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Abstract/ Executive Summary 

Accidents due to driver error persists despite road rules and regulations being updated 

regularly, mostly because of reckless driving and non-measured actions while lane changing. 

Therefore, the inclusion of a lane changing system in self-driving cars can greatly reduce these 

fatal tragedies resulting in safer streets along with an easy mode of transportation for people of 

all ages and conditions. The system we designed uses image processing which consists of 

creation of region of interest, perspective transformation, threshold operations, canny edge 

detections, histogram and various calculations for lane detection and lane maintenance. It 

further recognizes object detection models to detect vehicles, stop signs and traffic signals 

using the Haar cascade Deep learning method to make decisions and maneuver our vehicle 

accordingly. The output of the analysis is deployed on a protype level build with the help of 

Raspberry Pi 3B+ having integrated connection with Arduino and motor driver system. 

Keywords: self-driving car, lane changing, machine learning, object detection, decision 

criteria, image processing. 
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Glossary: 

 

Autonomous 

Vehicle (AV) 

Vehicle which is able to sense its environment and react without the 

involvement of humans. 

Internet of 

Things (IoT) 

A network consisting of connected devices that process and send data 

through the internet. 

Object 

Detection 

It is the entire process of identifying, locating an object or multiple 

objects in an image or a video. 

OpenCV It is a machine learning library which contains a rich set of tools and its 

main function is to facilitate the various image processing tasks and 

machine learning implementations. 

GPS Sensor The full form is Global Positioning System, these signals are radio 

frequency signals transmitted by a constellation of satellites in Earth's 

orbit. 

mAP This parameter is used in the field of object detection and image 

segmentation to employ and evaluate the performance of models by 

assessing the precision and recall of their predictions across multiple 

categories or classes. 

Image 

processing 

It is the manipulation and analysis of digital images using various 

algorithms and techniques. 
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Chapter 1 

Introduction  

1.1 Introduction 

1.1.1 Problem Statement 

Statistics suggest that about 94% of the accidents seen on the roads are mainly due to human 

error [1]. Self-driving cars can be a solution to the problem as automated vehicles can take the 

decision based on what it ‘sees’ in its multiple direction which is mainly by the help of a camera 

and other sensors. In addition, modern automated vehicle systems have been seen to possess 

multiple other sensors as well which helps to improve the decision making. Moreover, high 

speed overtaking has been a major cause of accidents. Due to lack of sensors the victims do 

not even get notified on what obstacles they are surrounded with. Most of the time rough 

driving not only puts themselves at risk but also risks the lives of the other vehicles surrounding 

them. Moreover, accidents in squeezed roads due to lack of practice of driving in overcrowded 

roads have been seen as another problem. In addition, impaired and distracted driving is another 

major reason for accidents which lead to major fatalities. 

Various different literatures have addressed the wide ranges of approaches that Autonomous 

Vehicles use for their control [3, 4, 5, 6, 7]. Mihalea et al. [3] have stated that driver assistance 

using an ‘end-to-end’ approach can be a suggested solution in which the overall process of 

driving is a learned transformation from image to output. Another reason can be limited 

transportation access for individuals with driving disabilities, elderly adults, and those lacking 

driving experience hinders their ability to lead independent lives and access essential services. 

1.1.2 Background Study 

In this period of modernization, automated vehicles still have a huge path to proceed. Some 

people are still afraid of how the automated car performs when it is on the road, while some 

more are anxious about how the software system will function [10]. But despite all these 

comments, the work of autonomous vehicles is proceeding and so is the lane changing part of 

it. Statistics say that over 10 percent of the accidents on highways occur due to lane changing 

operations. 

Total kinetic energy minimization approach integrated with solving a polynomial equation can 

be basically used to determine a trajectory for easy and running lane change [10]. However, 

the change angle and accuracy is calculated by resolving a time-optimal control problem that 

decreases runtime with fixed end constraints and bounds on lateral speeding up and lurch.  

The idea of lane changing or shifting the car to the adjacent lanes comes with ideas based on a 

set of rules, which includes:  

1. subjective rules 

2. functions of the positions 

3. relative velocities of surrounding vehicles 
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In the paper “A machine learning approach for personalized autonomous lane change initiation 

and control” by Vallon, an approach is established where the characteristics of a driver are 

being tried to imitate [10]. The main ideology behind this is the dataset which leads to calling 

the model a data-driven model. 

Data were basically collected in situations of complexity and moments when the decision 

making is quite difficult, whether or not to change the lane. 

Which led to the generation of Model Predictive Framework (MPC) where the certain decision 

logic was being integrated with more autonomous vehicles in order to test for safety, reliability 

and resilience.  

Another trajectory idea is the learning-based trajectory where the dataset is nothing but real 

live driving data [10]. K-nearest instance is being used to basically establish a lane changing 

method by machine learning where the datasets are obtained from online. The main motive of 

so much experimentation is that the lane changing and particularly roads become a safer place. 

The primary purpose of the trajectory planning algorithm is to generate a smooth trajectory, 

while ensuring safety and following the global route. As illustrated in Fig.1, the proposed 

method can be decomposed into four portions. First,  the center line is constructed by a spline 

polynomial, which is  based on a batch of center waypoints on the road (see Fig. 2).  

There are other methods such as real-time trajectory planning [8]. This algorithm basically 

works on an optimal trajectory accompanying the speed for autonomous driving as well as the 

acceleration. Predesigned center waypoints are the initial approach as they are used as the 

reference line. Moreover, arc length and offset to the center line in the Frenet coordinate system 

is a huge contributor in producing the path candidate, also the polynomial function is being 

used to discretize the speed space [8]. 

The trajectory planning algorithm is divided in 4 portions [8]. Firstly, spline polynomials are 

used in which there are centerlines being manufactured on the road. After that the vehicle 

existence can be understood by using pinpointed coordinate transformations, a path planning 

algorithm being developed is used to produce the path candidates at which a range of lateral 

offsets are being sampled along the center line considering vehicle speed and heading direction 

[8]. Finally, the optimal path is being picked by decreasing the cost function of the previous 

path candidates. Then the speed generation algorithm is being seen to be very close to that of 

the path generation algorithm. Sample of 100 Hz is used as the sampling frequency in the 

trajectory planning approach which in turn overhauls the trajectory in real time. In a nutshell, 

optimization of safety as well as better energy efficiency was the main objective for the 

dynamic trajectory system.  

In this paper, a dynamic trajectory planning algorithm is put forward to avoid the static and 

moving obstacles while ensuring safety, comfort and energy consumption reduction. The 

presented approach first uses the cubic spline to construct a center line based on traffic 

conditions.  

Another process incorporates the motion planning modules [9]. The full process consists of 2 

steps. Initially it uses the start position, end position as well as the map information as the input 
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to basically select the bestest route that has the least traffic congestion. Changhao. J et al. [9] 

named this step as route planning.  

Secondly, due to its geometric nature as a list of points, the global route may not adhere to the 

constraints of the vehicle dynamics model and lacks speed information. The local motion 

planning modules, which we will refer to as trajectory planning in this article, take as inputs 

the global route, the ego vehicle's current position supplied by the localization modules, the 

position of static obstacles supplied by the perception modules, and the trajectory possibility 

distribution of dynamic obstacles supplied by the prediction modules. They then output the 

trajectory to the control modules over a T time step horizon. Figure 1 illustrates how the motion 

planning components are organized. 

1.1.3 Literature Gap 

Literature resources on Autonomous Vehicle (AV) have been seen to work on prototype level. 

However, we have faced difficulty to manage resources from industry level which is highly 

confidential due patents and other legal requirements.  

While conducting our background research we came across the realization that our literature 

resources regarding our project only show theoretical and experimental approaches. From 

marketing advertising to media presentation we can see most major car manufacturing 

companies have varying degrees of self-driving features. Majority claim to have SAE level 2 

automations, some even reaching Level 3, however, we lack the in-depth knowledge of these 

vehicles. This lack of industry level knowledge regarding our project can be attributed to 

proprietary technologies and methodologies which are subject to high confidentiality due to 

patents and trademarks. Thus, we have faced great difficulty to manage any resource from the 

industry level due to these confidential legal requirements.  

1.1.4 Relevance to current and future Industry 

The modern industry has been seen to use multiple solutions. One being better than the other. 

ADAS is an algorithm where all the cars are connected with each other via the Internet of 

Things (IoT) then comes the Connected Vehicles where the connected vehicles use vehicle-to-

infrastructure (V2I) and   vehicle-to-vehicle (V2V) where the cars basically share information 

regarding how much traffic some other part of the city has [11, 12]. As well as the most 

common solution of modern times, Autonomous Vehicles (AV) as they have been witnessed 

by modern industries to significantly reduce the risk of accidents caused by impaired or 

distracted driving. By removing the human element from driving, AVs can eliminate the risk 

of driver error altogether. 

The car industry has invested a lot in putting safety precautions for their users. They have been 

seen to incorporate car safety features such as three-point seatbelts, airbags, and shatter-

resistant glass. These precautionary measures have been taken just to prioritize passive safety 

measures to minimize injuries during an accident on the roads. This ADAS system has been 

seen to actively participate in minimizing the numbers of occupant injuries and collisions 

during an accident with the aid of embedded systems [11]. 
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The use of multiple sensors fused with object detection, identification as well as image 

processing with the help of camera systems connected actively with the car have been seen as 

a common practice in the car industry. Finally using all the parameters and merging them using 

the novel AI. Multiple image/ object recognition devices are being used in the current time. 

The most common one of them are the  radar, lidar, ultrasound sensors and ultrasonic sensors 

finally using a specific algorithm for sensor fusion. These are the common parameters used by 

the ADAS algorithm [11]. The image recognition software as well uses these parameters 

similar to how the human brain processes information by combining a lot of data. The main 

motive of this technology is to react even quicker than a human driver, which in turn reduces 

the reaction time, therefore in modern times, it is possible to react quickly by a machine to 

simultaneously by streaming video, object recognition, as well as planning the response and 

reacting to it. 

Here are some of the most common ADAS applications: 

Adaptive Cruise Control: This specific technology is useful for highway driving [12]. While 

driving for long hours it is very much difficult to constantly maintain and keep an eye on the 

speed as well as how other vehicles are approaching. So this technology judges these 

parameters and tunes accordingly as a result helps the car automatically accelerate, decelerate, 

and even stop in fatal situations [12].  The main advantage when equipped with this technology 

is it will help to maintain an appropriate distance with other vehicles in all of its directions. 

This space-aware feature will specifically help the driver from being prevented from a mishap 

happening especially in situations where blocked vision or vehicles are really close to it. 

Glare-Free High Beam and Pixel Light: This feature uses the sensors to sense and tune its glare-

free high beam and pixel light when the car is in darkness. One common problem of driving on 

highways at night is momentary blinding, this feature basically works on that issue. It helps to 

detect the light of the vehicle approaching from the opposite  and diverts the vehicle’s light 

away. 

Some other features are the Adaptive Light Control, Automatic Parking, Autonomous Valet 

Parking, Navigation System, Night Vision, Unseen Area Monitoring, Automatic Emergency 

Braking, Crosswind Stabilization, Driver Drowsiness Detection, Driver Monitoring System, 

5G and V2X, 

 
Fig 1: Picture collected from synopsys.com depicting the various systems it possesses. 
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In the recent world there has been an increased demand for the automobile electronic software 

and hardware necessitates. The manufacturer has to ensure the enhanced reliability, reduced 

expenses, and shorter development cycles.A developed and integrated ADAS Electronic 

controller unit (ECUs) has been seen to be in demand putting the scattered ADAS domain 

controller at less demand [13]. 

Connected Vehicles on the other hand is a term which refers to services, technologies and apps 

that pair up a car to the environment. As the AUTO Connected Car News suggests, a connected 

car can be termed any vehicle which has the necessary equipment needed to connect to the 

equipment of the other cars, notably the networks, devices, services, apps which are outside 

the vehicle. The applications used can range from the safety sensors, efficiency, traffic safety 

feature as well as can be an infotainment system, road assistance, parking assistance as well as 

Global Positioning System (GPS) [13]. Most commonly vehicles need to have two certain 

features to be connected which are the cooperative intelligent transport systems (C-ITS) and 

the advanced driver-assistance systems (ADASs). The safety application which connected 

vehicles possess is being designed to escalate situation awareness to achieve the objective of 

mitigating traffic through vehicle-to-infrastructure (V2I) communications and vehicle-to-

vehicle (V2V) all by the help of sensors, vehicle data networks as well as camera technology 

1.2 Objectives, Requirements, Specification and constraints 

1.2.1. Objectives 

The objectives are as follows: 

 

1. Detecting lanes, vehicles, traffic signals and road signs present in real time driving 

conditions. 

2. Analyzing the parameters obtained and taking appropriate decisions from the object 

detection model. 

3. Advancing the decision taken to the vehicle maneuver system.  

 

By integrating cameras for the use of image processing and object detection models for 

detecting the specific parameters such as red and green traffic signal, stop sign as well as the 

surrounding vehicles and the lanes, our system will be able to make specific decisions on 

whether to change the lane or to be present on the same lane, whether to accelerate, decelerate 

or to maintain that constant speed, specifically intended to reduce the number of accidents 

caused due to the changing of lanes all across the world. This system also helps to minimize 

the number of accidents occurring due to human error, thus reducing human error while 

driving. In addition, Haar Cascade Deep Learning technique is used in order for the 

identification model for the specified parameters. Then incorporating the output in our 

prototype level using a Raspberry Pi 3B+ which has integrated connections with Arduino and 

motor driver system. Thus, improved safety on the road for all as well as better maintenance of 

road rules. 
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1.2.2 Functional and Nonfunctional Requirements 

Functional requirements:  

1. Object detection: Our designed system will be able to detect vehicles and people, and 

find out the distance between it and them. along with the detection of traffic signals. If 

the signal is red, it stops. If it is green, it continues [8]. Along with these detections, our 

system will specifically be able to detect stop signs that accompany the road. For the 

detection of the stop sign, our vehicle will come to a stop and wait for 4 seconds before 

continuing on its course. 

2. Braking distance: Our system will slow down and accelerate the car according to the 

situation it detects. However, for coming to a complete halt, our vehicle should maintain 

a distance of 2 feet (5 to 15 cm in prototype model) from the car/ traffic signal or stop 

sign ahead with a braking time of 3 seconds (1 second in prototype model). 

3. Operating velocity: Depending on the situation our system detects ahead of itself, it can 

change its velocity accordingly. If there is nothing ahead of itself, it can accelerate. If 

there is another car in front of it that is moving, it will move with a constant velocity. 

If there is a car in front which is at a halt, our system will slow down and come to halt. 

Velocity will be different for different curved lane maintaining and lane changing, and 

our car will do it accordingly. 

4. Lane change: If the car ahead is detected closeby for more than 2 seconds, our vehicle 

will check the adjacent lanes. If any of the adjacent lanes are free, the system will make 

a decision to change lanes. 

Non-functional requirements:  

● Navigation system: Our automated car system will be equipped with a GPS system that 

will allow the passenger to select their preferred route. 

● Security system: As the system can collect data from one or several sensors, it is 

paramount that there is a security system in place to protect these data.  

● Maintainability: The system should be easy to maintain, update and repair when 

required. 

● User experience: The system should provide seamless and enjoyable interference for 

easy communication with the passengers. 
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1.2.3 Specifications 

Project Specification:  

Table 1: System level specification 

System Project Specification 

Object detection 

 

For the detection of the obstacles: 

 

1. Detect vehicles and people (stop and check again) 

2. Stop sign (stop and wait for 4 seconds) (In Hardware) 

Lane change 

If obstacles is found ahead, the vehicle system will check the 

adjacent lanes: 

1. If any of the adjacent lanes are free 

2. The system will make a decision to change lanes. 

Operating velocity and 

distance maintained 

Maintain specific distance between adjacent vehicles: 

1. running at 30km/h maintains a distance of 4m, with braking 

distance of 2 feet. Hardware prototype model will have smaller 

parameters 

Braking distance 

Slow down and accelerate the car according to the situation it 

detects.  

1. Will calculate the braking distance for its instantaneous 

speed according to the object ahead 

2. When it completely stops, it maintains 1m distance (5 to 15 

cm in prototype model) 

 

Component Specification:  

Table 2: Subsystem Level Specification 

Sub System Tentative Components Tentative Component Specifications 

Object Detection Raspberry Pi Camera Module 

with cable  

Dimension: ~25 × 24 × 9 mm 

Weight: 3g 

Video mode: 1080p47, 1640 × 1232p41 and 640 × 

480p206 @ 8MP 

Sensor: Sony IMX219 @3280 × 2464 pixels 

Depth of field: ~ 10 cm to ∞ 

Focal length: 3.04 mm 

Cable length: 300mm                                          [15] 
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Processing Unit Raspberry Pi 3 B+ with case Clock Cycle: 1.4GHz 

SDRAM: 1GB LPDDR2 

IEEE standard:  802.11.b/g/n/ac 

Wireless connectivity:  

● 2.4GHzand 5GHz wireless LAN 

● Bluetooth 4.2 

● BLE 

Connectivity:  

● Gigabit Ethernet over USB 2.0 (maximum 

300 Mbps),  

● 4 USB 2.0 ports 

● CSI camera port  

● DSI display port 

Terminals: 40-pin GPIO header 

Storage: Micro SD port  

Operational Voltage: 5V 

DC current: 2.5A                                                 [16] 

Ultra 16GB Micro SDHC UHS-I  Capacity: 16GB 

Read speed: ~98 MB/s 

Dimensions: 0.04" x 0.59" x 0.43"                     [17] 

Power Supply Meko Power Bank  Capacity: 10000mAh 

Output: Double USB 

Input: Micro USB & Type-C                              [18] 

Battery with charger Battery: 

● Capacity: 750-1300 mAh 

● Output Voltage: 3.7V 

Charger: 

● Input AC: 100-240V @47-63Hz 

● Output DC: 3.7V @500mA 

● Terminal Voltage:4.2V土1%                [19] 

Vehicle Maneuver 4 Wheel 2 Layer Robot Smart 

Car Chassis Kits with Speed 

Encoder 

Body: 2 layered acrylic chassis with screw and 

supportive parts 

Motor:  

● Rated Voltage: 3-12 V DC  

● Unloaded speed: 120 RPM. 

