

BRAC UNIVERSITY

Detecting Document Similarity in Large Document

Collection using MapReduce and the Hadoop Framework.

A Thesis submitted in partial fulfillment of the

Requirement for the degree Bachelor of Science

in

Computer Science and Engineering

by

AnikMomtaz (ID: 08201002)

SadikaAmreen (ID: 09101003)

Supervisor:

Dr. Mumit Khan

December, 2012

ii | P a g e

CERTIFICATE

This is to certify that the thesis entitled “Detecting Document Similarity in Large Document

Collection using MapReduce and the Hadoop Framework” is submitted by Anik Momtaz

(ID: 08201002) and Sadika Amreen (ID: 09101003) to the Department of Computer Science

and Engineering, School of Engineering and Computer Science, BRAC University, for the

award of the degree in Bachelor of Science in Computer Science and Engineering is a

bonafide record of work carried out by them under my supervision. The contents of this thesis

have not been submitted to any other Institute or University for the award of any degree or

Diploma.

Imran Ahmed

Co-Supervisor

_________________ ____________________________

Dr. Mumit Khan Prof. Mohammad Zahidur Rahman

Supervisor Dean

iii | P a g e

TABLE OF CONTENTS

Signature Page …………………………………………………………………. ii

Table of Contents …………………………………………………………………. iii

List of Figures …………………………………………………………………. vi

List of Tables …………………………………………………………………. vi

Acknowledgements …………………………………………………………………. vii

Abstract …………………………………………………………………. viii

Chapter 1 Introduction ………………………………………………………….. 1

1.1. What is Big Data ………………………………………………………….. 2

1.2. How much data are we talking about? ………………………………….. 3

1.3. Solving the Big Data Issues ………………………………………….. 4

Chapter 2 Background ………………………………………………………….. 6

2.1. Apache Hadoop ………………………………………………………….. 6

2.2. HDFS Architecture ………………………………………………….. 7

 2.2.1 The Name Node ………………………………………… 7

2.2.2The Data Node ………………………………………… 8

2.3. MapReduce: Counter traditional model ………………………………… 9

 2.3.1The Mapper and the Reducer Class ……………………….. 11

2.3.2RDBMS vsMapReduce ………………………………. 12

iv | P a g e

Chapter 3Hadoop Setup ……………………………………………………… 14

3.1. Platforms and Required Software ……………………………………. 14

3.2. Installing Hadoop ……………………………………………… 14

 3.2.1 Getting Started ……………………………………………… 14

 3.2.2 Network Configuration ……………………………………. 14

3.2.3 Enabling Internet ……………………………………. 15

3.2.4 Installing JDK ……………………………………………... 15

3.2.5 Installing Hadoop …………………………………….. 15

3.2.6 Setting up a Standalone Node Cluster ………………………. 16

3.2.7 Setting up a Single Node Cluster ……………………... 16

3.2.8 Setting up a Multi Node Cluster ……………………… 18

Chapter 4TheN-Gram Analysis ……………………………………………… 19

4.1. What is an N-Gram ……………………………………………… 19

4.2. Application of N-Grams ………………………………………………. 19

4.3. N-Grams using MapReduce ………………………………………. 20

4.4. Input and Output Files ………………………………………………. 20

Chapter 5 Document Similarity Detection ………………………………………. 24

 5.1. Different Methods of Similarity Detection ………………………. 24

 5.2. The Ferret Model ………………………………………………………. 24

 5.3. Jaccard Similarity Coefficient and Jaccard Distance ……………….. 25

v | P a g e

Chapter 6 Implementation ……………………………………………………… 26

6.1. The N-Gram Analysis Class (for English) ……………………… 26

6.2. Calculating the JaccardSimiliarity Coefficient ……………………… 29

6.3 The N-Gram Analysis Class (for Bangla) ……………………………… 30

Chapter 7 System Evaluation ……………………………………………………… 32

7.1. PerformanceComparison between Different Modes of Operation .. 32

 7.1.1. Standalone Mode ……………………………………….. 32

 7.1.2. Multi Node Cluster Mode ……………………………….. 32

7.2. Future Works ………………………………………………………… 34

Chapter 8 Conclusion ………………………………………………………… 35

Appendix …………………………………………………………………………. 36

References …………………………………………………………………………. 45

vi | P a g e

LIST OF FIGURES

Figure 1.1: Hadoop Sub-projects

Figure 2.1: Basic Concept of MapReduce

Figure 4.1: Flow Diagram of Generating N-Grams using MapReduce

Figure 5.1: The Jaccard Coefficient and Distance

Figure 7.1: Graphical representation of performance analysis for Standalone Mode

Figure 7.2: Graphical representation of performance analysis for Cluster Mode

LIST OF TABLES

Table 2.1: Comparison between RDBMS and MapReduce

Table 4.1: N-Grams

Table 7.1: Number of tokens generated for N-Gram

Table 7.2: Performance analysis for Standalone Mode

Table 7.3: Performance analysis for Cluster Mode

vii | P a g e

ACKNOWLEDGMENTS

We would like to thank our adviser Dr. Mumit Khan for his guidance. We have learned a

great amount working on this thesis and much of that is due to him. We would like to thank

our teacher Imran Ahmed who was always willing to answer our questions, who worked

alongside us as a guide during our workand who provided a great deal of advice.

We would also like to thank our teachers AnnajiatAlimRasel and Mohammad

ShamsulKaonain for providing us with support and facilities as well as for ushering us

through the final stage of graduation.

Finally, we would like to thank our families; without the love and support of which none of

this would have been possible.

viii | P a g e

ABSTRACT OF THE THESIS

Detecting Document Similarity in Large Document Collection using

MapReduce and the Hadoop Framework.

By

AnikMomtaz (ID: 08201002)

Sadika Amreen (ID: 09101003)

Bachelor of Science in Computer Science

BRAC University, 2012

Dr. Mumit Khan, Supervisor

The everlasting necessity to process data is only becoming more and more challenging due to

the exponential growth of the data itself. We are talking about exabytes, zettabytes and even

yottabytes of data; generally referred to as Big Data. Hence, the conventional processing

methods of data have become obsolete when handling Big Data. It is simply not feasible to

use a single machine to analyze data of such tremendous volume.

This is where Hadoop comes in. Simply put, using the Hadoop Distributive File System

(HDFS), an enormous chunk of data can be divided into smaller pieces and be distributed

amongst multiple machines referred to as nodes to parallel process them using a technique

called MapReduce.

The potential for such a concept is limitless. However, for our thesis, we have used the HDFS

to identify similarities between multiple documents. The initial idea was to make an

algorithm to detect full or partial plagiarism in documents as there are countless materials of

interest readily available on the internet.

However, upon successfully being able to implement an algorithm for the English language,

we realized that there is no record of any work on document similarity detection carried on

upon Bangla language. Therefore, with some modifications to our existing algorithm to fit

our specifications (as the Bangla language is completely different from the English language

as far as construction is concerned), we were able to develop an algorithm to detect document

similarities on a broad scale using the Ferret model.

1 | P a g e

Chapter 1

Introduction

Data is growing fast. About ninety percent of the world‟s existing data was created in the

last year.The amount of digital content on the web is now close to five hundred billion

gigabytes and the number is expected to double within a year. The explosion of mobile

networks, cloud computing and new technologies has given rise to incomprehensibly

large worlds of information. The necessity to manage efficiently the exponentially

growing dataset is increasing everyday. Data not only needs to be processed and analyzed

fast, a guarantee of a reliable backup such that there is no data loss, also needs to be

provided.

