
i

REAL TIME IMAGE AND VOICE PROCESSING INPUT FOR ONLINE MULTIPLAYER
COMPUTER GAMES

A Thesis

Submitted to the Department of Computer Science and Engineering

of

BRAC University

by

Syed Shaiyan Kamran Waliullah

Student ID: 09301019

Md. Risul Karim

Student ID: 09301002

In Partial Fulfillment of the

Requirements for the Degree

of

Bachelor of Science in Computer Science

December 2012

ii

DECLARATION

I hereby declare that this thesis is based on the results found by myself.
Materials of work found by other researcher are mentioned by reference. This thesis,
neither in whole nor in part, has been previously submitted for any degree.

Signature of Signature of
Supervisor Author

iii

ACKNOWLEDGMENTS

Special thanks to Insan Arafat for helping us with the idea and also Imran Farid
for helping us in graphical elements. We would also like to thank Dr. Khalilur Rahman
for helping us in our robotic project. We also would like to thank Nayak Amir Arup for
helping us with OpenCV.

iv

ABSTRACT

Real Time image processing and voice processing in computer gaming is a very recent
topic as companies like Microsoft and Sony have researched and implemented this
technology recently in their gaming consoles XBOX-360 and Play Station 3 respectively.
As these consoles have high performance processor likes CELL or XENON with
POWER (Performance Optimization with Enhanced

RISC) PC Architecture unlike
desktop computers which uses x86 and legacy architecture processor which is slower
than console’s processors. Gaming with “Natural User Interface” such as gestures and
voice was the main focus of the research of this project which is named as “Project:
Control Scheme Revolution”. To materialize this challenge, several approaches were
carried out. An open source game engine JMonkey Engine 3 (JME3) was customized
with natural user interface. To measure the goodness of the system which is being
developed by this project, Frame per Second (FPS) of the game was kept in account.
All the approaches were taken to integrate different libraries to the core of the Game
Engine ensuring a playable FPS for good user experience. Besides that, this research is
also focused on implementing this system on the Multiplayer and Massively Online
Multiplayer games as the participation of the more than one user in gaming produces an
extra over head on the overall processing of the computer. As not all computers are
powerful enough to support all of these systems at real time effortlessly, this research
also focused on developing a system to render and stream a game from high
performance computer to a moderate or low performance device such as note book or
android device. Performance analysis of all of these approaches to develop a system
which will bring the feeling of gaming in a console to the gaming in an ordinary
computer is the main goal of this project.

v

TABLE OF CONTENT

Contents:
Page

Title I

Declaration II

Acknowledgements II

Abstract IV

Table of Contents V

List of Tables VII

List of Figures VIII

Chapter I : Introduction

1.1 Real-time image and Voice processing overview 1

1.2 System Integration Overview 2

1.3 Existing Research and Implementation 3

Chapter II: Real-time image processing approach 4

2.1 Overview of Technologies 4

2.2 Performance analysis of different libraries 5

 2.2.1 Java Media Framework 2.2.1 5

 2.2.2 Open Computer Vision 8

2.3 Consistency of the proposed Technology 9

Chapter III: Real-time Speech recognition 10

3.1 Speech recognition library 10

vi

3.2 Performance analysis of proposed technology 11

Chapter IV: Game Engine 13

4.1 An overview of Existing Game Engines 13

4.2 Game Engine Criteria 13

4.3 Comparison among existing game engines and framework 13

 4.3.1 XNA Framework 14

 4.3.2 Unity 3D 14

 4.3.3 Unreal Development Kit 14

 4.3.4 JMonkey Engine 15

4.4 Effectiveness of the proposed game engine 15

Chapter V: Networking 17

5.1 Multiplayer System Overview 17

5.2 Spider monkey Network Library Integration 17

5.3 Network Features of the system 17

 5.3.1 Multiplayer Network 17

 5.3.2 Streaming for cloud based gaming 17

Chapter VI: Natural User Interface 19

6.1 Image as Input 19

 6.1.1 Fist Detection 19

 6.1.2 Face Detection 19

 6.1.3 Gloves with LED Detection 19

6.2 Algorithm for NUI 20

vii

 6.2.1 Avatar Control 20

 6.2.2 Face Detection Based Character Control 21

 6.2.3 Multi-Player Flight Simulation 22

 6.2.4 Mouse Cursor Controlled by Gesture 23

 6.2.5 Different body part detection and collaboration 24

 6.2.5.1 Relative distance calculation between face
and right hand for Flight Simulation Game

24

 6.2.5.2 Relative distance calculation between left and
right hand for Flight Simulation Game

26

 6.2.6 Rotation Detection 27

 6.2.7 Animation Trigger 27

6.3 Voice as Input 28

 6.3.1 Voice input Based User Interface 28

 6.3.2 Voice as In-Game Input 28

 6.3.3 Strategic AI control using voice 29

Chapter VII: Performance analysis

7.1 Test result on a computer 31

7.2 Practical implementation and Gaming Experience 32

Reference

viii

LIST OF TABLES

Table Page
3.1 Computer Configuration 11
3.2 JMonkey Engine Blank Screen Frame Per Second 11
3.3 Sphinx Activated JMonkey Engine Blank Screen Frame Per Second 11
3.4 Sphinx Activated In-Game 12
4.1 Computer Configuration 16
4.2 Sphinx with OpenCV activated in-Game Frame Per Second 16
6.1 Sphinx Language Model for User Interface 28
6.2 Sphinx Language Model for Game Input 29

