
Deep Learning Based Crowd Monitoring And Person
Identification System

by

Mohammad Fahim Haque
18201141

Dipto Sarkar
18201182

Tawhid Al Muhaimin Choudhury
18201191

Samiul Hoque Rafi
18201178

Md Shajidur Rahim
18101535

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
September 2023

© 2023. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The Final thesis report submitted is our own original work while completing
our Computer Science and Engineering degree at BRAC University.

2. The Final thesis does not contain material previously published or written
by a third party, except where this is appropriately cited through full and
accurate referencing.

3. The Final thesis does not contain material that has been accepted or submit-
ted, for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Mohammad Fahim Haque
18201141

Dipto Sarkar
18201182

Tawhid Al Muhaimin Choudhury
18201191

Samiul Hoque Rafi
18201178

Md Shajidur Rahim
18101535

i

Approval

The Final thesis report titled “Deep Learning Based Crowd Monitoring And Person
Identification System” was submitted by

1. Mohammad Fahim Haque(18201141)

2. Dipto Sarkar(18201182)

3. Tawhid Al Muhaimin Choudhury(18201191)

4. Samiul Hoque Rafi(18201178)

5. Md Shajidur Rahim(18101535)

Of Summer, 2023 has been accepted as satisfactory in partial fulfillment of
the requirement for the degree of B.Sc. in Computer Science and Engineering on
September 25, 2023.

Examining Committee:

Supervisor:
(Member)

Prof. Dr. Amitabha Chakrabarty, PhD
Professor

Department of Computer Science and Engineering
BRAC University

Thesis Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam
Professor

Department of Computer Science and Engineering
BRAC University

ii

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
BRAC University

iii

Abstract

In this paper, we propose a deep learning-based crowd monitoring and person iden-
tification system and a crowd-video dataset to address the challenges posed by the
recent COVID-19 pandemic or future pandemics may occur, where maintaining so-
cial distance in public places is necessary. The system can be also implemented
where crowd monitoring is necessary. For instance, public places like bank booths,
airports, train stations, hospitals, tourist attractions, public transportation hubs,
stadiums, arenas, etc. The system combines person tracking and social distance
measurements to accurately detect individuals who may unintentionally violate the
rules due to a lack of spatial awareness. To implement the system, a custom dataset
was created to evaluate and tackle perspective correction and person-only detec-
tion issues. Three popular object detection models: YOLOv8, YOLOv7, and Faster
R-CNN with and without the DeepSort tracking algorithm were used and a com-
parison of their performances is demonstrated. To build our system we took two
different approaches. In the first approach, we used Faster R-CNN & YOLOv8 for
person identification, and for tracking, we used the SORT tracking algorithm. In the
second approach, we used YOLOv7 & YOLOv8 for person detection and DeepSort-
based tracking algorithm which generates unique IDs and successfully tracks and re-
identifies each person frame by frame using Kalman filter and Hungarian algorithm.
The experimental results show that all models can accurately detect humans with
90% accuracy and estimate the distance between them. However, Faster R-CNN
falls short in real-time human detection, whereas YOLOv8 outperforms YOLOv7
in terms of speed and detection accuracy. Still, YOLOv8 is relatively new and has
less support for implementation. Thus, YOLOv7 is chosen for implementation in
mobile, micro-controller-based, or IoT devices, as it offers better support for im-
mediate implementation. The proposed system is efficient, accurate, and does not
require human supervision. It includes a log system to track violations with frame
rates and unique IDs. The system was tested using our custom dataset, and positive
results were achieved, indicating its potential usefulness in crowd monitoring and
social distance enforcement.

Keywords: COVID-19; Faster R-CNN; YOLOv8; YOLOv7; DeepSort; IoT;
micro-controller

iv

Acknowledgement

First and foremost, we would want to express our gratitude to Almighty Allah for
enabling us to finish our thesis on schedule and without hindrance.

Having stated that, we want to thank Prof. Dr. Amitabha Chakrabarty(PhD),
our esteemed lecturer and supervisor, for his steadfast encouragement and vigilant
supervision, which enabled us to finish our assignment. We also want to express our
gratitude to our devoted friends for standing by us during the tough times. Finally,
without our parents’ constant support, it might not be conceivable. We are very
close to graduation thanks to their kind help and prayers.

v

Table of Contents

Declaration i

Approval ii

Abstract iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables ix

Nomenclature x

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Research Objective . 3
1.4 Research contributions . 4

2 Overview of Social Distance Monitoring System 5
2.1 Person detection algorithms . 5

2.1.1 R-CNN . 6
2.1.2 Fast R-CNN . 7
2.1.3 Faster R-CNN . 8
2.1.4 YOLO . 9
2.1.5 Comparative analysis of yolo models 11
2.1.6 SSD . 17

2.2 Tracking algorithms . 17
2.2.1 SORT . 18
2.2.2 DeepSORT . 18
2.2.3 Kalman filter . 19
2.2.4 Mean shift . 19
2.2.5 Hungarian algorithm . 20
2.2.6 Particle filter . 20

2.3 Overview of a social distance monitoring framework 21

vi

3 Related Works 23
3.1 Literature review . 23
3.2 Comparative analysis and discussion 25

4 Custom Dataset 28
4.1 Custom Dataset . 28
4.2 Data processing and training . 30
4.3 Model Implementation . 30

5 Methodology 31
5.1 Our implemented Detection algorithm 31
5.2 Our implemented tracking algorithm 32
5.3 Our Proposed System . 32

5.3.1 Faster R-CNN/YOLOv8 & tracker(without DeepSORT) based
system . 32

5.3.2 YOLOv7/YOLOv8 & DeepSORT based system 34

6 Implementation and Results 37
6.1 Faster R-CNN & YOLOv8 based system implementation(without

DeepSort) . 37
6.2 YOLOv7/v8 & Deepsort based system implementation 38

6.2.1 YOLOv7 & Deepsort based system results 39
6.2.2 YOLOv8 & Deepsort based system results 41

6.3 Result Analysis . 44
6.3.1 Performance Analysis of Both Systems 44
6.3.2 Performance Metrics . 44
6.3.3 Performance Metrics Visulalization 46
6.3.4 Confusion Matrix & F1-score 48
6.3.5 Log system . 49

7 Conclusion & Future Work 50

vii

List of Figures

1 Year wise evolution of object detection algorithms[6] 6
2 Object detection system overview(RCNN) 6
3 RCNN conv layers . 7
4 Fast R-CNN . 8
5 Training and test time comparison between object detection algorithms 8
6 Faster R-CNN . 9
7 Test-time speed of object detection algorithms 9
8 The yolo model . 10
9 The yolo model architecture . 11
10 YOLOv2 and other models comparison 12
11 YOLOv3 improvement comparison 13
12 YOLOv6 framework . 14
13 YOLOv6 framework comparison . 14
14 YOLOv7 framework[13] . 15
15 YOLOv7 comparative analysi . 16
16 YOLOv8 comparison with predecessors 17
17 Overview of DeepSORT algorithm using Kalman filter 18
18 Kalman filter . 19
19 Overview of a social distance monitoring system[17] 22

20 Faster R-CNN/YOLOv8 & tracker(without DeepSORT)based system 33
21 YOLOv7/YOLOv8 & DeepSORT based system 35
22 Kalman Filter operation[36] . 36

23 implemented models results of type O, M, and A 38
24 Implemented system results of type C, p, T2, T1, and P2 40
25 Implemented system results of type C6, Ox and p3 43
26 P curve of YOLOv7 and YOLOv8 . 46
27 R curve of YOLOv7 and YOLOv8 47
28 PR curve of YOLOv7 and YOLOv8 47
29 Confusion Matrix of YOLOv7 and YOLOv8 48
30 F1 curve of YOLOv7 and YOLOv8 48
31 Log System Diagram . 49
32 Log System Diagram . 49

viii

List of Tables

I Comparative analysis based on fps, maP/accuracy, Total frames, de-
tection algorithm . 26

II Custom dataset preprocessing data table 29

III Comparison between models . 38
IV Custom dataset(YOLOv7 ”best.pt” weight) pre-processing data table 39
V Custom dataset(YOLOv8 ”best.pt” weight) pre-processing data table 42
VI Performance analysis table . 44
VII True & False positives & negetives 45

ix

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

CGV PR Color to Gray Video Person Re-identification

CNN Convolutional Neural Network

COCO Common Objects In Context dataset

CV Computer Vision

DL Deep Learning

FRCNN Faster Region-based Convolutional Neural Networks

GAP Global Average Pooling

GMP Global Max Pooling

HOG Histogram of Oriented Gradients

HSV Hue Saturation Value

LSVM Lagrangian Support Vector Machine

PCB Printed Circuit Board

ROIF Region-of-Interest based Features

SDPL Semicoupled Dictionary Pair Learning

WHO World Health Organization

Y OLO You Only Look Once

x

Chapter 1

Introduction

1.1 Background
The term ”Technology” and its applications have changed significantly since the
20th century and have continued to change through time. Our world is increas-
ingly dominated by technology. The development of human civilization has been
significantly influenced by both technological and cultural advancements. Technol-
ogy offers creative solutions to do tasks through a variety of clever and imaginative
methods.

All of those technologies could not prevent COVID-19 and its devastating ef-
fects. Technology continues to play the biggest role whenever a situation calls for
it. The most important preventive measure for controlling efforts to halt the devel-
opment of COVID-19 is social distancing. The World Health Organization (WHO)
recommends that people should keep a distance of at least one meter between each
other to prevent the spread of this disease. And now technology enters the picture,
bringing with it research on a variety of cutting-edge techniques for social isolation
across a range of segments. Because coronavirus disease has had such a detrimental
impact on the global economy, this research aims to lessen the disease’s effects while
reducing resource consumption. However, the approach of this research is unique as
the system that will be used in this research can be customizable to be used in other
similar situations where person detection and tracking is a must like bank booths,
educational institutions, hospitals, and many others.

Therefore, in this research paper, we proposed an approach how to monitor and
track social distance, person identification, and overall crowd monitoring system.
We also developed a custom dataset for training and evaluating our system through
deep learning. For this, we have used a deep sort tracking algorithm-based system
using deep learning models like YOLOv8, YOLOv7, and FRCNN to perform a
comparative analysis and present the best solution based on the current technological
support to implement the system in an IoT device to perform in real-world scenarios.

1

1.2 Problem Statement
The COVID outbreak in this globe has had a variety of effects on the world, including
economic ones. Worldwide, millions of people perished as a result of this disease’s
protracted uncontrollable devastation. The concept of social distancing has become
more important for the implementation of many systems in all fields of endeavor,
particularly in computer vision and deep learning. However, previous computer-
vision-based systems have significant flaws. For instance, low light conditions are
ignored, and methods for mapping pixel distance to geometric units are not well
developed. Therefore, it is difficult to manually detect and maintain social distance
in nations with dense populations, making it difficult to avert pandemic conditions.

To stop the transmission of the virus and safeguard public health, it is crucial
to maintain social distancing and surveillance procedures. Manually monitoring
these measures, however, is expensive, time-consuming, and error-prone. To de-
tect, track, and evaluate human activities and behaviors in a variety of settings,
including crowded locations, workplaces, educational institutions, and public trans-
portation, it is necessary to develop an automated system that can use computer
vision techniques.