● Load current: 190 mA (250 mA MAX) 

● maximum torque: 800 gf. Cm min. 

Wheel dimensions: 30 x 65 mm                          [21] 
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Arduino Uno R3  Clock cycle: 16MHz 

Memory: 2KB SRAM, 32KB FLASH, 1KB 

EEPROM 

Built-in LED Pin: 13 

Digital I/O Pins: 14 

Analog input Pins: 6 

PWM Pins: 6 

I/O Voltage: 5V 

Input voltage (nominal): 7-12V 

DC Current per I/O Pin: 20 mA 

Dimensions: 53.4 x 68.6 mm                              [22] 

L298N H-Bridge Dual Motor 

Driver  

Motor Supply Voltage (Maximum): 46V 

Motor Supply Current (Maximum): 2A 

Logic Voltage: 5V 

Driver Voltage: 5-35V 

Driver Current:2A 

Logical Current:0-36mA 

Maximum Power (W): 25W                               [23] 

 

Several components along with some specific parameters and descriptions have been 

categorized into some subsystems in Table. The object detection sub-system detects the 

environment for the main system and relays it to the processing unit which processes the 

information to make decisions for the action of the vehicle. These two subsystems mainly 

compose the main system. The action of the vehicle is dictated by the vehicle maneuver sub-

system which is completely customizable to stakeholders' needs. To power all the subsystems 

we require a power supply subsystem which is directly correlated to the vehicle maneuver 

subsystem. The specifications of these two subsystems are just a placeholder and customizable.  

 

1.2.4 Technical and Non-technical consideration and constraint in design process 

1.   Implementing this self-driving car can increase the traffic congestion that 

is already present in countries like Bangladesh.  

2.  If a system or subsystem fails somehow, it may lead to a serious accident and 

so, we need a backup system and an emergency system to shut down all 

operations of the car in case any crucial system fails.  

3.   The sensors will affect the health of nearby people negatively, as they will 

emit radiation and so, the amount of sensors used should be as low as 

possible. 

4.   Time is another constraint for this project. We were bound to complete the 

project in one year. 

5.  We also have financial constraints as the project needs to be implemented 

within a certain budget. We have done a detailed cost analysis for the whole 

system. 

6.  Regulatory challenges: Self-driving cars are subject to a complex web of 

regulations at the local, state, and federal levels. Regulations must be 
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developed to ensure the safety and reliability of self-driving vehicles, while 

also addressing liability and insurance issues. 

 

1.3 Applicable compliance, standards, and codes 

Table 3. Applicable codes and standards 

Device & 

Technology 

Standards & 

Code 

Description Application 

Practice 

 

SAE J3016 The Society of Automotive Engineers have 

developed a report explaining six levels of 

driving automation from level 0 to level 5.It 

also describes the systems and role of the 

drivers in each system [24].  

Objective of project 

IEEE 2846 This standard measures the performance of 

autonomous vehicles by providing a set of 

metrics for analyzing the safety and reliability 

of ADS. It also measures the performance, 

functionality, and robustness of the system 

[25]. 

Validation parameters 

ISO/PAS 

21448 

This is a new developed standard which also 

describes the safety issues of autonomous 

vehicles. It includes factors such as hazard 

identification, safety validation, risk 

assessment and provides a backbone for the 

safety of ADS [26]. 

Validation process 

IoT IEEE 

P1451.99 

Explains how to share data, make sensors 

compatible, and send wireless network 

messages in communication technology [27]. 

User interface with system. 

Software 

Simulator 

CARLA 

simulators 

This is an open-source simulator that provides 

a virtual environment to researchers for testing 

the performance of different algorithms and 

safety of autonomous vehicles. It is also used 

to evaluate many scenarios which may provide 

life threatening consequences to replicate in 

real life [28].  

Analyze multiple 

approaches. 

Sensor IEEE 2700-

2017 

Common framework code concerning sensor 

performance specifications, units, conditions 

and limits [29]. 

Object detection camera. 

Neural 

Network 

ISO/IEC TR 

24029-1:2021 

Standards to evaluate the robustness of neural 

networks [30]. 

Applicable for second 

approach 
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Body ISO 26262 This code stands for the international standard 

for functional safety in road vehicles. This 

code provides a structure for designing and 

testing for the safety of electrical systems in 

passenger vehicles [31]. It covers all aspects of 

safety like software and hardware designs and 

all types of validations. 

For the construction of 

vehicle maneuver subsystem 

 

1.4 Systematic Overview/summary of the proposed project 

The problem of road accidents has been decreasing but not eradicating. This matter can only 

be addressed keeping a certain fact in mind that the majority of car accidents occur due to 

human error and lack of driving experience. Keeping certain scenarios and statistics in mind a 

potential solution to this problem is autonomous vehicles or self-driving cars. 

The project we design focuses on a specific part, the lane-changing mechanism of self-driving 

cars. We have developed a system by training it with specific parameters; that is lanes, traffic 

signals, stop signs, and of course the other neighboring vehicles. The system uses image 

processing, object detection, decision model, and vehicle maneuver model. The system has 

been deployed in Raspberry Pi 3B+ and tested through a prototype. Further, it has been 

optimized to make the results better, aspiring to make the roads a safer place than before. 

 

1.5 Conclusion 

In a nutshell, self-driving cars can be stated as the potential solution to mitigate traffic rules 

negligence as well as the massive accidents occurring worldwide. By going through an 

enormous range of literature, we came across the matter that ADAS is the system being used 

currently. However, there are still probable solutions under development, of which the 

approach we are working on might be an exemplary one. 
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Chapter 2 

Project Design Approach 

2.1 Introduction 

According to the objectives defined in Chapter 1, 2 unique designs were analyzed. The first 

design consists of a rule-based approach whereas the second design makes use of a machine 

learning approach, which itself has two types of approach, one in designing a self-driving car 

in CARLA simulator, and another in real-life using a prototype model of a self-driving car with 

the help of raspberry pi, camera, arduino, and motors. 

2.2 Identify multiple design approach 

2.2.1 Design Approach-1 (Rule-Based) 

 
Fig 2: Design approach for rule-based 

 

Our first approach is rule-based, meaning all the actions of our systems are dictated by the 

information of the system and our preferred thresholds. It mainly consists of three primary 

systems. They are: object detection, processing unit and vehicle maneuver. All the systems 

communicate with each other through the processing unit or Raspberry Pi. The object detection 

system mainly contains a GPS module along with an antenna. The lane changing system, 

operating velocity, and braking system, all are maintained in the vehicle maneuver system 

which drives four DC motors with the help of a motor driver, to represent the wheels of our 

vehicles. 
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2.2.2 Design Approach-2 (Machine Learning) 

 
Fig 3: Design approach for machine learning 

 

 

Our second approach is consists of mainly four different systems. The systems are: object 

detection, lane changing, operating velocity and braking systems. Each of the systems are 

connected to each other through the processing unit which consists of a Raspberry Pi. The 

object detection system consists of a camera. The lane changing and operating velocity system 

is composed of the motor driver accompanied with four DC motors to represent the wheels of 

our vehicles. The four wheels also have to be fitted with brake pads to make up the braking 

system. All the components will be powered up by a battery of sufficient capacity. 
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2.3 Description of multiple design approach 

2.3.1 Description of Methodology Approach-1 (Rule-Based) 

 
Fig 4: Methodology for rule-based approach 

 

The methodology of our first approach begins with the object detection system. This detection 

is done by GPS location tracking using GPS modules. This GPS information is collected by 

the Raspberry Pi, which already has our set rules of instructions on the thresholds that it has to 

maintain. If the distance between the agent and the detected object is greater than the threshold 

of optimum distance, the motor drive accelerates the four DC motors. However, if the distance 

is less than the optimum threshold, the agent decelerates. Lastly, if an object is detected to be 

halted at a location for too long, the agent resorts to the GPS information of vehicles from 

adjacent lanes. If one of them is free, the agent will change lanes. The vital importance of this 

approach is that the agent is completely dependent on the surrounding vehicles and their ability 

to communicate with the agent. 
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2.3.2 Description of Methodology Approach-2 (Machine Learning) for Software 

 
Fig 5: Methodology for machine learning approach in CARLA simulator 

 

For our second approach, we devised a machine learning methodology for the CARLA 

simulator, where we showed the steps necessary to build a self-driving car system in the 

CARLA simulator. The focus is based on the simulation of the main models required for the 

system to function properly. Initially, information of the surroundings is taken into account 

with the help of a camera from our car in CARLA. These are displayed in an image window 

and downloaded as images using our python code in sublime text, which are then used to 

annotate and train our machine-learning model in Roboflow. After training and loading the 

model, we can then instead pass images from our car’s camera in CARLA through the trained 

object detection model where information such as the position of detected objects and their 

distance from the objects are to be extracted with the help of bounding boxes. This information 

is passed through to the decision criteria model which determines the action our car has to take 

according to its surroundings. Based on the decision received, our vehicle maneuvers 

accordingly to the left lane, right lane, or straight. If there is more distance than optimum 

distance between our car and the detected object in front, it accelerates. If the detected object 

is close enough, our car decelerates. The car also takes information from adjacent lanes, and if 

they are clear of objects, then it changes lanes accordingly. Our focus is to train and test the 

models in Roboflow to be able to react to the simulated environment. The performance of the 

self-driving car depends on the robustness of the training of the models. 
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We implemented our machine learning based lane changing system of self-driving cars in 

CARLA Simulator 0.9.14. The programming language we used was Python 3.7 that is highly 

suitable for usage for CARLA. It was implemented in sublime text 3 which is a type of 

shareware text and source code editor. To implement our code from sublime text in the CARLA 

simulator and run our models, we used anaconda prompt from anaconda which allowed us to 

connect with CARLA and interact with Python and Anaconda packages through the command 

line. It provided a way to manage Python environments, install packages, and run sublime text 

files. 

Numerous simple-to-use sensors are available from CARLA, including open-source Python 

APIs for RGB cameras and depth cameras . It is an easy plug and play addition of these sensors 

to get desired data without the consideration of underlying drivers of the sensors. We added 

only one RGB camera to our self-driving car to collect images with the following position 

parameters as following: 

Table 4: Camera Position used in CARLA 

x y z fov 

2.5 0 0.7 110 

 

In Table 1, x stands for the camera's front and back positions in relation to the vehicle, y for its 

left and right positions in relation to the vehicle, and z for its vertical position in relation to the 

vehicle. Lastly, fov stands for field of view which indicates the area that can be seen by the 

camera at a given moment [5]. We manually took photos from the attached RGB camera while 

our car was in various scenarios within the simulated environment. We chose this process to 

avoid any image cleaning process where we had to discard images we could not use due to 

similarity. In this manner, we collected various images at the resolution of 640*480 keeping 

the standard size. Examples of collected images for the dataset are in Fig. 6. 

 

Fig 6: Collected image samples from CARLA Simulator 

After the image acquisition process, we annotate the image dataset using roboflow. We labeled 

a total of 1500 images into four classes: vehicle, person, motorcycle and bicycle. Our images 

contained bounding boxes for single class, muti-classes as well as occluded single and multi-

classes.  The annotation had to be done manually using roboflow which results in the generation 

of text, CSV or XML file of the bounding box for the dataset. Not only this, roboflow also 

splits the dataset into training, validation and testing sets which are fed into the object detection 

model for further operation. Examples of annotated images are shown in Fig. 7. 
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Fig 7: Image sample with annotations of four classes 

For our object detection model, we used the Roboflow 3.0 training algorithm to train, test, and 

validate our model and further use its output image’s information as input to the decision 

criteria model. 

After extracting our dataset images from the CARLA simulator and manually applying 

bounding boxes on images from CARLA for 4 classes, we then trained our model using the 

Roboflow 3.0 object detection algorithm in roboflow. As there are no or very few stop signs or 

pedestrian signs in CARLA, we are omitting them here and not including them in our object 

detection model as they are not necessary for lane-changing mechanisms. Therefore, we are 

only considering the objects that are on the streets to implement our lane-changing system. 

Decision Model: 

As we already know, our decision model is needed for our self-driving car to decide whether 

it will accelerate forward, or change lane to right or left, or decelerate. Our object detection 

model discussed in the previous section takes in an input image from the front of the car and 

can give out an output image with bounding boxes, along with the class detected, boxes’ x and 

y pixel coordinates of the 640x480 image and the width and height of the boxes in pixel. Using 

these parameters, we made a decision model which helps our car to detect whether a vehicle, 

person, motorcycle, or bicycle is in front of us, or on the left, or on the right lane and take 

decisions of acceleration, lane changing, or deceleration accordingly. 

Equation 1 was used to find the distance between our car and the object in the front, using the 

‘y’ and height parameter from object detection bounding box, also shown as an example in Fig. 

8 as well: 

 𝑧 = 𝑎 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑦 − (
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 ℎ𝑒𝑖𝑔ℎ𝑡

2
)(1) 

where a = total number of pixels in y dimension (480 for us) 
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Fig 8: Determining distance (z) between our car and front vehicle 

 

We have considered an algorithm for this model after much trial and error, and considerations. 

We first call our object detection model from Roboflow and use it, setting 40% confidence and 

30% overlap, on images that our car displays in CARLA continuously, as shown in Fig. 8. 

 

Fig 9: Decision Model for machine learning approach in CARLA 

 

For every image, we ran the algorithm again and again in a loop to give decisions continuously, 

assuming the car is in the right or left lane at the very beginning. The left or right lane flags are 

also made false if our car is already in the right or left lane respectively, as it cannot go further 

right or further left. 
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It decides its action using the algorithm from Fig. 9, comparing the 3 flag variables for every 

image. Then all three flags are made true and the whole algorithm is run for the next image as 

well, and a new decision can be made for that image. This goes on again and again. 

To indicate an object is really close in the front lane, we considered a value of z to be less than 

135 pixels. To indicate a close object in the left lane or right lane, we have considered a larger 

value of width for vehicles compared to other classes i.e. person, motorcycle, and bicycle, as 

vehicles are generally wider. On the other hand, a person, motorcycle, or bicycle has generally 

lower width and so lower width is used to consider that it is present in the adjacent lanes. Also, 

height considered to identify them as obstacles, is also set lower as they can be close in the 

adjacent lanes and still be a bit far away from the camera, compared to vehicles. A person does 

not walk in the adjacent lanes in CARLA and so, their low width is not considered while 

checking the adjacent lanes for the classes other than vehicles. 

Vehicle Maneuver: 

After our decision model gives a decision whether to accelerate, change lane, or decelerate, our 

vehicle gets some specific commands to move accordingly. These commands were given with 

the help of the “apply_control” method to our vehicle in CARLA. 

The throttle value indicates whether to accelerate or decelerate. If zero is given, the vehicle 

decelerates to a stop. If one is given, the vehicle accelerates. If -1 is given, the vehicle goes 

back. The steer value indicates which direction the vehicle should turn. The value ranges from 

-1 to 1. If the value is given zero, it goes straight. If the value is given more than 0 till 1, it 

steers to the right. The more the value, the more right it goes. If the value is given less than 0 

till -1, it steers to the left. The more negative the value, the more left it goes. “time.sleep()” 

command is used to delay the execution of the next command by the time given in seconds. 

Using these commands and through much trial and error, we generated the action commands, 

which are integrated with the decision model’s output. 

For accelerating, the throttle value is set to 1 and the steer is set to 0. Similarly, for decelerating 

to a stop, the throttle value is set to 0 and the steer is 0. 

For changing the lane to the left lane, we keep throttle 1 and make the car steer -0.5 to the left 

for 0.33 seconds and then steer 0.5 to the right for 0.39 seconds. Then, finally make it go 

straight in the new lane with steer 0. The order of steps are shown Fig. 10. 

 

Fig 10: Changing lane to the left in CARLA 

Similarly, for changing the lane to the right lane, we keep throttle 1 too but make the car steer 

0.5 to the right for 0.33 seconds and then steer -0.5 to the left for 0.39 seconds this time. Then, 

finally make it go straight in the new lane with steer 0. The order of steps are shown Fig. 11. 

 

Fig 11: Changing lane to the right in CARLA 
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2.3.3 Methodology Approach-2 (Machine Learning) for hardware 

 
Fig 12: Methodology for machine learning approach in hardware system 

 

For our machine learning methodology in hardware prototype, we used deep learning (Haar 

cascade), openCV, image processing and decision criteria to effectively train, detect, and run 

our self-driving car in our lanes. This is an embedded IOT approach as well, with machine 

learning. We first had to buy all our required hardware components like Raspberry Pi, 

Raspberry Pi camera, Arduino, SD card, motor driver, motors, car chassis, power bank, 

batteries, etc. We had to construct our car structure by connecting all those components. 

 

 

Fig 13: Motor driver with DC motors and wheels in car chassis 
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Fig 14: Arduino UNO and power bank         Fig 15: Raspberry Pi and 

             Raspberry Pi camera module 

 

Our main subsystems will have to be fed into Raspberry Pi, which will detect, decide and send 

commands to the Arduino to maneuver the wheels accordingly using the motor driver and 

motors. 

To set up our Raspberry Pi 3B+, we first booted the 32-bit Raspberry Pi OS Full in our 32 GB 

SD card using Raspberry Pi imager software and accessed our Raspberry Pi interface using 

PuTTY and VNC viewer. We downloaded our required packages in Raspberry Pi and installed 

OpenCV and Raspi-cam. We captured images and videos, and calculated frames per second. 

Then, we had to do image processing for lane detection, where we converted image signature 

(BGR to RGB), created region of interest, did perspective transformation (Bird Eye View) on 

that region, threshold operations to extract white lane lines, canny edge detections on those 

lines, continuous troubleshooting, found exact lane positions from the lines using histogram 

and various calculations, calibration to map lane center to frame center and finally find the 

relative difference between them to know how much our car needs to move left or right to 

match its frame center to the lane center. This is sent to the arduino for command. 