LIST OF FIGURES
Figure Page
1.1 System Integration Overview 2
1.2 Depth Sensing using Kinect and PS3 Move Wand 3
2.1 Example of Showing Face detection in OpenCV 8
5.1 Showing Multiplayer Using Real Time Image Processing 17
5.2 Showing state of a computer 18
5.3 Showing state of a computer in this laptop 18
6.1 Showing Face Detection in game 19
6.2 Showing Gloves Detection in game 20
6.3 Controlling Avatar using face detection 20
6.4 Face detection based character control and animation 22
6.5 Multiplayer Flight Simulation 23
6.6 Controlling mouse cursor using image processing 23
6.7 Face and Hand’s relative distance as input 25
6.8 Relative distance of both hands as input in game 26
6.9 Rotating object by calculating depth 27
6.10 Voice command for Non Playable Character control 29
7.1 per second of the Flight Simulator Game 31

1

CHAPTER I
INTRODUCTION

1.1 Real time image and voice processing overview
Real time image processing and voice processing (also known as speech

recognition) has been used separately for long time in different fields of science. As
subcategory of the field of Digital Signal Processing, digital image processing has broad
advantages over analogue image processing. It permits mathematicians to apply wider
range of algorithms to apply on the digital data and can avoid problems such as the
buildup of noise and signal distortion during processing. This research used the
information from images that are taken in real time for detecting various objects by
which we can perform multi-modal operation with computer. This creates a Natural User
Interface where a human can be physically part of a virtual world. Voice processing or
Speech recognition in real time has been also used in several fields such as health
care, battle management, vehicles etc. Integration of image processing and speech
recognition in gaming consoles such as XBOX 360 and Play Station 3 is considered as
revolution as this integration has been well accepted by users. Sony Play station 3 uses
a high speed camera called PS3 Eye and XBOX 360 offers Kinect Sensor.

For image processing in real time, a camera is required to grab the image of the
real world and process it to find out the object of interest. Based on the existence and
location of the object of interest, changes in the command for controlling the character
in gaming world are done.

Speech recognition in real time is also involves the processing of digital signal
that are found from the microphone and extract the subjected language model. Three
main challenges of speech recognition system are Speaker Independence, Continuous
Speech and Large vocabulary. A good speech recognition system must deal with all of
these issues.

Combination of all of these components together is the main goal of this project.
For this research paper, this project will be named as Project Control Scheme
Revolution or Project C.S.R.

2

1.2 System Integration overview
The system that this project is willing to produce is a customized game engine

which we will be enabled to produce games with feature of speech recognition and
image processing at the same time and will also support the networking feature. As the
personal computers are not as strong as consoles and with limited processing
capabilities, the speech recognition and image processing libraries are required to be as
optimized as possible. The three main part of this system are a game Engine, Computer
Vision Library and Speech Recognition Library.

While developing this system, it was focused on choosing a game engine first

that is easy to customize and open source. JMonkey Engine is an open source project,
programmed in java and build on OpenGL which was selected to customize.

For image processing, several ways were tried to detect several object of interest
such as human face, hands, shoulder etc. Open Computer Vision (OpenCV) library was
chosen to merge with the game engine as it is highly optimize and has a java wrapper
called JavaCV.

For speech recognition library, CMU Sphinx was chosen as it is entirely written
on java, which is also optimized enough to be processed with the game and the
computer vision library at the same time. Therefore the components of the system are
as follows:

 Fig 1.1 System Integration overview

Game Engine

Computer Vision
Library

Speech Recognition
Library

3

1.3 Existing research and implementation
The two existing technology that has similarity with the project: Control Scheme

Revolution. XBOX 360 Kinect by Microsoft and PlayStation 3 Move by Sony, both
released in 2010.

Kinect is a motion sensing input device by Microsoft for the Xbox 360 video game
console. Based around a webcam-style add-on peripheral for the Xbox 360 console, it
enables users to control and interact with the Xbox 360 without the need to touch
a game controller, through a natural user interface using gestures and spoken
commands. The project is aimed at broadening the Xbox 360's audience beyond its
typical gamer base . The device features an "RGB camera, depth sensor and multi-
array microphone running proprietary software", which provide full-body 3D motion
capture, facial recognition and voice recognition capabilities.