Such a system can help decision- and policy-making processes by offering real-
time feedback, alerts, and statistics to the public and the government. The main
difficulties in creating such a system are: (1) how to accurately and robustly detect
and recognize humans and their poses, gestures, facial expressions, and interactions
in complex and dynamic environments; (2) how to measure and quantify the level
of social distance and adherence to the surveillance rules; and (3) how to deal with
the ethical, privacy, and security issues associated with the collection and processing
of sensitive data. The purpose of this thesis is to address these issues by offering
new computer vision techniques and algorithms that can track social isolation and
surveillance utilizing a variety of cameras and sensors with our novel dataset. The
expected outcomes of this thesis are (1) a thorough review of the literature on the
state-of-the-art methods and applications of computer vision for social distancing
and surveillance; (2) a novel framework that can integrate various data sources and
perform multi-modal analysis of human activities and behaviors; (3) a set of exper-
iments and evaluations that can show the efficacy and efficiency of the suggested
methods and algorithms based on our custom dataset (4) a detailed analysis of the
results.

Firstly, in a multiple or non-overlapping camera network, re-identification is
very challenging. Because multiple cameras will overlap differentiating the surveil-
lance can be a lengthy process. Additionally, face detection and reidentification
from video surveillance is a significant obstacle. Because we have to crop images
from video clips frame by frame and then detection and identification can be done.
Finally, reidentification based on visual appearance is a huge task because of the
many variations of visual appearance and different angles of the cameras. Also,
detection and identification in an environment with pedestrians with many various
appearances can be a heckle. Moreover, the angle of the cameras may vary a lot as
different angles may cause different widths and heights of the persons, and distance
measurements may vary according to that.

2

Sometimes the re-identification process becomes a challenging task as visual ap-
pearance can be very dynamic. To solve visual appearance variation which is caused
by various backgrounds, illumination, and variation poses these kinds of challenges,
we can use a method called ROIF which can make person re-identification more
accurate in comparatively less time by combining textural and chromatic features.
In this research, an efficient way for the ROIF method was shown and the imple-
mentation was done by HSV histogram and chromatic content[1].

In [2], sometimes the surveillance camera used to detect persons can be set to
gray mode due to special cases like saving batteries or some other cases. In this
case, for re-identification between true-color and grayscale mode pedestrian videos,
we use a method called CGVPR. We can use the SDPL approach to re-identify
persons in these situations to do it more efficiently.

In [3], Zhu points out that the DL-based person ReID method’s main drawback
is the lack of training sets. Very deep models require very big training sets to
work effectively. To solve this problem we can use body shape similarity. A walking
person can be identified faster if we include body shape similarity and parts location
in our identification model. We can implement these features to enhance our ReID
system’s performance.

1.3 Research Objective
The purpose of this research is to create a program for crowd monitoring to enforce
social distancing based on deep learning and computer vision and to populate a cus-
tom dataset to test the program. Computer vision techniques will be implemented
to improve the accuracy of the program. The objectives are:

1. To create a system that can be implemented on IoT devices.

2. To create a system that can be customizable so that it can be used in other
similar situations where social distancing and object tracking is a must(Bank
booth, Hospitals, Institution, Factory, etc.)

3. To develop a custom dataset for training and evaluating the system.

4. To ensure social stability during times of pandemic such as COVID-19.

5. To identify the people who do not follow the rules of social distancing.

6. To reduce COVID-19 or other contagious disease infection rate.

7. Monitoring and tracking of the public space to ensure that only authorized
individuals enter and exit it.

8. Raising people’s awareness to help stop COVID-19, other contagious viruses,
and flu from spreading.

3

1.4 Research contributions
In our paper, we managed to make a system where deep sort is used for tracking
where we both track and generate unique IDs for persons that are detected using
YOLOv8 and YOLOv7. We also performed Faster R-CNN to identify individuals
and measure distance. Therefore, we specifically add the following contributions to
this paper based on our research-

• We develop a program for crowd monitoring to enforce social distancing with
deep learning and computer vision based on our comparative analysis which
is customizable for other similar situations.

• We develop a custom dataset for training and evaluating the system and com-
pare the results using performance metrics.

• We present a comparative analysis of the proposed system we designed to mon-
itor and track social distancing based on three deep learning models: YOLOv8,
YOLOv7, and R-CNN.

• We make our code public with the implementation processes documented for
further development.

• We optimize the system code for computer vision-based IoT devices and similar
projects.

4

Chapter 2

Overview of Social Distance
Monitoring System

A social distance monitoring system may consist of several deep-learning models
and tracking algorithms. The overall system varies between different approaches.
A social distance monitoring system tracks and analyzes the space between people
in public areas to make sure that social distancing rules are being followed. It uses
video analysis algorithms and computer vision techniques to track and recognize
people, evaluate their distances, and produce alerts or visual cues when people are
not keeping a safe distance.

2.1 Person detection algorithms
The Viola-Jones object detection framework[4] and Histogram of Oriented Gradients
(HOG) are two well-known machine learning methods for object detection. Face
detection was the main reason for the introduction of the earlier framework. The
three key steps of the method were the integral image, the Adaboost classifier, and
the Classifier Cascade. But Robert K. McConnell of Wayland Research Inc. unveiled
HOG in 1986. First, cells are used to split the picture into smaller sections. Each
pixel in the cell is then assigned a HOG, and the sum of all the histograms is referred
to as a descriptor. Typical classifiers feed these descriptions as features. SVM was
used by Dalal and Triggs as a classifier to categorize an item using these attributes[5].
Figure 1 shows the evolution of several significant object identification techniques
throughout time. Researchers focus on single-stage object detectors, particularly
YOLO algorithms, because of the high model complexity and significant resource
consumption of two-stage object detectors.

Deep learning is excelling in a variety of disciplines in addition to object recog-
nition. To effectively handle the data relevant to healthcare, deep learning provides
several models. Different sources, including X-ray, CT, and MRI, are now often
used to check for potential viral infections since the Covid-19 epidemic began. The
function and application of several deep models for COVID-19 infection detection
are outlined in[7]. In terms of feature extraction from visual inputs, CNN has be-
come one of the most well-liked deep learning methods. Using the Crow search

5

Figure 1: Year wise evolution of object detection algorithms[6]

algorithm (CSA) to find the ideal hyperparameters, for instance, the CNN-based
hand identification system has achieved 100% training and testing accuracy[8].

Person identification is a very essential component of computer vision, partic-
ularly in applications like surveillance systems, IoT devices, crowd analysis, au-
tonomous driving, and social distance measurement. These algorithms identify in-
dividuals within images or video frames. Here are some popular person detection
algorithms:

2.1.1 R-CNN
A selective search-based approach was taken by et al. [9] which Ross Girshick
introduced to tackle the problem of picking a large number of regions by extracting
two thousand areas from images and dubbed the region proposals. So, now it has
to deal with two thousand regions whereas previously it had to categorize a large
number of areas in ”Object detection system overview” figure 2.

Figure 2: Object detection system overview(RCNN)

The CNN-based neural network gets the two thousand areas where suitable sug-

6

gestions are disfigured into a square and also outputs a vector with 4096-dimensional
qualities. The convolutional neural network in figure 2.1.1, with the function of a
feature extractor and the output layer is made up of features taken from images and
input into an SVM for the classification of the existence of the item in that regional
proposition. The system is also capable of forecasting four offset values for further
improvement of the bounding box accuracy and also determining whether an object
is presented inside the region that is suggested. For example, if a suggested area
occurs then the algorithm would be able to predict the person but the person’s face
might get sliced in that region proposal. Therefore, the offset values will help modify
the proposed region’s bounding box.

Figure 3: RCNN conv layers

2.1.2 Fast R-CNN
To tackle some drawbacks of the earlier paper et al. [9], the author introduced
Fast R-CNN, which is a fast object detection method. Even though the technique
has many improvements over the R-CNN algorithm, the basic structure is identical.
Fast R-CNN creates a CNN feature map to input the image in a convolutional
neural network. Fast R-CNN takes region-based ideas from this CNN feature map
in contrast to R-CNN, which gets two thousand region proposals to the CNN one at
a time. To maintain the size of these region suggestions and make them compatible
with a fully linked layer, they are then warped into squares and input into a region
of Interest pooling layer.

This configuration requires one forward pass through the CNN to build the
convolutional feature map for the whole picture. Fast R-CNN outperforms R-CNN
in terms of speed by removing the requirement to continually input several area
suggestions through CNN. The approach is more effective and practical for real-
time object identification applications since the feature map creation only has to be
done once for the full image.

7

Figure 4: Fast R-CNN

Figure 5: Training and test time comparison between object detection algorithms

2.1.3 Faster R-CNN
Selective searching is utilized by The R-CNN and fast R-CNN to generate region
proposals for identifying objects. This approach has a drawback in that it requires
too long and is slow, which reduces the network’s overall performance. Shaoqing Ren
developed a revolutionary recognition of objects technique to address this problem
and do away with the necessity for selective search. Instead, this novel method
enables the network to self-learn and offer regional ideas. The process of item
identification becomes substantially more rapid and efficient as a result [10].

The image is input into a convolutional network, similar to Fast R-CNN, to
generate a convolutional feature map. Instead of using a selective search technique
on the feature map to produce the region suggestions, another network is used to
anticipate the area ideas. The anticipated region suggestions are then reshaped
using a RoI pooling layer to categorize the image within the proposed region and
predict the offset values for the box boundaries.

8

Figure 6: Faster R-CNN

Figure 7: Test-time speed of object detection algorithms

2.1.4 YOLO
To locate the item within the picture, all of the earlier object detection methods
used areas. The full picture is not viewed by the network. Rather, areas of the
image with a high likelihood of containing the item. As opposed to the region-based
methods mentioned above, YOLO, or You Only Look Once, is a very distinct object
identification approach. One neural network in YOLO predicts the bounding boxes
and the class probabilities for these boxes.

For YOLO to function, we first divide a picture into an SxS grid and then take
m bounding boxes for each grid. This type of network generates a class probability
and offset values for bounding every box. The item is located within the picture by
selecting the bounding boxes with the class probability over a threshold value.

YOLO is considerably quicker than other object detection methods(45 frames
per second). The YOLO algorithm’s weakness is that it has trouble recognizing little

9

Figure 8: The yolo model

things in the image; for instance, it could have trouble spotting a flock of birds. The
algorithm’s geographical limitations are to blame for this. In paper [11], where a
yolo algorithm model ilustration was shown in figure8.

YOLO is an object detection algorithm that revolutionized the field by intro-
ducing a new approach. Unlike traditional methods that utilize separate stages for
object classification and localization, YOLO takes a unified approach by employing
a single neural network to predict bounding boxes and class probabilities simul-
taneously. This end-to-end architecture allows YOLO to achieve real-time object
detection with impressive accuracy. By making predictions in one pass through the
network, YOLO reduces redundancy and achieves a good balance between speed and
precision. The YOLO algorithm has been widely adopted and has become a popu-
lar choice for various computer vision applications, including autonomous vehicles,
surveillance systems, and object recognition tasks.

The YOLO algorithm utilizes a straightforward deep convolutional neural net-
work (CNN) architecture to perform object detection on input images. Here CNN
model is the backbone of YOLO and holds one of the most important roles in
identifying and localizing objects. In this CNN the architecture consists of many
convolutional layers, which are responsible for extracting hierarchical features from
the input image. These features are then fed into fully connected layers to make
predictions about object classes and bounding box coordinates. By employing this
CNN architecture, YOLO is capable of efficiently and accurately detecting objects in
real time, making it a popular choice for various computer vision applications. This
paper [11], where from the figue 9 we get a to know how the yolo model architecture
formed.

