complex Engineering Problems (EP) …………………………… 79

 11.2 Attributes of Complex Engineering Activities (EA) …………………………... 79

References ……………………………………………………………………………...…… 80

Appendix ……………………………………………………………………………………. 83

xii

List of Tables:

Table 1. System level specification …………………………………………………………... 7

Table 2. Subsystem level specification ………………………………………………………. 7

Table 3. Applicable codes and standards ……………………………………………………. 10

Table 4. Camera position used in CARLA ………………………………………………….. 16

Table 5. Comparison analysis of multiple designs ………………………………………...… 41

Table 6. Reasons why to choose Carla over Udacity ……………………………………….. 44

Table 7. Comparison Analysis summary of the three multiple design approaches …………. 49

Table 8 Accuracy of correct operation for our prototype car before and after optimization .. 53

Table 9. Accuracy of our self-driving car’s operations …………………………………….. 64

Table 10. Budget for the Final Design ……………………………………………………… 72

Table 11. Estimated cost for the working prototype, first unit and commercial product …… 73

Table 12. Profit Estimation with respect to Number of Companies in Contract ……………. 73

Table 13. Profit Estimation from Number of Units Sold per Year ………………………….. 74

Table 14. Attributes of Complex Engineering Problems (EP) ……………………………… 79

Table 15. Attributes of Complex Engineering Activities (EA) ……………………………… 79

xiii

List of Figures:

Fig 1 Picture collected from Synopsys.com depicting the various systems it possesses …….. 4

Fig 2 Design approach for rule-based …………………………………………………..…… 12

Fig 3 Design approach for machine learning ……………………………………………..… 13

Fig 4 Methodology for rule-based approach ………………………………………………... 14

Fig 5 Methodology for machine learning approach in CARLA simulator …………………. 15

Fig 6 Collected image samples from CARLA Simulator …………………………………… 16

Fig 7 Image sample with annotations of four classes ……………………………………….. 17

Fig 8 Determining distance (z) between our car and front vehicle ………………………….. 18

Fig 9 Decision Model for machine learning approach in CARLA ………………………….. 18

Fig 10 Changing lane to the left in CARLA ………………………………………………… 19

Fig 11 Changing lane to the right in CARLA ………………………………………………. 19

Fig 12 Methodology for machine learning approach in hardware system ………………….. 20

Fig 13 Motor driver with DC motors and wheels in car chassis ……………………………. 20

Fig 14 Arduino UNO and power bank ………………………………………………………. 20

Fig 15 Raspberry Pi and Raspberry Pi Cam module ………………………………………… 20

Fig 16 Collected image samples from Raspberry Pi camera ………………………………... 22

Fig 17 Cropped positive image samples …………………………………………………….. 23

Fig 18 Decision Model for machine learning approach in hardware ……………………….. 23

Fig 19 Vehicle detects person and stops …………………………………………………….. 25

Fig 20 Vehicle detects no more person and starts to move …………………………………. 25

Fig 21 Vehicle detects a car ahead and stops …………………………………………..…… 26

Fig 22 Vehicle moves when front car moves, maintaining some distance of 2 feet ………… 26

Fig 23 Vehicle changing direction while maintaining lane …………………………………. 27

Fig 24 Vehicle detects other vehicle in front of it …………………………………………… 27

Fig 25 Vehicle changing lane ……………………………………………………………….. 28

Fig 26 Bounding Box applied on images for Vehicles and Motorcycles …………………… 28

Fig 27 Bounding Box applied on images for Bicycles and Person …………………………. 29

Fig 28 Mean average precision vs epochs for test-1 ………………………………………… 29

xiv

Fig 29 Box loss, Class loss and Object Loss vs epochs for test-1 ………………………...… 30

Fig 30 Loss, precision and recall graphs vs epochs for test-1 ……………………………….. 30

Fig 31 Showing the Average Precision by class for Validation set results for test-1 ……….. 31

Fig 32 Showing the Average Precision by class for Test set results for test-1 ……………… 31

Fig 33 Mean average precision vs epochs for test-2 ………………………………………… 31

Fig 34 Box loss, Class loss and Object Loss vs epochs for test-2 ………………………...… 32

Fig 35 Loss, precision and recall graphs vs epochs for test-2 ………………………………. 32

Fig 36 Showing the Average Precision by class for Validation set results for test-2 ……….. 33

Fig 37 Showing the Average Precision by class for Test set results for test-2 ……………… 33

Fig 38 Vehicle in front but right lane is clear ………………………………………………. 34

Fig 39 Motorcycle in front but a bit far ……………………………………………………… 34

Fig 40 Vehicle detecting front vehicle but still continuing as it is still not within braking

distance …………………………………………………………………………………...… 35

Fig 41 Vehicle stops, keeping a minimum braking distance between it and the front vehicle…35

Fig 42 Vehicle stops, keeping a minimum braking distance between it and the front person…36

Fig 43 Vehicle continues as it finds the lane clear of obstacles …………………………..… 36

Fig 44 Vehicle detects other vehicle in front of it …………………………………………… 37

Fig 45 Vehicle changing lane ……………………………………………………………….. 37

Fig 46 Simulation Design in Proteus for Hardware implementation ……………………….. 38

Fig 47 All four wheels and LEDs turn OFF (Car at Halt) ………………………………...… 38

Fig 48 All four wheels moving forward and front LED turn ON (Car moving forward) ….. 39

Fig 49 All 3 wheels, except front right wheel, moving and right LED turn ON (Car moving to

the right lane) .. 39

Fig 50 All 3 wheels, except front left wheel, moving and left LED turn ON (Car moving to the

left lane) …………………………………………………………………………….….…… 40

Fig 51 Mean average precision vs epochs for test-3 …………………………………….….. 51

Fig 52 Box loss, Class loss and Object Loss vs epochs for test-3 ………………………….. 51

Fig 53 Loss, precision and recall graphs vs epochs for test-3 ………………………………. 51

Fig 54 Showing the Average Precision by class for Validation set results for test-3 ……….. 52

Fig 55 Showing the Average Precision by class for Test set results for test-3 ……………… 53

xv

Fig 56 Final Design of self-driving car prototype, along with other objects ……………..…. 55

Fig 57 Final Design System flowchart ………………………………………………………. 56

Fig 58 Decision model of final design ………………………………………………………. 57

Fig 59 Vehicle having its frame center match with lane center perfectly, with no deviation…58

Fig 60 Vehicle moving forward after getting a deviation value of 0 ……………………..… 59

Fig 61 Vehicle having a difference of 12 units between its frame center (blue) and lane center

(green) …………………………………………………………………………………….... 59

Fig 62 Vehicle having a difference of -21 units between its frame center (blue) and lane

center (left green) .………………………………………………………………………….. 60

Fig 63 Vehicle detecting Lane End after reaching a value of 4500 and deciding on taking a U-

Turn ……………………………………………………………………………………....…. 60

Fig 64 Vehicle taking a U-Turn …………………………………………………………….. 61

Fig 65: Vehicle detecting car ahead with bounding box width of 93 pixels ………………… 61

Fig 66: Vehicle detecting car ahead within 5 to 30 cm and changing lanes to the left ……... 61

Fig 67: Vehicle detecting traffic signal with red light ahead with bounding box width of 87

pixels …………………………………………………………………………………….…. 62

Fig 68 Vehicle detecting red traffic signal ahead within 5 to 20 cm and decides to stop ….. 62

Fig 69 Vehicle no more detecting red traffic signal ahead within 5 to 20 cm and decides to

move on …………………………………………………………………………………...… 63

Fig 70 Vehicle detecting stop sign ahead with bounding box width of 90 pixels ………….. 63

Fig 71: Vehicle detecting stop sign ahead and decides to stop for 4 seconds before moving on

for 1 second ………………………………………………………………………………..... 64

Fig 72 Five Key Factors of Engineering Project Management …………………………….. 69

Fig 73 Gantt Chart/Project Timeline for EEE499P ………………………………………… 71

Fig 74 Gantt Chart/Project Timeline for EEE499D ………………………………………… 71

Fig 75 Gantt Chart/Project Timeline for EEE499C …………………………………………. 71

xvi

List of Acronyms:

AV Autonomous Vehicle

MPC Model Predictive Framework

ECU Electronic controller unit

IoT Internet of Things

ML Machine Learning

ADAS Adaptive Driving Assistance System

GPS Global Positioning System

V2I Vehicle-to-infrastructure

V2V Vehicle-to-vehicle

C-ITS Cooperative intelligent transport systems

BRTA Bangladesh Road Transport Authority

IRB Institutional Review Board

xvii

Glossary:

Autonomous

Vehicle (AV)

Vehicle which is able to sense its environment and react without the

involvement of humans.

Internet of

Things (IoT)

A network consisting of connected devices that process and send data

through the internet.

Object

Detection

It is the entire process of identifying, locating an object or multiple

objects in an image or a video.

OpenCV It is a machine learning library which contains a rich set of tools and its

main function is to facilitate the various image processing tasks and

machine learning implementations.

GPS Sensor The full form is Global Positioning System, these signals are radio

frequency signals transmitted by a constellation of satellites in Earth's

orbit.

mAP This parameter is used in the field of object detection and image

segmentation to employ and evaluate the performance of models by

assessing the precision and recall of their predictions across multiple

categories or classes.

Image

processing

It is the manipulation and analysis of digital images using various

algorithms and techniques.

Page | 1

Chapter 1

Introduction

1.1 Introduction

1.1.1 Problem Statement

Statistics suggest that about 94% of the accidents seen on the roads are mainly due to human

error [1]. Self-driving cars can be a solution to the problem as automated vehicles can take the

decision based on what it ‘sees’ in its multiple direction which is mainly by the help of a camera

and other sensors. In addition, modern automated vehicle systems have been seen to possess

multiple other sensors as well which helps to improve the decision making. Moreover, high

speed overtaking has been a major cause of accidents. Due to lack of sensors the victims do

not even get notified on what obstacles they are surrounded with. Most of the time rough

driving not only puts themselves at risk but also risks the lives of the other vehicles surrounding

them. Moreover, accidents in squeezed roads due to lack of practice of driving in overcrowded

roads have been seen as another problem. In addition, impaired and distracted driving is another

major reason for accidents which lead to major fatalities.

Various different literatures have addressed the wide ranges of approaches that Autonomous

Vehicles use for their control [3, 4, 5, 6, 7]. Mihalea et al. [3] have stated that driver assistance

using an ‘end-to-end’ approach can be a suggested solution in which the overall process of

driving is a learned transformation from image to output. Another reason can be limited

transportation access for individuals with driving disabilities, elderly adults, and those lacking

driving experience hinders their ability to lead independent lives and access essential services.

1.1.2 Background Study

In this period of modernization, automated vehicles still have a huge path to proceed. Some

people are still afraid of how the automated car performs when it is on the road, while some

more are anxious about how the software system will function [10]. But despite all these

comments, the work of autonomous vehicles is proceeding and so is the lane changing part of

it. Statistics say that over 10 percent of the accidents on highways occur due to lane changing

operations.

Total kinetic energy minimization approach integrated with solving a polynomial equation can

be basically used to determine a trajectory for easy and running lane change [10]. However,

the change angle and accuracy is calculated by resolving a time-optimal control problem that

decreases runtime with fixed end constraints and bounds on lateral speeding up and lurch.

The idea of lane changing or shifting the car to the adjacent lanes comes with ideas based on a

set of rules, which includes:

1. subjective rules

2. functions of the positions

3. relative velocities of surrounding vehicles

Page | 2

In the paper “A machine learning approach for personalized autonomous lane change initiation

and control” by Vallon, an approach is established where the characteristics of a driver are

being tried to imitate [10]. The main ideology behind this is the dataset which leads to calling

the model a data-driven model.

Data were basically collected in situations of complexity and moments when the decision

making is quite difficult, whether or not to change the lane.

Which led to the generation of Model Predictive Framework (MPC) where the certain decision

logic was being integrated with more autonomous vehicles in order to test for safety, reliability

and resilience.

Another trajectory idea is the learning-based trajectory where the dataset is nothing but real

live driving data [10]. K-nearest instance is being used to basically establish a lane changing

method by machine learning where the datasets are obtained from online. The main motive of

so much experimentation is that the lane changing and particularly roads become a safer place.

The primary purpose of the trajectory planning algorithm is to generate a smooth trajectory,

while ensuring safety and following the global route. As illustrated in Fig.1, the proposed

method can be decomposed into four portions. First, the center line is constructed by a spline

polynomial, which is based on a batch of center waypoints on the road (see Fig. 2).

There are other methods such as real-time trajectory planning [8]. This algorithm basically

works on an optimal trajectory accompanying the speed for autonomous driving as well as the

acceleration. Predesigned center waypoints are the initial approach as they are used as the

reference line. Moreover, arc length and offset to the center line in the Frenet coordinate system

is a huge contributor in producing the path candidate, also the polynomial function is being

used to discretize the speed space [8].

The trajectory planning algorithm is divided in 4 portions [8]. Firstly, spline polynomials are

used in which there are centerlines being manufactured on the road. After that the vehicle

existence can be understood by using pinpointed coordinate transformations, a path planning

algorithm being developed is used to produce the path candidates at which a range of lateral

offsets are being sampled along the center line considering vehicle speed and heading direction

[8]. Finally, the optimal path is being picked by decreasing the cost function of the previous

path candidates. Then the speed generation algorithm is being seen to be very close to that of

the path generation algorithm. Sample of 100 Hz is used as the sampling frequency in the

trajectory planning approach which in turn overhauls the trajectory in real time. In a nutshell,

optimization of safety as well as better energy efficiency was the main objective for the

dynamic trajectory system.

In this paper, a dynamic trajectory planning algorithm is put forward to avoid the static and

moving obstacles while ensuring safety, comfort and energy consumption reduction. The

presented approach first uses the cubic spline to construct a center line based on traffic

conditions.

Another process incorporates the motion planning modules [9]. The full process consists of 2

steps. Initially it uses the start position, end position as well as the map information as the input

Page | 3

to basically select the bestest route that has the least traffic congestion. Changhao. J et al. [9]

named this step as route planning.

Secondly, due to its geometric nature as a list of points, the global route may not adhere to the

constraints of the vehicle dynamics model and lacks speed information. The local motion

planning modules, which we will refer to as trajectory planning in this article, take as inputs

the global route, the ego vehicle's current position supplied by the localization modules, the

position of static obstacles supplied by the perception modules, and the trajectory possibility

distribution of dynamic obstacles supplied by the prediction modules. They then output the

trajectory to the control modules over a T time step horizon. Figure 1 illustrates how the motion

planning components are organized.

1.1.3 Literature Gap

Literature resources on Autonomous Vehicle (AV) have been seen to work on prototype level.

However, we have faced difficulty to manage resources from industry level which is highly

confidential due patents and other legal requirements.

While conducting our background research we came across the realization that our literature

resources regarding our project only show theoretical and experimental approaches. From

marketing advertising to media presentation we can see most major car manufacturing

companies have varying degrees of self-driving features. Majority claim to have SAE level 2

automations, some even reaching Level 3, however, we lack the in-depth knowledge of these

vehicles. This lack of industry level knowledge regarding our project can be attributed to

proprietary technologies and methodologies which are subject to high confidentiality due to

patents and trademarks. Thus, we have faced great difficulty to manage any resource from the

industry level due to these confidential legal requirements.

1.1.4 Relevance to current and future Industry

The modern industry has been seen to use multiple solutions. One being better than the other.

ADAS is an algorithm where all the cars are connected with each other via the Internet of

Things (IoT) then comes the Connected Vehicles where the connected vehicles use vehicle-to-

infrastructure (V2I) and vehicle-to-vehicle (V2V) where the cars basically share information

regarding how much traffic some other part of the city has [11, 12]. As well as the most

common solution of modern times, Autonomous Vehicles (AV) as they have been witnessed

by modern industries to significantly reduce the risk of accidents caused by impaired or

distracted driving. By removing the human element from driving, AVs can eliminate the risk

of driver error altogether.

The car industry has invested a lot in putting safety precautions for their users. They have been

seen to incorporate car safety features such as three-point seatbelts, airbags, and shatter-

resistant glass. These precautionary measures have been taken just to prioritize passive safety

measures to minimize injuries during an accident on the roads. This ADAS system has been

seen to actively participate in minimizing the numbers of occupant injuries and collisions

during an accident with the aid of embedded systems [11].

Page | 4

The use of multiple sensors fused with object detection, identification as well as image

processing with the help of camera systems connected actively with the car have been seen as

a common practice in the car industry. Finally using all the parameters and merging them using

the novel AI. Multiple image/ object recognition devices are being used in the current time.

The most common one of them are the radar, lidar, ultrasound sensors and ultrasonic sensors

finally using a specific algorithm for sensor fusion. These are the common parameters used by

the ADAS algorithm [11]. The image recognition software as well uses these parameters

similar to how the human brain processes information by combining a lot of data. The main

motive of this technology is to react even quicker than a human driver, which in turn reduces

the reaction time, therefore in modern times, it is possible to react quickly by a machine to

simultaneously by streaming video, object recognition, as well as planning the response and

reacting to it.

Here are some of the most common ADAS applications:

Adaptive Cruise Control: This specific technology is useful for highway driving [12]. While

driving for long hours it is very much difficult to constantly maintain and keep an eye on the

speed as well as how other vehicles are approaching. So this technology judges these

parameters and tunes accordingly as a result helps the car automatically accelerate, decelerate,

and even stop in fatal situations [12]. The main advantage when equipped with this technology

is it will help to maintain an appropriate distance with other vehicles in all of its directions.

This space-aware feature will specifically help the driver from being prevented from a mishap

happening especially in situations where blocked vision or vehicles are really close to it.

Glare-Free High Beam and Pixel Light: This feature uses the sensors to sense and tune its glare-

free high beam and pixel light when the car is in darkness. One common problem of driving on

highways at night is momentary blinding, this feature basically works on that issue. It helps to

detect the light of the vehicle approaching from the opposite and diverts the vehicle’s light

away.

Some other features are the Adaptive Light Control, Automatic Parking, Autonomous Valet

Parking, Navigation System, Night Vision, Unseen Area Monitoring, Automatic Emergency

Braking, Crosswind Stabilization, Driver Drowsiness Detection, Driver Monitoring System,

5G and V2X,

Fig 1: Picture collected from synopsys.com depicting the various systems it possesses.

Page | 5

In the recent world there has been an increased demand for the automobile electronic software

and hardware necessitates. The manufacturer has to ensure the enhanced reliability, reduced

expenses, and shorter development cycles.A developed and integrated ADAS Electronic

controller unit (ECUs) has been seen to be in demand putting the scattered ADAS domain

controller at less demand [13].

Connected Vehicles on the other hand is a term which refers to services, technologies and apps

that pair up a car to the environment. As the AUTO Connected Car News suggests, a connected

car can be termed any vehicle which has the necessary equipment needed to connect to the

equipment of the other cars, notably the networks, devices, services, apps which are outside

the vehicle. The applications used can range from the safety sensors, efficiency, traffic safety

feature as well as can be an infotainment system, road assistance, parking assistance as well as

Global Positioning System (GPS) [13]. Most commonly vehicles need to have two certain

features to be connected which are the cooperative intelligent transport systems (C-ITS) and

the advanced driver-assistance systems (ADASs). The safety application which connected

vehicles possess is being designed to escalate situation awareness to achieve the objective of

mitigating traffic through vehicle-to-infrastructure (V2I) communications and vehicle-to-

vehicle (V2V) all by the help of sensors, vehicle data networks as well as camera technology

1.2 Objectives, Requirements, Specification and constraints

1.2.1. Objectives

The objectives are as follows:

1. Detecting lanes, vehicles, traffic signals and road signs present in real time driving

conditions.

