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Abstract

Machine learning (ML) for skin lesion identification employs algorithms, notably
convolutional neural networks (CNNs), to categorize and detect skin lesions, aiming
to enhance early detection and treatment of skin cancer. CNNs, trained on diverse
lesion images, excel in learning features for classification, often rivaling dermatolo-
gists’ accuracy. Recent studies demonstrate CNNs’ effectiveness, achieving accuracy
comparable to or surpassing dermatologists. Ongoing research focuses on addressing
challenges like dataset diversity and robust evaluation metrics. Despite obstacles,
ML’s potential to enhance early melanoma detection remains significant, promising
to save lives through improved diagnosis and treatment. Notably, our research ex-
plored a hybrid approach, combining ResNet50v2 and InceptionV3 models trained
on GAN-generated data. This innovative strategy achieved a notable 77% accu-
racy, showcasing promising results in advancing muticlass skin lesion identification
accuracy.
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Chapter 1

Introduction

Skin cancer is the most common type of cancer, with over 5 million instances discov-
ered each year in the USA alone. Melanoma is the most lethal type of skin cancer,
accounting for the majority of fatalities. For melanoma treatment to be successful,
early detection is essential, as it is highly curable when caught in the early stages.
However, the early detection of melanoma can be challenging, as it often appears as
a small, dark lesion on the skin that may be easily overlooked.
ML algorithms can help with the early detection of melanoma by analyzing images
of skin lesions and classifying them as benign or malignant. To understand the
characteristics of many kinds of skin lesions, including color, shape, and texture,
these algorithms are able to be trained on enormous datasets of tagged photos of
skin lesions. Once trained, the algorithms can be used to classify new images of skin
lesions and predict whether they are within the 7 classes of lesions. The seven classes
are: Melanocytic nevi, also known as ”moles,” are benign (non-cancerous) growths
on the skin that are usually brown or black in color. They can form anywhere on
the outermost layer of skin and are brought on by an overabundance of melanocytes,
the cells that produce color.
Melanocytes, or the cells that produce pigment, are the source of melanoma, a type
of skin cancer. A new mole may develop or an existing mole may change as a
result. Melanoma is more serious than other forms of skin cancer because, if it is
not detected early, It has the potential for transmission to other bodily parts.
Benign keratosis-like lesions are noncancerous growths on the skin that may have a
waxy or scaly appearance. They are usually caused by sun exposure and can appear
on areas of skin like the cheeks, ears, or backs of the hands.
Skin cancer of the most prevalent kind is basal cell carcinoma (BCC). It typically
manifests as a little, fleshy nodule or lump that is frequently pearly or translucent.
It can also take the form of a pink or red, flat, scaly region. BCCs rarely invade other
bodily regions and have a moderate rate of growth. Vascular lesions are growths or
marks on the skin that involve blood vessels. They can be benign or cancerous and
can include angiomas, hemangiomas (benign tumors of blood vessels), and Kaposi
sarcoma (a cancer of the blood vessels). A dermatofibroma is a tiny, hard, elevated
bump on the skin that is benign (non-cancerous). They can appear anywhere on the
body and are often brown or red in color, although the legs are where they are most
frequently encountered. An overgrowth of fibrous tissue causes them and are not
cancerous.Now the goal would be to recognize which one falls under which class.To
achieve that a sizeable dataset is required. HAM10000 dataset has a sizeable amount
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of images for us to work with and It may contribute to raising the precision and
dependability of the Machine Learning algorithms used in training and assessment.

1.1 Research Problem

One of the main research problems in skin lesion detection through machine learning
(ML) is the limited availability of high-quality, labeled datasets of skin lesion images.
In order to train and evaluate ML algorithms for skin lesion detection, large datasets
of images of skin lesions, along with corresponding labels indicating whether the
lesion is benign or malignant, are needed. However, obtaining such datasets can be
challenging, as the process of collecting, annotating, and verifying images of skin
lesions is time-consuming and costly.
Another problem is the variability of the lesion in the images. The lesion may appear
in different lighting conditions, different angles and different skin types which can
make it difficult to generalize the model.
Additionally, there is a lack of robust and reliable evaluation metrics for skin lesion
detection through ML. As there can be a high variability in lesion appearance, eval-
uating the performance of ML algorithms can be challenging. Developing accurate
evaluation metrics that take into account the different factors that can affect the
appearance of skin lesions, such as lighting and skin color, is crucial for assessing
the performance of ML algorithms for skin lesion detection.
The inter and intra-observer variability of dermatologist’s diagnosis of lesions is
another important factor that makes the problem even harder to solve.
Another problem is the risk of overdiagnosis and the consequent unnecessary biopsy
when using the model, as well as the risk of missing certain types of skin lesions
that the model have not been trained on.
Finally, the lack of awareness among the general population and lack of accessibility
to medical services in some countries can make it difficult to implement the solution
and reach the target population.

1.2 Research Objectives

The main research objective of skin lesion detection through machine learning (ML)
is to develop accurate and reliable systems that can aid in the early detection and
diagnosis.
Develop artificial intelligence algorithms that can accurately catagorize skin lesion
photos into the seven groups. Now the goal would be to recognize which one falls
under which class. That requires a huge dataset to be accomplished. We can work
with a sizable number of photos from the HAM10000 dataset, which can assist ML
algorithms for training and evaluation to become more accurate and reliable.
Another objective is to address the problem of inter and intra-observer variability
of dermatologist’s diagnosis by creating models that can be used to supplement the
human expert, also to address the problem of overdiagnosis and the risk of missing
certain types of skin lesions by developing models that can be fine-tuned for specific
populations and cases which can be achieved by developing models that can be easily
and cheaply implemented in the field, and increase awareness among the general
population and medical staff about the benefits and limitations of the ML models.
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Our model can also Assist in the reduction of unnecessary biopsies and surgeries by
providing an accurate and efficient diagnosis of skin lesions. This research is done
to aid Doctors in making diagnosis and to farther improve the treatment protocol
for patients because the patient feels their ailment is not being taken seriously when
doctors dismiss their skin lesions as benign whereas a quick machine test could easily
assure the patient that the lesion is indeed benign and not anything to be afraid
of. This takes the fear out of the patient and also prevents farther consultations.
General Practitioners tend to make the wrong call when it comes to skin lesions
because GP are not well versed in matters of skin lesion compared to other field
and its better to have consultation of a dermatologist. The machine could proxy a
dermatologist in making judgement.
The model is for aiding dermatologists further confirm his or her prior diagnosis.
The model would be there side by side and an image of the patient’s skin legion
would be fed to the model and the model would be used to predict what class of
skin lesion it is.
The objective is solely to make sure our dermatologists have an easier time mak-
ing diagnosis and if the diagnosis does not match then they can consult to make
sure their diagnosis is right or wrong. This protocol could save lives and prevent
malpractise.
In summary, the research objective of skin lesion detection through ML is to create
systems that can correctly categorize pictures of skin lesions, improve the accuracy,
make it accessible, reliable and easy to implement.
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Chapter 2

