
Gender Classification in Bangla Language Using
Deep Learning-Based Voice Analysis

by

Talukder Juhaer Hakim
19301134

Sayema Binte Monsur
19301030

Abtahi Maskawath Shuvo
19301131

Tasmia Azrine
20301165

Md. Zarif Labib
19301165

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University
Summer 2023

© 2023. Brac University
All rights reserved.



Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing the degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material that has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Talukder Juhaer hakim
19301134

Sayema Binte Monsur
19301030

Md. Zarif Labib
19301165

Tasmia Azrine
20301165

Abtahi Maskawth Shuvo
19301131

i



Approval

The thesis titled “Gender Classification in Bangla Language Using Deep Learning-Based Voice
Analysis” submitted by

1. Md. Zarif Labib (19301165)

2. Sayema Binte Monsur (19301030)

3. Abtahi Maskawath Shuvo (19301131)

4. Tasmia Azrine (20301165)

5. Talukdar Juhaer Hakim (19301134)

Of Summer, 2023 has been accepted as satisfactory in partial fulfillment of the requirement for the
degree of B.Sc. in Computer Science and Engineering on September 25, 2023.

Examining Committee:

Supervisor:
(Member)

Dr. Md. Ashraful Alam

Associate Professor
Dept. of Computer Science and Engineering

BRAC University

Program Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam

Professor
Dept. of Computer Science and Engineering

BRAC University

Head of Department:
(Chair)

Dr. Sadia Hamid Kazi

Associate Professor
Dept. of Computer Science and Engineering

BRAC University

ii



Abstract

Gender classification based on voice analysis is one of the elemental tasks in speech
and audio processing, with various applications such as speech recognition systems,
voice assistants, call center analytics, etc. For speech synthesis, speaker identifica-
tion, and human-computer interaction- gender recognition plays a vital role. Al-
though extensive research on this topic has been done in various languages, any
studies can hardly be found regarding gender classification in the Bangla language.
Our research paper aims to recognize gender in the Bangla language using deep
learning approaches and voice analysis. The core of our approach involves the use of
CNN models (ResNet50, EfficientNetB0, InceptionV3, and DenseNet-121) for our
data training. The Mel-Frequency Cepstral Coefficients (MFCC) and short-time
Fourier transforms (STFT) were computed from audio recordings and used as in-
put features to the neural network model. The system’s excellent accuracy rate
demonstrates its potential for use in practical settings. By providing light on the
application of deep learning techniques in the context of the Bangla language, this
study advances the area of gender identification. 95% accuracy was achieved in the
InspectionV3 and EfficientNetB0 models with the MFCC input.

Keywords: Deep learning; Machine Learning; F1-score; Bangla Language; Predic-
tion; Decision tree; ResNet50; EfficientNetB0; InceptionV3; DenseNet-121; STFT;
MFCC
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Chapter 1

Introduction

1.1 Thoughts behind Gender Identification

Voice is the primary mode of human communication. Humans use different types
of voices or tones according to situations, places, emotions, etc. Sometimes we use
loud tones, whereas other times we use low-frequency tones. Also, some of the male
voices are kind of similar to the female voices, which have a higher pitch than usual
male voices, and some female voices have lower pitches than typical female voices.
As a result, it becomes difficult to discern gender from the wide range of tones,
accents, frequencies, and pitches.

The increasing popularity of virtual platforms for education and communication
has led to significant advancements in the field of speech analysis. Applications
like Text-to-Speech (TTS) and Automatic Speech Recognition (ASR), commonly
referred to as Speech-to-Text (STT), have emerged as a result. These technologies
are widely applied in fields including computerized language assessment for educa-
tional reasons, the diagnosis and treatment of linguistic disorders, better agricultural
practices, and voice-activated assistants that make technology more accessible.

Unfortunately, the research and development of Bengali language technologies sim-
ilar to those mentioned above have been hampered by the absence of sufficient
datasets, despite significant theoretical and computational efforts focused on mod-
eling Bengali phonology and the creation of potent deep learning networks. Bangla
is one of the most widely spoken languages, with 234 million native speakers and
39 million speakers who use it as a second language. It is the sixth most spoken
language in the world. A huge percentage of this group does not know any other
language for communication. Therefore, we are trying to distinguish gender through
speech in the Bangla Language.

Our dataset collection approach was split into two independent methodologies going
forward. Firstly, we obtained a dataset from the Mozilla Common Voice platform.
This platform contains a sizable collection of transcribed audio recordings that span
more than 400 hours and contain spoken Bengali words. Through teamwork and
community outreach initiatives, this dataset was compiled with contributions from
many parts of Bangladesh and India.
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Secondly, we crowdsourced an extensive dataset that span nearly 7 hours contain-
ing spoken Bangla words that went through pre-processing steps similar to training
data. This independently created dataset was primarily intended for testing and
assessing the effectiveness of the CNN models under consideration.

We used convolutional neural networks (CNN), a deep learning model, for gender
classification in Bangla language. CNNs comprise a particular kind of neural net-
work known for their effectiveness in voice and picture recognition applications. The
dataset consisting of Bengali speech recordings serves as the training data for the
CNN model, with each recording carrying information about the speaker’s gender.
The algorithm has been trained to recognize the distinctive speech characteristics of
each gender. In our work, we used four different models to train our classification
algorithm: ResNet50, EfficientNetB0, InceptionV3, and DenseNet-121.

The input data for these models was taken from the audio recordings and was
converted into a 2D array using the Short-Time Fourier Transform (STFT) and
Mel-frequency cepstral coefficients (MFCC). After that, we used this array as input
to train each model. To study variances in model performance and identify the ideal
configuration for our research, we also carried out independent experiments employ-
ing STFT and MFCC alone as well as in combination. This thorough examination
made it easier to choose the best model for our gender classification task.

1.2 Problem Statement

The purpose of our research paper is to create a robust and highly accurate gender
differentiation algorithm for the Bangla Language using the Deep Learning process.
We used a large dataset of Bangla speech data which helped us to improve our al-
gorithm performance of the system.
In the context of this research, the challenges encountered are:

1. It is hard to distinguish between male and female recognition systems in Bangla
Language due to a lack of online data and practical approaches. The methods
based on CNN which are available on the internet are insufficient for under-
standing the patterns and the voice nodes.

2. In the data set, the speakers speak in different accents and tones, making it
more complex for the algorithm to understand the pattern and the files.

3. Additionally, the files of the audio clips are not the same length and size. Also,
the speakers of the audio files did not follow any rules to speak. They spoke
in different emotions consisting of different frequencies. So, the accuracy level
became lower than expected at first.

