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The everlasting necessity to process data is only becoming more and more challenging due to 

the exponential growth of the data itself. We are talking about exabytes, zettabytes and even 

yottabytes of data; generally referred to as Big Data. Hence, the conventional processing 

methods of data have become obsolete when handling Big Data. It is simply not feasible to 

use a single machine to analyze data of such tremendous volume. 

 

This is where Hadoop comes in. Simply put, using the Hadoop Distributive File System 

(HDFS), an enormous chunk of data can be divided into smaller pieces and be distributed 

amongst multiple machines referred to as nodes to parallel process them using a technique 

called MapReduce. 

 

The potential for such a concept is limitless. However, for our thesis, we have used the HDFS 

to identify similarities between multiple documents. The initial idea was to make an 

algorithm to detect full or partial plagiarism in documents as there are countless materials of 

interest readily available on the internet. 

 

However, upon successfully being able to implement an algorithm for the English language, 

we realized that there is no record of any work on document similarity detection carried on 

upon Bangla language. Therefore, with some modifications to our existing algorithm to fit 

our specifications (as the Bangla language is completely different from the English language 

as far as construction is concerned), we were able to develop an algorithm to detect document 

similarities on a broad scale using the Ferret model. 
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Chapter 1 

Introduction 

Data is growing fast. About ninety percent of the world‟s existing data was created in the 

last year.The amount of digital content on the web is now close to five hundred billion 

gigabytes and the number is expected to double within a year. The explosion of mobile 

networks, cloud computing and new technologies has given rise to incomprehensibly 

large worlds of information. The necessity to manage efficiently the exponentially 

growing dataset is increasing everyday. Data not only needs to be processed and analyzed 

fast, a guarantee of a reliable backup such that there is no data loss, also needs to be 

provided.  

 

The good news is that Big Data is here. The bad news is that we are struggling to store 

and analyze it. The problem is simple: while the storage capacities of hard drives have 

increased massively over the years, access speeds – the rate at which data can be read 

from drives have not kept up. It takes a long time to read all data on a single drive and 

writing is even slower. The obvious way to reduce the time is to read from multiple disks 

at once. Working in parallel would mean saving a lot more time through a trade off with 

resource and computational power. Processing and analyzing data in the minimum 

possible time is of utmost importance nowadays. 

 

The traditional data management tools such as the RDBMS, no longer prove to be 

adequate in handling this explosion in data. To keep up with large scale distributed data 

generation, a large scale distributed data storage is needed which should be scalable as 

well. 

 

This report gives an overview of the new ways to handle such large datasets by iterating 

over theMapReduce technique. It also focuses on the Hadoop framework and the Hadoop 

Distributed File System which uses the MapReduce algorithm to manage the extensively 

large amounts of data by splitting up huge datasets across multiple servers and parallely 

processing each part and then combining the answers of each part to produce the final 

answer. The report then extensively covers Document Similarity Detection using 
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MapReduce, beginning with the various techniques that are applicable to detect similarity 

between documents and then focuses on an analysis of a particular approach namely the 

Ferret Model. 

 

Document similarity detection tools guarantee the privacy protection of documents. As 

the Internet holds large repositories of data which is easily accessible to all, the problem 

of plagiarism is likely to arise. With this rising problem, we need to develop a tool that 

not only protects the copyright of documents, but does them at a fast rate. Data 

repositories building at an exponential rate means that we need to run a sample of text 

against huge datasets for similarity detection. The MapReduce approach is a faster 

technique of doing such jobs on large sets of data as it exploits the advantage of parallel 

computation. This thesis mainly deals with detecting syntactical similarity between 

documents in large document sets that will prevent plagiarized documents to be 

acknowledged. 

 

Tools for detecting document similarity such as plagiarism detectors for the English 

Language have already been created through several research works. However, such tools 

are not available for the Bangla Language which will enable us to compare pairs of texts 

or documents in Bangla in large document collections. The need and unavailability of 

such detectors is the motivation behind our work. Our research therefore focuses on 

developing a Text Similarity Detector using the Ferret Model for the Bangla Language. 

 

1.1 What is Big Data? 

Bigdata is a loosely defined term used to describe data sets so large and complex that they 

become awkward to work with using hands on database-management tools or computer 

software tools as they lack in parallelization capabilities. The data is too big, moves too 

fast, or does not fir the structures of the database architectures. Big data sizes are a 

constantly moving target, as of 2012 ranging from a few dozen terabytes to many 

petabytes in a single dataset. What is considered “big data” varies depending on the 

capabilities of the organization managing the set. For some organizations, facing 

hundreds of gigabytes of data for the first time may trigger a need to reconsider data 

management options. For others, it may take tens or hundreds of terabytes before data 
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size becomes a significant consideration. With this difficulty, a new platform of big data 

tools, which uses an alternative to the conventional method, has arisen to handle 

sensemaking over large quantities of data, as in the Apache HadoopBig Data Platform. 

Big Data can be described as: 

1. Velocity – how fast the data is coming in and how fast the data is must be 

processed to meet demand.For example, analyze 500 million daily call detail 

records in real time to predict customer churn faster. Reacting quickly enough to 

deal with velocity is a challenge to most organizations. 

 

2. Variety – all types of data are now being captured for analysis (structured, semi-

structured and unstructured) such as text, sensor data, audio, video, click streams, 

log files etc. By some estimates, 80 percent of an organization‟s data is not 

numeric! But it still must be included in analysis and decision making. 

 

3. Volume – Many factors contribute to the increase in data volume – transactions- 

based data through the year, text data constantly streaming in from social media, 

increasing amount of sensor data being collected, etc.In the past, excessive data 

volume created a storage issue but with today‟s decreasing storage costs, other 

issues emerge, including how to determine relevance amidst the large volumes of 

data and how to create value from data that is relevant. 

 

4. Complexity – involves everything from moving operational data into big data 

platforms and the difficulty in managing the data in multiple sites and 

geographies.  

 

1.2 How much data are we talking about? 

A few examples: Google grew from processing 100 TB of data a day with MapReduce in 

2004 to processing 20 PB a day with MapReduce in 2008. In April 2009, a blog post was 

written about eBay's two enormous data warehouses: one with 2 petabytes of user data, 

and the other with 6.5 petabytes of user data spanning 170 trillion records and growing by 

150 billion new records per day. Shortly thereafter, Facebook revealed similarly 

impressive numbers, boasting of 2.5 petabytes of user data, growing at about 15 terabytes 
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per day. Petabyte datasets are rapidly becoming the norm, and the trends are clear: our 

ability to store data is fast overwhelming our ability to process what we store.  

Back in the year 2000 Google had a problem of adjusting the internet over every couple 

of days. They needed to process the data and there was no way to build an index over the 

whole index in a reasonable amount of time using the commercially available tools. They 

designed and build this infrastructure called MapReduce to handle the huge amounts of 

data that were not only generated by humans but also machines.  

Simply put, data becomes "big data" when it basically outgrows our current ability to 

process it, store it, and cope with it efficiently. Storage has become very cheap in the past 

decade, which means it has become easy to collect mountains of data. However, our 

ability to actually process the mountains of data quickly has not scaled as fast. Traditional 

tools to analyze and store data -- SQL databases, spreadsheets were not designed to deal 

with vast data problems. 

