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Abstract

This paper presents a statistical analysis of measurements relating to network’s data
flows and predictions using statistical and machine learning regression models. The
study’s objective is to use statistical methods and machine learning regression mod-
els to analyze and make predictions on a spatio-temporal traffic volume dataset
obtained by Dr. Liang Zhao (Emory University), from sensors along two major
highways in Northern Virginia and Washington, D.C. This work aims to answer
some fundamental questions related to the network such as: 1. What statistical
inferences and descriptive analysis can be made on the network’s data flow? 2. How
can one obtain the Routine Matrix of the Network from the Adjacency Matrix? 3.
How can one employ various techniques, such as Regularization and Singular Value
Decomposition (SVD), to solve the singularity or ill posed nature of the network
in the Traffic Matrix Estimation?, and 4. How can one apply Machine Learning
regression models, such as Support Vector Regressor (SVR) and XGBoost Regres-
sor, to make predictions on the Network’s flow volume? Concepts in this work or
paper can be practically applied on other real world networks to analyze and make
predictions on the network’s data flow.

Keywords: Statistical Analysis, Network, Data flow, Graph, Routing Matrix, Traf-
fic Matrix, Adjacency Matrix, Machine Learning, Regression Models.
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Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

λ Regularization Parameter

µ Estimated Traffic Matrix

Σ Diagonal singular vectors matrix

Aij Adjacency matrix

B Routing Matrix

B+ Pseudo inverse of matrix B

c Cost

cij Origin-Destination cost

E Edge

e Link

EV S Explained Variance Score

G Network Graph

i Origin

j Destination

M+j Network’s Inflow Routine Matrix

Mi+ Network’s Outflow Routine Matrix

MAE Mean Absolute Error

Max Maximum Value

MedAE Median Absolute Error

Min Minimum Value

MLP Deep Neural Multilayer Perceptron

MSE Mean Squared Error
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Q3 Third Quartile

R2 R-squared

RSS Residual Sum of Squares

Std Standard Deviation

SV D Singular Value Decomposition

SVM Support Vector Machine

SV R Support Vector Regressor

TSS Total Sum of Squares

U Left singular vectors matrix

V Right singular vectors matrix

V vertice

wi Model Parameters

Xe Total flow over a specific link e ∈ E

Z Origin-Destination Matrix

Z+j Net In-flow corresponding to vertex j

Zi+ Net Out-flow corresponding to vertex i

Zij Origin-Destination (i, j) flow volume
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Chapter 1

Introduction

Analysis of network flow data involves applying statistical and mathematical tech-
niques to study the patterns, trends, and anomalies in a network’s data. By iden-
tifying these patterns, trends, and anomalies within the data, network analysts can
make informed decisions about the network which will improve network performance
and optimize network resources. A network graph (G), consists of a set of vertices
(V ) and a set of edges (E) where the vertices represent the elements or nodes of
the network, while the edges represent the connections or relationships between the
vertices or nodes. In the context of network flows, these flows have specific direc-
tions, typically from a source or origin to a destination, implying that the edges of
the graph have specific directions [1]. As such network graphs are directed graphs
or digraphs.
The movement of data or traffic typically passes through multiple links as it travels
between vertices or nodes in the graph. This movement is captured and represented
by a matrix called the Routing Matrix [1]. The Routing Matrix (B) has the same
number of rows and columns as the total number of links in the network graph
(e) and the total number of origin-destination pairs (i, j) respectively. The entries
of B indicate the amount of traffic or the proportion of traffic that flows through
each link for a given origin-destination pair. These entries can be numerical values
representing the fraction of traffic or they can be binary values indicating whether
a link is used or not for a particular origin-destination pair [1]. That is,

Be,ij =

{
1 if link e is traversed in going from i to j

0 otherwise
(1.1)

By using the Routing Matrix B, we can analyze and optimize the flow of traffic in a
network by understanding the paths taken by traffic and designing efficient routing
algorithms which overall improves network performance.
Another matrix important in the study of Network data flow is the Traffic or Origin-
Destination (OD) matrix, denoted as

Z = [Zij]. (1.2)

The OD matrix provides information about the total volume of traffic flowing from
an origin vertex i to a destination vertex j within a given period of time [2]. The
OD matrix Z is a rectangular matrix with rows corresponding to the origin vertices
and columns corresponding to the destination vertices [1]. Each element Zij of the
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matrix represents the total volume of traffic flowing from the origin vertex i to the
destination vertex j. The values in the OD matrix Z can be obtained through various
data collection methods, such as traffic surveys, sensors, or statistical modeling
techniques.
Other quantities related to the OD matrix Z include the net out-flow and net in-
flow corresponding to vertices i and j, respectively, obtained from the sums of traffic
volumes in the traffic matrix Z. The net out-flow corresponding to vertex i, denoted
as Zi+, represents the total volume of traffic flowing out from vertex i to all other
vertices in the network. It can be calculated by summing up the traffic volumes Zij

for all destination vertices j connected to vertex i [1]:

Zi+ =
∑
j

Zij (1.3)

On the other hand, the net in-flow corresponding to vertex j, denoted as Z+j,
represents the total volume of traffic flowing into vertex j from all other vertices in
the network. It is calculated by summing up the traffic volumes Zij for all origin
vertices i connected to vertex j [1]:

Z+j =
∑
i

Zij (1.4)

These quantities, Zi+ and Z+j, provide valuable information about the flow patterns
at specific vertices in the network. By summing up the traffic volumes associated
with each vertex, we can understand the total traffic entering or leaving a particular
vertex.
Similarly, to quantify the flow of traffic on the link or edge, we can define Xe as the
total flow over a specific link e ∈ E. Each Xe represents the volume or amount of
flow passing through that particular link in the network. By considering all the links
in the network, we can form a vector X, denoted as X = (Xe)e∈E, representing the
total flow across all links [1]. By multiplying the routing matrix B with the traffic
matrix vector Z, we can obtain the link flow vector X expressed mathematically by
[1] as:

X = BZ. (1.5)

In addition, within the context of network flows, there exists a concept of “cost” (c),
which is usually associated with the paths or links. The cost represents a measure
of expense, effort, time, or other relevant factors required to traverse a specific path
or link in the network [2]. It can be influenced by various factors such as distance,
congestion, or resource utilization. The concept of cost plays a role in making routing
decisions and optimizing network flows by minimizing the associated costs.
Nonetheless, in most network data, B and Z are not given and as such, one need
to obtain these matrix so they can apply the various statistical and mathematical
models involving these matrices to model their network. Usually, only the Adja-
cency matrix of the network is given in addition to the Traffic Flow matrices. The
Adjacency Matrix (A) is a square matrix used to represent which vertices are adja-
cent to each other through edges in the network [3]. The entries of the Adjacency
matrix (Aij) is 1 if there is an edge between the vertices i and j and 0 otherwise [3].
That is:

Aij =

{
1 if there is an edge between i and j

0 otherwise
(1.6)
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The Traffic Flow Matrices are also usually given in addition to the Adjacency Matrix
and gives the total flow volumes that was recorded on the vertices or edges of the
network [4]. With, the traffic flow matrices, one can as well model the Origin-
Destination Matrix as well as the different flow volumes or costs in the network. In
addition to the adjacency matrix and the Traffic Flow Matrices, in some network
data, are the Traffic Indices matrices which contain various network features and
capture various aspects of traffic patterns and network topology [5].
Statistical analysis of Network Data Flow is classified by [1] into three main mea-
surement and analysis goals:

1. Observation of Traffic Matrix Z where it’s possible to observe the entire
traffic matrix Z directly and our goal is to model these observations to under-
stand how factors like costs affect flow volumes and make predictions about
future flow volumes. Here, the Gravity models, such the General Gravity
Model and the Stewart Gravity Model, are commonly used to achieve these
goals. In depth knowledge and applications of the Gravity models can be
found in [1].

2. Traffic Matrix Estimation where it’s difficult or impossible to directly ob-
serve the traffic matrix entries (Zij) and instead, the link totals (Xe) are easier
to measure. As such, the links totals (Xe) are used to estimate the traffic ma-
trix entries (Zij).

3. Modeling and Inference of Network Cost Parameters where we have
some Origin-Destination cost cij and our analysis goal is modeling and inferring
other network cost parameters such as unobserved OD and link cost.

The type of statistical analysis performed on a network’s data depends on these goals
as well as the type of the network data, data availability, and also the parameters
of interest in our analysis. Due to the nature of our dataset, our main measurement
and analysis goal in this work is to estimate our traffic matrix which falls under goal
2: Traffic Matrix Estimation.
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Chapter 2

Dataset

The dataset used for this analysis and prediction is a traffic flow forcasting dataset
from [6] by Dr. Liang Zhao (Emory University) intended to forcast the spatio-
temporal traffic volume based on the historical traffic volume and other features in
neighboring locations. The dataset was obtained by measuring the traffic volume of
36 sensor along two major highways in Northern Virginia (Washington D.C. capital
region) every 15 minutes.
The dataset has 5 variable names: tra X te, tra X tr, tra Y te, tra Y tr,
tra adj mat. The tra X te variable is a 1 ∗ 840 array of matrices of input test set
data with traffic indices for 840 contiguous quarter-hours where each element is a
36×48 matrix representing 36 spatial locations and 48 features. The features of the
dataset include the historical sequence of traffic volume sensed during the 11 most
recent sample points (11 features), week day (7 features), hour of day (24 features),
road direction (4 features), number of lanes (1 feature), and name of the road (1
feature). The tra X tr variable is also a 1×1261 array of matrices of input training
set data with traffic indices for 1261 contiguous quarter-hours where each element
is a 36× 48 matrix representing 36 spatial locations and 48 features.
The tra Y te variable is a 36 × 840 array of matrices of output test set data with
traffic flow for 36 locations in 840 continuous quarter-hours from 2017-01-02 00:00.
The tra Y tr variable is also a 36× 1261 array of matrices of output test set data
with traffic flow for 36 locations in 840 contiguous quarter-hours from 2017-01-02
00:00. Finally, the tra adj mat square matrix variable which is the adjacency matrix
denoting the spatial connectivity of traffic network among the 36 locations.
Various statistical and machine learning models will be used to analyze and make
predictions on this traffic flow forecasting dataset. We will first start by visualizing
the network using the Traffic Adjacency Matrix. We will then make some Statis-
tical inferences and descriptive analysis on the network then move to the traffic
estimation section where we will obtain the Routine Matrix of the Network from
the Adjacency Matrix as well as apply techniques, such as Regularization and SVD,
to solve the singularity or ill posed nature of the network in the Traffic Matrix Es-
timation. Finally, we will move to the machine learning prediction section where
we will use various machine learning regresion models to make predictions on the
Network Traffice indices. All or most of our analysis here will be done in python
using core libraries such as networkx, scipy.io, matplotlib, pandas, seaborn,
sklearn, and so on.
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Chapter 3

Visualizing the Network

There are various layouts for visualizing network graph. However, the choice of the
best layout depends on the specific characteristics of the graph and the insights one
wants to gain from the visualization. Different layouts or views provide different
perspectives, and it’s essential to perform some visualizations on a dataset to fully
understand the dataset before selecting those that best suit the underlying data and
visualization goals. With this network, we will obtain the matrix view, the radial
or spring layout, the circular layout, the shell layout, and the planar layout of the
traffic network graph. To visualize the graph or the connections between the 36
locations or nodes, the tra adj mat square adjacency matrix was plotted in python
with the aid of the libraries: networkx and matplotlib.

3.1 Matrix View

The Matrix View visually represent the adjacency matrix of the network. In this
representation, nodes are indexed by rows and columns, and the entries of the matrix
indicate the presence or absence of edges between pairs of nodes, just like in the
adjacency matrix [7]. The visual structure of the matrix provides insights into the
connectivity and relationships within the graph, making it a useful tool in network
analysis and visualization. Figure 3.1 shows the Matrix View or representation of
our network.

3.2 Spring Layout

The spring layout, also known as the force-directed layout, visualize network graphs
by simulating a physical system of springs and forces [8]. The main idea behind the
spring layout is to position nodes in such a way that connected nodes are drawn closer
together and disconnected nodes are pushed further apart [8]. The algorithm starts
with an initial random placement of nodes in a 2D or 3D space. Then, it iteratively
applies forces between nodes to adjust their positions. The forces can be attractive,
pulling connected nodes closer together, and repulsive, pushing disconnected nodes
apart [8].
According to [8], the attractive force between connected nodes is based on Hooke’s
law, which models springs. It pulls the nodes towards each other, making connected
edges shorter. The repulsive force between disconnected nodes can be based on
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Figure 3.1: Matrix View of the Traffic Network graph

Coulomb’s law, where nodes with a stronger repulsive force are farther apart [8].
The spring layout algorithm continues to adjust node positions iteratively until the
system reaches a balanced state, where the forces between nodes are minimized or
the total energy of the system is low [8]. Spring layout is a widely used algorithm
for visualizing graphs and networks due to its simplicity and effectiveness. It works
well for many types of graphs and can reveal underlying structures, clusters, and
relationships in the network just as in figure 3.2 for our network graph.

3.3 Circular Layout

The circular layout is a graph layout algorithm that positions nodes in a circular
arrangement. In this layout, nodes are placed along the circumference of a circle,
and the edges are drawn as chords connecting the nodes [8]. The circular layout is
useful when there is a notion of ordering among the nodes or when the graph has
cyclic structures.
According to [8], nodes placed close together in the circular layout are typically
more strongly connected, while nodes farther apart have weaker or no connections.
The arrangement of nodes in a circle can make it easier to identify cyclic patterns,
trace paths from one node to another, and observe the cyclic ordering of nodes. The
circular layout is often used to visualize cyclic graphs, where the graph contains
cycles or closed loops, or when there is a natural cyclic order among the nodes. It
can reveal cyclic dependencies and help in understanding the cyclic relationships in
the data just as in figure 3.3.
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Figure 3.2: Spring layout of the Traffic Network graph
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Figure 3.3: Circular layout of the Traffic Network graph

3.4 Shell Layout

The Shell Layout is similar to the Circular layout, but organizes nodes into concentric
circles or “shells” [8]. This layout is often used for visualizing hierarchical or radial
structures within a graph. The algorithm works by assigning nodes to different shells
based on their distance from a specified center as seen in [8]. Nodes in the same
shell are generally at the same level of hierarchy. The concentric circles formed by
the shells can represent hierarchical levels or layers within the graph. Nodes in the
same shell are considered to be at the same level of hierarchy, and edges typically
connect nodes across adjacent shells to illustrate relationships [8]. Generally, the
Shell Layout provides an effective means of representing and understanding the
hierarchical relationships within a graph by organizing nodes into concentric circles
around a central point [8]. Figure 3.4 show the Shell layout of our network.