PlayStation Move is a motion-sensing game controller platform for
the PlayStation 3 (PS3) video game console by Sony Computer Entertainment (SCE).
Based around a handheld motion controller wand, PlayStation Move uses
the PlayStation Eye camera to track the wand's position, and inertial sensors in the
wand to detect its motion. The PlayStation Move motion controller features an orb at the
head which can glow in any of a full range of colors using RGB light-emitting
diodes (LEDs). Based on the colors in the user environment captured by the PlayStation
Eye camera, the system dynamically selects an orb color that can be distinguished from
the rest of the scene. The colored light serves as an active marker, the position of which
can be tracked along the image plane by the PlayStation Eye. The uniform spherical
shape and known size of the light also allows the system to simply determine the
controller's distance from the PlayStation Eye through the light's image size, thus
enabling the controller's position to be tracked in three dimensions with high precision
and accuracy. The sphere-based distance calculation allows the controller to operate
with minimal processing latency,

as opposed to other camera-based control techniques
on the PlayStation 3.

Fig1.2 Depth Sensing using Kinect and PS3 Move Wand

4

CHAPTER II

REAL TIME IMAGE PROCESSING APPROACH

2.1 Overview of Technologies

 Before merging with Game Engine for this project, two image processing

technologies were tested before implementation. They are Java Media Framework

(JMF) and Open Computer Vision (OpenCV) library by intel and later Willo Garage.

 The Java Media Framework (JMF) is a Java library that enables audio, video and

other time-based media to be added to Java applications and applets. This optional

package, which can capture, play, stream, and transcode multiple media formats,

extends the Java Platform, Standard Edition

 The second approach was undertaken for image processing part of the system

using the library OpenCV. OpenCV

(Java SE) and allows development of

cross-platform multimedia applications. As this framework allowed us to interface

webcam with it, the first initiative to integrate computer vision with the game engine was

carried out with this library.

 (Open Source Computer Vision Library) is a library

of programming functions mainly aimed at real-time computer vision, developed by Intel,

and now supported by Willow Garage and Itseez. It is free for use under the open

source BSD license. The library is cross-platform. It focuses mainly on real-time image

processing. If the library finds Intel's Integrated Performance Primitives

 In the section 2.2, section 2.2.1 and section 2.1.2, performance analysis of these

libraries with the implemented algorithm are discussed and in section 2.3 will discuss

the consistency of the suggested technology.

on the system, it

will use these proprietary optimized routines to accelerate it.

5

2.2 Performance analysis of different libraries
In this section we discuss about the performance of two libraries, JMF and

OpenCV.

2.2.1 Java Media Framework 2.1.1
Java Media Framework is a java library which enables to use real time images or

videos in java applet. For image processing in Project-C.S.R, JMF was first used. The
rendered real time image is taken from the JMF and that image is used for image
processing. For finding a specific object in the image the shape, size and color of the
object is used. Blue-LED lights were first used to be detected in Project-C.S.R. Now, for
detecting the light the image had to go through some processes for finding the light. The
first process that the image goes through is that all of its green and red pixels are
removed. The reason for this is to detect the blue color in the Blue-LED light by
differentiating it from other colors and to remove these red and green pixels a threshold
value is used for both the colors. Once the red and green pixel crosses the threshold
value the pixel at that point is converted to black. Below is the pseudocode for removing
green and blue pixel values.
removeRedGreenPixel(){

1. TRed = Threshold Value of Red
2. TGreen = Threshold Value of Green
3. Height = height of the image
4. Width = width of the image
5. x = 0  Current Value of pixel in x coordinate
6. y = 0  Current Value of pixel in y coordinate
7. While x < Width
8. While y < Height
9. if getGreen (x, y) > TGreen & getRed(x, y) > TRed
10. imageSetColor(x, y) = 0  making that pixel black
11. else
12. Nothing
13. y = y + 1
14. x = x + 1

 }

This process ensures that most of the green and red colors are removed but it
still does not remove all of them. So, after the remove of the red and green pixel

6

process the image then goes through another process which only keeps pixels with blue
value. There is a threshold value for finding the blue value of the pixel. If the value of the
pixel is below the threshold value then that pixel is turned to black by replacing its value
with 0. Below is the pseudocode for keeping blue only.

blueOnly(){

1. TB = Threshold value of blue.
2. Height = height of the image.
3. Width = width of the image
4. x = 0  Current value of pixel in x coordinate
5. y = 0  Current value of pixel in y coordinate
6. While x < Width
7. While y < Height
8. If getBlue(x, y) > TB
9. imageSetColor(x, y) = 0  making that pixel black
10. else
11. imageSetColor(x, y) = 1  making that pixel white
12. y = y + 1
13. x = x + 1

 }
After this process it has been ensured that almost all of the other colors except

for the Blue-LED light blue has been removed. Now after the all these processes had
been done a small recursive algorithm starts which searches for the edge of the blue
light. The algorithm scans the entire image pixel by pixel. During scanning whenever it
finds the blue color value it then starts the algorithm. Below is the pseudocode for
finding the edge of the blue light.