We also trained 3 object detection models in Cascade Trainer GUI software that uses the Haar 

cascade algorithm. Positive and negative samples were made from our Raspi-Cam for each 3 

objects (vehicle, stop sign, and traffic signal) individually and trained individually, after which 

the 3 trained models were fed into the Raspberry Pi to detect them in running conditions. For 

all the objects, Raspberry Pi takes decisions when it is detected to exist between 5 to 20 or 30 

centimeters ahead of the car, and sends commands accordingly to the Arduino for vehicle 

maneuver with the help of 4 digital pins. 

For our Arduino, we kept some specific action commands, such as forward, backward, stop, 

and U-turn to send to our motor drivers according to the decisions taken by Raspberry Pi. We 

kept 3 types of left movements and 3 types of right movements, each having a different 

magnitude of turn, and only one of them occurs every time our raspberry decides on relative 

lane center position after analyzing the image it is getting, and sends its decision to the arduino 

through its 4 digital pins to adjust and maintain the lane. 
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The whole process of detecting, analyzing, making decisions, and moving is repeated for the 

next image obtained from a Raspberry Pi camera, for the continuous operation of our self-

driving car. 

We used some specific commands to install packages and OpenCV in our Raspberry Pi, after 

which we did C++ coding in the Geany programming editor. We did specific coding for our 

Raspberry Pi to capture images from the Raspberry Pi camera to use in image processing and 

training machine learning models. The images’ width was 400 pixels, and the height was 240 

pixels, with brightness, contrast, saturation, and gain set to 50. Examples of the taken images 

from Raspi-cam are shown below in Fig. 16. 

Fig 16: Collected image samples from Raspberry Pi camera 

 

After the image acquisition process, we did image processing on only the lane image samples 

to detect lanes, as discussed before. To detect lane end, we also used the histogram process by 

creating a new dynamic array to store the intensity values of the region of interest that contains 

lane end lines. 

 

The rest of the image datasets of car, stop sign, and traffic singal was used for cropping in 

Cascade Trainer GUI software for Haar cascade training to create positive and negative 

samples for each. We labeled a total of 300 images with positive and negative samples for car, 

vehicle, and traffic signals separately. Our cropped images contained full objects as well as 

occluded object for better training. The cropping had to be done manually in Cascade Trainer 

GUI, which automatically crops and saves the bounding box that was made on an object. These 

were considered positive samples to detect objects, whereas the negative samples considered 

images which had no object. So each object had both positive and negative sample set. 

Examples of cropped positive images are shown in Fig. 17. 
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Fig 17: Cropped positive image samples 

 

We then trained 3 times for 3 objects using 3 sets of positive and negative image samples in 

Cascade Trainer GUI to obtain 3 object detection models, which were used and called in the 

Raspberry Pi to detect the 3 objects, besides the lane detection. 

 

Decision Model: 

 

The width (in pixels) of the bounded box, that we get from the detected object, was used to 

find out how far away that object is. We did manual calculations to solve 3 linear equations to 

convert pixel dimensions to the distance from the object and got the following equations: 

For both stop sign and traffic signal detection, distance = −1.07 × width  +102.597 

For car detection, distance = −0.48 × width +56.6 

We also can find out our deviation value from our lane, and the lane end intensity value using 

image processing. We will make decisions based on them, as well as the 3 object detections. 

Finally, there will be 11 conditions to choose from and the respective commands, in the form 

of digital numbers of 4 bits, will be sent to the Arduino for vehicle maneuver, as shown in Fig. 

18. 

 
Fig 18: Decision Model for machine learning approach in hardware 
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If a stop sign is detected and the distance is more than 5 cm but less than 20 cm, then the 

Raspberry Pi sends commands to the Arduino to stop the car for 4 seconds, and then move 

ahead for 0.5 seconds to overtake the stop sign and take the next decision. 

If a traffic signal with red light is detected and distance is more than 5 cm but less than 20 cm, 

then the Raspberry Pi sends commands to the arduino to keep on stopping the car for 2 seconds 

continuously, until the red light changes to green light, or turns off completely. 

If a car ahead is detected and the distance is more than 5 cm but less than 30 cm, then the 

Raspberry Pi sends commands to the arduino to make the car change its lane. For this, a turn 

is taken using motor drivers, followed by a forward operation and then a reverse turn to align 

with the new lane. Then, after continuing forward on the new lane for some time while checking 

for other detections, the car comes back to its previous lane in a similar way with a different 

direction, ultimately overtaking the car that it had detected before. 

If the histogram value of the region of interest exceeds 4500, then it indicates a Lane End, and 

the arduino makes our car take a U-Turn. It rotates 90 degrees in one direction, moves forward 

for 1 second, then again rotates 90 degrees in the same direction, before continuing to run on 

the second lane. 

The rest 7 conditions are kept to maintain our car on the lane. If the deviation value is 0, the 

car moves forward. If the deviation value comes out to be between 0 to 10, then a low right 

turn is executed by varying the velocities of the left and right wheels. If deviation value comes 

out to be between 10 to 20, then a normal right turn is executed. If deviation value comes out 

to be more than 20, then a high right turn is executed. Similarly low, normal, and high left turn 

is executed but for negative deviation values, depending on the magnitude. 
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2.4 Analysis of multiple design approach 

2.4.1 Analysis of Design-1 (Rule-Based): 

For the rule-based approach, as discussed previously, our vehicle knows the GPS location of 

the vehicles and mobile phones, and drives on the road accordingly. At the bottom left side of 

the pictures below, there are multiple vehicles that it is detecting through GPS and knows its 

location while avoiding collision with them. 

1) When our vehicle detects a person, it stops at a braking distance of 2 feet and waits 

for the person to pass by. When our vehicle doesn't detect any more people, it starts to 

move again. 

 

 
Fig 19: Vehicle detects person and stops 

 

 
Fig 20: Vehicle detects no more person and starts to move 
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2) When our vehicle detects a car ahead, it stops at a braking distance of 2 feet and waits 

for the front car to move. When the front car moves, our vehicle starts to move, 

maintaining the braking distance of at least 2 feet. 

 

 
Fig 21: Vehicle detects a car ahead and stops 

 

 
Fig 22: Vehicle moves when front car moves, maintaining some distance of 2 feet 
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3) Our vehicle maintains a lane when it finds that the forward path is open, also while 

changing direction. 

 

 
Fig 23: Vehicle changing direction while maintaining lane 

 

4) If our vehicle detects a vehicle in front of it for more than 2 seconds, it checks its right 

or left lane whether there are cars or not. If not, it changes lanes accordingly, which 

also meets our functional requirements. 

 

 
Fig: 24 Vehicle detects other vehicles in front of it 
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Fig 25: Vehicle changing lane 

 

2.4.2 Analysis of Design-2 (Machine Learning) in CARLA: 

For this design, we extracted some dataset images from the CARLA simulator to detect our 

obstacles. We have used Roboflow to do bounding boxes on images from CARLA for 4 classes: 

Vehicle, person, motorcycle, and Bicycle. Then, trained our model using the YOLOv4 object 

detection algorithm. We could have considered the class of traffic signals as well. However, it 

is too small for our vehicle in the CARLA simulator to detect the light signals from far away. 

We will try to detect it in hardware design, where the signals will be closer and clearer to see 

and the detection process will be the same as the other 4 classes we implemented here. Also, 

as there are no stop signs or pedestrian signs in CARLA, we are omitting it here. However, we 

will detect it in hardware design in a similar manner. CARLA also experiences heavy lagging 

for more classes and processing, which was also a problem for us. 

 
Fig 26: Bounding Box applied on images for Vehicles and Motorcycles 
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Fig 27: Bounding Box applied on images for Bicycles and Person 

 

We trained our object detection model three times and obtained 3 different results. The dataset 

images were divided into 70% for training images, 20% for validation images, and 10% for 

test images. 

Test-1: 

We have used around 200 dataset images to train in test-1 with 200 epochs. We obtained mean 

average precision (mAP) of 87.3%, precision of 85.9% but a recall of 54.8%. Recall indicates 

how much percentage of a sample from the test image that our machine learning model 

correctly identifies as belonging to the correct class, out of the total test image samples for that 

class. 

 
Fig 28: Mean average precision vs epochs for test-1 
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Fig 29: Box loss, Class loss and Object Loss vs epochs for test-1 

 

 
Fig 30: Loss, precision and recall graphs vs epochs for test-1 

 

Above, we have extracted the training and validation graphs of Box loss, class loss, distribution 

focal loss (DFL), precision, recall, and mAP with respect to epochs, for test-1 but we noticed 

there are a lot of fluctuations and spikes in the graphs while training our model, ultimately 

giving a very low recall of 54.8%. 
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Fig 31: Showing the Average Precision by class for Validation set results for test-1 

 

 
Fig 32: Showing the Average Precision by class for Test set results for test-1 

 

Although the precision also looks acceptable here, however, we can see that for the class of 

motorcycle, the model overfit. So, it could not detect any motorcycle in the test images. For 

that reason also, we needed to train our model again with more dataset images and epochs this 

time, in test-2. 

Test-2: 

We have used around 1000 dataset images to train in test-2 with 300 epochs this time. We 

obtained mean average precision (mAP) of 88.6%, precision of 85.9% and a recall of 78.9%. 

 
Fig 33: Mean average precision vs epochs for test-2 
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Fig 34: Box loss, Class loss and Object Loss vs epochs for test-2 

 

 
Fig 35: Loss, precision and recall graphs vs epochs for test-2 

 

This time, we notice that the fluctuations and spikes in the graphs decreased while training our 

model in test-2 compared to test-1, ultimately giving a higher recall of 78.9% 
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Fig 36: Showing the Average Precision by class for Validation set results for test-2 

 

 
Fig 37: Showing the Average Precision by class for Test set results for test-2 

 

It is clear here that the precision for validation and test, for all the images increased. For further 

improvement, we would be needing more dataset images. As we had to manually take dataset 

images from the CARLA simulator, it was a really lengthy process to take all the images and 

annotate them all. So, extracting these images turned out to be more time consuming than 

expected and so we have ultimately used our test-2 model to detect objects and conduct 

simulation in CARLA. 

Decision Model Results for CARLA 

For the result of the decision model, we obtained good results for the parameters specified for 

the model to give its decision. The decision model’s accuracy also depends on the accuracy of 

the object detection. As we obtained around 80% average precision for it, our decision model 

can give close to accurate results for the 4 classes detected. Below are some of the case 

examples we got from our decision model. 
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Fig 38: Vehicle in front but right lane is clear 

 

For the front vehicle in image from Fig. 38, we got distance, z = 480 - 308 - 153/2 = 95.5 which 

is less than 135 and x = 319 which is between 170 and 430. So, going straight is not possible. 

No object is detected in the right lane and so, our decision model gives the decision to change 

lane to the right. 

 

Fig 39: Motorcycle in front but a bit far 

Similarly, for the front motorcycle in image from Fig. 39, we got distance, z = 480 - 282 - 116/2 

= 140 which is barely more than 135 and we got x = 319 which is between 170 and 430. So, 

our decision model gives the decision to accelerate forward. However, if the motorcycle was a 

bit closer so much so that the value of z was less than 135, then our decision model would have 

checked the adjacent lanes, only to find here that there is a vehicle at the left as well. So, it 

would decelerate. 

As for the maneuver of our vehicle, it stops, accelerates, or changes lanes when required from 

the decision model. Sometimes, the lane changing is not always perfectly executed and so, a 

lane invasion sensor from CARLA is used to prevent our car from crossing the lane lines after 
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changing lane, unless another decision comes up from the decision criteria model to change 

lane. This ensures our vehicle maintains its lane at all cost. 

Simulation in CARLA based on Machine Learning: 

We passed the camera window from CARLA through our trained object detection model test-

2 to detect objects and then used the decision criteria for our detection model from camera and 

also from LiDAR to control our self-driving vehicle accordingly. 

1) Our vehicle detects a vehicle in front of it using a camera and stops, maintaining a 

minimum braking distance of 2 feet. 

 

 
Fig 40: Vehicle detecting front vehicle but still continuing as it is still not within braking distance 

 

 

 
Fig 41: Vehicle stops, keeping a minimum braking distance between it and the front vehicle 
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2) Our vehicle detects a person in front of it using Camera or LiDAR and stops, 

maintaining a minimum braking distance of 2 feet 

 

 
Fig 42: Vehicle stops, keeping a minimum braking distance between it and the front person 

 

 
Fig: 43 Vehicle continues as it finds the lane clear of obstacles 
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3) If our vehicle detects a vehicle in front of it, it checks its right or left lane whether there 

are obstacles or not. If not, it changes lane accordingly, which also meets our functional 

requirement. 

 

 
Fig 44: Vehicle detects other vehicle in front of it 

 

 
Fig 45: Vehicle changing lane 

 

 

We have considered the operating velocity in CARLA as default, either zero or moving at a 

specific speed, as all the other cars stop and move with the same speed all the time. However, 

in hardware implementation, we will be considering the speed while designing our vehicle. 
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Proteus Simulation: 

We also implemented our design in proteus software for lane changing for our self-driving car. 

 
Fig 46: Simulation Design in Proteus for Hardware implementation 

 

Implementing cameras and LiDAR is not possible in proteus software. So, in this design, 

instead of a LiDAR, we considered 3 ultrasonic sensors to detect objects in 3 lanes, and used 3 

LEDs, representing the car lights, to give indication for 3 lanes: forward, right, and left. When 

voltage in the test pins increases above 4.5 for the ultrasonic sensors, it indicates that it is not 

detecting obstacles in that direction. The forward sensor detection was prioritized compared to 

the left or right sensor in the code. 

 

1) When all of the 3 ultrasonic sensors are detecting obstacles ahead, the car stays or 

comes to a halt and all the LEDs turn off. 

 
Fig 47: All four wheels and LEDs turn OFF (Car at Halt) 
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2) When the obstruction at the front clears up, voltage increases at the test pin of forward 

sensor and all four wheels start to move forward. 

 

 
Fig 48: All four wheels moving forward and front LED turn ON (Car moving forward) 

 

3) When there is an obstacle at the front but the right lane is free of obstacles, then voltage 

increases at the test pin of the right sensor and all 3 wheels, except the front right wheel, 

start to move forward. This causes the car to turn and go to the right lane due to right 

rotational motion at the front right wheel (pivot) that is created by friction. 

 

 

 
Fig 49: All 3 wheels, except front right wheel, moving and right LED turn ON (Car moving to the right lane) 
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4) When there is an obstacle at the front but the left lane is free of obstacles, then voltage 

increases at the test pin of the left sensor and all 3 wheels, except the front left wheel, 

start to move forward. This causes the car to turn and go to the left lane due to left 

rotational motion at the front left wheel (pivot) that is created by friction. 

 

 
Fig 50: All 3 wheels, except front left wheel, moving and left LED turn ON (Car moving to the left lane) 

 

 

We have not implemented the braking system here, that causes the car to come to an immediate 

stop, as it is not possible for the motors used in proteus to do so. However, there will be a 

braking mechanism in the hardware design, and the car will come to a stop depending on the 

decisions taken. We tried to implement the design in proteus as much as possible to represent 

a self-driving car with LiDAR/ultrasonic sensors. 
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Comparison Analysis: 

We compared the two design approaches in the table below 

Table 5. Comparison Analysis of multiple designs 

 Parameters 

DESIGN APPROACH 1 (Rule-

Based) 

DESIGN APPROACH 2 

(Machine Learning) 

Cost 28,150 TK 28323 TK 

Precision 

Almost 100% precise but 0% for 

vehicles or obstacles outside of its GPS 

detection 

Around 89% precise for all obstacles 

Adaptability 
Limited to the predefined set of rules 

and conditions 

Can adapt to dynamic and ambiguous 

conditions  

Knowledge 

Representation 

Explicit rules are defined by human 

experts to guide the behavior of the self-

driving car 

The system learns from data without 

explicit programmed rules 

Real-time Data 

Requirements 

Need real-time coordinates of all objects 

in the entire region to function properly 

Need only real-time image of objects in 

front of our car to function properly  

Complexity 

Tracking cars will increase complexity 

exponentially as every car will be 

dependent on each other 

Less complex as cars are independent 

from each other 

Safety and 

Liability 

Can’t detect objects that do not give 

GPS signals, endangering people 

without phones. 

Safety higher since decision-making 

relies on learned patterns data of nearby 

environments 

Availability of 

components 

There is only one sensor (GPS) needed 

which is very common 

More sensors may be required for better 

performance, which may not be available 

Interpretability 

and 

Explainability 

High since it’s decision-making relies 

on clearly defined rules and logic 

Often lack interpretability as difficult to 

explain the reasoning behind it’s 

decisions 

Maintainability 
Easier to maintain as one sensor can be 

fixed easily when damaged 

Harder to maintain as tough to fix 

multiple sensors 

 

From the table, we can see a brief analysis of the two design approaches. We can see that both 

approaches have their merits by being advantageous in five parameters each. 

Both the approaches seem to have more or less the same costs to produce similar functionality. 

As we will be using only a single GPS sensor in our rule-based approach, it will be easier to 

maintain as well as manufacture due to the availability of components. Also, as this approach’s 

rules are constructed by us, it is easy to interpret and explain. Despite the pros of approach 1, 

there are some vital cons. The major one being the complexity. As each vehicle has to know 

the location of all vehicles in its vicinity, this creates an exponentially increasing complexity 

as the number of vehicles increases. Due to dependency on other vehicles, approach 1 can be 

considered less safe. Despite having a 100% precision, there is the possibility of a rogue vehicle 
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without any means of tracking it, which will lead to the precision to fall to 0%. Not only rogue 

vehicles, any person without a phone or means of transmitting location information is in danger 

of not being detected by the vehicles which can become very fatal if the particular situation is 

not declared in its predefined rules. 

On the other hand, the machine learning approach is extremely effective in compensating for 

the failings of the rule-based approach. It is less complex as it only processes real-time 

information in close proximity, while providing greater safety as the vehicle can be enabled to 

learn from its environments and thus be able to react properly to dynamic and ambiguous 

conditions on the road with the help of its camera, object detection models and decision criteria 

algorithms. 