3.5 Planar Layout

The planar layout is a graph layout algorithm used to visualize planar graphs. A
planar graph is a graph that can be drawn on a 2D plane without any edge crossings
[8]. The planar layout arranges the nodes in a way that preserves the planarity of
the graph, where edges do not intersect with each other.
In the planar layout, nodes are positioned such that connected nodes are close
together, and edges are drawn as straight lines between the nodes without any
crossings [9]. The goal is to create a clear and easy-to-read visualization of the
planar graph while maintaining the integrity of its planar structure [8]. Planar
graphs often arise in various real-world applications, such as road networks, circuit
layouts, and social networks. Their planar nature makes them suitable for certain
types of visualizations, and the planar layout algorithm is designed to make the
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Figure 3.4: Shell layout of the Traffic Network graph

Figure 3.5: Planar layout of the Traffic Network graph

most of this property just as in figure 3.5.
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Chapter 4

Descriptive Analysis of the
Network

In this chapter, we will perform Descriptive Analysis on our network where we will
look at Vertex Degree and Vertex centrality of our network. This analysis will
contribute to a comprehensive understanding of the connectivity patterns and the
relative influence of nodes within our network.

4.1 Vertex Degree

The degree of a vertex in a graph is the number of edges joined to the particular
vertex in the graph [3]. Knowing the Vertices’ Degree or Degree Distribution of the
Vertices will help us gain insights into the structure, function, and behavior of our
network. It will also be essential in characterizing the overall connectivity patterns
in our graph which will be used in various graph algorithms and analysis [3].
Our network is composed of 36 vertices labelled from 0 to 35. The degree of the
vertices in the graph is given in Table 4.2 and can be obtained from the Adjacency
matrix shown in Table 4.1. Figure 4.1a also shows the plot of the Vertex degree and
figure 4.1b, the Degree Distribution of the network.
From the table and the figures, we can infer that the network has a diverse range
of degrees with vertex 25 having the largest degree (7). This imply that node 25 is
the highly connected node or vertex in the network and it is one of the core vertices
in the network. The presence of nodes with higher degrees suggests hubs or central
nodes that play important roles in connecting different parts of the network [10].
Node 25 and also node 4, 14, 29, are key nodes in the network since they have the
highest vertex degrees. Higher Vertex degree usually correspond to high flow volume
[7] and as such this nodes will be closely observe during our network flow analysis
in chapter 2.4.

4.2 Vertex Centrality

Vertex Centrality highlights the essential or most important vertices in the network
[1]. Even though the vertex degree gave us a hint on key vertices in the network,
other measure of Vertex Centrality, such as Closeness, Betweenness, and Eigenvec-
tor Centrality, can also be used to quantify the importance of the key nodes we
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0 → [1, 14, 25, 29]
1 → [0, 2]
2 → [1, 3]
3 → [2]
4 → [5, 21, 25, 26, 31]
5 → [4, 6]
6 → [5, 7]
7 → [6]
8 → [9, 10]
9 → [8, 12]
10 → [8, 13]
11 → [12]
12 → [9, 11]
13 → [10, 14]
14 → [0, 13, 25, 26, 31]
15 → [16]
16 → [15, 17]
17 → [16, 18]

18 → [17, 19]
19 → [18, 20]
20 → [19, 21]
21 → [4, 20, 25, 29]
22 → [23, 25]
23 → [22, 24]
24 → [23, 25]
25 → [0, 4, 14, 21, 22, 24, 29]
26 → [4, 14, 29]
27 → [28]
28 → [27, 35]
29 → [0, 21, 25, 26, 35]
30 → [32, 33]
31 → [4, 14, 34]
32 → [30]
33 → [30, 34]
34 → [31, 33]
35 → [28, 29]

Table 4.1: Adjacency List

previously identified.

• Closeness captures the centrality of a node as it determines which node is the
closest to the other nodes [10]. It is defined as the reciprocal of the average
shortest path length from the node to all other nodes [10]. Nodes with high
closeness centrality are, on average, closer to all other nodes.

• Betweenness captures the extent at which a node is found between two other
nodes [2]. It also measures the extent to which a node lies on the shortest
paths between other nodes in a network [10]. A node with high betweenness
centrality plays a crucial role in connecting different parts of the network.

• Eigenvector Centrality captures the influence of a node in a network [10]. It
assigns relative scores to all nodes in the network based on the concept that
connections to high-scoring nodes contribute more to the score of the node in
question[2].

There are other measures of Vertex Centrality in [10] such as:

• Katz Centrality which extends the idea of degree centrality by considering the
total number of walks between nodes, with shorter walks weighted more.

• PageRank Centrality which measures the importance of a node based on the
link structure of the network.

• Harmonic Centrality which takes into account the sum of the reciprocal of the
shortest path lengths to all other nodes.

• Clustering Coefficient which measures the degree to which nodes in a network
tend to cluster together.

11



0 4
1 2
2 2
3 1
4 5
5 2
6 2
7 1
8 2
9 2
10 2
11 1

12 2
13 2
14 5
15 1
16 2
17 2
18 2
19 2
20 2
21 4
22 2
23 2

24 2
25 7
26 3
27 1
28 2
29 5
30 2
31 3
32 1
33 2
34 2
35 2

Table 4.2: Vertex Degrees (Vertex — Degree)

• Subgraph Centrality which measures the centrality of a node in a network
based on the number of closed walks (cycles) that pass through that node.

The various measure of centrality of our network is shown in table 4.3 and figure
4.2. The ranking of the nodes for each centrality measure is given below as:

1. Degree Centrality: 25 > 4, 14, 29 > 0, 21 > 26, 31 > 1, 2, 5, 6, 8, 9, 10,
12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 28, 30, 33, 34, 35 > 3, 7, 11, 15, 27, 32

2. Closeness Centrality:

25 > 14 > 21 > 4 > 0 > 29 > 26, 31 > 13 > 20, 22, 24 > 5 > 1 > 34, 35 >
10 > 19 > 23 > 6 > 2 > 33 > 28 > 8 > 18 > 7 > 3, 30 > 27 > 9 > 17 > 32
> 12 > 16 > 11 > 15

3. Betweenness Centrality: 14 > 25 > 21 > 4 > 13, 20 > 31 > 10, 19 > 29
> 0 > 8, 18, 34 > 1, 5, 9, 17, 33, 35 > 2, 6, 12, 16, 28, 30 > 26 > 22, 24 > 23
> 3, 7, 11, 15, 27, 32

4. Eigenvector Centrality: 25 > 29 > 14 > 4 > 21 > 0 > 26 > 31 > 22, 24
> 35 > 13 > 5 > 20 > 1 > 23 > 34 > 28 > 10 > 6 > 19 > 2 > 33 > 27 > 8
> 18 > 7 > 3 > 30 > 9 > 17 > 32 > 12 > 16 > 11 > 15

5. Clustering Coefficient: 0, 21 > 29 > 25 > 4, 14 > 1, 2, 3, 5, 6, 7, 8, 9, 10,
11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35

6. Subgraph Centrality: 25 > 29 > 14 > 4 > 21 > 0 > 26 > 31 > 22, 24 >
35 > 13 > 5 > 20 > 1 > 23 > 34 > 10 > 19 > 33 > 8 > 18 > 9 > 17 > 28 >
6 > 2 > 30 > 12 > 16 > 27 > 7 > 3 > 32 > 11 > 15

7. Harmonic Centrality: 25 > 14 > 4 > 29 > 21 > 0 > 26, 31 > 22, 24 > 13
> 20 > 5 > 1 > 35 > 34 > 10 > 19 > 23 > 6 > 33 > 2 > 28 > 8 > 18 > 9
> 17 > 30 > 7 > 3 > 27 > 12 > 16 > 32 > 11 > 15

8. Katz Centrality: 25 > 29 > 14 > 4 > 21 > 0 > 26 > 31 > 22, 24 > 35 >
13 > 5 > 20 > 1 > 34 > 23 > 10 > 19 > 33 > 8 > 18 > 9 > 17 > 28 > 6 >
2 > 30 > 12 > 16 > 27 > 7 > 3 > 32 > 11 > 15
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(a) Vertex Degree

(b) Degree Distribution of the Vertices

9. PageRank: 25 > 4 > 14 > 29 > 0 > 21 > 16 > 12 > 30 > 31 > 17 > 9 > 2
> 6 > 28 > 18 > 8 > 33 > 26 > 19 > 10 > 34 > 1 > 5 > 35 > 20 > 13 > 23
> 22, 24 > 15 > 11 > 32 > 3 > 7 > 27

To create a combined ranking, we can assign weights to the normalized form of
each centrality measure based on their importance and then compute a normalize
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weighted sum for each vertex.

4.3 Flow Volume Statistical Measures

To statistically analyze the traffic flow volumes of the vertices, various statistic mea-
sures will be employed. These statistical measures include Mean, Median, Standard
Deviation (Std), Minimum Value, Maximum value, First Quartile (Q1), and Third
Quartile (Q3).

Mean (Average)

The mean (or average) flow volume is a measure of central tendency that represents
the arithmetic average flow volume across all vertices [7]. It is useful for understand-
ing the average traffic flow volume across vertices. It is calculated by adding up all
the flow volume values in a dataset and then dividing the sum by the total number
of flow volume [7]. The Mean is given mathematically as:

X̄ =

∑n
i=1Xi

n

where X̄ is the mean flow volume, Xi represents each individual flow volumes, and
n is the total number of flow volume values.

Median

The median flow volume is also measure of central tendency that represents the
middle flow volume when it is ordered [11]. It gives a robust measure of central
tendency, especially when dealing with skewed datasets or datasets with outliers
[11]. It provides insight into the typical or central traffic flow volume.

Standard Deviation (Std)

Standard deviation measures the amount of variation or dispersion in the traffic
flow volumes [11]. It also indicates the spread of traffic flow volumes around the
mean. A vertice with higher standard deviation indicates greater variability in its
flow volumes [11]. Std is given as:

Std =

√∑n
i=1(Xi − X̄)2

n

where: Xi represents each flow volume, X̄ is the mean (average) of the flow volumes,
and n is the total number of values in the dataset [11].

Minimum (Min) and Maximum (Max) Value

The Minimum flow volume is the smallest flow volume observed in the dataset while
the Maximum flow volume is the largest flow volume observed in the dataset [11].
These values helps identify the range of values in the dataset. The range is given as
Max−Min and provides a quick overview of the data’s spread from the minimum
to the maximum value [11].
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Vertex Degree Closeness Betweenness Eigenvector Clustering Subgraph Harmonic Katz PageRank
Centrality Centrality Centrality Coefficient Centrality Centrality Centrality Centrality

0 4 0.28455 0.18263 0.32073 0.33 7.22152 13.79405 0.20718 0.03701
1 2 0.22876 0.11092 0.08583 0.00 2.48385 10.62302 0.15676 0.02393
2 2 0.18919 0.05714 0.02286 0.00 2.23393 8.80198 0.15029 0.02799
3 1 0.15982 0.00000 0.00571 0.00 1.59071 7.02186 0.13604 0.01606
4 5 0.28926 0.26611 0.33487 0.10 7.97545 14.32738 0.22047 0.04559
5 2 0.23179 0.11092 0.08961 0.00 2.52956 10.81349 0.15810 0.02377
6 2 0.19126 0.05714 0.02387 0.00 2.23533 8.90317 0.15042 0.02788
7 1 0.16129 0.00000 0.00596 0.00 1.59074 7.08575 0.13605 0.01602
8 2 0.17857 0.16134 0.00643 0.00 2.27966 8.58297 0.15132 0.02738
9 2 0.15487 0.11092 0.00172 0.00 2.27799 7.75083 0.15111 0.02919
10 2 0.20833 0.20840 0.02400 0.00 2.28606 9.60754 0.15197 0.02543
11 1 0.11986 0.00000 0.00012 0.00 1.59064 5.65842 0.13598 0.01755
12 2 0.13566 0.05714 0.00046 0.00 2.22886 6.90672 0.14972 0.03149
13 2 0.24648 0.25210 0.08964 0.00 2.53116 11.16230 0.15825 0.02266
14 5 0.29661 0.36947 0.33488 0.10 7.97548 14.43452 0.22048 0.04521
15 1 0.11905 0.00000 0.00011 0.00 1.59064 5.63298 0.13598 0.01756
16 2 0.13462 0.05714 0.00044 0.00 2.22886 6.87382 0.14972 0.03150
17 2 0.15351 0.11092 0.00165 0.00 2.27799 7.70639 0.15111 0.02921
18 2 0.17677 0.16134 0.00615 0.00 2.27963 8.51908 0.15130 0.02742
19 2 0.20588 0.20840 0.02298 0.00 2.28466 9.50635 0.15183 0.02550
20 2 0.24306 0.25210 0.08586 0.00 2.48545 10.97183 0.15691 0.02278
21 4 0.29167 0.30700 0.32074 0.33 7.22155 13.90119 0.20720 0.03659
22 2 0.24306 0.02773 0.14001 0.00 2.89236 11.21190 0.16250 0.02081
23 2 0.19886 0.00084 0.06995 0.00 2.42959 9.14246 0.15351 0.02185
24 2 0.24306 0.02773 0.14001 0.00 2.89236 11.21190 0.16250 0.02081
25 7 0.31250 0.34650 0.49058 0.19 13.93815 15.88571 0.26136 0.06056
26 3 0.27132 0.05154 0.26040 0.00 5.01911 12.62738 0.18742 0.02724
27 1 0.15695 0.00000 0.00664 0.00 1.59074 6.97186 0.13605 0.01597
28 2 0.18519 0.05714 0.02657 0.00 2.23597 8.74643 0.15045 0.02777
29 5 0.27559 0.19636 0.37273 0.20 9.01005 13.93690 0.22316 0.04491
30 2 0.15982 0.05714 0.00342 0.00 2.22889 7.68139 0.14975 0.03026
31 3 0.27132 0.22409 0.17928 0.00 3.97484 12.62738 0.18052 0.02991
32 1 0.13834 0.00000 0.00086 0.00 1.59064 6.24293 0.13598 0.01703
33 2 0.18717 0.11092 0.01284 0.00 2.27999 8.83532 0.15140 0.02734
34 2 0.22293 0.16134 0.04799 0.00 2.35618 10.23968 0.15420 0.02426
35 2 0.22293 0.11092 0.09974 0.00 2.56274 10.58135 0.15837 0.02361

Table 4.3: Vertex Centrality

15



Figure 4.2: Vertex Centrality
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First Quartile (Q1) and Third Quartile (Q3)

The Quartiles divide the dataset into four equal parts, providing information about
the spread of data in different segments. Q1 is the value below which 25% of the
data falls and represents the lower 25% of flow volumes. Q3 is the value below which
75% of the data falls and represents the lower 75% of flow volumes [11].