The good news is that Big Data is here. The bad news is that we are struggling to store

and analyze it. The problem is simple: while the storage capacities of hard drives have

increased massively over the years, access speeds – the rate at which data can be read

from drives have not kept up. It takes a long time to read all data on a single drive and

writing is even slower. The obvious way to reduce the time is to read from multiple disks

at once. Working in parallel would mean saving a lot more time through a trade off with

resource and computational power. Processing and analyzing data in the minimum

possible time is of utmost importance nowadays.

The traditional data management tools such as the RDBMS, no longer prove to be

adequate in handling this explosion in data. To keep up with large scale distributed data

generation, a large scale distributed data storage is needed which should be scalable as

well.

This report gives an overview of the new ways to handle such large datasets by iterating

over theMapReduce technique. It also focuses on the Hadoop framework and the Hadoop

Distributed File System which uses the MapReduce algorithm to manage the extensively

large amounts of data by splitting up huge datasets across multiple servers and parallely

processing each part and then combining the answers of each part to produce the final

answer. The report then extensively covers Document Similarity Detection using

2 | P a g e

MapReduce, beginning with the various techniques that are applicable to detect similarity

between documents and then focuses on an analysis of a particular approach namely the

Ferret Model.

Document similarity detection tools guarantee the privacy protection of documents. As

the Internet holds large repositories of data which is easily accessible to all, the problem

of plagiarism is likely to arise. With this rising problem, we need to develop a tool that

not only protects the copyright of documents, but does them at a fast rate. Data

repositories building at an exponential rate means that we need to run a sample of text

against huge datasets for similarity detection. The MapReduce approach is a faster

technique of doing such jobs on large sets of data as it exploits the advantage of parallel

computation. This thesis mainly deals with detecting syntactical similarity between

documents in large document sets that will prevent plagiarized documents to be

acknowledged.

Tools for detecting document similarity such as plagiarism detectors for the English

Language have already been created through several research works. However, such tools

are not available for the Bangla Language which will enable us to compare pairs of texts

or documents in Bangla in large document collections. The need and unavailability of

such detectors is the motivation behind our work. Our research therefore focuses on

developing a Text Similarity Detector using the Ferret Model for the Bangla Language.

1.1 What is Big Data?

Bigdata is a loosely defined term used to describe data sets so large and complex that they

become awkward to work with using hands on database-management tools or computer

software tools as they lack in parallelization capabilities. The data is too big, moves too

fast, or does not fir the structures of the database architectures. Big data sizes are a

constantly moving target, as of 2012 ranging from a few dozen terabytes to many

petabytes in a single dataset. What is considered “big data” varies depending on the

capabilities of the organization managing the set. For some organizations, facing

hundreds of gigabytes of data for the first time may trigger a need to reconsider data

management options. For others, it may take tens or hundreds of terabytes before data

3 | P a g e

size becomes a significant consideration. With this difficulty, a new platform of big data

tools, which uses an alternative to the conventional method, has arisen to handle

sensemaking over large quantities of data, as in the Apache HadoopBig Data Platform.

Big Data can be described as:

1. Velocity – how fast the data is coming in and how fast the data is must be

processed to meet demand.For example, analyze 500 million daily call detail

records in real time to predict customer churn faster. Reacting quickly enough to

deal with velocity is a challenge to most organizations.

2. Variety – all types of data are now being captured for analysis (structured, semi-

structured and unstructured) such as text, sensor data, audio, video, click streams,

log files etc. By some estimates, 80 percent of an organization‟s data is not

numeric! But it still must be included in analysis and decision making.

3. Volume – Many factors contribute to the increase in data volume – transactions-

based data through the year, text data constantly streaming in from social media,

increasing amount of sensor data being collected, etc.In the past, excessive data

volume created a storage issue but with today‟s decreasing storage costs, other

issues emerge, including how to determine relevance amidst the large volumes of

data and how to create value from data that is relevant.

4. Complexity – involves everything from moving operational data into big data

platforms and the difficulty in managing the data in multiple sites and

geographies.

1.2 How much data are we talking about?

A few examples: Google grew from processing 100 TB of data a day with MapReduce in

2004 to processing 20 PB a day with MapReduce in 2008. In April 2009, a blog post was

written about eBay's two enormous data warehouses: one with 2 petabytes of user data,

and the other with 6.5 petabytes of user data spanning 170 trillion records and growing by

150 billion new records per day. Shortly thereafter, Facebook revealed similarly

impressive numbers, boasting of 2.5 petabytes of user data, growing at about 15 terabytes

4 | P a g e

per day. Petabyte datasets are rapidly becoming the norm, and the trends are clear: our

ability to store data is fast overwhelming our ability to process what we store.

Back in the year 2000 Google had a problem of adjusting the internet over every couple

of days. They needed to process the data and there was no way to build an index over the

whole index in a reasonable amount of time using the commercially available tools. They

designed and build this infrastructure called MapReduce to handle the huge amounts of

data that were not only generated by humans but also machines.

Simply put, data becomes "big data" when it basically outgrows our current ability to

process it, store it, and cope with it efficiently. Storage has become very cheap in the past

decade, which means it has become easy to collect mountains of data. However, our

ability to actually process the mountains of data quickly has not scaled as fast. Traditional

tools to analyze and store data -- SQL databases, spreadsheets were not designed to deal

with vast data problems.

1.3 Solving the Big Data Issues

The fact that the existing set of data is already very large and that data is growing at an

exponential rate, not only from humans but also machines and satellites generated lead us

to the question of how we can tackle this issue of handling such huge amounts of data.

Two factors are needed to be addressed here:

● Fast data processing i.e. search and analysis

● Reliable data storage that guarantees no data will be lost i.e. a reliable backup

storage

Since the old data handling concept of using Relational Databases have proved to be

inadequate in speed and backup, distinct approaches that run counter to traditional

approaches of computing was needed to be adopted. MapReduce (which will be discussed

further in detail later in this report) is one such approach which harnesses the power of

parallel data processing and maximum CPU utilization.

To address the reliability of data storage, the concept of scaling „out‟ and not „up‟ is used.

A large number of commodity low-end servers (i.e., the scaling „out‟ approach) is

preferred over a small number of high-end servers (i.e., the scaling „up‟ approach). The

5 | P a g e

latter approach of purchasing symmetric multi-processing (SMP) machines with a large

number of processor sockets is not cost effective, since the costs of such machines do not

scale linearly (i.e., a machine with twice as many processors is often significantly more

than twice as expensive).

6 | P a g e

Chapter 2

Background

2.1 Apache Hadoop

Apache Hadoop is an open source software framework that supports data-intensive

distributed applications, licensed under the Apache v2 license. Hadoop was created by

Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop

was invented by Google and wasderived from Google‟sMapReduce and Google File

System (GFS).

In a nutshell: Hadoop provides a reliable shared storage and an analysis system.

1. The shared storage is the large scale distributed file system called the

HadoopDistributed File System (HDFS) which is a disk on every file server with a

software infrastructure to spread the data out among all of them.

2. The analysis of the system is performed by MapReducewhich is an algorithm that

enables analysis to be run in parallel across several or all of those servers on

extremely large datasets.

Although Hadoop is best known for MapReduce and its distributed file system (HDFS)

the other subprojects provide complementary services, or build on the core to add higher

level abstractions. The subprojects, and where they sit in the technology stack, are shown

in Figure 1.1.

