Tri-Modal Ensemble for Enhanced Bangla Sign Language
Recognition

by

Khan Abrar Shams
19201052
Md. Rafid Reaz
19201044
Sanjida Islam
20101615
Mohammad Ryan Ur Rafi
22241152

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
B.Sc. in Computer Science

Department of Computer Science and Engineering
School of Data and Sciences
Brac University
September 2023

(©) 2023. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Fofon Abrar Shems Ma Rafil Keaz

Khan Abrar Shams Md. Rafid Reaz
19201052 19201044

Sanjida Tslam \ ‘

Sanjida Islam Mohammad Ryan Ur Rafi
20101615 22241152

Approval

The thesis/project titled “Tri-Modal Ensemble for Enhanced Bangla Sign Language
Recognition” submitted by

1. Khan Abrar Shams (19201052)

2. Md Rafid Reaz (19201044)

3. Sanjida Islam (20101615)

4. Mohammad Ryan Ur Rafi (22241152)

Of Summer, 2023 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on September 17, 2023.

Examining Committee:

Supervisor:
(Member)

Md. Shahriar Rahman
Lecturer

Department of Computer Science and Engineering
BRAC University

Co-Supervisor:
(Member)

PRaklman

Mr. Rafeed Rahman
Lecturer
Department of Computer Science and Engineering
BRAC University

i

Thesis Coordinator:
(Member)

Head of Department:
(Chair)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
BRAC University

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
BRAC University

il

Abstract

Sign language is the most common method of communication for people with dis-
abling hearing loss. Bangladesh, where BASL is prominently used among the dis-
abling people, finds communicating with the general mass challenging. Thus, a sys-
tem to understand BdSL accurately and efficiently has become a popular demand.
Deep learning architectures such as CNN, ANN, RNN, and Axis Independent LSTM
can interpret Bangla Sign Language into readable digital wording. Commonly, an
image-based sign language recognition system contains a recording camera that con-
tinuously sends images to a model. The model then provides a prediction based on
those images. However, it creates a lot of uncertainty variables, such as the light-
ing issue, noisy background, skin color, and hand orientations. To this end, we
propose a procedure that can reduce this uncertainty variable by considering three
different modalities, spatial information, skeleton awareness, and edge awareness.
We propose three image pre-processing techniques and integrate three convolutional
neural network models. Finally, we tested out nine different ensemble meta-learning
algorithms where five of the algorithms are modifications of averaging and voting
techniques. As a result, our proposed model achieved higher training accuracy at
99.77%, 98.11%, and 99.30% than any other state-of-the-art image classification ar-
chitectures except for ResNet50 at 99.87%. We achieved the highest accuracy of
95.13% on the testing set. This research shows that considering multiple modalities
can improve the system’s overall performance.

Keywords: Bangla Sign Language (BdSL) - Convolutional Neural Network - En-
semble Method

v

Acknowledgement

First and foremost, all praise to the Great Allah for whom our pre-thesis-1 has been
completed without little to no interruption. We are very grateful to our supervisor
Md. Shahriar Rahman and co-supervisor Mr Rafeed Rahman, for their invaluable
and tremendous support, advice, and patience during our pre-thesis-1. And last but
not least, we would like to thank our friends and family for their encouragement
throughout the journey. The accomplishment does not just belong to us, And it
would not have been possible if it weren’t for these very important people in our

life

Table of Contents

Declaration

Approval

Abstract

Acknowledgment

Table of Contents

Nomenclature

1

Introduction

1.1 Problem Statement
1.2 Background Information oL
1.3 Research Objective
1.4 Research Contribution

Literature Review

2.1 Gesture Recognition Lo
2.2 Sign Language Recognition
2.3 Bangla Sign Language Recognition
2.4 American Sign Language Recognition
2.5 Word-level Dataset

Work Plan
3.1 Workflow

Dataset

4.1 Data Configuration and Analysis

4.2 Data Preprocessing Lo
4.2.1 Model 1 Preprocessing Techniques
4.2.2 Model 2 Preprocessing Techniques
4.2.3 Model 3 Preprocessing Techniques

Methodology
5.1 Convolutional Neural Network

5.2 Proposed CNN Models for Sign Language Detection
5.2.1 Model-1
522 Model-2

vi

ii

iv

vi

viii

5.2.3 Model-3 s

6 Pre-trained CNN Models

6.1 VGGI19.
6.2 Inception V3
6.3 DenseNet
6.4 Xception
6.5 ResNetbh0

7 Experiment Results

7.1 Results. o
7.2 Confusion Matrix
7.3 Classification Report
7.4 Ensemble Learning oL
7.4.1 Unweighted Averaging Ensemble Technique
7.4.2 Unweighted Voting Ensemble Technique
7.4.3 Static-Weight Averaging Ensemble Technique
7.4.4 Static-Weight Voting Ensemble Technique
7.4.5 Dynamic-Weight Averaging Ensemble Technique

7.4.6 Ensemble Stacking Technique
7.5 Ensemble Modle Classification Report

8 Future Improvement and Discussion

8.1 Future Improvement L
8.2 Discussion

9 Conclusion

Bibliography

vil

28
28
28
29
29
30

31
31
33
36
41
41
41
42
43
44
44
45

46
46
A7

48

52

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

CNN Convolutional Neural Network

LSTM Long Short-Term Memory

ORB Oriented FAST and Rotated BRIEF

RNN Recurrent Neural Network

SAM — SLR Skeleton Aware Multi-modal Sign Language Recognition
SL — GCN Sign Language Graph Convolution Network

SLR Sign Language Recognition

SSTCN Separable Spatial-Temporal Convolution Network

SV M Support Vector Machines

viil

Chapter 1

Introduction

1.1 Problem Statement

A study says that by the year 2050, more than 700 million people — or 8.87% of peo-
ple [21] will have disabling hearing loss. The World Health Organization (WHO)
estimates that 430,000,000 people, or 1 in every 20 people worldwide, are diagnosed
with disabling hearing loss [50]. It means more than 5% of the world suffers from
hearing impairment. Sign language is vital in helping, assisting, and creating a
connection between people with normal hearing and people from the deaf commu-
nity. A 2013 study shows 32 million out of 360 million people suffering from hard
of hearing are children [47]. In Bangladesh, disabling hearing loss is almost double,
which stands at around 9.6% [12]. BdSL, or Bangla Sign Language, is one of the
major sign languages used in Bangladesh. BdSL and WBSL are similar lexically
but used prominently in their respective regions [17]. BdSL is a full-board lingua
with identical Bengali-type symbols or alphabets that match numerous linguistic
similarities via spoken linguistics. Even though learning sign language is essential,
it is arduous for a person with normal hearing to master sign language quickly. So a
system to interpret Bangla sign language is in dire need. This research aims to fulfill
the need for interpreting Bangla sign language and provide an extensive guidelines
to enhance the system and make it more accurate.

Supervised learning can be broken down into classification and regression problems.
Classification, or identifying or categorizing an object/observation, is currently one
of the most studied topics in computer vision and machine learning. We can break
down the classification problem into four types: Binary, Multi-class, Multi-Lable,
and Imbalanced Classification [33]. Binary classification is one of the straightfor-
ward classification problems. However, in the case of multi-class classification, the
number of samples to train a model with high accuracy and the complexity of pro-
viding a prediction depends on the number of classes [44].

A quality dataset on Bangla sign language is really in need. However, until now, only
a few alphabet-level sign language datasets are available, while word-level Bangla
sign language is even more scarce. There are 38 hand signs representing 51 alphabets
in Bangla sign language [41], and these 38 alphabets can create any word possible.
On the other hand, a word-level Bangla sign language dataset MVBSL-W50 contains
50 classes of words [49]. A word-level classification model could be user-friendly but

may take a lot of computational resources while training and physical memory in
real-life implementation.

1.2 Background Information

For socialising, communication is a crucial skill. Thomas Hopkins Gallaudet has
worked to refine American Sign Language for more than three centuries. In Hart-
ford, Connecticut 1817, Gallaudet University was founded as American Asylum, the
first national school for the deaf community in the United States. American Sign
Language is now one of the most commonly used languages in the American judicial
system, and its use has spread across many countries [31].

However, in both West Bengal and Bangladesh, people try to follow their Sign
Language, WBSL and BdSL. Calcutta Deaf and Dumb School Est. 1893 developed
BdSL. Even though both WBSL and BdSL were developed as a single sign language,
the Indo-Pakistan partition to the Independence of Bangladesh in 1971 caused them
to diverge [17]. A utilises the BdSL49 dataset, which consists of 29,490 images of 49
individual Bangla alphabet signs in the Bangla sign language (BASL). The dataset
includes images of 14 adult individuals with diverse backgrounds and appearances.
The dataset has been carefully prepared, and various noise elimination strategies
have been employed [43].

Detection problems such as Sign language detection start with collecting data and
creating a dataset. A lack of training data can produce a faulty and poor approxi-
mation.To tackle this problem, a dataset consisting of the largest image database for
BdSL Alphabets and Numerals designed to reduce inter-class similarity while deal-
ing with diverse image data that includes various backgrounds and skin tones, was
introduced. Researchers suggest dynamic or continuous non-verbal communication.
Continuous sign language is considered sentence-level American sign language. It
is also suggested to perform recognition faster [34]. It should be kept in mind, sign
language in different languages may provide different outcome for similar approach.

Testing with a simpler single and simple model, such as Inception V3 and RNN;,
causes a problem in detecting facial features. The accuracy can drop if data is not
trained on certain skin tones [23]. Feeding multi-modal information to the system
can overcome such problems. In order to complement the models, depth and RBG
modalities are taken into account and merged, which resulted in the top score for
the challenge of RGB and RGB-D of the SLR [39].

1.3 Research Objective

Our study aims to achieve better accuracy in recognizing Bangla Sign Language
and translating it to human readable language, in this case, Bangla. Datasets that
include images of different hand gestures for BASL are fed to multiple CNN models.
Then the proposed CNN models should help us identify BASL with better accuracy
by taking the average outcome of different CNN architectures.