Literature Review

Recently, in the field of medicine, we have seen the successful usage of machine
learning. One such instance is the usage of CNN when it comes to feature extraction
from images of various kinds of lesions and the determination of their classes. Many
studies have demonstrated the effectiveness of using ML algorithms. The work of
Han et al. (2018)[2], on the automated skin lesion classification tool, “ModelDerm”
is quite notable.
A paper on deep learning for skin lesion classification” by S. Benyahia, B. Meftah,
and O. Lézoray (2022)[11] showcased a different approach where features of skin
lesions were extracted from pre-trained CNN models and then introduced those
characteristics into several classifiers to be used again for extraction. To assess
the classification, seven pre-trained CNN architectures, and twenty-four machine
learning classifiers were employed. ISIC 2019 and PH2 are two distinct datasets
that are used.
A paper by Dhivyaa, C. R., et al.(2020)[8] decided to use decision trees and random
forest algorithms to improve the skin image classification’s performance and perform
a side-by-side comparison with additional datasets. High-resolution feature maps
created using the suggested technique can aid in maintaining the image’s spatial
information. The researchers compared it to two distinct data sets and discovered
that the technique was more accurate than earlier methods.
Recently a paper by [14] deals with how to eliminate hair features and show details
in dermoscopy images, this model devised a feasible pre-processing method that
comprises dilatation and pooling layers. The feature extractor for the processed
images was then a deep residual neural network. A deep learning methodology [5]
for the identification and categorization of melanoma within dermoscopic images.
To specifically extract complex information from the photos, a deep residual neural
network was used, while fisher vectors were employed to encode the images for
analysis and classification purposes. This approach was chosen due to its efficacy in
capturing nuanced characteristics of melanoma in dermatological images.
A paper by Shetty, B., Fernandes, R., Rodrigues, A. P., Chengoden, R., Bhat-
tacharya, S., and Lakshmanna, K. (2022)[13] used k-fold cross-validation to compare
the efficacy of CNN with other machine learning methods. Convolutional neural net-
works, which are used in the suggested work, deliver better accuracy, according to
the researchers, than other machine learning techniques. With the CNN model,
accuracy of 95.18% was attained in the suggested system. The suggested research
aids in the early detection of seven different types of skin diseases, which may then
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be verified and treated effectively by medical professionals.
A research proposes a completely automated CAD system built on the deep learn-
ing architecture by Muhammad Attique Khan, Tallha Akram, Yu-Dong Zhang, and
Muhammad Sharif (2020)[10]. The decorrelation formulation technique is used in
the ISBI2016,2017 datasets. Later, the DenseNet deep model is given the segmented
images as input for feature extraction. The average pool and fully connected layers’
features are extracted using the suggested entropy-controlled least square SVM and
merged. The feature selection block down-samples the generated vectors. Three
datasets—ISBI2016, ISBI2017, and HAM10000—are used for validation, with accu-
racy levels of 96.3%, 94.8%, and 88.5%, respectively.
In the realm of assessing human organ disorders, a diverse array of imaging modali-
ties is routinely employed. Magnetic resonance imaging (MRI) [4], positron emission
tomography (PET) [6], and X-rays [7] stand as prominent techniques. Additionally,
computed tomography (CT) [12][9] has been extensively utilized in diagnosing organ-
related ailments. In the context of dermatological assessments, dermatoscopy image
analysis, clinical screening, and various other methodologies have been historically
pivotal in visually diagnosing and evaluating skin lesions.
One of the most commonly used approaches in the literature is the usage of CNN
on a dataset of skin lesions and then the trained CNN to classify new images of skin
lesions. Several studies have used this approach and have reported high accuracy
rates, with some achieving accuracy rates comparable to or even better than those
of dermatologists.
Another widely used method is to use image processing and computer vision tech-
niques to extract features from skin lesion images and then use these features to
train a classifier such as SVM. Many studies have proposed such methods and have
achieved promising results. These algorithms have also been shown to be effective
for skin lesion detection.
One important factor that has been identified in the literature is the need for large
and diverse datasets of skin lesion images for training and evaluating ML algorithms.
Many studies have reported the use of small datasets, which may not be represen-
tative of the true population of skin lesions and therefore may not generalize well
to new cases.
Another important factor identified in the literature is the need for robust and
reliable evaluation metrics for assessing the performance of ML algorithms for skin
lesion detection. Different evaluation metrics have been proposed in the literature,
but there is still a lack of consensus on which metric is the most appropriate for this
task.
In recent years, there have been a lot of advances and breakthroughs in the field
of computer vision, deep learning, and generative models, which were also utilized
in the field of skin lesion detection. Some studies have shown that these methods
have improved the performance of the models, and can also be used to generate
synthetic images of skin lesions, which can help to overcome the problem of limited
availability of labeled datasets.
Overall, the literature suggests that ML algorithms, particularly CNNs, can be effec-
tive for skin lesion detection, with some studies achieving accuracy rates comparable
to or even better than those of dermatologists. However, there are still challenges
to be overcome, such as the need for larger and more diverse datasets for the devel-
opment of robust and reliable evaluation metrics.
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Chapter 3

Methodology and Dataset

Our research embarked upon the burgeoning field of skin lesion identification through
machine learning (ML). Initially, we delineated the challenges, encompassing lim-
ited datasets, variability in lesion appearance, and the absence of robust evaluation
metrics. Our primary aim was to craft systems capable of accurate and reliable
categorization of skin lesions, thereby enhancing accessibility and implementation
ease.
Delving into existing literature, we surveyed recent studies, evaluating the catego-
rized lesions using CNN. This examination substantiated the pivotal role of CNNs
and prompted the acquisition of a substantial dataset, notably the HAM10000,
which underwent meticulous preprocessing to rectify variability in image features
and ensure label accuracy.
Building upon this foundation, we developed a CNN-based model, attuned to the
intricacies of skin lesion characteristics. Training the model involved an emphasis
on differentiating among the seven classes of skin lesions. This stage represents
the culmination of extensive work in data acquisition, preprocessing, and model
development, exhibiting promising strides in inaccurate classification.
In furthering our efforts to bolster dataset robustness, we employed Generative Ad-
versarial Networks (GANs) to augment images of skin lesions within classes that
exhibited limited samples. This augmentation strategy aimed to enhance the diver-
sity and representation of underrepresented classes within the dataset, ensuring a
more balanced and comprehensive training regimen for our models.
Moreover, in our pursuit of refining model performance, we engaged in an extensive
parameter fine-tuning phase. This involved meticulous adjustments and optimiza-
tions aimed at enhancing the learning capabilities and classification accuracy of our
models.
Our exploration extended beyond singular model architectures, encompassing a di-
verse array of models such as ResNet50v2, Vgg19, and ResNet101v2. By employing
multiple models, we sought to discern the nuances in performance and classifica-
tion efficacy across varied architectures, thus gaining deeper insights into the most
suitable models for skin lesion classification tasks. Our research trajectory pivoted
toward addressing diagnostic challenges prevalent in the field. We endeavored to
mitigate inter and intra-observer variability by exploring models complementing hu-
man expertise. Simultaneously, our focus extended to fine-tuning models for specific
demographics, thus ensuring cost-effective implementation in diverse scenarios.
An integral facet encompassed the evolution of evaluation metrics, intricately de-
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signed to encompass varying factors affecting skin lesion appearance. This phase
continues to witness ongoing refinement, striving to develop metrics that compre-
hensively assess model performance vis-à-vis dermatologists’ diagnoses.
Moreover, our efforts transcended theoretical frameworks into real-world impact
assessment. Strategies were formulated to bolster awareness and accessibility among
medical practitioners and the populace, with an aim to reduce unnecessary biopsies
and augment early diagnosis and treatment protocols.
In tandem, we initiated clinical integration trials, positioning the ML model as an
adjunctive diagnostic tool for dermatologists. Early feedback suggests promising
results in reducing diagnostic errors, enhancing efficiency, and potentially averting
instances of malpractice.
Our ongoing investigation extends to analyzing user experiences and patient per-
ceptions, deciphering the societal impact of ML-based diagnosis on patient care
and mental well-being. As our journey progresses, the aim remains resolute – to
streamline dermatologists’ diagnoses, empower patients, and significantly influence
the landscape of skin lesion identification and treatment protocols.