During training in YOLO, it is essential to allocate a single bounding box pre-
dictor to be responsible for every object in the image. To accomplish this, yolo
determines which predictor has the largest number of IOUs with a grounding truth

10

Figure 9: The yolo model architecture

bounding box. For this strategy, the predictors of this bounding box grow more
specialized as every predictor becomes better at forecasting specific item sizes, as-
pect ratios, or classes. By assigning responsibility based on the highest IOU, YOLO
improves the overall recall score by ensuring that each object is accurately predicted
by the most suitable bounding box predictor.

The YOLO family of object detection models has undergone significant ad-
vancements and iterations over the years. It includes a total of 9 official versions:
YOLO (2016), YOLOv2 (2017), YOLOv3 (2018), YOLOv4 (2020), YOLOv5 (2020),
YOLOv6 (2021), YOLOv7 (2022), YOLOv8 (2023), and YOLO-NAS (2023). These
versions represent the evolution of the YOLO algorithm, incorporating improve-
ments in performance, accuracy, and efficiency.

2.1.5 Comparative analysis of yolo models
YOLOv2: YOLOv2 also known as YOLO9000, was released with a major upgrade
and features that YOLO had. In the upgrade, YOLOv2 has an improved feature
extraction and representation where it uses Darknet-19 as its CNN backbone which
is another improved version of VGGNet architecture with both convolutional and
pooling layers.

The main goals of YOLOv2 are to improve upon the speed and accuracy of
YOLO. To do that, techniques such as multi-scale training, anchor boxes, and an im-
proved detection system were implemented. Multi-scale training enables the model
to improve its performance across many scales because it can learn from objects of
different sizes. Anchor boxes were implemented to help in precise localization by
predicting bounding boxes relative to anchor shapes that were defined previously.

In the new upgrade of the previous version of YOLOv2, now it can detect many
object classes. It can identify a wide range of classes from different datasets using
the WordTree hierarchy. Therefore this new feature that YOLOv2 has makes it a
more capable object detection model with many variations.

11

In comparative analysis shown in [12] where in figure 10, YOLOv2 outperforms
YOLO when it comes to accuracy and detection. Its improved speed, accuracy, and
class detection is a significant improvement upon YOLO models.

Figure 10: YOLOv2 and other models comparison

YOLOv3: YOLOv3 is an enhanced version of the YOLO object detection
algorithm. It mainly increases accuracy and speed. YOLOv3 uses Darknet-53 CNN
architecture with 53 convolutional layers, which is based on ResNet. This allows
the model to achieve better results on object detection performance. In addition, it
includes bounding boxes of different sizes and ratios, improving detection for objects
of many sizes and shapes. It creates a Feature Pyramid Network(PFN), which allows
the detection of many scales. As a result, the model receives boosted performance on
small objects by getting multiscale representation. YOLOv3 can handle a broader
range of object sizes with various aspect ratios which is a big improvement on the
previous versions. In [12], shown in figure 11 we see the improvement comparison
of yolov3 comparing other models

YOLOv4: YOLOv4, an advanced iteration of the YOLO object detection algo-
rithm, introduced a new CNN architecture known as CSPNet. “Cross Stage Partial
Network” (CSPnet) is the altered and better version of the ResNet architecture
tailored for object detection despite its relatively shallow structure with more than
54 convolutional layers, CSPNet demonstrates exceptional performance on different
object detection benchmarks. It serves as a significant improvement over YOLOv3.

YOLOv3 and YOLOv4 both models implement bounding boxes with varied
scales and ratios to accurately measure the size and shape of detected objects.
YOLOv4 proposes a novel technique called ”k-means clustering” to generate these
bounding boxes. The approach involves applying an algorithm that is used to group
the ground truth bounding boxes into clusters and the cluster centroids used as
bounding boxes. This variation makes sure that the bounding boxes always align
with the detected objects no matter what size and shape they are.

12

Figure 11: YOLOv3 improvement comparison

Although YOLOv3 and YOLOv4 share a common loss function during model
training, YOLOv4 introduces an additional component known as ”GHM loss.” This
new term, based on the focal loss, aims to enhance the model’s performance when
dealing with imbalanced datasets. By incorporating GHM loss, YOLOv4 addresses
the challenge of training on datasets where certain object classes may be underrep-
resented or occur less frequently, resulting in improved detection accuracy.

YOLOv5: YOLOv5 is a model that builds upon its ancestors and is also open
source. It introduces some new features and enhancements. Ultralytics actively
maintains the model, by providing continuous updates and improving the algorithm.

Unlike the original YOLO, YOLOv5 uses a much more intricate architecture
known as EfficientDet, based on the EfficientNet network architecture. YOLOv5
uses this architecture to achieve improved accuracy and enhance the ability to detect
objects of many categories.

The novel approach of YOLOv5 is called ”dynamic anchor boxes”, which is
employed to generate anchor boxes. Which is later used as a clustering algorithm
to band those bounding boxes into many clusters and after that use the centroids
of these clusters as bounding boxes.

Moreover, ”spatial pyramid pooling” (SPP) is applied to increase the detection
capabilities for smaller objects. SPP incorporates a pooling layer which decreases the
structure’s resolution of the feature map, allowing YOLOv5 to identify the object at
different scopes. Although YOLOv4 also uses SPP, YOLOv5 implements different
and advanced SPP to improve performance.

Although YOLOv5 and YOLOv4 both use comparable loss functions during
model training, YOLOv5 has a novel component known as “CIoU loss”. This IoU
loss function is constructed to mitigate the challenges that come from imbalance
datasets, targeting to improve model performance.

YOLOv6: YOLOv6 is an upgrade to the earlier versions of object detection

13

algorithms. It has many improvements, one of them being the implementation
of EfficientNet-L2 CNN architecture. EfficientNet-L2 CNN architecture enhances
efficiency and performance compared to the architecture used in YOLOv5. The
model’s framework is illustrated in the figure 12 in [13].

Figure 12: YOLOv6 framework

Anchor box generation sees a novel approach in YOLOv6 with the implemen-
tation of ”dense anchor boxes”.This method allows for a more precise alignment
between the anchor boxes and the detected objects’ size and shape.

In paper [13], the performance of YOLOv6 has been evaluated and compared
to other cutting-edge methods, demonstrating its competitive results in figure 13.
The comparative analysis highlights the effectiveness and advancements offered by
YOLOv6 in the field of object detection.

Figure 13: YOLOv6 framework comparison

14

YOLOv7: YOLOv7 introduces several enhancements compared to its prede-
cessors. Notably, it employs the use of bounding boxes, a set of predetermined
boxes with different ratios. By incorporating nine anchor boxes, YOLOv7 achieves
improved object detection capabilities, enabling it to effectively detect objects of
diverse shapes and sizes. This advancement aids in minimizing false positives, en-
hancing the overall accuracy of the algorithm.

YOLOv7 introduces a significant enhancement through the utilization of a novel
loss function called ”focal loss.” In contrast to the last YOLO versions that employed
a standard cross-entropy loss, focal loss addresses the challenge of detecting small
objects by assigning lower weights to well-classified examples and prioritizing chal-
lenging instances—objects that pose greater difficulty in detection. This targeted
approach improves the model’s ability to accurately identify and localize objects,
particularly those that are typically harder to detect.

Unlike its predecessors, YOLOv7 operates at a resolution of 608 by 608 pixels,
surpassing the 416x416 resolution employed in YOLOv3. As a result, this increased
resolution enables YOLOv7 to effectively identify smaller objects and achieve en-
hanced overall accuracy in object detection tasks.The figure 14 shows the YOLOv7
framework.

Figure 14: YOLOv7 framework[13]

One significant benefit of YOLOv7 is its remarkable speed. It exhibits impres-
sive image processing capabilities, achieving a rate of 155 frames per second. This
speed surpasses that of other cutting-edge object detection algorithms, including
the original YOLO model, which could process a maximum of 45 frames per sec-
ond. Such rapid processing makes YOLOv7 highly suitable for real-time applications
that demand quick and responsive performance, such as surveillance systems and
self-driving cars.

In paper [13], when it comes to accuracy, YOLOv7 demonstrates commendable
performance in comparison in figure 15 to other object detection algorithms. On the

15

widely-used COCO dataset, it achieves an average precision of 37.2% when evaluated
at an IoU threshold of 0.5. This accuracy level is comparable to that of other
leading state-of-the-art object detection algorithms. A quantitative comparison of
its performance is depicted in the provided visual representation.

It is important to acknowledge that in terms of accuracy, YOLOv7 falls slightly
behind two-stage detectors like Faster R-CNN and Mask R-CNN. These two-stage
detectors often achieve higher average precision on the COCO dataset. However,
it is worth noting that the trade-off for this increased accuracy is longer inference
times, making YOLOv7 a more favorable choice for real-time applications where
speed is a critical factor.

Figure 15: YOLOv7 comparative analysi

YOLOv8: The most recent addition to the YOLO network is YOLO-v8, re-
leased by Ultralytics. While a formal research paper release is still pending and
further characteristics are waiting to be added to the YOLO-v8 system, early sim-
ilarities indicate that it surpasses its predecessors and establishes itself as the new
updated version of YOLO [14].

The provided figure 16, illustrates a comparison between YOLO-v8, YOLO-v5,
and YOLO-v6 models that have been trained on 640 different images. It demon-
strates that YOLO-v8 shows better throughput while maintaining the same figure
of parameters, representing efficient hardware utilization and architectural enhance-
ments. Ultralytics presents both YOLO-v8 and YOLO-v5, with YOLO-v5 showcas-
ing excellent real-time performance. Based on the primary execution results from
Ultralytics, it is proved that YOLO-v8 aims to prioritize high-speed inference on
constrained edges.

16

Figure 16: YOLOv8 comparison with predecessors

2.1.6 SSD
The Single Shot Detector (SSD) is a popular object detection algorithm used for effi-
cient object detection in images and videos. It performs both object localization and
classification simultaneously using a single pass of a convolutional neural network
(CNN). Instead of relying on object proposals, SSD discretizes the output space
into default bounding boxes with different aspect ratios and scales. It predicts the
presence of objects and adjusts the bounding box coordinates to better match the
object’s shape. By combining predictions from multiple feature maps with different
resolutions, SSD can handle objects of various sizes. Compared to methods that
require proposal generation and resampling, SSD is simpler and eliminates the need
for additional computation steps. It is easy to train, integrates well into detection
systems, and achieves competitive accuracy without sacrificing speed. Experimental
results on various datasets demonstrate the effectiveness and efficiency of SSD as a
unified framework for object detection tasks.

2.2 Tracking algorithms
There are several tracking algorithms that are used based on different situations
or different use cases based on the scenarios. These tracking algorithms might
perform differently based on those particular situations. Here are some of the notable

17

tracking algorithms:

2.2.1 SORT
A method for tracking multiple objects, Simple Online and Realtime Tracking
(SORT) focuses on the point and systematic algorithms. To increase SORT’s perfor-
mance, appearance information is included in[15]. Their capability to follow different
objects’ overstretched times of obstacle is made conceivable by this alteration, which
successfully brings down the recurrence of personality shifts.

This method combines frame-by-frame data using the Hungarian technique and
Kalman filtering in picture space with an association metric that estimates the over-
lapping of the bounding box. With this straightforward method, good performance
is achieved at rapid frame rates[15].