2. Analyzing the parameters obtained and taking appropriate decisions from the object

detection model.

3. Advancing the decision taken to the vehicle maneuver system.

By integrating cameras for the use of image processing and object detection models for

detecting the specific parameters such as red and green traffic signal, stop sign as well as the

surrounding vehicles and the lanes, our system will be able to make specific decisions on

whether to change the lane or to be present on the same lane, whether to accelerate, decelerate

or to maintain that constant speed, specifically intended to reduce the number of accidents

caused due to the changing of lanes all across the world. This system also helps to minimize

the number of accidents occurring due to human error, thus reducing human error while

driving. In addition, Haar Cascade Deep Learning technique is used in order for the

identification model for the specified parameters. Then incorporating the output in our

prototype level using a Raspberry Pi 3B+ which has integrated connections with Arduino and

motor driver system. Thus, improved safety on the road for all as well as better maintenance of

road rules.

Page | 6

1.2.2 Functional and Nonfunctional Requirements

Functional requirements:

1. Object detection: Our designed system will be able to detect vehicles and people, and

find out the distance between it and them. along with the detection of traffic signals. If

the signal is red, it stops. If it is green, it continues [8]. Along with these detections, our

system will specifically be able to detect stop signs that accompany the road. For the

detection of the stop sign, our vehicle will come to a stop and wait for 4 seconds before

continuing on its course.

2. Braking distance: Our system will slow down and accelerate the car according to the

situation it detects. However, for coming to a complete halt, our vehicle should maintain

a distance of 2 feet (5 to 15 cm in prototype model) from the car/ traffic signal or stop

sign ahead with a braking time of 3 seconds (1 second in prototype model).

3. Operating velocity: Depending on the situation our system detects ahead of itself, it can

change its velocity accordingly. If there is nothing ahead of itself, it can accelerate. If

there is another car in front of it that is moving, it will move with a constant velocity.

If there is a car in front which is at a halt, our system will slow down and come to halt.

Velocity will be different for different curved lane maintaining and lane changing, and

our car will do it accordingly.

4. Lane change: If the car ahead is detected closeby for more than 2 seconds, our vehicle

will check the adjacent lanes. If any of the adjacent lanes are free, the system will make

a decision to change lanes.

Non-functional requirements:

● Navigation system: Our automated car system will be equipped with a GPS system that

will allow the passenger to select their preferred route.

● Security system: As the system can collect data from one or several sensors, it is

paramount that there is a security system in place to protect these data.

● Maintainability: The system should be easy to maintain, update and repair when

required.

● User experience: The system should provide seamless and enjoyable interference for

easy communication with the passengers.

Page | 7

1.2.3 Specifications

Project Specification:

Table 1: System level specification

System Project Specification

Object detection

For the detection of the obstacles:

1. Detect vehicles and people (stop and check again)

2. Stop sign (stop and wait for 4 seconds) (In Hardware)

Lane change

If obstacles is found ahead, the vehicle system will check the

adjacent lanes:

1. If any of the adjacent lanes are free

2. The system will make a decision to change lanes.

Operating velocity and

distance maintained

Maintain specific distance between adjacent vehicles:

1. running at 30km/h maintains a distance of 4m, with braking

distance of 2 feet. Hardware prototype model will have smaller

parameters

Braking distance

Slow down and accelerate the car according to the situation it

detects.

1. Will calculate the braking distance for its instantaneous

speed according to the object ahead

2. When it completely stops, it maintains 1m distance (5 to 15

cm in prototype model)

Component Specification:

Table 2: Subsystem Level Specification

Sub System Tentative Components Tentative Component Specifications

Object Detection Raspberry Pi Camera Module

with cable

Dimension: ~25 × 24 × 9 mm

Weight: 3g

Video mode: 1080p47, 1640 × 1232p41 and 640 ×

480p206 @ 8MP

Sensor: Sony IMX219 @3280 × 2464 pixels

Depth of field: ~ 10 cm to ∞

Focal length: 3.04 mm

Cable length: 300mm [15]

Page | 8

Processing Unit Raspberry Pi 3 B+ with case Clock Cycle: 1.4GHz

SDRAM: 1GB LPDDR2

IEEE standard: 802.11.b/g/n/ac

Wireless connectivity:

● 2.4GHzand 5GHz wireless LAN

● Bluetooth 4.2

● BLE

Connectivity:

● Gigabit Ethernet over USB 2.0 (maximum

300 Mbps),

● 4 USB 2.0 ports

● CSI camera port

● DSI display port

Terminals: 40-pin GPIO header

Storage: Micro SD port

Operational Voltage: 5V

DC current: 2.5A [16]

Ultra 16GB Micro SDHC UHS-I Capacity: 16GB

Read speed: ~98 MB/s

Dimensions: 0.04" x 0.59" x 0.43" [17]

Power Supply Meko Power Bank Capacity: 10000mAh

Output: Double USB

Input: Micro USB & Type-C [18]

Battery with charger Battery:

● Capacity: 750-1300 mAh

● Output Voltage: 3.7V

Charger:

● Input AC: 100-240V @47-63Hz

● Output DC: 3.7V @500mA

● Terminal Voltage:4.2V土1% [19]

Vehicle Maneuver 4 Wheel 2 Layer Robot Smart

Car Chassis Kits with Speed

Encoder

Body: 2 layered acrylic chassis with screw and

supportive parts

Motor:

● Rated Voltage: 3-12 V DC

● Unloaded speed: 120 RPM.

● Load current: 190 mA (250 mA MAX)

● maximum torque: 800 gf. Cm min.

Wheel dimensions: 30 x 65 mm [21]

Page | 9

Arduino Uno R3 Clock cycle: 16MHz

Memory: 2KB SRAM, 32KB FLASH, 1KB

EEPROM

Built-in LED Pin: 13

Digital I/O Pins: 14

Analog input Pins: 6

PWM Pins: 6

I/O Voltage: 5V

Input voltage (nominal): 7-12V

DC Current per I/O Pin: 20 mA

Dimensions: 53.4 x 68.6 mm [22]

L298N H-Bridge Dual Motor

Driver

Motor Supply Voltage (Maximum): 46V

Motor Supply Current (Maximum): 2A

Logic Voltage: 5V

Driver Voltage: 5-35V

Driver Current:2A

Logical Current:0-36mA

Maximum Power (W): 25W [23]

Several components along with some specific parameters and descriptions have been

categorized into some subsystems in Table. The object detection sub-system detects the

environment for the main system and relays it to the processing unit which processes the

information to make decisions for the action of the vehicle. These two subsystems mainly

compose the main system. The action of the vehicle is dictated by the vehicle maneuver sub-

system which is completely customizable to stakeholders' needs. To power all the subsystems

we require a power supply subsystem which is directly correlated to the vehicle maneuver

subsystem. The specifications of these two subsystems are just a placeholder and customizable.

1.2.4 Technical and Non-technical consideration and constraint in design process

1. Implementing this self-driving car can increase the traffic congestion that

is already present in countries like Bangladesh.

2. If a system or subsystem fails somehow, it may lead to a serious accident and

so, we need a backup system and an emergency system to shut down all

operations of the car in case any crucial system fails.

3. The sensors will affect the health of nearby people negatively, as they will

emit radiation and so, the amount of sensors used should be as low as

possible.

4. Time is another constraint for this project. We were bound to complete the

project in one year.

5. We also have financial constraints as the project needs to be implemented

within a certain budget. We have done a detailed cost analysis for the whole

system.

6. Regulatory challenges: Self-driving cars are subject to a complex web of

regulations at the local, state, and federal levels. Regulations must be

Page | 10

developed to ensure the safety and reliability of self-driving vehicles, while

also addressing liability and insurance issues.

1.3 Applicable compliance, standards, and codes

Table 3. Applicable codes and standards

Device &

Technology

Standards &

Code

Description Application

Practice

SAE J3016 The Society of Automotive Engineers have

developed a report explaining six levels of

driving automation from level 0 to level 5.It

also describes the systems and role of the

drivers in each system [24].

Objective of project

IEEE 2846 This standard measures the performance of

autonomous vehicles by providing a set of

metrics for analyzing the safety and reliability

of ADS. It also measures the performance,

functionality, and robustness of the system

[25].

Validation parameters

ISO/PAS

21448

This is a new developed standard which also

describes the safety issues of autonomous

vehicles. It includes factors such as hazard

identification, safety validation, risk

assessment and provides a backbone for the

safety of ADS [26].

Validation process

IoT IEEE

P1451.99

Explains how to share data, make sensors

compatible, and send wireless network

messages in communication technology [27].

User interface with system.

Software

Simulator

CARLA

simulators

This is an open-source simulator that provides

a virtual environment to researchers for testing

the performance of different algorithms and

safety of autonomous vehicles. It is also used

to evaluate many scenarios which may provide

life threatening consequences to replicate in

real life [28].

Analyze multiple

approaches.

Sensor IEEE 2700-

2017

Common framework code concerning sensor

performance specifications, units, conditions

and limits [29].

Object detection camera.

Neural

Network

ISO/IEC TR

24029-1:2021

Standards to evaluate the robustness of neural

networks [30].

Applicable for second

approach

Page | 11

Body ISO 26262 This code stands for the international standard

for functional safety in road vehicles. This

code provides a structure for designing and

testing for the safety of electrical systems in

passenger vehicles [31]. It covers all aspects of

safety like software and hardware designs and

all types of validations.

For the construction of

vehicle maneuver subsystem

1.4 Systematic Overview/summary of the proposed project

The problem of road accidents has been decreasing but not eradicating. This matter can only

be addressed keeping a certain fact in mind that the majority of car accidents occur due to

human error and lack of driving experience. Keeping certain scenarios and statistics in mind a

potential solution to this problem is autonomous vehicles or self-driving cars.

The project we design focuses on a specific part, the lane-changing mechanism of self-driving

cars. We have developed a system by training it with specific parameters; that is lanes, traffic

signals, stop signs, and of course the other neighboring vehicles. The system uses image

processing, object detection, decision model, and vehicle maneuver model. The system has

been deployed in Raspberry Pi 3B+ and tested through a prototype. Further, it has been

optimized to make the results better, aspiring to make the roads a safer place than before.

1.5 Conclusion

In a nutshell, self-driving cars can be stated as the potential solution to mitigate traffic rules

negligence as well as the massive accidents occurring worldwide. By going through an

enormous range of literature, we came across the matter that ADAS is the system being used

currently. However, there are still probable solutions under development, of which the

approach we are working on might be an exemplary one.

Page | 12

Chapter 2

Project Design Approach

2.1 Introduction

According to the objectives defined in Chapter 1, 2 unique designs were analyzed. The first

design consists of a rule-based approach whereas the second design makes use of a machine

learning approach, which itself has two types of approach, one in designing a self-driving car

in CARLA simulator, and another in real-life using a prototype model of a self-driving car with

the help of raspberry pi, camera, arduino, and motors.

2.2 Identify multiple design approach

2.2.1 Design Approach-1 (Rule-Based)

Fig 2: Design approach for rule-based

Our first approach is rule-based, meaning all the actions of our systems are dictated by the

information of the system and our preferred thresholds. It mainly consists of three primary

systems. They are: object detection, processing unit and vehicle maneuver. All the systems

communicate with each other through the processing unit or Raspberry Pi. The object detection

system mainly contains a GPS module along with an antenna. The lane changing system,

operating velocity, and braking system, all are maintained in the vehicle maneuver system

which drives four DC motors with the help of a motor driver, to represent the wheels of our

vehicles.

Page | 13

2.2.2 Design Approach-2 (Machine Learning)

Fig 3: Design approach for machine learning

Our second approach is consists of mainly four different systems. The systems are: object

detection, lane changing, operating velocity and braking systems. Each of the systems are

connected to each other through the processing unit which consists of a Raspberry Pi. The

object detection system consists of a camera. The lane changing and operating velocity system

is composed of the motor driver accompanied with four DC motors to represent the wheels of

our vehicles. The four wheels also have to be fitted with brake pads to make up the braking

system. All the components will be powered up by a battery of sufficient capacity.

Page | 14

2.3 Description of multiple design approach

2.3.1 Description of Methodology Approach-1 (Rule-Based)

Fig 4: Methodology for rule-based approach

The methodology of our first approach begins with the object detection system. This detection

is done by GPS location tracking using GPS modules. This GPS information is collected by

the Raspberry Pi, which already has our set rules of instructions on the thresholds that it has to

maintain. If the distance between the agent and the detected object is greater than the threshold

of optimum distance, the motor drive accelerates the four DC motors. However, if the distance

is less than the optimum threshold, the agent decelerates. Lastly, if an object is detected to be

halted at a location for too long, the agent resorts to the GPS information of vehicles from

adjacent lanes. If one of them is free, the agent will change lanes. The vital importance of this

approach is that the agent is completely dependent on the surrounding vehicles and their ability

to communicate with the agent.

Page | 15

2.3.2 Description of Methodology Approach-2 (Machine Learning) for Software

Fig 5: Methodology for machine learning approach in CARLA simulator

For our second approach, we devised a machine learning methodology for the CARLA

simulator, where we showed the steps necessary to build a self-driving car system in the

CARLA simulator. The focus is based on the simulation of the main models required for the

system to function properly. Initially, information of the surroundings is taken into account

with the help of a camera from our car in CARLA. These are displayed in an image window

and downloaded as images using our python code in sublime text, which are then used to

annotate and train our machine-learning model in Roboflow. After training and loading the

model, we can then instead pass images from our car’s camera in CARLA through the trained

object detection model where information such as the position of detected objects and their

distance from the objects are to be extracted with the help of bounding boxes. This information

is passed through to the decision criteria model which determines the action our car has to take

according to its surroundings. Based on the decision received, our vehicle maneuvers

accordingly to the left lane, right lane, or straight. If there is more distance than optimum

distance between our car and the detected object in front, it accelerates. If the detected object

is close enough, our car decelerates. The car also takes information from adjacent lanes, and if

they are clear of objects, then it changes lanes accordingly. Our focus is to train and test the

models in Roboflow to be able to react to the simulated environment. The performance of the

self-driving car depends on the robustness of the training of the models.

Page | 16

We implemented our machine learning based lane changing system of self-driving cars in

CARLA Simulator 0.9.14. The programming language we used was Python 3.7 that is highly

suitable for usage for CARLA. It was implemented in sublime text 3 which is a type of

shareware text and source code editor. To implement our code from sublime text in the CARLA

simulator and run our models, we used anaconda prompt from anaconda which allowed us to

connect with CARLA and interact with Python and Anaconda packages through the command

line. It provided a way to manage Python environments, install packages, and run sublime text

files.

Numerous simple-to-use sensors are available from CARLA, including open-source Python

APIs for RGB cameras and depth cameras . It is an easy plug and play addition of these sensors

to get desired data without the consideration of underlying drivers of the sensors. We added

only one RGB camera to our self-driving car to collect images with the following position

parameters as following:

Table 4: Camera Position used in CARLA

x y z fov

2.5 0 0.7 110

In Table 1, x stands for the camera's front and back positions in relation to the vehicle, y for its

left and right positions in relation to the vehicle, and z for its vertical position in relation to the

vehicle. Lastly, fov stands for field of view which indicates the area that can be seen by the

camera at a given moment [5]. We manually took photos from the attached RGB camera while

our car was in various scenarios within the simulated environment. We chose this process to

avoid any image cleaning process where we had to discard images we could not use due to

similarity. In this manner, we collected various images at the resolution of 640*480 keeping

the standard size. Examples of collected images for the dataset are in Fig. 6.

Fig 6: Collected image samples from CARLA Simulator

After the image acquisition process, we annotate the image dataset using roboflow. We labeled

a total of 1500 images into four classes: vehicle, person, motorcycle and bicycle. Our images

contained bounding boxes for single class, muti-classes as well as occluded single and multi-

classes. The annotation had to be done manually using roboflow which results in the generation

of text, CSV or XML file of the bounding box for the dataset. Not only this, roboflow also

splits the dataset into training, validation and testing sets which are fed into the object detection

model for further operation. Examples of annotated images are shown in Fig. 7.

Page | 17

Fig 7: Image sample with annotations of four classes

For our object detection model, we used the Roboflow 3.0 training algorithm to train, test, and

validate our model and further use its output image’s information as input to the decision

criteria model.

After extracting our dataset images from the CARLA simulator and manually applying

bounding boxes on images from CARLA for 4 classes, we then trained our model using the

Roboflow 3.0 object detection algorithm in roboflow. As there are no or very few stop signs or

pedestrian signs in CARLA, we are omitting them here and not including them in our object

detection model as they are not necessary for lane-changing mechanisms. Therefore, we are

only considering the objects that are on the streets to implement our lane-changing system.

Decision Model:

As we already know, our decision model is needed for our self-driving car to decide whether

it will accelerate forward, or change lane to right or left, or decelerate. Our object detection

model discussed in the previous section takes in an input image from the front of the car and

can give out an output image with bounding boxes, along with the class detected, boxes’ x and

y pixel coordinates of the 640x480 image and the width and height of the boxes in pixel. Using

these parameters, we made a decision model which helps our car to detect whether a vehicle,

person, motorcycle, or bicycle is in front of us, or on the left, or on the right lane and take

decisions of acceleration, lane changing, or deceleration accordingly.

Equation 1 was used to find the distance between our car and the object in the front, using the

‘y’ and height parameter from object detection bounding box, also shown as an example in Fig.

8 as well:

 𝑧 = 𝑎 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑦 − (
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 ℎ𝑒𝑖𝑔ℎ𝑡

2
)(1)

where a = total number of pixels in y dimension (480 for us)

Page | 18

Fig 8: Determining distance (z) between our car and front vehicle

We have considered an algorithm for this model after much trial and error, and considerations.

We first call our object detection model from Roboflow and use it, setting 40% confidence and

30% overlap, on images that our car displays in CARLA continuously, as shown in Fig. 8.

Fig 9: Decision Model for machine learning approach in CARLA

For every image, we ran the algorithm again and again in a loop to give decisions continuously,

assuming the car is in the right or left lane at the very beginning. The left or right lane flags are

also made false if our car is already in the right or left lane respectively, as it cannot go further

right or further left.

Page | 19

It decides its action using the algorithm from Fig. 9, comparing the 3 flag variables for every

image. Then all three flags are made true and the whole algorithm is run for the next image as

well, and a new decision can be made for that image. This goes on again and again.

To indicate an object is really close in the front lane, we considered a value of z to be less than

135 pixels. To indicate a close object in the left lane or right lane, we have considered a larger

value of width for vehicles compared to other classes i.e. person, motorcycle, and bicycle, as

vehicles are generally wider. On the other hand, a person, motorcycle, or bicycle has generally

lower width and so lower width is used to consider that it is present in the adjacent lanes. Also,

height considered to identify them as obstacles, is also set lower as they can be close in the

adjacent lanes and still be a bit far away from the camera, compared to vehicles. A person does

not walk in the adjacent lanes in CARLA and so, their low width is not considered while

checking the adjacent lanes for the classes other than vehicles.

Vehicle Maneuver:

After our decision model gives a decision whether to accelerate, change lane, or decelerate, our

vehicle gets some specific commands to move accordingly. These commands were given with

the help of the “apply_control” method to our vehicle in CARLA.