Pig Chukwa Hive HBase

MapReduce HDFS
Zoo

Keeper

Core Avro

Fig: 1.1 Hadoop Subprojects

7 | P a g e

In April 2008, Hadoop broke a world record to become the fastest system to sort a

terabyte of data. Running on a 910-node cluster, Hadoop sorted one terabyte in 209

seconds (just under 3.5mins), beating the previous year‟s winner of 297 seconds. In

November of the same year, Google reported that its MapReduce implementation sorted

one terabyte in 68 seconds. In May 2009, it was announced that a team at Yahoo! used

Hadoop to sort one terabyte in 62 seconds.

2.2 The HDFS Architecture

HDFS stores file system metadata and application data separately. The metadata or file

definitions are stored on a dedicated server called the NameNodes and the application

data are stored on servers called theDataNodes. All servers are fully connected and

communicate with each other using TCP-based protocols.

The Namenodes are independent and don't require coordination with each other. The

DataNodes in HDFS do not use data protection mechanisms such as RAID to make the

data durable. Instead, like GFS, the file content is replicated on multiple DataNodes for

reliability. While ensuring data durability, this strategy has the added advantage that data

transfer bandwidth is multiplied, and there are more opportunities for locating

computation near the needed data.

2.2.1 The NameNode

The HDFS namespace is a hierarchy of files and directories. Files and directories are

represented on the NameNode by inodes, which record attributes like permissions,

modification and access times, namespace and disk space quotas. The file content is split

into large blocks (typically 128 megabytes, but user selectable file-by-file) and each block

of the file is independently replicated at multiple DataNodes (typically three, but user

selectable file-by-file). The NameNode maintains the namespace tree and the mapping of

file blocks to DataNodes (the physical location of file data).

An HDFS client wanting to read a file first contacts the NameNode for the locations of

data blocks comprising the file and then reads block contents from the DataNode closest

to the client. When writing data, the client requests the NameNode to nominate a suite of

three DataNodes to host the block replicas. The client then writes data to the DataNodes

8 | P a g e

in a pipeline fashion. The current design has a single NameNode for each cluster. The

cluster can have thousands of DataNodes and tens of thousands of HDFS clients per

cluster, as each DataNode may execute multiple application tasks concurrently.

HDFS keeps the entire namespace in RAM. The inode data and the list of blocks

belonging to each file comprise the metadata of the name system called the image. The

persistent record of the image stored in the local host‟s native files system is called a

checkpoint. The NameNode also stores the modification log of the image called the

journal in the local host‟s native file system. For improved durability, redundant copies of

the checkpoint and journal can be made at other servers. During restarts the NameNode

restores the namespace by reading the namespace and replaying the journal. The locations

of block replicas may change over time and are not part of the persistent checkpoint.

2.2.2 The DataNode

Each block replica on a DataNode is represented by two files in the local host‟s native file

system. The first file contains the data itself and the second file is block‟s metadata

including checksums for the block data and the block‟s generation stamp.

During startup each DataNode connects to the NameNode and performs a handshake. The

purpose of the handshake is to verify the namespace ID and the software version of the

DataNode. If either does not match that of the NameNode the DataNode automatically

shuts down.

The namespace ID is assigned to the file system instance when it is formatted. The

namespace ID is persistently stored on all nodes of the cluster. Nodes with a different

namespace ID will not be able to join the cluster, thus preserving the integrity of the file

system. A DataNode that is newly initialized and without any namespace ID is permitted

to join the cluster and receive the cluster‟s namespace ID.

After the handshake the DataNoderegisters with the NameNode. DataNodes persistently

store their unique storageIDs. The storage ID is an internal identifier of the DataNode,

which makes it recognizable even if it is restarted with a different IP address or port. The

storage ID is assigned to the DataNode when it registers with the NameNode for the first

time and never changes after that.

A DataNode identifies block replicas in its possession to the NameNode by sending a

block report. A block report contains the block id, the generation stamp and the length for

each block replica the server hosts. The first block report is sent immediately after the

9 | P a g e

DataNode registration. Subsequent block reports are sent every hour and provide the

NameNode with an up-to date view of where block replicas are located on the cluster.

During normal operation DataNodes send heartbeats to the NameNode to confirm that

the DataNode is operating and the block replicas it hosts are available. The default

heartbeat interval is three seconds. If the NameNode does not receive a heartbeat from a

DataNode in ten minutes the NameNode considers the DataNode to be out of service and

the block replicas hosted by that DataNode to be unavailable. The NameNode then

schedules creation of new replicas of those blocks on other DataNodes. Heartbeats from a

DataNode also carry information that are used for the NameNode‟s space allocation and

load balancing decisions.

The NameNode does not directly call DataNodes. It uses replies to heartbeats to send

instructions to the DataNodes. The instructions include commands to:

• replicate blocks to other nodes;

• remove local block replicas;

• re-register or to shut down the node;

• send an immediate block report.

These commands are important for maintaining the overall system integrity and therefore

it is critical to keep heartbeats frequent even on big clusters. The NameNode can process

thousands of heartbeats per second without affecting other NameNode operations.

2.3MapReduce: A counter traditional approach to handling Big Data

MapReduce is a programming model for expressing distributed computations on massive

amounts of data and an execution framework for large-scale data processing on clusters

of commodity servers. It was originally developed by Google and built on well-known

principles in parallel and distributed processing. MapReduce has since enjoyed

widespread adoption via an open-source implementation called Hadoop, whose

development was led by Yahoo. Google uses MapReduce to continuously improve

existing algorithms and to devise new algorithms for ad selection and placement.

The only feasible approach to tackling large-data problems today is to divide and conquer

a fundamental concept in computer science. The basic idea is to partition a large problem

10 | P a g e

into smaller sub-problems to the extent that the sub-problems are independent so that they

can be tackled in parallel by different workers, threads in a processor core, cores in a

multi-core processor, multiple processors in a machine or many machines in a cluster.

Intermediateresults from each individual worker are then combined to yield the final

output.

The general principles behind divide-and-conquer algorithms are broadly applicable to a

wide range of problems in many different application domains. However, the details of

their implementations are varied and complex. The following diagram illustrates in a

simple manner the basic concept of MapReduce.

Figure 2.1The basic concept of MapReduce.

MapReduce builds on the observation that many tasks have the same structure: a

computation is applied over a large number of records (e.g., documents) to generate

partial results, which are then aggregated in some fashion. Naturally, the per-record

computation and aggregation vary by task, but the basic structure remains fixed.

11 | P a g e

MapReduce provides an abstraction that involves the programmer defining a “mapper”

and a“reducer”, with the following signatures:

map: (k1, v1) [(k2, v2)]

reduce: (k2, [v2]) [(k3, v3)]

Key/value pairs form the basic data structure in MapReduce. The “mapper” is applied to

every input key/value pair to generate an arbitrary number of intermediate key/value

pairs. The “reducer” is applied to all values associated with the same intermediate key to

generate output key/value pairs.

2.3.1 The Java Mapper and Reducer Class

The Java Mapper class for Wordcount:

public static class MyMap extends MapReduceBase implements Mapper

<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

public void map(LongWritablekey,Text value,

OutputCollector<Text,IntWritable> output, Reporter

 reporter) throws IOException {

 String line = value.toString();

 StringTokenizertokenizer = new StringTokenizer(line);

 while(tokenizer.hasMoreTokens()) {

 word.set(tokenizer.nextToken());

 }

 output.collect(word, one);

 }

 }

The Java Reducer class for Wordcount:

public static class MyReduce extends MapReduceBase implements

Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output, Reporter

reporter) throwsIOException {

 int sum = 0;

 while (values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, new IntWritable(sum));

 }

 }

12 | P a g e

2.3.2 RDBMS vsMapReduce

Why can‟t we use databases with lots of disks to do large scale batch analysis?Why is

MapReduce needed?