 

1.3 Solving the Big Data Issues 

The fact that the existing set of data is already very large and that data is growing at an 

exponential rate, not only from humans but also machines and satellites generated lead us 

to the question of how we can tackle this issue of handling such huge amounts of data. 

Two factors are needed to be addressed here: 

● Fast data processing i.e. search and analysis 

● Reliable data storage that guarantees no data will be lost i.e. a reliable backup 

storage 

 

Since the old data handling concept of using Relational Databases have proved to be 

inadequate in speed and backup, distinct approaches that run counter to traditional 

approaches of computing was needed to be adopted. MapReduce (which will be discussed 

further in detail later in this report) is one such approach which harnesses the power of 

parallel data processing and maximum CPU utilization.  

To address the reliability of data storage, the concept of scaling „out‟ and not „up‟ is used. 

A large number of commodity low-end servers (i.e., the scaling „out‟ approach) is 

preferred over a small number of high-end servers (i.e., the scaling „up‟ approach). The 
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latter approach of purchasing symmetric multi-processing (SMP) machines with a large 

number of processor sockets is not cost effective, since the costs of such machines do not 

scale linearly (i.e., a machine with twice as many processors is often significantly more 

than twice as expensive). 
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Chapter 2 

Background 

2.1 Apache Hadoop 

Apache Hadoop is an open source software framework that supports data-intensive 

distributed applications, licensed under the Apache v2 license. Hadoop was created by 

Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop 

was invented by Google and wasderived from Google‟sMapReduce and Google File 

System (GFS). 

In a nutshell: Hadoop provides a reliable shared storage and an analysis system.  

 

1. The shared storage is the large scale distributed file system called the 

HadoopDistributed File System (HDFS) which is a disk on every file server with a 

software infrastructure to spread the data out among all of them. 

2. The analysis of the system is performed by MapReducewhich is an algorithm that 

enables analysis to be run in parallel across several or all of those servers on 

extremely large datasets. 

 

Although Hadoop is best known for MapReduce and its distributed file system (HDFS) 

the other subprojects provide complementary services, or build on the core to add higher 

level abstractions. The subprojects, and where they sit in the technology stack, are shown 

in Figure 1.1. 

 

Pig Chukwa Hive HBase 

MapReduce HDFS 
Zoo 

Keeper 

Core Avro 

Fig: 1.1 Hadoop Subprojects 

 



7 | P a g e  

 

In April 2008, Hadoop broke a world record to become the fastest system to sort a 

terabyte of data. Running on a 910-node cluster, Hadoop sorted one terabyte in 209 

seconds (just under 3.5mins), beating the previous year‟s winner of 297 seconds. In 

November of the same year, Google reported that its MapReduce implementation sorted 

one terabyte in 68 seconds. In May 2009, it was announced that a team at Yahoo! used 

Hadoop to sort one terabyte in 62 seconds. 

 

2.2 The HDFS Architecture 

HDFS stores file system metadata and application data separately. The metadata or file 

definitions are stored on a dedicated server called the NameNodes and the application 

data are stored on servers called theDataNodes. All servers are fully connected and 

communicate with each other using TCP-based protocols. 

 

The Namenodes are independent and don't require coordination with each other. The 

DataNodes in HDFS do not use data protection mechanisms such as RAID to make the 

data durable. Instead, like GFS, the file content is replicated on multiple DataNodes for 

reliability. While ensuring data durability, this strategy has the added advantage that data 

transfer bandwidth is multiplied, and there are more opportunities for locating 

computation near the needed data.  

 

2.2.1 The NameNode 

The HDFS namespace is a hierarchy of files and directories. Files and directories are 

represented on the NameNode by inodes, which record attributes like permissions, 

modification and access times, namespace and disk space quotas. The file content is split 

into large blocks (typically 128 megabytes, but user selectable file-by-file) and each block 

of the file is independently replicated at multiple DataNodes (typically three, but user 

selectable file-by-file). The NameNode maintains the namespace tree and the mapping of 

file blocks to DataNodes (the physical location of file data).  

An HDFS client wanting to read a file first contacts the NameNode for the locations of 

data blocks comprising the file and then reads block contents from the DataNode closest 

to the client. When writing data, the client requests the NameNode to nominate a suite of 

three DataNodes to host the block replicas. The client then writes data to the DataNodes 
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in a pipeline fashion. The current design has a single NameNode for each cluster. The 

cluster can have thousands of DataNodes and tens of thousands of HDFS clients per 

cluster, as each DataNode may execute multiple application tasks concurrently. 

HDFS keeps the entire namespace in RAM. The inode data and the list of blocks 

belonging to each file comprise the metadata of the name system called the image. The 

persistent record of the image stored in the local host‟s native files system is called a 

checkpoint. The NameNode also stores the modification log of the image called the 

journal in the local host‟s native file system. For improved durability, redundant copies of 

the checkpoint and journal can be made at other servers. During restarts the NameNode 

restores the namespace by reading the namespace and replaying the journal. The locations 

of block replicas may change over time and are not part of the persistent checkpoint. 

2.2.2 The DataNode 

Each block replica on a DataNode is represented by two files in the local host‟s native file 

system. The first file contains the data itself and the second file is block‟s metadata 

including checksums for the block data and the block‟s generation stamp. 

During startup each DataNode connects to the NameNode and performs a handshake. The 

purpose of the handshake is to verify the namespace ID and the software version of the 

DataNode. If either does not match that of the NameNode the DataNode automatically 

shuts down. 

The namespace ID is assigned to the file system instance when it is formatted. The 

namespace ID is persistently stored on all nodes of the cluster. Nodes with a different 

namespace ID will not be able to join the cluster, thus preserving the integrity of the file 

system. A DataNode that is newly initialized and without any namespace ID is permitted 

to join the cluster and receive the cluster‟s namespace ID. 

After the handshake the DataNoderegisters with the NameNode. DataNodes persistently 

store their unique storageIDs. The storage ID is an internal identifier of the DataNode, 

which makes it recognizable even if it is restarted with a different IP address or port. The 

storage ID is assigned to the DataNode when it registers with the NameNode for the first 

time and never changes after that.  

A DataNode identifies block replicas in its possession to the NameNode by sending a 

block report. A block report contains the block id, the generation stamp and the length for 

each block replica the server hosts. The first block report is sent immediately after the 
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DataNode registration. Subsequent block reports are sent every hour and provide the 

NameNode with an up-to date view of where block replicas are located on the cluster.  

During normal operation DataNodes send heartbeats to the NameNode to confirm that 

the DataNode is operating and the block replicas it hosts are available. The default 

heartbeat interval is three seconds. If the NameNode does not receive a heartbeat from a 

DataNode in ten minutes the NameNode considers the DataNode to be out of service and 

the block replicas hosted by that DataNode to be unavailable. The NameNode then 

schedules creation of new replicas of those blocks on other DataNodes. Heartbeats from a 

DataNode also carry information that are used for the NameNode‟s space allocation and 

load balancing decisions. 