The throttle value indicates whether to accelerate or decelerate. If zero is given, the vehicle

decelerates to a stop. If one is given, the vehicle accelerates. If -1 is given, the vehicle goes

back. The steer value indicates which direction the vehicle should turn. The value ranges from

-1 to 1. If the value is given zero, it goes straight. If the value is given more than 0 till 1, it

steers to the right. The more the value, the more right it goes. If the value is given less than 0

till -1, it steers to the left. The more negative the value, the more left it goes. “time.sleep()”

command is used to delay the execution of the next command by the time given in seconds.

Using these commands and through much trial and error, we generated the action commands,

which are integrated with the decision model’s output.

For accelerating, the throttle value is set to 1 and the steer is set to 0. Similarly, for decelerating

to a stop, the throttle value is set to 0 and the steer is 0.

For changing the lane to the left lane, we keep throttle 1 and make the car steer -0.5 to the left

for 0.33 seconds and then steer 0.5 to the right for 0.39 seconds. Then, finally make it go

straight in the new lane with steer 0. The order of steps are shown Fig. 10.

Fig 10: Changing lane to the left in CARLA

Similarly, for changing the lane to the right lane, we keep throttle 1 too but make the car steer

0.5 to the right for 0.33 seconds and then steer -0.5 to the left for 0.39 seconds this time. Then,

finally make it go straight in the new lane with steer 0. The order of steps are shown Fig. 11.

Fig 11: Changing lane to the right in CARLA

Page | 20

2.3.3 Methodology Approach-2 (Machine Learning) for hardware

Fig 12: Methodology for machine learning approach in hardware system

For our machine learning methodology in hardware prototype, we used deep learning (Haar

cascade), openCV, image processing and decision criteria to effectively train, detect, and run

our self-driving car in our lanes. This is an embedded IOT approach as well, with machine

learning. We first had to buy all our required hardware components like Raspberry Pi,

Raspberry Pi camera, Arduino, SD card, motor driver, motors, car chassis, power bank,

batteries, etc. We had to construct our car structure by connecting all those components.

Fig 13: Motor driver with DC motors and wheels in car chassis

Page | 21

Fig 14: Arduino UNO and power bank Fig 15: Raspberry Pi and

 Raspberry Pi camera module

Our main subsystems will have to be fed into Raspberry Pi, which will detect, decide and send

commands to the Arduino to maneuver the wheels accordingly using the motor driver and

motors.

To set up our Raspberry Pi 3B+, we first booted the 32-bit Raspberry Pi OS Full in our 32 GB

SD card using Raspberry Pi imager software and accessed our Raspberry Pi interface using

PuTTY and VNC viewer. We downloaded our required packages in Raspberry Pi and installed

OpenCV and Raspi-cam. We captured images and videos, and calculated frames per second.

Then, we had to do image processing for lane detection, where we converted image signature

(BGR to RGB), created region of interest, did perspective transformation (Bird Eye View) on

that region, threshold operations to extract white lane lines, canny edge detections on those

lines, continuous troubleshooting, found exact lane positions from the lines using histogram

and various calculations, calibration to map lane center to frame center and finally find the

relative difference between them to know how much our car needs to move left or right to

match its frame center to the lane center. This is sent to the arduino for command.

We also trained 3 object detection models in Cascade Trainer GUI software that uses the Haar

cascade algorithm. Positive and negative samples were made from our Raspi-Cam for each 3

objects (vehicle, stop sign, and traffic signal) individually and trained individually, after which

the 3 trained models were fed into the Raspberry Pi to detect them in running conditions. For

all the objects, Raspberry Pi takes decisions when it is detected to exist between 5 to 20 or 30

centimeters ahead of the car, and sends commands accordingly to the Arduino for vehicle

maneuver with the help of 4 digital pins.

For our Arduino, we kept some specific action commands, such as forward, backward, stop,

and U-turn to send to our motor drivers according to the decisions taken by Raspberry Pi. We

kept 3 types of left movements and 3 types of right movements, each having a different

magnitude of turn, and only one of them occurs every time our raspberry decides on relative

lane center position after analyzing the image it is getting, and sends its decision to the arduino

through its 4 digital pins to adjust and maintain the lane.

Page | 22

The whole process of detecting, analyzing, making decisions, and moving is repeated for the

next image obtained from a Raspberry Pi camera, for the continuous operation of our self-

driving car.

We used some specific commands to install packages and OpenCV in our Raspberry Pi, after

which we did C++ coding in the Geany programming editor. We did specific coding for our

Raspberry Pi to capture images from the Raspberry Pi camera to use in image processing and

training machine learning models. The images’ width was 400 pixels, and the height was 240

pixels, with brightness, contrast, saturation, and gain set to 50. Examples of the taken images

from Raspi-cam are shown below in Fig. 16.

Fig 16: Collected image samples from Raspberry Pi camera

After the image acquisition process, we did image processing on only the lane image samples

to detect lanes, as discussed before. To detect lane end, we also used the histogram process by

creating a new dynamic array to store the intensity values of the region of interest that contains

lane end lines.

The rest of the image datasets of car, stop sign, and traffic singal was used for cropping in

Cascade Trainer GUI software for Haar cascade training to create positive and negative

samples for each. We labeled a total of 300 images with positive and negative samples for car,

vehicle, and traffic signals separately. Our cropped images contained full objects as well as

occluded object for better training. The cropping had to be done manually in Cascade Trainer

GUI, which automatically crops and saves the bounding box that was made on an object. These

were considered positive samples to detect objects, whereas the negative samples considered

images which had no object. So each object had both positive and negative sample set.

Examples of cropped positive images are shown in Fig. 17.

Page | 23

Fig 17: Cropped positive image samples

We then trained 3 times for 3 objects using 3 sets of positive and negative image samples in

Cascade Trainer GUI to obtain 3 object detection models, which were used and called in the

Raspberry Pi to detect the 3 objects, besides the lane detection.

Decision Model:

The width (in pixels) of the bounded box, that we get from the detected object, was used to

find out how far away that object is. We did manual calculations to solve 3 linear equations to

convert pixel dimensions to the distance from the object and got the following equations:

For both stop sign and traffic signal detection, distance = −1.07 × width +102.597

For car detection, distance = −0.48 × width +56.6

We also can find out our deviation value from our lane, and the lane end intensity value using

image processing. We will make decisions based on them, as well as the 3 object detections.

Finally, there will be 11 conditions to choose from and the respective commands, in the form

of digital numbers of 4 bits, will be sent to the Arduino for vehicle maneuver, as shown in Fig.

18.

Fig 18: Decision Model for machine learning approach in hardware

Page | 24

If a stop sign is detected and the distance is more than 5 cm but less than 20 cm, then the

Raspberry Pi sends commands to the Arduino to stop the car for 4 seconds, and then move

ahead for 0.5 seconds to overtake the stop sign and take the next decision.

If a traffic signal with red light is detected and distance is more than 5 cm but less than 20 cm,

then the Raspberry Pi sends commands to the arduino to keep on stopping the car for 2 seconds

continuously, until the red light changes to green light, or turns off completely.

If a car ahead is detected and the distance is more than 5 cm but less than 30 cm, then the

Raspberry Pi sends commands to the arduino to make the car change its lane. For this, a turn

is taken using motor drivers, followed by a forward operation and then a reverse turn to align

with the new lane. Then, after continuing forward on the new lane for some time while checking

for other detections, the car comes back to its previous lane in a similar way with a different

direction, ultimately overtaking the car that it had detected before.

If the histogram value of the region of interest exceeds 4500, then it indicates a Lane End, and

the arduino makes our car take a U-Turn. It rotates 90 degrees in one direction, moves forward

for 1 second, then again rotates 90 degrees in the same direction, before continuing to run on

the second lane.

The rest 7 conditions are kept to maintain our car on the lane. If the deviation value is 0, the

car moves forward. If the deviation value comes out to be between 0 to 10, then a low right

turn is executed by varying the velocities of the left and right wheels. If deviation value comes

out to be between 10 to 20, then a normal right turn is executed. If deviation value comes out

to be more than 20, then a high right turn is executed. Similarly low, normal, and high left turn

is executed but for negative deviation values, depending on the magnitude.

Page | 25

2.4 Analysis of multiple design approach

2.4.1 Analysis of Design-1 (Rule-Based):

For the rule-based approach, as discussed previously, our vehicle knows the GPS location of

the vehicles and mobile phones, and drives on the road accordingly. At the bottom left side of

the pictures below, there are multiple vehicles that it is detecting through GPS and knows its

location while avoiding collision with them.

1) When our vehicle detects a person, it stops at a braking distance of 2 feet and waits

for the person to pass by. When our vehicle doesn't detect any more people, it starts to

move again.

Fig 19: Vehicle detects person and stops

Fig 20: Vehicle detects no more person and starts to move

Page | 26

2) When our vehicle detects a car ahead, it stops at a braking distance of 2 feet and waits

for the front car to move. When the front car moves, our vehicle starts to move,

maintaining the braking distance of at least 2 feet.

Fig 21: Vehicle detects a car ahead and stops

Fig 22: Vehicle moves when front car moves, maintaining some distance of 2 feet

Page | 27

3) Our vehicle maintains a lane when it finds that the forward path is open, also while

changing direction.

Fig 23: Vehicle changing direction while maintaining lane

4) If our vehicle detects a vehicle in front of it for more than 2 seconds, it checks its right

or left lane whether there are cars or not. If not, it changes lanes accordingly, which

also meets our functional requirements.

Fig: 24 Vehicle detects other vehicles in front of it

Page | 28

Fig 25: Vehicle changing lane

2.4.2 Analysis of Design-2 (Machine Learning) in CARLA:

For this design, we extracted some dataset images from the CARLA simulator to detect our

obstacles. We have used Roboflow to do bounding boxes on images from CARLA for 4 classes:

Vehicle, person, motorcycle, and Bicycle. Then, trained our model using the YOLOv4 object

detection algorithm. We could have considered the class of traffic signals as well. However, it

is too small for our vehicle in the CARLA simulator to detect the light signals from far away.

We will try to detect it in hardware design, where the signals will be closer and clearer to see

and the detection process will be the same as the other 4 classes we implemented here. Also,

as there are no stop signs or pedestrian signs in CARLA, we are omitting it here. However, we

will detect it in hardware design in a similar manner. CARLA also experiences heavy lagging

for more classes and processing, which was also a problem for us.

Fig 26: Bounding Box applied on images for Vehicles and Motorcycles

Page | 29

Fig 27: Bounding Box applied on images for Bicycles and Person

We trained our object detection model three times and obtained 3 different results. The dataset

images were divided into 70% for training images, 20% for validation images, and 10% for

test images.

Test-1:

We have used around 200 dataset images to train in test-1 with 200 epochs. We obtained mean

average precision (mAP) of 87.3%, precision of 85.9% but a recall of 54.8%. Recall indicates

how much percentage of a sample from the test image that our machine learning model

correctly identifies as belonging to the correct class, out of the total test image samples for that

class.

Fig 28: Mean average precision vs epochs for test-1

Page | 30

Fig 29: Box loss, Class loss and Object Loss vs epochs for test-1

Fig 30: Loss, precision and recall graphs vs epochs for test-1

Above, we have extracted the training and validation graphs of Box loss, class loss, distribution

focal loss (DFL), precision, recall, and mAP with respect to epochs, for test-1 but we noticed

there are a lot of fluctuations and spikes in the graphs while training our model, ultimately

giving a very low recall of 54.8%.

Page | 31

Fig 31: Showing the Average Precision by class for Validation set results for test-1

Fig 32: Showing the Average Precision by class for Test set results for test-1

Although the precision also looks acceptable here, however, we can see that for the class of

motorcycle, the model overfit. So, it could not detect any motorcycle in the test images. For

that reason also, we needed to train our model again with more dataset images and epochs this

time, in test-2.

Test-2:

We have used around 1000 dataset images to train in test-2 with 300 epochs this time. We

obtained mean average precision (mAP) of 88.6%, precision of 85.9% and a recall of 78.9%.

Fig 33: Mean average precision vs epochs for test-2

Page | 32

Fig 34: Box loss, Class loss and Object Loss vs epochs for test-2

Fig 35: Loss, precision and recall graphs vs epochs for test-2

This time, we notice that the fluctuations and spikes in the graphs decreased while training our

model in test-2 compared to test-1, ultimately giving a higher recall of 78.9%

Page | 33

Fig 36: Showing the Average Precision by class for Validation set results for test-2

Fig 37: Showing the Average Precision by class for Test set results for test-2

It is clear here that the precision for validation and test, for all the images increased. For further

improvement, we would be needing more dataset images. As we had to manually take dataset

images from the CARLA simulator, it was a really lengthy process to take all the images and

annotate them all. So, extracting these images turned out to be more time consuming than

expected and so we have ultimately used our test-2 model to detect objects and conduct

simulation in CARLA.

Decision Model Results for CARLA

For the result of the decision model, we obtained good results for the parameters specified for

the model to give its decision. The decision model’s accuracy also depends on the accuracy of

the object detection. As we obtained around 80% average precision for it, our decision model

can give close to accurate results for the 4 classes detected. Below are some of the case

examples we got from our decision model.

Page | 34

Fig 38: Vehicle in front but right lane is clear

For the front vehicle in image from Fig. 38, we got distance, z = 480 - 308 - 153/2 = 95.5 which

is less than 135 and x = 319 which is between 170 and 430. So, going straight is not possible.

No object is detected in the right lane and so, our decision model gives the decision to change

lane to the right.

Fig 39: Motorcycle in front but a bit far

Similarly, for the front motorcycle in image from Fig. 39, we got distance, z = 480 - 282 - 116/2

= 140 which is barely more than 135 and we got x = 319 which is between 170 and 430. So,

our decision model gives the decision to accelerate forward. However, if the motorcycle was a

bit closer so much so that the value of z was less than 135, then our decision model would have

checked the adjacent lanes, only to find here that there is a vehicle at the left as well. So, it

would decelerate.

As for the maneuver of our vehicle, it stops, accelerates, or changes lanes when required from

the decision model. Sometimes, the lane changing is not always perfectly executed and so, a

lane invasion sensor from CARLA is used to prevent our car from crossing the lane lines after

Page | 35

changing lane, unless another decision comes up from the decision criteria model to change

lane. This ensures our vehicle maintains its lane at all cost.

Simulation in CARLA based on Machine Learning:

We passed the camera window from CARLA through our trained object detection model test-

2 to detect objects and then used the decision criteria for our detection model from camera and

also from LiDAR to control our self-driving vehicle accordingly.

1) Our vehicle detects a vehicle in front of it using a camera and stops, maintaining a

minimum braking distance of 2 feet.

Fig 40: Vehicle detecting front vehicle but still continuing as it is still not within braking distance

Fig 41: Vehicle stops, keeping a minimum braking distance between it and the front vehicle

Page | 36

2) Our vehicle detects a person in front of it using Camera or LiDAR and stops,

maintaining a minimum braking distance of 2 feet

Fig 42: Vehicle stops, keeping a minimum braking distance between it and the front person

Fig: 43 Vehicle continues as it finds the lane clear of obstacles

Page | 37

3) If our vehicle detects a vehicle in front of it, it checks its right or left lane whether there

are obstacles or not. If not, it changes lane accordingly, which also meets our functional

requirement.

Fig 44: Vehicle detects other vehicle in front of it

Fig 45: Vehicle changing lane

We have considered the operating velocity in CARLA as default, either zero or moving at a

specific speed, as all the other cars stop and move with the same speed all the time. However,

in hardware implementation, we will be considering the speed while designing our vehicle.

Page | 38

Proteus Simulation:

We also implemented our design in proteus software for lane changing for our self-driving car.

Fig 46: Simulation Design in Proteus for Hardware implementation

Implementing cameras and LiDAR is not possible in proteus software. So, in this design,

instead of a LiDAR, we considered 3 ultrasonic sensors to detect objects in 3 lanes, and used 3

LEDs, representing the car lights, to give indication for 3 lanes: forward, right, and left. When

voltage in the test pins increases above 4.5 for the ultrasonic sensors, it indicates that it is not

detecting obstacles in that direction. The forward sensor detection was prioritized compared to

the left or right sensor in the code.

1) When all of the 3 ultrasonic sensors are detecting obstacles ahead, the car stays or

comes to a halt and all the LEDs turn off.

Fig 47: All four wheels and LEDs turn OFF (Car at Halt)

Page | 39

2) When the obstruction at the front clears up, voltage increases at the test pin of forward

sensor and all four wheels start to move forward.

Fig 48: All four wheels moving forward and front LED turn ON (Car moving forward)

3) When there is an obstacle at the front but the right lane is free of obstacles, then voltage

increases at the test pin of the right sensor and all 3 wheels, except the front right wheel,

start to move forward. This causes the car to turn and go to the right lane due to right

rotational motion at the front right wheel (pivot) that is created by friction.

Fig 49: All 3 wheels, except front right wheel, moving and right LED turn ON (Car moving to the right lane)

Page | 40

4) When there is an obstacle at the front but the left lane is free of obstacles, then voltage

increases at the test pin of the left sensor and all 3 wheels, except the front left wheel,

start to move forward. This causes the car to turn and go to the left lane due to left

rotational motion at the front left wheel (pivot) that is created by friction.

Fig 50: All 3 wheels, except front left wheel, moving and left LED turn ON (Car moving to the left lane)

We have not implemented the braking system here, that causes the car to come to an immediate

stop, as it is not possible for the motors used in proteus to do so. However, there will be a

braking mechanism in the hardware design, and the car will come to a stop depending on the

decisions taken. We tried to implement the design in proteus as much as possible to represent

a self-driving car with LiDAR/ultrasonic sensors.

Page | 41

Comparison Analysis:

We compared the two design approaches in the table below

Table 5. Comparison Analysis of multiple designs

 Parameters

DESIGN APPROACH 1 (Rule-

Based)

DESIGN APPROACH 2

(Machine Learning)

Cost 28,150 TK 28323 TK

Precision

Almost 100% precise but 0% for

vehicles or obstacles outside of its GPS

detection

Around 89% precise for all obstacles

Adaptability
Limited to the predefined set of rules

and conditions

Can adapt to dynamic and ambiguous

conditions

Knowledge

Representation

Explicit rules are defined by human

experts to guide the behavior of the self-

driving car

The system learns from data without

explicit programmed rules

Real-time Data

Requirements

Need real-time coordinates of all objects

in the entire region to function properly

Need only real-time image of objects in

front of our car to function properly

Complexity

Tracking cars will increase complexity

exponentially as every car will be

dependent on each other

Less complex as cars are independent

from each other

Safety and

Liability

Can’t detect objects that do not give

GPS signals, endangering people

without phones.

Safety higher since decision-making

relies on learned patterns data of nearby

environments

Availability of

components

There is only one sensor (GPS) needed

which is very common

More sensors may be required for better

performance, which may not be available

Interpretability

and

Explainability

High since it’s decision-making relies

on clearly defined rules and logic

Often lack interpretability as difficult to

explain the reasoning behind it’s

decisions

Maintainability
Easier to maintain as one sensor can be

fixed easily when damaged

Harder to maintain as tough to fix

multiple sensors

From the table, we can see a brief analysis of the two design approaches. We can see that both

approaches have their merits by being advantageous in five parameters each.

Both the approaches seem to have more or less the same costs to produce similar functionality.