To achieve our objective, we have to:

[. Use a dataset containing many images of different hand gestures of BASL.
II. Utilizing three suitable CNN models.

II1. Consider the average output score from different models to achieve better
accuracy from all models.

We will use a dataset that contains images of different hand gestures that indicate
different alphabets. There are multiple images for identical expressions signed by
different native signers that will help our model to learn more efficiently. We will then
process these data and feed them to our models. Following an ensemble approach, we
will train multiple CNN models. Each CNN model will be architected with a suitable
sequence of convolutional layers, max-pooling, and fully connected layers, and finally,
average the output score from all the models. By taking the average output score
from the weak classifiers, we will achieve improved predictive performance and attain
higher accuracy rates for recognizing the sign gestures of BASL.

1.4 Research Contribution

In this paper, we propose a novel procedure-based sign language recognition sys-
tem. We trained light CNN models with three modalities to overcome environment-
dependent obstacles such as lighting issues, skin color, and different hand struc-
tures. After training the models, we checked cross-checked validation results with
our model individually with many state-of-the-art image classification models like
Inception-V3, DenseNet, Xception, VGG19, and ResNet50. Then we tested multiple
meta-learning algorithms for the ensemble model and crossed checked the testing
data with all mentioned state-of-the-art classification models. The main contribu-
tions of this research are as follows:

e We propose a system where pre-processing technique takes precedence over
the model’s architecture. This paper provides extensive details on how we can
pre-process samples so the classification model can provide a prediction with
a more meaningful explanation.

e We propose a novel procedure-based system to tackle environment-dependent
uncertainty variables like skin color, different lighting, noisy background, and
hand structure. By reducing the uncertainty variables, classification models
can provide a prediction with higher precision. This approach was inspired
by how humans classify a hand sign, which considers modalities such as skin
color, skeleton position, and the edges of the hand.

e We propose three lighter CNN classification models instead of a heavy neural
network architecture for an efficient system. A lighter CNN model has fewer
parameters, requires less computational power, and is faster and more efficient
than their popular counterpart. Even in terms of training the models, it will
require less resource utilization. Our proposed models performed better at
generalizing unseen data as they are less prone to overfitting while training.

e We propose a particular type of ensemble meta-learning algorithm for the
best combination of output where the meta-learning algorithm is integrated
with the training average precision value of the models. We tested out five
different modified meta-learning algorithms for predicting the best outcome.
This approach also reduces any weak predictions by considering all the outputs
from the models.

Chapter 2

Literature Review

2.1 Gesture Recognition

During predictions, a CNN architecture-based model can produce a high variance,
and during training, overfitting can occur. An ensemble approach was suggested
to reduce such inconvenience. The models were trained with background-separated
images extracted using the binary thresholding technique. The models used for the
ensemble models are a modified version of CNN-based classifiers such as VGG16,
GooLENet, and AlexNet. The output accuracy of the models is then calculated and
averaged. A meta-learner is built for the final gesture classification. Two publicly
available databases, Dataset-i and Dataset-ii, and one custom dataset have been
considered for the project. The results achieved were Dataset-i for 99.80%, Dataset-
ii for 96.50%, and 99.76% on the self-constructed dataset [46].

2.2 Sign Language Recognition

A study shows an efficient technique for identifying Indian Sign Language(ISL) num-
bers, letters, and words used in everyday life using a Convolutional Neural Network,
an architecture consisting of convolutional layers, ReLU layers, and max-pooling lay-
ers. A dataset of 35,000 samples from 100 static signs was created using a camera
under various environmental conditions. The suggested architecture has been eval-
uated on around 50 deep-learning models using several optimizers. The grayscale
picture dataset and the colored dataset achieved a training accuracy of 99.72% and
99.90%. In the performance comparison, SGD demonstrated superior results over
Adam and RMSProp optimizers. The proposed system’s outcomes have also been
analyzed based on accuracy and other evaluation metrics. It was discovered that
their model surpassed other existing models despite having fewer epochs [35].

A proposed method for the CSL recognition system is to segment the upper body
part from the video, then send the segmented data to a pre-trained classification
model to recognize the gesture. The procedure depends on the HSV transformation,
so it removes the facial segment of the photo. Without the assistance of motion cap-
ture devices, the technique has produced extraordinary recognition accuracy of 99%
on video on their self-build dataset, which contains 40 videos of CSL daily vocabu-
lary [22].

An approach makes use of co-independent data streams to capture the various sign
language modalities. These modalities share a complicated temporal structure and
are represented by various information channels. To address this, the authors focus
on synchronizing and capturing the dependencies between the sign language compo-
nents. Handshapes are the critical components in sign interpretation, and putting
them in the proper context is essential to understanding what a sign is trying to say.
By incorporating an attention mechanism, the model effectively combines features of
the hand with their relevant spatiotemporal context, leading to enhanced hand-sign
classification. The authors emphasize the significance of identifying the essential sign
language components associated with the dominant hand and face areas. Except for
the image embedding layers, which were already trained on ImageNet, the network
layers are initialized using Xavier. Regarding performance, the error rates on the
dev and test sets are reported as 32.74% and 33.29%, respectively [42]. Songyao
Jiang et al. propose the novel SAM-SLR-v2 (Skeleton Aware Multi-modal Frame-
work with a Global Ensemble Model). The paper discusses the shortcomings of
current SLR techniques, which frequently experience overfitting as a result of scarce
and noisy data. The suggested framework combines multi-modal feature represen-
tations to increase SLR accuracy. A Sign Language Graph Convolution Network
(SL-GCN) is first introduced to capture the dynamics of skeleton key points. In
sign language, it represents hand gestures and body positions. The temporal rela-
tionships between important points are modeled with the aid of this network. This
study used five distinct datasets, five of which included various languages. Three
separate SLR datasets are used to evaluate the proposed SAM-SLR-v2 framework.
The framework achieves state-of-the-art performance with significant improvements
over existing approaches [40].

2.3 Bangla Sign Language Recognition

Older approach to Bangla sign language recognition employs a pattern-matching
method based on PCA (Principal Component Analysis) for recognising 6-Bengali
vowels and 10-Bengali numerals. This system acquires a picture using a CCD cam-
era at 30 frames per second. The system has been taught to detect 16 hand signs,
including 10 Bengali digits and 6 Bengali vowels. Bengali vowels and numbers are
each given their own PCA. This program can recognise Bengali numerals from 0 to
9 written with one hand and Bengali signs with two hands. The highest precision
rate for Bengali sign language is 98%, and for numbers, the rate is 87% [5]. The
proposed system discusses the Neural Network Ensemble method, which does the
training faster and recognizes the signs with 93% accuracy of generalization ability.
For pre-processing, the system captions the image using a webcam, converts the
image to a threshold image and uses the normalization technique for feature extrac-
tion. Then the matrix representation of the extracted image is sent for Negative
correlation learning. After computing the training error and running iterations for
the acceptable error, we stop training and run operational steps for BDSLR. NCL
with 10 NNs with feature extraction comes to an accuracy of 93% [6].

Abedin et al., propose a new architecture called the ” Concatenated BASL Network”
that combines a Convolutional Neural Network (CNN) based image network with
a pose estimation network. The proposed approach aims to improve recognition
accuracy by incorporating visual features and hand posture. The novel approach
scored 91.51% on the test set, indicating promising results. The additional pose
estimation network proved beneficial in dealing with the intricacies of BASL symbols,
as suggested by the experimental outcomes [36].

A comprehensive dataset for Bengali sign language was created and trained using
CNN. Study demonstrates how convolutional neural networks may be utilized to
identify various BdSL indications accurately. In the suggested model, testing ac-
curacy for numbers was 100%, and testing accuracy for the Bangla sign language
alphabet’s characters was 99.83%. Combining characters and numbers achieved
an accuracy of 99.80% [28]. The relative placements of the separate fingers vary
according to the letter. As a result, fingertip position values are beneficial for iden-
tifying letters, and ANN is trained to use position values for this purpose. Using the
Ravikiran approach, the Canny Edge Detection Algorithm finds the fingertip. The
process initially identifies the edges, and then the exact position of each finger’s tip
is gathered. For categorizing the letters, ANN is taken into consideration due to its
effectiveness in particular works. The ANN is trained to fix the iteration using the
backpropagation training approach. According to observations, the accuracy of the
training set for tip position-based BSL-FTP is comparable to that of the GSI-based
technique. BSL-FTP, however, performs better than grayscale images on a general
basis. BSL-FTP for 100 hidden neurons shows the highest test set classification
accuracy of 98.99% [13]. Shahjalal Ahmed et al., examined their CNN model’s eval-
uation using multiple datasets in the paper. The model classifies digit-based hand
signs with 92% accuracy. The model consists of two convolution layers with 2x2
max pooling for each layer. The model was trained for 100 epochs with RMSProp
optimizer, and CCE(Categorical Cross Entropy) was used as the cost function [27].

A paper on the framework for BSL recognition using a Support Vector Machine goes
as follows, the framework works in 2 steps:

[. Segmentation of hand signs
II. Recognition of hand signs by extracting the features from the hand.

For the segmentation of hand signs, The research converted it to RGB to HSV and
later HSV to Binary for Morphological operation. Moreover, for Sign recognition,
the study segmented the axis of the regions of the images and extracted the features
using a two-dimensional Gabor filter. After using the MATLAB tool to compute
the success rate of the experiments, the total success rate came to 99.5% with 2389
correctly recognized images from 2400 images [19].

Another research shows the implementation of a Bangla Sign Language system that
utilizes SIFT for feature extraction to enhance accuracy and CNN for classification.
The research manually collected 200 images for 38 Bangla signs and 51 Bangla
letters for training and testing purposes. The research team then implemented a
skin masking technique to select the Region of Interest (ROI) containing only the

hand image. The feature descriptors were extracted using Scale-Invariant Feature
Transform. The extracted features were treated as clustered descriptors using k-
means clustering to create a histogram vocabulary for visualization. The data was
inputted into the CNN as histograms, and the output was checked for accuracy,
which was later compared with the results obtained without employing SIFT. The
results obtained with SIFT operations demonstrated a significant improvement over
the results obtained without using SIFT [25].