Vertex Centrality Vs. Flow Volume

The statistical measures of all the 36 nodes are shown in Table 4.4 for the Training
set and in Table 4.5 for the testing set. Figure 4.3b gives the Bar plot and Box plot
of our flow volumes in both the Training set and the Testing set. Analyzing the
graph shows that indeed the nodes with the highest Vertex Centrality (25, 4, 12, 29)
had the highest flow volumes in both the training and testing set.
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Vertex Mean Median Std Min Max Q1 Q3
0 0.24792 0.30079 0.12596 0.01448 0.48015 0.13965 0.34844
1 0.33223 0.38860 0.18915 0.01214 0.75993 0.17982 0.46801
2 0.21522 0.23681 0.10315 0.01775 0.46007 0.14386 0.29005
3 0.24789 0.27837 0.12097 0.02149 0.48575 0.15367 0.34003
4 0.33210 0.36291 0.18360 0.02289 0.71976 0.15460 0.48342
5 0.31478 0.34563 0.17282 0.02429 0.61700 0.15227 0.45586
6 0.35713 0.39187 0.19902 0.02475 0.72209 0.16674 0.51191
7 0.26575 0.31200 0.14040 0.01168 0.52499 0.13498 0.37973
8 0.36958 0.42784 0.17625 0.05091 0.70808 0.21485 0.49510
9 0.44023 0.51238 0.21429 0.06119 0.88090 0.25362 0.58991
10 0.38605 0.44278 0.19111 0.04157 0.74872 0.21345 0.52452
11 0.33162 0.38767 0.16089 0.04577 0.61280 0.17936 0.46707
12 0.40392 0.47128 0.18805 0.05418 0.76880 0.24101 0.54087
13 0.38755 0.44418 0.19295 0.04297 0.74965 0.21859 0.52312
14 0.50429 0.61046 0.24712 0.05885 0.87342 0.27837 0.70761
15 0.20123 0.21018 0.10904 0.02242 0.42504 0.09902 0.29005
16 0.27334 0.31200 0.11981 0.03643 0.48342 0.16534 0.37179
17 0.29414 0.32882 0.12697 0.04998 0.52732 0.18216 0.39841
18 0.30596 0.33863 0.14071 0.05418 0.57403 0.17842 0.42270
19 0.39928 0.44092 0.18635 0.06212 0.77113 0.22373 0.54974
20 0.37551 0.41383 0.17473 0.05325 0.73657 0.21392 0.51191
21 0.41860 0.45680 0.18420 0.07707 0.78935 0.25315 0.56235
22 0.18306 0.19103 0.10563 0.01448 0.39000 0.08267 0.27370
23 0.16730 0.19010 0.09597 0.01308 0.36852 0.07193 0.23681
24 0.09135 0.08968 0.06006 0.00467 0.22466 0.03456 0.13545
25 0.46639 0.51425 0.26735 0.04250 1.00000 0.19710 0.68239
26 0.25451 0.31294 0.13228 0.01261 0.46847 0.14946 0.36338
27 0.16615 0.14619 0.13535 0.00140 0.86128 0.05231 0.23073
28 0.12522 0.13358 0.07805 0.00420 0.35778 0.05558 0.17702
29 0.34908 0.38440 0.22200 0.01728 0.90378 0.14666 0.47828
30 0.35618 0.34003 0.23719 0.02475 0.87623 0.14853 0.50304
31 0.34074 0.31387 0.23560 0.02055 0.87716 0.13965 0.48389
32 0.11002 0.09528 0.08978 0.00000 0.35638 0.02616 0.15740
33 0.23964 0.21625 0.16775 0.01168 0.62728 0.09668 0.33956
34 0.34971 0.32508 0.24165 0.02008 0.87669 0.13965 0.49369
35 0.35003 0.38393 0.22309 0.02382 0.91032 0.15086 0.47454

Table 4.4: Training Set

18



Vertex Mean Median Std Min Max Q1 Q3
0 0.24721 0.28748 0.12146 0.01728 0.50911 0.15016 0.34283
1 0.38609 0.42363 0.21694 0.02475 0.90986 0.22992 0.53631
2 0.21909 0.23190 0.10151 0.00747 0.47735 0.16803 0.29332
3 0.27698 0.30570 0.12671 0.01962 0.56282 0.20002 0.37553
4 0.40710 0.44886 0.20828 0.03596 0.79122 0.23412 0.57251
5 0.32397 0.35801 0.16538 0.02429 0.59411 0.18940 0.45504
6 0.36780 0.40448 0.19173 0.02896 0.72723 0.19956 0.50911
7 0.26773 0.30476 0.13572 0.01588 0.49743 0.15927 0.37669
8 0.42333 0.47244 0.19790 0.05465 0.87856 0.26763 0.55441
9 0.43962 0.50163 0.20731 0.05885 0.93087 0.26892 0.58547
10 0.43610 0.48879 0.21342 0.04811 0.91826 0.26296 0.58034
11 0.33690 0.38440 0.15944 0.04344 0.59505 0.18940 0.47011
12 0.40203 0.46147 0.18165 0.05371 0.78001 0.25619 0.53386
13 0.45022 0.50000 0.22126 0.03737 0.93601 0.26623 0.59879
14 0.50715 0.61420 0.23943 0.05184 0.86595 0.30441 0.69185
15 0.18892 0.19477 0.09722 0.02149 0.39281 0.11770 0.26716
16 0.31278 0.35030 0.13588 0.05044 0.58758 0.20645 0.41850
17 0.33311 0.36899 0.14267 0.06212 0.61794 0.22606 0.43998
18 0.30805 0.34050 0.13689 0.04998 0.58524 0.20189 0.41114
19 0.40340 0.44208 0.18137 0.07099 0.78935 0.26436 0.53223
20 0.37797 0.41102 0.16968 0.06259 0.73610 0.25175 0.49113
21 0.41475 0.45002 0.17827 0.06632 0.78515 0.27417 0.54332
22 0.19430 0.19337 0.10615 0.01121 0.41009 0.10766 0.28468
23 0.17687 0.20014 0.09561 0.01074 0.36572 0.09096 0.24346
24 0.09849 0.09435 0.06108 0.00467 0.24241 0.04577 0.14573
25 0.49046 0.54367 0.26638 0.04577 0.99813 0.25140 0.69687
26 0.25213 0.30220 0.13142 0.01121 0.47314 0.14433 0.36385
27 0.17825 0.17609 0.09468 0.01168 0.45306 0.09995 0.23972
28 0.12635 0.13078 0.07729 0.00607 0.35497 0.05733 0.17515
29 0.36405 0.38954 0.22276 0.02289 0.92247 0.16604 0.48739
30 0.38151 0.36245 0.23726 0.02802 0.86735 0.18846 0.54764
31 0.36346 0.33489 0.23718 0.02149 0.87763 0.17398 0.53094
32 0.11609 0.09762 0.08971 0.00000 0.35030 0.03865 0.18309
33 0.25646 0.23073 0.16876 0.01681 0.60206 0.12436 0.37553
34 0.37391 0.34493 0.24235 0.02008 0.87763 0.17830 0.54507
35 0.36577 0.39351 0.22379 0.02149 0.91219 0.16908 0.48587

Table 4.5: Testing Set
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(a) Training Set

(b) Testing Set

Figure 4.3: Training and Testing Set
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Chapter 5

Traffic Matrix Estimation

As stated earlier in chapter 1, the type of statistical measurement and analysis
performed on a network data flow depend on data availability and parameter of
interest in our analysis. With this dataset, we only have our adjacency matrix and
our Traffic flow matrix at each time interval. As such we are task here to first find
the Routing Matrix (B) which will then be used in the traffic Matrix estimation.
After obtaining our Routing Matrix, we can then apply various techniques needed
to Estimate the Traffic Matrix.

5.1 Generating Routing Matrix B

We can find the Routing Matrix from the Adjacency Matrix by first assuming that
the flow edges in the network are bi-direction. That is, given two edge i and j, data
can flow bidirectional from i to j and also from j to i. As such for all i and j in
our network G, we will have 86 flow directions for all the 43 edges in the network.
These 86 flow directions are given in the adjacency list of the flow given in Table
4.1.
The flow volume given in the Traffic Flow matrix gives the total flow volumes at
the sensor of the node. These flow volumes in fact represent the Net In-flow volume
(Z+j) at a node j or the Net Out-flow volume (Zi+) at a node i. From Eqn 1.3, we
can extrapolate from the nodes in the Adjacency list that

z0+ = z(0,1) + z(0,14) + z(0,25) + z(0,29)

z1+ = z(1,0) + z(1,2)

z2+ = z(2,1) + z(2,3)
...

z33+ = z(33,30) + z(33,34)

z34+ = z(34,31) + z(34,33)

z35+ = z(35,28) + z(35,29)
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z0+
z1+
z2+
...

z33+
z34+
z35+


=


1 1 1 1 0 0 · · · 0 0 0 0
0 0 0 0 1 1 · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 · · · 1 1 0 0
0 0 0 0 0 0 · · · 0 0 1 1





z(0,1)
z(0,14)
z(0,25)

...
z(34,33)
z(35,28)
z(35,29)


[zi+] = Mi+ ∗ [z(i,j)]{i+} (5.1)

Applying this same method using Eqn 1.4 gives

[z+j] = M+j ∗ [z(i,j)]{+j} (5.2)

Infact, both equations (5.1 and 5.2) are equivalent to equation 1.5. Therefore, for
this network, [zi+], [z+j] ≡ X, Mi+,M+j ≡ B, and [z(i,j)]{i+}, [z(i,j)]{+j} ≡ Z. Even
though Mi+ ̸= M+j and [z(i,j)]{i+} ̸= [z(i,j)]{+j}, [zi+] = [z+j] which implies that both
equations (5.1 and 5.2) can be use for any estimation involving networks of this
form. Nonetheless, for the convenience sake we will be using equation 5.1 for this
analysis.
With these correspondence, we can obtain our Routing Matrix (B) from our Adjan-
cency matrix using this algorithm:

1. Calculate the total number of links in the adjacency matrix.

2. Get the number of origin-destination pairs (nodes). Assume that all the edges
are bidirectional.

3. Initialize a binary matrix with zeros to represent the routing matrix. The
dimension of the binary matrix will be the Number of Vertices by the number
of origin-destination pairs.

4. Create a list of all the links in the adjacency matrix.

5. Create a dictionary to map links to indice.

6. Set entries to 1 where links are traversed for each origin-destination pair.

With our Routing Matrix we can then move on to our Traffic Matrix Estimation
where we will estimate the OD Matrix with Least Square Approaches.

5.2 Least Square Approaches

The Least Square Approaches minimizes the sum of the squared differences between
the observed and predicted values in a linear regression model [1]. Given the linear
equation,

X = BZ

the objective function in the Least Square Approaches is formulated to minimize
the difference between the observed counts (X) and the predicted flow volumes (Zij)
weighted by some measure of uncertainty or error (ϵ) [1], [12]. This is often done

22



by assuming that the errors follow a Gaussian distribution [12]. The optimization
problem aims to find the traffic matrix that best fits the observed link counts while
considering the uncertainty. In our analysis, the observed counts X on the network
links, at each time, are modeled using a simple form, represented by the equation:

X = Bµ+ ϵ (5.3)

where X is the observed counts [zi+], B is the routing matrix Mi+, µ is the expected
flow volumes for all (i, j) origin-destination pairs, and ϵ is the vector representing
the errors.
To estimate the expected flow volumes µ, the Ordinary Least Squares (OLS) ap-
proach is often employed. The OLS method minimizes the squared difference be-
tween the observed counts X and the estimated counts Bµ [12]. The objective of
OLS is to find the values of µ that minimize the sum of squared errors. Given by
[1] as

min
µ

(x−Bµ)T (x−Bµ)

The traffic flow for the 36 locations in the network where recorded in continuous
quarter-hours. Therefore with the OLS method, given the time dependent equation,

X(t) = B(t)Z(t)

Z(t) =
((

B(t)
)T

B(t)
)−1 (

B(t)
)T

X(t) (5.4)

or

[z(i,j)]
(t)
{i+} =

((
M

(t)
i+

)T

M
(t)
i+

)−1 (
M

(t)
i+

)T

[zi+]
(t)

Nonetheless, because our network is static implies that the Routing Matrix B or
Mi+ will be the same for all t. As such, the equations in 5.4 can be simplified as:

X(t) = BZ(t)

Z(t) =
(
BTB

)−1
BTX(t) (5.5)

or

[z(i,j)]
(t)
{i+} =

(
MT

i+Mi+

)−1
MT

i+[zi+]
(t)

Applying equation 5.5 to the network data flow gives the Traffic Matrix values Z(i,j)

in [z(i,j)]{i+}.
However, in this network data, BTB is invertible due to its singularity. As such,
various techniques, such as incorporating additional data sources, imposing regular-
ization, such as Ridge Regression or Lasso Regression, or priors on the flow volumes,
using Singular Value Decomposition (SVD) or considering statistical assumptions
about the error term ϵ, can be employed to address this issue.
An alternative to OLS approach involves using generalized least-squares to incorpo-
rate these measurements into the estimation process. The generalized least-squares
formulation involves the equation[

Z(0)

X

]
=

[
I
B

]
µ+

[
ξ
ϵ

]
(5.6)
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where I is the identity matrix, B is a matrix that relates the traffic matrix µ to
the measurements X, ξ and ϵ are independent error vectors, and Ψ and Σ are the
covariance matrices of ξ and ϵ, respectively [1]. The objective is to minimize the
squared difference between the measurements and the estimated values. Given by
[1] as

min
µ

[
Z(0) − µ
X −Bµ

]T [
Ψ−1 0
0 Σ−1

] [
Z(0) − µ
X −Bµ

]
The solution to this generalized least-squares problem is also given by [1] as

µ̂ =
(
Ψ−1 +BTΣ−1B

)−1 (
Ψ−1z(0) +BTΣ−1x

)
. (5.7)

Here, µ̂ represents the estimated traffic matrix, z(0) is the initial set of measurements,
x is the observed link count vector, and Ψ−1 and Σ−1 are the inverse covariance ma-
trices of the error vectors ξ and ϵ [1]. The estimated traffic matrix µ̂ is a linear
combination of the initial measurements z(0) and the observed link counts x. Ac-
cording to standard linear model theory and under the assumed model conditions,
the mean of the estimator E(µ̂) is equal to the true traffic matrix µ, and the co-

variance V(µ̂) =
(
Ψ−1 +BTΣ−1B

)−1
represents the minimum covariance among all

unbiased estimators [1]. The covariance can be used to quantify the uncertainty
associated with the estimation of µ when combined with the estimator µ̂ [1]. The
specific type of uncertainty depends on the error covariances Ψ and Σ. Typically, Σ
is considered to be a matrix with diagonal entries, while the structure of Ψ depends
on the sampling method used for the initial measurements z(0) [1]. The values of
the components within Ψ and Σ can be determined using previous measurements or
estimations of µ̂ from past instances.