2.5 Conclusion 

After the specific objectives and functional requirements were discussed in chapter 1, 2 types 

of design approaches were simulated and analyzed in CARLA simulator which meets the 

specified goals in different ways. The 2 design approach’s methodology have been explained 

in quite a lot of details along with their results. Finally, a comparison is made between the two 

approaches in terms of cost, precision, adaptability, knowledge representation, real-time data 

requirements, complexity, safety and liability, availability of components, interpretability and 

explainability, and maintainability. 

After analyzing, we can safely conclude that design approach 2 is the optimum solution for our 

desired outcome. We choose the machine-learning approach mainly because it can effectively 

work for unexpected situations and cars nearby by sensing them with only requiring real time 

front images. Rule-based approaches cannot consider cars outside of their set of rules, and 

complexity increases exponentially as cars are added to the set of rules, with the problem of 

not getting GPS signals from every obstacle and requiring real-time coordinates for all vehicles 

in the region. 
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Chapter 3 

Use of Modern Engineering and IT Tool 

3.1 Introduction 

Numerous IT tools have been employed to ensure the project's successful execution. Prior to 

the actual hardware implementation, they assisted in assessing the design and performance of 

each design method and identifying areas that needed improvement. As a result, the ideal 

design could be confirmed. 

3.2 Select appropriate engineering and IT tools 

3.2.1 CARLA Simulator 0.9.14 

CARLA Simulator is an open-source software which helps in the simulation of autonomous 

vehicles [28]. CARLA simulator is famous for its reliability and user-friendly interface. The 

Simulator has certain Characteristics:  

1. Support development of autonomous driving systems. 

2. Training of autonomous driving systems. 

3. Validation of autonomous driving systems. 

The Simulator has certain features which help it in imitating the real-world interface. It has 

urban layouts, buildings, vehicles this is pre-built and can be used with ease. Users can tune 

the various environmental settings along with the environmental conditions, sensor suites, 

maps and various other options [28]. The software has certain Key features: 

● Quickstart: It is extremely effortless to get started with a CARLA simulator. 

● Actors: This simulation tool has pedestrians, traffic signals as well as pedestrians in 

order to give a real world taste. 

● Sensors: CARLA has a wide variety of sensors to use like LIDAR, RADAR as well as 

cameras [28]. 

● ROS bridge: The Robot Operating System of CARLA helps the endless connection. 

● Scalability: It has a multi-client architecture which is server based. 

● Flexible API: The different interfaces can be tuned such as the simulation, including 

pedestrian behaviors, weathers, traffic generation, sensors, etc.  

● Fast simulation for planning and control: Fast execution is possible in CARLA which 

enables fast execution of traffic simulation and road behaviors for which graphics are 

not required [28]. 
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Table 6. Reasons why to choose Carla over Udacity: 

  

 Open-Source Complex 

Environments 

Sensor 

Support 

Customization Real-World 

Applications 

Carla 

Simulator 

Yes Yes Wide 

range 

Wide range 

possible 

Yes 

Udacity 

Simulator 

Yes (but very 

Limited) 

Very Limited Few 

available 

Very Limited No 

 

3.2.2 Python 3.7 

It is a type of computer programming language mainly used to build software and do software 

related works, automate tasks, and conduct data analysis. It is highly suitable for usage in 

CARLA. 

3.2.3 Sublime Text 3  

It is a type of shareware text and source code editor. The main work of it is to support and edit 

the programming languages and markup languages including python. 

3.2.4 Anaconda Prompt 

Anaconda is an open-source platform that is used for data science and machine learning tasks. 

Anaconda Prompt allows users to interact with Python and Anaconda packages through the 

command line. It provides a way to manage Python environments, install packages, and run 

scripts or applications. 

3.2.5 Google Collab 

Google Colab is an online platform that allows users to write and execute Python code 

collaboratively. It provides a Python programming environment in the form of Jupyter 

Notebooks. 

3.2.6 Proteus 

It is basically a software used to design and analyze the electronic circuit. We have used it for 

our hardware design implementation of our self-driving car. It has the following characteristics: 

1. Electronic circuit design. 

2. Simulation of the designed circuit. 

3. PCB (Printed Circuit Board) of the designed circuit. 

 

It has a lot of key features which makes it the suitable software for designing circuits [32]. 
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● Library of Components: Proteus has a wide range of library components which 

electrical engineers need in their daily life. We will be using Arduino UNO, motor 

drivers, motors, LEDs, ultrasonic sensors and potentiometers to design our circuit. 

● Schematic Capture: Proteus allows the users to create electronic circuit schematics 

with a range of components like microcontrollers, resistors, sensors, capacitors, 

transistors, and many more so that the user can get a real world experience. 

● Simulation: Proteus has the ability to showcase simulation as a result, the users can 

access the electronic circuits by analyzing its behavior, tuning necessary voltage, 

current flow, and finally observe how the circuit functions [32].  

● Microcontroller Simulation:  Proteus has a library which contains microcontroller 

models used in various embedded systems. We can write code in the required 

language and then add the file in the proteus which inturn helps the microcontroller 

to run properly.  

● PCB Design: Proteus has a library and component list which helps in routing, power 

ring management, power meshing then arranging components, defining board 

layers, etc [32]. However, we will not be using this. 

● Interactive Debugging: Proteus has a very user-friendly troubleshooting and 

debugging platform that helps users to analyze, energize then re-energize their 

circuits if needed. 

3.2.7 Arduino IDE 

Arduino IDE or Arduino Integrated Development Environment is nothing but a software which 

gives a platform to electrical engineers to develop various circuits and modules using the 

Arduino microcontroller board. Arduino UNO has the following characteristics: 

1. Open-source hardware. 

2. Interactive electronic projects design. 

3. Quick Prototype generation [33]. 

3.2.8 Cascade Trainer GUI 

A tool for training, testing, and refining cascade classifier models. To establish the parameters 

and make using OpenCV tools for training and testing classifiers simple, it employs a graphical 

user interface [34]. 

3.2.9 CodeBlocks  

The cross-platform, free, and open-source IDE that is compatible with GCC, Clang, and Visual 

C++ among other compilers. It is created in C++ with the GUI toolkit wxWidgets [35]. 
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3.2.10 C++ Programming Language 

An expansion of the C programming language, C++ is a strong and flexible programming 

language. It was created to supplement C's procedural programming tools with object-oriented 

programming functionality [36]. 

3.2.11 VNC Viewer  

VNC (Virtual Network Computing) Viewer is a client application that allows users to connect 

to and control a remote computer running a VNC server. VNC is a graphical desktop-sharing 

system that enables remote access and control of another computer's desktop environment [37]. 

3.2.12 PuTTY 

PuTTY is a free and open-source terminal emulator, serial console and network file transfer 

application. It supports several network protocols, including SCP, SSH, Telnet, rlogin, and raw 

socket connection. It can also connect to a serial port [38]. 

3.2.13 Geany Programming Editor  

Using Scintilla and GTK, Geany is a lightweight GUI text editor that is free and open-source 

and offers rudimentary IDE functionality. It exists inside Raspberry Pi interface for coding 

purposes. It is intended to load quickly and require little in the way of external libraries or 

distinct packages on Linux [39]. 

3.2.14 OpenCV 

OpenCV is an open-source computer vision and machine learning library widely used for 

image and video processing. It provides tools for tasks such as image manipulation, feature 

detection, object recognition, machine learning, camera calibration, and deep learning. 

OpenCV is cross-platform, supports various programming languages, and is commonly used 

in applications like computer vision research, robotics, and augmented reality [40]. 

3.3 Use of modern engineering and IT tools 

3.3.1 CARLA Simulator 0.9.14 

CARLA Simulator was used as the primary environment for both approach one and two 

software simulations. It was ideal for its easy-to-use user interface and keen use of real-world 

physics. The environmental elements and sensors were easily accessible through appropriate 

codes which were conveniently provided in their official website. The allowed use of GPS and 

camera modules perfectly aligned with our design approaches, providing us the perfect scenario 

to conduct our design and identify improvements. 

3.3.2 Python 3.7 

We used Python programming language during the simulation to write codes for both of our 

approaches and mold the environment in CARLA Simulator. The ease of use of the python 

language helped us to easily grasp the working understanding of the required models and to 
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quickly write up our code. The vast resources of the Python language on the internet were also 

a reason for choosing Python as our language of choice in simulation. 

3.3.3 Sublime Text 3  

We used Sublime Text as our primary source code editor tool to write codes to control the 

environmental elements within the CARLA Simulator. Its simple interface provided an 

excellent editing experience.  

3.3.4 Anaconda Prompt 

Anaconda Prompt served as the intermediary between our codes compiled in Sublime Text, 

Google Collab, and CARLA Simulator. Anaconda Prompt allowed us to run our codes to 

change the environmental elements and extract data from sensor modules and execute them in 

the CARLA Simulator. It also displays extracted data from the sensor modules like GPS and 

camera. Anaconda Prompt basically provides an easy and swift method to communicate with 

CARLA Simulator with Sublime Text. It also allowed us to deploy our trained models from 

Google Collab to CARLA Simulator, allowing the agent vehicle to work autonomously. The 

model was also coded to extract data which were displayed again in Anaconda Prompt.   

3.3.5 Google Collab 

We used Collab to run and test our model training. We used its innovative and revolutionary 

concept of sharing computing resources to run our object detection and decision criteria 

models. Running a model is very taxing on the computer and requires a very high configuration 

to train in a timely fashion. Collab allowed us to use a fraction of the computing power available 

at Google to run our models, leaving us to work efficiently on our personal computers. The fact 

that Collab is compatible with Python language helped us to work with ease and convenience. 

3.3.6 Proteus 

Proteus was used in the simulation of the vehicle maneuver subsystem using Arduino UNO 

and L298N Motor Driver. Proteus allowed us to run and tune a software simulation for our 

vehicle maneuver subsystem. Using Proteus, we were able to understand the required 

connection that is needed between the L298H Motor Drive and Arduino, also we were able to 

deploy the code required by the Arduino to move the vehicle. 

3.3.7 Arduino IDE 

Arduino IDE provided us with a source code editor to code our Arduino UNO to run to 

specification. All necessary coding done for the Arduino was done through this IDE. We 

implemented the code here for our Arduino UNO in proteus software, and to control the motors 

in hardware according to the decisions made by the Raspberry Pi. 

3.3.8 Cascade Trainer GUI. 

We used this in hardware to train our 3 object detection models using positive and negative 

samples for each, and then detecting them in running conditions. It provided us with a simple 

way of detecting objects, consuming less power for more accuracy when used in Raspberry Pi. 
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3.3.9 CodeBlocks  

We did C++ coding in the hardware system to verify and put in Raspberry Pi for operation. It 

seemed more convenient to do the coding here. 

3.3.10 C++ Programming Language 

Our Raspberry Pi provided good support for C++ programming and it is convenient for our 

project so, we used it to develop our coding for Raspberry Pi during hardware implementation. 

3.3.11 VNC Viewer 

We used this to connect to our Raspberry Pi for any operation, even when in running conditions 

in hardware design. It was faster and more efficient to use rather than using our PC’s built-in 

remote desktop connection app to connect and view our Raspberry Pi desktop and real-time 

camera displays of Raspberry Pi camera. 

3.3.12 PuTTY 

We initially used PuTTY in hardware to connect to our Raspberry Pi from PC, installed the 

graphical user interface and other packages, and enabled VNC viewer for our Raspberry Pi, 

after which we switched to VNC viewer for further operations as PuTTY cannot provide a 

desktop environment and was comparatively slower than VNC viewer. 

3.3.13 Geany Programming Editor  

We used the internal Geany Programming Editor inside the Raspberry Pi to build and run our 

codes, after we designed our code in CodeBlocks during hardware implementation. We further 

had to modify or tune our code in Geany Programming Editor after running some test runs, to 

improve our results. So, it helped in doing trials and errors for our system. 

3.3.14 OpenCV 

We installed OpenCV in our Raspberry Pi for important operations related to our image 

processing and deep learning models. It provided a comprehensive set of tools and algorithms 

for image and video processing. It also supported our Raspberry Pi camera, providing an 

interface to capture and process frames from cameras and enabling seamless integration with 

our Raspberry Pi camera in hardware. 

3.4 Conclusion 

Throughout the project's development and execution stages, the aforementioned engineering 

and IT tools have been employed. With the use of these tools, we were able to evaluate the 

practicality of each design strategy and select the optimal one for hardware implementation. 

These tools have sped up the design process by enabling the identification of various strengths 

and restrictions of the design methods. For the development of the final prototype, these tools 

also proved to be efficient and helpful to enable a smooth design process for us. 
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Chapter 4 

Optimal Solution and Optimization of the Optimal Solution 

4.1 Introduction 

After analyzing and comparing the multiple design approaches in simulation, design approach 

2 was found to be the optimal design, considering multiple parameters. This design approach 

was implemented extensively in hardware and several test runs were conducted to analyze its 

performance. The design fulfilled all the objectives and requirements with acceptable accuracy. 

However, there was a potential to further increase the accuracy of its operations and so, several 

optimizations were done on both software and hardware design which gave better results and 

increased their performance. 

4.2 Identification of Optimal Design Approach 

We compared the two design approaches in Table 7 below to find out the optimal design 

approach.  

Table 7 Comparison Analysis summary of the three multiple design approaches 

 Parameters 

DESIGN APPROACH 1 (Rule-Based) DESIGN APPROACH 2 

(Machine Learning) 

Cost 28,150 TK 28323 TK 

Precision 
Almost 100% precise but 0% for vehicles 

or obstacles outside of its GPS detection 
Around 89% precise for all obstacles 

Adaptability 
Limited to the predefined set of rules and 

conditions 

Can adapt to dynamic and ambiguous 

conditions  

Knowledge 

Representation 

Explicit rules are defined by human experts 

to guide the behavior of the self-driving car 

The system learns from data without explicit 

programmed rules 

Real-time Data 

Requirements 

Need real-time coordinates of all objects in 

the entire region to function properly 

Need only real-time image of objects in front 

of our car to function properly  

Complexity 

Tracking cars will increase complexity 

exponentially as every car will be 

dependent on each other 

Less complex as cars are independent from 

each other 

Safety and 

Liability 

Can’t detect objects that do not give GPS 

signals, endangering people without 

phones. 

Safety is higher since decision-making relies 

on learned patterns data of nearby 

environments 

Availability of 

components 

There is only one sensor (GPS) needed 

which is very common 

More sensors may be required for better 

performance, which may not be available 

Interpretability 

and 

Explainability 

High since it’s decision-making relies on 

clearly defined rules and logic 

Often lack interpretability as difficult to 

explain the reasoning behind it’s decisions 

Maintainability 
Easier to maintain as one sensor can be 

fixed easily when damaged 

Harder to maintain as tough to fix multiple 

sensors 
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From Table 7, we can see a brief analysis of the two design approaches. We can see that both 

approaches have their merits by being advantageous in five parameters each. 

 

Both approaches seem to have more or less the same costs to produce similar functionality. As 

we will be using only a single GPS sensor in our rule-based approach, it will be easier to 

maintain as well as manufacture due to the availability of components. Also, as this approach’s 

rules are constructed by us, it is easy to interpret and explain. Despite the pros of approach 1, 

there are some vital cons. The major one being the complexity. As each vehicle has to know 

the location of all vehicles in its vicinity, this creates an exponentially increasing complexity 

as the number of vehicles increases. Due to dependency on other vehicles, approach 1 can be 

considered less safe. Despite having a 100% precision, there is the possibility of a rogue vehicle 

without any means of tracking it, which will lead to the precision to fall to 0%. Not only rogue 

vehicles, any person without a phone or means of transmitting location information is in danger 

of not being detected by the vehicles which can become very fatal if the particular situation is 

not declared in its predefined rules. 

On the other hand, the machine learning approach is extremely effective in compensating for 

the failings of the rule-based approach. It is less complex as it only processes real-time 

information in close proximity, while providing greater safety as the vehicle can be enabled to 

learn from its environments and thus be able to react properly to dynamic and ambiguous 

conditions on the road with the help of its camera, object detection models and decision criteria 

algorithms. 

After analyzing, we can safely conclude that design approach 2 is the optimum solution for our 

desired outcome. We choose the machine-learning approach mainly because it can effectively 

work for unexpected situations and cars nearby by sensing them with only requiring real-time 

front images. Rule-based approaches cannot consider cars outside of their set of rules, and 

complexity increases exponentially as cars are added to the set of rules, with the problem of 

not getting GPS signals from every obstacle and requiring real-time coordinates for all vehicles 

in the region. 

 

4.3 Optimization of the optimal design approach 

4.3.1 Optimization of the optimal design in Software 

As our design approach-2, the machine learning approach, turned out to be the optimum 

solution for our desired outcome, to optimize it further we have tried getting more dataset 

images from CARLA and trained our model again for a third time (Test-3) to get a more 

accurate model. 

We have used around 1500 dataset images to train this time in test-3. We obtained mean 

average precision (mAP) of 88.2%, a precision of 82.9%, and a recall of 83.2%. 
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Fig 51: Mean average precision vs epochs for test-3 

 
Fig 52: Box loss, Class loss and Object Loss vs epochs for test-3 

 

 
Fig 53: Loss, precision and recall graphs vs epochs for test-3 

This time, we notice that the fluctuations and spikes in the graphs further decreased while 

training our model in test-3 compared to test-2, ultimately giving a higher recall of 83.2% 
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4.3.2 Optimization of the optimal design in Hardware 

Similarly, to optimize our optimal design in hardware further, we made more dataset images 

using Raspi-cam and used them to train in Cascade Trainer GUI again to get more accurate 

object detection models for the 3 objects to get detected better. We used around 500 to 600 

images to train the models this time and verified the accuracy by running several test runs of 

our prototype car on our track. 

We also had to fine-tune our histogram calculations for more accurate lane detection. Also, the 

car could not turn enough to maintain its position on a highly curved lane. So, we had to 

increase the turning speed for those turns in Arduino. When a higher left turn was needed, the 

speed for the two left-side wheels was decreased further, whereas the speed for the two right-

side wheels was increased further. Similarly, a higher right turn was executed. 