2.4 American Sign Language Recognition

The biggest challenge in ASL recognition is tackling the enormous ASL vocabu-
lary that is ever-growing [2]. The system developed to recognize a large group of
American Sign Language consists of a pair of task:

[. The stage for feature pulling or extraction.

II. The categorization phase.

A camera captures an image of the sign, eliminating the need for gloves. The
feature extraction stage relies on the Hough transformation, which is lenient and
unbiased of incomplete feature boundary information and comparatively insensitive
to photo distortion. These extracted feature vectors were then used as input for the
neural network. The proposed system demonstrated resistance to alterations in hand
sign, placement, dimension, and coordinates. This is because the stage for feature
extraction used techniques such as rotation, scale, and translation. The suggested
system identified approximately 98.5% and 80% of the learning and testing sets [4].
The paper is based on an easy-to-use sign language recognition system. In order to
tackle limitations due to the simplicity of the service, the authors suggest two types
of models. It proposes the Inception model to bring out the spatial features of the
video stream for SLR. It proposes an RNN model named LSTM in two methods to
bring out the temporal information from the video. First by using the softmax’s
output and then by the pooling layer of CNN. For 150 signs, the accuracy for the
softmax layer stood around 91%, and for the Pool layer at about 55%. The results
of the model were based on a custom American Sign Language Dataset [23].

Another study offers an architecture for developing a ConvNet, which laid hold of
depth and intensity data as distinct inputted data. The ConvNet was executed
on the Torch platform and then assessed using an ASL benchmark dataset. The
evaluation demonstrates that the developed convolutional network transcends pre-
vious research with 82% precision and 80% recall. Examination of the evaluation’s
confusion matrix reveals a pair of errors

[. The Symmetric errors: Where a pair of letters is misidentified as one another.

II. The Asymmetric errors: Where a of letters is misidentified as other but not
vice versa [20].

Research suggests an effective feature extraction method utilizing a convolutional
neural network (CNN). The experimental set-up was created from the beginning

to record a video frame from the camera. A suitable region is established as an
ROI or Region of Interest to remove the undesirable portion of the video frame.
Each individual has 3,120 (26x120) photos, and 120 photographs for each hand
sign. 4096x2808 features will be available for training, and 6552x4096 features will
be available for testing after feature extraction from the pictures using DCNN. The
informational nature of each of these features assists in the classification of each
human sign. Every alphabetic hand sign was categorised in the last phase of this
suggested model using a non-linear Multiclass Support Vector System (MCSVM).
The classification accuracy of 94.57% is noteworthy [24]. The HSV colour model
plays a crucial role in specifying the boundary of skin from the background. A colour
system named YCbCr is used to develop the functioning of skin colour clustering
and construct a skin colour model of the hand. After comparing the ASL recog-
nition rate of the suggested system with the existing ASL alphabet identification
techniques, it is seen that this approach yields an accuracy of 93.05%, which is bet-
ter than all the other existing techniques. Moreover, for ASL number recognition,
the proposed technique has an accuracy of 95%, which is the highest compared to
the pre-existing models in the past. It is seen that the average identification score
of non-occluded hand gestures of ASL letters is 97.5%, and ASL numeric is 100% [26].

A model established on an iterative attention mechanism that focuses on ROI syn-
chronously with increasing levels of resolution was studied. The ChicagoFSWild
dataset is used for this research, which contains nearly 2400 finger sign orders, and
four native signers provide them. Additionally, ChicagoFSWild+, a new dataset,
was presented. This dataset was gathered using a fingerspelling gloss-video interface
procured from VATIC. The ALexNet pre-trained on ImageNet is the foundation for
the CNN model layers used in this case. Moreover, the last max pooling layer is
dropped to achieve a large feature map. The recovered feature map is 13 x 13 when
the input photos are 224 x 224 in size. A one-layer LSTM network with 512 hidden
units is also used for the RNN. Next, Stochastic Gradient Descent (SGD) trains
the model [32]. A depth map and black wristband can also significantly reduce the
complexity of hand segmentation in hand sign recognition. A study was conducted
on building an automatic fingerspelling recognition system using CNNs from depth
maps. An accuracy of 78.39% for regular training and 85.49% for fine-tuning can
be achieved via this mode [§].

A CNN is taught to recognize signs from static sign language pictures using a Leap-
Motion Controller(LMC) to capture the coordinates of each hand joint for dynamic
sign language collection. The data is later engineered to acquire relevant relative mo-
tion data and trained classical classification models to determine each LMC input’s
sign. The system will improve deaf and hard-to-hearing community communication.
The final dynamic sign model can recognize one-handed signs with 88.9% accuracy
and two-handed signs with 79% accuracy [37]. Combining HOG and LBP charac-
teristics can extract the features from all the gestures. A multi-class SVM and a
CNN were then trained on these extracted features. A combination of CNN and
SVM models has proven to prevent overfitting, even if its validation accuracy is
lesser than the HOGLBP-SVM model. The outcomes of the CNN and CNN-SVM
models demonstrate that utilizing CNN as an independent feature extractor yields
superior results compared to employing an end-to-end CNN architecture [29].

2.5 Word-level Dataset

This paper presents an extensive dataset for American Sign Language (ASL) at
the word level, referred to as the WLASL dataset. The dataset contains a large
number of common words that are frequently used daily. WSASL is also one of
the, if not the most extensive, public American sign language datasets based on
the number of samples present in each class and vocabulary size. The paper also
evaluates the dataset by the performance of the deep-learning method, such as 2D
human pose and holistic visual appearance. WLASL2000 contains 2,000 glosses with
21,081 videos and 119 signers. The paper proposes a temporal graph convolutional
network (TGCN) that considers the pose trajectories’ spatial and temporal depen-
dencies together [34]. Another research paper discusses the importance of a robust
sign language recognition system. It helped to overcome the communication barriers
for individuals who struggle with verbal communication. The paper acknowledges
different challenges in sign recognition, such as similar gesture patterns, lighting and
clothing variations, and the need for a comprehensive Bangla sign language video
dataset. To address these challenges, the researchers created a dataset called MV B-
SLW50 that contains 50 isolated words across 13 categories. They also developed
an attention-based Bi-GRU model that captures the temporal dynamics of pose in-
formation in sign language communication. The model simplifies the recognition
process and achieves faster performance by concentrating on movement informa-
tion and disregarding body appearance and environmental factors. The reported
accuracy of the model is 85.64% [49].

10

Chapter 3
Work Plan

Ensemble stacking is perfect for enhanced classification, clustering, and regression
problems [38]. We already stated how we use the classification method to translate
sign language to human readable language.

In order to increase the precision of our final prediction, ensemble stacking is a
technique that combines the output findings or predictions of numerous deep learn-
ing or machine learning models on the same dataset. The base model and the
meta-model make up the ensemble architecture. As weak learners, the basis models
serve as the framework for our meta-model. The meta-model discovers the best
method for combining base model predictions. A meta-model can be both an Al
prediction model and a predetermined algorithm.

Ensemble Model

Gy

Y
I1|]J] T —
&3 L muR
N\ e (= e
%3% J - ——
I1|]J] TT1 —
Dataset Meta-learning Ensemble
? 1l _B‘ Algorithm Prediction
—

(g
@

L LI

Preprocessed Classification Individual
Data Models Predictions

Figure 3.1: Ensemble Model

To understand the architecture of our work plan, we have divided our system into
six different levels. Figure 3.1 is a visual representation of the ensemble stack model,
and now we will go through each phase and describe the functionality.

11

Level 1: First, we choose a dataset suitable for all the classifiers. A good dataset
for BASL should contain more instances with consistent representation of signs.

Level 2: Before feeding our data into the system, we processed our data using
pre-processing techniques such as Thresholding, GaussianBlur, Erosion, and Dila-
tion.

Level 3 and Level 4: The pre-processed data is ready to be fed to the system.
Each model was trained using the training set portion of the dataset. Each model
here is a base learner.

Level 5 and Level 6: Using the meta-learning algorithm, we got a combined re-
sult from all the base learners. Furthermore, by level 6, the combined outputs from
all the base learners should provide a better result.

3.1 Workflow

A dataset containing 11,061 training images over 38 different signs was taken for
the research. Each sign is considered a class, and each class contains approximately
300 images. The folder includes images of hand signs that serve as the label. In
this dataset, labels are represented as integers. Thus, it is necessary to go back
and transfer the labels to the correct strings. After having a solid understanding
of the dataset, the pre-processing stage starts to take place. In order to reduce the
computational load on the computer, it was essential to downsize the photos from
the dataset from 224x224 to 64x64. Then, augment each photo and split the new
images with the old ones for the training and validation sets. For the testing set, an
additional 1,520 photos were used for 38 classes. The dataset is now ready to put
into the proposed model.

Now, creating a CNN model, use the training set and validation set to train the
model. Various evaluation matrices were considered to determine whether the CNN
model is adequate. Save the model in .h5 format after testing the model with the
testing set and determining the best outcome. After saving it, we utilized our hand
sign to check the model’s functionality.

12

Figure 3.2: Proposed Approach

13

Chapter 4

Dataset

4.1 Data Configuration and Analysis

The dataset was referenced by Abdul Muntakim Rafi et al. in their paper on image-
based Bengali Sign Language Recognition for Deaf and Dumb Communities [30].
The dataset contains 38 different hand signs from 278 different people. 38 different
hand sign represents all Bangla alphabets, whereas in some cases, multiple alphabets
are represented through the same hand sign. Most of the image contains a single-
hand sign, and only one instance where both hands were used, which was expected
since the dataset was on a single-hand sign bangla sign language. The image is
mainly taken behind a white background, but a few hand signs are taken in front of
a noisy background.