5.3 Regularization Techniques

Regularization Techniques can be used here to deal with the singularity or ill-posed
problems in our dataset. It involves adding a penalty term to the objective function
to constrain the solution and narrow down the set of potential solutions in a mean-
ingful way [13]. Two common regularization techniques used especially in the field
of machine learning are L1 Regularization (Lasso Regression) and L2 Regularization
(Ridge Regression).
In L1 regularization, also known as Lasso (Least Absolute Shrinkage and Selection
Operator) regression, a penalty term is added to the loss function based on the
absolute values of the model’s coefficients [13]. The objective function for Lasso
regression is given by:

Loss(y, ŷ) + λ

n∑
i=1

|wi|

Here, Loss(y, ŷ) is the original loss function without regularization, measuring the
difference between the predicted (ŷ) and actual (y) values, n is the number of features
in the model, wi represents the weight (coefficient) associated with the i-th feature,
and λ is the regularization parameter, controlling the strength of the regularization
[13]. The optimization problem associated with Lasso regression is to minimize this
modified loss function with respect to the model parameters (wi). The choice of λ
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determines the trade-off between fitting the data well and keeping the model simple
by shrinking some coefficients towards zero [13]. Cross-validation is often used to
find an appropriate value for λ.
In L2 regularization, also known as Ridge regression, a penalty term is added to
the loss function based on the squared values of the model’s coefficients [13]. The
objective function for Ridge regression is given by:

Loss(y, ŷ) + λ
n∑

i=1

w2
i

Here, Loss(y, ŷ) is the original loss function without regularization, measuring the
difference between the predicted (ŷ) and actual (y) values, n is the number of features
in the model, wi represents the weight (coefficient) associated with the i-th feature,
and λ is the regularization parameter, controlling the strength of the regularization
[13]. It’s a hyperparameter that needs to be tuned. The optimization problem
associated with Ridge regression is to minimize this modified loss function with
respect to the model parameters (wi). The choice of λ determines the trade-off
between fitting the data well and keeping the model simple by controlling the size
of the coefficients [13]. Like L1 regularization, the value of λ is often determined
through cross-validation.
In the context of traffic matrix estimation, the tomogravity method utilizes regu-
larization by replacing the least-squares criterion in the objective function with a
penalized least-squares criterion [1]. The modified objective function takes the form:

(x−Bµ)T (x−Bµ) + λD(µ||µ(0)) (5.8)

Here, x represents the observed link count vector, B is a matrix that relates the traffic
matrix µ to the link counts, µ is the estimated traffic matrix, λ is a regularization
parameter, and D(µ||µ(0)) is the penalty term [1].
The penalty term, D(µ||µ(0)), measures the relative entropy “distance” between
the estimated traffic matrix µ and a pre-specified vector µ(0). Relative entropy,
also known as Kullback-Leibler divergence, is a measure of dissimilarity between
probability distributions [1]. It is defined as:

D(µ||µ(0)) =
∑
ij

µij

µ++

log
µij

µ0

(5.9)

where µij represents the elements of the estimated traffic matrix µ, µ++ represents
the total traffic within the network, and µ0 represents the pre-specified vector with
a specific multiplicative structure resembling a basic gravity model [1]. The tomo-
gravity method incorporates the concept of a gravity model by defining µ(0) with a
multiplicative structure similar to a basic gravity model. The gravity model assumes
that the logarithm of the expected flow volume (µij) can be expressed as a linear com-
bination of factors related to the origin (αi), the destination (βj), and a pre-specified
gravity constant (γij) [1]. The equation takes the form log µij = αi+βj +log γij. To
estimate the values of αi and βj, a nonlinear least-squares algorithm is used with the
constraint that the estimated origin and destination volumes (µi+ and µ+j) match
the given values (µ̂i+ and µ̂+j) [1]. The resulting estimated traffic matrix (µ̂) will
be unique if the given values and the gravity constant (γij) are all positive.
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The net out-flow and in-flow at vertices i and j, respectively, are multiplied to obtain
the initial traffic matrix [1] µ(0):

µ
(0)
ij = Z

(0)
i+ × Z

(0)
+j (5.10)

Additionally, there is a requirement that µ++ is equal to Z
(0)
++, which represents the

total traffic within the network. These quantities can be calculated by summing the
elements in the observed link count vector x in an appropriate manner. By incorpo-
rating the penalty term and the gravity model structure in the tomogravity method,
the objective function aims to find an estimated traffic matrix µ that minimizes the
penalized least-squares criterion while adhering to the constraints imposed by the
gravity model [1]. The regularization parameter λ controls the trade-off between the
fit to the observed data and the adherence to the gravity model structure. According
to [2], λ = (0.01)2 works well in practice and as such will be used in this work.

5.4 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) can also be used to deal with the singularity
or ill-posed problems in our dataset. SVD is a technique that decomposes a matrix
into three other matrices, providing a useful tool for various numerical computations
and data analysis [14]. It can also be applied to solve linear systems of equations,
especially when the coefficient matrix is ill-conditioned or singular. For the singular
routing matrix B, the SVD is expressed by [15] as:

B = UΣV T

Here, U , the left singular vectors matrix, contains the eigenvectors of BBT . Also,
the columns of U are orthogonal unit vectors, and they form a basis for the column
space of B. Σ, the diagonal singular values matrix, is also a diagonal matrix with
singular values on the diagonal . The singular values are related to the eigenvalues
of BBT and BTB, providing information about the scaling and orientation of the
transformation represented by B. V T , the right singular vectors matrix, contains
the eigenvectors of BTB. Similar to U , the columns of V are orthogonal unit vectors
and form a basis for the row space of B.[16]
SVD has various applications, and one of its key uses is in solving linear regression
problems, especially when dealing with multicollinearity or when the matrix B is
not full rank. For linear regression, SVD can be applied to find the Pseudo Inverse
of singular matrix B. So let B+ be the pseudo inverse of matrix B. B+ can be obtain
in the following way [16]:
SVD of Matrix B:

B = UΣV T

Multiply both sides by B−1:

I = B−1UΣV T

Multiply both sides by V :
V = B−1UΣ

Multiply byΣ−1:
V Σ−1 = B−1U
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Multiply by UT :
V Σ−1UT = B−1UUT

B−1 = V Σ−1UT

∴ B+ = B−1 = V Σ−1UT

So for X = BZ

Z = B−1X = B+X

∴ Z = V Σ−1UTX

where Z is the coefficient matrix, U , Σ, and V are the matrices obtained from the
SVD of B, and X is the vector of observed values.
When dealing with singularity issues, SVD allows us to identify and handle multi-
collinearity by examining the singular values. If some singular values are close to
zero, it indicates that the corresponding columns (or rows) in U or V are nearly
collinear and may be causing the singularity [16]. Regularization techniques, such
as Ridge Regression, can also be combined with SVD to stabilize the solution and
handle multi-collinearity effectively.
The np.linalg.pinv() function from numPy can be also simply used to calculate
the pseudoinverse of matrix B, and then solves for Z using the formula Z = B+X,
where B+ is the pseudoinverse of B.

5.5 Dataset Traffic Flow Estimates

To find the traffic flow volume estimate of the dataset, the tomogravity method will
be used here, where will first calculate the tomographic parameters (Z