3.1 Deep Learning Workflow

The images of the dataset are firstly resized into 224 by 224 pixels before normalizing
the values between 1 and 0. Normalizing pixel values to the range [0, 1] ensures
consistency in scale across different images. This is important because it allows
the model to learn patterns and features in a uniform manner, regardless of the
original intensity range of the images. Normalizing pixel values to a smaller range
reduces memory requirements, which is crucial for efficient computation. This is
particularly important in scenarios with limited computational resources, such as
when training models on GPUs or edge devices. Many pre-trained models and
architectures, especially those trained on large datasets like ImageNet, expect input
images to have pixel values in the [0, 1] range. Normalizing input in this way allows
for seamless integration with such pre-trained models. After normalizing the data
is split into train, test, and validation. Train being 80% and test being 20%. This
process of splitting is done after careful testing and observation.
During the training phase, each mini-batch of images undergoes random transfor-
mations based on the specified augmentation settings. This process ensures that the
model encounters a diverse set of input variations in each epoch, promoting better
convergence and learning. Such random transformations are Width Shift and Height
Shift, Rotation, Shear, Zoom, horizontal and vertical flip, and fill mode.

Rotation Range (degrees): Randomly rotates the image within the specified
range, introducing variations in orientation, e.g., rotations up to 10 degrees.

Width Shift Range and Height Shift Range: Randomly shifts the image
horizontally and vertically within the specified ranges, simulating variations in object
placement.

Shear Range: Introduces shear transformations to the image, deforming it along
one axis.
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Zoom Range: Randomly zooms into or out of the image, providing scale varia-
tions.

Horizontal and Vertical Flips: Randomly flips the image horizontally and ver-
tically, introducing reflections and augmenting the dataset with mirrored versions.

Fill Mode: Specifies the strategy for filling in newly created pixels during trans-
formations, ensuring a seamless transition in the augmented images.

In pursuit of better accuracy and precision different neural networks are employed
for training. The neural networks are ResNet50V2, VGG16, ResNet101V2, Incep-
tionV3, and hybrids of such models. These models are pre-trained on the imagenet
dataset. The models are then fine-tuned to achieve better results on this particular
dataset. The figure 3.1 is an overview of the whole process.

Figure 3.1: Deep learning workflow
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3.2 GAN Workflow

The classes with fewer images are selected for GAN( generative adversarial Network).
We put all the images belonging to a particular class into one folder and fit them
into the model for training. The training is done by the two classes Generator
and Discriminator. There is a high-level overview of the generator model in figure
3.2. Figure 3.3 is the model architecture for Discriminator. This process is done
separately for each class that requires more samples. After training the generator
model is saved and later used to generate the images for each class individually.

Figure 3.2: Generator Architecture

Figure 3.3: Disriminator Architecture

3.3 Application Workflow

Users begin by uploading dermatoscopic images of skin lesions using the file uploader
widget. The application supports common image formats such as JPG, JPEG, and
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PNG. The uploaded image is then displayed within the application, allowing users
to visually confirm and review the selected skin lesion. A pre-trained skin lesion
classification model is loaded into the application. This model has been trained
on a dataset to recognize different types of skin lesions based on their visual char-
acteristics. The uploaded image undergoes preprocessing steps, including resizing
to a standard size (e.g., 224x224 pixels), to ensure compatibility with the model’s
input requirements. The preprocessed image is passed through the loaded model for
inference. The model predicts the likelihood of different skin lesion types, providing
a probability distribution over the classes. The application displays the predicted
class and the corresponding probability, offering users valuable information about
the potential type of skin lesion present in the uploaded image. The entire workflow
is encapsulated in an intuitive and user-friendly interface created using Streamlit,
making it accessible to healthcare professionals, dermatologists, or anyone interested
in obtaining quick and preliminary assessments of skin lesions. The automated na-
ture of the tool facilitates early detection and aids in decision-making related to
patient care.

Figure 3.4: App workflow
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3.4 Data description

There is a deficiency of high-quality images and diversity in the dataset of der-
matoscopic images that is available. Fortunately, dermatoscopic photos from many
populations obtained through various modalities were used to build HAM10000,
which refers to Humans against Machines. Histopathology verified more than half
of the lesions. There are 10015 pictures in all in the dataset. The courses have been
recognized and assigned labels[3]. The following are the classes: 1) Nevi melanocy-
tocytic 2) Melanoma (mel) 3)Lesions that resemble benign keratosis (bkl) 4) BCC,
or basal cell carcinoma 5) Akiec, or actinic keratoses 6) Lesiones vascular (vas) 7)
Diverticulitis (df).

Figure 3.5: classes of skin lesions

The dataset goes further by identifying each individual by their sex, age, and also
the position of the lesion on their skin. In fact, the data showcases all the traits
necessary to draw correlations among the variables. The graph 3.6 shows how many
males and how many females are there in the dataset.
There are a total of 6705 samples of Melanocytic nevi, 1113 smaples of mel or
Melanoma, 1099 Benign keratosis-like lesions, 514 bcc or Basal cell carcinoma, 327
samples of Actinic keratoses,142 samples of vascular lesions and 115 samples of Der-
matofibroma. The highest number of instances of class within the dataset is 6705
and the lowest being only 142. This imbalance in the dataset is addressed through
the use of GAN, by generating images for classes with lesser instances. The imbal-
ance in the dataset can lead to biased model performance. The model may become
overly influenced by the majority class, resulting in poor prediction performance for
minority classes. Models trained on imbalanced datasets may struggle to generalize
well to new, unseen data. The model may learn patterns that are specific to the ma-
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Figure 3.6: Statistics on Dataset

jority class and fail to recognize important features of minority classes. Accuracy, a
common evaluation metric, can be misleading in the presence of imbalanced classes.
A model that predicts the majority class for all instances may still achieve high
accuracy, even though it provides little to no value in real-world applications. The
dataset also highlights where exactly the lesion is located in figure 3.6. There are
15 total mentioned places of interest, out of which the back has the highest count,
followed by the lower extremity, trunk, upper extremity, abdomen, face, chest, foot,
unknown, neck, scalp, hand, ear, genital, and acral.

3.5 Model Description

A set of models are employed for training over the custom dataset. Each model
has its own set of strengths and weaknesses. The structures and parameters of such
models are highlighted below.

3.6 ResNet50v2

A version of the ResNet architecture called ResNet50v2 was released to help with
the difficulties associated with developing very deep networks of neural networks.
ResNet50v2’s ”50” stands for the number of layers, or more precisely, the depth of
the network. The ”v2” denotes a revised version that enhances the initial ResNet.
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3.6.1 Model Structure

Depth and Layer Configuration: ResNet50v2 is a variant of the ResNet ar-
chitecture, specifically ResNet50, which includes 50 layers. It consists of a series of
residual blocks that contain convolutional layers, batch normalization, ReLU acti-
vations, and shortcut connections (or skip connections). The network architecture
is designed to mitigate the vanishing gradient problem and facilitate the training of
deeper networks.

Figure 3.7: ResNet50v2 model Architecture

Bottleneck Design: ResNet50v2 employs a bottleneck architecture that utilizes
1x1, 3x3, and occasionally 1x1 convolutional layers. This design optimizes compu-
tational efficiency by reducing dimensionality before applying more computationally
expensive operations, allowing for deeper networks with fewer parameters.