In[15], While attaining good tracking precision and accuracy overall, SORT
shows a disproportionately large sum of identity shifts. This is because the employed
association metric is only reliable in conditions of low state estimate uncertainty.
As a result, SORT struggles to track around occlusions that frequently exist in
front-view camera sequences.

2.2.2 DeepSORT
The SORT (Simple Online and Realtime Tracking) algorithm is combined with deep
learning techniques to create DeepSORT. To track and re-identify objects, especially
in busy environments, it employs the Kalman filter and a deep appearance descriptor
model.

Figure 17: Overview of DeepSORT algorithm using Kalman filter

SORT struggles to track across occlusions, which frequently happen in front-
view camera scenarios. To resolve this problem, a more knowledgeable measure
that incorporates motion and appearance data should be used in place of the asso-
ciation metric. Specifically, a convolutional neural network (CNN) was used that

18

has been trained on a sizable human re-identification dataset to distinguish pedes-
trians. By including this network, they improved the system’s robustness against
misses and occlusions while making it simple to use, effective, and relevant to online
applications[15].

2.2.3 Kalman filter
Based on erroneous observations, the Kalman filter is a recursive mathematical
process that determines the state of a dynamic system. The disciplines of computer
vision, robotics, and control systems are just a few that use it extensively. When
observations are imprecise and the system dynamics can be described by linear
equations, the Kalman filter performs exceptionally well.

In the presence of Gaussian noise, and under the assumption of linearity and
known model parameters, the Kalman filter offers an optimum approximation of the
state. The mean square error between the estimated state and the actual condition
is minimized. However, it might not function effectively in situations when the
system dynamics are very non-linear or non-Gaussian.

To accommodate non-linear system dynamics, extensions to the Kalman filter,
such as the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF),
approximate the dynamics using linearization or sampling methods.

Figure 18: Kalman filter

2.2.4 Mean shift
Mean Shift is a well-liked non-parametric clustering approach in computer vision
for applications like object tracking and picture segmentation. It is a mode-seeking
method that locates clusters or areas of interest by repeatedly moving a window or
kernel toward the mode (peak) of the data distribution.

The probability density function’s gradients are used by gradient-based feature
space analysis techniques to locate the maxima. Such techniques need an estimation
of the likelihood of density, which among other reasons makes them complicated.
The kernel is then moved by a predetermined length vector in the direction of

19

the largest increase in density in the gradient-based techniques. The step size, or
magnitude, must be properly selected. The challenge is figuring out how to select
an appropriate step size because a tiny step size may hinder convergence.

The primary issue with gradient techniques is resolved by the mean shift algo-
rithm. The underlying part behind the mean shift is to find out the points in the
D-dimensional feature space as an empirical probability density function, with dense
patches standing in for the local maxima of the underlying distribution. The local
density estimate is gradient ascension in the feature space till convergence. Follow-
ing the approach, stationary points match the distribution’s modes, and the same
stationary points are addressed as belonging to the same cluster. The adaptive step
size of the mean shift is determined by the gradient of the probability density[16].

2.2.5 Hungarian algorithm
The Hungarian algorithm is a method that solves the association problem in track-
ing. The deep sort algorithm heavily depends on two crucial algorithms namely
the Kalman filter and the Hungarian algorithm. Hungarian algorithm helps us to
identify whether an object is the same as the previous frame.

2.2.6 Particle filter
Particle filter methods use a collection of particles to describe an object’s state.
They are suitable for tracking in complex circumstances because they can manage
non-linear and non-Gaussian system dynamics.

The Particle Filter is a potent method used for state estimation and tracking in
many disciplines, including computer vision. It is also known as Sequential Monte
Carlo (SMC) or Sequential Importance Sampling (SIS).

The Particle Filter functions by using a collection of particles or samples to
represent the state of a system. Each particle represents a theory about the state of
the system and is paired with a weight that indicates how likely it is to be accurate.
The Particle Filter, also known as Sequential Monte Carlo (SMC) or Sequential
Importance Sampling (SIS), is a potent method used in many domains, including
computer vision, for state estimation and tracking. A set of particles or samples are
used by the Particle Filter to represent the state of a system. With a weight that
reflects its likelihood of being accurate, each particle represents a theory about the
system state.

Many other tracking algorithms sometimes are merged based on particular projects
to achieve outstanding results based on the environment or the requirements of the
project. Either way, all tracking algorithms have their strong and weak sides. There-
fore based on projects they may vary.

20

2.3 Overview of a social distance monitoring frame-
work

To evaluate real-time video or image data and gauge the distance between people in
a scene, computer vision systems that measure and track social distances use deep
learning models like YOLO, RCNN, and SSD. An overview of how such a system
usually functions is given below:

Data collection: Using a camera or a dataset, the system first gathers video
or still photos of the target area. The dataset may contain noise and varied angles.

Object detection and tracking: To locate and follow people in the video or
picture frames, the system uses object detection techniques. To accurately detect
and identify persons in a scene, methods like convolutional neural networks (CNNs)
or deep learning models can be applied.

Correction for perspective: The system makes adjustments for perspective
distortion brought on by the placement and angle of the camera. This guarantees
precise distance measurements while taking into account the spatial organization of
the scene and the camera’s field of view.

Distance calculation: The system determines the separation between pairs of
people in the scene using the corrected perspective. Depending on the individual im-
plementation, it may employ depth data from the camera or geometric calculations-
tions.

Distance thresholding: The system compares the determined distances to
a the predetermined threshold value that represents the advised social separation
distance. People who stay inside the threshold are thought to be keeping a healthy
social distance, but people who go past the threshold are identified as going against
the distance rules.

Monitoring and reporting: The system can continually observe the scene
while instantly updating the distance readings. It can provide reports, give statisti-
cal data, or visualize social distance compliance over time, allowing authors- ties to
spot trends and take the appropriate action.

Optimization and improvement: Depending on the unique environment and
needs, the system can be improved and optimized. The accuracy and dependability
of the distance measurements can be improved by using methods like background
subtraction, noise reduction, and adaptive thresholding.

It’s crucial to remember that, even though computer vision-based social distance
measuring systems can be quite helpful, they are not infallible and must be used
in conjunction with other safety precautions and recommendations made by health
authorities.

In[17], Transfer learning is used to increase the effectiveness of the detection
model for people in the above views, and the present architecture is expanded with
a new layer of overhead training.

21

Once the detection is done, using bounding box information, the centroid dis-
tance is calculated. Using the Euclidean distance, the distance was identified. After
the calculation of centroid distance, a predetermined threshold is used to find out
whether or not the distance between any two bounding box centroids is smaller than
the specified number of pixels. If two persons are near one another yet their distance
value is greater than the required minimum social distance, the bounding box’s color
is updated to red and the bounding box’s information is recorded in a violation set.
The adoption of a centroid tracking algorithm enables the surveillance of individuals
who transgress or go above the social distance threshold. The model output shows
the overall number of social distance violations as well as persons bounding boxes
and centroids that were found.

Figure 19: Overview of a social distance monitoring system[17]

A social distance monitoring system may also contain a log system to store data
on violations and an alert system can be built around it. Mobile app development
can send alert notifications to warn about the possible situation of the social dis-
tancing of nearby cities as in done in[18], MySD can provide the general people with
a clever way to monitor and remind them to keep their distance when in public set-
tings. To reduce the risk of contracting COVID-19 in busy or public places, MySD
enables the development of an invisible safe zone around the users. The user will be
more aware of abiding by social distance in the high-danger locations (i.e., Red and
Yellow zones) by including the current zone information. The notice and vibration
alerts will further assist the user in forcing themselves to keep a safe distance.

22

Chapter 3

Related Works

3.1 Literature review
In recent years, person identification and re-identification have been significant re-
search areas in computer vision. Two research papers have addressed these problems
using different techniques and datasets.

This paper [19] proposed a comparison between both traditional and deep learning-
based methods for analyzing crowded environments. The methods can be divided
into two categories: (1) crowd counting and (2) crowd activity detection. Besides
examining the available datasets for crowd scenes, this research also presents Crowd
Divergence (CD), a novel performance metric for crowd scene analysis methods.
This metric predicts the difference between the calculated and actual crowd counts
in crowded scene recordings. The survey shows that deep learning-based methods
outperform traditional methods, especially CNN and GAN(Generative Adversarial
Network) frameworks.

The paper [20] proposed a framework that combines the spatial and temporal
data to provide visual aids for crowd monitoring along with a series of crowd mobility
graphs (CMGraphs) to store space-time patterns from both of the actual CCTV
footage and the geographical data of the public space. This framework uses deep
learning-based computer vision models (YOLOv7 and Faster R-CNN) to automate
person detection in CCTV video and uses geometric transformations and Kalman
filter-based tracking algorithms (DeepSORT) to track individuals in video frames.
Moreover, the authors designed a GCN-GRU model that shows CMGraphs make it
easier to predict overcrowding at important exit/entry zones.

The paper [21] proposed an improved version of the IDLA architecture for iden-
tifying actors and actresses in movies. By learning the variations and similarities
between pictures, the model outperformed the IDLA method significantly on the
CUHK03 dataset and the authors’ dataset.

The second paper [22] aimed to build a robust and continuously updated multi-
shot exhibition of noticed reference personalities intermittently on the web using L2-
standard descriptor matching and the Disconnection Timberland algorithm. Both

23

studies provide insights into the potential applications of computer vision in person
identification and re-identification, highlighting the ongoing efforts in this field.

Person re-identification (re-ID) across non-overlapping cameras is a challenging
problem in computer vision, and two recent research papers have proposed different
methods to address it. The first study [23] uses a multi-camera observation frame-
work and matching of interest-point descriptors collected from brief video sequences
to capture appearance variability. This approach showed promising results in a test
assessment on low-resolution videos in a commercial mall, achieving an accuracy of
82% for a review of 78% in a fast and computationally efficient manner.

Both papers address the challenge of person re-identification but from differ-
ent perspectives. While [24] focuses on improving the discrimination ability of the
model by considering the person ratio and relationships, [25] proposes a novel ap-
proach for on-board re-ID using UAVs. Both approaches show promising results
and contribute to the development of effective person-ID techniques. Person rei-
dentification across different modalities and face detection from video clips are two
important challenges in computer vision. In the paper [26], a relative networking
design is proposed for person reidentification from both thermal and visible images.
The approach involves combining two pooling processes, GAP and GMP, to cap-
ture both background information and detailed features. The proposed method is
tested on two datasets, SYSU MM01 and RegDB, and it shows better results com-
pared to traditional methods, ensuring better recognition accuracy. In the paper,
the authors propose a deep learning-based approach for face detection from video
clips using a convolutional neural network (CNN). They select images of faces to
train the model for face detection and evaluate their approach on two datasets for
familiar and unfamiliar environments. The proposed method shows better results
than the Viola-Jones algorithm for face detection and provides higher accuracy in
person identification compared to feed-forward neural networks.

Sometimes the re-identification process becomes a challenging task as different
visual appearance variations take place. It can be caused by various backgrounds, il-
lumination variations in poses, etc. To solve these kinds of challenges, the authors of
paper [27], presented a method called ROIF which can make person re-identification
more accurate in less periods by combining textural and chromatic features. In this
research, an efficient way for the ROIF method was shown and the implementa-
tion was done by HSV histogram and chromatic content. Person re-identification
involves identifying individuals across different camera views, but various challenges
can arise due to differences in visual appearance. For instance, surveillance cameras
can malfunction, resulting in grayscale videos instead of true-color videos. In such
cases, the process is known as CGVPR, and the paper [2] proposes a new approach
called SDPL to re-identify persons between grayscale and true-color mode videos.
Furthermore, identifying individuals based on their clothing attributes can be more
effective than using facial features. In paper [28], the authors present a method that
focuses on clothing attributes by extracting features using HSV histograms and His-
tograms of Oriented Gradients (HOG) from raw footage. The verification process
is then completed using the LSVM framework. In recent research studies, several
methods have been proposed to improve person re-identification. One such method
proposed in paper [29], is simultaneous detection and re-identification, which aims

24

to identify a person in real time using clothing and other features. This approach
showed better results than traditional methods and was tested on a public dataset
named PRW.