7

findBlueEdge(x, y, Width, Height){
1. If x < 0
2. Return
3. If y < 0
4. Return
5. If x > Width
6. Return
7. If y > Height
8. Return
9. If getPixelValue(x, y) equals to 2
10. Return
11. If getPixelValue(x, y) equals to 0
12. Return
13. If x > maxX
14. maxX = x
15. If x < minx
16. minx = x
17. If y > maxY
18. maxY = y
19. If y < minY
20. minY = y
21. getPixelValue(x, y) = 2
22. findBlueEdge(x, y + 1, Width, Height)
23. findBlueEdge(x + 1, y, Width, Height)
24. findBlueEdge(x - 1, y, Width, Height)
25. findBlueEdge(x, y-1, Width, Height)
26. return
}
The findBlueEdge finds the edge of the blue light and then marks a square around it.

After marking it with square, the center of the square is the position of the blue light.

Technology Used: For taking the image a normal Web-Cam was used which had a
FPS of 30.

8

2.2.2 Open Computer Vision 1.0
OpenCV library allows programmers to detect objects of interest during real time

image processing. The good thing about OpenCV is the way to train to find a specific
object and it can also be used in java applets. OpenCV was later used in this project.
The algorithm that is used from OpenCV is ‘haar’. For using the OpenCV a lot of
positive and negative images are required. For clarification, positive images are those
images with the object of interest in the image. Negative images are those images
without the object of interest in the images. Later these images are used in haartraining.
The haartraining uses these images for making accurate detection. It compares all the
positive images with all the negative images. Also in haartraining the number of stages
must be specified. The stages represents how many times the comparison will occur.
The more stages are specified the more accurate the detection will be but the down fall
is that more time it will take to finish the training. Once the training has been finished an
xml file is created. This xml file contains the result of the haartraining. This xml file is
used with OpenCV to find the specific object.

Fig. 2.1 Example of Showing Face Detection in OpenCV

Technology Used: For taking the image a Sony PS3Eye was used which has 60
– 120 Frame Per Second.

9

2.3 Consistency of the Proposed Technology
The library which Project-C.S.R is using is OpenCV. The reason for using

OpenCV over JMF is plain and simple, OpenCV is faster and much more accurate than
the JMF process. OpenCV saves a lot of processing power during image processing
where as JMF does not. Due to this a lot of FPS are saved in games and other
application related to games. The technology used in this project is Sony PS3Eye
because PS3Eye has higher FPS than most of other Web-Cams.

10

CHAPTER III

REAL TIME SPEECH RECOGNITION APPROACH

3.1 Speech Recognition Library

 For Speech Recognition system, CMU Sphinx Library was chosen. CMU Sphinx

is a speaker independent, continuous speech recognition system with large vocabulary.

It is founded on discrete hidden Markov models (HMM’s) with Linear Prediction Model

(LPC) derived parameters. To provide speaker independence, knowledge was added to

sphinx in several ways such as, (i) multiple code books of fixed width parameters and

(ii) enhanced recognizer with carefully designed models and word duration modeling. To

deal with co articulation in continuous speech, yet still adequately represent a large

vocabulary, two new sub word speech units was introduced (i) functions-word

dependent phone model and (ii) generalized triphone models. With grammar perplexity

997, 60 and 20, Sphinx attained word accuracies of 71, 94 and 96 percent on a 997

work task.

 Sphinx 4.0 library was integrated in JMoneky engine to make it enabled with

voice recognition system. While gaming, both discrete word and sentences were

required. Sphinx comes with large knowledge base of English words of 129247 words.

Among them, specific words that are needed for games were included. The uses of

Sphinx speech recognition library was done for performing two tasks, (i) For voice

activated Natural User Interface and (ii) Non playable character control. Details on this

topic will be discussed on Chapeter VI, section 5.3.

11

3.2 Performance Analysis of the Proposed library in Game Engine

 Before adding Sphinx Voice Recognition library in game engine, it was needed to

be tested on several computers to realize it’s usability on as an input scheme for

gaming. For test cases we choose five computers with following specification:

Table 3.1

Computer Configuration

PC Brand Processor RAM GPU

PC1 HP Compaq Note Book 2.2GHz Dual Core 2GB 700MB: Built in

PC2 Dell Inspiron Note Book 2.12GHz Core i3 2GB 800MB: Built in

PC3 HP Pavilion Laptop 2.00GHz Dual Core 4GB 358MB: Built in

In blank Screen Test, without Sphinx Voice recognition is activated, the computers show

the following Frame Per Second in the blank game world.