3.6.2 Model Parameters

ResNet50v2 has approximately 24.6 million parameters. The bottleneck design,
which includes fewer convolutional filters in the intermediate layers, contributes to
the reduction in parameters compared to deeper ResNet variants like ResNet101 or
ResNet152.

Category Parameters
ResNet50v2 23,564,800
overall model 24,617,479
Trainable parameters 1,052,679
non-trainable 23,564,800

Table 3.1: Resnet50v2 Parameters

3.6.3 Memory usage

Compared to deeper networks like VGG16 or even the original ResNet, ResNet50v2
generally demands less memory due to its relatively shallower depth. While it still
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requires memory for storing intermediate feature maps during training and inference,
the reduced number of layers and parameters compared to deeper architectures can
lead to lower memory consumption.

Type Usage
total memory usage 93.91 MB
Trainable parameters 4.02 MB
non-trainable 89.89 MB

Table 3.2: ResNet50v2 Memory Usage

3.6.4 Model Summary

In summary, this model is a Sequential model with a ResNet50v2 base, followed
by custom layers, including a Dropout layer. It is designed for a classification task
with 7 output classes. The majority of parameters come from the ResNet50v2 layer,
indicating the utilization of a pre-trained model for feature extraction.

3.7 VGG16

The deep convolutional neural network architecture known as VGG16, or Visual
Geometry Group 16, is intended for image classification. The total amount of weight
layers in the network is indicated by the ”16” in VGG16.

3.7.1 Model Structure

Convolutional Layers: The network primarily consists of 3x3 convolutional fil-
ters applied with a stride of 1 and padding of 1 to maintain the spatial dimensions
of the input. These convolutional layers are stacked on top of each other, enabling
the network to learn hierarchical features of increasing complexity.

Pooling Layers: VGG16 incorporates max-pooling layers with a 2x2 window and
stride of 2, reducing spatial dimensions and providing translation invariance to cer-
tain features.

Fully Connected Layers: Following the convolutional layers are three fully con-
nected layers with the last layer producing class probabilities using softmax activa-
tion for classification tasks. There is a brief overview of the said model in figure 3.8

3.7.2 Model Parameters

VGG16 contains approximately 138 million parameters. The convolutional layers
account for the majority of these parameters, especially because of the multiple
layers and the large number of filters in each layer.

14



Figure 3.8: VGG16 model Architecture

Category Parameters
overall model 14,980,935
Trainable parameters 266,247
non-trainable 14,714,688

Table 3.3: VGG16 Parameters

3.7.3 Memory usage

While VGG16 is known for its simplicity in architecture, it demands a considerable
amount of memory due to its depth and a large number of parameters. The repetitive
stacking of convolutional layers increases memory usage, particularly when storing
intermediate feature maps during both training and inference.

Type Usage
total memory usage 57.15 MB
Trainable parameters 1.02 MB
non-trainable 56.13 MB

Table 3.4: VGG16 Memory Usage

3.7.4 Model Summary

In summary, this model is an extended version of VGG16 with additional layers,
potentially fine-tuned for a specific task with 7 output classes. The majority of
the parameters come from the pre-trained VGG16 model, and the model has been
configured with dropout for regularization.
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3.8 ResNet101v2

ResNet101v2 (Residual Network 101 version 2) is a deep convolutional neural net-
work (CNN) architecture that addresses the degradation problem in deep networks.
ResNet101v2 is an extension of the ResNet (Residual Network) architecture, specif-
ically ResNet101, which denotes the depth of the network with 101 layers. The ”v2”
indicates improvements and modifications made over the original ResNet to enhance
performance and training efficiency.

3.8.1 Model Structure

The architecture follows a building block structure featuring residual blocks with
skip connections. These blocks contain a series of convolutional layers, batch nor-
malization, ReLU activations, and shortcut connections, ensuring that the network
can learn more complex features while mitigating the vanishing gradient problem
associated with deeper networks. Additionally, ResNet101v2 employs bottleneck
blocks, where 1x1 convolutions are utilized to reduce dimensionality before applying
3x3 convolutions, optimizing computational efficiency while maintaining represen-
tational capacity as shown in figure 3.9.

Figure 3.9: ResNet101V2 model Architecture

3.8.2 Model Parameters

Deeper networks have more parameters (weights and biases) to store during training
and inference, resulting in increased memory consumption.

Category Parameters
ResNet101v2 20,024,384
overall model 20,290,631
Trainable parameters 266,247
non-trainable 20.024,384

Table 3.5: ResNet101v2 Parameters

3.8.3 Memory usage

ResNet101v2, being a deeper and more complex convolutional neural network, gen-
erally requires more memory compared to shallower networks or earlier versions of
the ResNet architecture, like ResNet50 or ResNet18.
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Type Usage
total memory usage 77.40 MB
Trainable parameters 1.02 MB
non-trainable 76.39 MB

Table 3.6: ResNet101v2 Memory Usage

3.8.4 Model Summary

Overall, ResNet101v2 is a powerful and versatile CNN architecture for image recog-
nition tasks. Its improved accuracy, faster inference speed, and pre-trained weights
make it a valuable tool for researchers and developers alike.

3.9 InceptionV3

Google’s research team created the potent convolutional neural network (CNN) ar-
chitecture known as InceptionV3. This deep learning model is well-known for how
effective it is at classifying images.

3.9.1 Model Structure

Inception Modules: The usage of ”Inception modules,” that are blocks of sev-
eral convolutional layers of various sizes (1x1, 3x3, 5x5) and pooling procedures
concatenated together, is what distinguishes InceptionV3. As a result, the network
can learn and record information at different scales as shown in figure 3.10.

Figure 3.10: InceptionV3 model Architecture

Factorization: InceptionV3 uses factorization to reduce computational complex-
ity. It replaces large convolutions (e.g., 5x5) with a combination of smaller convolu-
tions (e.g., two consecutive 3x3 convolutions) to decrease the number of parameters
and computational cost while retaining expressive power.
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Auxiliary Classifiers: This architecture introduces auxiliary classifiers at inter-
mediate layers during training, aiding in combating the vanishing gradient problem
and providing additional regularization, thus improving the model’s ability to learn
useful representations.

Pre-Trained on Large Datasets: InceptionV3 like many other modern CNN
architectures, was initially trained on large-scale image datasets like ImageNet, en-
abling it to learn a wide range of features useful for various visual recognition tasks.

3.10 ResNet50v2VGG16

We propose an innovative hybrid model that amalgamates the robust features of
two widely acclaimed convolutional neural network architectures, ResNet50V2 and
VGG16. The ResNet50V2, distinguished by its utilization of residual connections,
excels in capturing intricate details while mitigating the vanishing gradient issue.
Concurrently, VGG16, characterized by its deep and homogeneous architecture,
has demonstrated excellence in feature representation. By fusing ResNet50V2 and
VGG16 within a unified framework, our hybrid model aims to harness the distinc-
tive advantages of each architecture. Through a concatenation of feature extraction
layers, the model captures a diverse range of features, offering a more comprehen-
sive representation of input data. Extensive experimentation and evaluation are
conducted to gauge the hybrid model’s performance across diverse tasks. Our find-
ings shed light on the synergistic benefits of combining ResNet50V2 and VGG16,
highlighting the potential for improved classification accuracy and model robustness.
This research contributes to the exploration of hybrid neural network architectures,
offering insights into effective strategies for leveraging the strengths of diverse con-
volutional neural network paradigms.