As we will be using only a single GPS sensor in our rule-based approach, it will be easier to

maintain as well as manufacture due to the availability of components. Also, as this approach’s

rules are constructed by us, it is easy to interpret and explain. Despite the pros of approach 1,

there are some vital cons. The major one being the complexity. As each vehicle has to know

the location of all vehicles in its vicinity, this creates an exponentially increasing complexity

as the number of vehicles increases. Due to dependency on other vehicles, approach 1 can be

considered less safe. Despite having a 100% precision, there is the possibility of a rogue vehicle

Page | 42

without any means of tracking it, which will lead to the precision to fall to 0%. Not only rogue

vehicles, any person without a phone or means of transmitting location information is in danger

of not being detected by the vehicles which can become very fatal if the particular situation is

not declared in its predefined rules.

On the other hand, the machine learning approach is extremely effective in compensating for

the failings of the rule-based approach. It is less complex as it only processes real-time

information in close proximity, while providing greater safety as the vehicle can be enabled to

learn from its environments and thus be able to react properly to dynamic and ambiguous

conditions on the road with the help of its camera, object detection models and decision criteria

algorithms.

2.5 Conclusion

After the specific objectives and functional requirements were discussed in chapter 1, 2 types

of design approaches were simulated and analyzed in CARLA simulator which meets the

specified goals in different ways. The 2 design approach’s methodology have been explained

in quite a lot of details along with their results. Finally, a comparison is made between the two

approaches in terms of cost, precision, adaptability, knowledge representation, real-time data

requirements, complexity, safety and liability, availability of components, interpretability and

explainability, and maintainability.

After analyzing, we can safely conclude that design approach 2 is the optimum solution for our

desired outcome. We choose the machine-learning approach mainly because it can effectively

work for unexpected situations and cars nearby by sensing them with only requiring real time

front images. Rule-based approaches cannot consider cars outside of their set of rules, and

complexity increases exponentially as cars are added to the set of rules, with the problem of

not getting GPS signals from every obstacle and requiring real-time coordinates for all vehicles

in the region.

Page | 43

Chapter 3

Use of Modern Engineering and IT Tool

3.1 Introduction

Numerous IT tools have been employed to ensure the project's successful execution. Prior to

the actual hardware implementation, they assisted in assessing the design and performance of

each design method and identifying areas that needed improvement. As a result, the ideal

design could be confirmed.

3.2 Select appropriate engineering and IT tools

3.2.1 CARLA Simulator 0.9.14

CARLA Simulator is an open-source software which helps in the simulation of autonomous

vehicles [28]. CARLA simulator is famous for its reliability and user-friendly interface. The

Simulator has certain Characteristics:

1. Support development of autonomous driving systems.

2. Training of autonomous driving systems.

3. Validation of autonomous driving systems.

The Simulator has certain features which help it in imitating the real-world interface. It has

urban layouts, buildings, vehicles this is pre-built and can be used with ease. Users can tune

the various environmental settings along with the environmental conditions, sensor suites,

maps and various other options [28]. The software has certain Key features:

● Quickstart: It is extremely effortless to get started with a CARLA simulator.

● Actors: This simulation tool has pedestrians, traffic signals as well as pedestrians in

order to give a real world taste.

● Sensors: CARLA has a wide variety of sensors to use like LIDAR, RADAR as well as

cameras [28].

● ROS bridge: The Robot Operating System of CARLA helps the endless connection.

● Scalability: It has a multi-client architecture which is server based.

● Flexible API: The different interfaces can be tuned such as the simulation, including

pedestrian behaviors, weathers, traffic generation, sensors, etc.

● Fast simulation for planning and control: Fast execution is possible in CARLA which

enables fast execution of traffic simulation and road behaviors for which graphics are

not required [28].

Page | 44

Table 6. Reasons why to choose Carla over Udacity:

 Open-Source Complex

Environments

Sensor

Support

Customization Real-World

Applications

Carla

Simulator

Yes Yes Wide

range

Wide range

possible

Yes

Udacity

Simulator

Yes (but very

Limited)

Very Limited Few

available

Very Limited No

3.2.2 Python 3.7

It is a type of computer programming language mainly used to build software and do software

related works, automate tasks, and conduct data analysis. It is highly suitable for usage in

CARLA.

3.2.3 Sublime Text 3

It is a type of shareware text and source code editor. The main work of it is to support and edit

the programming languages and markup languages including python.

3.2.4 Anaconda Prompt

Anaconda is an open-source platform that is used for data science and machine learning tasks.

Anaconda Prompt allows users to interact with Python and Anaconda packages through the

command line. It provides a way to manage Python environments, install packages, and run

scripts or applications.

3.2.5 Google Collab

Google Colab is an online platform that allows users to write and execute Python code

collaboratively. It provides a Python programming environment in the form of Jupyter

Notebooks.

3.2.6 Proteus

It is basically a software used to design and analyze the electronic circuit. We have used it for

our hardware design implementation of our self-driving car. It has the following characteristics:

1. Electronic circuit design.

2. Simulation of the designed circuit.

3. PCB (Printed Circuit Board) of the designed circuit.

It has a lot of key features which makes it the suitable software for designing circuits [32].

Page | 45

● Library of Components: Proteus has a wide range of library components which

electrical engineers need in their daily life. We will be using Arduino UNO, motor

drivers, motors, LEDs, ultrasonic sensors and potentiometers to design our circuit.

● Schematic Capture: Proteus allows the users to create electronic circuit schematics

with a range of components like microcontrollers, resistors, sensors, capacitors,

transistors, and many more so that the user can get a real world experience.

● Simulation: Proteus has the ability to showcase simulation as a result, the users can

access the electronic circuits by analyzing its behavior, tuning necessary voltage,

current flow, and finally observe how the circuit functions [32].

● Microcontroller Simulation: Proteus has a library which contains microcontroller

models used in various embedded systems. We can write code in the required

language and then add the file in the proteus which inturn helps the microcontroller

to run properly.

● PCB Design: Proteus has a library and component list which helps in routing, power

ring management, power meshing then arranging components, defining board

layers, etc [32]. However, we will not be using this.

● Interactive Debugging: Proteus has a very user-friendly troubleshooting and

debugging platform that helps users to analyze, energize then re-energize their

circuits if needed.

3.2.7 Arduino IDE

Arduino IDE or Arduino Integrated Development Environment is nothing but a software which

gives a platform to electrical engineers to develop various circuits and modules using the

Arduino microcontroller board. Arduino UNO has the following characteristics:

1. Open-source hardware.

2. Interactive electronic projects design.

3. Quick Prototype generation [33].

3.2.8 Cascade Trainer GUI

A tool for training, testing, and refining cascade classifier models. To establish the parameters

and make using OpenCV tools for training and testing classifiers simple, it employs a graphical

user interface [34].

3.2.9 CodeBlocks

The cross-platform, free, and open-source IDE that is compatible with GCC, Clang, and Visual

C++ among other compilers. It is created in C++ with the GUI toolkit wxWidgets [35].

Page | 46

3.2.10 C++ Programming Language

An expansion of the C programming language, C++ is a strong and flexible programming

language. It was created to supplement C's procedural programming tools with object-oriented

programming functionality [36].

3.2.11 VNC Viewer

VNC (Virtual Network Computing) Viewer is a client application that allows users to connect

to and control a remote computer running a VNC server. VNC is a graphical desktop-sharing

system that enables remote access and control of another computer's desktop environment [37].

3.2.12 PuTTY

PuTTY is a free and open-source terminal emulator, serial console and network file transfer

application. It supports several network protocols, including SCP, SSH, Telnet, rlogin, and raw

socket connection. It can also connect to a serial port [38].

3.2.13 Geany Programming Editor

Using Scintilla and GTK, Geany is a lightweight GUI text editor that is free and open-source

and offers rudimentary IDE functionality. It exists inside Raspberry Pi interface for coding

purposes. It is intended to load quickly and require little in the way of external libraries or

distinct packages on Linux [39].

3.2.14 OpenCV

OpenCV is an open-source computer vision and machine learning library widely used for

image and video processing. It provides tools for tasks such as image manipulation, feature

detection, object recognition, machine learning, camera calibration, and deep learning.

OpenCV is cross-platform, supports various programming languages, and is commonly used

in applications like computer vision research, robotics, and augmented reality [40].

3.3 Use of modern engineering and IT tools

3.3.1 CARLA Simulator 0.9.14

CARLA Simulator was used as the primary environment for both approach one and two

software simulations. It was ideal for its easy-to-use user interface and keen use of real-world

physics. The environmental elements and sensors were easily accessible through appropriate

codes which were conveniently provided in their official website. The allowed use of GPS and

camera modules perfectly aligned with our design approaches, providing us the perfect scenario

to conduct our design and identify improvements.

3.3.2 Python 3.7

We used Python programming language during the simulation to write codes for both of our

approaches and mold the environment in CARLA Simulator. The ease of use of the python

language helped us to easily grasp the working understanding of the required models and to

Page | 47

quickly write up our code. The vast resources of the Python language on the internet were also

a reason for choosing Python as our language of choice in simulation.

3.3.3 Sublime Text 3

We used Sublime Text as our primary source code editor tool to write codes to control the

environmental elements within the CARLA Simulator. Its simple interface provided an

excellent editing experience.

3.3.4 Anaconda Prompt

Anaconda Prompt served as the intermediary between our codes compiled in Sublime Text,

Google Collab, and CARLA Simulator. Anaconda Prompt allowed us to run our codes to

change the environmental elements and extract data from sensor modules and execute them in

the CARLA Simulator. It also displays extracted data from the sensor modules like GPS and

camera. Anaconda Prompt basically provides an easy and swift method to communicate with

CARLA Simulator with Sublime Text. It also allowed us to deploy our trained models from

Google Collab to CARLA Simulator, allowing the agent vehicle to work autonomously. The

model was also coded to extract data which were displayed again in Anaconda Prompt.

3.3.5 Google Collab

We used Collab to run and test our model training. We used its innovative and revolutionary

concept of sharing computing resources to run our object detection and decision criteria

models. Running a model is very taxing on the computer and requires a very high configuration

to train in a timely fashion. Collab allowed us to use a fraction of the computing power available

at Google to run our models, leaving us to work efficiently on our personal computers. The fact

that Collab is compatible with Python language helped us to work with ease and convenience.

3.3.6 Proteus

Proteus was used in the simulation of the vehicle maneuver subsystem using Arduino UNO

and L298N Motor Driver. Proteus allowed us to run and tune a software simulation for our

vehicle maneuver subsystem. Using Proteus, we were able to understand the required

connection that is needed between the L298H Motor Drive and Arduino, also we were able to

deploy the code required by the Arduino to move the vehicle.

3.3.7 Arduino IDE

Arduino IDE provided us with a source code editor to code our Arduino UNO to run to

specification. All necessary coding done for the Arduino was done through this IDE. We

implemented the code here for our Arduino UNO in proteus software, and to control the motors

in hardware according to the decisions made by the Raspberry Pi.

3.3.8 Cascade Trainer GUI.

We used this in hardware to train our 3 object detection models using positive and negative

samples for each, and then detecting them in running conditions. It provided us with a simple

way of detecting objects, consuming less power for more accuracy when used in Raspberry Pi.

Page | 48

3.3.9 CodeBlocks

We did C++ coding in the hardware system to verify and put in Raspberry Pi for operation. It

seemed more convenient to do the coding here.

3.3.10 C++ Programming Language

Our Raspberry Pi provided good support for C++ programming and it is convenient for our

project so, we used it to develop our coding for Raspberry Pi during hardware implementation.

3.3.11 VNC Viewer

We used this to connect to our Raspberry Pi for any operation, even when in running conditions

in hardware design. It was faster and more efficient to use rather than using our PC’s built-in

remote desktop connection app to connect and view our Raspberry Pi desktop and real-time

camera displays of Raspberry Pi camera.

3.3.12 PuTTY

We initially used PuTTY in hardware to connect to our Raspberry Pi from PC, installed the

graphical user interface and other packages, and enabled VNC viewer for our Raspberry Pi,

after which we switched to VNC viewer for further operations as PuTTY cannot provide a

desktop environment and was comparatively slower than VNC viewer.

3.3.13 Geany Programming Editor

We used the internal Geany Programming Editor inside the Raspberry Pi to build and run our

codes, after we designed our code in CodeBlocks during hardware implementation. We further

had to modify or tune our code in Geany Programming Editor after running some test runs, to

improve our results. So, it helped in doing trials and errors for our system.

3.3.14 OpenCV

We installed OpenCV in our Raspberry Pi for important operations related to our image

processing and deep learning models. It provided a comprehensive set of tools and algorithms

for image and video processing. It also supported our Raspberry Pi camera, providing an

interface to capture and process frames from cameras and enabling seamless integration with

our Raspberry Pi camera in hardware.

3.4 Conclusion

Throughout the project's development and execution stages, the aforementioned engineering

and IT tools have been employed. With the use of these tools, we were able to evaluate the

practicality of each design strategy and select the optimal one for hardware implementation.

These tools have sped up the design process by enabling the identification of various strengths

and restrictions of the design methods. For the development of the final prototype, these tools

also proved to be efficient and helpful to enable a smooth design process for us.

Page | 49

Chapter 4

Optimal Solution and Optimization of the Optimal Solution

4.1 Introduction

After analyzing and comparing the multiple design approaches in simulation, design approach

2 was found to be the optimal design, considering multiple parameters. This design approach

was implemented extensively in hardware and several test runs were conducted to analyze its

performance. The design fulfilled all the objectives and requirements with acceptable accuracy.

However, there was a potential to further increase the accuracy of its operations and so, several

optimizations were done on both software and hardware design which gave better results and

increased their performance.

4.2 Identification of Optimal Design Approach

We compared the two design approaches in Table 7 below to find out the optimal design

approach.

Table 7 Comparison Analysis summary of the three multiple design approaches

 Parameters

DESIGN APPROACH 1 (Rule-Based) DESIGN APPROACH 2

(Machine Learning)

Cost 28,150 TK 28323 TK

Precision
Almost 100% precise but 0% for vehicles

or obstacles outside of its GPS detection
Around 89% precise for all obstacles

Adaptability
Limited to the predefined set of rules and

conditions

Can adapt to dynamic and ambiguous

conditions

Knowledge

Representation

Explicit rules are defined by human experts

to guide the behavior of the self-driving car

The system learns from data without explicit

programmed rules

Real-time Data

Requirements

Need real-time coordinates of all objects in

the entire region to function properly

Need only real-time image of objects in front

of our car to function properly

Complexity

Tracking cars will increase complexity

exponentially as every car will be

dependent on each other

Less complex as cars are independent from

each other

Safety and

Liability

Can’t detect objects that do not give GPS

signals, endangering people without

phones.

Safety is higher since decision-making relies

on learned patterns data of nearby

environments

Availability of

components

There is only one sensor (GPS) needed

which is very common

More sensors may be required for better

performance, which may not be available

Interpretability

and

Explainability

High since it’s decision-making relies on

clearly defined rules and logic

Often lack interpretability as difficult to

explain the reasoning behind it’s decisions

Maintainability
Easier to maintain as one sensor can be

fixed easily when damaged

Harder to maintain as tough to fix multiple

sensors

Page | 50

From Table 7, we can see a brief analysis of the two design approaches. We can see that both

approaches have their merits by being advantageous in five parameters each.

Both approaches seem to have more or less the same costs to produce similar functionality. As

we will be using only a single GPS sensor in our rule-based approach, it will be easier to

maintain as well as manufacture due to the availability of components. Also, as this approach’s

rules are constructed by us, it is easy to interpret and explain. Despite the pros of approach 1,

there are some vital cons. The major one being the complexity. As each vehicle has to know

the location of all vehicles in its vicinity, this creates an exponentially increasing complexity

as the number of vehicles increases. Due to dependency on other vehicles, approach 1 can be

considered less safe. Despite having a 100% precision, there is the possibility of a rogue vehicle

without any means of tracking it, which will lead to the precision to fall to 0%. Not only rogue

vehicles, any person without a phone or means of transmitting location information is in danger

of not being detected by the vehicles which can become very fatal if the particular situation is

not declared in its predefined rules.

On the other hand, the machine learning approach is extremely effective in compensating for

the failings of the rule-based approach. It is less complex as it only processes real-time

information in close proximity, while providing greater safety as the vehicle can be enabled to

learn from its environments and thus be able to react properly to dynamic and ambiguous

conditions on the road with the help of its camera, object detection models and decision criteria

algorithms.

After analyzing, we can safely conclude that design approach 2 is the optimum solution for our

desired outcome. We choose the machine-learning approach mainly because it can effectively

work for unexpected situations and cars nearby by sensing them with only requiring real-time

front images. Rule-based approaches cannot consider cars outside of their set of rules, and

complexity increases exponentially as cars are added to the set of rules, with the problem of

not getting GPS signals from every obstacle and requiring real-time coordinates for all vehicles

in the region.

4.3 Optimization of the optimal design approach

4.3.1 Optimization of the optimal design in Software

As our design approach-2, the machine learning approach, turned out to be the optimum

solution for our desired outcome, to optimize it further we have tried getting more dataset

images from CARLA and trained our model again for a third time (Test-3) to get a more

accurate model.

We have used around 1500 dataset images to train this time in test-3. We obtained mean

average precision (mAP) of 88.2%, a precision of 82.9%, and a recall of 83.2%.

Page | 51

Fig 51: Mean average precision vs epochs for test-3

Fig 52: Box loss, Class loss and Object Loss vs epochs for test-3

Fig 53: Loss, precision and recall graphs vs epochs for test-3

This time, we notice that the fluctuations and spikes in the graphs further decreased while

training our model in test-3 compared to test-2, ultimately giving a higher recall of 83.2%

Page | 52

4.3.2 Optimization of the optimal design in Hardware

Similarly, to optimize our optimal design in hardware further, we made more dataset images

using Raspi-cam and used them to train in Cascade Trainer GUI again to get more accurate

object detection models for the 3 objects to get detected better. We used around 500 to 600

images to train the models this time and verified the accuracy by running several test runs of

our prototype car on our track.

We also had to fine-tune our histogram calculations for more accurate lane detection. Also, the

car could not turn enough to maintain its position on a highly curved lane. So, we had to

increase the turning speed for those turns in Arduino. When a higher left turn was needed, the

speed for the two left-side wheels was decreased further, whereas the speed for the two right-

side wheels was increased further. Similarly, a higher right turn was executed.

Moreover previously, when we decided on our action of moving 0.5 seconds after stopping for

4 seconds at a stop sign, we sometimes encountered the problem where even after moving for

0.5 seconds, our car still detected the stop sign for the second time and stopped for a second

time as well for 4 seconds. So, to solve this, we increased the time our car has to travel to 1

second from 0.5 seconds, after stopping for 4 seconds, before taking the next decision. In this

way, it does not detect the stop sign for a second time after moving 1 second ahead.

4.4 Performance Evaluation of Developed Solution

4.4.1 Performance Evaluation for Software Design

Fig 54: Showing the Average Precision by class for Validation set results for test-3

Page | 53

Fig 55: Showing the Average Precision by class for Test set results for test-3

It is clear here that the precision for validation and test, for all the images increased. Our

average precision for test images increased from 80% in test-2 to 88% in test-3 for all classes.

Especially for the bicycle and motorcycle, their average precision in test images increased from

58% to 78% and from 77% to 85% respectively, which is a huge improvement. If we have

more time, these statistics can be further improved by collecting more and more dataset images

and annotating them further to train and improve our model.