Moreover previously, when we decided on our action of moving 0.5 seconds after stopping for 

4 seconds at a stop sign, we sometimes encountered the problem where even after moving for 

0.5 seconds, our car still detected the stop sign for the second time and stopped for a second 

time as well for 4 seconds. So, to solve this, we increased the time our car has to travel to 1 

second from 0.5 seconds, after stopping for 4 seconds, before taking the next decision. In this 

way, it does not detect the stop sign for a second time after moving 1 second ahead. 

 

4.4 Performance Evaluation of Developed Solution 

4.4.1 Performance Evaluation for Software Design 

 
Fig 54: Showing the Average Precision by class for Validation set results for test-3 
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Fig 55: Showing the Average Precision by class for Test set results for test-3 

 

It is clear here that the precision for validation and test, for all the images increased. Our 

average precision for test images increased from 80% in test-2 to 88% in test-3 for all classes. 

Especially for the bicycle and motorcycle, their average precision in test images increased from 

58% to 78% and from 77% to 85% respectively, which is a huge improvement. If we have 

more time, these statistics can be further improved by collecting more and more dataset images 

and annotating them further to train and improve our model. 

 

4.4.2 Performance Evaluation for Hardware Design 

We ran several test runs of our prototype car on our track and verified the accuracy before and 

after optimization. The accuracy of image processing, object detection, decision model, and 

vehicle maneuver were all found out collectively by determining the successful path our car 

takes on Lane lines, Lane End, traffic signal, stop sign, and car detection. 

Table 8. Accuracy of correct operation for our prototype car before and after optimization 

Operation No. of tests Accurate 

Operations 

before 

optimization 

Accurate 

Operations after 

optimization 

Accuracy before 

optimization 

Accuracy after 

optimization 

Lane Maintaining 

operation 

23 18 22 78.3% 95.6% 

U-Turn operation at 

Lane End 

16 10 12 62.5% 75% 

Lane Changing 

operation at car 

detection 

19 13 16 68.4% 84.2% 

Traffic Signal 

operation 

16 12 14 75% 87.5% 

Stop Sign 

operation 

18 15 17 83.3% 94.4% 
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From Table 8 above, we have compared results before and after optimization. It can be seen 

that accuracy for all of the operations increases due to the optimization done. Our car maintains 

lane and stops at stop signs with around 95% accuracy, whereas lane changing operation and 

traffic signal operation had an accuracy of around 85%. 

U-Turn operation has relatively lower accuracy (75%) than the others and this is due to the 

varying speed of our motor. As we run our prototype again and again, the battery that drives 

the motors depletes continuously. This causes our motors to run slower and this hampers the 

U-Turn operation. When our car has to take a U-Turn, specific Arduino commands are run with 

fixed specific speeds to the motor drivers for our car to turn, go forward, turn again, and 

continue. During this time, our car does not detect any other things so, if speed varies at this 

time, it may move out of the lane sometimes. We can improve this by using a stable power 

supply for our motor drivers, instead of batteries that deplete and change speed over time. 

So, overall we got 81 accurate operations out of 92 test runs and so, accuracy of our optimized 

system was 88% altogether. 

4.5 Conclusion 

In this chapter, we found out that the second design was the most optimal one based on the 

analysis in Table 7 considering cost, precision, adaptability, knowledge representation, real-

time Data, requirements, complexity, safety and liability, availability of components, 

interpretability and explainability, and maintainability. This design approach was implemented 

in hardware with some general modifications and its performance was evaluated. For further 

optimization of the optimal design, machine learning models were trained with more datasets, 

histogram calculations were further fine-tuned, turning speed was increased for higher turns, 

and time for moving past stop sign was increased. After these optimizations, the system gave 

much better results and accuracy during test runs. The overall accuracy of our optimized system 

was 88%, combining all the test runs. 
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Chapter 5 

Completion of Final Design and Validation 

5.1  Introduction 

 

After various optimizations and considerations, we got our final design for the machine 

learning approach in the hardware system. Our final system was judged based on 5 actions: 

Maintaining Lane operation, U-turn operation at Lane End, Lane Changing operation at car 

detection, Traffic Signal operation, and Stop Sign operation. The optimized design was tested 

92 times and in 81 of those cases, our car was found to be working properly. In this chapter, 

we will elaborate on our final design and evaluate each and every operation of our car. 

 

5.2  Completion of Final Design 

 

 

 
Fig 56: Final Design of self-driving car prototype, along with other objects 
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Fig 57: Final Design System flowchart 

 

For our final design, we used deep learning (Haar cascade), openCV, image processing and 

decision criteria to effectively train, detect, and run our self-driving car in our lanes. This is an 

embedded IOT design as well, with machine learning. 

Our main subsystems are fed into Raspberry Pi, which will detect, decide, and send commands 

to the Arduino to maneuver the wheels accordingly using the motor driver and motors. 

Our Arduino can conduct some specific action commands, such as forward, backward, stop, 

and U-turn to send to our motor drivers according to the decisions taken by Raspberry Pi. 3 

types of left movements and 3 types of right movements exist, each having a different 

magnitude of turn, and only one of them occurs every time our raspberry decides on relative 

lane center position after analyzing the image it is getting, and sends its decision to the Arduino 

through its 4 digital pins to adjust and maintain the lane. 

5.2.1 Image processing 

Our Raspberry Pi does image processing for lane detection, where it converts image signature 

(BGR to RGB), creates a region of interest, does perspective transformation (Bird Eye View) 

on that region, threshold operations to extract white lane lines, canny edge detections on those 

lines, finds exact lane positions from the lines using histogram and various calculations, 

calibrates to map lane center to frame center and finally find the relative difference between 

them to know how much our car needs to move left or right to match its frame center to the 

lane center. This is sent to the Arduino for command. 
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5.2.2 Object Detection using Haar Cascade Algorithm 

Our Raspberry Pi also uses 3 trained object detection models from Cascade Trainer GUI 

software that uses the Haar cascade algorithm. These were trained 3 times for 3 objects using 

3 sets of positive and negative image samples in Cascade Trainer GUI to obtain 3 models. 

These are fed into the Raspberry Pi to detect them in running conditions. For all the objects, 

Raspberry Pi makes decisions when it is detected to exist between 5 to 20 centimeters ahead of 

the car, and sends commands accordingly to the Arduino for vehicle maneuver with the help 

of 4 digital pins. 

The whole process of detecting, analyzing, making decisions, and moving is repeated for the 

next image obtained from a Raspberry Pi camera, for the continuous operation of our self-

driving car. 

5.2.3 Decision Model 

To use the pixel dimensions of the bounding boxes and determine the distance from the objects, 

the following equations were used by our Raspberry Pi: 

For both stop sign and traffic signal detection, distance = −1.07 × width  +102.597 

For car detection, distance = −0.48 × width +56.6 

Additionally, our Raspberry Pi can find out our deviation value from our lane, and the Lane 

End intensity value using image processing. It makes decisions based on them, as well as the 

3 object detections. Finally, there will be 11 conditions to choose from and the respective 

commands, in the form of digital numbers of 4 bits, will be sent to the Arduino for vehicle 

maneuver, as shown in Fig. 58. 

 
Fig 58.  Decision model of final design 

 

If a stop sign is detected and the distance is more than 5 cm but less than 20 cm, then the 

Raspberry Pi sends a command to the Arduino to stop the car for 4 seconds, and then move 

ahead for 1 second to overtake the stop sign and take the next decision. 
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If a traffic signal with a red light is detected and the distance is more than 5 cm but less than 

20 cm, then the Raspberry Pi sends commands to the Arduino to keep on stopping the car for 

2 seconds continuously, until the red light changes to green light, or turns off completely. 

If a car ahead is detected and the distance is more than 5 cm but less than 30 cm, then the 

Raspberry Pi sends a command to the Arduino to make the car change its lane. For this, a turn 

is taken using motor drivers, followed by a forward operation and then a reverse turn to align 

with the new lane. Then, after continuing forward on the new lane for some time while checking 

for other detections, the car comes back to its previous lane in a similar way with a different 

direction, ultimately overtaking the car that it had detected before. 

If the histogram value of the region of interest exceeds 4500, then it indicates a lane end, and 

the Arduino makes our car take a U-Turn with the help of the motor driver. It rotates 90 degrees 

in one direction, moves forward for 1 second, then rotates 90 degrees in the same direction, 

before continuing to run on the second lane. 

The rest 7 conditions are kept to maintain our car on the lane. If the deviation value is 0, the 

car moves forward. If the deviation value comes out to be between 0 to 10, then a low right 

turn is executed by varying the velocities of the left and right wheels. If the deviation value 

comes out to be between 10 to 20, then a normal right turn is executed. If the deviation value 

comes out to be more than 20, then a high right turn is executed. Similarly low, normal, and 

high left turns are executed but for negative deviation values, depending on the magnitude. 

 

5.3  Evaluation of the solution to meet desired needs 

5.3.1 Maintaining Lane 

As discussed before, for our car to maintain its lane, the deviation value is calculated from the 

processed image and the car maneuvers accordingly based on that value. 

 

Fig 59: Vehicle having its frame center match with lane center perfectly, with no deviation 



Page | 59  

 

 

Fig 60: Vehicle moving forward after getting a deviation value of 0 

In Fig. 59, our self-driving car is at the center of the lane, with its front frame center matching 

perfectly with the lane center. So, there is no deviation and our car continues to move forward 

as shown in Fig. 60. 

 

 

Fig 61: Vehicle having a difference of 12 units between its frame center (blue) and lane center (green) 

In Fig. 61, our self-driving car is facing left compared to the lane, with its front frame center 

having a difference of 12 units with the lane center. So, there is a positive deviation value and 

our car needs to move normally right according to the decision model until it matches its frame 

center with the lane center. 
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Fig 62: Vehicle having a difference of -21 units between its frame center (blue) and lane center (left green) 

In Fig. 62, our self-driving car is facing right compared to the lane, with its front frame center 

having a difference of -21 units with the lane center. So, there is a deviation value less than -

20 and our car needs to move to a high left according to the decision model until it matches its 

frame center with the lane center. 

 

5.3.2 U-Turn Operation at Lane End 

As discussed before, if the histogram value of the region of interest of the processed image 

exceeds 4500, then our car decides to take a U-Turn 

 

 

Fig 63: Vehicle detecting Lane End after reaching a value of 4500 and deciding on taking a U-Turn 
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Fig 64: Vehicle taking a U-Turn 

5.3.3 Lane Change operation at car detection 

 
As mentioned before, our car decides to change lanes after detecting a car ahead within 5 to 30 

cm. Raspberry Pi calculates the width of the bounding box in pixels and finds out the distance 

the detected car is from our vehicle, before deciding on changing lanes. 

 

 

Fig 65: Vehicle detecting car ahead with a bounding box width of 93 pixels 

In Fig. 65, the vehicle detects a car ahead having a bounding box width of 93 pixels. To find 

out the distance using this, 

Distance = −0.48 ×  93 + 56.6 =  11.96  cm 

So, this distance falls between 5 to 30 cm and the vehicle decides to change lanes to the left, as 

shown in Fig. 66 

 

Fig 66: Vehicle detecting car ahead within 5 to 30 cm and changing lanes to the left 
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5.3.4 Traffic Signal operation 

 

Our car stops if it detects a traffic signal with a red light ahead between 5 to 20 cm. It stops 

continuously for 2 seconds if it keeps on detecting the red traffic signal between 5 to 20 cm. If 

green signal is given, then it does not detect it anymore and continues along the lane, as green 

signals were considered negative samples while training its object detection model. Raspberry 

Pi calculates the width of the red traffic signal bounding box in pixels and finds out the distance 

the detected traffic signal is from our vehicle, before making a decision of stopping. 

 

 

Fig 67: Vehicle detecting traffic signal with red light ahead with bounding box width of 87 pixels 

In Fig. 67, the vehicle detects a red traffic signal ahead having a bounding box width of 87 

pixels. To find out the distance using this, 

Distance = −1.07 ×   87 + 102.597 =  9.507  cm 

So, this distance falls between 5 to 20 cm and the vehicle decides to stop as shown in Fig. 68, 

until the traffic turns green and it does not detect a traffic signal anymore and continues forward 

as shown in Fig. 69. 

 

Fig 68: Vehicle detecting red traffic signal ahead within 5 to 20 cm and decides to stop 



Page | 63  

 

 

Fig 69: Vehicle no more detecting red traffic signal ahead within 5 to 20 cm and decides to move on 

 

5.3.5 Stop Sign operation 

 

As mentioned before, our car stops for 4 seconds and then moves on for 1 second, if it detects 

a stop sign ahead within 5 to 20 cm. Raspberry Pi calculates the width of the stop sign bounding 

box in pixels and finds out the distance the detected stop sign is from our vehicle, before making 

a decision of stopping for 4 seconds and then moving on for 1 second. 

 

 

Fig 70: Vehicle detecting stop sign ahead with bounding box width of 90 pixels 

In Fig. 70, the vehicle detects a car ahead having a bounding box width of 90 pixels. To find 

out the distance using this, 

Distance = −1.07 ×   90 + 102.597 =  6.297  cm 

So, this distance falls between 5 to 30 cm and the vehicle decides to stop for 4 seconds and 

then moves on for 1 second before taking the next decision, as shown in Fig. 71 below. 
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Fig 71: Vehicle detecting stop sign ahead and decides to stop for 4 seconds before moving on for 1 second 

 

5.3.5 Performance Analysis 

We ran several test runs of our prototype car on our track and verified the accuracy of the final 

design. The accuracy of image processing, object detection, decision model, and vehicle 

maneuver were all found out collectively by determining the successful path our car takes on 

Lane lines, Lane End, traffic signal, stop sign, and car detection. 

Table 9. Accuracy of our self driving car’s operations 

Operation No. of tests Accurate Operations Accuracy 

Lane Maintaining operation 23 22 95.6% 

U-Turn operation at Lane End 16 12 75% 

Lane Changing operation at 

car detection 

19 16 84.2% 

Traffic Signal operation 16 14 87.5% 

Stop Sign 

operation 

18 17 94.4% 

 

From Table 9 above, it can be seen that accuracy for all of the operations are quite acceptable. 

Our car maintains lane and stops at stop signs with around 95% accuracy, whereas lane 

changing operation and traffic signal operation had an accuracy of around 85%. 

U-Turn operation has relatively lower accuracy (75%) than the others and this is due to the 

varying speed of our motor. As we run our prototype again and again, the battery that drives 

the motors depletes continuously. This causes our motors to run slower and this hampers the 

U-Turn operation. When our car has to take a U-Turn, specific Arduino commands are run with 

fixed specific speeds to the motor drivers for our car to turn, go forward, turn again, and 

continue. During this time, our car does not detect any other things so, if speed varies at this 

time, it may move out of the lane sometimes. We can improve this by using a stable power 

supply for our motor drivers, instead of batteries that deplete and change speed over time. 
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5.4  Conclusion 

We can conclude that our final design meets all of our objectives and requirements with good 

accuracy. Our car can accurately maintain its lane, take a U-turn at Lane End, and change lanes 

at car detection. Moreover, it can stop at red traffic signals and start moving at green traffic 

signals. It also achieved the objective of stopping at stop signs. All of these operations had an 

overall accuracy of 88% for 92 test runs that we executed on our hardware design. So, we can 

safely say that all of our objectives and project requirements were met successfully. 
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Chapter 6 

Impact Analysis and Project Sustainability 

6.1 Introduction 

Project impact analysis explains how the project will impact the stakeholders, the surroundings 

like the environment, economy, and even people in the future. Here the aim is to understand 

the likely impacts of the project both favorably and unfavorably in the future. This part is 

crucial in understanding the events and consequences that our project holds for the future. Here, 

the project impact analysis can be described as - safety, societal, environmental, economic and 

legal.  

6.2 Assess the impact of solution 

6.2.1 Safety Impact 

Implementing this design will help with safe driving and significantly avoiding road accidents 

and fatalities. Passengers and other passersby on the roads will feel safe knowing about this 

project implementation. 

Many news reports have been heard and observed where drivers get into accidents during 

changing lanes, especially in highways with cars at high speeds. Accidental issues also appear 

when drivers feel tired and fall asleep while driving, and even sometimes when under influence 

of alcohol or other drugs. With our self-driving technology and automatic lane changing 

system, cars will be able to react very quickly, even quicker than human drivers in accordance 

with the surrounding environment[41]. This will positively affect the safety of the stakeholders 

like all passengers and other bystanders, and in turn increase the quality of life.   

6.2.2 Societal Impact 

With the implementation of our design, the self-driving system greatly affects people elderly 

people, people unable to drive and even disabled people like amputees, people with vision and 

hearing impairments[42].  

The design we have implemented in cars follows smooth lane maintenance, lane changing, 

traffic light detection, detection of other traffic on the road, stop sign detection and can even 

take U-turns. This requires very less supervision from human drivers. Human drivers in long 

drive need periodic stops to rest and regain energy to drive, whereas the automated system 

designed requires little supervision and input from drivers which in turn puts less stress on the 

human drivers and they can drive for a longer period of time. Amputees like people with one 

hand or one leg will be able to drive using this system smoothly without any trouble, even 

people with vision and hearing impairments can use this system to drive cars during 

emergencies since very little supervision is required manually from the drivers. In addition to 

this, another societal impact will be consumer skepticism. Consumers will not blindly trust this 

system as this is new in the market and has not been used for a very long time yet.     
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6.2.3 Environmental Impact 

Automobiles, especially cars, have high carbon emissions and contribute to global warming. 

With an increasing number of vehicles on the road every year, it is vital to analyze this situation 

and bring the carbon emissions under control somehow. 

The system designed here will not have any carbon emissions or environmental inpacts itself. 

But the system has an automated braking and accelerating process which will smoothly take 

decisions when to brake and when to accelerate following the surroundings. With maintaining 

average speed and gradual acceleration and deceleration, the cars with this system can maintain 

fuel efficiency, thereby burning less fuel and contributing less towards global warming. 