Another approach proposed in research [30] is the distributed network person
re-identification framework, which can measure performance between nodes of the
network using the camera matching cost. This framework also allows for learning
the network topology by deriving the distance vector, thus reducing the number of
cameras required for inquiry. Lastly, in research [3], the authors propose using body
symmetry and part-locality-guided DNDFE to enhance deep learning. By pooling
body symmetry and using local normalized layers, deep learning can be improved,
overcoming the drawback of small available databases for creating deep models.

3.2 Comparative analysis and discussion
In this comparative analysis, we have examined five research papers that propose
different approaches for monitoring social distancing and detecting human presence
using various object detection models.

Mahadi et al.[31] present an approach to monitoring social distancing and in-
fection risk during the COVID-19 pandemic using YOLOv4. A hybrid Computer
Vision and YOLOv4-based Deep Neural Network (DNN) model was created to au-
tomatically detect people in crowded settings, both indoors and outdoors, utilizing
standard CCTV security cameras. In this paper, the proposed DNN model is in-
tegrated with a customized inverse perspective mapping (IPM) technique and the
SORT tracking algorithm, which leads to reliable people detection and social dis-
tancing monitoring. This proposed method processed 7530 frames, giving 99.8%
accuracy and the speed or fps as 24.1.

Narinder et al.[32] presents a deep learning-based framework designed to auto-
mate the process of monitoring social distancing through surveillance videos. The
framework employs the YOLO v3 object detection model to distinguish humans
from the background and utilizes the Deepsort approach to track the identified indi-
viduals using bounding boxes and assigned IDs. They achieved 23 fps by processing
7560 images with maP 84.6% and the total time it took was 5659 seconds.

Aquib et al.[33], their research paper presents the development of an algorithm
using object detection techniques. Specifically, a CNN-based object detector is in-
vestigated to identify the presence of humans. The output of the object detector is
then utilized to compute the distances between each pair of detected humans. This
novel approach to the social distancing algorithm identifies individuals who come
within a certain permissible distance by marking them with red indicators. The
experiment was conducted on a 64-bit system with an Intel Core i3-5005 CPU@2.00
GHz processor, and Python was utilized in Google Colab. The INRIA image dataset,
consisting of 6562 images, was employed for training. Remarkably, the mean av-
erage precision (map) score was an impressive 97.75%, achieved in 2169.9 seconds.
However, the paper does not provide specific information regarding the frames per
second (fps) during the experiment.

25

Table I: Comparative analysis based on fps, maP/accuracy, Total frames, detection
algorithm

Study Fps mAP Total frames Detection Algorithm

Mahadi et al. [31] 24.1 0.998 7530 Yolov4

Narinder et al. [32] 23 0.846 7560 Yolov3

Aquib et al. [33] No info 0.9775 6562 CNN

Inderpreet et al. [34] 32 0.98 3846 Yolov5

Jingchen et al. [35] 8.06 & 7.03 0.8844 9963 SSD300

Inderpreet et al.[34] presents a real-time surveillance system designed to ana-
lyze video feeds and determine if individuals detected in the footage are wearing
masks. Additionally, the research focuses on monitoring social distancing compli-
ance. The proposed approach involves utilizing YOLOv5 to detect humans in the
CCTV frames. Subsequently, the detected faces undergo classification using Stacked
ResNet-50 to ascertain whether a person is wearing a mask. Meanwhile, DBSCAN is
employed to identify proximities among the detected individuals. For processing the
CCTV feeds for mask classification, they trained their model using low-resolution
facial portraits from various sources, including the Real-World Masked Face Dataset
(RMFD), which contains a total of 3846 images. The training results showed a high
accuracy of 96% and a low training loss of 12% when trained on the dataset that
included both masked and unmasked images. For testing, they used 528 images
and achieved a testing accuracy of 84% and a testing loss of 14%. The YOLOv5
model used in the study demonstrated good precision and recall of 0.6 and 0.98,
respectively, with a mean average precision (mAP) of 0.98. The system was able to
achieve an impressive frame rate of 32 frames per second (fps) on the input video, al-
lowing for real-time analysis of face masks and social distancing of detected humans.
This high processing speed makes the system suitable for real-time surveillance and
monitoring applications.

Jingchen et al.[35] presents a novel approach for real-time social distancing mon-
itoring using SSD object detection technology. The method leverages the SSD300
model to detect individuals in both videos and images. When the detected distances
between people fall below a predefined threshold, a warning Red Line is labeled on
these individuals, effectively implementing real-time monitoring of social distancing

26

compliance. In this research, the authors utilized the PASCAL VOC dataset, com-
prising 9963 labeled images, for their experiments. The experiments were conducted
on hardware with an Intel i5-8400 CPU, 8GB RAM, and an NVIDIA GTX 1060 3G
graphics card with TensorFlow-gpu version 1.13.2. Their trained model achieved
an mAP of 88.44%. The authors observed that the frames per second (fps) varied
depending on the number of people detected. When four people were detected, the
fps was measured at 7.03, and for two people, it reached 8.06 fps.

All the proposed methods utilized various object detection models (YOLOv4,
YOLOv3, YOLOv5, CNN, and SSD300) for different applications such as crowd
monitoring, mask detection, and social distancing compliance. Mahadi et al. [31]
achieved the highest accuracy of 99.8% with a processing speed of 24.1 fps, making
it suitable for real-time crowd monitoring. Inderpreet et al.[34] focused on real-time
surveillance for mask detection and social distancing, achieving an impressive 32 fps
and a high mAP of 0.98. Jingchen et al.[35] proposed a real-time social distancing
monitoring system using SSD300, with an mAP of 88.44% and varying fps based
on the number of people detected. However, Aquib et al. did not mention the fps,
which is a crucial aspect in real-time applications.

27

Chapter 4

Custom Dataset

4.1 Custom Dataset
For this research, we have made a couple of custom datasets with custom annotations
frame by frame.

In this research, a custom dataset was created and utilized for training the
YOLOv7 and YOLOv8 models to tackle the task of social distancing detection.
The dataset was divided into three sets: the training set, the validation set, and
the testing set. The first two of our dataset was trained to detect persons at 20 fps
whereas only one dataset Social Distancing version 1 was trained with a resolution of
1000x640. The rest of the dataset was trained with 25fps and 30fps with resolutions
of 640 x 640 and 1080x640. The total number of images we trained is 1994.

Each image in the dataset has been meticulously annotated, with a single class,
Person, indicating the presence of individuals in the images. The dataset we made so
that we can solve the perspective change problem and the false detection problem can
be reduced. We did this so that we could get our new custom weight so that those
problems could be solved. Although the pre-trained dataset weight was capable
of detecting person class in any situation whenever the angle changed or in some
situation class detection were not accurate as it would detect mannequin-like objects
or other objects that may look like a person but are not persons.

Even though we couldn’t compete with the large datasets of Yolo models like
coco and other large object detection datasets. but for our particular project, we
were able to solve the perspective correction problem by making our custom dataset.
And for the record perspective correction has been a huge challenge in computer
vision for decades. The details of the custom dataset are as follows:

28

Table II: Custom dataset preprocessing data table

Video Train-
ing set
(img)

Valida-
tion set
(img)

Test-
ing set
(img)

Train-
ing(fps)

Resolu-
tion

Total
(img)

video 1 573 55 27 20 1000x640 655

video 2 184 52 25 20 640x640 261

video 3 277 79 41 25 640x640 397

video 4 275 78 40 25 640x640 393

video 5 202 57 29 25 640x640 288

video 6 670 78 67 25 1080x640 785

video 7 480 55 56 30 1080x640 591

video 8 501 45 50 30 1080x640 596

video 9 268 33 34 30 1080x640 335

29

4.2 Data processing and training
All the above datasets are for particular videos with different challenging angles.
After we made all the datasets for those videos, we exported the zip files from
Roboflow and merged them. We took all the images from the image folder. Likewise
same for the training, validation, and testing folder, and a single folder where all
the images that were pre-processed were stored.

After merging all the images, we trained them in YOLOv7 and YOLOv8 and
got our expected ”best. pt” weight for both our YOLOv7 and YOLOv8-based
overall system. Though we couldn’t compete with datasets like COCO, we were able
to achieve suitable data to perform well for our system and solve the perspective
correction problem.

4.3 Model Implementation
We trained our models on YOLOv7 and YOLOv8 as our proposed system is based on
these models. the trained results were very good and YOLOv8 had better accuracy
and overall performance compared to YOLOv7 but the results are almost the same
to the point where it’s negligible.

30

Chapter 5

Methodology

5.1 Our implemented Detection algorithm
To implement our system we choose Faster R-CNN, YOLOv7 and YOLOv8. Here
we implemented both YOLOv7 and YOLOv8 models where even though YOLOv8
performs slightly better but it’s a relatively new model where we had so many
problems implementing the model on our system. Even though we were able to
solve those problems we still chose to implement our model in a lower version of yolo
model, YOLOv7. YOLOv7 may be preferred over YOLOv8 for person identification
for the following reasons:

YOLOv7 is more resistant to occlusion and distortion than YOLOv8, making
it more suitable for identifying people in difficult circumstances. Besides, YOLOv7
is easier to train and deploy on devices with limited resources since it has fewer
parameters than YOLOv8.

YOLOv8 is a newer and more sophisticated version of YOLOv7 for object iden-
tification and picture segmentation, according to the online sources we identified. It
was made by Ultralytics, the company that also made YOLOv51. YOLOv8 claims
to be faster and more accurate than all prior YOLO models, and to require less
hardware and training time. TensorFlow Lite exporting is not currently supported
by YOLOv8, which is still in development.

On the other hand, the cutting-edge object identification model YOLOv7 was
unveiled in 2022. It utilizes convolutional neural networks (CNNs) to carry out im-
age identification tasks and is based on the original YOLO architecture4. Without
any pre-learned weights, YOLOv7 may be trained on tiny datasets and translated
to TensorFlow Lite format for edge deployment. YOLOv7 has been successfully
employed in a variety of applications, including autonomous driving, facial identifi-
cation, lost and found, and pedestrian detection.

Therefore, for person identification, we may use either YOLOv7 or YOLOv8,
depending on our use case and needs. However, until YOLOv8 supports TensorFlow
Lite export, we might want to continue with YOLOv7 if we require a model that
can operate on mobile or edge devices. We would use YOLOv8 or its instance

31

segmentation variant7 if we wanted a model that is capable of both object recognition
and picture segmentation. An overview of the system architecture of both YOLOv7
and YOLOv8 were described earlier.

5.2 Our implemented tracking algorithm
For this research we used DeepSORT tracking algorithm. DeepSORT enabled us to
track persons accurately by generating a unique id to each person and using Kalman
filter it estimates a new accurate state for each person, by that we were able to re-
identify the person using this tracking algorithm. We made a system using both
YOLOv7 & YOLOv8 and DeepSort and by that we were able to make an overall
social distance monitoring framework.