The NameNode does not directly call DataNodes. It uses replies to heartbeats to send 

instructions to the DataNodes. The instructions include commands to: 

 

•  replicate blocks to other nodes; 

•  remove local block replicas; 

•  re-register or to shut down the node; 

•  send an immediate block report. 

 

These commands are important for maintaining the overall system integrity and therefore 

it is critical to keep heartbeats frequent even on big clusters. The NameNode can process 

thousands of heartbeats per second without affecting other NameNode operations. 

 

2.3MapReduce: A counter traditional approach to handling Big Data 

MapReduce is a programming model for expressing distributed computations on massive 

amounts of data and an execution framework for large-scale data processing on clusters 

of commodity servers. It was originally developed by Google and built on well-known 

principles in parallel and distributed processing. MapReduce has since enjoyed 

widespread adoption via an open-source implementation called Hadoop, whose 

development was led by Yahoo. Google uses MapReduce to continuously improve 

existing algorithms and to devise new algorithms for ad selection and placement. 

The only feasible approach to tackling large-data problems today is to divide and conquer 

a fundamental concept in computer science. The basic idea is to partition a large problem 
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into smaller sub-problems to the extent that the sub-problems are independent so that they 

can be tackled in parallel by different workers, threads in a processor core, cores in a 

multi-core processor, multiple processors in a machine or many machines in a cluster. 

Intermediateresults from each individual worker are then combined to yield the final 

output. 

The general principles behind divide-and-conquer algorithms are broadly applicable to a 

wide range of problems in many different application domains. However, the details of 

their implementations are varied and complex. The following diagram illustrates in a 

simple manner the basic concept of MapReduce. 

 

 

Figure 2.1The basic concept of MapReduce. 

MapReduce builds on the observation that many tasks have the same structure: a 

computation is applied over a large number of records (e.g., documents) to generate 

partial results, which are then aggregated in some fashion. Naturally, the per-record 

computation and aggregation vary by task, but the basic structure remains fixed. 
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MapReduce provides an abstraction that involves the programmer defining a “mapper” 

and a“reducer”, with the following signatures: 

map: (k1, v1) [(k2, v2)] 

reduce: (k2, [v2]) [(k3, v3)] 

Key/value pairs form the basic data structure in MapReduce. The “mapper” is applied to 

every input key/value pair to generate an arbitrary number of intermediate key/value 

pairs. The “reducer” is applied to all values associated with the same intermediate key to 

generate output key/value pairs. 

 

2.3.1 The Java Mapper and Reducer Class 

The Java Mapper class for Wordcount: 

public static class MyMap extends MapReduceBase implements Mapper 

<LongWritable, Text, Text, IntWritable> { 

 

 private final static IntWritable one = new IntWritable(1); 

 private Text word = new Text(); 

 

public void map(LongWritablekey,Text value, 

OutputCollector<Text,IntWritable> output, Reporter 

  reporter) throws IOException { 

 

  String line = value.toString(); 

  StringTokenizertokenizer = new StringTokenizer(line); 

 

  while(tokenizer.hasMoreTokens()) { 

   word.set(tokenizer.nextToken()); 

  } 

  output.collect(word, one); 

 } 

  } 

 

 

The Java Reducer class for Wordcount: 

public static class MyReduce extends MapReduceBase implements 

Reducer<Text, IntWritable, Text, IntWritable> { 

 

public void reduce(Text key, Iterator<IntWritable> values, 

OutputCollector<Text, IntWritable> output, Reporter 

reporter) throwsIOException { 

 

  int sum = 0; 

  while (values.hasNext()) { 

   sum += values.next().get(); 

 

  } 

  output.collect(key, new IntWritable(sum)); 

 } 

 } 
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2.3.2 RDBMS vsMapReduce 

Why can‟t we use databases with lots of disks to do large scale batch analysis?Why is 

MapReduce needed? 

 

The answer to these questions comes from another trend in disk drives: seek time is 

improving more slowly than transfer rate. Seeking is the process of moving the disk‟s 

head to a particular place on the disk to read or write the data. It characterizes the latency 

of a disk operation, whereas the transfer rate corresponds to a disk‟s bandwidth. 

 

If the data access pattern is dominated by seeks, it will take longer to read or write large 

portions of the datasets than streaming through it, which operates at the transfer rate. On 

the other hand, for updating a small portion of records in a database, a traditional B-Tree 

(the data structure used in relational databases, which is limited by the rate it can 

performseeks) works well. For updating the majority of a database, a B-tree is less 

efficient than MapReduce, which uses Sort/Merge to rebuild the database. Table 2.1 gives 

a comparison between RDBMS and MapReduce. 

 

 Traditional RDBMS MapReduce 

Data Size Gigabytes Petabytes/Exabytes 

Access  Interactive and batch Batch 

Updates Read and Write many times Write once, Read many times 

Structure Static Schema Dynamic Schema 

Integrity High Low 

Scaling Nonlinear Linear 

 

Table 2.1 RDBMS compared to MapReduce 

A difference between MapReduce and an RDBMS is the amount of structure in the 

datasets that they operate on. Structured data is data that is organized into entities that 

have a defined format, such as XML documents or database tables that conform to a 

particular predefines schema. Semi-structured data, on the other hand, is looser, and 

though there may be a schema, it is often ignored, so it is often ignored, so it may be used 

as guide to the structure of the data: for example, a spreadsheet, in which the structure is 
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the grid of the cells, although the cells themselves may hold any form of data. 

Unstructured data does not have any particular internal structure: for example plain text 

or image data. MapReduce works well on unstructured or semi-structured data, since it is 

designed to interpret the data at processing time. 
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Chapter 3 

Hadoop Setup 
 

3.1 Platforms and Required Software 

 

 Operating System : Ubuntu 12.04 (32bit) 

 Virtual Box (Virtual Machine Software) 

 JDK v6.0.11 (32 bit) 

 

3.2 Getting Started 

 

 Download and install Virtual Machine 

 Download the image file (.iso) for Ubuntu 12.04 (32bit) 

 Create a new virtual machine 

 Specify “Name”, “OS” and “Version” 

 Allocate memory and create new hard disk 

 Assign file type (VDI) 

 Dynamically allocate storage 

 Specify location and virtual disk size (at least 30GB is preferred) 

 Install OS 

 

3.3 Network Configuration 

 Attach to bridged adapter in Network Settings 

 Allow VMs in Promiscuous Mode 

 Set IPv4 settings to manual 

 Add new connection with proper IP address, subnet mask, gateway and 

DNS 

 Set newly made connection as the default 
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3.4 Enabling Internet 

  

 Set Network Proxy method to manual 

 Assign proxy and port 

 Apply settings system wide 

 Assign DNS servers 

 Restart connection 

 

3.5 Installing JDK 

  

1. Enter terminal and provide the following commands- 

 chmoda+x ./jdk-6u11 

 sudo ./jdk 

 sudo mv ./jdk.6.0_11 /usr/lib/jvm/ 

 cd /usr/lib/jvm 

 sudogedit ~/.bashrc 

 export JAVA_HOME=/usr/lib/jvm/jdk1.6.0_11 

 export PATH =${PATH}:${JAVA_HOME}/bin 

2. Restart terminal 

 

3.6 Installing Hadoop 

 