4.4.2 Performance Evaluation for Hardware Design

We ran several test runs of our prototype car on our track and verified the accuracy before and

after optimization. The accuracy of image processing, object detection, decision model, and

vehicle maneuver were all found out collectively by determining the successful path our car

takes on Lane lines, Lane End, traffic signal, stop sign, and car detection.

Table 8. Accuracy of correct operation for our prototype car before and after optimization

Operation No. of tests Accurate

Operations

before

optimization

Accurate

Operations after

optimization

Accuracy before

optimization

Accuracy after

optimization

Lane Maintaining

operation

23 18 22 78.3% 95.6%

U-Turn operation at

Lane End

16 10 12 62.5% 75%

Lane Changing

operation at car

detection

19 13 16 68.4% 84.2%

Traffic Signal

operation

16 12 14 75% 87.5%

Stop Sign

operation

18 15 17 83.3% 94.4%

Page | 54

From Table 8 above, we have compared results before and after optimization. It can be seen

that accuracy for all of the operations increases due to the optimization done. Our car maintains

lane and stops at stop signs with around 95% accuracy, whereas lane changing operation and

traffic signal operation had an accuracy of around 85%.

U-Turn operation has relatively lower accuracy (75%) than the others and this is due to the

varying speed of our motor. As we run our prototype again and again, the battery that drives

the motors depletes continuously. This causes our motors to run slower and this hampers the

U-Turn operation. When our car has to take a U-Turn, specific Arduino commands are run with

fixed specific speeds to the motor drivers for our car to turn, go forward, turn again, and

continue. During this time, our car does not detect any other things so, if speed varies at this

time, it may move out of the lane sometimes. We can improve this by using a stable power

supply for our motor drivers, instead of batteries that deplete and change speed over time.

So, overall we got 81 accurate operations out of 92 test runs and so, accuracy of our optimized

system was 88% altogether.

4.5 Conclusion

In this chapter, we found out that the second design was the most optimal one based on the

analysis in Table 7 considering cost, precision, adaptability, knowledge representation, real-

time Data, requirements, complexity, safety and liability, availability of components,

interpretability and explainability, and maintainability. This design approach was implemented

in hardware with some general modifications and its performance was evaluated. For further

optimization of the optimal design, machine learning models were trained with more datasets,

histogram calculations were further fine-tuned, turning speed was increased for higher turns,

and time for moving past stop sign was increased. After these optimizations, the system gave

much better results and accuracy during test runs. The overall accuracy of our optimized system

was 88%, combining all the test runs.

Page | 55

Chapter 5

Completion of Final Design and Validation

5.1 Introduction

After various optimizations and considerations, we got our final design for the machine

learning approach in the hardware system. Our final system was judged based on 5 actions:

Maintaining Lane operation, U-turn operation at Lane End, Lane Changing operation at car

detection, Traffic Signal operation, and Stop Sign operation. The optimized design was tested

92 times and in 81 of those cases, our car was found to be working properly. In this chapter,

we will elaborate on our final design and evaluate each and every operation of our car.

5.2 Completion of Final Design

Fig 56: Final Design of self-driving car prototype, along with other objects

Page | 56

Fig 57: Final Design System flowchart

For our final design, we used deep learning (Haar cascade), openCV, image processing and

decision criteria to effectively train, detect, and run our self-driving car in our lanes. This is an

embedded IOT design as well, with machine learning.

Our main subsystems are fed into Raspberry Pi, which will detect, decide, and send commands

to the Arduino to maneuver the wheels accordingly using the motor driver and motors.

Our Arduino can conduct some specific action commands, such as forward, backward, stop,

and U-turn to send to our motor drivers according to the decisions taken by Raspberry Pi. 3

types of left movements and 3 types of right movements exist, each having a different

magnitude of turn, and only one of them occurs every time our raspberry decides on relative

lane center position after analyzing the image it is getting, and sends its decision to the Arduino

through its 4 digital pins to adjust and maintain the lane.

5.2.1 Image processing

Our Raspberry Pi does image processing for lane detection, where it converts image signature

(BGR to RGB), creates a region of interest, does perspective transformation (Bird Eye View)

on that region, threshold operations to extract white lane lines, canny edge detections on those

lines, finds exact lane positions from the lines using histogram and various calculations,

calibrates to map lane center to frame center and finally find the relative difference between

them to know how much our car needs to move left or right to match its frame center to the

lane center. This is sent to the Arduino for command.

Page | 57

5.2.2 Object Detection using Haar Cascade Algorithm

Our Raspberry Pi also uses 3 trained object detection models from Cascade Trainer GUI

software that uses the Haar cascade algorithm. These were trained 3 times for 3 objects using

3 sets of positive and negative image samples in Cascade Trainer GUI to obtain 3 models.

These are fed into the Raspberry Pi to detect them in running conditions. For all the objects,

Raspberry Pi makes decisions when it is detected to exist between 5 to 20 centimeters ahead of

the car, and sends commands accordingly to the Arduino for vehicle maneuver with the help

of 4 digital pins.

The whole process of detecting, analyzing, making decisions, and moving is repeated for the

next image obtained from a Raspberry Pi camera, for the continuous operation of our self-

driving car.

5.2.3 Decision Model

To use the pixel dimensions of the bounding boxes and determine the distance from the objects,

the following equations were used by our Raspberry Pi:

For both stop sign and traffic signal detection, distance = −1.07 × width +102.597

For car detection, distance = −0.48 × width +56.6

Additionally, our Raspberry Pi can find out our deviation value from our lane, and the Lane

End intensity value using image processing. It makes decisions based on them, as well as the

3 object detections. Finally, there will be 11 conditions to choose from and the respective

commands, in the form of digital numbers of 4 bits, will be sent to the Arduino for vehicle

maneuver, as shown in Fig. 58.

Fig 58. Decision model of final design

If a stop sign is detected and the distance is more than 5 cm but less than 20 cm, then the

Raspberry Pi sends a command to the Arduino to stop the car for 4 seconds, and then move

ahead for 1 second to overtake the stop sign and take the next decision.

Page | 58

If a traffic signal with a red light is detected and the distance is more than 5 cm but less than

20 cm, then the Raspberry Pi sends commands to the Arduino to keep on stopping the car for

2 seconds continuously, until the red light changes to green light, or turns off completely.

If a car ahead is detected and the distance is more than 5 cm but less than 30 cm, then the

Raspberry Pi sends a command to the Arduino to make the car change its lane. For this, a turn

is taken using motor drivers, followed by a forward operation and then a reverse turn to align

with the new lane. Then, after continuing forward on the new lane for some time while checking

for other detections, the car comes back to its previous lane in a similar way with a different

direction, ultimately overtaking the car that it had detected before.

If the histogram value of the region of interest exceeds 4500, then it indicates a lane end, and

the Arduino makes our car take a U-Turn with the help of the motor driver. It rotates 90 degrees

in one direction, moves forward for 1 second, then rotates 90 degrees in the same direction,

before continuing to run on the second lane.

The rest 7 conditions are kept to maintain our car on the lane. If the deviation value is 0, the

car moves forward. If the deviation value comes out to be between 0 to 10, then a low right

turn is executed by varying the velocities of the left and right wheels. If the deviation value

comes out to be between 10 to 20, then a normal right turn is executed. If the deviation value

comes out to be more than 20, then a high right turn is executed. Similarly low, normal, and

high left turns are executed but for negative deviation values, depending on the magnitude.

5.3 Evaluation of the solution to meet desired needs

5.3.1 Maintaining Lane

As discussed before, for our car to maintain its lane, the deviation value is calculated from the

processed image and the car maneuvers accordingly based on that value.

Fig 59: Vehicle having its frame center match with lane center perfectly, with no deviation

Page | 59

Fig 60: Vehicle moving forward after getting a deviation value of 0

In Fig. 59, our self-driving car is at the center of the lane, with its front frame center matching

perfectly with the lane center. So, there is no deviation and our car continues to move forward

as shown in Fig. 60.

Fig 61: Vehicle having a difference of 12 units between its frame center (blue) and lane center (green)

In Fig. 61, our self-driving car is facing left compared to the lane, with its front frame center

having a difference of 12 units with the lane center. So, there is a positive deviation value and

our car needs to move normally right according to the decision model until it matches its frame

center with the lane center.

Page | 60

Fig 62: Vehicle having a difference of -21 units between its frame center (blue) and lane center (left green)

In Fig. 62, our self-driving car is facing right compared to the lane, with its front frame center

having a difference of -21 units with the lane center. So, there is a deviation value less than -

20 and our car needs to move to a high left according to the decision model until it matches its

frame center with the lane center.

5.3.2 U-Turn Operation at Lane End

As discussed before, if the histogram value of the region of interest of the processed image

exceeds 4500, then our car decides to take a U-Turn

Fig 63: Vehicle detecting Lane End after reaching a value of 4500 and deciding on taking a U-Turn

Page | 61

Fig 64: Vehicle taking a U-Turn

5.3.3 Lane Change operation at car detection

As mentioned before, our car decides to change lanes after detecting a car ahead within 5 to 30

cm. Raspberry Pi calculates the width of the bounding box in pixels and finds out the distance

the detected car is from our vehicle, before deciding on changing lanes.

Fig 65: Vehicle detecting car ahead with a bounding box width of 93 pixels

In Fig. 65, the vehicle detects a car ahead having a bounding box width of 93 pixels. To find

out the distance using this,

Distance = −0.48 × 93 + 56.6 = 11.96 cm

So, this distance falls between 5 to 30 cm and the vehicle decides to change lanes to the left, as

shown in Fig. 66

Fig 66: Vehicle detecting car ahead within 5 to 30 cm and changing lanes to the left

Page | 62

5.3.4 Traffic Signal operation

Our car stops if it detects a traffic signal with a red light ahead between 5 to 20 cm. It stops

continuously for 2 seconds if it keeps on detecting the red traffic signal between 5 to 20 cm. If

green signal is given, then it does not detect it anymore and continues along the lane, as green

signals were considered negative samples while training its object detection model. Raspberry

Pi calculates the width of the red traffic signal bounding box in pixels and finds out the distance

the detected traffic signal is from our vehicle, before making a decision of stopping.

Fig 67: Vehicle detecting traffic signal with red light ahead with bounding box width of 87 pixels

In Fig. 67, the vehicle detects a red traffic signal ahead having a bounding box width of 87

pixels. To find out the distance using this,

Distance = −1.07 × 87 + 102.597 = 9.507 cm

So, this distance falls between 5 to 20 cm and the vehicle decides to stop as shown in Fig. 68,

until the traffic turns green and it does not detect a traffic signal anymore and continues forward

as shown in Fig. 69.

Fig 68: Vehicle detecting red traffic signal ahead within 5 to 20 cm and decides to stop

Page | 63

Fig 69: Vehicle no more detecting red traffic signal ahead within 5 to 20 cm and decides to move on

5.3.5 Stop Sign operation

As mentioned before, our car stops for 4 seconds and then moves on for 1 second, if it detects

a stop sign ahead within 5 to 20 cm. Raspberry Pi calculates the width of the stop sign bounding

box in pixels and finds out the distance the detected stop sign is from our vehicle, before making

a decision of stopping for 4 seconds and then moving on for 1 second.

Fig 70: Vehicle detecting stop sign ahead with bounding box width of 90 pixels

In Fig. 70, the vehicle detects a car ahead having a bounding box width of 90 pixels. To find

out the distance using this,

Distance = −1.07 × 90 + 102.597 = 6.297 cm

So, this distance falls between 5 to 30 cm and the vehicle decides to stop for 4 seconds and

then moves on for 1 second before taking the next decision, as shown in Fig. 71 below.

Page | 64

Fig 71: Vehicle detecting stop sign ahead and decides to stop for 4 seconds before moving on for 1 second

5.3.5 Performance Analysis

We ran several test runs of our prototype car on our track and verified the accuracy of the final

design. The accuracy of image processing, object detection, decision model, and vehicle

maneuver were all found out collectively by determining the successful path our car takes on

Lane lines, Lane End, traffic signal, stop sign, and car detection.

Table 9. Accuracy of our self driving car’s operations

Operation No. of tests Accurate Operations Accuracy

Lane Maintaining operation 23 22 95.6%

U-Turn operation at Lane End 16 12 75%

Lane Changing operation at

car detection

19 16 84.2%

Traffic Signal operation 16 14 87.5%

Stop Sign

operation

18 17 94.4%

From Table 9 above, it can be seen that accuracy for all of the operations are quite acceptable.

Our car maintains lane and stops at stop signs with around 95% accuracy, whereas lane

changing operation and traffic signal operation had an accuracy of around 85%.

U-Turn operation has relatively lower accuracy (75%) than the others and this is due to the

varying speed of our motor. As we run our prototype again and again, the battery that drives

the motors depletes continuously. This causes our motors to run slower and this hampers the

U-Turn operation. When our car has to take a U-Turn, specific Arduino commands are run with

fixed specific speeds to the motor drivers for our car to turn, go forward, turn again, and

continue. During this time, our car does not detect any other things so, if speed varies at this

time, it may move out of the lane sometimes. We can improve this by using a stable power

supply for our motor drivers, instead of batteries that deplete and change speed over time.

Page | 65

5.4 Conclusion

We can conclude that our final design meets all of our objectives and requirements with good

accuracy. Our car can accurately maintain its lane, take a U-turn at Lane End, and change lanes

at car detection. Moreover, it can stop at red traffic signals and start moving at green traffic

signals. It also achieved the objective of stopping at stop signs. All of these operations had an

overall accuracy of 88% for 92 test runs that we executed on our hardware design. So, we can

safely say that all of our objectives and project requirements were met successfully.

Page | 66

Chapter 6

Impact Analysis and Project Sustainability

6.1 Introduction

Project impact analysis explains how the project will impact the stakeholders, the surroundings

like the environment, economy, and even people in the future. Here the aim is to understand

the likely impacts of the project both favorably and unfavorably in the future. This part is

crucial in understanding the events and consequences that our project holds for the future. Here,

the project impact analysis can be described as - safety, societal, environmental, economic and

legal.

6.2 Assess the impact of solution

6.2.1 Safety Impact

Implementing this design will help with safe driving and significantly avoiding road accidents

and fatalities. Passengers and other passersby on the roads will feel safe knowing about this

project implementation.

Many news reports have been heard and observed where drivers get into accidents during

changing lanes, especially in highways with cars at high speeds. Accidental issues also appear

when drivers feel tired and fall asleep while driving, and even sometimes when under influence

of alcohol or other drugs. With our self-driving technology and automatic lane changing

system, cars will be able to react very quickly, even quicker than human drivers in accordance

with the surrounding environment[41]. This will positively affect the safety of the stakeholders

like all passengers and other bystanders, and in turn increase the quality of life.

6.2.2 Societal Impact

With the implementation of our design, the self-driving system greatly affects people elderly

people, people unable to drive and even disabled people like amputees, people with vision and

hearing impairments[42].

The design we have implemented in cars follows smooth lane maintenance, lane changing,

traffic light detection, detection of other traffic on the road, stop sign detection and can even

take U-turns. This requires very less supervision from human drivers. Human drivers in long

drive need periodic stops to rest and regain energy to drive, whereas the automated system

designed requires little supervision and input from drivers which in turn puts less stress on the

human drivers and they can drive for a longer period of time. Amputees like people with one

hand or one leg will be able to drive using this system smoothly without any trouble, even

people with vision and hearing impairments can use this system to drive cars during

emergencies since very little supervision is required manually from the drivers. In addition to

this, another societal impact will be consumer skepticism. Consumers will not blindly trust this

system as this is new in the market and has not been used for a very long time yet.

Page | 67

6.2.3 Environmental Impact

Automobiles, especially cars, have high carbon emissions and contribute to global warming.

With an increasing number of vehicles on the road every year, it is vital to analyze this situation

and bring the carbon emissions under control somehow.

The system designed here will not have any carbon emissions or environmental inpacts itself.

But the system has an automated braking and accelerating process which will smoothly take

decisions when to brake and when to accelerate following the surroundings. With maintaining

average speed and gradual acceleration and deceleration, the cars with this system can maintain

fuel efficiency, thereby burning less fuel and contributing less towards global warming.

6.2.4 Economical Impact

New cars with this self-driving technology will outgrow the old technologies, making them

obsolete. This in turn will force the old car manufacturers to close down their factories, dump

their machinery and sack their employees. This might greatly impact the economy of many

countries as factory workers, Uber drivers and taxi drivers will be out of jobs. On the bright

side, with these new technologies, car manufacturers will have to open new factories and

replace their old technologies, which will create job displacements. Existing employees will

learn new skills and techniques, and many new engineers and technicians specializing in self-

driving systems will be hired, which will increase new employment opportunities and create a

whole new demand market for workers.

6.2.5 Legal Impact

Like most self-driving cars, our system will collect vast amounts of personal data including

real-time location information and many other data from the additional sensors. These data

generated are exclusive to each car and their drivers and all the data are sent to cloud servers

for better maintenance of safety and road rules. These data are crucial for the driver and

passengers and must be protected at all costs [43].

Our system follows every required code and applicable standards linked to the system. The

idea of self-driving cars is very delicate when it comes to implementation, as people have trust

issues with the performance of self-driving cars from the beginning. So maintaining all the

legal rules and regulations while manufacturing the system is a legal necessity which must be

addressed.

6.3 Evaluate the sustainability

The main components used for the project are Raspberry Pi, arduino, motor driver and micro

SD card which are very durable and cost efficient. These can be made further durable by

applying protective layers around them, inside the car systems for long-term usage. These

components have very low power consumption compared to other car systems which make

them economically sustainable and productive for a long time. The system does not have any

environmental impact itself, so it can be said that it is very safe. However regular tests must be

done to check the accuracy of the system, and small maintenance will be required from time to

time.

Page | 68

6.4 Conclusion

To conclude, this system provides mostly a self-driving system which will require little to no

human intervention. Human drivers and passengers can rest at ease knowing their car will

safely maintain and change lanes and operate properly. In addition to this, the system offers

more safety features than existing car technologies as the system has lower reaction time to

operate than human drivers. Moreover the manufacture of the system is very cost efficient and

long lasting which makes the system very durable and sustainable. Last but not the least, the

legal requirements of the system falls in with all the applicable codes and standards of road

rules and regulations.

Page | 69

Chapter 7

Engineering Project Management

7.1 Introduction

A good management plan is necessary to have an orderly process for the successful outcomes

and to ensure that all of the project's objectives are completed within the allotted time limit. A

study in [26] found that there are five primary groups into which the project's entire flow can

be categorized. They are initiation, planning, execution, monitoring and control, and closure.

Fig: 72 Five Key Factors of Engineering Project Management

7.2 Define, plan and manage engineering project

7.2.1 Initiation

Any project should start with a problem that has to be solved. Brainstorming is an essential

task to identify the problems that require solution. After choosing an issue, it is crucial to

research previous and existing solutions to the problem and conduct a literature review. Finding

the research gap is then an essential step in introducing novel solutions or improving ones that

already exist.

7.2.2 Planning

Before submitting the project proposal, we had a consultation with an expert in the area to

better grasp the functional and non-functional needs of the project. When designing the system,

the expert's feedback was carefully taken into account. Different design strategies were

suggested, all based on the system's requirements and goals. Using modern engineering and IT

tools, each system was simulated, and its performance was assessed. At last, the optimal design

Page | 70

was chosen according to cost, precision, adaptability, knowledge representation, real-time data

requirements, complexity, safety and liability, and interpretability and explainability.