There are lots of other tracking algorithms like mean shift, particle filter and also
many other tracking algorithms. But as Kalman filter based DeepSORT algorithms
state estimation is better than other algorithms its very much useful for person
re-identification, which is a core part of our research.

5.3 Our Proposed System
Here in our research we applied two approaches where we used Faster R-CNN and
YOLO models. And we also performed our tracking where one tracking is done
using SORT tracking algorithm. and another approach where we used DeepSORT
using Kalman filter for tracking.

5.3.1 Faster R-CNN/YOLOv8 & tracker(without DeepSORT)
based system

Our idea involves using a monocular camera to identify people within a specific area.
If the system detects a violation of social distancing rules, it will mark the people
who are violating the rules and show their distance using a red line with the distance
value.

Using either Faster R-CNN or YOLOv8 we detect the persons in the frames.
After that using the tracking script that we wrote, we draw a bounding box. After
the coordinates of the bounding box are placed then we move to the next method
where we calculate the centroid to calculate the distance. After we compare our
centerpoint distance to the threshold distance we detect whether one is violating
the distance or not. The distance is highlighted whether its maintaining the social
distance or not.

The overall system can work but not without human intervention. The sys-
tem generates total violation based on the threshold that we pre-determined. This
threshold distance can be customizable or optimized based on the systems use-cases.
The figure bellow provides an overview of our method.

Determine bounding box and bottom center points: First, the method
detects pedestrians present in the image domain by employing a deep CNN model

32

Figure 20: Faster R-CNN/YOLOv8 & tracker(without DeepSORT)based system

that has been trained on a dataset from real-world scenarios. Here we used Faster
R-CNN and various models of YoloV8. The CNN maps an image to n tuples,
where Each tuple represents a detected object in the image. It includes the object
label, bounding box (given by pixel indices), and detection score. We only take
the detection box if it is of a person. Then to find the bottom center point of the
bounding box we can use the formula:

C(x, y) =
(x+ w)

2
, (y + h) (5.1)

Here (cx,cy) are the coordinates of the bottom centerpoints of the bounding box,
(x,y) is the coordinate of the top left corner of the bounding box, w is the width
and h is the height.

Social Distance detection: After we get the center points, we can use them to
determine the distance between people. The formula for this is,

Distance =
√

(cxi− cxj)2 + (cyi− cyj)2 (5.2)

Here i and j indicate different centrepoints. We can compare all detected persons
using this formula to determine if they are violating social distancing rules. If the

33

distance is smaller than threshold level then they are breaking the social distancing
rules. We can highlight the distance.

5.3.2 YOLOv7/YOLOv8 & DeepSORT based system
Our system contains a structure of a module for distance estimation and crowd
monitoring which can do both seamlessly. We used both YOLOv7 and YOLOv8
for various reasons regarding mainly the online support and the deployability of
projects containing these two models. Therefore, our proposed system offers tracking
and detection of persons using a merge of two algorithms namely DeepSORT and
YOLOv7/YOLOv8 model.

Training: We used stock videos that are available on the internet as our input
video. To prepare the data for training, we utilized Roboflow tool to accurately
annotate the objects of interest in the video. The annotations involved creating
bounding boxes around the object which is in our case person to provide the neces-
sary ground truth for training the object detection model.

After the annotations, the annotated videos were converted into individual
frames to create the dataset for training. Then the dataset was splitted into three
section training, testing and validation sets. Now for the actual training, we used
the YOLOv7 and YOLOv8 model which gave us custom weight for each dataset.

Inference: The custom weights were then used in our own YOLOv7 and
YOLOv8 models. Since our model runs in real time, after giving input video, it
detects our trained object(person) and creates a bounding box around the object.
At the same time, the model also assigns a unique id on top of each bounding
box using DeepSORT algorithm and generates centroid or center point inside the
bounding box. Using the centroid, the model calculates distance between each per-
son depending on our given distance threshold.

Violation detection: To calculate whether people are disobeying the distance
maintaining rule or not, we used two distance thresholds in our model, Violation
and Compliance. In the first decision set, if the calculated distance is greater than
violation threshold, it will check the second decision set which is if the calculated
distance is greater than compliance threshold, it will keep the detected people out
of threshold distance, meaning people are far away than the safe distance threshold.

If the calculated distance is less than compliance threshold it will show a green
line between each centroid meaning that they are following the safe distance rule.
If we do not do this separating, the model then creates both red and green lines
based on the threshold distance between all the centroids which creates a clustered
output video. Now in the first decision set, if the distance is less than the violation
threshold, the model will initialize the red threshold line between the centroids.

Displaying Results: During the processes we mentioned above, when our
model runs in real time, it also shows how many people detected, number of viola-
tions and compliances. After estimating the distance and tracking all persons, the
python window pops up where we show the total number of objects, compliance and
violation all frame by frame in real time.

34

Figure 21: YOLOv7/YOLOv8 & DeepSORT based system

Log System: At the end of the executions, a log file(.csv) is created where
frame by frame id of persons and number of violations are stored. This log system
can be later used to make alert systems or any other notification system. As we have
a log system, therefore no human intervention is necessary to monitor the system.

35

To find the center of the bounding box, we use the centroid formula:

C(x, y) = (
(x1 + x2)

2
,
(y1 + y2)

2
) (5.3)

C(x, y) is the center point with coordinates (x, y), while x1, y1, x2, and y2
are the x and y coordinates of the rectangle’s top-left and bottom-right corners,
respectively.

We can simply find the centroid, which represents the geometric center of the
rectangle, by taking the average of the x and y coordinates of these two corners. It’s
similar to locating the midpoint that equally balances the rectangle in both the x
and y directions.

Similarly, when we need to calculate the distance between two points in 2D
space, we use the distance formula:

Distance =
√
(x2 − x1)2 + (y2 − y1)2 (5.4)

The Pythagorean theorem is used to develop this formula, which calculates the
straight-line distance between two locations given their x and y coordinates. It is
a fundamental computation that allows us to determine the distance between two
objects.

Kalman filter state estimation: Kalman filter predicts the next state where
the object might be in the next frame. the overview of the Kalman filter is as follows:

Figure 22: Kalman Filter operation[36]

36

Chapter 6

Implementation and Results

Based on the systems that were described in the methodology, we implemented our
system both with a normal tracking system and an advanced deep sort tracking
algorithm in our Faster R-CNN & YOLO-based detection model algorithms and
achieved great results.

6.1 Faster R-CNN & YOLOv8 based system im-
plementation(without DeepSort)

We conducted experiments using two deep-CNN-based object detectors, namely
Faster R-CNN and YOLOv8. The pedestrian detection in the image and the corre-
sponding social distance using the YOLOv8 model are shown in Figures ?? below
The results indicate that some detections were missed, which could be due to two
reasons. Firstly, occlusions caused by objects such as dining tables can lead to
missed detections, as observed in the Mall Dataset. Secondly, if the size of the
pedestrian is too small, missed detections may occur. The Oxford Town Centre
dataset in 23a has a total of 4500 frames annotated. There were 1661 people in
this dataset. Our system detected a total of 1664 pedestrians. The total distancing
violation count was 1536. The density of pedestrians was low in this video. The
threshold for distance violation was 125 pixels in this case.

In the Mall Video in 23bwe detected a total of 241 people. The total violation
count was 72. The threshold for counting violations was 100 pixels. Out of the three
videos, the Mall has a comparatively lower number of people violating the distancing
rules. This is due to the density of people being very low in the mall. There were
a few missed detections due to Tables obstructing the view of the person from the
camera.

In the Airport video in 23c, the number of total detected people was 4268. The
number of total detected distancing violations was 5442. This video had the highest
density of people. So the number of violations was a lot higher than in other videos.
This was mostly due to one person passing by multiple other people at close distance.
The threshold of distancing violation was 70 for the video. Some detections were
missed due to the people being very far from the camera and appearing too small

37

(a) Results from Oxford Town Ctr. video (b) Results from the Shopping Mall video

(c) Results from the Airport video

Figure 23: implemented models results of type O, M, and A

to be recognized by the model.

The results in 30indicate that some detections were missed, which could be due
to two reasons. Firstly, occlusions caused by objects such as dining tables can lead
to missed detections, as observed in the Mall Dataset. Secondly, if the size of the
pedestrian is too small, missed detections may occur.

Both detectors in Table III have fast enough inference time to detect social
distancing in real time. The accuracy of the detectors is based on results from the
MS COCO dataset.

Model mAP(%) Inference time(s)
Faster R-CNN 42.1–42.7 0.145
YOLOv8 37.3-53.9 0.018-0.046

Table III: Comparison between models

In the comparison, we can see that Faster R-CNN is much more accurate than
some of the YOLOv8 models. However, YOLOv8 is much faster than Faster R-CNN.

6.2 YOLOv7/v8 & Deepsort based system imple-
mentation

We performed our second system which performed better compared to the faster R-
CNN-based system. Our system was first implemented on pre-trained model weight

38

and some perspective corrections were needed. Therefore, we trained our dataset
and used our custom weight to get better results. In different videos we encountered
different angles for each video and the log system generated the total number of
frames and total number of violations that occurred on that video for each person.
Therefore, our system does not need human intervention.

6.2.1 YOLOv7 & Deepsort based system results
The comparative analysis of the video perspective according to the frames of each
different perspective video is described in the following table IV.

Table IV: Custom dataset(YOLOv7 ”best.pt” weight) pre-processing data table

System Video Fps Total frames Total violations Gpu

YOLOv7 + Deep sort pixels video 2670 4.26 341 1572 Gtx 1070

YOLOv7 + Deep sort pixels video 2670 11.86 341 1572 T4(collab)

YOLOv7 + Deep sort pixels video 2670 2.5 341 1572 Gtx 1050 ti

YOLOv7 + Deep sort oxford town center 7.14 7501 12505 Gtx 1070

YOLOv7 + Deep sort oxford town center 16.87 7501 12505 T4(collab)

YOLOv7 + Deep sort oxford town center 4.16 7501 12505 Gtx 1050 ti

YOLOv7 + Deep sort town center 2 15.19 3408 754 Gtx 1070

YOLOv7 + Deep sort town center 2 23.45 3408 754 T4(collab)

YOLOv7 + Deep sort town center 2 10.26 3408 754 Gtx 1050 ti

YOLOv7 + Deep sort pedestrians 20.45 733 165 Gtx 1070

YOLOv7 + Deep sort pedestrians 31.45 733 165 T4(collab)

YOLOv7 + Deep sort pedestrians 13.13 733 165 Gtx 1050 ti

YOLOv7 + Deep sort cctv4 8.83 393 2467 Gtx 1070

YOLOv7 + Deep sort cctv4 13.45 393 2467 T4(collab)

YOLOv7 + Deep sort cctv4 3.12 393 2467 Gtx 1050 ti

39

From the analysis of the output that is real-time is saved in an ”input_output”
folder where the output is saved based on the input video after processing. From
those, some of the frames are presented with descriptions as follows:

From 24a, our YOLOv7 model processed a social distancing video with 393
frames. It detected 2467 violations, indicating people not following social distancing
guidelines. The model achieved an average FPS of 8.83 on the GTX 1070 GPU,
13.45 on the T4 GPU, and 3.12 on the GTX 1050ti.