Figure 3.11: ResNet50v2VGG model Architecture
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ResNet50V2 incorporates residual connections and consists of residual blocks with
skip connections.Introduce VGG16-like blocks (stacks of convolutional layers fol-
lowed by occasional pooling) within ResNet50V2’s structure. Creating a hybrid
model by combining ResNet50V2 with VGG16-like components involves merging
the residual connections of ResNet50V2 with stacks of convolutional layers and oc-
casional pooling layers reminiscent of VGG16’s architecture as shown in figure 3.11.
This integration aims to leverage the depth capabilities of ResNet with certain struc-
tural elements of VGG16 to potentially enhance the model’s feature learning and
representation capabilities.

3.11 ResNet50v2InceptionV3 hybrid

In this study, we propose a novel hybrid model that leverages the distinct strengths of
two state-of-the-art convolutional neural network architectures, ResNet50V2 and In-
ceptionV3. By integrating these models into a unified framework, we aim to exploit
the complementary features and representations learned by each architecture. The
ResNet50V2, known for its residual connections, excels in capturing intricate details
and overcoming vanishing gradient problems, while the InceptionV3, with its incep-
tion modules, excels in efficiently capturing multi-scale features. The hybrid model
amalgamates the unique characteristics of ResNet50V2 and InceptionV3 through a
concatenated feature extraction process, allowing for a more comprehensive and di-
versified representation of the input data. Through extensive experimentation and
evaluation, we assess the performance of this hybrid model across various tasks,
demonstrating its potential to enhance classification accuracy and robustness com-
pared to individual architectures. This research contributes to the exploration of
model fusion strategies, shedding light on the benefits of combining distinct neural
network architectures for improved deep learning outcomes.

Figure 3.12: ResNet50v2Inceptionv3 model Architecture
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Embed specific InceptionV3 modules within ResNet50V2’s residual blocks, possibly
replacing certain convolutional blocks with Inception-like structures.Utilizing the
ResNet50V2 architecture as the foundational backbone while integrating selected
InceptionV3 modules within the ResNet50V2 architecture. The figure 3.12 show-
cases a high level overview of the said model.
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Chapter 4

GAN for Data Augmentation

Two competing neural networks, a generator, and a discriminator, make up a Gen-
erative Adversarial Network (GAN), a kind of machine learning model. Think of it
as a game of cat and mouse, where the generator tries to create realistic data (like
images, music, or even text) that can fool the discriminator, while the discriminator
tries to distinguish real data from the generator’s fakes. In Goodfellow’s tutorial
[1] on Generative Adversarial Networks (GANs) presented at the Neural Informa-
tion Processing Systems (NIPS) conference in 2016 provides valuable insights into
the significance of generative models. Goodfellow elaborates on the workings of
GANs, highlighting their innovative approach compared to other generative models.
The tutorial delves into frontier research areas within the realm of GANs, offering
a comprehensive overview of their potential applications and advancements in the
field of generative modeling. We used Generative Adversarial Networks (GANs) in
the context of GAN augmentation in our study to address class imbalance in our
dataset which comprised seven distinct skin lesion classes. Recognizing the inher-
ent challenge posed by disparate sample sizes across these classes, our approach
involved employing GANs to generate synthetic skin lesion images for underrepre-
sented classes. By doing so, we aimed to equalize the number of samples per class,
enhancing the robustness and balance of our dataset. This innovative use of GAN
augmentation not only mitigated the class imbalance issue but also contributed to
the overall effectiveness of our image classification model in accurately discerning
diverse skin lesion categories.

4.1 Architectural Overview of Generative Adver-

sarial Networks

Generative Adversarial Networks (GANs) represent captivating machine learning
architectures comprising a tandem of neural networks: the ’generator’ and the ’dis-
criminator’. Engaged in an adversarial learning scheme, these networks undergo a
strategic contest. This contest stimulates the generator to continually enhance its
proficiency in generating increasingly realistic outputs. Consequently, GANs have
emerged as formidable instruments applicable in diverse realms, including but not
limited to image generation, text-to-image synthesis, and style transfer.
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Figure 4.1: GAN Architecture

4.1.1 Fundamental Components

GAN is composed of mainly two opposing components Generatot and Discriminator.
Both of these classes are made by stacking layers as shown in the figure 4.2.

Generator (G) Architecture

Input Layer (Seed Size) represents the initial random seed input for generating syn-
thetic data. Dense Layer (ReLU) Applies a dense layer with Rectified Linear Unit
(ReLU) activation to capture complex patterns. Reshape Layer (4x4x256) reshapes
the output to a 4x4x256 tensor to serve as the foundation for further upsampling.
Multiple upsampling layers progressively increase the spatial dimensions of the ten-
sor. Each upsampling layer consists of Convolutional (Conv2D) operations, Batch
Normalization, and ReLU activation. The last upsampling layer generates the final
synthetic data with a specified number of channels using the tanh activation.

Discriminator (D) Architecture

Input Layer (Image Shape) accepts input data representing real or generated im-
ages.A series of convolutional layers with Leaky Rectified Linear Unit (Leaky ReLU)
activation, Batch Normalization, and Dropout. These layers extract features at dif-
ferent spatial resolutions from the input images.Flatten Layer flattens the tensor to
prepare for the final dense layer. A dense layer with a sigmoid activation function
produces a binary output indicating whether the input is real or generated.

Training Connection:

The generator and discriminator are connected during training to facilitate the ad-
versarial training process. Synthetic data generated by the generator is fed into the
discriminator to distinguish between real and generated samples. The training con-
nection is a crucial part of the GAN architecture, ensuring that both components
learn and improve iteratively.
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4.1.2 Adversarial Training Process

A Generator and Discriminator are used in the GAN training process to constantly
improve through learning, feedback, and trial and error. If D correctly identifies
a fake, G receives negative feedback and adjusts its parameters to make future
forgeries more convincing. If D mislabel real data as fake or vice versa, it penalizes
itself and updates its parameters to refine its discrimination ability.

Figure 4.2: GAN Generator and Discriminator Structure

Generate Adversarial Examples: Adversarial examples are created by intro-
ducing small, imperceptible perturbations to the input data in order to mislead
the model. These perturbations are calculated using optimization techniques like
gradient ascent to maximize the model’s prediction error.
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Augment Training Data: Adversarial examples are added to the training dataset
alongside the original, clean examples. This expanded dataset is used to retrain the
model.

Update Model Parameters: The model is retrained on the augmented dataset,
including both original and adversarial examples. The objective is to minimize the
overall loss function, which now considers the model’s performance on both clean
and adversarial examples.

Repeat Iteratively: Steps 1-3 are repeated for multiple iterations to further en-
hance the model’s robustness. In each iteration, new adversarial examples are gen-
erated, and the model is updated accordingly. The process of adversarial training
helps the model learn to generalize better by recognizing and adapting to potential
adversarial perturbations in the input space. It is commonly used in deep learning,
especially in computer vision tasks, to improve the reliability and security of models.
It’s important to note that adversarial training is not a silver bullet, and the ro-
bustness of a model may still be limited to the specific perturbations used during
training. Continuous research is being conducted to explore more effective ways of
defending against adversarial attacks and enhancing the generalization capabilities
of machine learning models.

4.1.3 Equilibrium and Generation

After extensive training, an equilibrium emerges where G’s fakes are so convincing
that even D struggles to tell them apart from real data. This signifies that G has
captured the essence of real data and can effectively generate realistic samples. At
this point, the focus shifts to using G for its intended purpose, such as generating
novel images, music, or text.

4.1.4 Visualizing the Training Process

Ex[log(D(x))] + Ez[log(1−D(G(z)))] (4.1)

The objective function for GANs is formulated to optimize the interplay between
the discriminator (D) and the generator (G). Here’s a detailed explanation of each
element:

• D(x): This term represents the discriminator’s assessment of the probability
that a given real data instance x is genuine.