In conclusion, it is mandatory to deal with these challenges and develop a Deep
Learning-Based approach for gender recognition in Bangla Language. We aim to
improve the accuracy and robustness of our research by collecting data and training
our algorithm with the help of these.
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1.3 Aims and Objectives

The objective of our research is to create a deep learning-driven gender classification
system tailored for Bangla speakers, aiming to achieve the highest possible accuracy
and resilience. Our goal is to analyze the Bangali Speaker to differentiate the gender
using voice analysis techniques.
Our primary goals in this study are:

• Create a deep learning model to distinguish between speakers of Bangla who
are male and female. The model will be trained to recognize the pattern and
the key distinctions between the two genders with ease.

• Find a solution for different homophones, tones, and accents in Bangla lan-
guage.

• Uncovering Gender Bias in Deep Learning Models for Bangla Language

• Deep Learning-Based Gender Classification in Bangla for different age groups.
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Chapter 2

Literature Review

Speaker recognition, speech synthesis, and emotion recognition are just a few of the
fields that have shown significant interest in gender categorization, the process of
determining a speaker’s gender based on their voice. The widespread use of digital
media as a medium for instruction and communication has accelerated the develop-
ment of voice analysis. Numerous studies based on speech classification and gender-
inferred identification have been conducted for quite some time. Therefore, studies
focusing on the detection of gender are not new. There is preliminary evidence that
deep learning models and data mining can accurately identify a speaker’s gender
based on their voice. Here we provide a few practical results from these studies.

Parris and Carrey[19] specifically developed two techniques for gender recognition,
combining acoustic analysis and pitch. A linear classifier is used to integrate the data
from the acoustic analysis and pitch estimate to determine the gender of the voice.
With two seconds of speech, the system was evaluated on three British English
databases, which had an identification error rate of less than 1.0%. Additional
testing using the OGI database’s eleven languages without optimization produced
error rates of less than 5.2% and an average of 2.0%.

In another study, gender recognition was done by comparing different classification
algorithms[16]. At first, predictions were primarily made based on the dataset and
algorithms, which were collected from 3000 male and female audio files. In order
to determine which method produces superior results in detecting gender-derived
particular parameters, results are compared with prior prediction results. Then the
classification algorithms are used for estimation. From the previously discussed al-
gorithms, a precise prediction of how the comparative algorithmic technique detects
gender is obtained. The algorithms that were used here are the Gradient Boosting
Algorithm, Decision Tree, Random Forest, Support Vector Machine (SVM), and
Neural Network. It was derived from the comparison that Gradient Boosting Algo-
rithm gave the best result with 90% accuracy, whereas Neural Network and Random
Forest showed 89% accuracy.

Livieris, Pintelas, and Pintelas[15] opted for a semi-supervised algorithm called
iCST-Voting, which includes self-labeled algorithms like Tri-training, Self-training,
Co-training, Co-bagging, and Democratic-Co-Forest. The iCST-Voting model achieved
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a remarkable 98.42% accuracy, with the downside of an increase in training time.

A study by Kotwal, Hassan, and their group in 2011 used Hidden Markov Models
(HMM) to address gender effects in Bengali automatic speech recognition. Their
goal was to use different HMMs for males and females to establish a method for
gender impact suppression. They created a medium-sized Bengali speech corpus
and split it into training sets for men and women. These sets had 3,000 phrases
delivered by 30 speakers from different geographical locations, one of each gender.
These training sets were used by the researchers to create Bengali triphone HMMs.
Mel-frequency cepstral coefficients (MFCCs) were used in the experimental setup
to extract features. In order to evaluate their methodology, the study used four
experimental designs, which produced remarkable word accuracy scores of 90.78%
and sentence correctness scores of

A study on gender recognition utilizing real-time audio processing techniques in
LabVIEW was carried out in 2011 by Rakesh, Dutta, and Shama. By examin-
ing acoustic metrics, particularly F0 and F1, they sought to determine a speaker’s
gender. Framing, windowing, pre-emphasis, and Linear Predictive Coding (LPC)
were some of the speech processing techniques used in the study. They also looked
into using pitch detection to figure out the speaker’s age and gender. The study
illustrated the efficiency of LabVIEW in speech detection by examining F0 and F1
values, which are typically approximately 120 Hz for males and 210 Hz for females
for F0 and 387 Hz for males and 432 Hz for females for F1. It did, however, point
out several inaccuracies when vowels were absent.[22]

Yucesoy and Nabiyev[29] created a method that was centered on the classification
of MFCC coefficients that were derived from speech signals by utilizing GMM. The
process consists of two distinct stages. The initial step in the process is the training
of the system with quotations from prominent speakers of both genders. The system
is then put through its paces, utilizing comments made by speakers whose gender
is hidden for the subsequent round of testing. For the purpose of this inquiry, the
researchers accessed the TIMIT database to compile the speech data they needed.
The TIMIT database is comprised of ten lines, only two of which are identical to
one another while the remaining lines are all original. These statements were said
by a total of 630 people, including 438 males and 192 women, all of whom are native
speakers of one of the eight basic varieties of American English. In two separate
accuracy tests, the system scored an impressive 100 and 97.76% respectively.

The model presented by Jalil, Stephan, and Naji[11] determines the gender of speech
samples using voice recognition. The method employs the 12 most important char-
acteristics extracted from each voice sample, as well as a number of voice parameters,
such as Mean, Zero-Crossing, Standard Deviation, and Amplitude. Feature vectors
for the voice are generated by combining these characteristics. Several machine
learning and deep learning algorithms, including Random Forest, KNN, Logical Re-
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gression, Decision Tree, and CNNs, are employed by the proposed method to classify
speech vectors as Male or Female. By comparing the evaluation metrics of each clas-
sifier, the suggested method concludes that the CNN model is the most successful
classifier. It attains a precision value of 1 for accurately identifying voice vectors.

To integrate gender-based user categorization, Jasuja, Rasul, and Hajela[12] cre-
ated a deep learning model utilizing Multilayer Perception (MLP). As input, the
model receives a set of acoustic characteristics collected from various products. The
researchers compiled a dataset containing 3,168 data points from male and female
voice samples. These vocal samples were created using methods of acoustic analysis.
By training the network with a variety of parameter configurations, they ultimately
developed an MLP model with an accuracy of 96 percent on the test dataset. In
addition, the researchers highlighted the effectiveness of batch normalization and
dropout in preventing the model from becoming overly specialized to the training
data. Similar research was conducted by Buyukyilmaz and Cibikdiken[8] in which
a Multilayer Perceptron (MLP) deep learning model achieved 96.74% accuracy on
3,168 male and female voice recordings.