7.2.3 Execution

Purchasing the Hardware components was the initial task. Managing all the components

together was the biggest difficulty. Some components were totally new to work as we have

never worked with them. We had to go through the hardware specifications and learn about

their nature and work process from the data sheet. Finally, we tested the hardware and started

with our work. There were lots of differences between the theoretical literature and the practical

implementation. To make the process more well-organized and efficient we had to troubleshoot

thoroughly in every process. Data collection was another tedious work, where a tremendous

amount of time and effort was given to collect personalized dataset. Once the dataset was ready,

we had to annotate the images specifically in one-by-one nature. Upon completion of data

collection we had to recheck the data and then started to work to assure ourselves that the

personalized data will let us achieve our functional and non-functional requirements. Finally,

once our system was ready we had to troubleshoot multiple times to make sure that our project

fulfills four objectives finely.

7.2.4 Monitoring and Control

In order to determine whether the objectives and requirements were satisfied, the system

validation was carried out based on the system. Following system validation, the data were

examined to assess the system's accuracy and evaluate whether the design still needs to be

optimized. Additionally, a backup strategy for risk management was created.

7.2.5 Closure

Through analysis of the data prior to and following the optimization, the system underwent a

comprehensive examination. To evaluate the accuracy of the answer even more, the data were

compared and the recognition success rates were calculated. Furthermore, the outcomes and

development have been consistently tracked and documented.

7.3 Gantt Chart/Project Timeline

The three phases of project management—project planning, project development, and project

completion—were systematically divided into phases that were carried out over the course of

the year. The project's progress was monitored by assigning deadlines to defined tasks and

allocating responsibilities to guarantee that the work was finished on time and with

accountability. The Gantt Charts are depicted in the following Figures.

Page | 71

Fig: 73 Gantt Chart/Project Timeline for EEE499P

Fig: 74 Gantt Chart/Project Timeline for EEE499D

Fig: 75 Gantt Chart/Project Timeline for EEE499C

7.4 Conclusion

By properly prioritizing work, adhering to a project management scheme can assist and ensure

that the project is completed on schedule. Arranging the chores according to their right

sequence also helps. It also shows the comparison between the estimated and real amount of

time needed. Additionally, assigning responsibilities to members guarantees their participation

and improves teamwork.

Page | 72

Chapter 8

Economical Analysis

8.1 Introduction

A project's cost and benefit are broken down in an economic analysis. The following are

economic analysis's key components:

● Determining and estimating costs directly related to investment

● Determining and estimating benefits obtained from investment

● Comparing cost and benefits to justify investment

8.2 Economic analysis

8.2.1 Budget for working prototype

Table 10. Budget for the Final Design

Sub System Component Model
Unit Price

(BDT)
Unit

Total Cost

(BDT)

Object Detection
Camera

Raspberry Pi Camera

Module V2
4,690 1 4,690

Flex Cable

Adafruit Flex Cable

for Raspberry Pi

Camera

1227 1 1227

Processing Unit

Raspberry Pi

Raspberry Pi 3B+

Motherboard

11255 1 11255

Case
Raspberry Pi 4 Acrylic

Case
299 1 299

Storage
SanDisk Ultra 16GB

Micro SDHC UHS-I
1200 2 2400

Vehicle

Maneuver

Body and Motor

4 Wheel 2 Layer

Robot Smart Car

Chassis Kits with

Speed Encoder

833 1 833

Arduino Arduino Uno R3 1100 1 1100

Motor Driver

L298N H-Bridge Dual

Motor Driver

195 1
195

Page | 73

Power Supply
Power Bank

Meko Power Bank

10000mAh
1,699 1 1,699

Battery
Li-ion Rechargeable

Battery
70 16 1120

Battery Charger 700 1 700

Miscellaneous USB type B cable,

Ethernet cable, LEDs,

Toy car, Plastic wood,

Jumper wire,

Resistors

 2805

Total Cost 28323

Table 8 shows the total cost for the working prototype to be BDT 28323. This however

excludes the components that have been used in trial and error scenarios

8.2.2 Estimated Cost

Table 11. Estimated cost for the working prototype, first unit and commercial product

Cost of working prototype with

spare parts (BDT)

Estimated Budget for first unit

(BDT)

Estimated Budget for

commercialized product (BDT)

30000 20000 18000

● Bought extra components

for contingency

● Extra cost of having ship

components

● Additional

implementation of

demo/simulated

environment and vehicle

maneuver sub-system

● Main system consisting

of object detection and

processing unit

subsystems only

● Specific number of

components will be

bought

● Components bought from

local vendors

● Will enjoy economies of

scale for bulk component

purchase

● Components will be

factory assembled

● Development of

proprietary components

to further reduce cost and

size

Table 9 shows the estimated cost of working prototype, first unit and commercialized units.

The estimated cost of the first unit is lower as compared to the prototype as there are no trial

and error situations. Additionally, the prototype concurred with the cost for the implementation

of supportive sub-systems to validate the functionality of the main system. Commercialized

units are estimated to cost much less than the first unit due to the development of proprietary

components as well as economies of scale due to bulk buying.

Page | 74

8.3 Cost-benefit analysis

Table 12. Profit Estimation with respect to Number of Companies in Contract

Estimated Profit/unit

(BDT)

Estimated number of car

companies in contract

Estimated number of cars

to be fitted with

system/contracted

companies

Total Estimated Profit

(BDT)

7000 2 10 140000

7000 3 15 315000

7000 5 15 525000

In Table 10, we get the projection of the estimated profit. Taking into account that the

commercialized product will cost BDT 18000, it is estimated to be sold at BDT 25000, which

will result in a profit of BDT 525000 if 5 car companies are contracted, where each company

assembles 15 cars with our system.

8.4 Evaluate economic and financial aspects

Table 13. Profit Estimation from Number of Units Sold per Year

Cost of sales

(BDT)
Sale (BDT) Profit (BDT) Loss (BDT)

Cost of

production/unit

(BDT)

18000 XXXXXX XXXXXX XXXXX XXXXX

Selling

price/unit

(BDT)

25000 XXXXXX XXXXXX XXXXX XXXXX

Production/year

/unit
20 360000

No. of units

sold/yer
20 500000 140000 0

Production/year

/unit
50 900000

No. of units

sold/yer
40 1000000 100000 0

Production/year

/unit
90 1620000

No. of units

sold/yer
75 1875000 255000 0

Page | 75

In Table 11, we have given an arbitrary assumption, estimating the production and selling of

units per year and the resulting profit or loss per year. From the table we can observe that

selling each unit with a markup of BDT 7000 for a price of BDT 25000 leads to a profitable

business. We can observe from the table that even while producing 90 units at a cost of BDT

1620000 and selling only 75 units, we still manage to be profitable with an annual profit of

BDT 255000.

8.5 Conclusion

Conducting a thorough economic analysis is necessary in order to forecast the total project

expenses. Establishing a budget for the prototype in development is also crucial. Together with

the budget, the cost-benefit analysis helps to determine the system's financial prospects and can

motivate stakeholders to take an active role in the project.

Page | 76

Chapter 9

Ethics and Professional Responsibilities

9.1 Introduction

Ethical considerations and professional responsibilities must always be considered at all costs

while dealing with any engineering projects. For all projects resources must be used efficiently

and the project developed must be for the best interest of the people. This helps in

acknowledging all the possible risks of the project and minimizing them. Throughout the

development of the project, all the ethical considerations and professional responsibilities

required and demanded by the problem statement, are recognized and taken into account.

9.2 Identify ethical issues and professional responsibility

9.2.1 Informed Consent

Every consumer of our project shall be informed beforehand about all the technicalities, about

what our system does and how it operates, what kinds of real-time data it collects and how it

analyzes and uses those data to operate. There must be clear understanding and transparency

for both the drivers and the passengers since any discrepancies might lead to severe

consequences like accidents and deaths.

9.2.2 Privacy and Confidentiality Protection

Since all data collected and used by the sensors and Raspberry Pi are temporarily stored in

cloud servers, data breach and hacking is a major concern, even though the storage is

temporary. Moreover major problems might occur when data is hacked during driving, which

can lead to severe accidents.

9.2.3 Acknowledgement of Proper Sources

To come up with the solution of our problem statement, many applicable past papers and works

have been thoroughly studied and reviewed. Proper credits, citations and references have been

given to wherever necessary.

9.2.4 Approval from Respective Bodies

Since our project is a system development of cars which will operate on roads, many approvals

had to be taken from Bangladesh Road Transport Authority(BRTA). This respective body

controls the registration of all the production and manufacture of systems related to

transportations. They have predetermined and set guidelines which strictly follow all the road

rules and safety regulations that needs to be maintained for any system manufactured[43].

Page | 77

9.3 Apply ethical issues and professional responsibility

9.3.1 Informed Consent

The users of the Lane changing car system will be accordingly given the knowledge about the

self driving car system briefly when used in industry level. As our project focused on prototype

level, there were no passengers involved and as a result we did not need any informed consent.

9.3.2 Privacy and Confidentiality Protection

Data hacking and security breaching must be stopped at all costs. Actions must be taken to

minimize the chances of security breaches and hacking to protect private data of drivers and

the car. The real-time data that is being collected should be encrypted to diminish the chances

of hacking at any given time.

9.3.3 Acknowledgement of Proper Sources

Maintaining academic integrity was always a vital part of our project. Therefore we addressed

all the resources we used throughout the project by means of intext citation and referencing.

9.3.4 Approval from Respective Bodies

Taking approval from BRTA is a must, however since we are BRACU students and designing

this project system while being in BRACU we must take permission from Institutional Review

Board (IRB).

9.4 Conclusion

In conclusion, to get approval from the authorities to implement our project, and to gain the

trust of all our stakeholders, especially the consumer, we must design and implement our

system to properly solve the engineering problem. To do this, we must follow the

aforementioned aspects like Consent, Privacy and Confidentiality Protection,

Acknowledgement of Proper Sources, and Approval from respective bodies to maintain

absolute transparency and the standards of the project work done.

Page | 78

Chapter 10

Conclusion and Future Work

10.1 Project summary

In a nutshell, the main motivation behind choosing the topic, ‘Vision Driven Lane Changing

System of Self Driving Car’ is to solve the problem of impaired and distracted driving,

improving the safety on roads which not only includes the passengers and driver in the car but

also includes pedestrians and other objects nearby. Our motivation was strengthened to solve

the problem of road rule regulation breakage. Building a successful lane-changing autonomous

vehicle will ease the maintenance of road rules carefully as it will be trained with past datasets

which will include Training, Validation, as well as Testing Datasets.

On the contrary, our system uses image processing which specifically focuses on the creation

of region of interest, perspective transformation, as well as threshold operations, canny edge

detections, histogram and various other calculations for lane detection, Lane End detection and

lane maintenance. Object detection models are trained and used to detect vehicles, stop signs

and traffic signals using the Haar cascade Deep learning method, and passed through our

decision model to make decisions and maneuver our vehicle accordingly. Furthermore, the

output of our design analysis is deployed on a prototype level build with the help of Raspberry

Pi 3B+ having integrated connection with Arduino and motor driver system.

Moreover, several parameters were being tested prior to hardware preparation on CARLA

Simulator that gave us real world experience [27]. We used both a rule-based approach and a

machine learning approach to design our self-driving vehicle and its lane-changing mechanism.

We found out that our machine-learning approach gave better results and had more advantages.

So, we chose that as our optimal design and implemented it in our hardware design.

10.2 Future work

This project can be later scaled up by using transfer learning to incorporate the entire model on

a more delicate microprocessor so that it can be used in real industry-level car systems. The

project still has a future scope if it can be developed to manufacture a device in one embedded

system that has all the camera sensors, as well as more sensors as its auxiliary parameters so

that real-time data collection and decision-making can be done easily and faster with more

accuracy. Thus, a plug-and-play system as the end result would help to deliver the decisions

from the embedded system to the car maneuvering system for ease of transportation.

Page | 79

Chapter 11

Identification of Complex Engineering Problems and Activities.

11.1 Attributes of Complex Engineering Problems (EP)

Table 14. Attributes of Complex Engineering Problems (EP)

 Attributes
Put tick (√) as

appropriate
Justification

A1 Range of resource √

Required knowledge from various people,

equipment support from both EEE and

CSE department, and need financial

support to make.

A2 Level of interaction

A3 Innovation √
Autonomous car with automatic lane

changing.

A4
Consequences for society and the

environment
√

Will positively impact mainly people who

are unable to drive

A5 Familiarity √
Unique design solution revolving around

lane changing.

11.2 Attributes of Complex Engineering Activities (EA)

Table 15. Attributes of Complex Engineering Activities (EA)

 Attributes
Put tick (√) as

appropriate
Justification

P1 Depth of knowledge required √

Use of machine-learning, image

processing, sensor interface, simulation

tools and computer language.

P2 Range of conflicting requirements

P3 Depth of analysis required √
Analysis of two design solutions using

various simulation tools.

P4 Familiarity of issues √
Unique design solution revolving around

lane changing.

P5 Extent of applicable codes √

Solutions require the modification and

creation of new robust codes and

standards due to uniqueness of solution.

P6
Extent of stakeholder involvement

and needs

P7 Interdependence √
Contains various sub-systems that work

together to give the desired outcome.

Page | 80

References

[1] US Department of Transportation, National Highway Traffic Safety Administration,

“Critical reasons for crashes investigated in the national motor vehicle crash causation

survey”, Traffic Safety Facts, No. DOT HS 812 115, Feb 2015

[2] J-P Skeete, “The obscure link between motorsport and energy efficient, low-carbon

innovation: Evidence from the UK and European Union”, .Journal of Cleaner Production,

Volume 214, pp. 674-684, 2019

[3] A Mihalea ; R Samoilescu ; A Cristian Nica ; M Trăscău ; A Sorici ; A Magda Florea,

“End-to-end models for self-driving cars on UPB campus roads”, IEEE 15th International

Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca,

Romania, Romania, 5-7 Sept. 2019

[4] J.P. Giacalone, L. Bourgeois, and A. Ancora, “Challenges in aggregation of heterogeneous

sensors for Autonomous Driving Systems”, IEEE Sensors Applications Symposium (SAS),

Sophia Antipolis, France, 1-13 March 2019

[5] Tian et al., “Autonomous Driving System Design for Formula Student Driverless Racecar”,

IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26-30 June 2018

[6] L.Andresen et al., “Fast and Accurate Mapping for Autonomous Racing“,

arXiv:2003.05266 [cs.RO], March 2020 A Mihalea ; R Samoilescu ; A Cristian

[7] J. Kabzan et al “AMZ Driverless: The Full Autonomous Racing System”, arXiv.org,

arXiv:1905.05150, May 2019

[8] “A Real-Time Dynamic Trajectory Planning for Autonomous Driving Vehicles,” IEEE

Conference Publication | IEEE Xplore, Sep. 01, 2019.

https://ieeexplore.ieee.org/document/8951735

[9] Claussmann, L., Revilloud, M., Gruyer, D. and Glaser, S., “A review of motion planning

for highway autonomous driving”, IEEE Transactions on Intelligent Transportation

Systems, 21(5), pp.1826-1848, May 2019.

[10] C. Vallon, Ziya Ercan, A. Carvalho, and F. Borrelli, “A machine learning approach

forpersonalized autonomous lane change initiation and control,” IEEE Intelligent Vehicles

Symposium, Jun. 2017, doi: https://doi.org/10.1109/ivs.2017.7995936.

[11] What is ADAS (Advanced Driver Assistance Systems)? – Overview of ADAS Applications

| Synopsys, www.synopsys.com. https://www.synopsys.com/automotive/what-is-

adas.html#:~:text=Definition

[12] H. A. Research, “What Is Adaptive Cruise Control?,” Car and Driver, Jun. 10, 2020.

https://www.caranddriver.com/research/a32813983/adaptive-cruise-control/

[13] Connected Vehicles - IEEE Connected Vehicles, site.ieee.org.

https://site.ieee.org/connected-vehicles/ieee-connected-vechicles/connected-vehicles/

[14] “SAE Levels of Driving AutomationTM Refined for Clarity and International Audience,”

SAE Levels of Driving AutomationTM Refined for Clarity and International Audience.

https://www.sae.org/site/blog/sae-j3016-update

https://ieeexplore.ieee.org/document/8951735
https://doi.org/10.1109/ivs.2017.7995936
https://www.synopsys.com/automotive/what-is-adas.html#:~:text=Definition
https://www.synopsys.com/automotive/what-is-adas.html#:~:text=Definition
https://site.ieee.org/connected-vehicles/ieee-connected-vechicles/connected-vehicles/
https://www.sae.org/site/blog/sae-j3016-update

Page | 81

[15] “Raspberry Pi Documentation - Camera.”

https://www.raspberrypi.com/documentation/accessories/camera.html

[16] R. P. Ltd, “Buy a Raspberry Pi 3 Model B+ – Raspberry Pi,” Raspberry Pi.

https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/

[17] “SanDisk Ultra 16GB Micro SDHC UHS-I Card With Adapter (SDSQUAR-016G-

GN6MA),” Star Tech Ltd. https://www.startech.com.bd/sandisk-ultra-16gb-micro-sdhc-

uhs-i-card

[18] “4 Wheel 2 Layer Robot Smart Car Chassis Kits with Speed Encoder for Arduino DIY

(Yellow) - Robotonbd,” Robotonbd, Aug. 18, 2022. https://www.robotonbd.com/4-wheel-

2-layer-robot-smart-car-chassis-kits-with-speed-encoder-for-arduino-diy-yellow/

[19] “4 Wheel 2 Layer Robot Smart Car Chassis Kits with Speed Encoder for Arduino DIY

(Yellow) - Robotonbd,” Robotonbd, Aug. 18, 2022. https://www.robotonbd.com/4-

wheel-2-layer-robot-smart-car-chassis-kits-with-speed-encoder-for-arduino-diy-yellow/

[20] “L298N Motor Driver Module,” Components101.

https://components101.com/modules/l293n-motor-driver-module

[21] “Meko Power Bank 10000mAh.” https://gadgetandgear.com/product/meko-power-bank-

10000mah

[22] “3.7V 18650 Rechargeable Battery Solderable,” RoboticsBD.

https://store.roboticsbd.com/battery-charger/1687-37v-18650-rechargeable-battery-

solderable-robotics-bangladesh.html

[23] “Universal Dual Battery Charger for Li-ion Battery,” RoboticsBD.

https://store.roboticsbd.com/battery-charger/1371-universal-dual-battery-charger-for-li-

ion-battery-robotics-bangladesh.html

[24] “J3016_202104: Taxonomy and Definitions for Terms Related to Driving Automation

Systems for On-Road Motor Vehicles - SAE International.”

https://www.sae.org/standards/content/j3016_202104/

[25] “IEEE Standards Association,” IEEE Standards Association.

https://standards.ieee.org/ieee/2846/10831/

[26] “ISO/PAS 21448:2019,” ISO. https://www.iso.org/standard/70939.html

[27] “IEEE Standards Association,” IEEE Standards Association.

https://standards.ieee.org/ieee/1451.99/10355/

[28] C. Team, “CARLA,” CARLA Simulator. https://carla.org/

[29] “IEEE Standards Association,” IEEE Standards Association.

https://standards.ieee.org/ieee/2700/6770/

[30] “ISO/IEC TR 24029-1:2021,” ISO. https://www.iso.org/standard/77609.html

[31] “ISO 26262-1:2011,” ISO. https://www.iso.org/standard/43464.html

[32] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A Flexible and Fast

Software Supported Hardware Logging Approach for NVM,” IEEE Xplore, Oct. 01,

2017. https://ieeexplore.ieee.org/document/8686655/figures (accessed Sep. 03, 2023).