1. Download a stable release of Hadoop from the Apache Download Mirrors 

2. Extract the contents to a desired location- 

 $ cd /usr/local 

 $ sudo tar xzf hadoop-1.0.3.tar.gz 

 $ sudo mv hadoop-1.0.3 hadoop 

 $ sudochown -R hduser:hadoophadoop 

3. Add the following lines to the end of the $HOME/.bashrc file of user 

hduser- 

 export HADOOP_HOME=/usr/local/hadoop 

 export JAVA_HOME=/usr/lib/jvm/java-6-sun 
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 export PATH=$PATH:$HADOOP_HOME/bin 

4. Set the JAVA_HOME environment variable to the Sun JDK/JRE 6 

directory- 

 export JAVA_HOME=/usr/lib/jvm/java-6-sun 

3.7 Setting up a Standalone Node Cluster: 

 

 

 

3.8 Setting up a Single Node Cluster: 

 

1. Create a dedicated user account to run Hadoop in- 

 $ sudoaddgrouphadoop 

 $ sudoadduser --ingrouphadoophduser 

2. Generate an SSH key for the hduser user- 

 user@ubuntu:~$ su - hduser 

 hduser@ubuntu:~$ ssh-keygen -t rsa -P "" 

3. Enable SSH access to local machine with the newly created key- 

 hduser@ubuntu:~$ cat $HOME/.ssh/id_rsa.pub >> 

$HOME/.ssh/authorized_keys 

4. Test the SSH setup by connecting to the local machine with the hduser 

user- 

 hduser@ubuntu:~$ sshlocalhost 

5. Modify the file conf/core-site.xml- 

<!-- In: conf/core-site.xml --> 

<property> 

<name>hadoop.tmp.dir</name> 

<value>/app/hadoop/tmp</value> 

<description>A base for other temporary directories.</description> 

</property> 

 

<property> 

<name>fs.default.name</name> 

<value>hdfs://localhost:54310</value> 

<description>The name of the default file system.  A URI whose 

scheme and authority determine the FileSystem implementation.  The 

uri's scheme determines the config property (fs.SCHEME.impl) naming 
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the FileSystem implementation class.  The uri's authority is used to 

determine the host, port, etc. for a filesystem.</description> 

</property> 

 

6. Modify the file conf/mapred-site.xml- 

<!-- In: conf/mapred-site.xml --> 

<property> 

<name>mapred.job.tracker</name> 

<value>localhost:54311</value> 

<description>The host and port that the MapReduce job tracker runs 

at.  If "local", then jobs are run in-process as a single map 

and reduce task. 

</description> 

</property> 

 

7. Modify the file conf/hdfs-site.xml- 

<!-- In: conf/hdfs-site.xml --> 

<property> 

<name>dfs.replication</name> 

<value>1</value> 

<description>Default block replication. 

  The actual number of replications can be specified when the file is created. 

  The default is used if replication is not specified in create time. 

</description> 

</property> 

8. Format the HDFS filesystem via the NameNode- 

 hduser@ubuntu:~$ /usr/local/hadoop/bin/hadoop namenode –format 

9. Start the single-node cluster- 

 hduser@ubuntu:~$ /usr/local/hadoop/bin/start-all.sh 

3.9 Setting up a Multi Node Cluster: 

 

1. Define Master and Slave in /etc/hosts file- 

 <IP Address>    master 

 <IP Address>    slave 

2. Modify conf/slaves in the master to add slaves- 

 master 

 slave 

3. Modify the file conf/core-site.xml- 
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<!-- In: conf/core-site.xml --> 

<property> 

<name>fs.default.name</name> 

<value>hdfs://master:54310</value> 

<description>The name of the default file system.  A URI whose 

scheme and authority determine the FileSystem implementation.  The 

uri's scheme determines the config property (fs.SCHEME.impl) naming 

the FileSystem implementation class.  The uri's authority is used to 

determine the host, port, etc. for a filesystem.</description> 

</property> 

 

4. Modify the file conf/mapred-site.xml- 

<!-- In: conf/mapred-site.xml --> 

<property> 

<name>mapred.job.tracker</name> 

<value>master:54311</value> 

<description>The host and port that the MapReduce job tracker runs 

at.  If "local", then jobs are run in-process as a single map 

and reduce task. 

</description> 

</property> 

 

5. Modify the file conf/hdfs-site.xml- 

<!-- In: conf/hdfs-site.xml --> 

<property> 

<name>dfs.replication</name> 

<value>2</value> 

<description>Default block replication. 

  The actual number of replications can be specified when the file is created. 

  The default is used if replication is not specified in create time. 

</description> 

</property> 

 

6. Format the HDFS filesystem via the NameNode- 

 hduser@ubuntu:~$ /usr/local/hadoop/bin/hadoop namenode –format 

7. Start the single-node cluster- 

 hduser@ubuntu:~$ /usr/local/hadoop/bin/start-all.sh 
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Chapter 4 

N-Gram Analysis 

4.1 What are n-grams? 

An n-gram is a contiguous sequence of n items from a given sequence of text or speech. 

An n-gram could be any combination of letters. However, the items in question can be 

phonemes, syllables, letters, words or base pairs according to the application. The n-

grams typically are collected from a text or speech corpus. 

An n-gram of size 1 is referred to as a "unigram"; size 2 is a "bigram" (or, less commonly, 

a "digram"); size 3 is a "trigram". Larger sizes are sometimes referred to by the value of 

n, e.g., "four-gram", "five-gram", and so on. 

Field Unit Sample 

Sequence 

1-gram 2-gram 3-gram 

   unigram bigram trigram 

Computational 

Linguistics 

character “for 

predicting 

the next 

item” 

f, o, r, p,…. fo, or, rp, 

pr,… 

for, orp,  

ror, pre,… 

Computational 

Linguistics 

word “for 

predicting 

the next 

item” 

for, 

predicting, 

the,….. 

For 

predicting, 

predicting 

the, the 

next,… 

For 

predicting 

the, 

predicting 

the next, the 

next item. 

Table 4.1: N-Grams 

4.2 Application of N-Grams 

An n-gram model is a type of probabilistic language model for predicting the next item 

in a sequence. n-gram models are now widely used in probability, communication theory, 

computational linguistics (for instance, statistical natural language processing), 

computational biology (for instance, biological sequence analysis), and data compression. 

http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Phoneme
http://en.wikipedia.org/wiki/Base_pairs
http://en.wikipedia.org/wiki/Text_corpus
http://en.wikipedia.org/wiki/Speech_corpus
http://en.wikipedia.org/wiki/Unigram
http://en.wikipedia.org/wiki/Bigram
http://en.wikipedia.org/wiki/Trigram
http://en.wikipedia.org/wiki/Language_model
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Communication_theory
http://en.wikipedia.org/wiki/Computational_linguistics
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Computational_biology
http://en.wikipedia.org/wiki/Sequence_analysis
http://en.wikipedia.org/wiki/Data_compression
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The two core advantages of n-gram models (and algorithms that use them) are relative 

simplicity and the ability to scale up – by simply increasing n. n-gram models are widely 

used in statistical natural language processing. In speech recognition, phonemes and 

sequences of phonemes are modeled using an-gram distribution. 