(0)
i+ , Z(0)j+,

µ++), define the pre-specified vector µ(0) with gravity model structure, and then
initialize an array to store estimated traffic matrices for each time interval. Next,
we will use Ridge regression for the traffic matrix estimation with regularization for
each time interval with λ = (0.01)2, calculate the penalty term and the objective
function value, and then stack the estimated traffic matrices along the third axis to
get a 3D array of the traffic matrix estimate which is partially shown in table for
the training set and table for the testing set. The flow estimate for all the 1,261 and
840 flow intervals can not be fully shown here and as such the first three and last
three values have been shown in Table 5.1 for the Training set and Table 5.2 for the
Testing set.
Some of the traffic volume estimates are negative and there is a need to impose
the constraint µ ≥ 0 for all (i, j) pairs of flow volumes. To address this, we can
modify the traffic matrix estimation method to enforce non-negativity constraints.
One way to achieve this is to use non-negative least squares (NNLS) optimization.
The NNLS algorithm in Python is available in the scipy.optimize module. The
NNLS alogorithm can be used within the context of the tomogravity method by
just replacing the Ridge regression with NNLS for the traffic matrix estimation.
The nnls function from scipy.optimize enforces non-negativity constraints on the
estimated traffic matrix for each time interval. The traffic volume estimates using
the NNLS algorithm is show in Table 5.3 for the Training set and Table 5.4 for the
Testing set.
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(i,j) t1 t2 t3 t1259 t1260 t1261
(0, 1) -0.0015371 -0.0025414 -0.0034310 · · · 0.0152137 0.0205882 0.0152723
(0, 14) -0.0015371 -0.0025414 -0.0034310 · · · 0.0152137 0.0205882 0.0152723
(0, 25) -0.0015371 -0.0025414 -0.0034310 · · · 0.0152137 0.0205882 0.0152723
(0, 29) -0.0015371 -0.0025414 -0.0034310 · · · 0.0152137 0.0205882 0.0152723
(1, 0) -0.0054093 -0.0041485 -0.0031255 · · · 0.0301931 0.0479475 0.0697759
(1, 2) -0.0054093 -0.0041485 -0.0031255 · · · 0.0301931 0.0479475 0.0697759
(2, 1) -0.0033076 -0.0067173 -0.0040596 · · · -0.0277209 0.0297326 0.0088262
(2, 3) -0.0033076 -0.0067173 -0.0040596 · · · -0.0277209 0.0297326 0.0088262
(3, 2) -0.0122192 -0.0195053 -0.0071847 · · · -0.0082694 0.0613304 0.0316622
(4, 5) -0.0024440 -0.0009122 -0.0004095 · · · -0.0316394 -0.0290212 -0.0213171
(4, 21) -0.0024440 -0.0009122 -0.0004095 · · · -0.0316394 -0.0290212 -0.0213171
(4, 25) -0.0024440 -0.0009122 -0.0004095 · · · -0.0316394 -0.0290212 -0.0213171
(4, 26) -0.0024440 -0.0009122 -0.0004095 · · · -0.0316394 -0.0290212 -0.0213171
(4, 31) -0.0024440 -0.0009122 -0.0004095 · · · -0.0316394 -0.0290212 -0.0213171
(5, 4) -0.0058764 -0.0041485 -0.0045266 · · · -0.0959099 -0.0863288 -0.0771107
(5, 6) -0.0058764 -0.0041485 -0.0045266 · · · -0.0959099 -0.0863288 -0.0771107
(6, 5) -0.0000383 0.0035578 -0.0012573 · · · -0.0821320 -0.0790896 -0.0701050
(6, 7) -0.0000383 0.0035578 -0.0012573 · · · -0.0821320 -0.0790896 -0.0701050
(7, 6) -0.0136203 -0.0087637 -0.0160581 · · · -0.1348331 -0.0666344 -0.0351224
(8, 9) 0.0130391 0.0210721 0.0150894 · · · 0.1703075 0.1780204 0.1624850
(8, 10) 0.0130391 0.0210721 0.0150894 · · · 0.1703075 0.1780204 0.1624850
(9, 8) 0.0240147 0.0364846 0.0244304 · · · 0.2506398 0.2550833 0.2386138
(9, 12) 0.0240147 0.0364846 0.0244304 · · · 0.2506398 0.2550833 0.2386138
(10, 8) 0.0170090 0.0199044 0.0211610 · · · 0.1817502 0.1838585 0.1867715
(10, 13) 0.0170090 0.0199044 0.0211610 · · · 0.1817502 0.1838585 0.1867715
(11, 12) 0.0480270 0.0542846 0.0656712 · · · 0.2457920 0.1864930 0.1899836
(12, 9) 0.0228471 0.0334488 0.0239633 · · · 0.2100066 0.1943671 0.1804663
(12, 11) 0.0228471 0.0334488 0.0239633 · · · 0.2100066 0.1943671 0.1804663
(13, 10) 0.0188772 0.0196709 0.0218616 · · · 0.1789479 0.1960018 0.1774305
(13, 14) 0.0188772 0.0196709 0.0218616 · · · 0.1789479 0.1960018 0.1774305
(14, 0) 0.0106337 0.0103907 0.0137892 · · · 0.0936267 0.1031573 0.0871347
(14, 13) 0.0106337 0.0103907 0.0137892 · · · 0.0936267 0.1031573 0.0871347
(14, 25) 0.0106337 0.0103907 0.0137892 · · · 0.0936267 0.1031573 0.0871347
(14, 26) 0.0106337 0.0103907 0.0137892 · · · 0.0936267 0.1031573 0.0871347
(14, 31) 0.0106337 0.0103907 0.0137892 · · · 0.0936267 0.1031573 0.0871347
(15, 16) -0.0126862 -0.0223074 -0.0239975 · · · -0.1226905 -0.1217433 -0.1303954
(16, 15) 0.0111709 0.0140663 0.0132212 · · · -0.0802638 -0.0905323 -0.0855176
(16, 17) 0.0111709 0.0140663 0.0132212 · · · -0.0802638 -0.0905323 -0.0855176
(17, 16) 0.0163084 0.0175692 0.0155565 · · · -0.0765274 -0.0870294 -0.0820147
(17, 18) 0.0163084 0.0175692 0.0155565 · · · -0.0765274 -0.0870294 -0.0820147
(18, 17) 0.0184101 0.0206050 0.0178917 · · · -0.0774615 -0.0919334 -0.0796795
(18, 19) 0.0184101 0.0206050 0.0178917 · · · -0.0774615 -0.0919334 -0.0796795
(19, 18) 0.0331221 0.0297124 0.0272327 · · · -0.0578455 -0.0601741 -0.0486208
(19, 20) 0.0331221 0.0297124 0.0272327 · · · -0.0578455 -0.0601741 -0.0486208
(20, 19) 0.0328886 0.0264431 0.0269991 · · · -0.0685876 -0.0648446 -0.0553930
(20, 21) 0.0328886 0.0264431 0.0269991 · · · -0.0685876 -0.0648446 -0.0553930
(21, 4) 0.0208818 0.0199943 0.0137334 · · · -0.0226181 -0.0230819 -0.0232601
(21, 20) 0.0208818 0.0199943 0.0137334 · · · -0.0226181 -0.0230819 -0.0232601
(21, 25) 0.0208818 0.0199943 0.0137334 · · · -0.0226181 -0.0230819 -0.0232601
(21, 29) 0.0208818 0.0199943 0.0137334 · · · -0.0226181 -0.0230819 -0.0232601
(22, 23) -0.0152173 -0.0141901 -0.0171369 · · · -0.0676535 -0.0648446 -0.0509560
(22, 25) -0.0152173 -0.0141901 -0.0171369 · · · -0.0676535 -0.0648446 -0.0509560
(23, 22) -0.0149838 -0.0174594 -0.0199392 · · · -0.0905388 -0.0900652 -0.0885534
(23, 24) -0.0149838 -0.0174594 -0.0199392 · · · -0.0905388 -0.0900652 -0.0885534
(24, 23) -0.0236242 -0.0237646 -0.0232085 · · · -0.1164600 -0.1162199 -0.1086364
(24, 25) -0.0236242 -0.0237646 -0.0232085 · · · -0.1164600 -0.1162199 -0.1086364
(25, 0) 0.0031918 0.0025512 0.0013756 · · · 0.0110290 0.0234414 0.0335483
(25, 4) 0.0031918 0.0025512 0.0013756 · · · 0.0110290 0.0234414 0.0335483
(25, 14) 0.0031918 0.0025512 0.0013756 · · · 0.0110290 0.0234414 0.0335483
(25, 21) 0.0031918 0.0025512 0.0013756 · · · 0.0110290 0.0234414 0.0335483
(25, 22) 0.0031918 0.0025512 0.0013756 · · · 0.0110290 0.0234414 0.0335483
(25, 24) 0.0031918 0.0025512 0.0013756 · · · 0.0110290 0.0234414 0.0335483
(25, 29) 0.0031918 0.0025512 0.0013756 · · · 0.0110290 0.0234414 0.0335483
(26, 4) -0.0129474 -0.0139751 -0.0128260 · · · -0.0055590 0.0023853 0.0010580
(26, 14) -0.0129474 -0.0139751 -0.0128260 · · · -0.0055590 0.0023853 0.0010580
(26, 29) -0.0129474 -0.0139751 -0.0128260 · · · -0.0055590 0.0023853 0.0010580
(27, 28) -0.0351034 -0.0367852 -0.0380083 · · · -0.0470325 -0.0605631 -0.0570725
(28, 27) -0.0212890 -0.0183935 -0.0201727 · · · 0.0180499 -0.0274808 -0.0570276
(28, 35) -0.0212890 -0.0183935 -0.0201727 · · · 0.0180499 -0.0274808 -0.0570276
(29, 0) -0.0019770 -0.0060499 -0.0008766 · · · 0.1127762 0.0835407 0.0834916
(29, 21) -0.0019770 -0.0060499 -0.0008766 · · · 0.1127762 0.0835407 0.0834916
(29, 25) -0.0019770 -0.0060499 -0.0008766 · · · 0.1127762 0.0835407 0.0834916
(29, 26) -0.0019770 -0.0060499 -0.0008766 · · · 0.1127762 0.0835407 0.0834916
(29, 35) -0.0019770 -0.0060499 -0.0008766 · · · 0.1127762 0.0835407 0.0834916
(30, 32) -0.0107804 -0.0146571 -0.0089636 · · · -0.0797967 -0.0720839 -0.0717396
(30, 33) -0.0107804 -0.0146571 -0.0089636 · · · -0.0797967 -0.0720839 -0.0717396
(31, 4) -0.0084325 -0.0085261 -0.0092452 · · · -0.0563124 -0.0483681 -0.0591923
(31, 14) -0.0084325 -0.0085261 -0.0092452 · · · -0.0563124 -0.0483681 -0.0591923
(31, 34) -0.0084325 -0.0085261 -0.0092452 · · · -0.0563124 -0.0483681 -0.0591923
(32, 30) -0.0542514 -0.0554662 -0.0585574 · · · -0.2884843 -0.3197618 -0.3181394
(33, 30) -0.0149838 -0.0195611 -0.0164363 · · · -0.1036162 -0.1017414 -0.1095705
(33, 34) -0.0149838 -0.0195611 -0.0164363 · · · -0.1036162 -0.1017414 -0.1095705
(34, 31) -0.0114810 -0.0179265 -0.0115323 · · · -0.0762939 -0.0692816 -0.0754760
(34, 33) -0.0114810 -0.0179265 -0.0115323 · · · -0.0762939 -0.0692816 -0.0754760
(35, 28) -0.0082116 -0.0139566 -0.0010237 · · · 0.2999134 0.2048757 0.2383803
(35, 29) -0.0082116 -0.0139566 -0.0010237 · · · 0.2999134 0.2048757 0.2383803

Table 5.1: Traffic Estimates for the Training Set
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(i,j) t1 t2 t3 t838 t839 t840
(0, 1) 0.0114785 -0.0015830 -0.0075746 · · · -0.0137085 -0.0081229 -0.0108750
(0, 14) 0.0114785 -0.0015830 -0.0075746 · · · -0.0137085 -0.0081229 -0.0108750
(0, 25) 0.0114785 -0.0015830 -0.0075746 · · · -0.0137085 -0.0081229 -0.0108750
(0, 29) 0.0114785 -0.0015830 -0.0075746 · · · -0.0137085 -0.0081229 -0.0108750
(1, 0) 0.1086598 0.1163984 0.1020802 · · · -0.0080338 -0.0080721 -0.0065704
(1, 2) 0.1086598 0.1163984 0.1020802 · · · -0.0080338 -0.0080721 -0.0065704
(2, 1) 0.0412404 0.0235581 -0.0218898 · · · -0.0277425 -0.0273521 -0.0262169
(2, 3) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(3, 2) 0.1075579 0.0427062 0.0430266 · · · -0.0048582 -0.0049349 -0.0005306
(4, 5) -0.0141702 -0.0019203 0.0018803 · · · 0.0148150 0.0105961 0.0115704
(4, 21) -0.0141702 -0.0019203 0.0018803 · · · 0.0148150 0.0105961 0.0115704
(4, 25) -0.0141702 -0.0019203 0.0018803 · · · 0.0148150 0.0105961 0.0115704
(4, 26) -0.0141702 -0.0019203 0.0018803 · · · 0.0148150 0.0105961 0.0115704
(4, 31) -0.0141702 -0.0019203 0.0018803 · · · 0.0148150 0.0105961 0.0115704
(5, 4) -0.0615792 -0.0477690 -0.0326632 · · · 0.0176538 0.0152803 0.0188837
(5, 6) -0.0615792 -0.0477690 -0.0326632 · · · 0.0176538 0.0152803 0.0188837
(6, 5) -0.0797190 -0.0492977 -0.0018078 · · · 0.0278335 0.0618497 0.0499081
(6, 7) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(7, 6) -0.0605710 -0.0231443 0.0037965 · · · -0.0202701 0.0132791 -0.0023987
(8, 9) 0.1544305 0.1248053 0.1025472 · · · 0.0097140 0.0068734 0.0048722
(8, 10) 0.1544305 0.1248053 0.1025472 · · · 0.0097140 0.0068734 0.0048722
(9, 8) 0.2268230 0.1810846 0.1660658 · · · 0.0052770 0.0024364 0.0009023
(9, 12) 0.2268230 0.1810846 0.1660658 · · · 0.0052770 0.0024364 0.0009023
(10, 8) 0.1791841 0.1469901 0.1219297 · · · 0.0055106 0.0089751 0.0016029
(10, 13) 0.1791841 0.1469901 0.1219297 · · · 0.0055106 0.0089751 0.0016029
(11, 12) 0.1234368 0.1080896 0.1593158 · · · -0.0300776 -0.0180116 -0.0234148
(12, 9) 0.2981040 0.2612737 0.2289025 · · · 0.0077514 0.0044056 -0.0061348
(12, 11) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(13, 10) 0.1584004 0.1682408 0.1137564 · · · 0.0059776 0.0043046 -0.0011994
(13, 14) 0.1584004 0.1682408 0.1137564 · · · 0.0059776 0.0043046 -0.0011994
(14, 0) 0.0848469 0.0810300 0.0810006 · · · 0.0042594 0.0063925 0.0035370
(14, 13) 0.0848469 0.0810300 0.0810006 · · · 0.0042594 0.0063925 0.0035370
(14, 25) 0.0848469 0.0810300 0.0810006 · · · 0.0042594 0.0063925 0.0035370
(14, 26) 0.0848469 0.0810300 0.0810006 · · · 0.0042594 0.0063925 0.0035370
(14, 31) 0.0848469 0.0810300 0.0810006 · · · 0.0042594 0.0063925 0.0035370
(15, 16) -0.1222183 -0.1146812 -0.1283715 · · · -0.0347478 -0.0315553 -0.0402277
(16, 15) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(16, 17) -0.1535089 -0.1202855 -0.1064213 · · · 0.0997553 0.0655859 0.0760615
(17, 16) -0.0769918 -0.0437991 -0.0529798 · · · 0.0638916 0.0428361 0.0490083
(17, 18) -0.0769918 -0.0437991 -0.0529798 · · · 0.0638916 0.0428361 0.0490083
(18, 17) -0.0706867 -0.0501042 -0.0469082 · · · 0.0365693 0.0267229 0.0328951
(18, 19) -0.0706867 -0.0501042 -0.0469082 · · · 0.0365693 0.0267229 0.0328951
(19, 18) -0.0391609 -0.0066687 -0.0018380 · · · 0.0578200 0.0512430 0.0564811
(19, 20) -0.0391609 -0.0066687 -0.0018380 · · · 0.0578200 0.0512430 0.0564811
(20, 19) -0.0428973 -0.0178779 -0.0198194 · · · 0.0566523 0.0458719 0.0529782
(20, 21) -0.0428973 -0.0178779 -0.0198194 · · · 0.0566523 0.0458719 0.0529782
(21, 4) -0.0102398 -0.0041518 0.0030510 · · · 0.0356831 0.0278407 0.0366483
(21, 20) -0.0102398 -0.0041518 0.0030510 · · · 0.0356831 0.0278407 0.0366483
(21, 25) -0.0102398 -0.0041518 0.0030510 · · · 0.0356831 0.0278407 0.0366483
(21, 29) -0.0102398 -0.0041518 0.0030510 · · · 0.0356831 0.0278407 0.0366483
(22, 23) -0.0438314 -0.0374939 -0.0256575 · · · -0.0302186 -0.0202154 -0.0191807
(22, 25) -0.0438314 -0.0374939 -0.0256575 · · · -0.0302186 -0.0202154 -0.0191807
(23, 22) -0.0744231 -0.0732231 -0.0534468 · · · -0.0311527 -0.0216165 -0.0222166
(23, 24) -0.0744231 -0.0732231 -0.0534468 · · · -0.0311527 -0.0216165 -0.0222166
(24, 23) -0.1017454 -0.1101199 -0.1006187 · · · -0.0442300 -0.0363286 -0.0352939
(24, 25) -0.1017454 -0.1101199 -0.1006187 · · · -0.0442300 -0.0363286 -0.0352939
(25, 0) 0.0392538 0.0429328 0.0597262 · · · 0.0057114 0.0027646 0.0026599
(25, 4) 0.0392538 0.0429328 0.0597262 · · · 0.0057114 0.0027646 0.0026599
(25, 14) 0.0392538 0.0429328 0.0597262 · · · 0.0057114 0.0027646 0.0026599
(25, 21) 0.0392538 0.0429328 0.0597262 · · · 0.0057114 0.0027646 0.0026599
(25, 22) 0.0392538 0.0429328 0.0597262 · · · 0.0057114 0.0027646 0.0026599
(25, 24) 0.0392538 0.0429328 0.0597262 · · · 0.0057114 0.0027646 0.0026599
(25, 29) 0.0392538 0.0429328 0.0597262 · · · 0.0057114 0.0027646 0.0026599
(26, 4) -0.0194132 -0.0343375 -0.0647450 · · · -0.0198347 -0.0117646 -0.0151227
(26, 14) -0.0194132 -0.0343375 -0.0647450 · · · -0.0198347 -0.0117646 -0.0151227
(26, 29) -0.0194132 -0.0343375 -0.0647450 · · · -0.0198347 -0.0117646 -0.0151227
(27, 28) -0.0638402 -0.1356973 -0.1367779 · · · 0.0072844 -0.0619119 -0.0388266
(28, 27) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(28, 35) -0.1156799 -0.1342962 -0.1414482 · · · -0.0926589 -0.0712524 -0.0752545
(29, 0) 0.0870888 0.0864479 0.0843635 · · · -0.0076974 -0.0066852 -0.0072055
(29, 21) 0.0870888 0.0864479 0.0843635 · · · -0.0076974 -0.0066852 -0.0072055
(29, 25) 0.0870888 0.0864479 0.0843635 · · · -0.0076974 -0.0066852 -0.0072055
(29, 26) 0.0870888 0.0864479 0.0843635 · · · -0.0076974 -0.0066852 -0.0072055
(29, 35) 0.0870888 0.0864479 0.0843635 · · · -0.0076974 -0.0066852 -0.0072055
(30, 32) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(30, 33) -0.1324928 -0.0978683 -0.0854052 · · · 0.0142898 0.0146802 0.0167494
(31, 4) -0.0465025 -0.0408763 -0.0211531 · · · 0.0018056 0.0022471 0.0034039
(31, 14) -0.0465025 -0.0408763 -0.0211531 · · · 0.0018056 0.0022471 0.0034039
(31, 34) -0.0465025 -0.0408763 -0.0211531 · · · 0.0018056 0.0022471 0.0034039
(32, 30) -0.3094952 -0.3103646 -0.2885610 · · · -0.0907908 -0.0665821 -0.0635789
(33, 30) -0.1113199 -0.0949408 -0.0971158 · · · -0.0108361 -0.0050363 -0.0091392
(33, 34) -0.1113199 -0.0949408 -0.0971158 · · · -0.0108361 -0.0050363 -0.0091392
(34, 31) -0.0746566 -0.0466014 -0.0408365 · · · 0.0080793 0.0029035 0.0058063
(34, 33) -0.0746566 -0.0466014 -0.0408365 · · · 0.0080793 0.0029035 0.0058063
(35, 28) 0.2046382 0.2135444 0.2045972 · · · -0.0194765 -0.0176466 -0.0205819
(35, 29) 0.2046382 0.2135444 0.2045972 · · · -0.0194765 -0.0176466 -0.0205819