[33] “Software,” Arduino. https://www.arduino.cc/en/software

[34] “Cascade Trainer GUI - Amin,” Amin, May 30, 2020. https://amin-ahmadi.com/cascade-

trainer-gui/

[35] “Code::Blocks,” Code::Blocks. https://www.codeblocks.org/

[36] “Standard C++.” https://isocpp.org/

https://www.raspberrypi.com/documentation/accessories/camera.html
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.startech.com.bd/sandisk-ultra-16gb-micro-sdhc-uhs-i-card
https://www.startech.com.bd/sandisk-ultra-16gb-micro-sdhc-uhs-i-card
https://www.robotonbd.com/4-wheel-2-layer-robot-smart-car-chassis-kits-with-speed-encoder-for-arduino-diy-yellow/
https://www.robotonbd.com/4-wheel-2-layer-robot-smart-car-chassis-kits-with-speed-encoder-for-arduino-diy-yellow/
https://www.robotonbd.com/4-wheel-2-layer-robot-smart-car-chassis-kits-with-speed-encoder-for-arduino-diy-yellow/
https://www.robotonbd.com/4-wheel-2-layer-robot-smart-car-chassis-kits-with-speed-encoder-for-arduino-diy-yellow/
https://components101.com/modules/l293n-motor-driver-module
https://gadgetandgear.com/product/meko-power-bank-10000mah
https://gadgetandgear.com/product/meko-power-bank-10000mah
https://store.roboticsbd.com/battery-charger/1687-37v-18650-rechargeable-battery-solderable-robotics-bangladesh.html
https://store.roboticsbd.com/battery-charger/1687-37v-18650-rechargeable-battery-solderable-robotics-bangladesh.html
https://store.roboticsbd.com/battery-charger/1371-universal-dual-battery-charger-for-li-ion-battery-robotics-bangladesh.html
https://store.roboticsbd.com/battery-charger/1371-universal-dual-battery-charger-for-li-ion-battery-robotics-bangladesh.html
https://www.sae.org/standards/content/j3016_202104/
https://standards.ieee.org/ieee/2846/10831/
https://www.iso.org/standard/70939.html
https://standards.ieee.org/ieee/1451.99/10355/
https://carla.org/
https://standards.ieee.org/ieee/2700/6770/
https://www.iso.org/standard/77609.html
https://www.iso.org/standard/43464.html
https://www.arduino.cc/en/software
https://www.codeblocks.org/
https://isocpp.org/

Page | 82

[37] “RealVNC® - Remote access software for desktop and mobile | RealVNC,” RealVNC®,

Nov. 30, 2023. https://www.realvnc.com/en/

[38] “PuTTY: a free SSH and Telnet client.”

https://www.chiark.greenend.org.uk/~sgtatham/putty/

[39] G. D. Team, “Home | Geany.” https://www.geany.org/

[40] “OpenCV - Open Computer Vision Library,” OpenCV, Dec. 28, 2023. https://opencv.org/

[41] M. Abdel-Basset, A. Gamal, N. Moustafa, A. Abdel-Monem, and N. El-Saber, “A

Security-by-Design Decision-Making Model for Risk Management in Autonomous Vehicles,”

IEEE Access, vol. 9, pp. 107657–107679, 2021, doi: 10.1109/access.2021.3098675. [Online].

Available: http://dx.doi.org/10.1109/access.2021.3098675

[42] “Autonomous vehicles: theoretical and practical challenges,” Autonomous vehicles:

theoretical and practical challenges - ScienceDirect, Oct. 30, 2018. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2352146518302606

[43] M. Abdel-Basset, A. Gamal, N. Moustafa, A. Abdel-Monem, and N. El-Saber, “A

Security-by-Design Decision-Making Model for Risk Management in Autonomous Vehicles,”

IEEE Access, vol. 9, pp. 107657–107679, 2021, doi: 10.1109/access.2021.3098675. [Online].

Available: http://dx.doi.org/10.1109/access.2021.3098675

[44] R. B. Issa, Md. Saferi Rahman, M. Das, M. Barua, and Md. G. Rabiul Alam,

“Reinforcement Learning based Autonomous Vehicle for Exploration and Exploitation of

Undiscovered Track,” 2020 International Conference on Information Networking (ICOIN),

Jan. 2020, doi: 10.1109/icoin48656.2020.9016539. [Online]. Available:

http://dx.doi.org/10.1109/icoin48656.2020.9016539

https://www.realvnc.com/en/
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.geany.org/
https://opencv.org/
http://dx.doi.org/10.1109/access.2021.3098675
https://www.sciencedirect.com/science/article/pii/S2352146518302606
http://dx.doi.org/10.1109/access.2021.3098675
http://dx.doi.org/10.1109/icoin48656.2020.9016539

Page | 83

Appendix

Software Codes for Optimum Design (Design Approach-2: Machine Learning):

Python Code in CARLA for Design approach-2 Machine learning:

import glob

import os

import sys

try:

 sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (

 sys.version_info.major,

 sys.version_info.minor,

 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])

except IndexError:

 pass

import carla

import random

import time

import numpy as np

import cv2

IM_WIDTH = 640

IM_HEIGHT = 480

from roboflow import Roboflow

rf = Roboflow(api_key="WzH6em9wsEIJVOEl9UtD")

project = rf.workspace().project("design-and-implementation-of-self-driving-cars")

model = project.version(5).model

Page | 84

image_counter = 0

output_directory1 = 'C:\\Users\\20121006\\Desktop\\Camera images\\'

def process_img1(image):

 global image_counter

 i = np.array(image.raw_data)

 i2 = i.reshape((IM_HEIGHT, IM_WIDTH, 4))

 i3 = i2[:, :, :3]

 #Incrementing counter and generate filename

 image_counter += 1

 filename = f'image_{image_counter}.PNG'

 # # Saving image

 cv2.imwrite(output_directory1 + filename, i3)

 model.predict(f"C:\\Users\\20121006\\Desktop\\Camera images\\{filename}", confidence=40,

overlap=30).save(f"C:\\Users\\20121006\\Documents\\Trained Images\\{filename}")

 image = cv2.imread(f"C:\\Users\\20121006\\Documents\\Trained Images\\{filename}")

 # cv2.namedWindow('image_window', cv2.WINDOW_NORMAL)

 cv2.imshow('image_window', image)

 cv2.waitKey(1)

 # time.sleep(2)

 return i3/255.0

Page | 85

actor_list = []

try:

 client = carla.Client('localhost', 2000)

 world = client.get_world()

 blueprint_library = world.get_blueprint_library()

 bp1 = blueprint_library.filter('model3')[0]

 bp2 = blueprint_library.filter('mini')[0]

 print(bp1)

 print(bp2)

 spawn_point = world.get_map().get_spawn_points()

 vehicle1 = world.spawn_actor(bp1, spawn_point[230])

 vehicle1.set_autopilot(True)

 actor_list.append(vehicle1)

 # getting the blueprint for this sensor

 blueprint1 = blueprint_library.find('sensor.camera.rgb')

 # changing the dimensions of the image

 blueprint1.set_attribute('image_size_x', f'{IM_WIDTH}')

 blueprint1.set_attribute('image_size_y', f'{IM_HEIGHT}')

 blueprint1.set_attribute('fov', '110')

 # Adjusting sensor relative to vehicle

 spawn1 = carla.Transform(carla.Location(x=2.5, z=0.7))

Page | 86

 # spawning the sensor and attach it to the vehicle.

 sensor1 = world.spawn_actor(blueprint1, spawn1, attach_to=vehicle1)

 # adding sensor to list of actors

 actor_list.append(sensor1)

 sensor1.listen(lambda data: process_img1(data))

 time.sleep(1000)

finally:

 print('destroying actors')

 for actor in actor_list:

 actor.destroy()

 print('done.')

Proteus Simulation Code for Wheel Drive with Ultrasonic Sensor:

int M1I1=11;

int M1I2=10;

int M2I1=9;

int M2I2=8;

int M3I1=1;

int M3I2=2;

int M4I1=3;

int M4I2=4;

Page | 87

int LInd=12;

int RInd=13;

int FInd=6;

int trig_f = A0;

int echo_f = A1;

long duration_f;

float distance_cm_f;

int trig_r = A2;

int echo_r = A3;

long duration_r;

float distance_cm_r;

int trig_l = A4;

int echo_l = A5;

long duration_l;

float distance_cm_l;

void setup() {

 // put your setup code here, to run once:

pinMode(M1I1,OUTPUT);

pinMode(M1I2,OUTPUT);

pinMode(M2I1,OUTPUT);

pinMode(M2I2,OUTPUT);

pinMode(M3I1,OUTPUT);

pinMode(M3I2,OUTPUT);

pinMode(M4I1,OUTPUT);

Page | 88

pinMode(M4I2,OUTPUT);

pinMode(LInd,OUTPUT);

pinMode(RInd,OUTPUT);

pinMode(FInd,OUTPUT);

pinMode(trig_f,OUTPUT);

pinMode(echo_f,INPUT);

pinMode(trig_r,OUTPUT);

pinMode(echo_r,INPUT);

pinMode(trig_f,OUTPUT);

pinMode(echo_f,INPUT);

}

void loop() {

 // put your main code here, to run repeatedly:

digitalWrite(trig_f,LOW);

delayMicroseconds(2);

digitalWrite(trig_f,HIGH);

delayMicroseconds(10);

digitalWrite(trig_f,LOW);

duration_f = pulseIn(echo_f,HIGH);

distance_cm_f = duration_f*.034/2;

digitalWrite(trig_r,LOW);

delayMicroseconds(2);

digitalWrite(trig_r,HIGH);

Page | 89

delayMicroseconds(10);

digitalWrite(trig_r,LOW);

duration_r = pulseIn(echo_r,HIGH);

distance_cm_r = duration_r*.034/2;

digitalWrite(trig_l,LOW);

delayMicroseconds(2);

digitalWrite(trig_l,HIGH);

delayMicroseconds(10);

digitalWrite(trig_l,LOW);

duration_l = pulseIn(echo_l,HIGH);

distance_cm_l = duration_l*.034/2;

//FORWARD

if(distance_cm_f>1000){

 digitalWrite(M1I1,HIGH);

 digitalWrite(M1I2,LOW);

 digitalWrite(M2I1,LOW);

 digitalWrite(M2I2,HIGH);

 digitalWrite(M3I1,LOW);

 digitalWrite(M3I2,HIGH);

 digitalWrite(M4I1,HIGH);

 digitalWrite(M4I2,LOW);

 digitalWrite(FInd,HIGH);

 digitalWrite(LInd,LOW);

 digitalWrite(RInd,LOW);

 }

Page | 90

//LEFT

else if(distance_cm_l>500){

 digitalWrite(M1I1,LOW);

 digitalWrite(M1I2,LOW);

 digitalWrite(M2I1,LOW);

 digitalWrite(M2I2,HIGH);

 digitalWrite(M3I1,LOW);

 digitalWrite(M3I2,HIGH);

 digitalWrite(M4I1,HIGH);

 digitalWrite(M4I2,LOW);

 digitalWrite(LInd,HIGH);

 digitalWrite(FInd,LOW);

 digitalWrite(RInd,LOW);

 }

//RIGHT

else if(distance_cm_r>500){

 digitalWrite(M1I1,HIGH);

 digitalWrite(M1I2,LOW);

 digitalWrite(M2I1,LOW);

 digitalWrite(M2I2,LOW);

 digitalWrite(M3I1,LOW);

 digitalWrite(M3I2,HIGH);

 digitalWrite(M4I1,HIGH);

 digitalWrite(M4I2,LOW);

 digitalWrite(RInd,HIGH);

Page | 91

 digitalWrite(LInd,LOW);

 digitalWrite(FInd,LOW);

 }

else{

 digitalWrite(M1I1,LOW);

 digitalWrite(M1I2,LOW);

 digitalWrite(M2I1,LOW);

 digitalWrite(M2I2,LOW);

 digitalWrite(M3I1,LOW);

 digitalWrite(M3I2,LOW);

 digitalWrite(M4I1,LOW);

 digitalWrite(M4I2,LOW);

 digitalWrite(RInd,LOW);

 digitalWrite(LInd,LOW);

 digitalWrite(FInd,LOW);

}

}

Final Hardware Codes for Optimum Design (Design Approach-2: Machine Learning)

Final C++ Code in Raspberry Pi:

#include <opencv2/opencv.hpp>

#include <raspicam_cv.h>

#include <iostream>

#include <chrono>

#include <ctime>

#include <wiringPi.h>

Page | 92

using namespace std;

using namespace cv;

using namespace raspicam;

// Image Processing variables

Mat frame, Matrix, framePers, frameGray, frameThresh, frameEdge, frameFinal,

frameFinalDuplicate, frameFinalDuplicate1;

Mat ROILane, ROILaneEnd;

int LeftLanePos, RightLanePos, frameCenter, laneCenter, Result, laneEnd;

RaspiCam_Cv Camera;

stringstream ss;

vector<int> histrogramLane;

vector<int> histrogramLaneEnd;

Point2f Source[] = {Point2f(40,135),Point2f(360,135),Point2f(0,185), Point2f(400,185)};

Point2f Destination[] = {Point2f(100,0),Point2f(280,0),Point2f(100,240), Point2f(280,240)};

//Machine Learning variables

CascadeClassifier Stop_Cascade, Object_Cascade, Traffic_Cascade;

Mat frame_Stop, RoI_Stop, gray_Stop, frame_Object, RoI_Object, gray_Object,

frame_Traffic, RoI_Traffic, gray_Traffic;

vector<Rect> Stop, Object, Traffic;

int dist_Stop, dist_Object, dist_Traffic;

 void Setup (int argc,char **argv, RaspiCam_Cv &Camera)

 {

 Camera.set (CAP_PROP_FRAME_WIDTH, ("-w",argc,argv,400));

Page | 93

 Camera.set (CAP_PROP_FRAME_HEIGHT, ("-h",argc,argv,240));

 Camera.set (CAP_PROP_BRIGHTNESS, ("-br",argc,argv,50));

 Camera.set (CAP_PROP_CONTRAST ,("-co",argc,argv,50));

 Camera.set (CAP_PROP_SATURATION, ("-sa",argc,argv,50));

 Camera.set (CAP_PROP_GAIN, ("-g",argc,argv ,50));

 Camera.set (CAP_PROP_FPS, ("-fps",argc,argv,0));

}

void Capture()

{

 Camera.grab();

 Camera.retrieve(frame);

 cvtColor(frame, frame_Stop, COLOR_BGR2RGB);

 cvtColor(frame, frame_Object, COLOR_BGR2RGB);

 cvtColor(frame, frame_Traffic, COLOR_BGR2RGB);

 cvtColor(frame, frame, COLOR_BGR2RGB);

}

void Perspective()

{

 line(frame,Source[0], Source[1], Scalar(0,0,255), 2);

 line(frame,Source[1], Source[3], Scalar(0,0,255), 2);

 line(frame,Source[3], Source[2], Scalar(0,0,255), 2);

 line(frame,Source[2], Source[0], Scalar(0,0,255), 2);

 Matrix = getPerspectiveTransform(Source, Destination);

 warpPerspective(frame, framePers, Matrix, Size(400,240));

}

Page | 94

void Threshold()

{

 cvtColor(framePers, frameGray, COLOR_RGB2GRAY);

 inRange(frameGray, 230, 255, frameThresh);

 Canny(frameGray,frameEdge, 900, 900, 3, false);

 add(frameThresh, frameEdge, frameFinal);

 cvtColor(frameFinal, frameFinal, COLOR_GRAY2RGB);

 cvtColor(frameFinal, frameFinalDuplicate, COLOR_RGB2BGR); //used in

histrogram function only

 cvtColor(frameFinal, frameFinalDuplicate1, COLOR_RGB2BGR); //used in

histrogram function only

}

void Histrogram()

{

 histrogramLane.resize(400);

 histrogramLane.clear();

 for(int i=0; i<400; i++) //frame.size().width = 400

 {

 ROILane = frameFinalDuplicate(Rect(i,140,1,100));

 divide(255, ROILane, ROILane);

 histrogramLane.push_back((int)(sum(ROILane)[0]));

 }

 histrogramLaneEnd.resize(400);

 histrogramLaneEnd.clear();

 for (int i = 0; i < 400; i++)

 {

 ROILaneEnd = frameFinalDuplicate1(Rect(i, 0, 1, 240));

Page | 95

 divide(255, ROILaneEnd, ROILaneEnd);

 histrogramLaneEnd.push_back((int)(sum(ROILaneEnd)[0]));

 }

 laneEnd = sum(histrogramLaneEnd)[0];

 cout<<"Lane END = "<<laneEnd<<endl;

}

void LaneFinder()

{

 vector<int>:: iterator LeftPtr;

 LeftPtr = max_element(histrogramLane.begin(), histrogramLane.begin() + 150);

 LeftLanePos = distance(histrogramLane.begin(), LeftPtr);

 vector<int>:: iterator RightPtr;

 RightPtr = max_element(histrogramLane.begin() +250, histrogramLane.end());

 RightLanePos = distance(histrogramLane.begin(), RightPtr);

 line(frameFinal, Point2f(LeftLanePos, 0), Point2f(LeftLanePos, 240), Scalar(0, 255,0), 2);

 line(frameFinal, Point2f(RightLanePos, 0), Point2f(RightLanePos, 240), Scalar(0,255,0),

2);

}

void LaneCenter()

{

 laneCenter = (RightLanePos-LeftLanePos)/2 +LeftLanePos;

 frameCenter = 188;

 line(frameFinal, Point2f(laneCenter,0), Point2f(laneCenter,240), Scalar(0,255,0), 3);

Page | 96

 line(frameFinal, Point2f(frameCenter,0), Point2f(frameCenter,240), Scalar(255,0,0), 3);

 Result = laneCenter-frameCenter;

}

void Stop_detection()

{

 if(!Stop_Cascade.load("//home//pi//Desktop//MACHINE

LEARNING//Stop_cascade.xml"))

 {

 printf("Unable to open stop cascade file");

 }

 RoI_Stop = frame_Stop(Rect(200,0,200,140));

 cvtColor(RoI_Stop, gray_Stop, COLOR_RGB2GRAY);

 equalizeHist(gray_Stop, gray_Stop);

 Stop_Cascade.detectMultiScale(gray_Stop, Stop);

 for(int i=0; i<Stop.size(); i++)

 {

 Point P1(Stop[i].x, Stop[i].y);

 Point P2(Stop[i].x + Stop[i].width, Stop[i].y + Stop[i].height);

 rectangle(RoI_Stop, P1, P2, Scalar(0, 0, 255), 2);

 putText(RoI_Stop, "Stop Sign", P1, FONT_HERSHEY_PLAIN, 1, Scalar(0, 0, 255,

255), 2);

 dist_Stop = (-1.07)*(P2.x-P1.x) + 102.597;

 ss.str(" ");

 ss.clear();

Page | 97

 ss<<"D = "<<dist_Stop<<"cm";

 putText(RoI_Stop, ss.str(), Point2f(1,130), 0,1, Scalar(0,0,255), 2);

 }

}

void Traffic_detection()

{

 if(!Traffic_Cascade.load("//home//pi//Desktop//MACHINE

LEARNING//Trafficc_cascade.xml"))