The answer to these questions comes from another trend in disk drives: seek time is

improving more slowly than transfer rate. Seeking is the process of moving the disk‟s

head to a particular place on the disk to read or write the data. It characterizes the latency

of a disk operation, whereas the transfer rate corresponds to a disk‟s bandwidth.

If the data access pattern is dominated by seeks, it will take longer to read or write large

portions of the datasets than streaming through it, which operates at the transfer rate. On

the other hand, for updating a small portion of records in a database, a traditional B-Tree

(the data structure used in relational databases, which is limited by the rate it can

performseeks) works well. For updating the majority of a database, a B-tree is less

efficient than MapReduce, which uses Sort/Merge to rebuild the database. Table 2.1 gives

a comparison between RDBMS and MapReduce.

 Traditional RDBMS MapReduce

Data Size Gigabytes Petabytes/Exabytes

Access Interactive and batch Batch

Updates Read and Write many times Write once, Read many times

Structure Static Schema Dynamic Schema

Integrity High Low

Scaling Nonlinear Linear

Table 2.1 RDBMS compared to MapReduce

A difference between MapReduce and an RDBMS is the amount of structure in the

datasets that they operate on. Structured data is data that is organized into entities that

have a defined format, such as XML documents or database tables that conform to a

particular predefines schema. Semi-structured data, on the other hand, is looser, and

though there may be a schema, it is often ignored, so it is often ignored, so it may be used

as guide to the structure of the data: for example, a spreadsheet, in which the structure is

13 | P a g e

the grid of the cells, although the cells themselves may hold any form of data.

Unstructured data does not have any particular internal structure: for example plain text

or image data. MapReduce works well on unstructured or semi-structured data, since it is

designed to interpret the data at processing time.

14 | P a g e

Chapter 3

Hadoop Setup

3.1 Platforms and Required Software

 Operating System : Ubuntu 12.04 (32bit)

 Virtual Box (Virtual Machine Software)

 JDK v6.0.11 (32 bit)

3.2 Getting Started

 Download and install Virtual Machine

 Download the image file (.iso) for Ubuntu 12.04 (32bit)

 Create a new virtual machine

 Specify “Name”, “OS” and “Version”

 Allocate memory and create new hard disk

 Assign file type (VDI)

 Dynamically allocate storage

 Specify location and virtual disk size (at least 30GB is preferred)

 Install OS

3.3 Network Configuration

 Attach to bridged adapter in Network Settings

 Allow VMs in Promiscuous Mode

 Set IPv4 settings to manual

 Add new connection with proper IP address, subnet mask, gateway and

DNS

 Set newly made connection as the default

15 | P a g e

3.4 Enabling Internet

 Set Network Proxy method to manual

 Assign proxy and port

 Apply settings system wide

 Assign DNS servers

 Restart connection

3.5 Installing JDK

1. Enter terminal and provide the following commands-

 chmoda+x ./jdk-6u11

 sudo ./jdk

 sudo mv ./jdk.6.0_11 /usr/lib/jvm/

 cd /usr/lib/jvm

 sudogedit ~/.bashrc

 export JAVA_HOME=/usr/lib/jvm/jdk1.6.0_11

 export PATH =${PATH}:${JAVA_HOME}/bin

2. Restart terminal

3.6 Installing Hadoop

1. Download a stable release of Hadoop from the Apache Download Mirrors

2. Extract the contents to a desired location-

 $ cd /usr/local

 $ sudo tar xzf hadoop-1.0.3.tar.gz

 $ sudo mv hadoop-1.0.3 hadoop

 $ sudochown -R hduser:hadoophadoop

3. Add the following lines to the end of the $HOME/.bashrc file of user

hduser-

 export HADOOP_HOME=/usr/local/hadoop

 export JAVA_HOME=/usr/lib/jvm/java-6-sun

16 | P a g e

 export PATH=$PATH:$HADOOP_HOME/bin

4. Set the JAVA_HOME environment variable to the Sun JDK/JRE 6

directory-

 export JAVA_HOME=/usr/lib/jvm/java-6-sun

3.7 Setting up a Standalone Node Cluster:

3.8 Setting up a Single Node Cluster:

1. Create a dedicated user account to run Hadoop in-

 $ sudoaddgrouphadoop

 $ sudoadduser --ingrouphadoophduser

2. Generate an SSH key for the hduser user-

 user@ubuntu:~$ su - hduser

 hduser@ubuntu:~$ ssh-keygen -t rsa -P ""

3. Enable SSH access to local machine with the newly created key-

 hduser@ubuntu:~$ cat $HOME/.ssh/id_rsa.pub >>

$HOME/.ssh/authorized_keys

4. Test the SSH setup by connecting to the local machine with the hduser

user-

 hduser@ubuntu:~$ sshlocalhost

5. Modify the file conf/core-site.xml-

<!-- In: conf/core-site.xml -->

<property>

<name>hadoop.tmp.dir</name>

<value>/app/hadoop/tmp</value>

<description>A base for other temporary directories.</description>

</property>

<property>

<name>fs.default.name</name>

<value>hdfs://localhost:54310</value>

<description>The name of the default file system. A URI whose

scheme and authority determine the FileSystem implementation. The

uri's scheme determines the config property (fs.SCHEME.impl) naming

17 | P a g e

the FileSystem implementation class. The uri's authority is used to

determine the host, port, etc. for a filesystem.</description>

</property>

6. Modify the file conf/mapred-site.xml-

<!-- In: conf/mapred-site.xml -->

<property>

<name>mapred.job.tracker</name>

<value>localhost:54311</value>

<description>The host and port that the MapReduce job tracker runs

at. If "local", then jobs are run in-process as a single map

and reduce task.

</description>

</property>

7. Modify the file conf/hdfs-site.xml-

<!-- In: conf/hdfs-site.xml -->

<property>

<name>dfs.replication</name>

<value>1</value>

<description>Default block replication.

 The actual number of replications can be specified when the file is created.

 The default is used if replication is not specified in create time.

</description>

</property>

8. Format the HDFS filesystem via the NameNode-

 hduser@ubuntu:~$ /usr/local/hadoop/bin/hadoop namenode –format

9. Start the single-node cluster-

 hduser@ubuntu:~$ /usr/local/hadoop/bin/start-all.sh

3.9 Setting up a Multi Node Cluster:

1. Define Master and Slave in /etc/hosts file-

 <IP Address> master

 <IP Address> slave

2. Modify conf/slaves in the master to add slaves-

 master

 slave

3. Modify the file conf/core-site.xml-

18 | P a g e

<!-- In: conf/core-site.xml -->

<property>

<name>fs.default.name</name>

<value>hdfs://master:54310</value>

<description>The name of the default file system. A URI whose

scheme and authority determine the FileSystem implementation. The

uri's scheme determines the config property (fs.SCHEME.impl) naming

the FileSystem implementation class. The uri's authority is used to

determine the host, port, etc. for a filesystem.</description>

</property>

4. Modify the file conf/mapred-site.xml-

<!-- In: conf/mapred-site.xml -->

<property>

<name>mapred.job.tracker</name>

<value>master:54311</value>

<description>The host and port that the MapReduce job tracker runs

at. If "local", then jobs are run in-process as a single map

and reduce task.

</description>

</property>

5. Modify the file conf/hdfs-site.xml-

<!-- In: conf/hdfs-site.xml -->

<property>

<name>dfs.replication</name>

<value>2</value>

<description>Default block replication.