Another research[20] used audio data to identify gender using five machine learn-
ing algorithms: Linear Discriminant Analysis (LDA), Classification and Regression
Trees (CART), Random Forest (RF), K-Nearest Neighbour (KNN), and Support
Vector Machine (SVM). These methodologies were evaluated using eight distinct
metrics, including Box, Density, Parallel, Dot, and Pair plots and statistical signifi-
cance tests. From the voice dataset, vocal strength, pitch, frequency, q21, q25, and
other metrics were extracted. Using these parameters, the numerous algorithms were
then trained and validated. Based on several prediction algorithms, the study sug-
gests a comparison model algorithm that divides individuals into gender categories.
On a dataset constructed from voice data, predictions are built. The collected data is
compared to other algorithms to determine which algorithm performs best in terms
of gender categorization based on specific factors. The outcomes are contrasted to
those of previous research. Also evaluated is the efficacy of the comparison model
algorithm’s gender detection. The results of this study indicate that the SVM algo-
rithm performs better than other algorithms at classifying gender in the presence of
pitch and frequency changes. SVM has superior gender classification accuracy and
reduced error rates than other algorithms.

In their 2016 study, Pahwa and Aggarwal used speech feature extraction to cre-
ate a gender recognition model for Hindi speech. They investigated a number of
algorithms, including SVM and ANN, to improve gender recognition in phone ap-
plications and speech data from many languages. They developed a system that can
identify gender from WAV speech files using a speech library of 50 speakers, Mel-
frequency cepstral coefficients (MFCC), and other speech parameters. The model’s
accuracy increased to 93.48% when the initial MFCC coefficient was taken into ac-
count, while it remained highly accurate (91.3%) even when it wasn’t. The study
also emphasized the value of the MFCC 1 algorithm, which greatly increased overall
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accuracy by 2.18% and led to recognition rates of 92.33% for females and 95.22%
for males.[18]

Wang et al.[28] use deep neural networks (DNNs) to combine the activations from
the final hidden layer over time in order to transform each utterance into a fixed-
length vector. This feature encoding procedure is trained alongside the utterance-
level classifier to enhance classification accuracy. To further enhance utterance-
level categorization, they used encoded vectors to train a kernel extreme learning
machine (ELM). The results of the research indicate significant gains in accuracy.
In the task of emotion recognition, it improves weighted and unweighted accuracy
by 3.8% and 2.94%, respectively, compared to a robust DNN-ELM strategy. In the
age/gender recognition challenge, this method performs as well as or better than
human evaluators. However, this study is more concerned with emotion detection
than with gender classification. This research, however, utilized a Mandarin dataset
with varying utterance levels.

Gupta, Goel, and Purwar (2018) proposed a novel method for gender identifica-
tion through speech analysis, utilizing 20 different acoustic variables and stacked
machine-learning approaches. Their study used a dataset split into three sections
for training and testing with the goal of improving gender detection accuracy. Un-
expectedly, despite identical inputs, different outcomes were produced by different
models, including SVM, CART, and a neural network. This led the investigators to
integrate these models for better performance. The study increased accuracy by 2%
and noticed significant gains in precision, specificity, and F-score by gathering audio
from 3160 people. The accuracy was increased by the stacked model to 96.74%,
although acknowledging possible difficulties with larger and more varied datasets.[9]

Artificial neural networks were used in another research project[27] as a standard
method for classifying speech data. 3168 voice samples from men and females made
up the dataset. Voice samples were analyzed acoustically using the R programming
language’s seewave and tuneR utilities. In order to increase classification accuracy,
the dataset was divided into ten pieces, with each portion used for testing and
retesting. The average classification success was calculated using the arithmetic
mean of the findings. Using artificial neural networks, a remarkable success rate of
97.9% was achieved in precisely distinguishing between male and female audio.

Bangla, often known as Bengali, is one of the most widely spoken languages on
the Indian subcontinent. However, research on gender classification in the Bangla
language using speech analysis is not as extensive as it is for other languages. To
meet the needs of the Bangla-speaking community, there is a demand for specialized
research and development in this area.

A method for identifying gender from Bengali voice data was published in a study[21],
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which involved establishing a corpus, generating input feature vectors, and employ-
ing a classifier. What makes this research for Bengali unique is the application
of machine learning algorithms for gender detection and the focus on the extrac-
tion of certain features from the input speech. The training and testing corpus
comprised 8,000 words from 80 male and 80 female speakers, selected using 10-fold
cross-validation. The results of the experiments showed that the vast majority of
the classifiers achieved perfect accuracy.

In a separate investigation[6], the Mel-frequency cepstral coefficient (MFCC) was
utilized to categorize Bangla voice samples by gender. Gradient boosting, random
forest, and logistic regression were utilized for the mapping and selection processes.
The researchers Badhon et al. [12] used a straightforward method to get their find-
ings. The approach involved reading the audio file, performing some pre-processing
steps, extracting features (including MFCC), writing out a CSV file containing the
feature extractions, training the model, and putting it through its paces on test
data. The model achieved 99.13% accuracy when tested on a dataset of 1652 in-
stances from over 250 speakers. The test data included the voices of 400 men and
400 women.

When conducting research, having access to a large and diversified dataset is crucial.
Data from the Bengali Common Voice Speech Dataset[4], collected via crowdsourc-
ing and retrievable using sentence-level automatic speech recognition, was utilized
in this regard. Using the Mozilla Common Voice platform, the dataset was collected
as part of an ongoing study. In just two months, more than 400 hours of data
were collected, and it is continuing to expand rapidly. OpenSLR Bengali ASR is
the largest publicly accessible dataset for automatic speech recognition. However,
this dataset has been found to have more variety than others in terms of speakers,
phonemes, and contextual factors. Insights from the dataset are shared, and major
linguistic concerns that will need fixing in future iterations are highlighted.

There have been improvements in gender classification with the use of deep learning-
based voice analysis, but many issues still need to be resolved. The lack of a large-
scale dataset designed specifically for gender categorization in the Bangla language
is a major problem. There is also a need for greater research into how variations
in Bangla speakers’ accents, dialects, and speech patterns influence their gender
assignment.

For our research, we use four different models: ResNet50, EfficientNetB0, Inspec-
tionV3 and DenseNet-121. The InspectionV3 model outperforms the others in terms
of gender recognition. Additionally, we can quickly identify features and patterns
in our audio files that have been converted to.tsv files with the use of these models.
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Chapter 3

Methodology

3.1 Workplan

The model training was conducted using the audio files extracted from the vali-
dation.tsv and train.tsv files sourced from the Mozilla Common Voice Dataset[17].
Our dataset from Mozilla Common Voice is divided into an 80% training set and a
20% validation set. The audio from these files is used in the training process.
A separate dataset was used that we have curated for testing and evaluation. We
utilized the Short-Time Fourier Transform (STFT) and Mel-frequency cepstral co-
efficients (MFCC) to transform the audio recordings into 2D arrays. Our convo-
lutional neural network (CNN) models are then evaluated using these altered data
representations.