Table 3.2

JME3 Blank Screen Frame per Second

PC PC1 PC2 PC3

FPS 600 500 700

With Sphinx Activated, the process shows the following FPS

Table 3.3

Sphinx Activated JME3 Blank Screen FPS

PC PC1 PC2 PC3

FPS 156 150 170

12

Without the blank Screen, on a same game, developed for this project, when the sphinx

is activated, it shows the FPS in the following number on average.

Table 3.4

Sphinx Activated in game

PC PC1 PC2 PC3

FPS 89 70 95

The ideal Frame Per Second for playing a game in Computer is around 30. A game is

playable if the FPS is around 22 however lower than this FPS causes bad user

experience. In XBOX 360 the Frame Per Second is around 28.5 and for PS3 is 29.3

After comparing Frame Per Second in all of the PC’s above, it can be concluded that in

games with low processing power, it may be possible to play game using sphinx

however user experience might not be very satisfactory.

13

CHAPTER IV

GAME ENGINE

4.1 An overview of existing game engines

Most of the game engines and frameworks of today are compatible with high

graphics processing. To develop the process, it was required to choose a game
framework that is easy to customize and has ability to adopt the integration of sphinx
and openCV. Several game engines were studied before the customization. In section
4.2 and Section 4.3, a competitive discussion on different game engines and framework
will be shown and in section 4.4 will hold the reason for using JMonkey engine will be
discussed.

4.2 Game Engine Criteria

 To choose the game engine for customization, focus was given to the following

points

1. Integration ability with OpenCV and CMU Sphinx

2. Optimization

3. Abstraction Level

4. Visual Editor Support

5. Scripting and Programming Language

6. GPU

7. License Cost

 A brief result of little internet research is shown in the following sections below.

4.3 Comparison among existing Game Engines and Frameworks

To compare between the frameworks and Game Engines, brief introduction of them
can be presented.

14

4.3.1 XNA Framework:
The XNA Framework is based on the native implementation of .NET Compact

Framework 2.0 for Xbox 360 development and .NET Framework 2.0 on Windows. It
includes an extensive set of class libraries, specific to game development, to promote
maximum code reuse across target platforms. The framework runs on a version of
the Common Language Runtime that is optimized for gaming to provide
a managed execution environment. The runtime is available for Windows XP, Windows
Vista, Windows 7, Windows Phone 7 and Xbox 360. Since XNA games are written for
the runtime, they can run on any platform that supports the XNA Framework with
minimal or no modification. Games that run on the framework can technically be written
in any .NET-compliant language, but only C# in XNA Game Studio Express IDE and all
versions of Visual Studio 2008 and 2010 (as of XNA 4.0) are officially
supported. Support for Visual Basic .NET

was added in 2011. Other than all of these
features, XNA is not free for publishing. Beside, both Sphinx and OpenCV java Wrapper
(JavaCV) are written in Java where XNA is C# based. So XNA was not chosen for the
project.

4.3.2 Unity 3D:
Unity is an integrated authoring tool for creating 3D video games or other

interactive content such as architectural visualizations or real-time 3D animations.
Unity's development environment runs on Microsoft Windows and Mac OS X, and the
games it produces can be run on Windows, Mac, Xbox 360, PlayStation
3, Wii, iPad,

iPhone and Android. The programming language is basically javaScript for
game developer. As for this project java plays an important role, so Unity 3D was not
selected.

4.3.3 Unreal Engine 3:
The third and current generation of the Unreal Engine (UE3) is designed

for DirectX (versions 9-11 for Windows and Xbox 360), as well as systems
using OpenGL, including the PlayStation 3, Mac OS X, iOS, Android, Stage 3D
for Adobe Flash Player 11, Play station Vita and Wii U.Its renderer supports many
advanced techniques including HDRR, per-pixel lighting, and dynamic shadows. It also
builds on the tools available in previous versions. In October 2011, the engine was
ported to support Adobe Flash Player 11 through the Stage 3D hardware-accelerated

15

APIs. However Unreal Engine runs on Unreal Script and maintains a very high level of
abstraction so integrating a new library would have been an issue.

4.3.4 JMonkey Engine 3:

JMonkeyEngine (jME) is a game engine made especially for
modern 3D development, as it uses shader technology extensively. jMonkeyEngine is
written purely in Java and uses LWJGL as its default renderer. OpenGL
2 throughOpenGL 4

jMonkeyEngine is a community-centric

is fully supported.

 open source project released under the
new BSD license. It is used by several commercial game studios and educational
institutions. The default jMonkeyEngine 3 download comes readily integrated with an
advanced

JMonkey Engine Showed the best possibility to be integrated with libraries like
OpenCV and CMU Sphinx as all of them were written in java. Beside, JMonkey Engine
is free of cost, easily customizable so it was chosen for the project.