 The actual number of replications can be specified when the file is created.

 The default is used if replication is not specified in create time.

</description>

</property>

6. Format the HDFS filesystem via the NameNode-

 hduser@ubuntu:~$ /usr/local/hadoop/bin/hadoop namenode –format

7. Start the single-node cluster-

 hduser@ubuntu:~$ /usr/local/hadoop/bin/start-all.sh

19 | P a g e

Chapter 4

N-Gram Analysis

4.1 What are n-grams?

An n-gram is a contiguous sequence of n items from a given sequence of text or speech.

An n-gram could be any combination of letters. However, the items in question can be

phonemes, syllables, letters, words or base pairs according to the application. The n-

grams typically are collected from a text or speech corpus.

An n-gram of size 1 is referred to as a "unigram"; size 2 is a "bigram" (or, less commonly,

a "digram"); size 3 is a "trigram". Larger sizes are sometimes referred to by the value of

n, e.g., "four-gram", "five-gram", and so on.

Field Unit Sample

Sequence

1-gram 2-gram 3-gram

 unigram bigram trigram

Computational

Linguistics

character “for

predicting

the next

item”

f, o, r, p,…. fo, or, rp,

pr,…

for, orp,

ror, pre,…

Computational

Linguistics

word “for

predicting

the next

item”

for,

predicting,

the,…..

For

predicting,

predicting

the, the

next,…

For

predicting

the,

predicting

the next, the

next item.

Table 4.1: N-Grams

4.2 Application of N-Grams

An n-gram model is a type of probabilistic language model for predicting the next item

in a sequence. n-gram models are now widely used in probability, communication theory,

computational linguistics (for instance, statistical natural language processing),

computational biology (for instance, biological sequence analysis), and data compression.

http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Phoneme
http://en.wikipedia.org/wiki/Base_pairs
http://en.wikipedia.org/wiki/Text_corpus
http://en.wikipedia.org/wiki/Speech_corpus
http://en.wikipedia.org/wiki/Unigram
http://en.wikipedia.org/wiki/Bigram
http://en.wikipedia.org/wiki/Trigram
http://en.wikipedia.org/wiki/Language_model
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Communication_theory
http://en.wikipedia.org/wiki/Computational_linguistics
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Computational_biology
http://en.wikipedia.org/wiki/Sequence_analysis
http://en.wikipedia.org/wiki/Data_compression

20 | P a g e

The two core advantages of n-gram models (and algorithms that use them) are relative

simplicity and the ability to scale up – by simply increasing n. n-gram models are widely

used in statistical natural language processing. In speech recognition, phonemes and

sequences of phonemes are modeled using an-gram distribution.

4.3 N-Gram using MapReduce

Since our interest was to generate n-grams from large document collections, using the

MapReduce algorithms, which harness the power of parallel computation, is an efficient

way to generate n-gram (unigram, bigram, trigram) frequencies.The following diagram

illustrates how n-grams and each of their frequency of occurrence was generated.

Figure 4.1 Flow Diagram of Generating N-Grams using MapReduce

4.4 Input and Output Files

Input (English):

To read English text, we only admit tokens formed fromalphanumeric characters. We

remove all punctuations from the text and convert these words into lowercase. After this

we remove all stopwords from the Lucene Stopword List. Stopwords are common words

http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Phonemes

21 | P a g e

that carry less important meaning than keywords. This is done because the Stopwords

have high frequency of occurrence and high overlaps in Stopword frequency do not

necessarily indicate similarity between two texts.

The Stopwords we have removed for our purpose are the following: “a”, “an”, “and”,

“are”, “as”, “at”, “be”, “but”, “by”, “for”, “if”, “in”, “into”, “is”, “it”, “no”, “not”, “of”,

“on”, “or”, “such”, “that”, “the”, “there”, “their”, “then”, “these”, “they”, “this”, “to”,

“was”, “will”, “with”.

A section of Input File:

Data is growing fast. About ninety percent of the world‟s existing data was created in the last

year. The amount of digital content on the web is now close to five hundred billion gigabytes and

the number is expected to double within a year. The explosion of mobile networks, cloud

computing and new technologies has given rise to incomprehensibly large worlds of information.

The necessity to manage efficiently the exponentially growing dataset is increasing everyday.

Data not only needs to be processed and analyzed fast, a guarantee of a reliable backup such that

there is no data loss, also needs to be provided.

A section of the Processed file:

data growing fast about ninety percent world‟s existing data created last year amount digital

content web now close five hundred billion gigabytes number expected double within year

explosion mobile networks cloud computing new technologies has given rise incomprehensibly

large worlds information necessity manage efficiently exponentially growing dataset increasing

everyday data only needs processed analyzed fast guarantee reliable backup data loss also needs

provided

22 | P a g e

A section of the trigram output file:

Input (Bangla):

As we have not found any work related to Bangla document comparison, we have created

a small set of stopwords in order to observe how our algorithm works on Bangla

documents. This set can be extended and improved depending on the user‟s needs.

We have used the following set of stopwords for our work:

“ ” “ ” “ ” “ ” “ ” “ ” “ ” “ ” “ ” “ ” “ ” “ ”

“ ” “ ” “ ” “ ”, “ ” “ ” “ ” “ ” “ ”

A section of Input file (Bangla):

about ninety percent 1

amount digital content 1

created last year 1

data created last 1

data growing fast 1

existing data created 1

fast about ninety 1

growing fast about 1

last year amount 1

ninety percent world’s 1

percent world’s existing 1

world’s existing data 1

year amount digital 1

…

23 | P a g e

A section of trigram outputfile (Bangla):

24 | P a g e

Chapter 5

Document Similarity Detection

5.1 TextSimilarityDetectionMethods

There are multiple text similarity methods. However, not all of them can be implemented

using MapReduce algorithms. For our work, we have mainly focused on detecting

syntactic similarity between pairs of documents in large document collection. The

following two models focus mainly on syntactic similarity.

 Ferret model which looks for lexical matches. Each text is converted to a set of 3

word trigrams, and matching trigrams are found. The comparison is based on the

Jaccard coefficient value.

 String matching model, which counts those words or word sequences that occur in

bothtexts (omitting stop words) and calculates the Jaccard coefficient value to

determine thesimilarity between 2 texts. A feature string may contain one or more

words.

Our work mainly deals with the Ferret Model which is explained in detail below.

5.2 The Ferret Model

The Ferret Model provides very fast and fine-grained similarity detection in moderately

large collections of documents by using triples of tokens or commonly known as trigrams

to compute a measure of resemblance between each pair of documents in the collection.

The earlier version of Ferret has been used primarily to detect collusion in students' work;

and is described in from a pedagogic viewpoint.

25 | P a g e

Ferret is essentially an algorithm to compute the similarity of two documents, based

oncounting the number of distinct triples of tokens common between documents. This

countis used to compute a resemblance measure.

5.3 The Jaccard Coefficient and the Jaccard Distance

The Jaccard index, also known as the Jaccard similarity coefficient (by Paul Jaccard), is a

statistic used for comparing the similarity and diversity of sample sets.

The Jaccard coefficient, denoted by J(A,B), measures similarity between sample sets, and

is defined as the size of the intersection divided by the size of the union of the sample

sets.

The Jaccard distance, denoted by Jδ (A,B) ,which measures dissimilarity between sample

sets, is complementary to the Jaccard coefficient and is obtained by subtracting the

Jaccard coefficient from 1, or, equivalently, by dividing the difference of the sizes of the

union and the intersection of two sets by the size of the union.