Figure 3.1: workflow

3.2 Dataset Discription

For our training data, we are utilizing a dataset from Mozilla Common Voice version
13.0 [5] The over 400 hours of Bangla speech recordings that make up this dataset
are the result of continuing work. By reading specified prompts, contributors to
the Mozilla Common Voice platform recorded single-channel audio data at a rate of
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48kHz. With an average length of 7.12 words, the text database contains 135,625
unique sentences. Each word contains 3.24 graphemes and 4.95 Unicode characters
on average. 399 hours of speech recordings totalling 231,120 samples from 19,817
contributors make up the collection. A ”sentence” annotation and additional meta-
data, such as ”up votes,” ”down votes,” ”age,” ”gender,” and ”accents,” are linked
to each audio clip.
With a 4.8% margin of error and 99% confidence, A survey was conducted on 720
recordings randomly chosen from the full dataset (containing samples from both
validated and invalidated portions) for qualitative analysis, with a 4.8% margin of
error and 99% confidence. These recordings exhibited a 0.417 % incomplete rate, a
0.833% too fast to understand rate, a 0.417% considerable background noise rate, a
4.444% muffled rate, a 0.417% incomprehensible rate, a 1.25% stuttering rate, and
a 0.694% no speech data rate.
About 80% of the training data and 20% of the validation data were taken from the
56 hours of speech that made up the validated portion of this dataset. The dataset
primarily had an unequal distribution of data of male and female speakers. We
balanced the dataset by including 2,846 voice samples from both male and female
speakers in order to address this. Each voice sample was divided into segments of
two seconds. As a result, we were able to collect 9,506 male and 9,249 female voice
clips.
For our testing data, we have crowdsourced a dataset of our own with a total of
70 voice data consisting of 35 male audio files and 35 female audio files which adds
up to 7 hours. We asked data contributors to record single-channel audio data by
reading prompts that we wrote ourselves. The text corpus contains 147 unique
sentences. Each sentence has 8.39 words on average and each word contains 3.25
Unicode characters on average. We also segmented our own data by a range of 2
seconds. By this, we have 4518 male audio clips and 5407 female audio clips.

3.3 Dataset Preprocessing

The crucial component of the machine learning workflow that significantly influences
model performance is data preparation. This crucial phase helps to improve the
model’s accuracy, decrease the amount of time and computational resources needed
for training, reduce overfitting problems, and make the model easier to understand.
We thoroughly analyzed and conducted preprocessing on the dataset which follows
as:

1. Segmentation: Due to the varying lengths of the audio recordings in our
dataset, we standardized them by dividing each audio into 2-second segments
and classifying them according to gender in distinct folders.

2. Labeling: We gave labels to the segmented audio files, designating males as
”1” and females as ”0,” to help discriminate between different data points.

3. Data Splitting: We split our dataset into an 80:20 ratio, allocating 80% to
training and 20% to validation.
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4. Conversion: All audio files’ sampling rates were consistently changed to 16,000
Hz. The audio files were then converted into 1D arrays using the ’librosa.load()’
method, which were then stored as numpy arrays.

5. Padding: We added padding to the 1D arrays to account for the different
audio file sizes. As a guide, we established a maximum length of 40,000 (the
average length of sample audio files). Any audio that was longer than this
was trimmed, while shorter audio files were padded with zeros to keep their
length constant. This made sure that consistent 2D matrices were produced
that could be used with CNN models.

6. STFT and MFCC: At first, we converted the 1D arrays to create 2D arrays by
applying the Short-Time Fourier Transformation (STFT). When using CNN
models, this method produced results that were pretty accurate, although we
ran into overfitting problems. These problems were related to noise in the
audio data, which decreased the STFT process’s dependability. As a result,
we resorted to using the MFCC method. We extract critical audio features
using MFCC, then use STFT to further enhance CNN model training.

STFT
STFT (Short-Time Fourier Transform) is utilized in signal processing, notably in
the analysis and representation of signals in the time-frequency domain. It is a use-
ful tool for figuring out how a signal’s frequency content changes over time.
Features of STFT:

• Time-Frequency Representation: A signal is concurrently represented in the
time and frequency domains by STFT. It demonstrates how a signal’s fre-
quency components alter as a function of time.

• Localised Analysis: A signal’s individual time windows can be examined using
STFT. It divides the signal into brief, overlapping pieces rather than examin-
ing it as a whole, giving insights into localized fluctuations.

• Conversion from Complex to Real: STFT transforms a complex signal into a
real-valued representation, making further analysis easier.

When computing its Fourier transform, the STFT only takes into account a short-
duration slice of a longer signal. Typically, this is done by multiplying a window
function with a short duration, by a longer time function. The rectangular window,
which effectively extracts only the necessary brief sequence without additional mod-
ification, and the Hamming window, which applies a taper to the ends to better the
representation in the frequency domain, are two often used finite-duration windows.
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The formula of STFT:

X
[
t, ω) =

∑+α
−α x [m]ω [t−m] e−jωm

Here,
1. STFT(t,ω ) represents the STFT of the signal at time t and frequency ω̇
2. x(m) is the input signal.
3. (t-m) is a window function that determines the time window over which the
Fourier.
4. e−jωm is the complex exponential representing the frequency domain analysis.

Benefits of STFT:

Time-Frequency Analysis: STFT is suited for analyzing non-stationary signals
because it gives a clear knowledge of how a signal’s frequency content changes over
time.
Localized Information: It is useful for applications like voice analysis, audio
processing, and music analysis because it enables researchers to concentrate on par-
ticular time intervals of interest within a signal.
Visualization: STFT representations are often shown as spectrograms, which are
frequently utilized in applications like voice recognition and audio analysis, they are
frequently visually intuitive.
Efficient Computation: Fast Fourier Transform (FFT)–based STFT computa-
tions are more efficient than those of the continuous Fourier transform, making
them suitable for real-time and massively parallel signal processing tasks.