NeoanRaXELS N

Figure 4.1: Random Images from the Training set

AENEh = Sa

Figure 4.2: Random Images from the Testing set

4.2 Data Preprocessing

4.2.1 Model 1 Preprocessing Techniques

The pre-processing techniques limit the computational usage and make the model
more accurate. A vast number of training data is required for a good model. Re-
searchers suggest 1,000 instances per class is a good number to create a robust
system, but only 320 instances per class are provided. So, we augmented each photo
6 times using rotation, width shift, height shift, shear and zoom. Then, we split our

14

11,061x7 images into training and validation sets. We used another 1,520 images of
all 38 classes for our testing set. These 1,520 images were not augmented since they
will evaluate our ensemble model. It is essential to ensure that no such augmentation
occurs when we flip the photo horizontally, as it can change the meaning of the hand
sign. After augmentation, we use the min-max normalisation [10] technique on our
dataset. This will help us limit computational usage and provide faster predictions.

T = Tmin
Tscaled =
Tmaz — Tmin

» P b e SASHE

Figure 4.3: Random Images from the Preprocessed Training Set

PREVYLEEY & | EAN

Figure 4.4: Random Images from Preprocessed Validation Set

(el b-F Y& BB IR"

Figure 4.5: Random Images from Preprocessed Testing Set

15

Frequency Distribution Frequency Distribution

Testing Set 2000 - m Training Set
1750 -
1500 -
150 - 1250 -
1000 -

100 -
750 -

50 -

Figure 4.6: Validation Set Figure 4.7: Training Set

Frequency Distribution

- AAARAAAAAAAAAAAAAAAA A A AR AR A AR Validation Set

° o o o ® © » #
Labels

Figure 4.8: Testing Set

4.2.2 Model 2 Preprocessing Techniques

Figure 4.9: Pre-processing Technique Visual

Similarly, for model 2, augmentation will take place. But before augmentation, a
few more steps are going to be required. For model 2, the focus is on the weakness
of our model 1. Our model 1 can perform poorly when the background is very
noisy, specially when background objects are larger than the arm or the hand in
the photo. We also aim to use different modalities to get better predictions on the
ensemble test. In order to achieve the goals, using MediaPipe’s hand landmarks
detection fits perfectly [48]. The workflow of the pre-processing technique for model
2 is simple. First, take the image and resize the image to (128,128). Use the
hand landmark detection algorithm while setting minimum detection confidence to

16

on new

Save numpy Draw Coordinate
array and label 1magp
More Llits
Image?
Eod e

(0,0,0)
Reshape Drop
.‘—
Avgment g 64x64 Image & Label

Figure 4.10: Flowchart Preprocessing Model 2

Create
L Reshape Ge_t - Black
128”128 Cuﬂrdl.ﬂﬂte 128”128
y

0. After fetching the coordinates for the hand and finger landmarks, draw the
crossroads on the 128x128 image where every pixel value is set to (0,0,0). Then,
resize the image to a 64x64 dimension. Sometimes, the MediaPipe cannot draw the
hand pose, resulting in a completely black image. For such cases, discard the new
entry. This same processing is required for all the images (11,061).

After creating the new pre-processed dataset, augment the images like the pre-
processing technique for model 1.

Figure 4.11: Random Images from the Pre-processed Training Set Model 2

Figure 4.12: Random Images from the Pre-processed Validation Set Model 2

17

Frequency Distribution Frequency Distribution

Testing Set 2000 - WEE Training Set
1750 -
1500 -
150 - 1250 -
1000 -

100 -
750 -

50 -

Figure 4.13: Validation Set Figure 4.14: Training Set

Frequency Distribution

- AAARAAAAAAAAAAAAAAAA A A AR AR A AR Validation Set

° o o o ® © » #
Labels

Figure 4.15: Testing Set

4.2.3 Model 3 Preprocessing Techniques

Figure 4.16: Pre-processing Technique Visual

Model 3 requires some extensive pre-processing techniques. The target for Model
3 was overcoming noisy backgrounds and removing complete dependency on Medi-
aPipe. A problem with model 2 was that it could sometimes not find the hand and
ended up forwarding a complete black image for prediction. To overcome the prob-
lem, the MediaPipe hand pose estimation technique was used to find the maximum
and minimum x and y coordinates.

The total pre-processing flow is simple, but some small tricks are used to enhance
the feeding data. At first, take a single input image with the label, then reshape the
image with a dimension of (224,224). Apply MediaPipe hand landmark detection
[48]. Filter out x-max, y-max, x-min, and y-min. Then crop the image at these four
coordinates (x-min, y-min), (x-min, y-max), (x-max, y-min), and (x-max, y-max).
If hand landmarks are not found, continue without cropping and reshape the image
at (64,64). The cropping helps remove most of the background and bring the hand

18

Reshape
|_> 128x 728 Coor
Start —.

1 (xmin, ymin) (+padding)
(xmax, ymax)(+padding)
(xmin, ymax)(+padding)
(xmax, ymin)(+padding)

Save Numpy

FALSE

| TRUE |
|

" |

Figure 4.17: Flowchart Preprocessing Model 3

Augment

to the center. Apply the Canny edge detection algorithm [1] [51] . It not only serves
as the edge detection technique but also drastically reduces the amount of data to
be processed. Using canny changes the image to grayscale, so apply GRAY2RGB,
then save the image and the label.

Figure 4.18: Random Images from the Pre-processed Training Set Model 3

Figure 4.19: Random Images from the Pre-processed Validation Set Model 3

19

150 -

100 -

Frequency Distribution

Frequency Distribution

2000 -

[Testing Set

1750 -

1500 -

1250 -

1000 -

°
<
%

Labels

. Training Set

Figure 4.20: Validation Set Figure 4.21

Frequency Distribution

A AAAA AR A Validation Set

Labels

Figure 4.22: Testing Set

20

o o k3
Labels

: Training Set

2

Chapter 5

Methodology

In this section, we described what we have proposed for Bangla Sign Language
Recognition. The proposed model is based on the convolutional neural network
architecture. Models built on CNN architectures are good at performing image
processing challenges, such as image classification challenges. The convolutional
neural network is designed to capture and exploit the hierarchical spatial structure
present in images.

5.1 Convolutional Neural Network

The CNN is built on the same principle as the human brain. The brain’s neuron
and the convolutional neuron in CNN work similarly by sharing and communicating
with local neurons. The CNN architecture usually consists of three layers: convo-
lutional, pooling, and fully connected. The convolutional layer defines the resulting
output of neurons connected to the input’s specified region by calculating the scalar
product between their weights and the region connected to the input volume [9].

Each layer of CNN works to detect different features from the input image. In
order to complete our task of sign language recognition, layers have to learn the
pattern of the fingers and the hand. A kerne creates an output that slowly gets
better after each layer. The final layer, or the fully connected layer, provides the
final output, which is the prediction of the hand sign for our case.

5.2 Proposed CNN Models for Sign Language De-
tection

In order to address the task of sign language recognition, we propose three distinct
CNN models, each with its own characteristics and trade-offs. These models have
been designed to cater to different requirements in terms of prediction speed and
accuracy, allowing flexibility for various real-world applications.

5.2.1 Model-1

We propose a lightweight CNN model that predicts a hand sign fast. In terms of
sign language recognition, the model needs to keep up with the signer if used in

21

s |

@ conwvin ﬂ BatchMoxrmalization S HaxPooling2m ' Dropout @ Flatten @ Dense

Figure 5.1: Ilustration of the Proposed CNN Architecture for Model 1

real-time. So in order to make the prediction time faster, we have to rely on the
dataset more than the model. If the model is too complex, predicting will take more
time. A complex model provides output with better accuracy, while a simple model
may predict faster. So it is essential to find a suitable middle ground. A model
relies on the dataset too, so we went for a complex dataset with a simple model, so
it learns the required features and predicts faster.

Our proposed model is built on nine different phases. Phase 1 consists of the
Conv2D layer with a filter size of 32, a kernel of (3,3), ReLu activation and a batch
normalization layer. It starts with extracting 32 feature maps using the kernel size.
BatchNormalization normalizes the activations of the previous convolutional layer,
improving the stability and convergence speed of the neural network. Phase 2 con-
sists of the Conv2D layer with a filter size of 48, a kernel of (3,3), strides (1,1),
ReLu activation, and a pool size of (2,2) for a MaxPooling2D layer with and strides
(2,2). The configuration for kernel size, Conv2D strides and activations remains the
same for all future phases. Phase 3 comes with five different layers, starting with
the BatchNormalization layer, then the Dropout layer, Conv2D with the filter of 64,
another BatchNormalization layer and finally, MaxPooling2D.

Phases 4, 5 and 6 all consist of Conv2D, MaxPooling2D and BatchNormalization
layer, but for phases 4 and 5, the Conv2D has 128 and 256 filters while the remaining
comprises 512 filters. Phase 7 is the Flatten layer, so the 3D feature map is converted
into a 1D vector of length 512. Phase 8 is the first Dense layer, a fully-connected
layer with 256 neurons and, again, a ReLu activation. Phase 9 has another Dense
layer with 38 neurons corresponding to each of the classes of our hand sign but
instead of using ReLu activation, it is required to use softmax.