6.2.4 Economical Impact 

New cars with this self-driving technology will outgrow the old technologies, making them 

obsolete. This in turn will force the old car manufacturers to close down their factories,  dump 

their machinery and sack their employees. This might greatly impact the economy of many 

countries as factory workers, Uber drivers and taxi drivers will be out of jobs. On the bright 

side, with these new technologies, car manufacturers will have to open new factories and 

replace their old technologies, which will create job displacements. Existing employees will 

learn new skills and techniques, and many new engineers and technicians specializing in self-

driving systems will be hired, which will increase new employment opportunities and create a 

whole new demand market for workers. 

6.2.5 Legal Impact 

Like most self-driving cars, our system will collect vast amounts of personal data including 

real-time location information and many other data from the additional sensors. These data 

generated are exclusive to each car and their drivers and all the data are sent to cloud servers 

for better maintenance of safety and road rules. These data are crucial for the driver and 

passengers and must be protected at all costs [43]. 

Our system follows every required code and applicable standards linked to the system. The 

idea of self-driving cars is very delicate when it comes to implementation, as people have trust 

issues with the performance of self-driving cars from the beginning. So maintaining all the 

legal rules and regulations while manufacturing the system is a legal necessity which must be 

addressed.  

6.3 Evaluate the sustainability  

The main components used for the project are Raspberry Pi, arduino, motor driver and micro 

SD card which are very durable and cost efficient. These can be made further durable by 

applying protective layers around them, inside the car systems for long-term usage. These 

components have very low power consumption compared to other car systems which make 

them economically sustainable and productive for a long time. The system does not have any 

environmental impact itself, so it can be said that it is very safe. However regular tests must be 

done to check the accuracy of the system, and small maintenance will be required from time to 

time.  
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6.4 Conclusion 

To conclude, this system provides mostly a self-driving system which will require little to no 

human intervention. Human drivers and passengers can rest at ease knowing their car will 

safely maintain and change lanes and operate properly. In addition to this, the system offers 

more safety features than existing car technologies as the system has lower reaction time to 

operate than human drivers. Moreover the manufacture of the system is very cost efficient and 

long lasting which makes the system very durable and sustainable. Last but not the least, the 

legal requirements of the system falls in with all the applicable codes and standards of road 

rules and regulations. 
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Chapter 7 

Engineering Project Management 

7.1  Introduction 

A good management plan is necessary to have an orderly process for the successful outcomes 

and to ensure that all of the project's objectives are completed within the allotted time limit. A 

study in [26] found that there are five primary groups into which the project's entire flow can 

be categorized. They are initiation, planning, execution, monitoring and control, and closure. 

  
Fig: 72 Five Key Factors of Engineering Project Management 

 

7.2 Define, plan and manage engineering project 

7.2.1 Initiation 

Any project should start with a problem that has to be solved. Brainstorming is an essential 

task to identify the problems that require solution. After choosing an issue, it is crucial to 

research previous and existing solutions to the problem and conduct a literature review. Finding 

the research gap is then an essential step in introducing novel solutions or improving ones that 

already exist. 

7.2.2 Planning 

Before submitting the project proposal, we had a consultation with an expert in the area to 

better grasp the functional and non-functional needs of the project. When designing the system, 

the expert's feedback was carefully taken into account. Different design strategies were 

suggested, all based on the system's requirements and goals. Using modern engineering and IT 

tools, each system was simulated, and its performance was assessed. At last, the optimal design 
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was chosen according to cost, precision, adaptability, knowledge representation, real-time data 

requirements, complexity, safety and liability, and interpretability and explainability.  

7.2.3 Execution 

Purchasing the Hardware components was the initial task. Managing all the components 

together was the biggest difficulty. Some components were totally new to work as we have 

never worked with them. We had to go through the hardware specifications and learn about 

their nature and work process from the data sheet. Finally, we tested the hardware and started 

with our work. There were lots of differences between the theoretical literature and the practical 

implementation. To make the process more well-organized and efficient we had to troubleshoot 

thoroughly in every process. Data collection was another tedious work, where a tremendous 

amount of time and effort was given to collect personalized dataset. Once the dataset was ready, 

we had to annotate the images specifically in one-by-one nature. Upon completion of data 

collection we had to recheck the data and then started to work to assure ourselves that the 

personalized data will let us achieve our functional and non-functional requirements. Finally, 

once our system was ready we had to troubleshoot multiple times to make sure that our project 

fulfills four objectives finely. 

7.2.4 Monitoring and Control 

In order to determine whether the objectives and requirements were satisfied, the system 

validation was carried out based on the system. Following system validation, the data were 

examined to assess the system's accuracy and evaluate whether the design still needs to be 

optimized. Additionally, a backup strategy for risk management was created. 

7.2.5 Closure 

Through analysis of the data prior to and following the optimization, the system underwent a 

comprehensive examination. To evaluate the accuracy of the answer even more, the data were 

compared and the recognition success rates were calculated. Furthermore, the outcomes and 

development have been consistently tracked and documented.   

7.3 Gantt Chart/Project Timeline 

The three phases of project management—project planning, project development, and project 

completion—were systematically divided into phases that were carried out over the course of 

the year. The project's progress was monitored by assigning deadlines to defined tasks and 

allocating responsibilities to guarantee that the work was finished on time and with 

accountability. The Gantt Charts are depicted in the following Figures. 
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Fig: 73 Gantt Chart/Project Timeline for EEE499P 

 

 
Fig: 74 Gantt Chart/Project Timeline for EEE499D 

 

 
Fig: 75 Gantt Chart/Project Timeline for EEE499C 

 

7.4 Conclusion 

By properly prioritizing work, adhering to a project management scheme can assist and ensure 

that the project is completed on schedule. Arranging the chores according to their right 

sequence also helps. It also shows the comparison between the estimated and real amount of 

time needed. Additionally, assigning responsibilities to members guarantees their participation 

and improves teamwork. 
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Chapter 8 

Economical Analysis 

8.1 Introduction 

A project's cost and benefit are broken down in an economic analysis. The following are 

economic analysis's key components: 

● Determining and estimating costs directly related to investment 

● Determining and estimating benefits obtained from investment 

● Comparing cost and benefits to justify investment 

8.2 Economic analysis 

8.2.1 Budget for working prototype 

Table 10. Budget for the Final Design 

Sub System Component Model 
Unit Price 

(BDT)  
Unit  

Total Cost 

(BDT) 

Object Detection 
Camera  

Raspberry Pi Camera 

Module V2 
4,690 1 4,690 

Flex Cable 

Adafruit Flex Cable 

for Raspberry Pi 

Camera 

1227 1 1227 

Processing Unit 

Raspberry Pi 

Raspberry Pi 3B+ 

Motherboard 

 

11255 1 11255 

Case 
Raspberry Pi 4 Acrylic 

Case 
299 1 299 

Storage 
SanDisk Ultra 16GB 

Micro SDHC UHS-I  
1200 2 2400 

Vehicle 

Maneuver 

 

 

 

 

 

 

 

 

 

Body and Motor 

4 Wheel 2 Layer 

Robot Smart Car 

Chassis Kits with 

Speed Encoder 

833 1 833 

Arduino Arduino Uno R3 1100 1 1100 

Motor Driver 

L298N H-Bridge Dual 

Motor Driver 

 

195 1 
195 
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Power Supply 
Power Bank 

Meko Power Bank 

10000mAh 
1,699 1 1,699 

Battery 
Li-ion Rechargeable 

Battery 
70 16 1120 

Battery Charger  700 1 700 

Miscellaneous  USB type B cable, 

Ethernet cable, LEDs, 

Toy car, Plastic wood, 

Jumper wire, 

Resistors 

   2805 

 
 

 

 
Total Cost 28323 

 

Table 8 shows the total cost for the working prototype to be BDT 28323. This however 

excludes the components that have been used in trial and error scenarios 

8.2.2 Estimated Cost 

Table 11. Estimated cost for the working prototype, first unit and commercial product 

Cost of working prototype with 

spare parts (BDT) 

Estimated Budget for first unit 

(BDT) 

Estimated Budget for 

commercialized product (BDT) 

30000 20000 18000 

● Bought extra components 

for contingency 

● Extra cost of having ship 

components 

● Additional 

implementation of 

demo/simulated 

environment and vehicle 

maneuver sub-system 

● Main system consisting 

of object detection and 

processing unit 

subsystems only 

● Specific number of 

components will be 

bought 

● Components bought from 

local vendors 

● Will enjoy economies of 

scale for bulk component 

purchase 

● Components will be 

factory assembled 

● Development of 

proprietary components 

to further reduce cost and 

size 

 

Table 9 shows the estimated cost of working prototype, first unit and commercialized units. 

The estimated cost of the first unit is lower as compared to the prototype as there are no trial 

and error situations. Additionally, the prototype concurred with the cost for the implementation 

of supportive sub-systems to validate the functionality of the main system. Commercialized 

units are estimated to cost much less than the first unit due to the development of proprietary 

components as well as economies of scale due to bulk buying. 
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8.3 Cost-benefit analysis 

Table 12. Profit Estimation with respect to Number of Companies in Contract  

Estimated Profit/unit 

(BDT) 

Estimated number of car 

companies in contract 

Estimated number of cars 

to be fitted with 

system/contracted 

companies 

Total Estimated Profit 

(BDT) 

7000 2 10 140000 

7000 3 15 315000 

7000 5 15 525000 

 

In Table 10, we get the projection of the estimated profit. Taking into account that the 

commercialized product will cost BDT 18000, it is estimated to be sold at BDT 25000, which 

will result in a profit of BDT 525000 if 5 car companies are contracted, where each company 

assembles 15 cars with our system.  

8.4 Evaluate economic and financial aspects 

Table 13. Profit Estimation from Number of Units Sold per Year 

  
Cost of sales 

(BDT) 
Sale (BDT) Profit (BDT) Loss (BDT) 

Cost of 

production/unit 

(BDT) 

18000 XXXXXX XXXXXX XXXXX XXXXX 

Selling 

price/unit 

(BDT) 

25000 XXXXXX XXXXXX XXXXX XXXXX 

      

Production/year

/unit 
20 360000    

No. of units 

sold/yer 
20  500000 140000 0 

Production/year

/unit 
50 900000    

No. of units 

sold/yer 
40  1000000 100000 0 

Production/year

/unit 
90 1620000    

No. of units 

sold/yer 
75  1875000 255000 0 
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In Table 11, we have given an arbitrary assumption, estimating the production and selling of 

units per year and the resulting profit or loss per year. From the table we can observe that 

selling each unit with a markup of BDT 7000 for a price of BDT 25000 leads to a profitable 

business. We can observe from the table that even while producing 90 units at a cost of BDT 

1620000 and selling only 75 units, we still manage to be profitable with an annual profit of 

BDT 255000. 

 

8.5 Conclusion 

Conducting a thorough economic analysis is necessary in order to forecast the total project 

expenses. Establishing a budget for the prototype in development is also crucial. Together with 

the budget, the cost-benefit analysis helps to determine the system's financial prospects and can 

motivate stakeholders to take an active role in the project. 
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Chapter 9 

Ethics and Professional Responsibilities  

9.1 Introduction 

Ethical considerations and professional responsibilities must always be considered at all costs 

while dealing with any engineering projects. For all projects resources must be used efficiently 

and the project developed must be for the best interest of the people. This helps in 

acknowledging all the possible risks of the project and minimizing them. Throughout the 

development of the project, all the ethical considerations and professional responsibilities 

required and demanded by the problem statement, are recognized and taken into account.   

9.2 Identify ethical issues and professional responsibility 

9.2.1 Informed Consent 

Every consumer of our project shall be informed beforehand about all the technicalities, about 

what our system does and how it operates, what kinds of real-time data it collects and how it 

analyzes and uses those data to operate. There must be clear understanding and transparency 

for both the drivers and the passengers since any discrepancies might lead to severe 

consequences like accidents and deaths.  

9.2.2 Privacy and Confidentiality Protection   

Since all data collected and used by the sensors and Raspberry Pi are temporarily stored in 

cloud servers, data breach and hacking is a major concern, even though the storage is 

temporary. Moreover major problems might occur when data is hacked during driving, which 

can lead to severe accidents.  

9.2.3 Acknowledgement of Proper Sources 

To come up with the solution of our problem statement, many applicable past papers and works 

have been thoroughly studied and reviewed. Proper credits, citations and references have been 

given to wherever necessary.   

9.2.4 Approval from Respective Bodies 

Since our project is a system development of cars which will operate on roads, many approvals 

had to be taken from Bangladesh Road Transport Authority(BRTA). This respective body 

controls the registration of all the production and manufacture of systems related to 

transportations. They have predetermined and set guidelines which strictly follow all the road 

rules and safety regulations that needs to be maintained for any system manufactured[43].   
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9.3 Apply ethical issues and professional responsibility 

9.3.1 Informed Consent 

The users of the Lane changing car system will be accordingly given the knowledge about the 

self driving car system briefly when used in industry level. As our project focused on prototype 

level, there were no passengers involved and as a result we did not need any informed consent.  

9.3.2 Privacy and Confidentiality Protection 

Data hacking and security breaching must be stopped at all costs. Actions must be taken to 

minimize the chances of security breaches and hacking to protect private data of drivers and 

the car. The real-time data that is being collected should be encrypted to diminish the chances 

of hacking at any given time. 

9.3.3 Acknowledgement of Proper Sources 

Maintaining academic integrity was always a vital part of our project. Therefore we addressed 

all the resources we used throughout the project by means of intext citation and referencing. 

9.3.4 Approval from Respective Bodies 

Taking approval from BRTA is a must, however since we are BRACU students and designing 

this project system while being in BRACU we must take permission from Institutional Review 

Board (IRB). 

9.4 Conclusion  

In conclusion, to get approval from the authorities to implement our project, and to gain the 

trust of all our stakeholders, especially the consumer, we must design and implement our 

system to properly solve the engineering problem. To do this, we must follow the 

aforementioned aspects like Consent, Privacy and Confidentiality Protection, 

Acknowledgement of Proper Sources, and Approval from respective bodies to maintain 

absolute transparency and the standards of the project work done.   
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Chapter 10 

Conclusion and Future Work 

10.1 Project summary 

In a nutshell, the main motivation behind choosing the topic, ‘Vision Driven Lane Changing 

System of Self Driving Car’ is to solve the problem of impaired and distracted driving,  

improving the safety on roads which not only includes the passengers and driver in the car but 

also includes pedestrians and other objects nearby. Our motivation was strengthened to solve 

the problem of road rule regulation breakage. Building a successful lane-changing autonomous 

vehicle will ease the maintenance of road rules carefully as it will be trained with past datasets 

which will include Training, Validation, as well as Testing Datasets.  

On the contrary, our system uses image processing which specifically focuses on the creation 

of region of interest, perspective transformation, as well as threshold operations, canny edge 

detections, histogram and various other calculations for lane detection, Lane End detection and 

lane maintenance. Object detection models are trained and used to detect vehicles, stop signs 

and traffic signals using the Haar cascade Deep learning method, and passed through our 

decision model to make decisions and maneuver our vehicle accordingly. Furthermore, the 

output of our design analysis is deployed on a prototype level build with the help of Raspberry 

Pi 3B+ having integrated connection with Arduino and motor driver system. 

Moreover, several parameters were being tested prior to hardware preparation on CARLA 

Simulator that gave us real world experience [27]. We used both a rule-based approach and a 

machine learning approach to design our self-driving vehicle and its lane-changing mechanism. 

We found out that our machine-learning approach gave better results and had more advantages. 

So, we chose that as our optimal design and implemented it in our hardware design. 

10.2 Future work 

This project can be later scaled up by using transfer learning to incorporate the entire model on 

a more delicate microprocessor so that it can be used in real industry-level car systems. The 

project still has a future scope if it can be developed to manufacture a device in one embedded 

system that has all the camera sensors, as well as more sensors as its auxiliary parameters so 

that real-time data collection and decision-making can be done easily and faster with more 

accuracy. Thus, a plug-and-play system as the end result would help to deliver the decisions 

from the embedded system to the car maneuvering system for ease of transportation. 
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Chapter 11 

Identification of Complex Engineering Problems and Activities. 

 

11.1 Attributes of Complex Engineering Problems (EP) 

 

Table 14. Attributes of Complex Engineering Problems (EP) 

 Attributes 
Put tick (√) as 

appropriate 
Justification 

A1 Range of resource √ 

Required knowledge from various people, 

equipment support from both EEE and 

CSE department, and need financial 

support to make. 

A2 Level of interaction   

A3 Innovation √ 
Autonomous car with automatic lane 

changing. 

A4 
Consequences for society and the 

environment 
√ 

Will positively impact mainly people who 

are unable to drive 

A5 Familiarity √ 
Unique design solution revolving around 

lane changing. 

 

11.2 Attributes of Complex Engineering Activities (EA) 

 

Table 15. Attributes of Complex Engineering Activities (EA) 

 Attributes 
Put tick (√) as 

appropriate 
Justification 

P1 Depth of knowledge required √ 

Use of machine-learning, image 

processing, sensor interface, simulation 

tools and computer language. 

P2 Range of conflicting requirements   

P3 Depth of analysis required √ 
Analysis of two design solutions using 

various simulation tools. 

P4 Familiarity of issues √ 
Unique design solution revolving around 

lane changing. 

P5 Extent of applicable codes √ 

Solutions require the modification and 

creation of new robust codes and 

standards due to uniqueness of solution. 