 {

 printf("Unable to open traffic cascade file");

 }

 RoI_Traffic = frame_Traffic(Rect(200,0,200,140));

 cvtColor(RoI_Traffic, gray_Traffic, COLOR_RGB2GRAY);

 equalizeHist(gray_Traffic, gray_Traffic);

 Traffic_Cascade.detectMultiScale(gray_Traffic, Traffic);

 for(int i=0; i<Traffic.size(); i++)

 {

 Point P1(Traffic[i].x, Traffic[i].y);

 Point P2(Traffic[i].x + Traffic[i].width, Traffic[i].y + Traffic[i].height);

 rectangle(RoI_Traffic, P1, P2, Scalar(0, 0, 255), 2);

 putText(RoI_Traffic, "Traffic Light", P1, FONT_HERSHEY_PLAIN, 1, Scalar(0, 0,

255, 255), 2);

 dist_Traffic = (-1.07)*(P2.x-P1.x) + 102.597;

 ss.str(" ");

 ss.clear();

Page | 98

 ss<<"D = "<<P2.x-P1.x<<"cm";

 putText(RoI_Traffic, ss.str(), Point2f(1,130), 0,1, Scalar(0,0,255), 2);

 }

}

void Object_detection()

{

 if(!Object_Cascade.load("//home//pi//Desktop//MACHINE

LEARNING//Object_cascade.xml"))

 {

 printf("Unable to open Object cascade file");

 }

 RoI_Object = frame_Object(Rect(100,50,200,190));

 cvtColor(RoI_Object, gray_Object, COLOR_RGB2GRAY);

 equalizeHist(gray_Object, gray_Object);

 Object_Cascade.detectMultiScale(gray_Object, Object);

 for(int i=0; i<Object.size(); i++)

 {

 Point P1(Object[i].x, Object[i].y);

 Point P2(Object[i].x + Object[i].width, Object[i].y + Object[i].height);

 rectangle(RoI_Object, P1, P2, Scalar(0, 0, 255), 2);

 putText(RoI_Object, "Object", P1, FONT_HERSHEY_PLAIN, 1, Scalar(0, 0, 255,

255), 2);

 dist_Object = (-0.48)*(P2.x-P1.x) + 56.6;

 ss.str(" ");

 ss.clear();

Page | 99

 ss<<"D = "<<dist_Object<<"cm";

 putText(RoI_Object, ss.str(), Point2f(1,130), 0,1, Scalar(0,0,255), 2);

 }

}

int main(int argc,char **argv)

{

 wiringPiSetup();

 pinMode(21, OUTPUT);

 pinMode(22, OUTPUT);

 pinMode(23, OUTPUT);

 pinMode(24, OUTPUT);

 Setup(argc, argv, Camera);

 cout<<"Connecting to camera"<<endl;

 if (!Camera.open())

 {

 cout<<"Failed to Connect"<<endl;

 }

 cout<<"Camera Id = "<<Camera.getId()<<endl;

 while(1)

 {

 auto start = std::chrono::system_clock::now();

 Capture();

 Perspective();

 Threshold();

 Histrogram();

Page | 100

 LaneFinder();

 LaneCenter();

 Stop_detection();

 Object_detection();

 Traffic_detection();

 if (dist_Stop > 5 && dist_Stop < 20)

 {

 digitalWrite(21, 0);

 digitalWrite(22, 0); //decimal = 8

 digitalWrite(23, 0);

 digitalWrite(24, 1);

 cout<<"Stop Sign"<<endl;

 dist_Stop = 0;

 goto Stop_Sign;

 }

 if (dist_Object > 5 && dist_Object < 30)

 {

 digitalWrite(21, 1);

 digitalWrite(22, 0); //decimal = 9

 digitalWrite(23, 0);

 digitalWrite(24, 1);

 cout<<"Object"<<endl;

 dist_Object = 0;

 goto Object;

 }

Page | 101

 if (dist_Traffic > 5 && dist_Traffic < 20)

 {

 digitalWrite(21, 0);

 digitalWrite(22, 1); //decimal = 10

 digitalWrite(23, 0);

 digitalWrite(24, 1);

 cout<<"Traffic Light"<<endl;

 dist_Traffic = 0;

 goto Traffic;

 }

 if (laneEnd > 4500)

 {

 digitalWrite(21, 1);

 digitalWrite(22, 1); //decimal = 7

 digitalWrite(23, 1);

 digitalWrite(24, 0);

 cout<<"Lane End"<<endl;

 }

 if (Result == 0)

 {

 digitalWrite(21, 0);

 digitalWrite(22, 0); //decimal = 0

 digitalWrite(23, 0);

 digitalWrite(24, 0);

 cout<<"Forward"<<endl;

Page | 102

 }

 else if (Result >0 && Result <10)

 {

 digitalWrite(21, 1);

 digitalWrite(22, 0); //decimal = 1

 digitalWrite(23, 0);

 digitalWrite(24, 0);

 cout<<"Right1"<<endl;

 }

 else if (Result >=10 && Result <20)

 {

 digitalWrite(21, 0);

 digitalWrite(22, 1); //decimal = 2

 digitalWrite(23, 0);

 digitalWrite(24, 0);

 cout<<"Right2"<<endl;

 }

 else if (Result >20)

 {

 digitalWrite(21, 1);

 digitalWrite(22, 1); //decimal = 3

 digitalWrite(23, 0);

 digitalWrite(24, 0);

 cout<<"Right3"<<endl;

 }

Page | 103

 else if (Result <0 && Result >-10)

 {

 digitalWrite(21, 0);

 digitalWrite(22, 0); //decimal = 4

 digitalWrite(23, 1);

 digitalWrite(24, 0);

 cout<<"Left1"<<endl;

 }

 else if (Result <=-10 && Result >-20)

 {

 digitalWrite(21, 1);

 digitalWrite(22, 0); //decimal = 5

 digitalWrite(23, 1);

 digitalWrite(24, 0);

 cout<<"Left2"<<endl;

 }

 else if (Result <-20)

 {

 digitalWrite(21, 0);

 digitalWrite(22, 1); //decimal = 6

 digitalWrite(23, 1);

 digitalWrite(24, 0);

 cout<<"Left3"<<endl;

 }

 Stop_Sign:

 Object:

Page | 104

 Traffic:

 if (laneEnd > 4500)

 {

 ss.str(" ");

 ss.clear();

 ss<<" Lane End";

 putText(frame, ss.str(), Point2f(1,50), 0,1, Scalar(255,0,0), 2);

 }

 else if (Result == 0)

 {

 ss.str(" ");

 ss.clear();

 ss<<"Result = "<<Result<<" (Move Forward)";

 putText(frame, ss.str(), Point2f(1,50), 0,1, Scalar(0,0,255), 2);

 }

 else if (Result > 0)

 {

 ss.str(" ");

 ss.clear();

 ss<<"Result = "<<Result<<" (Move Right)";

 putText(frame, ss.str(), Point2f(1,50), 0,1, Scalar(0,0,255), 2);

 }

 else if (Result < 0)

 {

 ss.str(" ");

Page | 105

 ss.clear();

 ss<<"Result = "<<Result<<" (Move Left)";

 putText(frame, ss.str(), Point2f(1,50), 0,1, Scalar(0,0,255), 2);

 }

 namedWindow("orignal", WINDOW_KEEPRATIO);

 moveWindow("orignal", 0, 100);

 resizeWindow("orignal", 640, 480);

 imshow("orignal", frame);

 namedWindow("Perspective", WINDOW_KEEPRATIO);

 moveWindow("Perspective", 640, 100);

 resizeWindow("Perspective", 640, 480);

 imshow("Perspective", framePers);

 namedWindow("Final", WINDOW_KEEPRATIO);

 moveWindow("Final", 1280, 100);

 resizeWindow("Final", 640, 480);

 imshow("Final", frameFinal);

 namedWindow("Stop Sign", WINDOW_KEEPRATIO);

 moveWindow("Stop Sign", 1280, 580);

 resizeWindow("Stop Sign", 640, 480);

 imshow("Stop Sign", RoI_Stop);

 namedWindow("Object", WINDOW_KEEPRATIO);

 moveWindow("Object", 640, 580);

 resizeWindow("Object", 640, 480);

 imshow("Object", RoI_Object);

Page | 106

 namedWindow("Traffic", WINDOW_KEEPRATIO);

 moveWindow("Traffic", 0, 580);

 resizeWindow("Traffic", 640, 480);

 imshow("Traffic", RoI_Traffic);

 waitKey(1);

 auto end = std::chrono::system_clock::now();

 std::chrono::duration<double> elapsed_seconds = end-start;

 float t = elapsed_seconds.count();

 int FPS = 1/t;

 //cout<<"FPS = "<<FPS<<endl;

 }

 return 0;

}

C++ Code in Raspberry Pi to capture images from Raspberry Pi Camera:

#include <opencv2/opencv.hpp>

#include <raspicam_cv.h>

#include <iostream>

#include <chrono>

#include <ctime>

using namespace std;

using namespace cv;

using namespace raspicam;

Page | 107

Mat frame;

 void Setup (int argc,char **argv, RaspiCam_Cv &Camera)

 {

 Camera.set (CAP_PROP_FRAME_WIDTH, ("-w",argc,argv,400));

 Camera.set (CAP_PROP_FRAME_HEIGHT, ("-h",argc,argv,240));

 Camera.set (CAP_PROP_BRIGHTNESS, ("-br",argc,argv,50));

 Camera.set (CAP_PROP_CONTRAST ,("-co",argc,argv,50));

 Camera.set (CAP_PROP_SATURATION, ("-sa",argc,argv,50));

 Camera.set (CAP_PROP_GAIN, ("-g",argc,argv ,50));

 Camera.set (CAP_PROP_FPS, ("-fps",argc,argv,100));

}

int main(int argc,char **argv)

{

 RaspiCam_Cv Camera;

 Setup(argc, argv, Camera);

 cout<<"Connecting to camera"<<endl;

 if (!Camera.open())

 {

 cout<<"Failed to Connect"<<endl;

 }

 cout<<"Camera Id = "<<Camera.getId()<<endl;

 while(1)

 {

 auto start = std::chrono::system_clock::now();

Page | 108

 Camera.grab();

 Camera.retrieve(frame);

 auto end = std::chrono::system_clock::now();

 std::chrono::duration<double> elapsed_seconds = end-start;

 float t = elapsed_seconds.count();

 int FPS = 1/t;

 cout<<"FPS = "<<FPS<<endl;

 imshow("orignal", frame);

 waitKey(1);

 }

 return 0;

}

Code in Arduino IDE for Arduino:

int i =0;

unsigned long int j =0;

const int EnableL = 5;

const int HighL = 6; // LEFT SIDE MOTOR

const int LowL =7;

const int EnableR = 10;

const int HighR = 8; //RIGHT SIDE MOTOR

const int LowR =9;

Page | 109

const int D0 = 0; //Raspberry pin 21 LSB

const int D1 = 1; //Raspberry pin 22

const int D2 = 2; //Raspberry pin 23

const int D3 = 3; //Raspberry pin 24 MSB

int a,b,c,d,data;

void setup() {

pinMode(EnableL, OUTPUT);

pinMode(HighL, OUTPUT);

pinMode(LowL, OUTPUT);

pinMode(EnableR, OUTPUT);

pinMode(HighR, OUTPUT);

pinMode(LowR, OUTPUT);

pinMode(D0, INPUT_PULLUP);

pinMode(D1, INPUT_PULLUP);

pinMode(D2, INPUT_PULLUP);

pinMode(D3, INPUT_PULLUP);

}

void Data()

{

 a = digitalRead(D0);

 b = digitalRead(D1);

 c = digitalRead(D2);

Page | 110

 d = digitalRead(D3);

 data = 8*d+4*c+2*b+a;

}

void Forward()

{

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH);

 analogWrite(EnableL,255);

 digitalWrite(HighR, LOW);

 digitalWrite(LowR, HIGH);

 analogWrite(EnableR,255);

}

void Backward()

{

 digitalWrite(HighL, HIGH);

 digitalWrite(LowL, LOW);

 analogWrite(EnableL,255);

 digitalWrite(HighR, HIGH);

 digitalWrite(LowR, LOW);

 analogWrite(EnableR,255);

}

void Stop()

{

Page | 111

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH);

 analogWrite(EnableL,0);

 digitalWrite(HighR, LOW);

 digitalWrite(LowR, HIGH);

 analogWrite(EnableR,0);

}

void Left1()

{

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH);

 analogWrite(EnableL,160);

 digitalWrite(HighR, LOW);

 digitalWrite(LowR, HIGH);

 analogWrite(EnableR,255);

}

void Left2()

{

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH);

 analogWrite(EnableL,90);

 digitalWrite(HighR, LOW);

 digitalWrite(LowR, HIGH);

 analogWrite(EnableR,255);

Page | 112

}

void Left3()

{

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH);

 analogWrite(EnableL,50);

 digitalWrite(HighR, LOW);

 digitalWrite(LowR, HIGH);

 analogWrite(EnableR,255);

}

void Right1()

{

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH);

 analogWrite(EnableL,255);

 digitalWrite(HighR, LOW);

 digitalWrite(LowR, HIGH);

 analogWrite(EnableR,160); //200

}

void Right2()

{

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH);

 analogWrite(EnableL,255);

Page | 113

 digitalWrite(HighR, LOW);

 digitalWrite(LowR, HIGH);

 analogWrite(EnableR,90); //160

}

void Right3()

{

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH);

 analogWrite(EnableL,255);

 digitalWrite(HighR, LOW);

 digitalWrite(LowR, HIGH);

 analogWrite(EnableR,50); //100

}

void UTurn()

{

 analogWrite(EnableL, 0);

 analogWrite(EnableR, 0);

 delay(400);

 analogWrite(EnableL, 250);

 analogWrite(EnableR, 250); //forward

 delay(1000);

 analogWrite(EnableL, 0);

 analogWrite(EnableR, 0);

Page | 114

 delay(400);

 digitalWrite(HighL, HIGH);

 digitalWrite(LowL, LOW);

 digitalWrite(HighR, LOW); // left

 digitalWrite(LowR, HIGH);

 analogWrite(EnableL, 255);

 analogWrite(EnableR, 255);

 delay(700);

 analogWrite(EnableL, 0);

 analogWrite(EnableR, 0);

 delay(400);

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH);

 digitalWrite(HighR, LOW); // forward

 digitalWrite(LowR, HIGH);

 analogWrite(EnableL, 255);

 analogWrite(EnableR, 255);

 delay(900);

 analogWrite(EnableL, 0);

 analogWrite(EnableR, 0);

 delay(400);

 digitalWrite(HighL, HIGH);

 digitalWrite(LowL, LOW);

 digitalWrite(HighR, LOW); //left

Page | 115

 digitalWrite(LowR, HIGH);

 analogWrite(EnableL, 255);

 analogWrite(EnableR, 255);

 delay(700);

 analogWrite(EnableL, 0);

 analogWrite(EnableR, 0);

 delay(1000);

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH);

 digitalWrite(HighR, LOW);

 digitalWrite(LowL, HIGH);

 analogWrite(EnableL, 150);

 analogWrite(EnableR, 150);

 delay(300);

}

void Object()

{

 analogWrite(EnableL, 0);

 analogWrite(EnableR, 0); //stop

 delay(1000);

 digitalWrite(HighL, HIGH);

 digitalWrite(LowL, LOW);

 digitalWrite(HighR, LOW);

Page | 116

 digitalWrite(LowR, HIGH); //left

 analogWrite(EnableL, 250);

 analogWrite(EnableR, 250);

 delay(500);

 analogWrite(EnableL, 0);

 analogWrite(EnableR, 0); //stop

 delay(200);

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH); //forward

 digitalWrite(HighR, LOW);

 digitalWrite(LowR, HIGH);

 analogWrite(EnableL, 255);

 analogWrite(EnableR, 255);

 delay(1000);

 analogWrite(EnableL, 0); //stop

 analogWrite(EnableR, 0);

 delay(200);

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH);

 digitalWrite(HighR, HIGH); //right

 digitalWrite(LowR, LOW);

 analogWrite(EnableL, 255);

 analogWrite(EnableR, 255);

 delay(500);

Page | 117

 analogWrite(EnableL, 0); //stop

 analogWrite(EnableR, 0);

 delay(1000);

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH);

 digitalWrite(HighR, LOW); // forward

 digitalWrite(LowR, HIGH);

 analogWrite(EnableL, 150);

 analogWrite(EnableR, 150);

 delay(500);

 i = i+1;

}

void Lane_Change()

{

 analogWrite(EnableL, 0);

 analogWrite(EnableR, 0); //stop

 delay(1000);

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH);

 digitalWrite(HighR, HIGH);

 digitalWrite(LowR, LOW); //Right

 analogWrite(EnableL, 250);

 analogWrite(EnableR, 250);

 delay(500);

Page | 118

 analogWrite(EnableL, 0);

 analogWrite(EnableR, 0); //stop

 delay(200);

 digitalWrite(HighL, LOW);

 digitalWrite(LowL, HIGH); //forward

 digitalWrite(HighR, LOW);

 digitalWrite(LowR, HIGH);

 analogWrite(EnableL, 255);

 analogWrite(EnableR, 255);

 delay(800);

 analogWrite(EnableL, 0); //stop

 analogWrite(EnableR, 0);

 delay(200);

 digitalWrite(HighL, HIGH);

 digitalWrite(LowL, LOW);

 digitalWrite(HighR, LOW); //LEFT

 digitalWrite(LowR, HIGH);

 analogWrite(EnableL, 255);

 analogWrite(EnableR, 255);

 delay(500);

 analogWrite(EnableL, 0); //stop

 analogWrite(EnableR, 0);

 delay(1000);

 digitalWrite(HighL, LOW);

Page | 119

 digitalWrite(LowL, HIGH);

 digitalWrite(HighR, LOW); // forward

 digitalWrite(LowR, HIGH);

 analogWrite(EnableL, 150);

 analogWrite(EnableR, 150);

 delay(500);

}

void loop()

{

 if (j > 25000)

 {

 Lane_Change();

 i = 0;

 j = 0;

 }

 Data();

 if(data==0)

 {

 Forward();

 if (i>0)

 {

 j = j+1;

 }

 }

 else if(data==1)

Page | 120

 {

 Right1();

 if (i>0)

 {

 j = j+1;

 }

 }

 else if(data==2)

 {

 Right2();

 if (i>0)

 {

 j = j+1;

 }

 }

 else if(data==3)

 {

 Right3();

 if (i>0)

 {

 j = j+1;

 }

 }

 else if(data==4)

 {

 Left1();

Page | 121

 if (i>0)

 {

 j = j+1;

 }

 }

 else if(data==5)

 {

 Left2();

 if (i>0)

 {

 j = j+1;

 }

 }

 else if(data==6)

 {

 Left3();

 if (i>0)

 {

 j = j+1;

 }

 }

 else if(data==7)

 {

 UTurn();

 }

Page | 122

 else if (data==8)

 {

 analogWrite(EnableL, 0);

 analogWrite(EnableR, 0);

 delay(4000);

 analogWrite(EnableL, 150);

 analogWrite(EnableR, 150);

 delay(1000);

 }

 else if(data==9)

 {

 Object();

 }

 else if(data==10)

 {

 analogWrite(EnableL, 0);

 analogWrite(EnableR, 0);

 delay(2000);

 }

 else if(data>10)

 {

 Stop();

 }

}