In 24e input video was evaluated using 733 frames, and 165 breaches of social
distance standards were detected. The T4 (Colab) GPU displayed the fastest pro-
cessing performance, with an average FPS of 31.45, surpassing the GTX 1070 (20.45
FPS) and the GTX 1050ti (13.13 FPS). These data indicate that the T4 (Colab)
GPU performed the best among the three GPUs in this input video.

(a) Results from cctv4 (b) Results from Pexels video 2670

(c) Results from town center 2 (d) Results from Oxford town center

(e) Results from Pedestrians

Figure 24: Implemented system results of type C, p, T2, T1, and P2

From 24b, Our YOLOv7-based system was tested on three different GPUs: GTX
1070, T4 (Colab), and GTX 1050ti. The analysis was conducted on a video con-

40

taining 341 frames with a total of 1572 social distancing violations. The GTX 1070
achieved an average FPS of 4.26, the T4 (Colab) reached 11.86 FPS, and the GTX
1050ti performed at 2.5 FPS. The results demonstrate varying processing speeds
across the GPUs, with T4 (Colab) showing the highest FPS, followed by GTX 1070
and GTX 1050ti with lower processing speeds.

In 24c The input video consisted of 3408 frames, and 754 social distancing
violations were detected across all tested GPUs. The T4 (Colab) GPU showed the
highest processing speed with an average FPS of 23.45, surpassing the GTX 1070
at 15.19 FPS and the GTX 1050ti at 10.26 FPS.

Also from 24d, The testing video has 7501 frames, with a total of 12505 social
distancing infractions found. The GTX 1070 GPU produced an average FPS of 7.14,
the T4 (Colab) fared quicker with 16.87 FPS, while the GTX 1050ti did the worst
with 4.16 FPS.

6.2.2 YOLOv8 & Deepsort based system results
When we implemented our YOLOv8 system we faced many issues because the model
is relatively new in the field and is not well optimized with the deep-sort tracking
algorithm. Also, the system had a GPU initialization problem which was later
solved by some research regarding this problem. Both YOLOv7 and YOLOv8 work
seamlessly but although YOLOv8 has a better detection rate system-wise, violation
detection numbers may vary between these two models.

When we implemented the system on YOLOv8, there were some changes in the
data, and as previously shown for YOLOv7, we conducted the same implementation
using custom weight for YOLOv8 and ran the system again to get the table of data
preprocessing table V for YOLOv8.

41

Table V: Custom dataset(YOLOv8 ”best.pt” weight) pre-processing data table

System Video Fps Total frames Total violations Gpu

YOLOv8 + Deep sort pixels video 2670 6.65 341 1491 Gtx 1070

YOLOv8 + Deep sort pixels video 2670 13.11 341 1491 T4(collab)

YOLOv8 + Deep sort pixels video 2670 1.28 341 1491 Gtx 1050 ti

YOLOv8 + Deep sort oxford town center 7.69 7501 11789 Gtx 1070

YOLOv8 + Deep sort oxford town center 19.56 7501 11789 T4(collab)

YOLOv8 + Deep sort oxford town center 3.26 7501 11789 Gtx 1050 ti

YOLOv8 + Deep sort town center 2 17.86 3408 689 Gtx 1070

YOLOv8 + Deep sort town center 2 27.86 3408 689 T4(collab)

YOLOv8 + Deep sort town center 2 13.54 3408 689 Gtx 1050 ti

YOLOv8 + Deep sort pedestrians 24.67 733 101 Gtx 1070

YOLOv8 + Deep sort pedestrians 40.87 733 101 T4(collab)

YOLOv8 + Deep sort pedestrians 16.54 733 101 Gtx 1050 ti

YOLOv8 + Deep sort cctv6 15.45 393 187 Gtx 1070

YOLOv8 + Deep sort cctv6 20.76 393 187 T4(collab)

YOLOv8 + Deep sort cctv6 9.57 393 187 Gtx 1050 ti

YOLOv8 + Deep sort cctv4 10.45 393 1987 Gtx 1070

YOLOv8 + Deep sort cctv4 15.77 393 1987 T4(collab)

YOLOv8 + Deep sort cctv4 4.51 393 1987 Gtx 1050 ti

For pixel video 2670, The visual processing for this input video was done on the
GTX 1070, T4 (Colab), and GTX 1050ti GPUs. A total of 1491 social distancing
violations were found in the video’s 341 frames, across all GPUs.

According to our experiment, the T4 (Colab) GPU outperformed both the GTX
1070 (6.65 FPS) and the GTX 1050ti (1.28 FPS) in terms of processing performance,
functioning at an average of 13.11 FPS.

42

In our yolov8 model with deepsort, the Oxford town center input video has
a total of 7051 frames and the number of violations is 11789. The T4 (Colab)
GPU achieved the fastest processing performance, with an average FPS of 19.56,
outperforming the GTX 1070 at 7.69 FPS and the GTX 1050 ti at 3.26 FPS.

(a) Results from cctv6 (b) Results from Oxford Town Center

(c) Results from Pedestrians

Figure 25: Implemented system results of type C6, Ox and p3

After running the town center 2 input video through our model with three
different GPUs, we received the following FPS: GTX 1070 at 17.86, T4 (Colab) at
27.86, and GTX 1050ti at 13.54. The total number of violations was 689 in 3408
frames.

The input video pedestrians had 733 frames, and there were 101 social distancing
violations recorded across all GPUs. The T4 (Colab) GPU achieved the fastest
processing speed, with an average FPS of 40.87, outperforming both the GTX 1070
at 24.67 FPS and the GTX 1050ti at 16.54 FPS.

This input video cctv4 has 393 frames, with a total of 1987 social distancing
violations detected across all GPUs. The T4 (Colab) GPU achieves an average FPS
of 15.77, surpassing both the GTX 1070 at 10.45 FPS and the GTX 1050ti at 4.51
FPS.

43

6.3 Result Analysis
TableVI represents the performance analysis of Faster R-CNN and YOLOv8 with
tracking(without deep sort) and also YOLOv7/YOLOv8 with Deep sort tracking
algorithm. The performance metrics used for assessment included precision, recall,
mean Average Precision at IoU threshold 0.5 (mAP@0.5), and mean Average Preci-
sion from IoU threshold 0.5 to 0.95 (mAP@0.5:.95).

The results demonstrate that both YOLOv7(with Deep sort) and YOLOv8(with
Deep sort) achieved impressive performance in person detection. YOLOv8 exhibited
a slight advantage over YOLOv7 in all evaluation metrics, showcasing its superiority.
Here is a comprehensive analysis of the results:

6.3.1 Performance Analysis of Both Systems
From the TableVI below we can see that all models performed quite well but based
on efficiency and overall structure of the system, they may vary because of the use
cases.

Table VI: Performance analysis table

System Precision Recall mAP@0.5 mAP@0.5:.95
Faster R-CNN + tracking
(without deep sort)

0.93 0.90 0.91 0.79

Yolov8 + tracking (without
deep sort)

0.96 0.97 0.99 0.80

Yolov7 + tracking (Deep
sort)

0.985 0.969 0.986 0.728

Yolov8 + tracking (Deep
sort)

0.98 0.973 0.993 0.827

6.3.2 Performance Metrics
To understand the basic formulas of the above terms some concepts need to be
cleared:

Precision: A measure of performance called precision assesses how accurately
the model’s correct predictions were produced. By dividing the entire amount of
positive projections by the number of real positive predictions, it is calculated.

Recall: is the percentage of occurrences that were found to be relevant.

F1-score: The F1 score is a metric commonly employed to evaluate the perfor-
mance of a binary classification model. It becomes particularly useful when dealing
with imbalanced datasets. The F1 score is calculated as the harmonic mean of
accuracy and recall, combining the two metrics. By doing so, it strikes a balance
between the model’s ability to correctly identify positive instances (recall) and its
overall accuracy. This balance makes the F1 score a suitable evaluation measure,
especially in situations where class distribution is uneven.

44

• True positive(TP): Number of samples that were identified and confirmed
to be positive.

• False positive(FP): Quantity of samples that were mistakenly thought to
be positive.

• True negative(TN): Number of samples that have been flagged as negative
and are also negative.

• False negative(FN): Number of samples that were believed to be negative
but came out to be positive.

Table VII: True & False positives & negetives

Ground Truth Predicted

TP Positive Positive

FP Negative Positive

TN Negative Negative

FN Positive Negative

Precision: Faster R-CNN(without deepsort) and YOLOv8(without deepsort)
achieved a precision of 0.93 and 0.96. YOLOv7(with deep sort) achieved a precision
of 0.985, indicating that 98.5% of the predicted persons were correct. YOLOv8(with
deepsort), with a precision of 0.98, also performed exceptionally well in accurately
detecting persons in images. These high precision scores suggest that the majority
of the predicted persons are indeed true positives.

Precision =
TP

TP + FP
(6.1)

Recall: Both systems demonstrated excellent recall values. Faster R-CNN(with-
out deep sort) and YOLOv8(without deep sort) achieved 0.90 and 0.97. YOLOv7(with
deep sort) achieved a recall of 0.969, while YOLOv8(with deep sort) achieved a re-
call of 0.973. These values indicate that the models successfully identified nearly
97% of the actual persons present in the images, showcasing their ability to detect
the most positive instances.

Recall =
TP

TP + FN
(6.2)

Using precision and recall we get the evaluation metric of the F1-score of our
systems.

45

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(6.3)

mAP@0.5: YOLOv7(with deepsort) achieved a mean Average Precision of
0.986 at IoU threshold 0.5, while YOLOv8(with deepsort) achieved an even higher
score of 0.993. Faster R-CNN(without deep sort) and YOLOv8(without deep sort)
had 0.91 and 0.99 respectively. These results indicate that both models effectively
localized persons with relatively high IoU thresholds, further validating their robust-
ness in detecting objects.

mAP@0.5:.95: The mAP score from IoU threshold 0.5 to 0.95 provides insights
into the models’ performance across a broader range of IoU thresholds. YOLOv7(with
deepsort) attained a score of 0.728, and YOLOv8(with deepsort) achieved a higher
score of 0.827, indicating their ability to maintain high precision and recall even for
more challenging detections.

Faster R-CNN(without deep sort), YOLOv8(without deep sort), YOLOv7(with
deep sort), and YOLOv8(with deep sort) demonstrated outstanding performance
in identifying persons in images. YOLOv8 exhibited a slight edge over YOLOv7,
achieving higher precision, recall, and MAP scores. These results suggest that
YOLOv8 is a more effective model for real-time person detection tasks, where ac-
curacy and speed are crucial.

All performance metrics are very desirable and we got excellent results which
means our proposed system was a huge success combined with the functionality of
the overall system. These performance metrics demonstrate the overall performance
of our systems.

Therefore all the necessary performance metrics curves are presented below.
These performance metrics demonstrate the overall performance of our systems.

6.3.3 Performance Metrics Visulalization
Precision:

(a) Precision curve of YOLOv7 (b) Precision curve of YOLOv8

Figure 26: P curve of YOLOv7 and YOLOv8

46

Recall:

(a) Recall curve of YOLOv7 (b) Recall curve of YOLOv8

Figure 27: R curve of YOLOv7 and YOLOv8

PR curve:

(a) Precision & Recall curve of YOLOv7 (b) Precision & Recall curve of YOLOv8

Figure 28: PR curve of YOLOv7 and YOLOv8

47

6.3.4 Confusion Matrix & F1-score

(a) Confusion matrix of YOLOv7 (b) Confusion matrix of YOLOv8

Figure 29: Confusion Matrix of YOLOv7 and YOLOv8

(a) F1 curve of YOLOv7 (b) F1 curve of YOLOv8

Figure 30: F1 curve of YOLOv7 and YOLOv8

48

6.3.5 Log system
After running the simulation, all the data(violation count, generated IDs) are stored
frame by frame in a CSV file format. The data is processed in real-time for each
input video.