P6 
Extent of stakeholder involvement 

and needs 
  

P7 Interdependence √ 
Contains various sub-systems that work 

together to give the desired outcome. 
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Appendix 

Software Codes for Optimum Design (Design Approach-2: Machine Learning): 

Python Code in CARLA for Design approach-2 Machine learning: 

 

import glob 

import os 

import sys 

try: 

    sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % ( 

        sys.version_info.major, 

        sys.version_info.minor, 

        'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) 

except IndexError: 

    pass 

import carla 

 

import random 

import time 

import numpy as np 

import cv2 

 

IM_WIDTH = 640 

IM_HEIGHT = 480 

 

from roboflow import Roboflow 

rf = Roboflow(api_key="WzH6em9wsEIJVOEl9UtD") 

project = rf.workspace().project("design-and-implementation-of-self-driving-cars") 

model = project.version(5).model 
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image_counter = 0 

 

output_directory1 = 'C:\\Users\\20121006\\Desktop\\Camera images\\' 

 

 

def process_img1(image): 

    global image_counter 

    i = np.array(image.raw_data) 

    i2 = i.reshape((IM_HEIGHT, IM_WIDTH, 4)) 

    i3 = i2[:, :, :3] 

 

     

    #Incrementing counter and generate filename 

    image_counter += 1 

    filename = f'image_{image_counter}.PNG' 

 

    # # Saving image 

    cv2.imwrite(output_directory1 + filename, i3) 

    model.predict(f"C:\\Users\\20121006\\Desktop\\Camera images\\{filename}", confidence=40, 

overlap=30).save(f"C:\\Users\\20121006\\Documents\\Trained Images\\{filename}") 

 

    image = cv2.imread(f"C:\\Users\\20121006\\Documents\\Trained Images\\{filename}") 

    # cv2.namedWindow('image_window', cv2.WINDOW_NORMAL) 

    cv2.imshow('image_window', image) 

    cv2.waitKey(1) 

 

    # time.sleep(2) 

    return i3/255.0 
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actor_list = [] 

try: 

    client = carla.Client('localhost', 2000) 

    world = client.get_world() 

 

    blueprint_library = world.get_blueprint_library() 

 

    bp1 = blueprint_library.filter('model3')[0] 

    bp2 = blueprint_library.filter('mini')[0] 

    print(bp1) 

    print(bp2) 

 

    spawn_point = world.get_map().get_spawn_points() 

 

    vehicle1 = world.spawn_actor(bp1, spawn_point[230]) 

    vehicle1.set_autopilot(True) 

 

    actor_list.append(vehicle1) 

 

    # getting the blueprint for this sensor 

    blueprint1 = blueprint_library.find('sensor.camera.rgb') 

    # changing the dimensions of the image 

    blueprint1.set_attribute('image_size_x', f'{IM_WIDTH}') 

    blueprint1.set_attribute('image_size_y', f'{IM_HEIGHT}') 

    blueprint1.set_attribute('fov', '110') 

 

    # Adjusting sensor relative to vehicle 

    spawn1 = carla.Transform(carla.Location(x=2.5, z=0.7)) 
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    # spawning the sensor and attach it to the vehicle. 

    sensor1 = world.spawn_actor(blueprint1, spawn1, attach_to=vehicle1) 

 

    # adding sensor to list of actors 

    actor_list.append(sensor1) 

 

    sensor1.listen(lambda data: process_img1(data)) 

 

    time.sleep(1000) 

 

finally: 

    print('destroying actors') 

    for actor in actor_list: 

        actor.destroy() 

    print('done.') 

 

Proteus Simulation Code for Wheel Drive with Ultrasonic Sensor: 

 

int M1I1=11; 

int M1I2=10; 

int M2I1=9; 

int M2I2=8; 

 

int M3I1=1; 

int M3I2=2; 

int M4I1=3; 

int M4I2=4; 
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int LInd=12; 

int RInd=13; 

int FInd=6; 

 

int trig_f = A0; 

int echo_f = A1; 

long duration_f; 

float distance_cm_f; 

 

int trig_r = A2; 

int echo_r = A3; 

long duration_r; 

float distance_cm_r; 

 

int trig_l = A4; 

int echo_l = A5; 

long duration_l; 

float distance_cm_l; 

 

void setup() { 

  // put your setup code here, to run once: 

pinMode(M1I1,OUTPUT); 

pinMode(M1I2,OUTPUT); 

pinMode(M2I1,OUTPUT); 

pinMode(M2I2,OUTPUT); 

 

pinMode(M3I1,OUTPUT); 

pinMode(M3I2,OUTPUT); 

pinMode(M4I1,OUTPUT); 
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pinMode(M4I2,OUTPUT); 

 

pinMode(LInd,OUTPUT); 

pinMode(RInd,OUTPUT); 

pinMode(FInd,OUTPUT); 

 

pinMode(trig_f,OUTPUT); 

pinMode(echo_f,INPUT); 

 

pinMode(trig_r,OUTPUT); 

pinMode(echo_r,INPUT); 

 

pinMode(trig_f,OUTPUT); 

pinMode(echo_f,INPUT); 

} 

 

void loop() { 

  // put your main code here, to run repeatedly: 

digitalWrite(trig_f,LOW); 

delayMicroseconds(2); 

digitalWrite(trig_f,HIGH); 

delayMicroseconds(10); 

digitalWrite(trig_f,LOW); 

duration_f = pulseIn(echo_f,HIGH); 

distance_cm_f = duration_f*.034/2; 

 

digitalWrite(trig_r,LOW); 

delayMicroseconds(2); 

digitalWrite(trig_r,HIGH); 
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delayMicroseconds(10); 

digitalWrite(trig_r,LOW); 

duration_r = pulseIn(echo_r,HIGH); 

distance_cm_r = duration_r*.034/2; 

 

digitalWrite(trig_l,LOW); 

delayMicroseconds(2); 

digitalWrite(trig_l,HIGH); 

delayMicroseconds(10); 

digitalWrite(trig_l,LOW); 

duration_l = pulseIn(echo_l,HIGH); 

distance_cm_l = duration_l*.034/2; 

 

//FORWARD 

if(distance_cm_f>1000){ 

  digitalWrite(M1I1,HIGH); 

  digitalWrite(M1I2,LOW); 

  digitalWrite(M2I1,LOW); 

  digitalWrite(M2I2,HIGH); 

 

  digitalWrite(M3I1,LOW); 

  digitalWrite(M3I2,HIGH); 

  digitalWrite(M4I1,HIGH); 

  digitalWrite(M4I2,LOW); 

 

  digitalWrite(FInd,HIGH); 

  digitalWrite(LInd,LOW); 

  digitalWrite(RInd,LOW);  

  } 
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//LEFT 

else if(distance_cm_l>500){ 

  digitalWrite(M1I1,LOW); 

  digitalWrite(M1I2,LOW); 

  digitalWrite(M2I1,LOW); 

  digitalWrite(M2I2,HIGH); 

 

  digitalWrite(M3I1,LOW); 

  digitalWrite(M3I2,HIGH); 

  digitalWrite(M4I1,HIGH); 

  digitalWrite(M4I2,LOW); 

 

  digitalWrite(LInd,HIGH); 

  digitalWrite(FInd,LOW); 

  digitalWrite(RInd,LOW);  

  } 

//RIGHT 

else if(distance_cm_r>500){ 

  digitalWrite(M1I1,HIGH); 

  digitalWrite(M1I2,LOW); 

  digitalWrite(M2I1,LOW); 

  digitalWrite(M2I2,LOW); 

 

  digitalWrite(M3I1,LOW); 

  digitalWrite(M3I2,HIGH); 

  digitalWrite(M4I1,HIGH); 

  digitalWrite(M4I2,LOW); 

 

  digitalWrite(RInd,HIGH); 
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  digitalWrite(LInd,LOW); 

  digitalWrite(FInd,LOW); 

  } 

else{ 

  digitalWrite(M1I1,LOW); 

  digitalWrite(M1I2,LOW); 

  digitalWrite(M2I1,LOW); 

  digitalWrite(M2I2,LOW); 

 

  digitalWrite(M3I1,LOW); 

  digitalWrite(M3I2,LOW); 

  digitalWrite(M4I1,LOW); 

  digitalWrite(M4I2,LOW); 

 

  digitalWrite(RInd,LOW); 

  digitalWrite(LInd,LOW); 

  digitalWrite(FInd,LOW); 

} 

} 

 

Final Hardware Codes for Optimum Design (Design Approach-2: Machine Learning) 

Final C++ Code in Raspberry Pi: 

 

#include <opencv2/opencv.hpp> 

#include <raspicam_cv.h> 

#include <iostream> 

#include <chrono> 

#include <ctime> 

#include <wiringPi.h> 
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using namespace std; 

using namespace cv; 

using namespace raspicam; 

 

// Image Processing variables 

Mat frame, Matrix, framePers, frameGray, frameThresh, frameEdge, frameFinal, 

frameFinalDuplicate, frameFinalDuplicate1; 

Mat ROILane, ROILaneEnd; 

int LeftLanePos, RightLanePos, frameCenter, laneCenter, Result, laneEnd; 

 

RaspiCam_Cv Camera; 

stringstream ss; 

 

vector<int> histrogramLane; 

vector<int> histrogramLaneEnd; 

 

Point2f Source[] = {Point2f(40,135),Point2f(360,135),Point2f(0,185), Point2f(400,185)}; 

Point2f Destination[] = {Point2f(100,0),Point2f(280,0),Point2f(100,240), Point2f(280,240)}; 

 

//Machine Learning variables 

CascadeClassifier Stop_Cascade, Object_Cascade, Traffic_Cascade; 

Mat frame_Stop, RoI_Stop, gray_Stop, frame_Object, RoI_Object, gray_Object, 

frame_Traffic, RoI_Traffic, gray_Traffic; 

vector<Rect> Stop, Object, Traffic; 

int dist_Stop, dist_Object, dist_Traffic; 

 

 void Setup ( int argc,char **argv, RaspiCam_Cv &Camera ) 

  { 

    Camera.set ( CAP_PROP_FRAME_WIDTH,  ( "-w",argc,argv,400 ) ); 
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    Camera.set ( CAP_PROP_FRAME_HEIGHT,  ( "-h",argc,argv,240 ) ); 

    Camera.set ( CAP_PROP_BRIGHTNESS, ( "-br",argc,argv,50 ) ); 

    Camera.set ( CAP_PROP_CONTRAST ,( "-co",argc,argv,50 ) ); 

    Camera.set ( CAP_PROP_SATURATION,  ( "-sa",argc,argv,50 ) ); 

    Camera.set ( CAP_PROP_GAIN,  ( "-g",argc,argv ,50 ) ); 

    Camera.set ( CAP_PROP_FPS,  ( "-fps",argc,argv,0)); 

} 

 

void Capture() 

{ 

    Camera.grab(); 

    Camera.retrieve( frame); 

    cvtColor(frame, frame_Stop, COLOR_BGR2RGB); 

    cvtColor(frame, frame_Object, COLOR_BGR2RGB); 

    cvtColor(frame, frame_Traffic, COLOR_BGR2RGB); 

    cvtColor(frame, frame, COLOR_BGR2RGB); 

} 

 

void Perspective() 

{ 

 line(frame,Source[0], Source[1], Scalar(0,0,255), 2); 

 line(frame,Source[1], Source[3], Scalar(0,0,255), 2); 

 line(frame,Source[3], Source[2], Scalar(0,0,255), 2); 

 line(frame,Source[2], Source[0], Scalar(0,0,255), 2); 

 

 Matrix = getPerspectiveTransform(Source, Destination); 

 warpPerspective(frame, framePers, Matrix, Size(400,240)); 

} 
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void Threshold() 

{ 

 cvtColor(framePers, frameGray, COLOR_RGB2GRAY); 

 inRange(frameGray, 230, 255, frameThresh); 

 Canny(frameGray,frameEdge, 900, 900, 3, false); 

 add(frameThresh, frameEdge, frameFinal); 

 cvtColor(frameFinal, frameFinal, COLOR_GRAY2RGB); 

 cvtColor(frameFinal, frameFinalDuplicate, COLOR_RGB2BGR);   //used in 

histrogram function only 

 cvtColor(frameFinal, frameFinalDuplicate1, COLOR_RGB2BGR);   //used in 

histrogram function only 

} 

 

void Histrogram() 

{ 

    histrogramLane.resize(400); 

    histrogramLane.clear(); 

 

    for(int i=0; i<400; i++)       //frame.size().width = 400 

    { 

 ROILane = frameFinalDuplicate(Rect(i,140,1,100)); 

 divide(255, ROILane, ROILane); 

 histrogramLane.push_back((int)(sum(ROILane)[0])); 

    } 

 

    histrogramLaneEnd.resize(400); 

    histrogramLaneEnd.clear(); 

 for (int i = 0; i < 400; i++) 

 { 

  ROILaneEnd = frameFinalDuplicate1(Rect(i, 0, 1, 240)); 
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  divide(255, ROILaneEnd, ROILaneEnd); 

  histrogramLaneEnd.push_back((int)(sum(ROILaneEnd)[0])); 

 } 

 

    laneEnd = sum(histrogramLaneEnd)[0]; 

    cout<<"Lane END = "<<laneEnd<<endl; 

} 

 

void LaneFinder() 

{ 

    vector<int>:: iterator LeftPtr; 

    LeftPtr = max_element(histrogramLane.begin(), histrogramLane.begin() + 150); 

    LeftLanePos = distance(histrogramLane.begin(), LeftPtr); 

 

    vector<int>:: iterator RightPtr; 

    RightPtr = max_element(histrogramLane.begin() +250, histrogramLane.end()); 

    RightLanePos = distance(histrogramLane.begin(), RightPtr); 

 

    line(frameFinal, Point2f(LeftLanePos, 0), Point2f(LeftLanePos, 240), Scalar(0, 255,0), 2); 

    line(frameFinal, Point2f(RightLanePos, 0), Point2f(RightLanePos, 240), Scalar(0,255,0), 

2); 

} 

 

void LaneCenter() 

{ 

    laneCenter = (RightLanePos-LeftLanePos)/2 +LeftLanePos; 

    frameCenter = 188; 

 

    line(frameFinal, Point2f(laneCenter,0), Point2f(laneCenter,240), Scalar(0,255,0), 3); 
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    line(frameFinal, Point2f(frameCenter,0), Point2f(frameCenter,240), Scalar(255,0,0), 3); 

 

    Result = laneCenter-frameCenter; 

} 

 

void Stop_detection() 

{ 

    if(!Stop_Cascade.load("//home//pi//Desktop//MACHINE 

LEARNING//Stop_cascade.xml")) 

    { 

 printf("Unable to open stop cascade file"); 

    } 

 

    RoI_Stop = frame_Stop(Rect(200,0,200,140)); 

    cvtColor(RoI_Stop, gray_Stop, COLOR_RGB2GRAY); 

    equalizeHist(gray_Stop, gray_Stop); 

    Stop_Cascade.detectMultiScale(gray_Stop, Stop); 

 

    for(int i=0; i<Stop.size(); i++) 

    { 

 Point P1(Stop[i].x, Stop[i].y); 

 Point P2(Stop[i].x + Stop[i].width, Stop[i].y + Stop[i].height); 

 

 rectangle(RoI_Stop, P1, P2, Scalar(0, 0, 255), 2); 

 putText(RoI_Stop, "Stop Sign", P1, FONT_HERSHEY_PLAIN, 1,  Scalar(0, 0, 255, 

255), 2); 

 dist_Stop = (-1.07)*(P2.x-P1.x) + 102.597; 

 

       ss.str(" "); 

       ss.clear(); 
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       ss<<"D = "<<dist_Stop<<"cm"; 

       putText(RoI_Stop, ss.str(), Point2f(1,130), 0,1, Scalar(0,0,255), 2); 

    } 

} 

 

void Traffic_detection() 

{ 

    if(!Traffic_Cascade.load("//home//pi//Desktop//MACHINE 

LEARNING//Trafficc_cascade.xml")) 

    { 

 printf("Unable to open traffic cascade file"); 

    } 

 

    RoI_Traffic = frame_Traffic(Rect(200,0,200,140)); 

    cvtColor(RoI_Traffic, gray_Traffic, COLOR_RGB2GRAY); 

    equalizeHist(gray_Traffic, gray_Traffic); 

    Traffic_Cascade.detectMultiScale(gray_Traffic, Traffic); 

 

    for(int i=0; i<Traffic.size(); i++) 

    { 

 Point P1(Traffic[i].x, Traffic[i].y); 

 Point P2(Traffic[i].x + Traffic[i].width, Traffic[i].y + Traffic[i].height); 

 

 rectangle(RoI_Traffic, P1, P2, Scalar(0, 0, 255), 2); 

 putText(RoI_Traffic, "Traffic Light", P1, FONT_HERSHEY_PLAIN, 1,  Scalar(0, 0, 

255, 255), 2); 

 dist_Traffic = (-1.07)*(P2.x-P1.x) + 102.597; 

 

       ss.str(" "); 

       ss.clear(); 
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       ss<<"D = "<<P2.x-P1.x<<"cm"; 

       putText(RoI_Traffic, ss.str(), Point2f(1,130), 0,1, Scalar(0,0,255), 2); 

    } 

} 

 

void Object_detection() 

{ 

    if(!Object_Cascade.load("//home//pi//Desktop//MACHINE 

LEARNING//Object_cascade.xml")) 

    { 

 printf("Unable to open Object cascade file"); 

    } 

 

    RoI_Object = frame_Object(Rect(100,50,200,190)); 

    cvtColor(RoI_Object, gray_Object, COLOR_RGB2GRAY); 

    equalizeHist(gray_Object, gray_Object); 

    Object_Cascade.detectMultiScale(gray_Object, Object); 

 

    for(int i=0; i<Object.size(); i++) 

    { 

 Point P1(Object[i].x, Object[i].y); 

 Point P2(Object[i].x + Object[i].width, Object[i].y + Object[i].height); 

 

 rectangle(RoI_Object, P1, P2, Scalar(0, 0, 255), 2); 

 putText(RoI_Object, "Object", P1, FONT_HERSHEY_PLAIN, 1,  Scalar(0, 0, 255, 

255), 2); 

 dist_Object = (-0.48)*(P2.x-P1.x) + 56.6; 

 

       ss.str(" "); 

       ss.clear(); 
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       ss<<"D = "<<dist_Object<<"cm"; 

       putText(RoI_Object, ss.str(), Point2f(1,130), 0,1, Scalar(0,0,255), 2); 

    } 

} 

 

int main(int argc,char **argv) 