Table 5.2: Traffic Estimates for the Testing Set
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(i,j) t1 t2 t3 t1259 t1260 t1261
(0, 1) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.4226997
(0, 14) 0.0000000 0.0476413 0.0448389 · · · 0.0000000 0.4245680 0.0000000
(0, 25) 0.0000000 0.0000000 0.0000000 · · · 0.3713218 0.0000000 0.0000000
(0, 29) 0.0509108 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(1, 0) 0.0462401 0.0495096 0.0000000 · · · 0.0000000 0.0000000 0.5011677
(1, 2) 0.0000000 0.0000000 0.0523120 · · · 0.3708547 0.4381130 0.0000000
(2, 1) 0.0504437 0.0443718 0.0504437 · · · 0.2550210 0.4016815 0.3792620
(2, 3) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(3, 2) 0.0448389 0.0382999 0.0513779 · · · 0.3021952 0.4035497 0.3932742
(4, 5) 0.0448389 0.0532461 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(4, 21) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(4, 25) 0.0000000 0.0000000 0.0565156 · · · 0.0000000 0.0000000 0.2550210
(4, 26) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.1971042 0.0000000
(4, 31) 0.0000000 0.0000000 0.0000000 · · · 0.1522653 0.0000000 0.0000000
(5, 4) 0.0453059 0.0495096 0.0495096 · · · 0.1186362 0.1695469 0.0000000
(5, 6) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.2073797
(6, 5) 0.0569827 0.0649229 0.0560486 · · · 0.1461934 0.1840262 0.2213919
(6, 7) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(7, 6) 0.0434376 0.0490425 0.0425035 · · · 0.1756189 0.2755722 0.3264830
(8, 9) 0.0831387 0.0999533 0.0887436 · · · 0.6510976 0.6982718 0.6865950
(8, 10) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(9, 8) 0.1050911 0.1307800 0.1074264 · · · 0.8117702 0.8524054 0.8388603
(9, 12) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(10, 8) 0.0910789 0.0976179 0.1008874 · · · 0.6739841 0.7099486 0.7351705
(10, 13) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(11, 12) 0.1050911 0.1120972 0.1242410 · · · 0.5562821 0.5287249 0.5516114
(12, 9) 0.1027557 0.1247081 0.1064923 · · · 0.7304998 0.7309668 0.7225596
(12, 11) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(13, 10) 0.0948155 0.0971509 0.1022887 · · · 0.6683793 0.7342363 0.7164876
(13, 14) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(14, 0) 0.1102289 0.1097618 0.1275105 · · · 0.7786081 0.8580103 0.7972910
(14, 13) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(14, 25) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(14, 26) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(14, 31) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(15, 16) 0.0443718 0.0354974 0.0345633 · · · 0.1877627 0.2204577 0.2312004
(16, 15) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(16, 17) 0.0794021 0.0859411 0.0850070 · · · 0.1499299 0.1611397 0.1905652
(17, 16) 0.0896777 0.0929472 0.0896777 · · · 0.1574031 0.1681457 0.1975712
(17, 18) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(18, 17) 0.0938814 0.0990191 0.0943484 · · · 0.1555348 0.1583372 0.2022419
(18, 19) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(19, 18) 0.1233069 0.1172349 0.1130313 · · · 0.1947688 0.2218589 0.2643624
(19, 20) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(20, 19) 0.1228398 0.1106959 0.1125642 · · · 0.1732835 0.2125175 0.2508174
(20, 21) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(21, 4) 0.1405885 0.1377861 0.1134984 · · · 0.2199907 0.2498832 0.2685661
(21, 20) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(21, 25) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(21, 29) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(22, 23) 0.0266231 0.0294255 0.0242877 · · · 0.1751518 0.2125175 0.2596917
(22, 25) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(23, 22) 0.0270901 0.0228865 0.0186829 · · · 0.1293788 0.1620738 0.1844932
(23, 24) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(24, 23) 0.0098085 0.0102756 0.0121439 · · · 0.0775339 0.1097618 0.1443251
(24, 25) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(25, 0) 0.0794021 0.0756656 0.0681924 · · · 0.3876693 0.5063055 0.5964503
(25, 4) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(25, 14) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(25, 21) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(25, 22) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(25, 24) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(25, 29) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(26, 4) 0.0182158 0.0158804 0.0200841 · · · 0.2937879 0.3493695 0.3647828
(26, 14) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(26, 29) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(27, 28) 0.0219524 0.0210182 0.0205511 · · · 0.2634283 0.2816441 0.3045306
(28, 27) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(28, 35) 0.0144792 0.0210182 0.0182158 · · · 0.3465670 0.2872489 0.2475479
(29, 0) 0.0471742 0.0275572 0.0541803 · · · 0.8743578 0.7599253 0.7790752
(29, 21) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(29, 25) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(29, 26) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(29, 35) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(30, 32) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(30, 33) 0.0354974 0.0284914 0.0406352 · · · 0.1508641 0.1980383 0.2181224
(31, 4) 0.0317609 0.0322279 0.0308267 · · · 0.1415227 0.1971042 0.1840262
(31, 14) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(31, 34) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(32, 30) 0.0028024 0.0023354 0.0000000 · · · 0.0219524 0.0224194 0.0434376
(33, 30) 0.0270901 0.0186829 0.0256889 · · · 0.1032228 0.1387202 0.1424568
(33, 34) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(34, 31) 0.0340962 0.0219524 0.0354974 · · · 0.1578702 0.2036432 0.2106492
(34, 33) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(35, 28) 0.0406352 0.0298926 0.0565156 · · · 0.9103223 0.7519851 0.8383933
(35, 29) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000

Table 5.3: NNLS Traffic Estimates for the Training Set
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(i,j) t1 t2 t3 t838 t839 t840
(0, 1) 0.4016815 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(0, 14) 0.0000000 0.0000000 0.0000000 · · · 0.0523120 0.0000000 0.0000000
(0, 25) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(0, 29) 0.0000000 0.3801962 0.3554414 · · · 0.0000000 0.0555815 0.0420364
(1, 0) 0.5730967 0.6193368 0.5899113 · · · 0.0000000 0.0719290 0.0723961
(1, 2) 0.0000000 0.0000000 0.0000000 · · · 0.0910789 0.0000000 0.0000000
(2, 1) 0.3970107 0.4100887 0.3638487 · · · 0.0794021 0.0607193 0.0593181
(2, 3) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(3, 2) 0.4633349 0.4292387 0.4287716 · · · 0.1022887 0.0831387 0.0850070
(4, 5) 0.0000000 0.0000000 0.0000000 · · · 0.1812237 0.1410556 0.1433909
(4, 21) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(4, 25) 0.0000000 0.3769267 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(4, 26) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(4, 31) 0.2849136 0.0000000 0.3951425 · · · 0.0000000 0.0000000 0.0000000
(5, 4) 0.2326016 0.0000000 0.3204110 · · · 0.1424568 0.1186362 0.1233069
(5, 6) 0.0000000 0.2909855 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(6, 5) 0.2760392 0.3372256 0.3839327 · · · 0.1349837 0.1499299 0.1354507
(6, 7) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(7, 6) 0.2951892 0.3633816 0.3895376 · · · 0.0868753 0.1013545 0.0831387
(8, 9) 0.6646427 0.6361513 0.5908454 · · · 0.1265764 0.1018216 0.0952826
(8, 10) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(9, 8) 0.8094348 0.7487156 0.7178888 · · · 0.1177020 0.0929472 0.0873424
(9, 12) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(10, 8) 0.7141523 0.6805231 0.6296123 · · · 0.1181691 0.1060252 0.0887436
(10, 13) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(11, 12) 0.4792153 0.4946287 0.5450724 · · · 0.0770668 0.0700607 0.0621205
(12, 9) 0.6539000 0.6478281 0.6146660 · · · 0.1148996 0.0924801 0.0794021
(12, 11) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(13, 10) 0.6725829 0.7230266 0.6132648 · · · 0.1191032 0.0966838 0.0831387
(13, 14) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(14, 0) 0.7800093 0.7916861 0.7907520 · · · 0.1284447 0.1200374 0.1032228
(14, 13) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(14, 25) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(14, 26) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(14, 31) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(15, 16) 0.2335357 0.2718356 0.2573564 · · · 0.0723961 0.0565156 0.0453059
(16, 15) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(16, 17) 0.2022419 0.2662307 0.2793087 · · · 0.2069127 0.1536665 0.1616067
(17, 16) 0.2017749 0.2989257 0.2797758 · · · 0.2349369 0.1737506 0.1835591
(17, 18) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(18, 17) 0.2143858 0.2863148 0.2919197 · · · 0.1802896 0.1415227 0.1513312
(18, 19) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(19, 18) 0.2774404 0.3731901 0.3820645 · · · 0.2227931 0.1905652 0.1985054
(19, 20) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(20, 19) 0.2699673 0.3507707 0.3461000 · · · 0.2204577 0.1798225 0.1914993
(20, 21) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(21, 4) 0.3148062 0.3699206 0.3979449 · · · 0.2498832 0.1994395 0.2321345
(21, 20) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(21, 25) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(21, 29) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(22, 23) 0.2680990 0.3115367 0.3344232 · · · 0.0467071 0.0476413 0.0471742
(22, 25) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(23, 22) 0.2069127 0.2400747 0.2788417 · · · 0.0448389 0.0448389 0.0411023
(23, 24) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(24, 23) 0.1522653 0.1662774 0.1844932 · · · 0.0186829 0.0154134 0.0149463
(24, 25) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(25, 0) 0.6305465 0.6870621 0.8038300 · · · 0.1471275 0.1074264 0.1041569
(25, 4) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(25, 14) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(25, 21) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(25, 22) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(25, 24) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(25, 29) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(26, 4) 0.2975245 0.2835124 0.1914993 · · · 0.0476413 0.0527791 0.0401681
(26, 14) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(26, 29) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(27, 28) 0.2919197 0.2508174 0.2489491 · · · 0.1144325 0.0261560 0.0467071
(28, 27) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(28, 35) 0.2400747 0.2522186 0.2442784 · · · 0.0144792 0.0168146 0.0102756
(29, 0) 0.7912191 0.8187763 0.8075666 · · · 0.0686595 0.0546474 0.0495096
(29, 21) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(29, 25) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(29, 26) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(29, 35) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(30, 32) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(30, 33) 0.2232602 0.2886502 0.3003270 · · · 0.1214386 0.1027557 0.1022887
(31, 4) 0.2162541 0.2638954 0.3222793 · · · 0.1125642 0.0948155 0.0957496
(31, 14) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(31, 34) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(32, 30) 0.0462401 0.0761326 0.0971509 · · · 0.0163475 0.0214853 0.0219524
(33, 30) 0.1331154 0.1966371 0.1914993 · · · 0.0854741 0.0780009 0.0672583
(33, 34) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(34, 31) 0.2064456 0.2933209 0.3040635 · · · 0.1233069 0.0938814 0.0971509
(34, 33) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000
(35, 28) 0.7650631 0.8136385 0.7949556 · · · 0.0681924 0.0527791 0.0443718
(35, 29) 0.0000000 0.0000000 0.0000000 · · · 0.0000000 0.0000000 0.0000000

Table 5.4: NNLS Traffic Estimates for the Testing Set
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Chapter 6

Predictions Using Machine
Algorithms

The traffic indices have 48 features which can be used to make predictions on the
data using machine learning models. This can be achieved by training the models
with the tra X tr and tra Y tr variables and then making the predictions using
the tra X te and tra Y te variables of the datasets. However, these variables are
composed of Sparse Matrices which cannot be fitted directly into our models. As
such, these Sparse Matrices will be converted into a DataFrame and the respective
features of each node in the tra X tr and tra X te variable traffic indices will then
be matched to their corresponding flow values in the tra Y tr and tra Y te traffic
flows. We will then train machine learning algorithms with the Dataframe data
corresponding to the tra X tr and tra Y tr variables and then test the algorithms
with the Dataframe data corresponding to the tra X te and tra Y te variables.