In conclusion, STFT is a useful tool for studying signals in the time-frequency
domain because it sheds light on how a signal’s frequency components evolve over
time. It is a vital technique in numerous signal-processing applications due to its
capacity to provide localized information and efficient computation.[1]

Figure 3.2: STFT Architecture[2]

MFCC
The Fast Fourier Transform (FFT) is frequently used to derive the Fourier spectrum
from an audio source in the field of audio signal processing. Two steps make up this
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procedure. First, the logarithm of the Fourier spectrum’s magnitude is calculated.
The cepstrum within the signal then emerges when this logarithmic result is trans-
formed using a cosine function.
The mathematical formula for the link between the frequency (denoted as ’f’) and
the Mel-frequency (denoted as ’m’)is:

Mel(f) =2595log
(
1 + f

700

)
Understanding the perceptual features of audio transmissions depends on this re-
lationship. Particularly, it has been found that the usage of Mel-frequency-spaced
spectral windows exhibits similar sensitivities to human aural perception. This en-
courages the use of the Mel-frequency cepstral coefficients (MFCCs) for the analysis
of audio signals.
There are several phases involved in the calculation of MFCCs:

• Making use of the Fourier transform to determine the power spectrum, or
—X(f)—2, of the sound signal, x(t).

• Projecting a collection of Mel-frequencies with equal spacing, mk, k = 1, 2,
3,..., into the frequency domain to produce fk, k = 1, 2, 3,....

• Obtaining the weighted sum of the power spectrum using triangular windows
centered at fk, then calculating the logarithm of the power integral for each
Mel-frequency.

• Using the discrete cosine transform to change the values of the logarithmic
power into MFCCs.

Due to its nonlinear structure, the term ”cepstrum” is famous for its odd language
construction. It is frequently referred to as a ”reverse” or ”spectrum of a spectrum.”
The resulting cepstrum coefficients play a crucial part in characterizing the changes
in the audio stream across distinct spectrum bands.
It is useful to represent these coefficients in terms of the mel scale rather of a linear
scale for specific applications, especially in speech and audio analysis. The cepstral
coefficients become mel-frequency cepstral coefficients (MFCCs) as a result of this
modification, which creates the mel-frequency cepstrum. By using the Mel scale
in this context, these coefficients’ discrimination skills in audio analysis tasks are
improved, bringing them closer to the characteristics of human auditory percep-
tion.[3][25]
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Figure 3.3: MFCC Architecture[14]

3.4 Convolutional Neural Network Models

• Resnet50
The term Resnet improvises Residual network. Resnet50 is the modern archi-
tecture for Resnet, which has 48 convolutional layers. The basic and very first
Resnet Architecture is Resnet34 which consists of 34 convolutional networks.
It was an efficient architecture to provide layers to a CNN without having
the vanishing gradient issue. The modern network was established on VGG
which had a frame of 3x3. But still, Resnet is faster as it has fewer filters and is
much easier than VGG. Figure 1 describes a block diagram for Resnt50[13]. In
the ImageNet challenge, it beats the other data models very efficiently. That
is why Resnet50 is better than other models[10]. Figure 1 describes a block
diagram for Resnet50[13].

Figure 3.4: The-architecture of the deep residual network

• EfficientnetB0
Efficientnet adds new degrees to scale up convolutional networks. It scales up
convolutional networks by their depth or width. In the depths, the network
catches more complex features but it is very hard to train. Whereas, in-width
network catches more fine-grained features and is easy to train. Moreover, in
high-resolution pictures, the network also captures fine-grained pictures but
the accuracy gain diminishes[26].
Width Scaling Increases the number of channels in each layer, effectively in-
creasing the model’s capacity to learn more complex features. Depth Scaling
Increases the number of layers in the network, allowing for more fine-grained
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features to be captured. Resolution Scaling Increases the input image resolu-
tion, enabling the model to process higher quality and more detailed images.
The goal is to find a balance between width, depth, and resolution scaling
factors to maximize the model performance.

Figure 3.5: The-architecture of the EfficientNetB0

• InceptionV3
The fundamental building block in InceptionV3 is the inception module, which
is designed to process input data using multiple convolutional operations of
different sizes (1x1, 3x3, 5x5) and max pooling simultaneously. This allows the
model to capture features at various spatial scales within the same module.
InceptionV3 is the upgraded model of Inception V1. It has a higher frequency
than its predecessors. It is built up of 42 layers which is higher than Inception
V1 and V2. Furthermore, this model is efficient in grid size reduction. For
example, if we have a d×d grid with k filters after reduction it results in a d/2
× d/2 grid with 2k filters. The activation dimension of the network filters is
expanded so that the grid size gets reduced efficiently. Moreover, to work with
a 5x5 convolutional matrix is pretty expensive and to overcome this problem
the inceptionV3 model modifies the 5x5 layers into 3x3 which both cuts down
the costs and computational error[24].

Figure 3.6: InceptionV3

• DenseNet-121
Densely Connected Convolutional Network is a deep neural network archi-
tecture known for its dense connectivity pattern between layers where each
layer is directly connected to every other layer in a feed-forward fashion. This
model promotes feature reuse, reduces the number of parameters, and alle-
viates vanishing gradient issues. They employ growth rates to control in-
formation addition, direct layer connections, feature map concatenation, and
layer concatenation.DenseNet-121 is composed of three primary types of lay-
ers: Convolutional Layer, Batch Normalization layers, and Rectified Linear
Unit (ReLU) Activation. An input is sent through each layer of a model be-
ing trained with DenseNet-121. Layers are tightly connected, ensuring that
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feature maps move fluidly from one to the next. This makes it easier to learn
complex feature representations and enhances gradient flow throughout the
training process, leading to effective deep learning. [23]

Figure 3.7: Densenet121 Architecture[23]
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Chapter 4

Experiment and Results

4.1 Measurements

Essential performance indicators for assessing the effectiveness of classification mod-
els include precision, recall, F1 score, and confusion matrices. These metrics are es-
sential for evaluating a model’s performance in particular circumstances since they
provide insightful information about many different aspects of a model’s success in
classifying data.[7].

• True Positives (TP): These are situations in which the model successfully de-
tected positive cases. To put it another way, the model correctly identified
good outcomes as such.

• True Negatives (TN): Positive cases that the model properly recognized as
negatives are known as True Negatives (TN). It indicates that the model cor-
rectly identified negative occurrences as such.

• False Positives (FP): These are instances where the model projected mistak-
enly that positive outcomes would occur when they actually occurred nega-
tively. The model occasionally misclassifies negative events as positive ones.

• False Negatives (FN): These are situations where the model incorrectly antic-
ipated negative results when they were really positive. The model sometimes
misclassifies positive cases as negative ones.