4.3 N-Gram using MapReduce 

Since our interest was to generate n-grams from large document collections, using the 

MapReduce algorithms, which harness the power of parallel computation, is an efficient 

way to generate n-gram (unigram, bigram, trigram) frequencies.The following diagram 

illustrates how n-grams and each of their frequency of occurrence was generated. 

 

Figure 4.1 Flow Diagram of Generating N-Grams using MapReduce 

 

4.4 Input and Output Files 

 

Input (English): 

To read English text, we only admit tokens formed fromalphanumeric characters. We 

remove all punctuations from the text and convert these words into lowercase. After this 

we remove all stopwords from the Lucene Stopword List. Stopwords are common words 

http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Phonemes
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that carry less important meaning than keywords. This is done because the Stopwords 

have high frequency of occurrence and high overlaps in Stopword frequency do not 

necessarily indicate similarity between two texts. 

 

The Stopwords we have removed for our purpose are the following: “a”, “an”, “and”, 

“are”, “as”, “at”, “be”, “but”, “by”, “for”, “if”, “in”, “into”, “is”, “it”, “no”, “not”, “of”, 

“on”, “or”, “such”, “that”, “the”, “there”, “their”, “then”, “these”, “they”, “this”, “to”, 

“was”, “will”, “with”. 

 

A section of Input File: 

Data is growing fast. About ninety percent of the world‟s existing data was created in the last 

year. The amount of digital content on the web is now close to five hundred billion gigabytes and 

the number is expected to double within a year. The explosion of mobile networks, cloud 

computing and new technologies has given rise to incomprehensibly large worlds of information. 

The necessity to manage efficiently the exponentially growing dataset is increasing everyday. 

Data not only needs to be processed and analyzed fast, a guarantee of a reliable backup such that 

there is no data loss, also needs to be provided. 

 

A section of the Processed file: 

data growing fast about ninety percent world‟s existing data created last year amount digital 

content web now close five hundred billion gigabytes number expected double within year 

explosion mobile networks cloud computing new technologies has given rise incomprehensibly 

large worlds information necessity manage efficiently exponentially growing dataset increasing 

everyday data only needs processed analyzed fast guarantee reliable backup data loss also needs 

provided  
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A section of the trigram output file: 

 

 

 

 

 

 

 

 

Input (Bangla): 

As we have not found any work related to Bangla document comparison, we have created 

a small set of stopwords in order to observe how our algorithm works on Bangla 

documents. This set can be extended and improved depending on the user‟s needs. 

We have used the following set of stopwords for our work: 

“ ”  “ ”  “ ”  “ ”  “ ”  “ ”  “ ”  “ ”  “ ”  “ ”  “ ”  “ ”  

“ ”  “ ”  “ ”  “ ”, “ ” “ ”  “ ”  “ ”  “ ”  

A section of Input file (Bangla): 

 
 

 

 

about ninety percent   1 

amount digital content   1 

created last year   1 

data created last   1 

data growing fast   1 

existing data created   1 

fast about ninety   1 

growing fast about   1 

last year amount   1 

ninety percent world’s   1 

percent world’s existing   1 

world’s existing data   1 

year amount digital   1 

… 
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A section of trigram outputfile (Bangla): 
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Chapter 5 

Document Similarity Detection 

5.1 TextSimilarityDetectionMethods 

 

There are multiple text similarity methods. However, not all of them can be implemented 

using MapReduce algorithms. For our work, we have mainly focused on detecting 

syntactic similarity between pairs of documents in large document collection. The 

following two models focus mainly on syntactic similarity. 

 

 Ferret model which looks for lexical matches. Each text is converted to a set of 3 

word trigrams, and matching trigrams are found. The comparison is based on the 

Jaccard coefficient value. 

 

 String matching model, which counts those words or word sequences that occur in 

bothtexts (omitting stop words) and calculates the Jaccard coefficient value to 

determine thesimilarity between 2 texts. A feature string may contain one or more 

words. 

 

Our work mainly deals with the Ferret Model which is explained in detail below. 

 

5.2 The Ferret Model 

 

The Ferret Model provides very fast and fine-grained similarity detection in moderately 

large collections of documents by using triples of tokens or commonly known as trigrams 

to compute a measure of resemblance between each pair of documents in the collection. 

The earlier version of Ferret has been used primarily to detect collusion in students' work; 

and is described in from a pedagogic viewpoint. 
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Ferret is essentially an algorithm to compute the similarity of two documents, based 

oncounting the number of distinct triples of tokens common between documents. This 

countis used to compute a resemblance measure. 

 

5.3 The Jaccard Coefficient and the Jaccard Distance 

The Jaccard index, also known as the Jaccard similarity coefficient (by Paul Jaccard), is a 

statistic used for comparing the similarity and diversity of sample sets. 

The Jaccard coefficient, denoted by J(A,B), measures similarity between sample sets, and 

is defined as the size of the intersection divided by the size of the union of the sample 

sets. 

The Jaccard distance, denoted by Jδ (A,B) ,which measures dissimilarity between sample 

sets, is complementary to the Jaccard coefficient and is obtained by subtracting the 

Jaccard coefficient from 1, or, equivalently, by dividing the difference of the sizes of the 

union and the intersection of two sets by the size of the union. 

 

 

 

 

 

 

 

 

Fig. 5.1 The Jaccard Coefficient and Distance 

 

http://en.wikipedia.org/wiki/Paul_Jaccard
http://en.wikipedia.org/wiki/Statistic
http://en.wikipedia.org/wiki/Sample_%28statistics%29
http://en.wikipedia.org/wiki/Intersection_%28set_theory%29
http://en.wikipedia.org/wiki/Union_%28set_theory%29
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Chapter 6 

Implementation 

6.1 The N-Gram Analysis Class (for English) 

Packageorg.myorg; 

importjava.io.IOException; 

importjava.util.*; 

importorg.apache.hadoop.fs.Path; 

importorg.apache.hadoop.conf.*; 

import org.apache.hadoop.io.*; 

importorg.apache.hadoop.mapred.*; 

importorg.apache.hadoop.util.*; 

 

public class MyNGram { 

 

 public static String str = "";  

 public static long wordCounter = 0; 

 public static intnumWords=0; 

 public static intoutputCounter=1; 

 public static Text tx; 

 

 

//================================ MAP ===========================================  

 

public static class MyMap extends MapReduceBase implements Mapper 

<LongWritable, Text, Text, IntWritable> { 

 

  private final static IntWritable one = new IntWritable(1); 

  private Text word = new Text(); 

   

public void map(LongWritablekey,Text value, 

OutputCollector<Text,IntWritable> output, Reporterreporter) 

throws IOException { 

 

   String line = value.toString(); 

   StringTokenizertokenizer = new StringTokenizer(line); 

   String wd=""; 

 

   while(tokenizer.hasMoreTokens()) { 

    wd=tokenizer.nextToken();  //get a word 

    wd=removePunctuation(wd);  //remove punctuation 

    wd=removeStopWord(wd);   //return "" if stopword 

 

    if (wd.length()!=0){       //if not blank 

    if (numWords==1){   //for word count only 

     word.set(wd); 
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     output.collect(word, one); 