6.1 Machine Learning Regression Models

The traffic flow data in the y train and y test sets are all continuous values and
as such, machine learning regression models will be used to make predictions on
the data. The regression models which will be used here include: Support Vector
Regressor (SVR), Linear Regressor, Decision Tree Regressor, Random Forest Re-
gressor, Gradient Boosting Regressor, K-Neighbors Regressor, XGBoost Regressor,
and Deep Neural Multilayer Perceptron (MLP) regressor. After training and testing,
performance evaluation metrics such as Mean Squared Error (MSE), Mean Absolute
Error (MAE), R-squared (R²), Explained Variance Score (EVS), Median Absolute
Error (MedAE), Max Error metrics were then used to evaluate the performance of
the individual models.

6.1.1 Support Vector Regressor (SVR)

SVR is a machine learning algorithm used for regression tasks. It is a variation of the
Support Vector Machine (SVM) algorithm, which is primarily used for classification.
In SVR, the goal is to find a function that can approximate the mapping from input
features (x) to the target variable (y) while minimizing the prediction error [17].
The main idea is to find a hyperplane in the feature space that best fits the training
data while keeping the errors (also called residuals) within a certain margin.
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Mathematically, the SVR aims to solve the following optimization problem as shown
in [17]:

Minimize:
1

2
||w||2 + C

N∑
i=1

(ξi + ξ∗i )

subject to the following constraints for each training sample:

yi − (wT · xi + b) ≤ ϵ+ ξi

(wT · xi + b)− yi ≤ ϵ+ ξ∗i

where:

• w is a weight vector that defines the hyperplane in the feature space

• b is the bias term (also called the intercept)

• C is a hyperparameter that controls the trade-off between maximizing the
margin and minimizing the error. It is a regularization parameter.

• ξi and ξ∗i are slack variables that allow for some training samples to violate
the margin constraint by a certain amount (ξi and ξ∗i must be non-negative).

• N is the number of training samples.

• ϵ is the size of the margin (also called the tube) within which errors are toler-
ated.

Figure 6.1: Support Vector Regressor

The optimization problem aims to find the best values for w, b, ξi, and ξ∗i such
that the training errors are minimized, and the margin is maximized [17]. The
training samples that fall within the margin or violate the margin constraint will
have non-zero values for ξi and ξ∗i , whereas samples outside the margin will have
ξi = ξ∗i = 0 [17]. Once the optimization problem is solved, the SVR model can be
used to predict the target variable for new input data by computing y = wT · x+ b,
where w is the weight vector and b is the bias term. In practice, the SVR can be
further extended to handle non-linear relationships by using kernel methods, where
the data is implicitly mapped to a higher-dimensional space [17]. This allows the
SVR to handle more complex data distributions and achieve better performance in
regression tasks.
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6.1.2 Linear Regression

Linear regression is a simple and widely used supervised learning algorithm used
for regression tasks. It aims to establish a linear relationship between the input
features and the target output. The basic idea behind linear regression is to find
the best-fitting line that minimizes the sum of the squared differences between the
predicted values and the actual target values [18].
Mathematically, the linear regression model can be represented as: Given a training
dataset with input feature vectors X = {x1, x2, ..., xn} and corresponding target
output values y = {y1, y2, ..., yn}, where xi is the input feature vector of dimension
d and yi is the target output for the i-th sample [18]. The linear regression model
is represented in [18] by the equation:

y = β0 + β1x1 + β2x2 + ...+ βdxd

Here, y is the predicted target output for a given input feature vector x, β0 is
the y-intercept (the value of y when all input features are zero), and β1, β2, ..., βd

are the coefficients corresponding to each input feature [18]. The goal of linear
regression is to find the optimal values for β0, β1, β2, ..., βd that minimize the sum
of the squared differences between the predicted values and the actual target values
[18]. This optimization process is typically done using the method of least squares.
Once the coefficients are determined, the linear regression model can be used to
make predictions on new, unseen data by plugging the input feature values into the
equation.

6.1.3 Decision Tree Regressor

A Decision Tree Regressor is a supervised learning algorithm used for regression
tasks. It works by recursively partitioning the input feature space into subsets and
fitting a simple model (usually a constant value) to each subset [19]. This creates a
tree-like structure where each internal node represents a decision based on a specific
feature, and each leaf node represents a predicted output value.
Given a training dataset with input feature vectors X = {x1, x2, ..., xn} and cor-
responding target output values y = {y1, y2, ..., yn}, where xi is the input feature
vector and yi is the target output for the i-th sample. The Decision Tree Regressor
recursively partitions the feature space by selecting the best feature and a corre-
sponding split point that maximizes the homogeneity (reduction in variance) of the
target output values within each subset [20]. At each internal node, a decision is
made based on a specific feature and its split point. If a data point satisfies the
condition, it moves to the left child node; otherwise, it moves to the right child
node.
The recursive partitioning process continues until a stopping criterion is met, such
as reaching a maximum tree depth or having a minimum number of samples in each
leaf node [20]. At each leaf node, the predicted output value is determined based on
the target output values of the training samples within that node. For regression
tasks, the predicted value is typically the mean (or another summary statistic) of the
target output values in the leaf node [20]. To make predictions on new, unseen data,
the input feature vector is traversed down the decision tree, and the final predicted
value is obtained from the corresponding leaf node.
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Decision Tree Regressors are interpretable, easy to visualize, and can handle both
numerical and categorical features. However, they can be sensitive to small changes
in the data and may lead to overfitting, especially if the tree becomes too deep [19].
To address this, ensemble methods like Random Forest and Gradient Boosting are
often used to combine multiple decision trees and improve predictive performance
while reducing overfitting.

6.1.4 Random Forest Regressor

The Random Forest Regressor is an ensemble learning algorithm used for regression
tasks. It builds multiple decision trees and combines their predictions to create a
more accurate and robust regression model [21]. The mathematical formulation of
the Random Forest Regressor involves the aggregation of individual decision tree
predictions to make the final prediction.
Given a training dataset with input feature vectors X = {x1, x2, ..., xn} and cor-
responding target output values y = {y1, y2, ..., yn}, where xi is the input feature
vector and yi is the target output for the i-th sample. Random Forest creates an en-
semble of decision trees. To build each tree in the forest, it uses a random subset of
the training data (sampling with replacement) and a random subset of the features
(sampling without replacement) [21]. These random selections introduce diversity
among the trees.
Each decision tree in the Random Forest is grown using the recursive partitioning
process of the Decision Tree Regressor. At each internal node of a tree, a decision
is made based on a randomly selected feature and split point that maximizes the
homogeneity of the target output values within each subset [21]. The predictions
from each tree in the forest are combined to obtain the final prediction. For regres-
sion tasks, the most common method is to take the average (or another summary
statistic) of the predicted values from all the trees.
Mathematically, the final prediction of the Random Forest Regressor can be repre-
sented as in [21] by:

Ffinal(x) =
1

M

M∑
m=1

Fm(x)

Where Ffinal(x) is the final predicted value for the input feature vector x, Fm(x) is
the prediction from the m-th decision tree in the forest for the input feature vector
x, and M is the total number of decision trees in the Random Forest.
The averaging of predictions from multiple trees helps in reducing the variance and
improving the generalization of the model. Random Forest Regressors are robust
to outliers and noisy data, and they can handle both numerical and categorical
features [21]. They are also less prone to overfitting compared to a single decision
tree. However, Random Forests can be computationally expensive and may require
tuning of hyperparameters, such as the number of trees in the forest, to achieve
optimal performance [21]. Despite this, Random Forest Regressors are widely used
and are known for their high accuracy and versatility in various regression tasks.

6.1.5 Gradient Boosting Regressor

Gradient Boosting Regressor is an ensemble learning algorithm used for regression
tasks. It combines multiple weak learners sequentially to create a strong predic-
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tive model. The mathematical formulation of Gradient Boosting Regressor involves
optimization of a loss function with respect to the ensemble of weak learners [22].
Given a training dataset with input feature vectors X = {x1, x2, ..., xn} and cor-
responding target output values y = {y1, y2, ..., yn}, where xi is the input feature
vector and yi is the target output for the i-th sample. The initial prediction, F0(x),
is usually set to the average of all target output values in the training dataset, i.e.,
F0(x) =

1
n

∑n
i=1 yi [22]. In each iteration m, a new weak learner, hm(x), is trained

to fit the negative gradient of the loss function, L(y, Fm−1(x)), with respect to the
current prediction, Fm−1(x). This is known as the residual error [22].
The objective is to find hm(x) that minimizes the following loss function [22]:

hm(x) = argmin
h

n∑
i=1

L(yi, Fm−1(xi) + h(xi))

Common loss functions used in Gradient Boosting Regressor are Mean Squared
Error (MSE) and Mean Absolute Error (MAE). Once hm(x) is determined, the
weak learner’s output is added to the current prediction, and the model is updated
[22]:

Fm(x) = Fm−1(x) + η · hm(x)

Here, η is the learning rate, which is a hyperparameter that controls the step size
of each update. It prevents overfitting and helps in better convergence. The above
steps are repeated for a fixed number of iterations (trees) or until a stopping criterion
is met. The final prediction of the Gradient Boosting Regressor is the sum of all the
weak learners’ predictions [22]:

Ffinal(x) = F0(x) +
M∑

m=1

η · hm(x)

Gradient Boosting Regressor effectively combines the predictions of multiple weak
learners, where each weak learner corrects the errors made by its predecessors. This
iterative process leads to a more accurate and powerful predictive model, which is ca-
pable of capturing complex relationships in the data. However, the main challenge
with Gradient Boosting Regressor lies in hyperparameter tuning, as an improper
choice of parameters can lead to overfitting or slow convergence [22]. Nonetheless,
Gradient Boosting Regressor is widely used and is considered one of the most pow-
erful and effective regression algorithms.

6.1.6 K-Neighbors Regressor

The K-Neighbors Regressor is a supervised learning algorithm used for regression
tasks. It works based on the principle of finding the k nearest neighbors to a given
data point in the feature space and then using their target output values to predict
the target output value for the new data point [20]. The mathematical formulation
of the K-Neighbors Regressor involves calculating the average (or weighted average)
of the target output values of the k nearest neighbors.
Given a training dataset with input feature vectors X = {x1, x2, ..., xn} and cor-
responding target output values y = {y1, y2, ..., yn}, where xi is the input feature
vector and yi is the target output for the i-th sample. For a new data point xnew,
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the K-Neighbors Regressor finds the k nearest neighbors to xnew from the training
dataset [20]. The distance metric used (e.g., Euclidean distance) determines the
notion of “closeness.” The predicted target output value for xnew, denoted as ypred,
is calculated by taking the average (or weighted average) of the target output values
of the k nearest neighbors [20].
Mathematically, the prediction for xnew using the K-Neighbors Regressor can be
represented in [20] as:

ypred =
1

k

k∑
i=1

yi

Alternatively, if weighted averaging is used, the prediction can be represented as:

ypred =

∑k
i=1wi · yi∑k

i=1 wi

where ypred is the predicted target output value for the new data point xnew, yi
is the target output value of the i-th neighbor, k is the number of neighbors (a
hyperparameter) used in the prediction, and wi is the weight assigned to the i-th
neighbor (used in weighted averaging, typically based on the distance or similarity)
[20].
The K-Neighbors Regressor is a non-parametric algorithm and can be sensitive to the
choice of k. A small k value may lead to noisy predictions, while a large k value may
result in overly smooth predictions, especially in regions with varying densities of
training data [20]. Properly choosing k and selecting an appropriate distance metric
are important aspects of using the K-Neighbors Regressor effectively. Additionally,
it is worth noting that the K-Neighbors Regressor can become computationally
expensive as the size of the training dataset grows.

6.1.7 XGBoost Regressor

XGBoost (Extreme Gradient Boosting) Regressor is an ensemble learning algorithm
used for regression tasks. It is an advanced version of Gradient Boosting that intro-
duces regularization and parallel processing, making it highly efficient and effective
[23]. The mathematical formulation of the XGBoost Regressor involves optimiz-
ing a loss function with respect to an ensemble of weak learners and employing
regularization terms to control model complexity.
Given a training dataset with input feature vectors X = {x1, x2, ..., xn} and cor-
responding target output values y = {y1, y2, ..., yn}, where xi is the input feature
vector and yi is the target output for the i-th sample. XGBoost starts with an
initial prediction, F0(x), typically set to the average of all target output values in
the training dataset, i.e., F0(x) =

1
n

∑n
i=1 yi [23].

XGBoost builds multiple weak learners sequentially. At each iteration m, it adds
a new decision tree hm(x) to correct the errors made by the previous ensemble of
decision trees [23]. The goal is to minimize a loss function, L(y, Fm−1(x) + hm(x)),
which measures the discrepancy between the actual target output y and the current
prediction Fm−1(x) + hm(x) [23]. XGBoost uses gradient descent optimization to
find the best weak learner hm(x) that reduces the loss function [23]. Additionally,
it employs a regularization term to control the complexity of the model and prevent
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overfitting. The regularization term consists of two parts: a L1 regularization term
(Lasso regularization) and a L2 regularization term (Ridge regularization) [23].
The objective function to be minimized at each iteration m is given by [23] as:

Objectivem =
n∑

i=1

L(yi, Fm−1(xi) + hm(xi)) + Ω(hm)

Here, Ω(hm) represents the regularization term for the m-th weak learner. The weak
learner hm(x) is added to the ensemble with a learning rate η, which controls the
contribution of each tree to the final prediction. The update rule is as follows [23]:

Fm(x) = Fm−1(x) + η · hm(x)

The above steps are repeated for a fixed number of iterations (trees) or until a
stopping criterion is met. The final prediction of the XGBoost Regressor is the sum
of all the weak learners’ predictions [23]:

Ffinal(x) = F0(x) +
M∑

m=1

η · hm(x)

Where:

• Ffinal(x) is the final predicted value for the input feature vector x.