SDK.

4.4 Effectiveness of the proposed Game Engine

To show the effectiveness of JMonkey Engine, features of this engine can be
discussed. JME3 comes with the JME3 SDK which is a full featured java and xml code
editor. It has numbers of plugin and as an open source project, number of it’s plugins
are increasing frequently. It can be deployed into all major Operating Systems such as
windows, Mac, Linux and Android. It has Bullet Physics library which enables it to
support complex physics calculation such as rigid body control, rag doll, Inverse
Kinematics and vehicle physics. Finally, it comes up with Spider Monkey Network API
which can be used to create multi player games.

OpenCV and Sphinx is merged together with the libraries of game engine. We
took two computers with the following configuration to figure out the performance of the
system.

16

Table 4.1

PC Configuration

PC4 Desktop 2.66GHz

Quad

4GB 1GB nVidia

PC5 Desktop 3.30GHz

Core i5

8GB 1GB ATI

Before and after integration of the OpenCV and CMU Sphinx, the FPS of a game,
developed for this project was following.

Table 4.2

Sphinx with OpenCV Activated in game FPS

PC PC4 PC5

FPS Before addition of OpenCV

and Sphinx in game

600(approximate Value) 800(approximate Value)

FPS after addition of OpenCV

and Sphinx

300(approximate Value) 400(approximate Value)

This data clearly shows that the game runs with enough frames per second to play
with a good user experience. Two games were developed on JMonkey engine to test all
the approaches to integrate Natural User Interface with them. Games are

1. Flight Simulator Game (Massively Multi player online game)
2. Run (Re creation of “Temple Run” game, human racing game)

17

CHAPTER V

NETWOKING
5.1 Multiplayer System Overview

This project uses JME3’s SpiderMonkey which is a multiplayer feature.
SpiderMonkey is a multiplayer feature for games so it is quite fast. Multiplayer and
Streaming for Cloud Based Games are used in this project.

5.2 Spider Monkey Network Integration

 Spider Monkey is the networking feature or multiplayer feature of JME3. It can
use both TCP and UDP protocol. Since it is made for games it is fast too. The use of
Spider Monkey is simple. Spider Monkey allows customized messages to be passed
around the server. The type of protocol that will be used can also be specified in Spider
Monkey.

5.3 Network Feature of the system

 Two types of features are used in this project. They are Multiplayer Network and
Streaming for Cloud Based Gaming.

5.3.1 Multiplayer Network

There are two parts in the multiplayer network, the server side and client side. The
server side is a headless application which means it has no GUI. The server in this
project sends messages from one client to another and also from the database. It also
stores the position of each client in the database. The client side of the network only
sends message to the server. The client sends its position to the server.

Fig. 5.1 Showing multiplayer using real time image processing

18

5.3.2 Streaming for Cloud Based Gaming

This feature is still in progress. In this project the video streaming works by sending
snapshots from one computer to another. It breaks down the image by 25k bytes and
sends each separate part separately. Then once after all the bytes have been received
it then combines all the bytes and forms the image which is then rendered to be shown.

Fig. 5.2 Showing the state of a Computer

Fig. 5.3 Showing the state of the computer in this laptop

19

CHAPTER VI

NATURAL USER INTERFACE (NUI)

6.1 Image as input

In Project-C.S.R real time image processing is used as inputs. Three types of objects
are used for image processing inputs they are fist, face and gloves with LED. Whenever
these objects are found during image processing an event is specified to occur.

6.1.1 Fist Detection

 The fist is used as an input. Through haartraining an xml file is created which is
used to detect the fist part only. Around 1000 images in total were used to create this
xml.

6.1.2 Face Detection

 The face is used as an input. This is the default xml for the OpenCV.

Fig. 6.1 Showing Face Detection in game

6.1.3 Gloves with LED Detection

 Some LED are attached to gloves and that is used as an input. Through
haartraining an xml file is created which is used to detect the object. Around 2500
images in total were used to create this xml.

20

Fig. 6.2 Showing Gloves Detection in game

6.2 Algorithm for NUI

 For different application different type of algorithm were used for creating an
event from the NUI.

6.2.1 Avatar Control

 For the Avatar Control the image taken is divided into three equal parts which are
left, center and right. For this the Face Detection was used because to give a realistic
feeling that the Avatar is looking at the user. When the user face happens to be at the
left side of the image then the avatar rotates left, if the user happens to be at the right
side of the image then the avatar rotates right and if at the center then it does nothing.

Fig. 6.3 Controlling the Avatar using Face Detection

21

6.2.2 Face detection Based Character Control

 This uses face detection as input. The image is again divided into three parts,
left, center and right. When the player happens to be at the left side the character then
moves left, if at right then the character moves right and center for nothing. A threshold
value for y coordinate is taken because if the player crosses that value then the
character jumps. Here the size of the player’s face is also taken into account. There are
two threshold values, maxFace which is the maximum size of a face and minFace which
is the minimum size of the face. When the player face size crosses the maxFace then it
means that the player is closer and moves the character forward. When the player face
size is smaller than the minFace then it means that the player is further away and
moves the character backward. Example of a game play detecting face is shown in
figure 6.4. This game is called “Run” which was developed as part of this project.