    }else if (numWords>1){ 

     //Compose Multiple Words 

     wd = composeWord(wd,numWords);   

     if (wd.length()!= 0) { 

     word.set(wd); 

     output.collect(word, one); 

     } 

       }      

      

   } 

    //output.collect(word, one); 

   } 

  } 

 } 

//=============================== REDUCE =============================== 

 

public static class MyReduce extends MapReduceBase implements 

Reducer<Text, IntWritable, Text, IntWritable> { 

 

public void reduce(Text key, Iterator<IntWritable> values, 

OutputCollector<Text, IntWritable> output, Reporter 

reporter) throwsIOException { 

   int sum = 0; 

   while (values.hasNext()) { 

    sum += values.next().get(); 

   }  

  //convert int 'outputCounter' to Text Object and add 'key' 

   tx=new Text(outputCounter+" "+key);        

    output.collect(tx, new IntWritable(sum)); 

   outputCounter++;    

  } 

 } 

//=================================== MAIN ========================================== 

  

public static void main(String[]args) throws Exception { 

 

  Scanner sc=new Scanner (System.in); 

  System.out.print ("Enter Value of N ");   

  numWords=sc.nextInt(); 

   

  JobConfconf = new JobConf(MyNGram.class); 

  conf.setJobName("MyNGram"); 

  conf.setOutputKeyClass(Text.class); 

  conf.setOutputValueClass(IntWritable.class); 

  conf.setMapperClass(MyMap.class); 

  conf.setCombinerClass(MyReduce.class); 

  conf.setReducerClass(MyReduce.class); 

  conf.setInputFormat(TextInputFormat.class); 

  conf.setOutputFormat(TextOutputFormat.class); 

  FileInputFormat.setInputPaths(conf, new Path(args[0])); 

  FileOutputFormat.setOutputPath(conf, new Path(args[1])); 

  JobClient.runJob(conf); 
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 } 

 

//=========================== STOP WORDS =========================== 

 

 public static String removeStopWord(String str){ 

  String[] ENGLISH_STOP_WORDS = { 

  "a", "an", "and", "are", "as", "at", "be", "but", "by", 

  "for", "if", "in", "into", "is", "it", "no", "not", "of", 

  "on", "or", "such", "that", "the", "their", "then", "there", 

  "these", "they", "this", "to", "was", "will", "with" 

  }; 

  for (int i=0; i<ENGLISH_STOP_WORDS.length; i++){ 

   if (str.equals(ENGLISH_STOP_WORDS[i])){ 

    str=""; 

   } 

  } 

  returnstr; 

 } 

 

//=========================== PUNCTUATIONS ============================ 

 

 public static String removePunctuation(String str){ 

 

intlen=0; 

  int i=0; 

  charlastChar=0; 

String Ch="ABCDEFGHIJKLMNOPQRSTUVWXY 

Zabcdefghijklmnopqrstuvwxyz0123456789"; 

  //remove prefix 

  while(i<3){ 

   str=str.trim(); 

   len=str.length(); 

   if (len==0) break; 

   lastChar=str.charAt(0); 

 

   if(Ch.indexOf(Character.toString(lastChar))==-1){ 

   str=str.substring(1,len); 

   }else{ 

   break; 

   } 

  } 

  //remove suffix 

  while(i<3){ 

   str=str.trim(); 

   len=str.length(); 

   if(len==0) break; 

   lastChar=str.charAt(len-1); 

   if(Ch.indexOf(Character.toString(lastChar))==-1){ 

   str=str.substring(0,len-1); 

   }else{ 

   break; 

   } 

  } 
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  returnstr.toLowerCase(); //return word in lowercase 

 } 

 

 

//==================== WORD COMPOSE for N-GRAM======================= 

 

public static String composeWord(String str1, int n){ 

  String s1 = ""; 

  if (wordCounter< n){ 

   str = str+" "+str1; 

   wordCounter++; 

  } 

  if (wordCounter == n){ 

   s1 = str.trim(); 

   wordCounter = n-1; 

   str = s1.substring(s1.indexOf(" ",0)+1, s1.length()); 

  } 

  return s1; 

 } 

}//end of MyNGram class 

 

 

6.2 Calculating the Jaccard Coefficient and the Jaccard Distance 

  

DOCUMENT  B 

existing data created 1 

data created last  1 

created last year  1 

last year amount  1 

year amount digital 1 

amount digital content 1 

digital content web 1 

content web now  1 

web now close  1 

now close five  1 

close five hundred  1 

five hundred billion 1 

hundred billion gigabytes 1 

billion gigabytes number 1 

________________________ 

14 
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Jaccard Coefficient & Distance 

𝐽 𝐴, 𝐵 =
6

6 + 7 ∗   7/13  + 8 ∗ ( 8/14 )
= 0.418 

𝐽𝛿 𝐴, 𝐵 = 1 − 0.418 = 0.582 

 

6.3 The N-Gram Analysis Class (for Bangla) 

 

The part of the N-Gram Analysis Class for Bangla that differs from the one for English is 

given below: 

//============================ STOP WORDS ====================== 

public static String removeStopWord(String str){ 

 String[] ENGLISH_STOP_WORDS = { 

" ", " ", " ", " ", " ",  " ", " ", " ", " ", 

" ", " ", " ", " ", " ", " ", " ", 

" " , " ", " ", " "  

 }; 

 for (int i=0; i<ENGLISH_STOP_WORDS.length; i++){ 

 if (str.equals(ENGLISH_STOP_WORDS[i])){ 

  str=""; 

 } 

 } 

 return str; 

} 

Where w1 = no. of trigrams in A but not in B as a fraction of total freq. 

w2 = no. of trigrams in B but not in A as a fraction of total freq. 

match(A,B) 

match(A,B) + nonMatch(A,B)*w1+nonMatch(B,A)*w2 

Jaccard(A,B)= 
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//============================ PUNCTUATIONS ============================ 

public static String removePunctuation(String str){ 

 int len=0; 

 int i=0; 

 char lastChar=0; 

 

String 

Ch="

"; 

 //remove prefix  

 while(i<3){ 

  str=str.trim(); 

  len=str.length(); 

  if (len==0) break; 

l  astChar=str.charAt(0); 

  if(Ch.indexOf(Character.toString(lastChar))==-1){ 

  str=str.substring(1,len); 

  }else{ 

  break; 

  } 

 } 

 //remove suffix 

 while(i<3){ 

  str=str.trim(); 

  len=str.length(); 

  if(len==0) break; 

  lastChar=str.charAt(len-1); 

  if(Ch.indexOf(Character.toString(lastChar))==-1){ 

  str=str.substring(0,len-1); 

  }else{ 

  break; 

  } 

 } 

 return str.toLowerCase(); //return word in lowercase 

  } 
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Chapter 7 

System Evaluation 

7.1 PerformanceComparison between Different Modes of Operation 

Table 7.1 shows the number of tokens generated for N –Gram Analysis where N=1, N 2 

and N=3 for various file sizes: 

N-Gram 

Analysis 

Number of Token 

10.1MB 21.2MB 31.3MB 40MB 50MB 

N=1 69,347 106,133 145,246 174,658 210,128 

N=2 800,921 1,334,591 2,024,822 2,591,408 3,220,503 

N=3 1,153,566 2,247,198 3,377,150 4,335,267 5,412,955 

 