22

conv2d

batch_normalization

dropout_1

conv2d_4

batch_normalization_4

conv2d_5

max_pooling2d_4

Figure 5.2: Feature Map on each layer of our proposed model

23

5.2.2 Model-2

[cowvam [maxeoolingm () satchwornalization (] ovopout (] rlatten () pense

Figure 5.3: Hlustration of the Proposed CNN Architecture for Model 2

The model starts with a Conv2D layer with 32 filters and a kernel size of (3, 3), using
the ReLLU activation function and employing padding to maintain the same output
size. A MaxPooling2D layer follows the Conv2D layer, with a (2, 2) pool size and
strides of 1, so the pooling window will move 1 step at the x-axis and y-axis. The
subsequent layers continue this pattern. Again, a Conv2D layer is added with 64
filters and a 3x3 kernel, followed by BatchNormalization to normalize the activations
and improve training stability. Then, a MaxPooling2D layer decreases the size of
the feature maps’ spatial dimensions. The process is repeated with Conv2D layers
having 128 filters, 256 filters, and 512 filters. Each layer is followed by BatchNor-
malization and Dropout layers to regularize and further control overfitting. After
the convolutional layers, a flattened layer is applied to convert the 3D feature maps
into a 1D vector, preparing the data for the dense layers. The model then intro-
duces two dense layers. The first dense layer consists of 256 neurons with a ReLLU
activation function. It is continued with a Dropout layer to regularize the model
further. The last dense layer has units equal to the number of classes (num_classes)
required to classify, employing a softmax activation function to produce the final
probability distribution over the classes. During training, two callbacks are utilized.
The ReduceLROnPlateau callback reduces the learning rate if the monitored metric
(in this case, loss) stops improving, with a minimum learning rate of 0.00000001
and patience of 15 epochs. The EarlyStopping callback halts training if the moni-
tored loss does not improve for 10 consecutive epochs. The model is constructed by
employing the Adam optimizer with its default learning rate, utilizing categorical
cross_entropy as the loss function for multi-class classification, and measuring its
performance using accuracy as the evaluation metric.

24

W &y #y W

3 O
dropout
conv2d_1

. . v

batch_normalization_1

dropout_2
RS S B N R B, B W N O e B B W B B A e T B R W o B S G B 9o 9 e O o MR

conv2d_3

max_pooling2d_3

batch_normalization_3

dropout_3

conv2d_4

max_pooling2d_4

Figure 5.4: Feature Map on each layer of our proposed model 2

25

5.2.3 Model-3

[cowvam [maxeoolingm () satchwornalization (] ovopout (] rlatten () pense

Figure 5.5: Hlustration of the Proposed CNN Architecture for Model 2

In this model, convolutional layers begin with a Conv2D layer with 32 filters, a ker-
nel size of (3,3) with ReLU activation, and a stride of 1. The padding is the same
for all the layers. This is followed by a MaxPooling2D layer with a pool size of (2,2)
and strides of 1. Batch normalization is applied to normalize the activations, and
dropout with a rate of 0.1 is used for regularization. The sequence then continues
with Conv2D layers with 64, 128, 256, and 512 filters following the same param-
eters. They are also followed by MaxPool and BatchNormalization layers along
with dropout layers to regularize and further control overfitting. Finally, a Flatten
layer is added to convert the 3D feature maps into a 1D vector. The dense layers
begin with a Dense layer of 256 units and ReLU activation. Dropout with a rate
of 0.5 is applied for regularization. Then, the model includes a Dense layer with
units equal to the number of classes (num_classes) in the classification task. The
activation function used is softmax to obtain class probabilities. During training,
two callbacks are utilized. The ReduceLROnPlateau callback reduces the learning
rate if the monitored metric (loss) stops improving, with a minimum learning rate
of 0.00000001 and patience of 15 epochs. The EarlyStopping callback halts training
if the monitored loss does not improve for 10 consecutive epochs. The model is
compiled with the Adam optimizer using a default learning rate. The loss function
is categorical_crossentropy, and accuracy is used as the evaluation metric.

26

conv2d

dropout

conv2d_1

dropout_1

conv2d_2

batch_normalization_2

dropout_2
Rt A R UL MR OO R S LRl N o 3 0 A S R o S B e R D R W 4 e

convad_3

max_pooling2d_3

batch_normalization_3

dropout_3

conv2d_4

max_pooling2d_4

Figure 5.6: Feature Map on each layer of our proposed model 2

27

Chapter 6
Pre-trained CNN Models

6.1 VGG19

The architecture of VGG19 consists of 19 layers, including 16 convolutional layers
and three fully connected layers. The convolutional layers use small 3x3 filters
with a stride of 1, stacked together multiple times, making the network deeper.
This stacking of convolutional layers helps the model learn more complex features
at different levels of abstraction. Between the convolutional layers, VGG19 utilises
max-pooling layers with a 2x2 filter and a stride of 2. A VGG19 model was suggested
in another paper based on BdSL detection, which had achieved a testing accuracy
of 89.6% [30]

Figure 6.1: VGG19 Accuracy and Loss

6.2 Inception V3

The main idea behind Inception v3 is using ”Inception modules,” which are com-
putational units that allow the network to capture information at multiple scales
and resolutions. These modules incorporate different sizes of convolutions (1x1, 3x3,
and 5x5) and pooling operations, enabling the network to extract features at various
levels of abstraction. This multi-scale approach helps the model learn both low-level
details and high-level concepts simultaneously. One notable feature of Inception v3
is the introduction of "factorised 7x7 convolutions.” Instead of directly applying a
7x7 convolutional layer, the network factorises it into two consecutive 3x3 convo-
lutions. This factorisation reduces the number of parameters and allows for better
utilisation of computational resources. In Inception version 3, a significant focus
is placed on optimising the computing resources required to execute the program.

28

This is achieved by implementing several modifications to the previous Inception
architectures to minimise resource consumption [11].

e

Figure 6.2: Inception V3 Accuracy and Loss

6.3 DenselNet

The key idea behind DenseNet is to connect all the layers in a feed-forward fashion
[16]. The architecture of DenseNet is formed of many dense blocks, where each
thick block contains a series of densely connected layers. Each layer receives inputs
directly from all parent layers inside a dense block, creating a dense connectivity
pattern. This dense connectivity makes feature reuse possible, as earlier layers have
access to the gradients and features from subsequent layers, enhancing gradient flow
and promoting information propagation throughout the network. To ensure efficient
information flow and maintain a manageable number of parameters, DenseNet in-
corporates transition layers in the linking dense blocks. The transition layers are
formed of a batch normalization layer, continued by a 1x1 convolutional layer, and
a downsampling operation. These transition layers decrease the size of the feature
maps and manage the number of feature maps, leading to a further reduction in
computational demands.

Figure 6.3: DenseNet Accuracy and Loss

6.4 Xception

A convolutional neural network architecture that exclusively utilizes depthwise sep-
arable convolution layers. The hypothesis is that convolutional neural networks’
relationships between channels and spatial features can be separated completely.
This hypothesis builds upon the idea behind the Inception architecture and takes it
to an extreme level. Hence, we refer to our proposed architecture as Xception, which
stands for " Extreme Inception” [14]. The main feature extraction component of the

29

model consists of 36 convolutional layers. These convolutional layers are organized
into 14 modules, where each module is designed with linear residual connections,
except for the initial and final modules.

Figure 6.4: Xception Accuracy and Loss

6.5 ResNet50

ResNet50 is a 50-layer deep convolutional neural network with an input size of 224
by 224. We can load a pre-trained version of the neural network trained on more
than a million images from the ImageNet database. It can classify images into
1000 object categories. The structure of ResNet is similar to VGG with residual
blocks. It has a 7x7 conv layer and only one pooling layer with two-sized strides
followed by numerous conv layers. Finally, an average pooling layer is followed by
a fully connected layer with 1000 nodes using the softmax function. This CNN also
uses 1x1 conv layers known as “bottleneck.” Bottleneck residual blocks reduce the
number of parameters and matrix multiplication, resulting in much faster training
of individual layers [15].

Model Accuracy
o S

|

. |

' |

|

20 ‘

[

Figure 6.5: ResNet50 Accuracy and Loss

30

Chapter 7

Experiment Results

7.1 Results

A study comparing the proposed models with the five other pre-trained models was
conducted, which included state-of-the-art models such as VGG19, Inception V3,
DenseNet, Xception, and ResNet50. The proposed models achieved high assess-
ment metrics values compared to the pre-trained models. Only ResNet50 could
beat model 2, but it was expected as model 2 works on a different modality than
Resnet50, adding that ResNet50 is a significantly larger architecture compared to
model 2, and it requires samples with higher dimensions. This experiment incorpo-
rates evaluation metrics such as accuracy, precision, F1 score, and loss to evaluate
the models’ performance.

The accuracy of a model measures how often the model correctly predicts the ex-
pected outcome. It is the fraction of accurate predictions made by the model relative
to the total number of predictions.

Precision is used to determine whether a percentage of the identifications made
by the mode is accurate. To assess precision, we take the sum of all predicted pos-
itive outcomes known as True Positives (TP) and divide it by the sum of the total
number of predicted positives (TP + FP) [3]. Hence, we use the following formula:

TP

Precision = T‘P—}——ITP

The Recall metric measures how accurately a model can identify positive examples
from a dataset. It is calculated by dividing the number of true positives (TP) by
the sum of true positives and false negatives (FN). The formula for the recall is:

TP

Recall = m—m

Finally, the F1 score is used to determine the overall performance of the models. It
is calculated by taking the harmonic mean of the precision and recall scores. We
use the following formula to select it:

precision x recall
F1 = 2%

precision + recall

31

Table 7.1: Evaluation metrics for Training Set

Deep F1
Learning Accuracy | Epochs | Recall | Precision | Loss
. Score
Architecture
VGG19 0.8561 65 0.9022 0.9041 0.4543 | 0.9018
Inception V3 0.9170 65 0.9876 0.9876 0.2703 | 0.9876
DenseNet 0.8052 65 0.9728 0.9729 0.5509 | 0.9727
ResNet50 0.9987 65 0.9999 0.9999 0.070 | 0.9999
Xception 0.8808 65 0.9881 0.9882 0.3529 | 0.9881
Model 1 0.9977 66 0.9999 0.9999 0.0075 | 0.9999
Model 2 0.9811 80 0.9995 0.9995 0.0753 | 0.9995
Model 3 0.9930 80 0.9994 0.9994 0.0201 | 0.9994
Table 7.2: Evaluation metrics for Validation Set
Deep F1
Learning Accuracy | Epochs | Recall | Precision | Loss
. Score
Architecture
VGG19 0.8045 65 0.8045 0.8083 0.6119 | 0.8037
Inception V3 0.7297 65 0.7300 0.7307 0.9105 | 0.7293
DenseNet 0.7816 65 0.7816 0.7846 0.7342 | 0.7817
ResNet50 0.9416 65 0.9416 0.9421 0.3763 | 0.9417
Xception 0.7213 65 0.7213 0.7245 1.0248 | 0.7219
Model 1 0.9765 66 0.9766 0.9766 0.1005 | 0.9765
Model 2 0.9330 80 0.9330 0.9334 0.3309 | 0.9329
Model 3 0.9666 80 0.9666 0.9667 0.1591 | 0.9666

A comparative analysis with existing baseline or benchmark pre-trained models in
the field was conducted. The evaluation metrics considered for this analysis included
The proposed models demonstrated a
significant improvement in all the evaluated metrics, outperforming the existing pre-
trained models. Specifically, proposed modell achieved an accuracy of 97.65% on the
testing set, surpassing the highest reported accuracy of the previous models. This
substantial performance enhancement highlights the proposed model’s effectiveness
in addressing the problem.

accuracy, precision, recall, and F1-score.