Precision: It indicates how well the model can identify the positive events among
those that it anticipated to be positive. Reducing false positives is its goal. High
precision means that it’s unlikely that the model will classify negative events as
positive. For instance, in a scenario involving a medical diagnosis, precision is the
proportion of correctly identified positive instances among all cases that were ex-
pected to be positive. In essence, accuracy evaluates the model’s dependability in
positively labeling occurrences. It is a crucial statistic, particularly when false pos-
itives can have serious repercussions or when we wish to reduce the possibility of
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making falsely positive forecasts.

• Precision = TP
TP+FP

Recall: In academic contexts, ”Recall,” also known as ”Sensitivity” or ”True Posi-
tive Rate,” measures how well a model can detect all occurrences of positivity. Its
main goal is to reduce false negatives. The model shows a decreased chance of mis-
classifying positive examples as negative when memory is high. This indicator, also
known as sensitivity or the true positive rate, assesses how well the model performs
in correctly identifying positive events. It mathematically denotes the percentage of
positively predicted occurrences that really occurred out of all positively occurring
outcomes (TP + FN). The model’s memory essentially offers information on how
well it recognizes actual positive experiences.

• Recall = TP
TP+FN

F1 Score: It is created by taking the harmonic mean of recall and precision, com-
bining these two essential components into a single measurement. The harmonic
mean gives more weight to the lower value when precision or recall considerably lags
behind the other, which lowers the F1 score overall. The F1 Score recognizes and
rewards models that demonstrate both high precision and high recall concurrently,
as opposed to favoring one statistic over the other. A balanced evaluation tool, the
F1 Score, is provided by this combined metric, particularly when there is a trade-off
between precision and recall. It has a scale from 0 to 1, with 1 being the highest
possible performance. The F1 Score is a crucial metric in model evaluation and
comparison since it essentially captures the thorough examination of classification
models, taking into account their capacity to reduce both false positives and false
negatives.

• F1 Score = 2TP
TP+FP+TN+FN

Accuracy: A key performance statistic for model training is accuracy, which quan-
tifies the percentage of instances from a dataset that were correctly predicted. It is
a crucial indicator for assessing a machine learning model’s efficacy, particularly in
classification tasks. It provides information on the model’s accuracy in classifying
situations. The proportion of true positives and true negatives among all cases is
measured in binary classification. It is frequently combined with other metrics to
give a more thorough picture of a model’s performance.

• Accuracy = TP+TN
TP+FP+TN+FN
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Figure 4.1: confusion matrix example

4.2 Experiment with Models

We can see the EfficientNetB0 model’s training procedure and performance metrics
in the provided snippet of code. The important components are highlighted in this
description:

• Epochs: The model goes through 50 epochs, each of which involves a full it-
eration of the training dataset.

• Batch Size: The dataset is divided into batches for training, with each batch
containing 32 samples. After processing each batch, the parameters of the
model are updated.

• Learning Rate: The learning rate is initially set to 0.001 (1e-3) per second.
The size of the step at which the model’s parameters are changed during train-
ing is determined by this learning rate.

• The Adam optimizer: It is renowned for its adaptable learning rates and mo-
mentum and contributes to effective model refinement, is used to optimize the
model.

• Model Compilation: During compilation, the Adam optimizer, a binary cross-
entropy loss function, and accuracy as the evaluation measure are all set up
for the model.

• Training: Training data (labeled ”X train” and ”Y train”) and validation data
(labeled ”X val” and ”Y val”) are provided. Each epoch of the training pro-
cess is tracked, and loss and accuracy scores for the training and validation
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datasets are displayed.

• Loss and Accuracy Plotting: Following training, graphs displaying the loss and
accuracy curves for both the training and validation datasets are produced us-
ing Matplotlib.

Figure 4.2: code of EfficientNetB0

In conclusion, the code coordinates the training of a model using specified configu-
rations for epochs, batch size, learning rate, and optimizer on the Mozilla Common
Voice dataset.

Final Accuracy: The model correctly identifies 95% of the training samples,
achieving a training accuracy of 95%.
Accuracy of Validation: The validation accuracy is 91.266%, demonstrating the
model’s ability to generalize successfully to new data.
Final Loss: The model’s ability to minimize the discrepancy between predicted and
actual values during training is indicated by the ultimate loss value on the training
data, which equals 0.3046.
Validation Loss: At the end of the training, the validation loss is 0.3344. Lower
values indicate better generalization, and this metric quantifies how well the model
performs on unobserved data.

We have used 4 models to train and test our models which are ResNet50, Efficient-
NetB0, InceptionV3, and DenseNet-121. Initiatives are taken such as MFCC and
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STFT separately then combining STFT and MFCC together to extract the best
features of data to train the CNN models. A brief discussion is given below with
each model with each combination
We have run 50 epochs where we use the Adam optimizer with the 0.001 learning
rate.

In ResNet50 with MFCC, figures 4.3 and 4.4, the graph produced by training the
ResNet50 model with MFCC features. Our val accuracy is 0.9220 which was found
in epoch 50.

Figure 4.3: Training and validation accuracy curves of ResNet50 from MFCC feature

Figure 4.4: Training and validation loss curves of ResNet50 from MFCC feature
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Table 4.1 states the precision, recall, f1-score, and support training of the Mozilla
common voice dataset with the ResNet50 model. We got an accuracy of 0.91 by
training this dataset with ResNet50. Here for Females, the precision value, Recall
value & the F1-score are 0.97, 0.84, and 0.94 respectively. Also, for males, the
precision value, Recall value & the F1-score are 0.86, 0.98, 0.91 respectively.

Class Precision Recall F1-Score
Female 0.97 0.84 0.90
Male 0.86 0.98 0.91

Table 4.1: Classification report of ResNet50 from MFCC feature

The confusion matrix generated by ResNet50 is given below

Figure 4.5: Confusion matrix of ResNet50 from MFCC feature
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In EfficientNetB0 with MFCC, Figure 4.6 and Figure 4.7, we found the best
accuracy rate. Our val accuracy improved is 0.91266. So this is our best model for
EfficientNetB0 and we have tested this model.

Figure 4.6: Training and validation accuracy curves of EfficientNetB0 from MFCC
feature

Figure 4.7: Training and validation loss curves of EfficientNetB0 from MFCC feature
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Table 4.2 states the precision, recall, f1-score, and support training of our dataset
with the EfficientNetB0 model. We got an accuracy of 0.95 by training our dataset
with EfficientNetB0. Here for females, we got the score of 0.97, 0.93, and 0.95 and
for males, we got 0.93, 0.98, 0.95 as the value of Precision, Recall, and F1-score
accordingly.