Fig. 5.1 The Jaccard Coefficient and Distance

http://en.wikipedia.org/wiki/Paul_Jaccard
http://en.wikipedia.org/wiki/Statistic
http://en.wikipedia.org/wiki/Sample_%28statistics%29
http://en.wikipedia.org/wiki/Intersection_%28set_theory%29
http://en.wikipedia.org/wiki/Union_%28set_theory%29

26 | P a g e

Chapter 6

Implementation

6.1 The N-Gram Analysis Class (for English)

Packageorg.myorg;

importjava.io.IOException;

importjava.util.*;

importorg.apache.hadoop.fs.Path;

importorg.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

importorg.apache.hadoop.mapred.*;

importorg.apache.hadoop.util.*;

public class MyNGram {

 public static String str = "";

 public static long wordCounter = 0;

 public static intnumWords=0;

 public static intoutputCounter=1;

 public static Text tx;

//================================ MAP ===

public static class MyMap extends MapReduceBase implements Mapper

<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

public void map(LongWritablekey,Text value,

OutputCollector<Text,IntWritable> output, Reporterreporter)

throws IOException {

 String line = value.toString();

 StringTokenizertokenizer = new StringTokenizer(line);

 String wd="";

 while(tokenizer.hasMoreTokens()) {

 wd=tokenizer.nextToken(); //get a word

 wd=removePunctuation(wd); //remove punctuation

 wd=removeStopWord(wd); //return "" if stopword

 if (wd.length()!=0){ //if not blank

 if (numWords==1){ //for word count only

 word.set(wd);

27 | P a g e

 output.collect(word, one);

 }else if (numWords>1){

 //Compose Multiple Words

 wd = composeWord(wd,numWords);

 if (wd.length()!= 0) {

 word.set(wd);

 output.collect(word, one);

 }

 }

 }

 //output.collect(word, one);

 }

 }

 }

//=============================== REDUCE ===============================

public static class MyReduce extends MapReduceBase implements

Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output, Reporter

reporter) throwsIOException {

 int sum = 0;

 while (values.hasNext()) {

 sum += values.next().get();

 }

 //convert int 'outputCounter' to Text Object and add 'key'

 tx=new Text(outputCounter+" "+key);

 output.collect(tx, new IntWritable(sum));

 outputCounter++;

 }

 }

//=================================== MAIN ==

public static void main(String[]args) throws Exception {

 Scanner sc=new Scanner (System.in);

 System.out.print ("Enter Value of N ");

 numWords=sc.nextInt();

 JobConfconf = new JobConf(MyNGram.class);

 conf.setJobName("MyNGram");

 conf.setOutputKeyClass(Text.class);

 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(MyMap.class);

 conf.setCombinerClass(MyReduce.class);

 conf.setReducerClass(MyReduce.class);

 conf.setInputFormat(TextInputFormat.class);

 conf.setOutputFormat(TextOutputFormat.class);

 FileInputFormat.setInputPaths(conf, new Path(args[0]));

 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 JobClient.runJob(conf);

28 | P a g e

 }

//=========================== STOP WORDS ===========================

 public static String removeStopWord(String str){

 String[] ENGLISH_STOP_WORDS = {

 "a", "an", "and", "are", "as", "at", "be", "but", "by",

 "for", "if", "in", "into", "is", "it", "no", "not", "of",

 "on", "or", "such", "that", "the", "their", "then", "there",

 "these", "they", "this", "to", "was", "will", "with"

 };

 for (int i=0; i<ENGLISH_STOP_WORDS.length; i++){

 if (str.equals(ENGLISH_STOP_WORDS[i])){

 str="";

 }

 }

 returnstr;

 }

//=========================== PUNCTUATIONS ============================

 public static String removePunctuation(String str){

intlen=0;

 int i=0;

 charlastChar=0;

String Ch="ABCDEFGHIJKLMNOPQRSTUVWXY

Zabcdefghijklmnopqrstuvwxyz0123456789";

 //remove prefix

 while(i<3){

 str=str.trim();

 len=str.length();

 if (len==0) break;

 lastChar=str.charAt(0);

 if(Ch.indexOf(Character.toString(lastChar))==-1){

 str=str.substring(1,len);

 }else{

 break;

 }

 }

 //remove suffix

 while(i<3){

 str=str.trim();

 len=str.length();

 if(len==0) break;

 lastChar=str.charAt(len-1);

 if(Ch.indexOf(Character.toString(lastChar))==-1){

 str=str.substring(0,len-1);

 }else{

 break;

 }

 }

29 | P a g e

 returnstr.toLowerCase(); //return word in lowercase

 }

//==================== WORD COMPOSE for N-GRAM=======================

public static String composeWord(String str1, int n){

 String s1 = "";

 if (wordCounter< n){

 str = str+" "+str1;

 wordCounter++;

 }

 if (wordCounter == n){

 s1 = str.trim();

 wordCounter = n-1;

 str = s1.substring(s1.indexOf(" ",0)+1, s1.length());

 }

 return s1;

 }

}//end of MyNGram class

6.2 Calculating the Jaccard Coefficient and the Jaccard Distance

DOCUMENT B

existing data created 1

data created last 1

created last year 1

last year amount 1

year amount digital 1

amount digital content 1

digital content web 1

content web now 1

web now close 1

now close five 1

close five hundred 1

five hundred billion 1

hundred billion gigabytes 1

billion gigabytes number 1

14

30 | P a g e

Jaccard Coefficient & Distance

𝐽 𝐴, 𝐵 =
6

6 + 7 ∗ 7/13 + 8 ∗ (8/14)
= 0.418

𝐽𝛿 𝐴, 𝐵 = 1 − 0.418 = 0.582

6.3 The N-Gram Analysis Class (for Bangla)

The part of the N-Gram Analysis Class for Bangla that differs from the one for English is

given below:

//============================ STOP WORDS ======================

public static String removeStopWord(String str){

 String[] ENGLISH_STOP_WORDS = {

" ", " ", " ", " ", " ", " ", " ", " ", " ",

" ", " ", " ", " ", " ", " ", " ",

" " , " ", " ", " "

 };

 for (int i=0; i<ENGLISH_STOP_WORDS.length; i++){

 if (str.equals(ENGLISH_STOP_WORDS[i])){

 str="";

 }

 }

 return str;

}

Where w1 = no. of trigrams in A but not in B as a fraction of total freq.

w2 = no. of trigrams in B but not in A as a fraction of total freq.

match(A,B)

match(A,B) + nonMatch(A,B)*w1+nonMatch(B,A)*w2

Jaccard(A,B)=

31 | P a g e

//============================ PUNCTUATIONS ============================

public static String removePunctuation(String str){

 int len=0;

 int i=0;

 char lastChar=0;

String

Ch="

";

 //remove prefix

 while(i<3){

 str=str.trim();

 len=str.length();

 if (len==0) break;

l astChar=str.charAt(0);

 if(Ch.indexOf(Character.toString(lastChar))==-1){

 str=str.substring(1,len);

 }else{

 break;

 }

 }

 //remove suffix

 while(i<3){

 str=str.trim();

 len=str.length();

 if(len==0) break;

 lastChar=str.charAt(len-1);

 if(Ch.indexOf(Character.toString(lastChar))==-1){

 str=str.substring(0,len-1);

 }else{

 break;

 }

 }

 return str.toLowerCase(); //return word in lowercase

 }

32 | P a g e

Chapter 7

System Evaluation

7.1 PerformanceComparison between Different Modes of Operation

Table 7.1 shows the number of tokens generated for N –Gram Analysis where N=1, N 2

and N=3 for various file sizes:

N-Gram

Analysis

Number of Token

10.1MB 21.2MB 31.3MB 40MB 50MB

N=1 69,347 106,133 145,246 174,658 210,128

N=2 800,921 1,334,591 2,024,822 2,591,408 3,220,503

N=3 1,153,566 2,247,198 3,377,150 4,335,267 5,412,955

Figure 7.1

7.1.1. Standalone Mode:

The Standalone Mode performance analysis was done in a personal computer with the

following specifications:

 Intel® Core i3 CPU

 2.53 Ghz Processor Speed

 2 GB System Memory

33 | P a g e

The analysis yields the following results described in Table 7.2:

N-Gram

Analysis

Time in Second

10.1MB 21.2MB 31.3MB 40MB 50MB

N=1 12 21 30 42 66

N=2 15 27 39 51 78

N=3 18 33 45 60 85

Figure: 7.2

7.1.2. Cluster Mode

The Standalone Mode performance analysis was done in five personal computers with the

following specifications:

 Intel® Core i3 CPU

 2.53 Ghz Processor Speed

 2 GB System Memory

The analysis yields the following results described in Table 7.3:

N-Gram

Analysis

Time in Second

10.1MB 21.2MB 31.3MB 40MB 50MB

N=1 30 31 36 36 31

N=2 30 30 31 31 36

N=3 31 30 31 36 36

0

10

20

30

40

50

60

70

80

90

10.1MB 21.2MB 31.3MB 40MB 50MB

Series1

Series2

Series3

34 | P a g e

Figure 7.3

7.2 Future Works

Research to be done on Bangla stopwords:

Document similarity comparison in Bangla arouses a lot of challenges are absent when

dealing with English corpuses. The Stopwords in Bangla language are much more

complex than the ones in English language. Hence, we intend to enrich our set of Bangla

Stopwords after thorough research on the matter.

Run algorithm on bigger data set:

Due to the limitation of Bangla resource availability, we had to run our algorithm on

comparatively small data sets. We intend to run it on a much broader measure (in terabyte

scale) in as we acquire more resources.

Usage of more machines:

Hardware availability was always a factor for us. Upon our productive analysis, we are

hoping that more hardware will be made available to us so that when we acquire terabytes

of data, we can actually run our algorithm on it with greater efficiency.

Usage of high end machines:

Another hardware limitation we faced was the machines limited capabilities. We are

hopeful that once we are given better dedicated machines, our results would reflect much

more efficient outputs.

0

20

40

60

80

100

10.1
MB

21.2
MB

31.3
MB

40
MB

50
MB

N = 1 (1)

N = 2 (1)

N = 3 (1)

N = 1 (5)

N = 2 (5)

N = 3 (5)

35 | P a g e

Chapter 8

Conclusion

We initially selected the Hadoop platform in order to analyze Big Data. However, in

order to successfully analyze it, we needed an objective based on which the analysis

would have to be done.

Our objective was to develop a document similarity algorithm, through which multiple

documents could be compared amongst each other to identify how much similar the

documents are.

Initially the algorithm was developed for the English words and was tested on an English

corpus. Through carrying out various tests by varying both the nodes and the corpus size,

we were able to determine how much more efficient is a multi node cluster compared to a

single node one. Meaning, how fast would a job get done when the work is being split

amongst multiple machines.

So far, we were successfully able to implement our document similarity detection

algorithm for English language. We achieved this by having the mapper class process

unprocessed corpus to produce trigrams. We were also successfully able to modify the

algorithm to detect document similarities for Bangla language. However, due to lack of

resources and researches done on Bangla language in this particular area, our Bangla

stopword set has a lot of room to be perfected.

There are also some slight redundancies in our algorithm which we believe we can

mitigate in time; resulting in even more efficient results. This means there is still some

room for further coding.

In future, we hope that we will be able to run our document similarity detection algorithm

on a much broader scale. Once we are granted more high-end machines to function as

nodes, hopefully we will be able to process gigabytes, terabytes or even exabytes of data

and produce fantastic results.

36 | P a g e

37 | P a g e

APPENDIX

Bangla Document File (Part of large corpus)

DOCUMENT 1

. :

। । । .

। .

। ,

। ।
। ,

। ।
! . ,

। । ,

। । ,

।
। , ।

. । ।
। - ।
। । ।

. ।
। ,

, । ।

।

, , !

. ।

DOCUMENT 2

, ।
। , ।

. । ।
। - ।
। । ।

. ।
।

। -

। । ।
। . , । !

। ।

38 | P a g e

-

। ।
। ।

। ।
। . -

, .

। । ।
, , ।

।

।

, , !