• Ex: This denotes the expected value operator overall real data instances. In
other words, it represents the average probability estimation of the discrimi-
nator for real data.

• G(z): Here, G is the generator, and z is a random noise input.

• G(z) is the output of the generator when provided with this noise, creating a
synthetic or fake data instance.

• D(G(z)): This term signifies the discriminator’s estimation of the probability
that a generated (fake) instance G(z) is real.
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• Ez: This represents the expected value operator over all random inputs to
the generator, essentially averaging the discriminator’s assessment of fake in-
stances generated by G.

The formula is rooted in the concept of cross-entropy between the probability dis-
tributions of real and generated instances. The generator aims to minimize the loss
function, which is equivalent to minimizing log(1-D(G(z))) since the generator has
no direct influence on the log(D(x)) term. In TensorFlow-GAN (TF-GAN), the
functions minimax-discriminator-loss and minimax-generator-loss implement this
specific loss function. These functions encapsulate the adversarial nature of GAN
training, where the discriminator tries to maximize its ability to distinguish real
from fake, while the generator aims to minimize the discriminator’s confidence in
distinguishing between the two.

4.2 Comparison with alternatives

GANs are often favored for their remarkable ability to achieve realistic and diverse
outputs but there are others capable of more or less the same feat.

4.2.1 Variational Autoencoders (VAEs)

VAEs are a kind of generative model that can generate fresh, similar samples and
reconstruct data by learning a latent representation of the input. Imagine a skilled
architect meticulously compressing a building’s blueprint (encoding) and then flaw-
lessly reconstructing it (decoding). That’s essentially how VAEs work. They excel
at generating data similar to the training set but might struggle with novelty or
capturing intricate details.

4.2.2 PixelRNNs and Autoregressive Models

Think of these models as meticulous storytellers, crafting data pixel by pixel, word
by word. They excel at high-fidelity outputs but can be computationally expensive
and slow to generate, especially for complex data.

4.2.3 Diffusion Models

Imagine adding noise to a real image until it becomes pure static, then gradually
reversing the process to recover the original image. That’s the core idea behind dif-
fusion models. They offer impressive controllability and can generate high-quality
outputs, but often require careful hyperparameter tuning and can be computation-
ally intensive.

4.2.4 Why Choose GANs?

GANs often produce sharper, more photorealistic data compared to VAEs, as they
directly compete with the discriminator to mimic reality. GANs can generate a
wider range of outputs, sometimes venturing beyond the training data, while VAEs
tend to stay closer to known examples. GANs typically train faster than PixelRNNs,
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especially for high-resolution data. GANs bypass the sequential generation process,
making them less prone to error accumulation and potentially able to capture long-
range dependencies effectively. GANs have a more straightforward training process
compared to diffusion models, which can be sensitive to hyperparameter settings.
While GANs and Diffusion models can generate realistic data, GANs might offer
more inherent potential for diverse and creative outputs due to the adversarial train-
ing dynamic.
There are several reasons why GANs (Generative Adversarial Networks) might be
chosen over models like PixelRNNs and PixelCNNs, some are discussed briefly:

1. Sample Variety and Quality:

• GANs often generate more diverse and visually appealing images than autore-
gressive models like PixelRNNs and PixelCNNs. This is because GANs are
not strictly tied to the sequential order of the data, allowing them to explore
a wider range of possibilities.

• GANs excel at capturing high-frequency details and complex textures com-
pared to the smooth, sometimes blurry outputs of autoregressive models.

2. Training Speed and Stability:

• While PixelRNNs are slower to train due to their sequential nature, GANs can
often achieve similar results in less time. This is because they utilize parallel
processing during both training and generation.

• GAN training is generally more stable than PixelRNNs. This is because GANs
do not explicitly model the data distribution, which can be tricky, especially
for high-dimensional data.

3. Flexibility and Control:

• GANs offer more flexibility and control over the generated data compared to
autoregressive models. This is because the generator and discriminator can
be separately manipulated to achieve specific effects or incorporate additional
information.

• Conditional GANs can incorporate additional data like class labels or text
descriptions to control the generated outputs, which is not straightforward
with autoregressive models.

4. Other Applications:

• While autoregressive models primarily focus on image generation, GANs have
a wider range of applications beyond just image synthesis. They can be used
for tasks like video generation, text generation, music generation, and even
game development.

• If the highest possible quality and fidelity are paramount, and training time
is not a major concern, PixelRNNs and PixelCNNs might be preferred.

• If efficiency and flexibility are priorities, GANs is the better choice.
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4.2.5 Generate Skin Lesion Image using GAN

In our comprehensive analysis of the dermatological dataset, we meticulously exam-
ined the distribution of instances across different classes. There were 327 instances
of class Akiec, 514 instances of class bcc, 1000 instances of bkl, 115 images of class
df, 1000 images of mel,1000 images of nv, 142 images of vasc. We generated 673
more images for Akiec, 486 for bcc, 885 for df, and 858 images for class vasc.
In order to augment the dataset and address potential imbalances, particularly in
the Akiec class, we employed Generative Adversarial Networks (GANs) to generate
an additional 673 images for the Akiec class,486 for bcc, 885 for df,858 images
for class Vasc. GANs, renowned for their ability to produce synthetic data with
realistic features, were instrumental in enhancing the diversity and robustness of
our dataset. This augmentation process not only contributed to a more equitable
representation of classes but also fostered a more nuanced understanding of the 7
classes by introducing variations in their visual characteristics.

Figure 4.3: image comparison between real and generated

27



4.2.6 Limitations of GAN

Generative Adversarial Networks (GANs) have proven to be powerful tools for gen-
erating realistic data, but they also come with certain limitations and challenges.
GAN training can be unstable, and finding the right balance between the generator
and discriminator can be challenging. GANs are sensitive to hyperparameters, and
small changes can lead to drastic differences in performance. GANs are sensitive
to hyperparameter choices, including learning rates, network architectures, and ini-
tialization methods. Finding optimal hyperparameters for different datasets and
tasks can be time-consuming. Quantitatively evaluating the performance of GANs
is challenging. Metrics like Inception Score and Frechet Inception Distance are com-
monly used, but they may not always correlate well with human perception of image
quality.
Training GANs can be computationally expensive and time-consuming, especially
for high-resolution images. It often requires powerful hardware, and convergence
may take a long time. GANs do not provide explicit control over the characteristics
of generated samples. While conditional GANs offer some control, generating spe-
cific, user-defined samples can be challenging. GAN training can be affected by noisy
labels, and the discriminator may become saturated or reach a state where it pro-
vides little useful feedback to the generator. GANs can be used to create deepfake
content, raising ethical concerns related to the generation of fake and potentially
misleading information. This includes generating realistic but fake images of peo-
ple, which can be misused. Understanding the internal representations learned by
GANs can be difficult. The generated features may not have clear semantic mean-
ings, making it challenging to interpret the learned representations.
While GANs have shown success in generating images, their application across dif-
ferent domains, such as text or structured data, is still an area of ongoing research,
and results may vary. Despite these limitations, ongoing research is addressing many
of these challenges, and GANs continue to be a vibrant area of study in the field of
machine learning and artificial intelligence.
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Chapter 5

Deep Learning Implementation
and Results

5.1 Data Pre-processing

After reading the images from folder, the images are opened using PIL and then
converted into array. The labels which were named according to their class is trans-
formed into numerical values and then configured into categorical values since this
is a multi class classification. The images from prior HAM10000 dataset along with
the newly generated images using GAN are then read and saved into a npy formated
file named image data with labels.npy.
The data from the file is read and the pixel rgb information is then flattened for
labeling and put in dataframe for ease of use. After converting to an array, we
normalize pixel values to a range [0, 1]. Normalization ensures that the model can
learn more effectively, and it often helps with model convergence during training.