 

Figure 7.1 

7.1.1. Standalone Mode: 

The Standalone Mode performance analysis was done in a personal computer with the 

following specifications: 

 Intel® Core i3 CPU 

 2.53 Ghz Processor Speed 

 2 GB System Memory 
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The analysis yields the following results described in Table 7.2: 

N-Gram 

Analysis 

Time in Second 

10.1MB 21.2MB 31.3MB 40MB 50MB 

N=1 12 21 30 42 66 

N=2 15 27 39 51 78 

N=3 18 33 45 60 85 

 

 
Figure: 7.2 

7.1.2. Cluster Mode 

The Standalone Mode performance analysis was done in five personal computers with the 

following specifications: 

 Intel® Core i3 CPU 

 2.53 Ghz Processor Speed 

 2 GB System Memory 

The analysis yields the following results described in Table 7.3: 

N-Gram 

Analysis 

Time in Second 

10.1MB 21.2MB 31.3MB 40MB 50MB 

N=1 30 31 36 36 31 

N=2 30 30 31 31 36 

N=3 31 30 31 36 36 
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Figure 7.3 

7.2 Future Works 

Research to be done on Bangla stopwords: 

Document similarity comparison in Bangla arouses a lot of challenges are absent when 

dealing with English corpuses. The Stopwords in Bangla language are much more 

complex than the ones in English language. Hence, we intend to enrich our set of Bangla 

Stopwords after thorough research on the matter. 

Run algorithm on bigger data set: 

Due to the limitation of Bangla resource availability, we had to run our algorithm on 

comparatively small data sets. We intend to run it on a much broader measure (in terabyte 

scale) in as we acquire more resources. 

Usage of more machines: 

Hardware availability was always a factor for us. Upon our productive analysis, we are 

hoping that more hardware will be made available to us so that when we acquire terabytes 

of data, we can actually run our algorithm on it with greater efficiency. 

Usage of high end machines: 

Another hardware limitation we faced was the machines limited capabilities. We are 

hopeful that once we are given better dedicated machines, our results would reflect much 

more efficient outputs. 
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Chapter 8 

Conclusion 

We initially selected the Hadoop platform in order to analyze Big Data. However, in 

order to successfully analyze it, we needed an objective based on which the analysis 

would have to be done. 

 

Our objective was to develop a document similarity algorithm, through which multiple 

documents could be compared amongst each other to identify how much similar the 

documents are. 

 

Initially the algorithm was developed for the English words and was tested on an English 

corpus. Through carrying out various tests by varying both the nodes and the corpus size, 

we were able to determine how much more efficient is a multi node cluster compared to a 

single node one. Meaning, how fast would a job get done when the work is being split 

amongst multiple machines. 

 

So far, we were successfully able to implement our document similarity detection 

algorithm for English language. We achieved this by having the mapper class process 

unprocessed corpus to produce trigrams. We were also successfully able to modify the 

algorithm to detect document similarities for Bangla language. However, due to lack of 

resources and researches done on Bangla language in this particular area, our Bangla 

stopword set has a lot of room to be perfected. 

 

There are also some slight redundancies in our algorithm which we believe we can 

mitigate in time; resulting in even more efficient results. This means there is still some 

room for further coding. 

 

In future, we hope that we will be able to run our document similarity detection algorithm 

on a much broader scale. Once we are granted more high-end machines to function as 

nodes, hopefully we will be able to process gigabytes, terabytes or even exabytes of data 

and produce fantastic results.   
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APPENDIX 

Bangla Document File (Part of large corpus) 

DOCUMENT 1 

 

. : 

। । । . 

। . 

। , 

। ।
। , 

। ।
! . , 

। । , 

। । , 

।
। , ।

. । ।
। - ।
। । ।  

. ।
। , 

, । ।  

।  

, , ! 

. ।  

 

DOCUMENT 2 

 

, ।
। , ।

. । ।
। - ।
। । ।  

. ।
।

। -

। । ।
। . , । ! 

। ।
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-

। ।
। ।

। ।
। . -

, . 

। । ।
, , ।

।  

।  

, , ! 

. । -

। , 

। ।
।  
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Trigram of Document 1 

[1]  1 [48]  1 

[2]  1 [49]  1 

[3]  1 [50]  1 

[4]  1 [51]  1 

[5]  1 [52]  1 

[6]  1 [53]  1 

[7]  1 [54]  1 

[8]  1 [55]  1 

[9]  1 [56]  1 

[10]  1 [57]  1 

[11]  1 [58]  1 

[12]  1 [59]  1 

[13]  1 [60]  1 

[14]  1 [61]  1 

[15] .  1 [62]  1 

[16]  1 [63] -  1 

[17]  1 [64]  1 

[18]  1 [65]  1 

[19]  1 [66]  1 

[20]  1 [67]  1 

[21]  1 [68]  1 

[22]  1 [69]  1 

[23]  1 [70]  1 

[24]  1 [71]  1 

[25]  1 [72]  1 

[26]  1 [73]  1 

[27]  1 [74]  1 

[28]  1 [75]  4 

[29]  1 [76] .  1 

[30]  1 [77] .  1 

[31]  1 [78]  1 

[32]  1 [79]  1 

[33]  1 [80]  1 

[34]  1 [81]  1 

[35]  1 [82]  1 

[36]  1 [83]  1 

[37]  1 [84]  1 

[38]  1 [85]  1 

[39]  1 [86]  1 

[40]  1 [87]  1 

[41]  1 [88]  1 

[42]  1 [89]  1 

[43]  1 [90]  1 

[44]  1 [91]  1 

[45]  1 [92]  1 

[46]  1 [93]  1 

[47]  1 [94]  1 
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[95]  1 [145]  1 

[96]  1 [146]  1 

[97]  1 [147]  1 

[98]  1 [148]  1 

[99]  1 [149]  1 

[100]  1 [150]  1 

[101]  1 [151]  1 

[102]  1 [152]  1 

[103]  1 [153]  1 

[104]  1 [154]  1 

[105]  1 [155]  1 

[106]  1 [156]  1 

[107]  1 [157]  1 

[108]  1 [158]  1 

[109]  1 [159]  1 

[110]  1 [160]  2 

[111]  1 [161]  1 

[112]  1 [162]  1 

[113]  1 [163]  1 

[114]  1 [164]  1 

[115]  1 [165]  1 

[116]  1 [166]  1 

[117]  1 [167]  1 

[118]  1 [168]  1 

[119]  1 [169]  1 

[120]  1 [170]  1 

[121]  1 [171] .  1 

[122]  1 [172]  1 

[123]  1 [173]  1 

[124]  1 [174]  1 

[125]  1 [175]  1 

[126]  1 [176]  1 

[127]  1 [177]  1 

[128]  1 [178]  1 

[129]  1 [179]  1 

[130]  1 [180] -  1 

[131]  1 [181]  1 

[132]  1 [182]  1 

[133]  1 [183]  1 

[134]  1 [184]  1 

[135]  1 [185]  1 

[136] -  1 [186]  1 

[137]  1 [187]  1 

[138]  1 [188]  1 

[139]  1 [189]  1 

[140]  1 [190]  1 

[141]  1 [191]  1 

[142]  1 [192]  1 

[143]  1 [193]  1 

[144]  1 [194]  1 
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[195]  1 [245]  1 