Figure 31: Log System Diagram

When the CSV file is generated it has all real-time data of violation and gener-
ated IDs from which an alert system can be generated. The generated data can be
also used as a dataset for an identification system implementation.

Figure 32: Log System Diagram

49

Chapter 7

Conclusion & Future Work

Overall in this research, There are two systems that we proposed one is based on
Faster R-CNN and YOLOv8 detection algorithms with custom tracker, and another
is based on YOLOv7/YOLOv8 detection algorithm with deepsort tracking algorithm
using Kalman filter for state estimation.

Future work may focus on increasing the accuracy and robustness of the pro-
posed techniques used for social distancing monitoring. Future researchers can use
IoT (Internet of Things) devices on such low-cost, effective, and dynamic systems in
real-life scenarios. Iot-based devices can help to monitor social distancing in crowded
public places like shopping malls, bank booths, train stations, and universities. The
device can capture real-time footage using a camera module and run algorithms to
detect social distancing. If the distance is close it can send audio-visual cues and
alert people. The device can also provide data and insights to the authorities to
regulate social distancing in those public places.

Future researchers can combine with other computer vision techniques such as
thermal imaging etc for better accuracy and robustness. This research can aid in
both future pandemics and the spread of new infectious diseases. Although the
COVID-19 pandemic made computer vision surveillance and social distance moni-
toring popular, it can also be used in other areas. Computer vision can also be used
to examine crowd behavior patterns and security purposes. This can make it easy to
anticipate and prevent future vandalism and criminal activity in busy public areas.

To address the challenges posed by COVID-19 and similar potential health
threats, a novel method is being considered. The proposed solution involves the
deployment of an advanced monitoring system capable of tracking social distancing
practices and promptly identifying individuals failing to comply with prescribed reg-
ulations. By employing various technologies, such as surveillance cameras, drones,
and wearable devices, this system can collect and analyze data of individual prox-
imity in crowded environments. Consequently, it can identify locations where social
distancing measures are inadequately observed, enabling timely interventions to cur-
tail further transmission.

50

Bibliography

[1] J. Si, H. Zhang, and C.-G. Li, “Person re-identification via region-of-interest
based features,” in 2014 IEEE Visual Communications and Image Processing
Conference, IEEE, 2014, pp. 249–252.

[2] F. Ma, X.-Y. Jing, X. Zhu, Z. Tang, and Z. Peng, “True-color and grayscale
video person re-identification,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 115–129, 2019.

[3] J. Zhu, H. Zeng, J. Huang, et al., “Body symmetry and part-locality-guided
direct nonparametric deep feature enhancement for person reidentification,”
IEEE Internet of Things Journal, vol. 7, no. 3, pp. 2053–2065, 2019.

[4] P. Viola and M. J. Jones, “Robust real-time face detection,” International
journal of computer vision, vol. 57, pp. 137–154, 2004.

[5] T. R. Gadekallu, M. Alazab, R. Kaluri, P. K. R. Maddikunta, S. Bhattacharya,
and K. Lakshmanna, “Hand gesture classification using a novel cnn-crow
search algorithm,” Complex & Intelligent Systems, vol. 7, pp. 1855–1868, 2021.

[6] T. Diwan, G. Anirudh, and J. V. Tembhurne, “Object detection using yolo:
Challenges, architectural successors, datasets and applications,” multimedia
Tools and Applications, vol. 82, no. 6, pp. 9243–9275, 2023.

[7] S. Bhattacharya, P. K. R. Maddikunta, Q.-V. Pham, et al., “Deep learning
and medical image processing for coronavirus (covid-19) pandemic: A survey,”
Sustainable cities and society, vol. 65, p. 102 589, 2021.

[8] H.-J. Lee and J.-H. Chung, “Hand gesture recognition using orientation his-
togram,” in Proceedings of IEEE. IEEE Region 10 Conference. TENCON
99.’Multimedia Technology for Asia-Pacific Information Infrastructure’(Cat.
No. 99CH37030), IEEE, vol. 2, 1999, pp. 1355–1358.

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Jun. 2014.

[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” Advances in neural information
processing systems, vol. 28, 2015.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 779–788.

51

[12] J. Redmon and A. Farhadi, “Ieee 2017 ieee conference on computer vision and
pattern recognition (cvpr)-honolulu, hi (2017.7. 21-2017.7. 26),” in 2017 ieee
conference on computer vision and pattern recognition (cvpr)-yolo9000: better,
faster, stronger, IEEE Conference on Computer Vision & Pattern Recognition.
IEEE, 2017, pp. 6517–6525.

[13] C. Li, L. Li, H. Jiang, et al., “Yolov6: A single-stage object detection framework
for industrial applications,” arXiv preprint arXiv:2209.02976, 2022.

[14] M. Hussain, “Yolo-v1 to yolo-v8, the rise of yolo and its complementary na-
ture toward digital manufacturing and industrial defect detection,” Machines,
vol. 11, no. 7, p. 677, 2023.

[15] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking
with a deep association metric,” in 2017 IEEE international conference on
image processing (ICIP), IEEE, 2017, pp. 3645–3649.

[16] D. Demirović, “An implementation of the mean shift algorithm,” Image Pro-
cessing On Line, vol. 9, pp. 251–268, 2019.

[17] I. Ahmed, M. Ahmad, J. J. Rodrigues, G. Jeon, and S. Din, “A deep learning-
based social distance monitoring framework for covid-19,” Sustainable cities
and society, vol. 65, p. 102 571, 2021.

[18] M. E. Rusli, S. Yussof, M. Ali, and A. A. A. Hassan, “Mysd: A smart so-
cial distancing monitoring system,” in 2020 8th International Conference on
Information Technology and Multimedia (ICIMU), IEEE, 2020, pp. 399–403.

[19] S. Elbishlawi, M. H. Abdelpakey, A. Eltantawy, M. S. Shehata, and M. M. Mo-
hamed, “Deep learning-based crowd scene analysis survey,” Journal of Imag-
ing, vol. 6, no. 9, p. 95, 2020.

[20] V. W. Wong and K. H. Law, “Fusion of cctv video and spatial information for
automated crowd congestion monitoring in public urban spaces,” Algorithms,
vol. 16, no. 3, p. 154, 2023.

[21] D.-H. Im, Y.-S. Seo, H. Kim, E. Hwang, and J. Park, “Person re-identification
in movies/dramas,” in 2020 International Conference on Information and
Communication Technology Convergence (ICTC), IEEE, 2020, pp. 1596–1598.

[22] P. Witzig, E. Upenik, and T. Ebrahimi, “Open-set person re-identification
through error resilient recurring gallery building,” in 2021 IEEE International
Conference on Image Processing (ICIP), IEEE, 2021, pp. 245–249.

[23] O. Hamdoun, F. Moutarde, B. Stanciulescu, and B. Steux, “Person re-identification
in multi-camera system by signature based on interest point descriptors col-
lected on short video sequences,” in 2008 Second ACM/IEEE International
Conference on Distributed Smart Cameras, IEEE, 2008, pp. 1–6.

[24] H. Choi and M. Jeon, “Deep neural network for person re-identification in a
non-overlapping camera network,” in 2017 International Conference on Con-
trol, Automation and Information Sciences (ICCAIS), IEEE, 2017, pp. 193–
196.

[25] N. Roy and S. Debarshi, “Uav-based person re-identification and dynamic im-
age routing using wireless mesh networking,” in 2020 7th International Con-
ference on Signal Processing and Integrated Networks (SPIN), IEEE, 2020,
pp. 914–917.

52

[26] H. Zhou, C. Huang, and H. Cheng, “A relation network design for visible
thermal person re-identification,” in 2021 6th International Conference on
Intelligent Computing and Signal Processing (ICSP), IEEE, 2021, pp. 511–
515.

[27] Y. Zhang, Z. Guo, J. Wu, Y. Tian, H. Tang, and X. Guo, “Real-time vehicle
detection based on improved yolo v5,” Sustainability, vol. 14, no. 19, p. 12 274,
2022.

[28] A. Li, L. Liu, K. Wang, S. Liu, and S. Yan, “Clothing attributes assisted
person reidentification,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 25, no. 5, pp. 869–878, 2014.

[29] N. Perwaiz, M. M. Fraz, and M. Shahzad, “Smart visual surveillance: Proactive
person re-identification instead of impulsive person search,” in 2020 IEEE 23rd
international multitopic conference (INMIC), IEEE, 2020, pp. 1–6.

[30] N. Martinel, G. L. Foresti, and C. Micheloni, “Person reidentification in a
distributed camera network framework,” IEEE transactions on cybernetics,
vol. 47, no. 11, pp. 3530–3541, 2016.

[31] M. Rezaei and M. Azarmi, “Deepsocial: Social distancing monitoring and in-
fection risk assessment in covid-19 pandemic,” Applied Sciences, vol. 10, no. 21,
p. 7514, 2020.

[32] N. S. Punn, S. K. Sonbhadra, S. Agarwal, and G. Rai, “Monitoring covid-19
social distancing with person detection and tracking via fine-tuned yolo v3
and deepsort techniques,” arXiv preprint arXiv:2005.01385, 2020.

[33] M. A. Ansari and D. K. Singh, “Monitoring social distancing through hu-
man detection for preventing/reducing covid spread,” International Journal
of Information Technology, vol. 13, no. 3, pp. 1255–1264, 2021.

[34] I. S. Walia, D. Kumar, K. Sharma, J. D. Hemanth, and D. E. Popescu, “An
integrated approach for monitoring social distancing and face mask detection
using stacked resnet-50 and yolov5,” Electronics, vol. 10, no. 23, p. 2996, 2021.

[35] J. Qin and N. Xu, “Reaserch and implementation of social distancing monitor-
ing technology based on ssd,” Procedia Computer Science, vol. 183, pp. 768–
775, 2021.

[36] G. Welch, G. Bishop, et al., “An introduction to the kalman filter,” 1995.

53

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Problem Statement
	Research Objective
	Research contributions

	Overview of Social Distance Monitoring System
	Person detection algorithms
	R-CNN
	Fast R-CNN
	Faster R-CNN
	YOLO
	Comparative analysis of yolo models
	SSD

	Tracking algorithms
	SORT
	DeepSORT
	Kalman filter
	Mean shift
	Hungarian algorithm
	Particle filter

	Overview of a social distance monitoring framework

	Related Works
	Literature review
	Comparative analysis and discussion

	Custom Dataset
	Custom Dataset
	Data processing and training
	Model Implementation

	Methodology
	Our implemented Detection algorithm
	Our implemented tracking algorithm
	Our Proposed System
	Faster R-CNN/YOLOv8 & tracker(without DeepSORT) based system
	YOLOv7/YOLOv8 & DeepSORT based system

	Implementation and Results
	Faster R-CNN & YOLOv8 based system implementation(without DeepSort)
	YOLOv7/v8 & Deepsort based system implementation
	YOLOv7 & Deepsort based system results
	YOLOv8 & Deepsort based system results

	Result Analysis
	Performance Analysis of Both Systems
	Performance Metrics
	Performance Metrics Visulalization
	Confusion Matrix & F1-score
	Log system

	Conclusion & Future Work