5.2 Spitting Data

The Data is split 75% for training and 25% for testing. Another split was made
separately for validation with 25% of the dataset.

5.3 Training Parameters

Custom ResNet50v2,Custom ResNt101V2,Custom VGG16,Custom InceptionV3, hy-
brid ResNetInceptionv2 and hybrid ResNetVGG16 were built and fine tuned for
training with the given parameters as shown in 5.1. The training process consisted
of 100 epochs. Each epoch represents a complete pass through the entire training
dataset. The choice of 100 epochs was determined based on an empirical analysis
of convergence and model stability.Data augmentation techniques were employed to
enhance the model’s ability to generalize. SGD (Stochastic Gradient Descent) was
used instead of ADAM optimizer.
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Model Compilation
Model Optimizer = ‘SGD’ Loss
Method =’binary-Cross Entropy’

Iteration EPOCHS = 100

Data Enhancement

rotation range = 10,
width shift range = 0.1,
height shift range = 0.1,
shear range=0.2,
zoom range=0.2,
horizontal flip=True,
vertical flip=True,
fill mode=’nearest’

Table 5.1: Model Training Parameters

5.4 ResNet50v2 Results

An accuracy of 73% indicates the overall correctness of the model’s predictions
across all classes.. However, to gain a deeper understanding of its performance, it’s
crucial to analyze the confusion matrix. The fact that class 3 (dermatofibroma or
df) has the highest number of correct predictions suggests that the model excels in
identifying instances of this class. On the other hand, class 4 (melanocytic nevi)
exhibiting the lowest correct predictions implies a potential area for improvement.
class ”mel” (melanoma) has a high precision, recall, and F1-score, indicating good
performance. On the other hand, class ”bkl” (benign keratosis-like lesions) has
relatively lower precision, recall, and F1-score, suggesting that the model might
struggle with this class.

Figure 5.1: Resnet50v2 accuracy graph
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Figure 5.2: Resnet50v2 loss graph

Figure 5.3: Resnet50v2 Confusion matrix

precision recall f1-score support
akiec 0.91 0.66 0.77 192
bcc 0.73 0.75 0.74 192
bkl 0.54 0.64 0.59 206
df 0.90 0.91 0.90 203
nv 0.59 0.54 0.57 208
vasc 0.63 0.78 0.70 204
mel 0.99 0.85 0.92 202
accuracy 0.73 1407
macro avg 0.76 0.73 0.74 1407
weighted avg 0.75 0.73 0.74 1407

Table 5.2: ResNet50v2 Classification Report
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5.5 ResNet101v2 Results

ResNet101V2 has acquired an accuracy of 70%. In confusion matrix, class 4 has the
lowest numbers of true predictions whereas class 6 or Melanoma, ’df’ for short has
the highest number of true predictions.

Figure 5.4: Resnet101v2 accuracy graph

Figure 5.5: Resnet101v2 Loss graph
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Figure 5.6: Resnet101v2 Confusion matrix

precision recall f1-score support
akiec 0.93 0.66 0.77 244
bcc 0.72 0.74 0.73 238
bkl 0.46 0.62 0.53 255
df 0.94 0.88 0.91 241
nv 0.52 0.36 0.43 258
vasc 0.58 0.78 0.66 269
mel 0.99 0.90 0.94 253
accuracy 0.70 1758
macro avg 0.73 0.71 0.71 1758
weighted avg 0.73 0.70 0.71 1758

Table 5.3: ResNet101v2 Classification Report
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5.6 VGG16 Results

After evaluation, the model had an accuracy of 70%. For class melanoma the number
of true predictions were the highest and for class 4 ’(nv’, ’ melanocytic nevi’)they
were the lowest.

Figure 5.7: VGG16 Accuracy graph

Figure 5.8: VGG16 Loss graph
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Figure 5.9: VGG16 Confusion

precision recall f1-score support
akiec 0.80 0.71 0.75 244
bcc 0.78 0.67 0.72 238
bkl 0.46 0.55 0.50 255
df 0.99 0.88 0.93 241
nv 0.52 0.46 0.49 258
vasc 0.56 0.74 0.64 269
mel 0.98 0.91 0.94 253
accuracy 0.70 1758
macro avg 0.73 0.70 0.71 1758
weighted avg 0.72 0.70 0.71 1758

Table 5.4: VGG16 Classification Report
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5.7 InceptionV3 results

InceptionV3 achieved an accuracy of 71.8%. The confusion matrix appeared well
balanced and class 6 has the highest number of true predictions.

Figure 5.10: Inceptionv3 Accuracy graph

Figure 5.11: Inceptionv3 Loss graph
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Figure 5.12: Inceptionv3 Confusion matrix

precision recall f1-score support
akiec 0.87 0.71 0.78 244
bcc 0.77 0.69 0.73 238
bkl 0.48 0.65 0.55 255
df 0.95 0.88 0.92 241
nv 0.52 0.51 0.51 258
vasc 0.64 0.70 0.67 269
mel 0.97 0.90 0.93 253
accuracy 0.72 1758
macro avg 0.74 0.72 0.73 1758
weighted avg 0.74 0.72 0.73 1758

Table 5.5: Inceptionv3 Classification Report
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5.8 ResNet50V2VGG16 results

ResNet50v2VGG16 hybrid has an accuracy of 74%. The confusion matrix showcased
all the classes with decent correct predictions.

Figure 5.13: ResNet50V2VGG16 Accuracy graph

Figure 5.14: ResNet50V2VGG16 Loss graph
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Figure 5.15: ResNet50V2VGG16 Confusion matrix

precision recall f1-score support
akiec 0.92 0.72 0.81 244
bcc 0.69 0.79 0.74 238
bkl 0.60 0.55 0.58 255
df 0.88 0.93 0.91 241
nv 0.59 0.53 0.56 258
vasc 0.62 0.78 0.69 269
mel 0.97 0.91 0.94 253
accuracy 0.74 1758
macro avg 0.75 0.74 0.75 1758
weighted avg 0.75 0.74 0.74 1758

Table 5.6: Resnet50v2VGG16 Classification Report
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5.9 ResNet50V2Inceptionv3 results

Among all the models trained ResNet50V2InceptionV3 hybrid achieved the highest
accuracy of 77%. All the classes had optimal correct predictions with classes 3 and
6 with the most amount of correct predictions.

Figure 5.16: ResNet50V2Inceptionv3 Accuracy graph

Figure 5.17: ResNet50V2Inceptionv3 Loss graph
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Figure 5.18: ResNet50V2Inceptionv3 Confusion matrix

precision recall f1-score support
akiec 0.94 0.73 0.82 244
bcc 0.75 0.81 0.78 238
bkl 0.55 0.69 0.61 255
df 0.95 0.94 0.94 241
nv 0.66 0.58 0.61 258
vasc 0.70 0.75 0.72 269
mel 0.98 0.93 0.96 253
accuracy 0.77 1758
macro avg 0.79 0.77 0.78 1758
weighted avg 0.79 0.77 0.78 1758

Table 5.7: Resnet50v2inceptionv3 Classification Report
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Chapter 6

Model Comparison

The calibration graph shows the calibration of six different machine learning models
against the mean predicted probability. The x-axis shows the mean predicted prob-
ability, while the y-axis shows the calibration. A perfectly calibrated model would
have a calibration curve that goes straight along the diagonal line. As you can see,
all of the models are more or less well-calibrated.