32

7.2 Confusion Matrix

The confusion matrix of the validation set of our proposed model displays the predic-
tions on the horizontal axis and the correct responses on the vertical axis. Confusion
matrix is a process that determines the performance of the model by cross-checking
the predicted value with the true value [45]. Figure 7.1, 7.2, and 7.3 contain the con-
fusion matrix for the samples from the validation set for each model with a heat-map.

Confusion Matrix
° o 0 0 0 0 0 03 0001006000 0OOUO0OOGOOUOT O0OTUOO 0 0 06 0 0 0 0

-0 o o o o o o o o o o0 o o o o o o0 o0 o0 O O O O O O OO O 0 O

w
)
5
)
o
)
)

~-0 0 o0 0 1 0 00 000000 OGO 1006000 0 OO 0O 006 0 0 0 0 0 0
0 1 0
<-0 0 0
n-0 0 0
©-0 0 0
200
~-0 0 0
©-0 0 0
@-0 0 0
g-0 0 0
4-0 0 0
N-0 0 0
m-0 0 0
-0 0 150
n-0 0 0
g-0 0 0
L,5-0 0 0
%g—o 0 0
2 9-0 0 0
Fﬂ’o J 0
=4-0 0 0
N-0 0 0 - 100
m-0 0 0
H-0 0 0
q-0 0 0
g-0 0 0
-0 0 0
®-0 0 0
-0 0 0
g-0 0 0 50
H-0 0 0
N-0 0 0
m-0 0 [[] [[] [[6 [[0
$-0 0 [] [[] 0 [0 [0 0
m-0 0 0 [] [[] 0 [0 [0 [0
-0 0 0 0 0 0 0O 0O 0 0 0 1 0 0 o 000 01 00 0 0 0 OO0 OO0 0 0 0 1 0 0
-0 0 0 0 0 0 0 0 0 0 0 0o 0o 0o o 06 0 00O 0O 0O 0 OO0 OO0 0O 0 0 0 0 O
O T S A O T T O S A S R N R R -0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Predicted Labels

Figure 7.1: Confusion Matrix on Validation Data Model 1

33

Confusion Matrix

200

175

150

T

125

FAS

o

°

I
81

°

'
61

o

S

]
f

oz

s|pqe aniL

-75

-25

36 37

33 34 35

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

12 13 14 15 16 17

0
'

0
|
0 11

Predicted Labels

Confusion Matrix on Validation Data Model 2

7.2:

igure

F

34

Confusion Matrix

200

175

150

T

125

FAS

°

I
81

°

'
61

=]

S

]
f

oz

s|pqe aniL

-75

-25

36 37

33 34 35

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

12 13 14 15 16 17
Predicted Labels

0
'

1
|
0 11

Confusion Matrix on Validation Data Model 3

7.3

igure

F

35

Some hand signs are very difficult to generalise, specially when the hand signs are
similar with just a few minor changes. Labels 3 and 22 are identical except for the
angle of the index finger where most of the false positive occurred. The problem
was tackled by use of model 3.

predicted label: 29

predicted label: 2 predicted label: 18 predicted label: 32

Figure 7.5: False Prediction between labels 3 and 22

In other cases, our model can provide a prediction fast and accurately. We took
multiple photos of our hands with our cellphone camera and tried to predict the
hand sign using our models, and it was able to provide the correct prediction.

7.3 Classification Report

The classification model for all three models is provided below. This report will help
in figuring out the weakness of the models. It suggests that out of all the models.
Model 2 had the lowest precision among all the models and the lowest individual
precision for a single class standing at 0.83 for classes 7 and 14. However, in some
cases, model 2 had the best precision, beating both model 1 and model 3.

The graphs of accuracy and loss of the proposed model are as follows:

36

Model Accuracy Model Loss
' i
4 train_loss
0.8 val_loss
3
0.6
2|
0.4
0.2 E
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Figure 7.6: Proposed Model 1 Accuracy and Loss Graph
Model Accuracy Model Loss
1 i
train_loss
0s 3 val_loss
2.5
0.6
2
0.4 1.5
1
0.2
0.5
0 0
0 20 40 60 0 20 40 60
Figure 7.7: Proposed Model 2 Accuracy and Loss Graph
Model Accuracy Model Loss
'] v
0.9 train_loss
val_loss
0.8 2.5
0.7 5
0.6
1.5
0.5
0.4 1
0.3 0.5
0.2
0
0 20 40 60 0 20 40 60

Figure 7.8: Proposed Model 3 Accuracy and Loss Graph

37

Index precision | recall | fl1-score | support
0 1.00 0.97 0.98 202
1 0.98 0.98 0.98 200
2 0.99 0.99 0.99 200
3 0.93 0.90 0.92 216
4 0.99 0.99 0.99 165
5 0.98 1.00 0.99 206
6 0.98 0.99 0.99 201
7 0.97 0.99 0.98 204
8 0.98 0.98 0.98 214
9 0.98 0.98 0.98 191
10 0.99 0.99 0.99 220
11 0.99 0.96 0.98 196
12 0.99 0.98 0.99 178
13 0.99 0.96 0.97 194
14 0.98 0.97 0.98 200
15 0.99 0.97 0.98 180
16 0.99 1.00 0.99 246
17 0.99 1.00 1.00 221
18 0.95 0.97 0.96 193
19 0.98 0.97 0.98 214
20 0.98 1.00 0.99 205
21 1.00 0.98 0.99 206
22 0.94 0.94 0.94 232
23 0.95 0.97 0.96 197
24 0.97 0.95 0.96 217
25 0.98 0.99 0.98 192
26 0.98 0.97 0.97 206
27 0.96 0.98 0.97 192
28 0.99 0.98 0.99 194
29 0.99 0.99 0.99 201
30 0.97 1.00 0.99 212
31 0.98 0.96 0.97 181
32 0.95 0.99 0.97 201
33 0.96 0.97 0.96 210
34 0.99 0.99 0.99 213
35 0.96 0.96 0.96 221
36 0.98 0.98 0.98 200
37 1.00 1.00 1.00 222
accuracy None None | 0.98 7743
macro avg 0.98 0.98 0.98 7743
weighted avg | 0.98 0.98 0.98 7743

Table 7.3: Classification Report Model 1

38

Index precision | recall | fl1-score | support
0 0.94 0.95 0.94 191
1 0.93 0.97 0.95 199
2 0.96 0.99 0.97 205
3 0.88 0.85 0.86 192
4 0.96 0.95 0.96 172
5 0.86 0.87 0.87 199
6 0.84 0.81 0.82 200
7 0.83 0.89 0.86 210
8 0.87 0.87 0.87 238
9 0.94 0.94 0.94 201
10 0.97 0.94 0.95 231
11 0.93 0.96 0.95 189
12 0.96 0.92 0.94 191
13 0.90 0.84 0.87 204
14 0.83 0.86 0.84 199
15 0.88 0.84 0.86 203
16 1.00 0.99 0.99 211
17 0.99 1.00 1.00 219
18 0.85 0.85 0.85 209
19 0.95 0.94 0.95 197
20 0.97 0.94 0.95 236
21 1.00 0.99 0.99 219
22 0.85 0.89 0.87 221
23 0.94 0.95 0.95 219
24 0.96 0.96 0.96 224
25 0.99 0.99 0.99 197
26 0.99 1.00 0.99 201
27 0.93 0.88 0.91 190
28 0.99 0.98 0.98 163
29 0.97 0.98 0.98 199
30 0.97 0.98 0.97 176
31 0.99 0.97 0.98 204
32 0.95 0.97 0.96 191
33 0.93 0.97 0.95 218
34 0.98 0.98 0.98 187
35 0.95 0.94 0.95 178
36 0.93 0.93 0.93 211
37 0.92 0.96 0.94 212
accuracy None None | 0.93 7706
macro avg 0.93 0.93 0.93 7706
weighted avg | 0.93 0.93 0.93 7706

Table 7.4: Classification Report Model 2

39

Index precision | recall | fl1-score | support
0 0.98 0.97 0.97 221
1 0.96 0.97 0.96 219
2 0.98 0.98 0.98 203
3 0.96 0.95 0.95 213
4 0.95 0.97 0.96 156
5 0.96 0.96 0.96 207
6 0.96 0.96 0.96 210
7 0.96 0.95 0.96 205
8 0.98 0.97 0.97 209
9 0.97 0.98 0.98 201
10 0.96 0.97 0.97 205
11 0.99 0.96 0.98 204
12 0.94 0.97 0.95 174
13 0.98 0.95 0.97 212
14 0.97 0.97 0.97 209
15 0.98 0.95 0.96 202
16 0.97 0.96 0.96 221
17 0.95 0.94 0.95 193
18 0.95 0.98 0.96 204
19 0.96 0.93 0.95 195
20 0.98 0.99 0.98 216
21 0.97 0.96 0.97 223
22 0.94 0.94 0.94 217
23 0.93 0.96 0.95 207
24 0.95 0.96 0.96 196
25 0.99 0.99 0.99 210
26 0.96 0.94 0.95 206
27 1.00 0.99 0.99 206
28 0.99 0.98 0.99 186
29 0.99 0.99 0.99 216
30 0.96 0.98 0.97 218
31 0.99 0.97 0.98 201
32 0.98 0.99 0.98 205
33 0.96 0.95 0.95 204
34 0.98 0.98 0.98 175
35 0.97 0.97 0.97 182
36 0.98 0.98 0.98 218
37 0.93 0.97 0.95 194
accuracy None None | 0.97 7743
macro avg 0.97 0.97 0.97 7743
weighted avg | 0.97 0.97 0.97 7743

Table 7.5: Classification Report Model 3

40

7.4 Ensemble Learning

There could be multiple approaches to ensemble techniques. The following passage
is to describe all these techniques and finding the best possible solution for our
domain-specific problem [7]. A ground truth label, n models, and n predictions
from each model are needed for the ensemble model. The challenge is putting
the best algorithm into practice so that the combination of n-predictions can give
us matching ground truth. The proposed model_1, model 2, and model 3 are the
models used for the ensemble’s base learner. For the ensemble testing, the remaining
1520 training data are being used.