• Fm(x) is the prediction from the m-th weak learner (decision tree) for the
input feature vector x.

• M is the total number of weak learners (trees) in the XGBoost Regressor.

• η is the learning rate, a hyperparameter that controls the contribution of each
tree to the final prediction.

• Ω(hm) is the regularization term for the m-th weak learner.

XGBoost Regressor is known for its high accuracy, efficiency, and robustness in
various regression tasks. Its ability to handle large-scale datasets and incorporate
regularization techniques makes it a popular choice for many real-world applications.

6.1.8 Deep Neural Multilayer Perceptron (MLP) regressor

The Deep Neural Multilayer Perceptron (MLP) Regressor is a supervised learning
algorithm used for regression tasks. It is a type of artificial neural network that
consists of multiple layers of interconnected neurons. The mathematical formulation
of the Deep Neural MLP Regressor involves the forward pass, where the input data
is propagated through the network to make predictions, and the backpropagation
algorithm, which is used to update the model parameters during the training process
[24].
Given a training dataset with input feature vectors X = {x1, x2, ..., xn} and cor-
responding target output values y = {y1, y2, ..., yn}, where xi is the input feature
vector and yi is the target output for the i-th sample. The Deep Neural MLP Re-
gressor consists of an input layer, one or more hidden layers, and an output layer.
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Each layer contains a set of neurons (nodes), and the neurons are connected through
weighted edges. [24]
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During the forward pass, the input feature vector xi is fed into the input layer,
and its values are propagated through the network layer by layer. At each neuron,
the input is linearly combined with the neuron’s weights and bias, and then passed
through an activation function to introduce non-linearity. The forward pass of the
l-th hidden layer can be represented mathematically in [24] as:

z(l) = W (l) · a(l−1) + b(l)

a(l) = activation(z(l))

Where:

• z(l) is the linear combination of inputs in the l-th layer.

• W (l) is the weight matrix for the l-th layer.

• a(l−1) is the output (activation) of the previous layer.

• b(l) is the bias vector for the l-th layer.

• a(l) is the output (activation) of the l-th layer after passing through the acti-
vation function.

The forward pass continues until the output layer is reached, and the final predicted
value ypred for the input feature vector xi is obtained from the output layer. Dur-
ing the training process, the model’s parameters (weights and biases) are initialized
randomly. The backpropagation algorithm is used to update these parameters it-
eratively to minimize a loss function (e.g., Mean Squared Error or Mean Absolute
Error) that measures the discrepancy between the predicted values and the actual
target output values [24]. The backpropagation algorithm involves computing the
gradients of the loss function with respect to the model parameters and using these
gradients to update the parameters using optimization techniques like stochastic
gradient descent (SGD) or its variants [24]. The training process continues for a
fixed number of iterations (epochs), or until the model converges to a satisfactory
level.
The Deep Neural MLP Regressor is capable of learning complex relationships in
the data and can handle both numerical and categorical features. However, it re-
quires careful tuning of hyperparameters, such as the number of hidden layers, the
number of neurons in each layer, the activation functions, and the learning rate, to
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achieve optimal performance and avoid overfitting [24]. Deep Neural MLP Regres-
sors are widely used in various applications, especially when dealing with large and
complex datasets that require high representational power and non-linear mapping
capabilities.

6.2 Performance Evaluation

After training and testing our flow data, it is necessary to evaluate the performance
of the models on the dataset. Because the target variable is continuous, metrics
for continuous data points will be used to evaluate the performance of the regressor
models. These metrics include: Mean Squared Error (MSE), Mean Absolute Error
(MAE), R-squared (R²), Explained Variance Score (EVS), Median Absolute Error
(MedAE), and Max Error metrics.

6.2.1 Mean Squared Error (MSE):

Measures the average squared difference between the predicted values and the actual
target values in the dataset. Mathematically, the Mean Squared Error is calculated
as:

MSE =
1

n

n∑
i=1

(yi − F (xi))
2

where yi represents the true target output value, and F (xi) represents the predicted
output value for the i-th sample [20]. The squared difference (yi − F (xi))

2 is com-
puted for each sample, and then the average of these squared differences is taken
by summing them up and dividing by the total number of samples n. The MSE
penalizes larger prediction errors more heavily, as it squares the differences. This
makes it sensitive to outliers, meaning that large errors have a significant impact on
the overall score. [20]

6.2.2 Mean Absolute Error (MAE):

Like MSE, also measures the performance of a regression model by quantifying the
difference between the predicted values and the actual target values in the dataset.
However, instead of squaring the differences, MAE takes the absolute value of the
differences. Mathematically, the Mean Absolute Error is calculated as follows: Given
a dataset with n samples, where yi is the actual target output value and F (xi) is
the predicted output value for the i-th sample:

MAE =
1

n

n∑
i=1

|yi − F (xi)|

where yi represents the true target output value, and F (xi) represents the predicted
output value for the i-th sample [20]. The absolute difference |yi−F (xi)| is computed
for each sample, and then the average of these absolute differences is taken by
summing them up and dividing by the total number of samples n. The MAE is less
sensitive to outliers compared to the MSE because it does not square the differences.
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As a result, large prediction errors do not have as significant an impact on the overall
score as they do in the MSE. [20]

6.2.3 R-squared (R²):

Also known as the coefficient of determination, is a statistical measure used to
evaluate the performance of a regression model. It provides information about how
well the model fits the data points and explains the variability of the target variable
around its mean. Mathematically, given a dataset with n samples, where yi is the
actual target output value, and ŷi is the predicted output value by the model for
the i-th sample, the mean of the actual target values is denoted as ȳ:

ȳ =
1

n

n∑
i=1

yi

Then, the total sum of squares (TSS) is calculated, representing the total variability
of the target variable around its mean [18]:

TSS =
n∑

i=1

(yi − ȳ)2

Next, the residual sum of squares (RSS) is computed, representing the variability
that is not explained by the model [18]:

RSS =
n∑

i=1

(yi − ŷi)
2

Finally, the R-squared value is obtained as the ratio of explained variability to total
variability [18]:

R2 = 1− RSS

TSS

The R-squared value ranges from 0 to 1. A value closer to 1 indicates a better fit
of the model to the data, meaning the model can explain a larger proportion of the
variability in the target variable. Conversely, a value closer to 0 suggests that the
model is not a good fit to the data, and it fails to explain much of the variability
[18].

6.2.4 Explained Variance Score (EVS):

It is a performance metric used to evaluate the goodness of fit of a regression model,
particularly in cases where the target variable has significant variance [25]. EVS
quantifies the proportion of variance in the target variable that is explained by the
regression model [25]. Given a dataset with n samples, where yi is the actual target
output value and ŷi is the predicted output value by the model for the i-th sample,
the mean of the actual target values is denoted as ȳ:

ȳ =
1

n

n∑
i=1

yi
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The total sum of squares (TSS) represents the total variance of the target variable
around its mean:

TSS =
n∑

i=1

(yi − ȳ)2

The residual sum of squares (RSS) represents the unexplained variance of the target
variable by the model:

RSS =
n∑

i=1

(yi − ŷi)
2

Finally, the Explained Variance Score is obtained as the ratio of explained variance
to total variance [25]:

EVS = 1− RSS

TSS
EVS is just like R2. However, EVS ranges from negative infinity to 1. A value of
1 indicates that the model perfectly explains all the variance in the target variable,
while values close to 0 or negative values suggest that the model provides little or
no improvement over a constant baseline model. [25] The Explained Variance Score
can be useful in situations where the variance of the target variable is significant, as
it directly measures how much of that variance is captured by the model.

6.2.5 Median Absolute Error (MedAE):

is a statistical measure used to evaluate the performance of regression models, par-
ticularly in cases where the data may contain outliers. It is a robust metric that
is less sensitive to extreme values compared to mean-based metrics such as Mean
Squared Error (MSE) or Mean Absolute Error (MAE). MedAE is calculated as the
median of the absolute differences between the predicted values and the actual tar-
get values. Given a dataset with n samples, where yi is the actual target output
value, and ŷi is the predicted output value by the model for the i-th sample:

MedAE = median(|y1 − ŷ1|, |y2 − ŷ2|, ..., |yn − ŷn|)
The Median Absolute Error measures the typical magnitude of the prediction er-
rors. It provides a more robust estimate of the error compared to the mean-based
metrics, as it is less influenced by the presence of outliers or extreme errors. When
comparing regression models, a lower value of MedAE indicates a better fit, meaning
the model’s predictions are, on average, closer to the true target values.
The choice of using MedAE as an evaluation metric depends on the specific char-
acteristics of the data and the requirements of the problem. If the data contains
outliers or extreme values, or if robustness against outliers is a priority, MedAE can
be a more appropriate choice than MSE or MAE. However, MedAE may not be as
widely used or as easy to interpret as MSE and MAE in some contexts.

6.2.6 Max Error:

is a statistical metric used to evaluate the performance of a regression model. It
measures the maximum absolute difference between the predicted values and the
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actual target values in the dataset. Max Error provides an indication of the worst-
case prediction error made by the model. Mathematically, given a dataset with
n samples, where yi is the actual target output value and F (xi) is the predicted
output value by the model for the i-th sample, the absolute difference |yi − F (xi)|
is computed for each sample. The Max Error is then obtained as the maximum of
these absolute differences:

Max Error = max(|y1 − F (x1)|, |y2 − F (x2)|, ..., |yn − F (xn)|)
In other words, the Max Error represents the largest absolute difference between
any predicted value and the corresponding actual target value in the dataset. It
identifies the most significant prediction error made by the model.

6.2.7 Metric Results

The metric results obtained from the dataset is shown in the table below (table 6.1).

Regression Models MSE MAE R² EVS MedAE Max Error
Support Vector 0.00227 0.03715 0.94562 0.94642 0.03092 0.34232
Linear Regressor 0.00206 0.03086 0.95060 0.95061 0.02127 0.48601
Decision Tree 0.00282 0.03528 0.93249 0.93250 0.02242 0.47968
Random Forest 0.00144 0.02514 0.96566 0.96568 0.01641 0.37741
Gradient Boosting 0.00174 0.02852 0.95834 0.95835 0.01931 0.45196
K-Neighbors 0.00227 0.03097 0.94579 0.94611 0.01887 0.40112
XGBoost 0.00140 0.02540 0.96650 0.96651 0.01717 0.34567
MLP regressor 0.00142 0.02630 0.96594 0.96603 0.01859 0.33641

Table 6.1: Performance of the Regression Models

Plotting the performance of the models gives the graphs shown below (6.2).
Analyzing the results in table 6.1 and figure 6.2 shows that XGBoost regressor had
the highest performance since it had the lowest MSE, MAE, MedAE, and Max
Error and the highest R2 and EVS. Even though Random Forest regressor had
an equivalent performance to XGBoost Regressor, Random Forest regressor had
slightly lower Max Error. Nonetheless, both had comparable similar performance
and as such is the highest performing models in all the models. Decision Tree, SVR,
and Linear Regressor were the lowest performing models with Decision having the
highest MSE, SVR having the highest MAE and MedAE.
To create an overall ranking, we might consider assigning a weighted score to each
model based on their performance across all metrics. We can then sum up these
weighted scores to obtain a comprehensive ranking. The weights will reflect the
relative importance of each metric.
For example, if you consider all six metrics (MSE, MAE, R², EVS, MedAE, Max
Error), you could assign equal weights for simplicity:

Overall Score = wMSE×RankMSE+wMAE×RankMAE+wR²×RankR²+wEVS×RankEVS

+wMedAE × RankMedAE + wMax Error × RankMax Error

However, assuming equal weights for all the metrics (i.e., wMSE = wMAE = wR² =
wEVS = wMedAE = wMax Error = 1), the overall ranking can be calculated by summing
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Figure 6.2: Models Performance

up the individual ranks for each model.

Support Vector: 7 + 8 + 7 + 6 + 8 + 2 = 38
Linear Regressor: 5 + 5 + 5 + 5 + 6 + 8 = 32
Decision Tree: 8 + 7 + 8 + 8 + 7 + 7 = 42
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Random Forest: 3 + 1 + 3 + 3 + 1 + 4 = 15
Gradient Boosting: 4 + 4 + 4 + 4 + 5 + 6 = 27
K-Neighbors: 6 + 6 + 5 + 7 + 4 + 5 = 33
XGBoost: 1 + 2 + 1 + 1 + 2 + 3 = 10
MLP Regressor: 2 + 3 + 2 + 2 + 3 + 1 = 13

The models are ranked based on their total sum of ranks. Lower total sum indi-
cates a better overall ranking and a higher total sum indicate worst overall ranking.
Therefore, based on these assumptions, the overall ranking from best to worst with
respect to this network flow data is:

1. XGBoost

2. MLP Regressor

3. Random Forest

4. Gradient Boosting

5. Linear Regressor

6. K-Neighbors

7. Support Vector

8. Decision Tree

The actual weights might differ based on the importance of each metric to the
specific use case. One can therefore adjust the weights accordingly in other scenarios
if certain metrics are more critical than others for their application.
Overall, all the algorithms performed very well which shows that machine learning
regression models are very ideal for network flow volume predictions.
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Chapter 7

Conclusion

This works gives a comprehensive analysis of the spatio-temporal traffic volume
dataset. All the fundamental questions that was posed earlier on in the abstract
has been successfully answered. Statistical inferences and descriptive analysis have
been made on the network’s data flow; the Routine Matrix of the Network was
successfully obtained from the Adjacency Matrix; Regularization Techniques were
employed to solve the singularity or ill posed nature of the network in the Traffic
Matrix Estimation; and finally, Machine Learning regression models were applied to
make predictions on the Network’s flow volume and it was realised that XGBoost,
MLP Regressor, and Random Forest Regressor performed best.
Knowledge or concepts in this paper can be practically applied to analyze other
network flow data. Future works include applying Methods Based on Poisson Models
and Methods Based on Entropy Minimization to estimating the network’s traffic
flow volume and then comparing and contrasting the results we will obtain to the
results obtained here using Methods Based on Least-Squares and Gaussian Models.
Nonetheless, we acknowledge the original source of the dataset [6], Dr. Liang Zhao
(Emory University), and we do cherish the time and energy used to obtain this
dataset.
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