Figure 6.1: Calibraction Curve
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6.1 ROC-AUC Score for different models

ROC-AUC (Receiver Operating Characteristic - Area Under the Curve) is a metric
used to evaluate the performance of classification models. It measures the area under
the curve of the ROC curve, which represents the model’s ability to distinguish
between classes.
Different models may have different ROC-AUC scores based on their performance.
For instance, a high ROC-AUC score (closer to 1) indicates better class discrimina-
tion. Among the models, ResNet50v3Inceptionv3 has the highest index.

Figure 6.2: ROC-AUC Score

6.2 Categorical Accuracy Comparison of different

models

While comparing all the models ResNet50v2InceptionV3 hybrid has the best results
overall. The only drawback however is the size of the model. The model is signifi-
cantly larger than its competitors. In this era of lightweight models, the sheer size
of the model puts it at a disadvantage.

Figure 6.3: Accuracy Comaprison
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Chapter 7

Model deploy

7.1 Streamlit Framework

Streamlit, a Python library designed for creating web applications with minimal
effort, was chosen as the deployment framework. Its simplicity, flexibility, and in-
teractivity make it an ideal choice for showcasing the model to end-users. The
Streamlit application was developed to allow users to upload skin lesion images for
classification. The uploaded image undergoes preprocessing before being fed into
the pre-trained model. The model’s prediction, including the predicted class and
confidence score, is then displayed to the user. The web application features an
intuitive interface, enabling users to easily upload images and receive instant pre-
dictions. A sidebar provides additional information about the application and its
functionalities.

7.2 Prediction Process

Upon user file upload, the application reads the image using the Image.open function
from the PIL library. The image is then preprocessed using the preprocess image
function. The preprocessing involves resizing the image to the expected input size
(e.g., 224x224 pixels) and normalizing pixel values to the range [0, 1]. The pre-
processed image is passed through the loaded model to obtain predictions. The
TensorFlow model is capable of handling batched inputs, and in this case, a single
image is converted to a batch of size 1 using tf.convert to tensor. The resulting
prediction contains the model’s output probabilities for each class. The final step
involves post-processing the model’s output to interpret the prediction. The classes
dictionary maps the numeric class indices to their corresponding labels and descrip-
tions. The class with the highest probability is determined using np.argmax, and
the prediction results are displayed, including the probabilities for each class and the
predicted class label. This prediction process provides users with valuable insights
into the classification of skin lesions based on the uploaded image, enhancing the
application’s usability in a healthcare or dermatological setting.
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Figure 7.1: Prediction of type of skin lesion

7.3 Limitations

Streamlit uses GitHub for hosting purposes therefore we are bound by the restric-
tions put on the case of storage. There is a cap of 100 mb over uploading files to
GitHub meaning our model ResNet50V2InceptionV3 hybrid which is 877 mb, can
not be hosted through GitHub.
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Chapter 8

Future Work and Conclusion

In conclusion, this research emphasizes the critical need for effective and accurate
skin lesion detection systems, particularly focusing on the prevalent and deadly form
of skin cancer, melanoma. The alarming statistics of over 5 million skin cancer cases
annually in the United States alone underscore the urgency of early detection, with
melanoma being a significant contributor to skin cancer fatalities.
Machine learning (ML) algorithms emerge as a promising solution for early melanoma
detection by analyzing images of skin lesions and classifying them as benign or malig-
nant. The utilization of the HAM10000 dataset presents a valuable resource to train
and evaluate these algorithms, contributing to improved accuracy and reliability in
skin lesion classification.
However, challenges persist in this domain, including limited availability of high-
quality labeled datasets, variability in lesion appearance across different conditions,
and the inherent difficulties in evaluating ML algorithm performance. The research
objectives thus center on addressing these challenges, aiming to develop ML algo-
rithms that accurately classify skin lesions, mitigate inter and intra-observer vari-
ability, and provide practical solutions for overdiagnosis and missed diagnoses.
The proposed model serves as a complementary tool for dermatologists, assisting in
confirming diagnoses and reducing unnecessary biopsies. Importantly, this research
seeks to bridge the gap in skin lesion diagnosis, where general practitioners may lack
expertise, by offering a reliable proxy for dermatologist consultations.
Ultimately, the research objectives align with the overarching goal of making skin
lesion detection through ML accessible, reliable, and easy to implement. By doing
so, the research aims not only to enhance the accuracy and efficiency of skin lesion
diagnoses but also to contribute to saving lives and preventing medical malpractice,
ensuring that patients receive timely and appropriate care for their skin lesions. In
summary, the research underscores the potential of ML in revolutionizing skin lesion
detection, ultimately benefiting both healthcare professionals and patients.
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[11] S. Benyahia, B. Meftah, and O. Lézoray, “Multi-features extraction based on
deep learning for skin lesion classification,” Tissue and Cell, vol. 74, p. 101 701,
2022.

[12] J. Morawitz, F. Dietzel, T. Ullrich, et al., “Comparison of nodal staging
between ct, mri, and [18F]-fdg pet/mri in patients with newly diagnosed
breast cancer,” European Journal of Nuclear Medicine and Molecular Imaging,
vol. 49, pp. 992–1001, 2022. doi: 10.1007/s00259-021-05502-0.

[13] B. Shetty, R. Fernandes, A. P. Rodrigues, R. Chengoden, S. Bhattacharya, and
K. Lakshmanna, “Skin lesion classification of dermoscopic images using ma-
chine learning and convolutional neural network,” Scientific Reports, vol. 12,
no. 1, pp. 1–11, 2022.

[14] F. Alenezi, A. Armghan, and K. Polat, “A multi-stage melanoma recognition
framework with deep residual neural network and hyperparameter optimization-
based decision support in dermoscopy images,” Expert Systems with Applica-
tions, vol. 215, p. 119 352, 2023.

48

https://doi.org/10.1007/s00259-021-05502-0

	Declaration of Originality
	Approval
	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Research Problem
	Research Objectives

	Literature Review
	Methodology and Dataset
	Deep Learning Workflow
	GAN Workflow
	Application Workflow
	Data description
	Model Description
	ResNet50v2
	Model Structure
	Model Parameters
	Memory usage
	Model Summary

	VGG16
	Model Structure
	Model Parameters
	Memory usage
	Model Summary

	ResNet101v2
	Model Structure
	Model Parameters
	Memory usage
	Model Summary

	InceptionV3
	Model Structure

	ResNet50v2VGG16
	ResNet50v2InceptionV3 hybrid

	GAN for Data Augmentation
	Architectural Overview of Generative Adversarial Networks
	Fundamental Components
	Adversarial Training Process
	Equilibrium and Generation
	Visualizing the Training Process

	Comparison with alternatives
	Variational Autoencoders (VAEs)
	PixelRNNs and Autoregressive Models
	Diffusion Models
	Why Choose GANs?
	Generate Skin Lesion Image using GAN
	Limitations of GAN


	Deep Learning Implementation and Results
	Data Pre-processing
	Spitting Data
	Training Parameters
	ResNet50v2 Results
	ResNet101v2 Results
	VGG16 Results
	InceptionV3 results
	ResNet50V2VGG16 results
	ResNet50V2Inceptionv3 results

	Model Comparison
	ROC-AUC Score for different models
	Categorical Accuracy Comparison of different models

	Model deploy
	Streamlit Framework
	Prediction Process
	Limitations

	Future Work and Conclusion
	Bibliography