Class Precision Recall F1-Score

Female 0.97 0.93 0.95

Male 0.93 0.98 0.95

Table 4.2: Classification report of EfficientNetB0 from MFCC feature

The confusion matrix generated by is EfficientNetB0 given below

Figure 4.8: Confusion matrix of EfficientNetB0 from MFCC feature
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In InceptionV3 with MFCC, Figure 4.9 and Figure 4.10, our val-accuracy was also
0.92012 in epoch 48. So this is our best model for InceptionV3 and we have tested
through this model.

Figure 4.9: Training and validation accuracy curves of InceptionV3 with MFCC
feature

Figure 4.10: Training and validation loss curves of InceptionV3 with MFCC feature
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Table 4.3 states the precision, recall, and F1-score, support training our dataset
with the InceptionV3 model. We got an accuracy of 0.95 by training our dataset
with InceptionV3. Here for females, we got the score of 0.94, 0.98, and 0.96 and
for males, we got 0.98, 0.93, 0.95 as the value of Precision, Recall, and F1-score
accordingly.

Class Precision Recall F1-Score

Female 0.94 0.98 0.96

Male 0.98 0.93 0.95

Table 4.3: Classification report of InceptionV3 with MFCC feature

The confusion matrix generated by is InceptionV3 given below:

Figure 4.11: Confusion matrix of InceptionV3 with MFCC feature
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In DenseNet-121 with MFCC, Figure 4.12 and Figure 4.13, our val-accuracy was
also 0.89021 in the 49th epoch. So this is our best model for DenseNet-121 and we
have tested through this model.

Figure 4.12: Training and validation accuracy curves of DenseNet-121 with MFCC
feature

Figure 4.13: Training and validation loss curves of DenseNet-121 with MFCC feature
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Table 4.4 states the precision, recall, and F1-score, support training our dataset
with the DenseNet-121 model. We got an accuracy of 0.88 by training our dataset
with DenseNet-121. Here for females, we got the score of 0.98, 0.79, and 0.87 and
for males, we got 0.82, 0.98, 0.90 as the value of Precision, Recall, and F1-score
accordingly.

Class Precision Recall F1-Score

Female 0.98 0.79 0.87

Male 0.82 0.98 0.90

Table 4.4: Classification report of DenseNet-121 with MFCC feature

The confusion matrix generated by is DenseNet-121 given below:

Figure 4.14: Confusion matrix of DenseNet-121 with MFCC feature

In ResNet50 with STFT, figures 4.15 and 4.16, the graph produced by training
the ResNet50 model. Our val accuracy is 0.87260 which was found in epoch 43.
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Figure 4.15: Training and validation accuracy curves of ResNet50 from STFT feature

Figure 4.16: Training and validation loss curves of ResNet50 from STFT feature
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Table 4.5 states the precision, recall, and f1-score, supporting training our dataset
with ResNet50 model. We got an accuracy of 0.91 by training our dataset with
ResNet50. Here for females, we got the score of 0.97, 0.85, and 0.91 and for males,
we got 0.87, 0.97, 0.92 Precision, Recall, and F1-score accordingly.

Class Precision Recall F1-Score

Female 0.97 0.85 0.91

Male 0.87 0.97 0.92

Table 4.5: Classification report of ResNet50 from STFT feature

The confusion matrix generated by ResNet50 is given below

Figure 4.17: Confusion matrix of ResNet50 from STFT feature
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In EfficientNetB0 with STFT, Figure 4.18 and Figure 4.19, we found the best
accuracy rate. Our val accuracy improved is 0.83734 from epoch 48. So this is our
best model for EfficientNetB0.

Figure 4.18: Training and validation accuracy curves of EfficientNetB0 from STFT
feature

Figure 4.19: Training and validation loss curves of EfficientNetB0 from STFT feature

32



Table 4.6 states the precision, recall, f1-score, and support training of our dataset
with the EfficientNetB0 model. We got an accuracy of 0.89 by training our dataset
with EfficientNetB0. Here for females, the values of Precision, Recall, and F1-score,
we got 0.96, 0.82, and 0.88 and for males, we got 0.84, 0.96, and 0.90 respectively.

Class Precision Recall F1-Score

Female 0.96 0.82 0.88

Male 0.84 0.96 0.90

Table 4.6: Classification report of EfficientNetB0 from STFT feature

The confusion matrix generated by is EfficientNetB0 given below

Figure 4.20: Confusion matrix of EfficientNetB0 from STFT feature
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In InceptionV3 with STFT, Figure 4.21, and Figure 4.22, our val-accuracy was
also 0.87607 in epoch 46. So this is our best model for InceptionV3.

Figure 4.21: Training and validation accuracy curves of InceptionV3 with STFT
Feature

Figure 4.22: Training and validation loss curves of InceptionV3 with STFT Feature
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Table 4.7 states the precision, recall, and F1-score, support training our dataset
with the InceptionV3 model. We got an accuracy of 0.94 by training our dataset
with InceptionV3. Here for females, the values of Precision, Recall, and F1-score,
we got 0.96, 0.92, and 0.94 and for males, we got 0.92, 0.96, and 0.94 respectively.

Class Precision Recall F1-Score

Female 0.96 0.92 0.94

Male 0.92 0.96 0.94

Table 4.7: Classification report of InceptionV3 with STFT Feature

Confusion matrix generated by is InceptionV3 given below:

Figure 4.23: Confusion matrix of InceptionV3 with STFT Feature
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In DenseNet-121 with STFT, Figure 4.24 and Figure 4.25, our val-accuracy was
also 0.87340 in the 44th epoch. So this is our best model for DenseNet-121 and we
have tested through this model.

Figure 4.24: Training and validation accuracy curves of DenseNet-121 with STFT

Figure 4.25: Training and validation loss curves of DenseNet-121 with STFT
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Table 4.8 states the precision, recall, and F1-score, support training our dataset
with the DenseNet-121 model. We got an accuracy of 0.84 by training our dataset
with DenseNet-121. Here for females, the values of Precision, Recall, and F1-score,
we got 0.96, 0.72, and 0.82 and for males, we got 0.77, 0.97, and 0.86 respectively.

Class Precision Recall F1-Score

Female 0.96 0.72 0.82

Male 0.77 0.97 0.86

Table 4.8: Classification report of DenseNet-121 with STFT

Confusion matrix generated by is DenseNet-121 given below:

Figure 4.26: Confusion matrix of DenseNet-121 with STFT

In ResNet50 with STFT & MFCC combo, figures 4.27 and 4.28, the graph pro-
duced by training the ResNet50 model. Our val accuracy is 0.90652 which was found
in epoch 47.
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Figure 4.27: Training and validation accuracy curves of ResNet50 from STFT &
MFCC combination Feature

Figure 4.28: Training and validation loss curves of ResNet50 from STFT & MFCC
combination Feature
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Table 4.9 states the precision, recall, f1-score, and support training of our dataset
with ResNet50 model. We got an accuracy of 0.95 by training our dataset with
ResNet50. Here for females, the values of Precision, Recall, and F1-score, we got
0.96, 0.94, and 0.95 and for males, we got 0.94, 0.96, and 0.95 respectively.