7.4.1 Unweighted Averaging Ensemble Technique

This is the most straightforward ensemble technique best suited for the problem.
The method requires prediction for each sample from all three models. The ensem-
ble prediction is created by adding the individual predictions from model 1, model
2, and model 3 for each sample. Then divide added probability by the number of
models that are taking part. In our case, it would be 3.0 for having three different
base learners. To further visualize the problem, assume a multi-class classification
problem with four classes A, B, C, and D. Now, model 1, model 2, and model 3
are trained to classify an image into these categories. For each class, each model
offers probability for each sample. Now for each sample, the maximum average of
the probability of a class is the ensemble prediction.

Consider the probabilities below for a single sample where models 1, 2, and 3’s
predictions are [0.2, 0.3, 0.4, 0.1], [0.1, 0.5, 0.2, 0.2], and [0.3, 0.2, 0.1, 0.4]. Start
with calculating the probability for each class. Add the probabilities together. The
averaging approach divides the added probabilities by the number of models. So
this would lead us to this series of equations: [((0.2 + 0.1 + 0.3) / 3.0), ((0.3 + 0.5
+0.2) / 3.0), (0.4 + 0.2 + 0.1) / 3.0), ((0.1 + 0.2 4+ 0.4) / 3.0)] or simplifying it
to [0.2, 0.333, 0.233, 0.233]. The ensemble prediction probabilities are obtained by
averaging the corresponding probabilities from each model. Then it needs to find
the highest probability. In this case, the ensemble prediction probabilities suggest
that class B is the predicted class as it has the highest probability.

7.4.2 Unweighted Voting Ensemble Technique

Assume there are 3 CNN models called Models 1,2 and 3. The models are trained
to classify a sample into these four objects, A, B, C and D. When a sample is sent as
input to the model, and the model provides a probability for each category. Table
7.6 shows the predicted class from each model. Table 7.6 suggests that Model 1 and
Model 2 predict the outcome as Class C, while Model 3 predicts Class A.

Since Class C has the highest number of votes (2 votes), we choose Class C as the
ensemble prediction. Therefore, in this case, where Model 1 and Model 2 predict the
same class (Class C) while Model 3 predicts a different class (Class A), the voting
ensemble technique would determine the ensemble prediction as Class C based on
the majority votes.

41

Table 7.7

Table 7.6
Model Index Probability Clgis Iniex Volt =
Model 1 | 0.2, 0.3, 0.4, 0.1 c1ass B 0
Model 2 0.1, 0.1, 0.6, 0.2 CIZ:: C 2
Model 3 | 0.6, 0.2, 0.1, 0.1 Class D 0

7.4.3 Static-Weight Averaging Ensemble Technique

This ensemble technique, Weighted Average Ensemble, combines predictions from
three base models (modell, model2, and model3) for a multi-class classification
problem with classes A, B, C, and D. Each model provides probability predictions
for each category. The individual forecasts for each sample from modell, model2,
and model3 are combined using static weights derived from average precision values
obtained during model evaluation.

Consider an example with the following probability predictions for a single sample
in table 7.8

Table 7.8

Model Index | Probability
Model 1 0.2,0.3,04, 0.1
Model 2 0.1, 0.5, 0.2, 0.2
Model 3 0.3,0.2,0.1,04

To obtain an ensemble prediction, we will calculate the average probability of each
class considering the weighted sum of the probabilities. These weights correspond
to accuracy values obtained in modell, model2, and model3 evaluation.

Equation 1 - Ensemble prediction probabilities for Class A:
[((0.2 *0.98 + 0.1 *0.93 + 0.3 *0.97) / (0.98 + 0.93 + 0.97))]
Class A = 0.20138888888

Equation 2 - Ensemble prediction probabilities for Class B:
[((0.3 *0.98 + 0.5 *0.93 + 0.2 *0.97) / (0.98 + 0.93 + 0.97))]
Class B = 0.33090277777

Equation 3 - Ensemble prediction probabilities for Class C:
[((0.4 *0.98 + 0.2 % 0.93 + 0.1 *0.97) / (0.98 + 0.93 + 0.97))]
Class C = 0.234375

Equation 4 - Ensemble prediction probabilities for Class D:
[((0.1 *0.98 + 0.2 *0.93 + 0.4 * 0.97) / (0.98 + 0.93 + 0.97))]
Class D = 0.23333333333

There is no complexity to the algorithm. Multiply the probability of a class by
the model’s weight (precision value). Then add all the probability and divide by

42

the models’ total weight. Class B has the highest likelihood based on the ensemble
prediction probabilities in this example. Therefore, the ensemble technique selects

class B as the final prediction due to its highest probability among the classes A, B,
C, and D.

7.4.4 Static-Weight Voting Ensemble Technique

This voting ensemble technique uses three base models (Model 1, Model 2, and
Model 3) for multi-class classification. Each model provides probability predictions
for each class. To incorporate the weights into the ensemble prediction, assign static
weights to each model.

Let’s assume the following weights on table 7.9 and predictions on table 7.10:

Table 7.9 Table 7.10
Model Index | Weight Model Index | Predictions
Model 1 0.98 Model 1 Class C
Model 2 0.93 Model 2 Class C
Model 3 0.97 Model 3 Class A

Votes = [(Class C, 0.98), (Class C, 0.93), (Class A, 0.97)]

Sorted Votes = [(Class C, 0.98), (Class A, 0.97), (Class C, 0.93)]

Now, check if all models predict different classes. In this case, Model 1 and Model 2
predict Class C, while Model 3 predicts Class A. Since the models have no unanimous
agreement, proceed with the majority voting approach. The ensemble prediction is
obtained using the class with the most votes. In the example, Class C has two votes,
while Class A has one vote. Therefore, the ensemble prediction would be Class C.
Assume a new prediction, votes and weights:

Table 7.11 Table 7.12 Table 713
Cii:: SA V(ite Model | Predictions Model | Weight
Class B 1 Model 1 Class B Model 1 | 0.98
Class C 1 Model 2 Class C Model 2 | 0.93

Model 3 Class A Model 3 | 0.97
Class D 0

Since all classes have an equal number of votes (1 vote each), there is no majority. In
such cases, the approach is to consider the predicted class from the model with the
highest weight as the ensemble prediction. Sorting the votes based on the weights
in descending order:

Sorted Votes = [(Class B, 0.98), (Class A, 0.97), (Class C, 0.93)]

Now, choose the class predicted by the model with the highest weight, Class B.
Therefore, the ensemble prediction in this case would be Class B.

The weights give more importance or influence to specific models in the voting
process. The higher the weight assigned to a model, the more impact its prediction

43

has on the final ensemble prediction. In this case, Model 1 carries the highest weight
(0.98), followed by Model 3 (0.97) and Model 2 (0.93). By incorporating the weights
into the voting ensemble technique, we can effectively prioritize the predictions of
specific models based on their performance or reliability, leading to an ensemble
prediction that reflects the combined expertise of the individual models.

7.4.5 Dynamic-Weight Averaging Ensemble Technique

The process of the Dynamic-weight averaging technique is completely similar to the
static-weight averaging ensemble technique, but as the name suggests, the weight is
dynamic. For Modell, Model2 and Model3 we have the classification report table
7.3, 7.4 and 7.5. After getting the prediction from each model, take the precision of
that specific class from the table and use that precision value as weight. Now For
each class on each model, we have a dynamic weight that is not fixed.

Let’s assume the static weights are as follows:

Weight for Model 1: 0.98
Weight for Model 2: 0.93
Weight for Model 3: 0.97

Assume Model 2 is really good at predicting class B with a precision of 1.0. However,
the average precision falls behind because of the inability to predict the other class.
This is where the dynamic weight can help; if Model 2 predicts Class B and the
other two model predicts Class A and C, taking Model-2’s prediction would make
much more sense.

7.4.6 Ensemble Stacking Technique

The ensemble stacking technique is similar to all the work provided before. The
change lies in the meta-learning model. Instead of using strict rules such as voting
and averaging, meta-learning relies on a machine-learning algorithm for the ensemble
prediction. The labels of the test datasets are then transformed into one-hot encoded
format. Next, the test datasets and their corresponding labels are split into training
and testing sets. Predictions are made on the training sets using the trained base
models. These predictions are multiplied by respective weights assigned to each
model. The weighted predictions are combined horizontally to create the training
dataset for the meta-learner. A meta-learner is trained on the training dataset along
with categorical labels obtained from the one-hot encoded labels. The meta-learner
predicts the labels for the test dataset. Accuracy scores are calculated for each
base model by comparing their predictions with the true labels, and the accuracy of
the meta-learner is also calculated. Finally, the accuracy scores of the base models
and the meta-learner are printed to assess the performance. For the meta-learner
algorithms, we used Random Forest Classifier, Support vector machine, K-Nearest
Neighbors, and Logistic Regression.