22

 The game character goes
straight when the face is
found at the middle of the
screen and area is
between minFace and
maxFace.

When player leans right,
the face detected at right
side of the screen, so
game character goes left.

When player leans left, the
face detected at left side
of the screen, so game
character goes right.

When player jumps, the
face is detected at top part
of the screen, the jump
animation of the game
character is triggered.

6.2.3 Multi-Player Flight Simulation

 This uses the gloves or fist detection as game inputs. It divides the image into
five parts, left, right, top, bottom and center. When the gloves are at the center then it
does nothing, when the gloves are at the left then the plane moves left, when the gloves
are at the right side then it moves right, when the gloves are at the top then it moves up
and when the gloves are at the bottom then it moves down.

Fig 6.4: Face detection based character control and animation

23

Fig. 6.5 Multi-player Flight Simulation

6.2.4 Mouse Cursor Control by Gesture

 This uses gloves detection as input. Here it sees where the position of the mouse
is at and the position of the gloves. The mouse is then moved to the direction of the
gloves position.

Fig. 6.6 controlling mouser cursor using Image Processing

24

6.2.5 Different Body Part Detection and Collaboration

 To detect human movement, different human body part was detected by openCV
and Haar Traning. Face, right Arm and Left Arm and Upper body was detected which
was used in the games which were developed as part of the project. The detailed
discussion of different movement of game character using these detected part are
stated in the following segments.

6.2.5.1: Relative distance calculation between face and right hand for Flight
Simulation Game
 To control the game character of the Flight Simulation game, i.e a fighter plane,
relative distance of the right hand and face was calculated. The figure 6.7 explains how
this input works by the help of images from camera and game’s screen shots.

25

Fig 6.7: Face and Hand’s relative distance as input

When right hand is
at the right side of
the face, the plane
moves in left
direction.

When right hand is
at the left side of
the face, the plane
moves in right
direction.

When right hand is
at the upward side
of the face, the
plane moves in
upward direction.

When right hand is
at the bottom side
of the face, the
plane moves in
downward direction.

When the right
hand is on the area
covered by face,
the plane goes
forward.

26

6.2.5.2: Relative distance calculation between left and right hand for Flight
Simulation Game
 This input scheme detects both of the hands and by calculating their
relative position, the game character is controlled. The figure below explains how the
movement of game character synchronizes with hand gestures.

When both of the hands
are at the middle part of
the screen as the screen
is divided horizontally into
3 equal parts, the plane
goes in forward direction.

If both of the hands are at
downward part of the
screen, the plane goes
downward.

If both of the hands are at
upward part of the
screen, the plane goes
upward.

If left hand (gloves with
red light) is at upward
portion of the screen and
blue is at downward
portion, the plane goes
left.

If right hand (gloves with
blue light) is at upward
portion of the screen and
red is at downward
portion, the plane goes
left.

Fig 6.8: Relative distance of both hands as input in game.

27

6.2.6 Rotation Detection

 To rotate a model, distance of the detected object from the camera was
calculated. As this project is not based on stereo vision, which means it uses only one
camera for detecting object, so distance of detected object is determined from the size
of the detected object.
 As a square box is drawn around the detected object, the width and height of the
detected object is taken in to account. Depending upon the game, a threshold of depth
distance that is distance from the camera is set. If the area of the detected object is
bigger than threshold value, then specific command is triggered. The figure below
contains an example of using depth to rotate an object in game world.

Blue light is
closer to the
camera as it
has bigger
area of square
than red light,
thus the
model is
rotating
clockwise.

Red light is
closer to the
camera as it
has bigger
area of square
than blue
light, thus the
model is
rotating
counter
clockwise.

Fig 6.9 Rotating object by calculating depth.

6.2.7 Animation Trigger

 Specific gesture or movement was used to trigger specific animation. For
example, in figure 6.4, the jump animation is triggered when the player jumps.
Otherwise the running animation keeps going on.

28

6.3 Voice as Input

 The system was designed to recognize continuous speech for two main
purposes which are voice input based user interface and voice as game input. Both of
these are described in the section 6.3.1 and 6.3.2 respectively.

6.3.1 Voice input based User Interface
 Project’s one of the features was to create a natural user interface as part of
multi-modal operation with computer. Voice recognition played a significant role in it.
CMU Sphinx comes with a rich library of about 12000 English words. For every button
on the game screen, a corresponding word is kept in the knowledge base of the Sphinx.
One of the game that was developed as part of this project is a flight simulation game.
To iterate the planes, the following commands with their language model were used.
The accuracy of each word on out of 50 times of test is mentioned in the table.