Class Precision Recall F1-Score

Female 0.96 0.94 0.95

Male 0.94 0.96 0.95

Table 4.9: Classification report of ResNet50 from STFT & MFCC combination

The confusion matrix generated by ResNet50 is given below

Figure 4.29: Confusion matrix of ResNet50 from STFT & MFCC combination
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In EfficientNetB0 with STFT & MFCC combination, Figure 4.30 and Figure 4.31,
we found the best accuracy rate. Our val accuracy improved is 0.90438 from epoch
42. So this is our best model for EfficientNetB0 and we have tested this model.

Figure 4.30: Training and validation accuracy curves of EfficientNetB0 from STFT
& MFCC combination Feature

Figure 4.31: Training and validation loss curves of EfficientNetB0 from STFT &
MFCC combination Feature
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Table 4.10 states the precision, recall, f1-score, and support training of our dataset
with the EfficientNetB0 model. We got an accuracy of 0.91 by training our dataset
with EfficientNetB0. Here for females, the values of Precision, Recall, and F1-score,
we got 0.96, 0.86, and 0.91 and for males, we got 0.88, 0.96, and 0.92 respectively.

Class Precision Recall F1-Score

Female 0.96 0.86 0.91

Male 0.88 0.96 0.92

Table 4.10: Classification report of EfficientNetB0 from STFT & MFCC combina-
tion

The confusion matrix generated by is EfficientNetB0 given below

Figure 4.32: Confusion matrix of EfficientNetB0 from STFT & MFCC combination
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In InceptionV3 with STFT & MFCC combo, Figure 4.33 and Figure 4.34, our val-
accuracy was also 0.91560 in epoch 41. So this is our best model for InceptionV3
and we have tested through this model.

Figure 4.33: Training and validation accuracy curves of InceptionV3 with STFT &
MFCC combination Feature

Figure 4.34: Training and validation loss curves of InceptionV3 with STFT &MFCC
combination Feature
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Table 4.11 states the precision, recall, and F1-score, support training our dataset
with the InceptionV3 model. We got an accuracy of 0.94 by training our dataset
with InceptionV3. Here for females, the values of Precision, Recall, and F1-score,
we got 0.95, 0.93, and 0.94 and for males, we got 0.93, 0.94, and 0.94 respectively.

Class Precision Recall F1-Score

Female 0.95 0.93 0.94

Male 0.93 0.94 0.94

Table 4.11: Classification report of InceptionV3 with STFT & MFCC combination

The confusion matrix generated by is InceptionV3 given below:

Figure 4.35: Confusion matrix of InceptionV3 with STFT & MFCC combination
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In DenseNet-121 with STFT & MFCC combo, 4.36 and Figure 4.37, our val-
accuracy was also 0.91480 in the 44th epoch. So this is our best model for DenseNet-
121 and we have tested through this model.

Figure 4.36: Training and validation accuracy curves of DenseNet-121 with STFT
& MFCC combination Feature

Figure 4.37: Training and validation loss curves of DenseNet-121 with STFT &
MFCC combination Feature
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Table 4.12 states the precision, recall, and F1-score, supporting training our dataset
with the DenseNet-121 model. We got an accuracy of 0.92 by training our dataset
with DenseNet-121. Here for females, the values of Precision, Recall, and F1-score,
we got 0.95, 0.88, and 0.92 and for males, we got 0.89, 0.95, and 0.92 respectively.

Class Precision Recall F1-Score

Female 0.95 0.88 0.92

Male 0.89 0.95 0.92

Table 4.12: Classification report of DenseNet-121 with STFT & MFCC combination

The confusion matrix generated by is DenseNet-121 given below:

Figure 4.38: Confusion matrix of DenseNet-121 with STFT & MFCC combination

45



Here in Table 4.13, we tried to compare all the values that we found from the models.
For this step, we calculate the weighted average of all models with their inputs.

Models Inputs Accuracy Precision Recall F1-Score

ResNet50 MFCC 0.91 0.915 0.91 0.905

ResNet50 STFT 0.91 0.92 0.91 0.915

ResNet50 STFT&MFCC 0.95 0.95 0.95 0.95

EfficientNetB0 MFCC 0.95 0.95 0.955 0.95

EfficientNetB0 STFT 0.89 0.90 0.89 0.89

EfficientNetB0 STFT&MFCC 0.91 0.92 0.91 0.915

InceptionV3 MFCC 0.95 0.96 0.955 0.955

InceptionV3 STFT 0.94 0.94 0.94 0.94

InceptionV3 STFT&MFCC 0.94 0.94 0.935 0.94

DenseNet-121 MFCC 0.88 0.90 0.885 0.885

DenseNet-121 STFT 0.84 0.865 0.845 0.84

DenseNet-121 STFT&MFCC 0.92 0.92 0.915 0.92

Table 4.13: Comparison among all the models

In the above table, we can see that the InceptionV3 with MFCC feature makes
the best score among all the models with their inputs which is 0.95, 0.96, 0.955,
0.955 of Accuracy, Precision, Recall & F1-Score accordingly.
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Chapter 5

Conclusion

In the final stretch, our study on gender categorization in Bangla utilizing deep
learning-based voice analysis provided light on the complexities of vocal communi-
cation and its prospective applications. Our research has emphasized the difficulties
presented by the vast variety of tones, emotions, and similarities between male and
female voices in the Bangla language. However, our deep learning models, such as
ResNet50, EfficientNetB0, DenseNet-121, and InceptionV3, have proved to be effec-
tive in identifying gender-specific speech patterns. Model InceptionV3 and Efficient
Net B0 have the highest validation accuracy of 95% over other models. Our discov-
eries have far-reaching ramifications in a variety of fields. Voice analysis’ capacity
to reliably identify gender opens the possibility to customized offerings, targeted
marketing strategies, and enhanced human-computer connection. Furthermore, our
research advances the area of speech and language research by expanding our grasp
of the intricacies of the Bangla language. We gained insight into the many facets of
communication by investigating the link between gender and voice features. We re-
alize that our research has limitations. Our deep learning models’ performance may
be improved further by continuing to investigate advanced network designs, feature
engineering approaches, and data augmentation strategies. As the area evolves, our
findings lay the groundwork for future research, promoting additional inquiry and
innovation and opening the path for the creation of gender identification systems in
other languages and fields.
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