. । -

। ,

। ।
।

39 | P a g e

Trigram of Document 1

[1] 1 [48] 1

[2] 1 [49] 1

[3] 1 [50] 1

[4] 1 [51] 1

[5] 1 [52] 1

[6] 1 [53] 1

[7] 1 [54] 1

[8] 1 [55] 1

[9] 1 [56] 1

[10] 1 [57] 1

[11] 1 [58] 1

[12] 1 [59] 1

[13] 1 [60] 1

[14] 1 [61] 1

[15] . 1 [62] 1

[16] 1 [63] - 1

[17] 1 [64] 1

[18] 1 [65] 1

[19] 1 [66] 1

[20] 1 [67] 1

[21] 1 [68] 1

[22] 1 [69] 1

[23] 1 [70] 1

[24] 1 [71] 1

[25] 1 [72] 1

[26] 1 [73] 1

[27] 1 [74] 1

[28] 1 [75] 4

[29] 1 [76] . 1

[30] 1 [77] . 1

[31] 1 [78] 1

[32] 1 [79] 1

[33] 1 [80] 1

[34] 1 [81] 1

[35] 1 [82] 1

[36] 1 [83] 1

[37] 1 [84] 1

[38] 1 [85] 1

[39] 1 [86] 1

[40] 1 [87] 1

[41] 1 [88] 1

[42] 1 [89] 1

[43] 1 [90] 1

[44] 1 [91] 1

[45] 1 [92] 1

[46] 1 [93] 1

[47] 1 [94] 1

40 | P a g e

[95] 1 [145] 1

[96] 1 [146] 1

[97] 1 [147] 1

[98] 1 [148] 1

[99] 1 [149] 1

[100] 1 [150] 1

[101] 1 [151] 1

[102] 1 [152] 1

[103] 1 [153] 1

[104] 1 [154] 1

[105] 1 [155] 1

[106] 1 [156] 1

[107] 1 [157] 1

[108] 1 [158] 1

[109] 1 [159] 1

[110] 1 [160] 2

[111] 1 [161] 1

[112] 1 [162] 1

[113] 1 [163] 1

[114] 1 [164] 1

[115] 1 [165] 1

[116] 1 [166] 1

[117] 1 [167] 1

[118] 1 [168] 1

[119] 1 [169] 1

[120] 1 [170] 1

[121] 1 [171] . 1

[122] 1 [172] 1

[123] 1 [173] 1

[124] 1 [174] 1

[125] 1 [175] 1

[126] 1 [176] 1

[127] 1 [177] 1

[128] 1 [178] 1

[129] 1 [179] 1

[130] 1 [180] - 1

[131] 1 [181] 1

[132] 1 [182] 1

[133] 1 [183] 1

[134] 1 [184] 1

[135] 1 [185] 1

[136] - 1 [186] 1

[137] 1 [187] 1

[138] 1 [188] 1

[139] 1 [189] 1

[140] 1 [190] 1

[141] 1 [191] 1

[142] 1 [192] 1

[143] 1 [193] 1

[144] 1 [194] 1

41 | P a g e

[195] 1 [245] 1

[196] 1 [246] 1

[197] 1 [247] 1

[198] 1 [248] 1

[199] 1 [249] 1

[200] 1 [250] 1

[201] 1 [251] 1

[202] 1 [252] 1

[203] 1 [253] 1

[204] 1 [254] 1

[205] 1 [255] 1

[206] 1 [256] 1

[207] 1 [257] 1

[208] 1 [258] 1

[209] 1 [259] 1

[210] 1 [260] 1

[211] 1 [261] 1

[212] 1 [262] 1

[213] 1 [263] 1

[214] 1 [264] 1

[215] 1 [265] 1

[216] 1 [266] 1

[217] 1 [267] 1

[218] 1 [268] 1

[219] 1 [269] 1

[220] 1 [270] 1

[221] 1 [271] 1

[222] 1 [272] 1

[223] 1 [273] 1

[224] 1 [274] 1

[225] 1 [275] 1

[226] 1 [276] 1

[227] 1 [277] 1

[228] 1 [278] 1

[229] 1 [279] 1

[230] 1 [280] 1

[231] 1

[232] 1

[233] 1

[234] 1

[235] 1

[236] 1

[237] 1

[238] 1

[239] 1

[240] 1

[241] 1

[242] 1

[243] 1

[244] 1

42 | P a g e

Trigram of Document 2

[1] 1 [48] 1

[2] 1 [49] 1

[3] 1 [50] 1

[4] 1 [51] 1

[5] 1 [52] 1

[6] 1 [53] 1

[7] 1 [54] 1

[8] 1 [55] 1

[9] 1 [56] 1

[10] 1 [57] 1

[11] 1 [58] 1

[12] 1 [59] 1

[13] 1 [60] 1

[14] 1 [61] 1

[15] 1 [62] 1

[16] . 1 [63] 1

[17] 1 [64] 1

[18] 1 [65] 1

[19] 1 [66] 1

[20] 1 [67] 1

[21] 1 [68] 1

[22] 1 [69] 1

[23] 1 [70] 1

[24] 1 [71] 1

[25] 1 [72] 1

[26] 1 [73] 1

[27] 1 [74] 1

[28] 1 [75] - 1

[29] 1 [76] - 1

[30] 1 [77] 1

[31] 1 [78] 1

[32] 1 [79] 1

[33] 1 [80] 1

[34] 1 [81] 1

[35] 1 [82] 1

[36] 1 [83] 1

[37] 1 [84] 1

[38] 1 [85] 1

[39] 1 [86] - 1

[40] 1 [87] 1

[41] 1 [88] 1

[42] 1 [89] 1

[43] 1 [90] 1

[44] 1 [91] 1

[45] 1 [92] - 1

[46] 1 [93] 1

[47] - 1 [94] 1

43 | P a g e

[95] 1 [143] 1

[96] 1 [144] 1

[97] 1 [145] 1

[98] 1 [146] 1

[99] 1 [147] 1

[100] 1 [148] 1

[101] 1 [149] 1

[102] 1 [150] 1

[103] 1 [151] 1

[104] 1 [152] 1

[105] 1 [153] 1

[106] 1 [154] 1

[107] 1 [155] 1

[108] 3 [156] 1

[109] . 1 [157] 1

[110] 1 [158] 1

[111] 1 [159] 1

[112] 1 [160] 1

[113] 1 [161] 1

[114] 1 [162] 1

[115] 1 [163] 1

[116] 1 [164] 1

[117] 1 [165] 1

[118] 1 [166] 1

[119] 1 [167] 1

[120] 1 [168] 1

[121] 1 [169] 1

[122] 1 [170] 1

[123] 1 [171] 1

[124] 1 [172] 1

[125] 1 [173] 1

[126] 1 [174] 1

[127] 1 [175] 1

[128] 1 [176] 1

[129] 1 [177] 1

[130] 1 [178] 1

[131] 1 [179] 1

[132] 1 [180] 1

[133] 1 [181] - 1

[134] 1 [182] 1

[135] 1 [183] 1

[136] 1 [184] 1

[137] 1 [185] 1

[138] 1 [186] 1

[139] 1 [187] 1

[140] 1 [188] 1

[141] 1 [189] 1

[142] 1 [190] 1

44 | P a g e

[191] 1 [239] 1

[192] 1 [240] 1

[193] 1 [241] - 1

[194] 1 [242] 1

[195] 1 [243] 1

[196] 1 [244] 1

[197] 1 [245] 1

[198] 1 [246] 1

[199] 1 [247] 1

[200] 1 [248] 1

[201] 1 [249] 1

[202] 1 [250] 1

[203] 1 [251] 1

[204] 1 [252] 1

[205] 1 [253] 1

[206] 1 [254] 1

[207] 1 [255] - 1

[208] 1 [256] 1

[209] 1 [257] 1

[210] 1 [258] 1

[211] 1 [259] 1

[212] 1 [260] 1

[213] 1 [261] 1

[214] 1 [262] 1

[215] . 1 [263] 1

[216] 1 [264] 1

[217] 1 [265] 1

[218] 1 [266] 1

[219] 1 [267] 1

[220] 1 [268] 1

[221] 1 [269] 1

[222] 1 [270] 1

[223] 1 [271] - 1

[224] 1 [272] 1

[225] 1 [273] 1

[226] 1 [274] 1

[227] 1 [275] 1

[228] 1 [276] 1

[229] 1 [277] 1

[230] - 1 [278] 1

[231] - 1 [279] 1

[232] 1 [280] 1

[233] 1 [281] 1

[234] 1 [282] 1

[235] 1 [283] 1

[236] 1 [284] 1

[237] 1 [285] - 1

[238] 1 [286] 1

45 | P a g e

[287] 1

[288] 1

[289] 1

[290] 1

[291] 1

[292] 1

[293] 1

[294] 1

[295] - 1

[296] 1

[297] 1

[298] 1

[299] 1

[300] 1

[301] 1

[302] 1

[303] 1

[304] 1

[305] 1

[306] 1

[307] - 1

[308] 1

[309] 1

[310] 1

[311] 1

[312] 1

[313] 1

[314] 1

[315] 1

[316] - 1

[317] 1

[318] 1

[319] 1

[320] 1

[321] 1

[322] 1

[323] 1

[324] 1

[325] 1

[326] 1

[327] 1

[328] 1

[329] 1

[330] 1

[331] 1

[332] 1

46 | P a g e

REFERENCES

1. http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-

node-cluster/

2. http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-

node-cluster/

3. http://en.wikipedia.org/wiki/N-gram

4. http://en.wikipedia.org/wiki/Apache_Hadoop

5. http://en.wikipedia.org/wiki/Jaccard_index

6. Comparing Different Text Similarity Methods

JunPengBao et al.

7.The Hadoop Distributed File System

Konstantin Shvachko, HairongKuang, Sanjay Radia, Robert Chansler

8. Pairwise Document Similarity in Large Collections with MapReduce

Tamer Elsayed, Jimmy Lin and Douglas W. Oard

9. Demonstration of the Ferret Plagiarism Detector

Peter C. R. Lane, Caroline M. Lyon & James A. Malcolm

10. Hadoop the Definitive Guide ---- O‟Reilly

11. Data Intensive Text Processing ---- Jimmy Lin and Chris Dyer

http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
http://en.wikipedia.org/wiki/N-gram
http://en.wikipedia.org/wiki/Apache_Hadoop