[196]  1 [246]  1 

[197]  1 [247]  1 

[198]  1 [248]  1 

[199]  1 [249]  1 

[200]  1 [250]  1 

[201]  1 [251]  1 

[202]  1 [252]  1 

[203]  1 [253]  1 

[204]  1 [254]  1 

[205]  1 [255]  1 

[206]  1 [256]  1 

[207]  1 [257]  1 

[208]  1 [258]  1 

[209]  1 [259]  1 

[210]  1 [260]  1 

[211]  1 [261]  1 

[212]  1 [262]  1 

[213]  1 [263]  1 

[214]  1 [264]  1 

[215]  1 [265]  1 

[216]  1 [266]  1 

[217]  1 [267]  1 

[218]  1 [268]  1 

[219]  1 [269]  1 

[220]  1 [270]  1 

[221]  1 [271]  1 

[222]  1 [272]  1 

[223]  1 [273]  1 

[224]  1 [274]  1 

[225]  1 [275]  1 

[226]  1 [276]  1 

[227]  1 [277]  1 

[228]  1 [278]  1 

[229]  1 [279]  1 

[230]  1 [280]  1 

[231]  1 
  

[232]  1 
  

[233]  1 
  

[234]  1 
  

[235]  1 
  

[236]  1 
  

[237]  1 
  

[238]  1 
  

[239]  1 
  

[240]  1 
  

[241]  1 
  

[242]  1 
  

[243]  1 
  

[244]  1 
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Trigram of Document 2 

[1]  1 [48]  1 

[2]  1 [49]  1 

[3]  1 [50]  1 

[4]  1 [51]  1 

[5]  1 [52]  1 

[6]  1 [53]  1 

[7]  1 [54]  1 

[8]  1 [55]  1 

[9]  1 [56]  1 

[10]  1 [57]  1 

[11]  1 [58]  1 

[12]  1 [59]  1 

[13]  1 [60]  1 

[14]  1 [61]  1 

[15]  1 [62]  1 

[16] .  1 [63]  1 

[17]  1 [64]  1 

[18]  1 [65]  1 

[19]  1 [66]  1 

[20]  1 [67]  1 

[21]  1 [68]  1 

[22]  1 [69]  1 

[23]  1 [70]  1 

[24]  1 [71]  1 

[25]  1 [72]  1 

[26]  1 [73]  1 

[27]  1 [74]  1 

[28]  1 [75] -  1 

[29]  1 [76] -  1 

[30]  1 [77]  1 

[31]  1 [78]  1 

[32]  1 [79]  1 

[33]  1 [80]  1 

[34]  1 [81]  1 

[35]  1 [82]  1 

[36]  1 [83]  1 

[37]  1 [84]  1 

[38]  1 [85]  1 

[39]  1 [86] -  1 

[40]  1 [87]  1 

[41]  1 [88]  1 

[42]  1 [89]  1 

[43]  1 [90]  1 

[44]  1 [91]  1 

[45]  1 [92] -  1 

[46]  1 [93]  1 

[47] -  1 [94]  1 
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[95]  1 [143]  1 

[96]  1 [144]  1 

[97]  1 [145]  1 

[98]  1 [146]  1 

[99]  1 [147]  1 

[100]  1 [148]  1 

[101]  1 [149]  1 

[102]  1 [150]  1 

[103]  1 [151]  1 

[104]  1 [152]  1 

[105]  1 [153]  1 

[106]  1 [154]  1 

[107]  1 [155]  1 

[108]  3 [156]  1 

[109] .  1 [157]  1 

[110]  1 [158]  1 

[111]  1 [159]  1 

[112]  1 [160]  1 

[113]  1 [161]  1 

[114]  1 [162]  1 

[115]  1 [163]  1 

[116]  1 [164]  1 

[117]  1 [165]  1 

[118]  1 [166]  1 

[119]  1 [167]  1 

[120]  1 [168]  1 

[121]  1 [169]  1 

[122]  1 [170]  1 

[123]  1 [171]  1 

[124]  1 [172]  1 

[125]  1 [173]  1 

[126]  1 [174]  1 

[127]  1 [175]  1 

[128]  1 [176]  1 

[129]  1 [177]  1 

[130]  1 [178]  1 

[131]  1 [179]  1 

[132]  1 [180]  1 

[133]  1 [181] -  1 

[134]  1 [182]  1 

[135]  1 [183]  1 

[136]  1 [184]  1 

[137]  1 [185]  1 

[138]  1 [186]  1 

[139]  1 [187]  1 

[140]  1 [188]  1 

[141]  1 [189]  1 

[142]  1 [190]  1 
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[191]  1 [239]  1 

[192]  1 [240]  1 

[193]  1 [241] -  1 

[194]  1 [242]  1 

[195]  1 [243]  1 

[196]  1 [244]  1 

[197]  1 [245]  1 

[198]  1 [246]  1 

[199]  1 [247]  1 

[200]  1 [248]  1 

[201]  1 [249]  1 

[202]  1 [250]  1 

[203]  1 [251]  1 

[204]  1 [252]  1 

[205]  1 [253]  1 

[206]  1 [254]  1 

[207]  1 [255] -  1 

[208]  1 [256]  1 

[209]  1 [257]  1 

[210]  1 [258]  1 

[211]  1 [259]  1 

[212]  1 [260]  1 

[213]  1 [261]  1 

[214]  1 [262]  1 

[215] .  1 [263]  1 

[216]  1 [264]  1 

[217]  1 [265]  1 

[218]  1 [266]  1 

[219]  1 [267]  1 

[220]  1 [268]  1 

[221]  1 [269]  1 

[222]  1 [270]  1 

[223]  1 [271] -  1 

[224]  1 [272]  1 

[225]  1 [273]  1 

[226]  1 [274]  1 

[227]  1 [275]  1 

[228]  1 [276]  1 

[229]  1 [277]  1 

[230] -  1 [278]  1 

[231] -  1 [279]  1 

[232]  1 [280]  1 

[233]  1 [281]  1 

[234]  1 [282]  1 

[235]  1 [283]  1 

[236]  1 [284]  1 

[237]  1 [285] -  1 

[238]  1 [286]  1 
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[287]  1 

[288]  1 

[289]  1 

[290]  1 

[291]  1 

[292]  1 

[293]  1 

[294]  1 

[295] -  1 

[296]  1 

[297]  1 

[298]  1 

[299]  1 

[300]  1 

[301]  1 

[302]  1 

[303]  1 

[304]  1 

[305]  1 

[306]  1 

[307] -  1 

[308]  1 

[309]  1 

[310]  1 

[311]  1 

[312]  1 

[313]  1 

[314]  1 

[315]  1 

[316] -  1 

[317]  1 

[318]  1 

[319]  1 

[320]  1 

[321]  1 

[322]  1 

[323]  1 

[324]  1 

[325]  1 

[326]  1 

[327]  1 

[328]  1 

[329]  1 

[330]  1 

[331]  1 

[332]  1 
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