Table 6.1

Sphinx Language model for UI

Word Language Model Accuracy times out of 50
NEXT N EH K S 43

NEXT(2) N EH K S T 43
PREVIOUS P R IY V IY AH S 39
SELECT S AH L EH K T 46

In the grammar file of the project’s demonstration game, 20 different words were

kept. To search a word from the grammar, the delay time was close to 0.5 seconds.

6.3.2 Voice as in- game input
 This project included speech recognition as game input. In gaming world, speech
recognition performs moderately as the delay of 0.5seconds can play an important role.
The words are chosen in such a way that it has a good detection rate.

29

The flight simulation game had following commands.

Table 6.2

Sphinx Language Model

Word Language Model Accuracy times out
of 50

GO G OW 47

FIRE

F AY ER 45

FIRE(2) F AY R 45

6.3.3 Strategic AI Control using Voice

 Purpose of this part of the project is to control Non-playable Characters (NPC)
using voice. As in most of the games, non playable characters are more or less static in
their behavior and Artificial Intelligence. This means they keep doing certain tasks over
and over again. As Project Control Scheme Revolution integrates voice input, so game
scene was created as part of this project where two game characters were placed on
the game screen named “Comrade One” and “Comrade Two” and four base models
was created name “East”, “West”, “North”, and “South”.
 :

Fig 6.10 Voice command for Non Playable Character control

 Comrade 1 Comrade2

30

To send Comrades to specific base, voice command was used. The algorithm is as
follows

Boolean comrade1= false
Boolean comrade2 = false
Void send_Comrades()
{
 If voice.message=”Comrade1”
 comrade1= true;
 comrade2=false;
 else if voice.message=”Comrade2”
 comrade2=true;
 comrade1=false;
 endif;

 if (comrade1)
 if(voice.message=”south”)
 send comrade1 to south base;
 else if(voice.message=”north”)
 send comrade1 to north base;
 else if(voice.message=”east”)
 send comrade1 to east base;
 else if(voice.message=”west”)
 send comrade1 to west base;
 else
 do nothing
 else if (comrade2)
 if(voice.message=”south”)
 send comrade2 to south base;
 else if(voice.message=”north”)
 send comrade2 to north base;
 else if(voice.message=”east”)
 send comrade2 to east base;
 else if(voice.message=”west”)
 send comrade2 to west base;
 else
 do nothing
 else
 do nothing
 endif
}

This shows that controlling NPC gives a gamer wider and better experience in playing
game which is possible by Project C.S.R

31

Chapter VII

Performance Analysis

7.1 Test Result on a computer

Multi-player Flight simulator game was taken as the subject game for the final
test run of this project and was run on PC4 from Table4.1. Frame per second of the
game in every ten seconds was taken into account for the first 15 minutes of the game
play. The results have been plotted into following graph.

Fig 7.1: Frame per second of the Flight Simulator Game

As we can see from the graph that with all the features included into the game, the
average FPS is around 40-45. As we know that for playing a game smoothly, the FPS is
required to be around 30-35. Which clearly shows that, using elements of these
projects, games which will be developed will have a playable fps.

7.2 Practical Implementation and Gaming Experience

Both of the games developed as part of this project were displayed in three national
events where people said these two games are fun to play and they were interesting. As
these games did not show any latency while playing, they were well accepted by
people.

0

10

20

30

40

50

60

0 200 400 600 800 1000

FPS Value

FPS Value

32

LIST OF REFERENCES
[1] L.Rainer, M. Jochent(2002) An Extended Set of Haar-like Features for Rapid Object
Detection. IEEE ICIP 2002, Vol. 1, pp. 900-903, Sep.
2002.http://www.lienhart.de/ICIP2002.pdf

[2] J.Boye, J. Gustafson, M. Wirem (2006) Robust spoken language understanding in a

computer game. Speech Communication(ISSN 0167-6393), Vol. 48, pp. 335-353,
2002.http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-15468

[3] L.Kai-Fu, H.Hsiao-Wuen, R. Raj(1990) An Overview of the Sphinx Speech

Recognition System. IEEE Transection Of Acoustic Speech
andSignalProcessing,Vol38.

http://www.ri.cmu.edu/pub_files/pub2/lee_k_f_1990_1/lee_k_f_1990_1.pdf

[4] A. Amit (2011) How to make your own HaarTrainied .xml

files.http://nayakamitarup.blogspot.com/2011/07/how-to-make-your-own-haar-
trained-xml.html

 [5] V. Paul, J.J. Michael (2001) Rapid Object Detection using a Boosted Cascade of

Simple Features. IEEE CVPR. http://citeseerx.ist.psu.edu/viewdoc/summary?doi
=10.1.1.3.7597