{ 

    wiringPiSetup(); 

    pinMode(21, OUTPUT); 

    pinMode(22, OUTPUT); 

    pinMode(23, OUTPUT); 

    pinMode(24, OUTPUT); 

 

    Setup(argc, argv, Camera); 

    cout<<"Connecting to camera"<<endl; 

    if (!Camera.open()) 

    { 

 cout<<"Failed to Connect"<<endl; 

    } 

 cout<<"Camera Id = "<<Camera.getId()<<endl; 

 

    while(1) 

    { 

    auto start = std::chrono::system_clock::now(); 

 

    Capture(); 

    Perspective(); 

    Threshold(); 

    Histrogram(); 



Page | 100  

 

    LaneFinder(); 

    LaneCenter(); 

    Stop_detection(); 

    Object_detection(); 

    Traffic_detection(); 

 

    if (dist_Stop > 5 && dist_Stop < 20) 

    { 

 digitalWrite(21, 0); 

 digitalWrite(22, 0);    //decimal = 8 

 digitalWrite(23, 0); 

 digitalWrite(24, 1); 

 cout<<"Stop Sign"<<endl; 

 dist_Stop = 0; 

 

 goto Stop_Sign; 

    } 

 

        if (dist_Object > 5 && dist_Object < 30) 

    { 

 digitalWrite(21, 1); 

 digitalWrite(22, 0);    //decimal = 9 

 digitalWrite(23, 0); 

 digitalWrite(24, 1); 

 cout<<"Object"<<endl; 

 dist_Object = 0; 

 

 goto Object; 

    } 
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        if (dist_Traffic > 5 && dist_Traffic < 20) 

    { 

 digitalWrite(21, 0); 

 digitalWrite(22, 1);    //decimal = 10 

 digitalWrite(23, 0); 

 digitalWrite(24, 1); 

 cout<<"Traffic Light"<<endl; 

 dist_Traffic = 0; 

 

 goto Traffic; 

    } 

 

    if (laneEnd > 4500) 

    { 

        digitalWrite(21, 1); 

 digitalWrite(22, 1);    //decimal = 7 

 digitalWrite(23, 1); 

 digitalWrite(24, 0); 

 cout<<"Lane End"<<endl; 

    } 

 

    if (Result == 0) 

    { 

 digitalWrite(21, 0); 

 digitalWrite(22, 0);    //decimal = 0 

 digitalWrite(23, 0); 

 digitalWrite(24, 0); 

 cout<<"Forward"<<endl; 
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    } 

 

    else if (Result >0 && Result <10) 

    { 

 digitalWrite(21, 1); 

 digitalWrite(22, 0);    //decimal = 1 

 digitalWrite(23, 0); 

 digitalWrite(24, 0); 

 cout<<"Right1"<<endl; 

    } 

 

        else if (Result >=10 && Result <20) 

    { 

 digitalWrite(21, 0); 

 digitalWrite(22, 1);    //decimal = 2 

 digitalWrite(23, 0); 

 digitalWrite(24, 0); 

 cout<<"Right2"<<endl; 

    } 

 

        else if (Result >20) 

    { 

 digitalWrite(21, 1); 

 digitalWrite(22, 1);    //decimal = 3 

 digitalWrite(23, 0); 

 digitalWrite(24, 0); 

 cout<<"Right3"<<endl; 

    } 
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        else if (Result <0 && Result >-10) 

    { 

 digitalWrite(21, 0); 

 digitalWrite(22, 0);    //decimal = 4 

 digitalWrite(23, 1); 

 digitalWrite(24, 0); 

 cout<<"Left1"<<endl; 

    } 

 

        else if (Result <=-10 && Result >-20) 

    { 

 digitalWrite(21, 1); 

 digitalWrite(22, 0);    //decimal = 5 

 digitalWrite(23, 1); 

 digitalWrite(24, 0); 

 cout<<"Left2"<<endl; 

    } 

 

        else if (Result <-20) 

    { 

 digitalWrite(21, 0); 

 digitalWrite(22, 1);    //decimal = 6 

 digitalWrite(23, 1); 

 digitalWrite(24, 0); 

 cout<<"Left3"<<endl; 

    } 

 

    Stop_Sign: 

    Object: 
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    Traffic: 

 

   if (laneEnd > 4500) 

    { 

       ss.str(" "); 

       ss.clear(); 

       ss<<" Lane End"; 

       putText(frame, ss.str(), Point2f(1,50), 0,1, Scalar(255,0,0), 2); 

     } 

 

    else if (Result == 0) 

    { 

       ss.str(" "); 

       ss.clear(); 

       ss<<"Result = "<<Result<<" (Move Forward)"; 

       putText(frame, ss.str(), Point2f(1,50), 0,1, Scalar(0,0,255), 2); 

     } 

 

    else if (Result > 0) 

    { 

       ss.str(" "); 

       ss.clear(); 

       ss<<"Result = "<<Result<<" (Move Right)"; 

       putText(frame, ss.str(), Point2f(1,50), 0,1, Scalar(0,0,255), 2); 

     } 

 

     else if (Result < 0) 

    { 

       ss.str(" "); 



Page | 105  

 

       ss.clear(); 

       ss<<"Result = "<<Result<<" (Move Left)"; 

       putText(frame, ss.str(), Point2f(1,50), 0,1, Scalar(0,0,255), 2); 

     } 

 

    namedWindow("orignal", WINDOW_KEEPRATIO); 

    moveWindow("orignal", 0, 100); 

    resizeWindow("orignal", 640, 480); 

    imshow("orignal", frame); 

 

    namedWindow("Perspective", WINDOW_KEEPRATIO); 

    moveWindow("Perspective", 640, 100); 

    resizeWindow("Perspective", 640, 480); 

    imshow("Perspective", framePers); 

 

    namedWindow("Final", WINDOW_KEEPRATIO); 

    moveWindow("Final", 1280, 100); 

    resizeWindow("Final", 640, 480); 

    imshow("Final", frameFinal); 

 

    namedWindow("Stop Sign", WINDOW_KEEPRATIO); 

    moveWindow("Stop Sign", 1280, 580); 

    resizeWindow("Stop Sign", 640, 480); 

    imshow("Stop Sign", RoI_Stop); 

 

    namedWindow("Object", WINDOW_KEEPRATIO); 

    moveWindow("Object", 640, 580); 

    resizeWindow("Object", 640, 480); 

    imshow("Object", RoI_Object); 
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    namedWindow("Traffic", WINDOW_KEEPRATIO); 

    moveWindow("Traffic", 0, 580); 

    resizeWindow("Traffic", 640, 480); 

    imshow("Traffic", RoI_Traffic); 

 

    waitKey(1); 

    auto end = std::chrono::system_clock::now(); 

    std::chrono::duration<double> elapsed_seconds = end-start; 

 

    float t = elapsed_seconds.count(); 

    int FPS = 1/t; 

    //cout<<"FPS = "<<FPS<<endl; 

    } 

    return 0; 

} 

 

C++ Code in Raspberry Pi to capture images from Raspberry Pi Camera: 

 

#include <opencv2/opencv.hpp> 

#include <raspicam_cv.h> 

#include <iostream> 

#include <chrono> 

#include <ctime> 

 

using namespace std; 

using namespace cv; 

using namespace raspicam; 
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Mat frame; 

 

 

 

 void Setup ( int argc,char **argv, RaspiCam_Cv &Camera ) 

  { 

    Camera.set ( CAP_PROP_FRAME_WIDTH,  ( "-w",argc,argv,400 ) ); 

    Camera.set ( CAP_PROP_FRAME_HEIGHT,  ( "-h",argc,argv,240 ) ); 

    Camera.set ( CAP_PROP_BRIGHTNESS, ( "-br",argc,argv,50 ) ); 

    Camera.set ( CAP_PROP_CONTRAST ,( "-co",argc,argv,50 ) ); 

    Camera.set ( CAP_PROP_SATURATION,  ( "-sa",argc,argv,50 ) ); 

    Camera.set ( CAP_PROP_GAIN,  ( "-g",argc,argv ,50 ) ); 

    Camera.set ( CAP_PROP_FPS,  ( "-fps",argc,argv,100)); 

} 

 

int main(int argc,char **argv) 

{ 

        RaspiCam_Cv Camera; 

 Setup(argc, argv, Camera); 

 cout<<"Connecting to camera"<<endl; 

 if (!Camera.open()) 

 {  

 cout<<"Failed to Connect"<<endl; 

     } 

     cout<<"Camera Id = "<<Camera.getId()<<endl; 

  

    while(1) 

    { 

    auto start = std::chrono::system_clock::now(); 
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    Camera.grab(); 

    Camera.retrieve( frame); 

    auto end = std::chrono::system_clock::now(); 

   

    std::chrono::duration<double> elapsed_seconds = end-start; 

     

    float t = elapsed_seconds.count(); 

    int FPS = 1/t; 

    cout<<"FPS = "<<FPS<<endl; 

    imshow("orignal", frame); 

   

    waitKey(1); 

    }     

    return 0;      

} 

 

Code in Arduino IDE for Arduino: 

 

int i =0; 

unsigned long int j =0; 

    

const int EnableL = 5; 

const int HighL = 6;       // LEFT SIDE MOTOR 

const int LowL =7; 

 

const int EnableR = 10; 

const int HighR = 8;       //RIGHT SIDE MOTOR 

const int LowR =9; 
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const int D0 = 0;       //Raspberry pin 21    LSB 

const int D1 = 1;       //Raspberry pin 22 

const int D2 = 2;       //Raspberry pin 23 

const int D3 = 3;       //Raspberry pin 24    MSB 

 

int a,b,c,d,data; 

 

 

void setup() { 

 

pinMode(EnableL, OUTPUT); 

pinMode(HighL, OUTPUT); 

pinMode(LowL, OUTPUT); 

 

pinMode(EnableR, OUTPUT); 

pinMode(HighR, OUTPUT); 

pinMode(LowR, OUTPUT); 

 

pinMode(D0, INPUT_PULLUP); 

pinMode(D1, INPUT_PULLUP); 

pinMode(D2, INPUT_PULLUP); 

pinMode(D3, INPUT_PULLUP); 

} 

 

void Data() 

{ 

   a = digitalRead(D0); 

   b = digitalRead(D1); 

   c = digitalRead(D2); 
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   d = digitalRead(D3); 

 

   data = 8*d+4*c+2*b+a; 

} 

 

void Forward() 

{ 

  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH); 

  analogWrite(EnableL,255); 

 

  digitalWrite(HighR, LOW); 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableR,255); 

} 

 

void Backward() 

{ 

  digitalWrite(HighL, HIGH); 

  digitalWrite(LowL, LOW); 

  analogWrite(EnableL,255); 

 

  digitalWrite(HighR, HIGH); 

  digitalWrite(LowR, LOW); 

  analogWrite(EnableR,255); 

} 

 

void Stop() 

{ 
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  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH); 

  analogWrite(EnableL,0); 

 

  digitalWrite(HighR, LOW); 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableR,0); 

} 

 

void Left1() 

{ 

  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH); 

  analogWrite(EnableL,160); 

 

  digitalWrite(HighR, LOW); 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableR,255); 

} 

 

void Left2() 

{ 

  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH); 

  analogWrite(EnableL,90); 

 

  digitalWrite(HighR, LOW); 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableR,255); 
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} 

 

void Left3() 

{ 

  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH); 

  analogWrite(EnableL,50); 

 

  digitalWrite(HighR, LOW); 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableR,255); 

} 

 

void Right1() 

{ 

  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH); 

  analogWrite(EnableL,255); 

 

  digitalWrite(HighR, LOW); 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableR,160);  //200 

} 

 

void Right2() 

{ 

  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH); 

  analogWrite(EnableL,255); 
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  digitalWrite(HighR, LOW); 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableR,90);   //160 

} 

 

void Right3() 

{ 

  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH); 

  analogWrite(EnableL,255); 

 

  digitalWrite(HighR, LOW); 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableR,50);   //100 

} 

 

void UTurn() 

{ 

  analogWrite(EnableL, 0); 

  analogWrite(EnableR, 0); 

  delay(400); 

 

  analogWrite(EnableL, 250); 

  analogWrite(EnableR, 250);    //forward 

  delay(1000); 

 

  analogWrite(EnableL, 0); 

  analogWrite(EnableR, 0); 
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  delay(400); 

 

  digitalWrite(HighL, HIGH); 

  digitalWrite(LowL, LOW); 

  digitalWrite(HighR, LOW);   //   left 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableL, 255); 

  analogWrite(EnableR, 255); 

  delay(700); 

 

  analogWrite(EnableL, 0); 

  analogWrite(EnableR, 0); 

  delay(400); 

 

  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH); 

  digitalWrite(HighR, LOW);   // forward 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableL, 255); 

  analogWrite(EnableR, 255); 

  delay(900); 

 

  analogWrite(EnableL, 0); 

  analogWrite(EnableR, 0); 

  delay(400); 

 

  digitalWrite(HighL, HIGH); 

  digitalWrite(LowL, LOW); 

  digitalWrite(HighR, LOW);    //left 
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  digitalWrite(LowR, HIGH); 

  analogWrite(EnableL, 255); 

  analogWrite(EnableR, 255); 

  delay(700); 

 

  analogWrite(EnableL, 0); 

  analogWrite(EnableR, 0); 

  delay(1000); 

 

  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH); 

  digitalWrite(HighR, LOW); 

  digitalWrite(LowL, HIGH); 

  analogWrite(EnableL, 150); 

  analogWrite(EnableR, 150); 

  delay(300); 

} 

 

 

void Object() 

{ 

 

  analogWrite(EnableL, 0); 

  analogWrite(EnableR, 0);            //stop 

  delay(1000); 

 

  digitalWrite(HighL, HIGH); 

  digitalWrite(LowL, LOW); 

  digitalWrite(HighR, LOW); 
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  digitalWrite(LowR, HIGH);        //left 

  analogWrite(EnableL, 250); 

  analogWrite(EnableR, 250); 

  delay(500); 

 

  analogWrite(EnableL, 0); 

  analogWrite(EnableR, 0);            //stop 

  delay(200); 

 

  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH);           //forward 

  digitalWrite(HighR, LOW); 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableL, 255); 

  analogWrite(EnableR, 255); 

  delay(1000); 

 

  analogWrite(EnableL, 0);           //stop 

  analogWrite(EnableR, 0); 

  delay(200); 

 

  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH); 

  digitalWrite(HighR, HIGH);         //right 

  digitalWrite(LowR, LOW); 

  analogWrite(EnableL, 255); 

  analogWrite(EnableR, 255); 

  delay(500); 
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  analogWrite(EnableL, 0);               //stop 

  analogWrite(EnableR, 0); 

  delay(1000); 

   

  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH); 

  digitalWrite(HighR, LOW);       // forward 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableL, 150); 

  analogWrite(EnableR, 150); 

  delay(500); 

 

   i  = i+1; 

} 

 

void Lane_Change() 

{ 

  analogWrite(EnableL, 0); 

  analogWrite(EnableR, 0);            //stop 

  delay(1000); 

 

  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH); 

  digitalWrite(HighR, HIGH); 

  digitalWrite(LowR, LOW);        //Right 

  analogWrite(EnableL, 250); 

  analogWrite(EnableR, 250); 

  delay(500); 
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  analogWrite(EnableL, 0); 

  analogWrite(EnableR, 0);            //stop 

  delay(200); 

 

  digitalWrite(HighL, LOW); 

  digitalWrite(LowL, HIGH);           //forward 

  digitalWrite(HighR, LOW); 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableL, 255); 

  analogWrite(EnableR, 255); 

  delay(800); 

 

  analogWrite(EnableL, 0);           //stop 

  analogWrite(EnableR, 0); 

  delay(200); 

 

  digitalWrite(HighL, HIGH); 

  digitalWrite(LowL, LOW); 

  digitalWrite(HighR, LOW);         //LEFT 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableL, 255); 

  analogWrite(EnableR, 255); 

  delay(500); 

 

  analogWrite(EnableL, 0);               //stop 

  analogWrite(EnableR, 0); 

  delay(1000); 

   

  digitalWrite(HighL, LOW); 
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  digitalWrite(LowL, HIGH); 

  digitalWrite(HighR, LOW);       // forward 

  digitalWrite(LowR, HIGH); 

  analogWrite(EnableL, 150); 

  analogWrite(EnableR, 150); 

  delay(500); 

 

} 

 

void loop()  

{ 

    if (j > 25000) 

    { 

      Lane_Change(); 

      i = 0; 

      j = 0; 

    } 

   

  Data(); 

  if(data==0) 

   { 

     Forward(); 

     if (i>0) 

     { 

      j = j+1; 

     } 

   } 

    

  else if(data==1) 
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   { 

     Right1(); 

          if (i>0) 

     { 

      j = j+1; 

     } 

   } 

      

  else if(data==2) 

   { 

     Right2(); 

          if (i>0) 

     { 

      j = j+1; 

     } 

   } 

      

  else if(data==3) 

   { 

     Right3(); 

          if (i>0) 

     { 

      j = j+1; 

     } 

   } 

      

  else if(data==4) 

   { 

     Left1(); 
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          if (i>0) 

     { 

      j = j+1; 

     } 

   } 

     

  else if(data==5) 

   { 

     Left2(); 

          if (i>0) 

     { 

      j = j+1; 

     } 

   } 

     

  else if(data==6) 

   { 

     Left3(); 

          if (i>0) 

     { 

      j = j+1; 

     } 

   } 

      

  else if(data==7) 

   { 

     UTurn(); 

   } 
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  else if (data==8) 

   { 

      analogWrite(EnableL, 0); 

      analogWrite(EnableR, 0); 

      delay(4000); 

 

      analogWrite(EnableL, 150); 

      analogWrite(EnableR, 150); 

      delay(1000); 

   } 

 

      else if(data==9) 

   { 

     Object(); 

   } 

         else if(data==10) 

   { 

      analogWrite(EnableL, 0); 

      analogWrite(EnableR, 0); 

      delay(2000); 

   } 

 

     else if(data>10) 

   { 

     Stop(); 

   } 

 

} 