For meta-learner algorithms, we used Random Forest Classifier, Support vector
machine, K-Nearest Neighbors and Logistic Regression.

44

7.5 Ensemble Modle Classification Report

The following report is based on the 1,520 testing samples we split earlier. Single
model system refers to regular system where ensemble techniques are not being used.
Different ensemble techniques are compared alongside how the regular model would
perform independently. Firstly, by trying out state-of-the-art architectures to see
how they would perform. By comparing Inception, DenseNet, Xception, Resnet50,
and VGG19 on this validation set, it was noticed that Resnet50 outperformed all the
models by a significant and convincing margin. On the other hand, a comparison be-
tween multiple ensemble techniques was studied. Starting with basic averaging and
voting, then applying weight and dynamic weight to it, and finishing with ensemble
stack modeling with different machine learning models. The study hypothesized
that dynamic-weight-based averaging would provide the highest accuracy. Still, it
was tested to be false as it came in third place only after the static-weight and
unweighted averaging techniques. The voting and averaging models are similar in
principle, but taking confidence into account were able to make a marginal differ-
ence in the total outcome. The ensemble stacking models worked well too, but they
could not outperform the simpler decision-making algorithms.

Model Accuracy
Inception (Single Model System) 0.7118
DenseNet (Single Model System) 0.7770
Xception (Single Model System) 0.6855
ResNet50 (Single Model System) 0.9349
VGG19 (Single Model System) 0.7822
Unweighted Averaging Ensemble Model 0.9500
Unweighted Voting Ensemble Model 0.9329
Static-Weight Averaging Ensemble Model 0.9513
Static-Weight Voting Ensemble Model 0.9454
Dynamic-Weight Averaging Ensemble Model 0.9480
Ensemble Stack RandomForest Meta-learner 0.9137
Ensemble Stack SVM Meta-learner 0.9194
Ensemble Stack KNN Meta-learner 0.9235
Ensemble Stack Logistic Regression Meta-learner 0.9367

Table 7.14: Model Accuracy

45

Chapter 8

Future Improvement and
Discussion

8.1 Future Improvement

Our model is robust while detecting hand-sign, but there is always a place for
improvement. Firstly our model is not hyperparameter tuned, so it is possible
to reach new heights using the KerasTuner [52]. Secondly, a better dataset can
improve the model significantly. A dataset with enough instances that require little
augmentation, such as a thousand hand-sign samples for each class with different
background colors, can provide better learning features. For having a vast amount
of hand-sign based on white background, there are instances where the explanation
for the hand sign is not appropriately justified for model 1. An interpretability
algorithm LIME provides explanations for the predictions made by any classifier. It
accomplishes this by locally approximating the target model with an interpretable
model, ensuring trustworthy and understandable explanations for the predictions
[18]. We used LIME or local interpretable model-agnostic explanation to visualize
the superpixel that highlights the reasoning behind our hand sign.

Figure 8.1: Local Interpretable Model-agnostic Fxplanations report on superpizel
segmentation of the image.

From Fig: 8.1, the final photo represents the explanation for the prediction. The
segmentation of the explanation can get even better if we can provide a better

46

dataset. The pre-processing technique for model 2 can still improve but giving each
finger a different color. This procedure will allow our model 2 to understand the
sample with more explanation. For instance, when the fingers overlap, providing a
different color for each finger will allow Model 2 to track each finger and make some
explanation for it.

8.2 Discussion

Our work focuses on developing new procedures and models with better outcomes.
Combining multiple CNN models, we created a more robust system with better re-
sults and accuracy. While our study provides promising results, there are certain
limitations. Our proposed procedure is highly dependent on the pre-processing tech-
nique and may require more time on pre-processing steps in real-life implementation.
Secondly, our model 2 depends entirely on the MediaPipe library, so it may create a
single point of failure for this model, even though accurate prediction from models
1 and 3 can overcome this problem entirely. We hypothesized that dynamic-weight
averaging would provide the best result on the ensemble meta-learning algorithm,
but it came with the third highest accuracy and very close to the best accuracy.
More testing with different unseen data could justify the best meta-learning algo-
rithm.

Detecting and identifying sign language is very important for establishing a more
accessible communication network between people who are deaf and the rest of the
world. New ideas are created through communication and knowledge, so sharing
information is crucial for a better world. Communication has been a necessary
tool since ancient times, and it is essential to allow speaking and letting those
feelings, thoughts, and ideas be known to everyone. People who cannot communicate
verbally have difficulty communicating with people who do not know sign language.
Thus, a sign language recognition system is necessary. Using our model, we plan
to create stronger connections between people with normal hearing and those with
hard hearing.

47

Chapter 9

Conclusion

In this paper, we utilize three lightweight CNN models that can perform similarly
to baseline models while using fewer resources and providing a prediction faster.
The paper also compares our proposed CNN models with benchmark models such
as Inception V3, ResNet50, Xception, and VGG19. Our proposed models came on
top with better accuracy and prediction than the benchmark model on the same
dataset, except for ResNet50 beating our model 2, which was trained on a different
mode. The paper also helps to highlight challenges in generalization and dataset
diversity in sign language and provides guidelines on how to tackle them. We aim to
conduct further research on sign language recognition systems to provide a baseline
of procedures.

48

Bibliography

[10]

[11]

[12]

J. Canny, “A computational approach to edge detection,” IEEE Transactions
on pattern analysis and machine intelligence, no. 6, pp. 679-698, 1986.

C. Vogler and D. Metaxas, “Parallel hidden markov models for american sign
language recognition,” in Proceedings of the seventh IEEFE international con-
ference on computer vision, IEEE, vol. 1, 1999, pp. 116-122.

C. Goutte and E. Gaussier, “A probabilistic interpretation of precision, re-
call and f-score, with implication for evaluation,” in European Conference on
Information Retrieval, 2005.

Q. Munib, M. Habeeb, B. Takruri, and H. A. Al-Malik, “American sign lan-
guage (asl) recognition based on hough transform and neural networks,” Ezpert
systems with Applications, vol. 32, no. 1, pp. 24-37, 2007.

S. S. F. Begum and M. Hasanuzzaman, “Computer vision-based bangladeshi
sign language recognition system,” 2009 12th International Conference on
Computers and Information Technology, pp. 414-419, 2009.

B. C. Karmokar, K. M. R. Alam, and M. K. Siddiquee, “Bangladeshi sign lan-
guage recognition employing neural network ensemble,” International Journal
of Computer Applications, vol. 58, pp. 43-46, 2012.

M. Ré and G. Valentini, “Ensemble methods : A review,” 2012.

B. Kang, S. Tripathi, and T. Q. Nguyen, “Real-time sign language finger-
spelling recognition using convolutional neural networks from depth map,”
in 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), IEEE,
2015, pp. 136-140.

K. O’Shea and R. Nash, “An introduction to convolutional neural networks,”
ArXiv, vol. abs/1511.08458, 2015.

S. G. K. Patro and K. K. Sahu, “Normalization: A preprocessing stage,” ArXiv,
vol. abs/1503.06462, 2015. [Online]. Available: https://api.semanticscholar.
org/CorpusID:16159835.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2818-2826, 2015.

K. H. Tarafder, N. Akhtar, M. M. Zaman, M. M. A. Rasel, M. M. R. Bhuiyan,
and P. G. Datta, “Disabling hearing impairment in the bangladeshi popula-

tion.,” The Journal of laryngology and otology, vol. 129 2, pp. 126-35, 2015.
[Online]. Available: https://api.semanticscholar.org/CorpusID:25333292.

49

https://api.semanticscholar.org/CorpusID:16159835
https://api.semanticscholar.org/CorpusID:16159835
https://api.semanticscholar.org/CorpusID:25333292

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

2]

S. T. Ahmed and M. A. H. Akhand, “Bangladeshi sign language recognition
using fingertip position,” 2016 International Conference on Medical Engineer-
ing, Health Informatics and Technology (MediTec), pp. 1-5, 2016.

F. Chollet, “Xception: Deep learning with depthwise separable convolutions,”
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1800-1807, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770-778.

G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convolutional
networks,” 2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 2261-2269, 2016.

R. J. Johnson and J. E. Johnson, “Distinction between west bengal sign lan-
guage and indian sign language based on statistical assessment,” Sign Lan-
guage Studies, vol. 16, pp. 473-499, 2016.

M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should i trust you?”: Explain-
ing the predictions of any classifier,” Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2016.

M. A. Uddin and S. A. Chowdhury, “Hand sign language recognition for bangla
alphabet using support vector machine,” 2016 International Conference on
Innovations in Science, Engineering and Technology (ICISET), pp. 1-4, 2016.

S. Ameen and S. Vadera, “A convolutional neural network to classify american
sign language fingerspelling from depth and colour images,” Ezpert Systems,
vol. 34, no. 3, 12197, 2017.

U. Nations, World population projected to reach 9.8 billion in 2050, and 11.2
billion in 2100 — UN DESA — United Nations Department of Economic
and Social Affairs, Jun. 2017. [Online]. Available: https://www.un.org/
development /desa /en /news / population / world- population- prospects-2017.
html.

S. Yang and Q. Zhu, “Video-based chinese sign language recognition using
convolutional neural network,” in 2017 IEEE 9th International Conference on
Communication Software and Networks (ICCSN), IEEE, 2017, pp. 929-934.

K. Bantupalli and Y. Xie, “American sign language recognition using deep
learning and computer vision,” in 2018 IEEE International Conference on
Big Data (Big Data), IEEE, 2018, pp. 4896-4899.

M. R. Islam, U. K. Mitu, R. A. Bhuiyan, and J. Shin, “Hand gesture feature
extraction using deep convolutional neural network for recognizing american

sign language,” in 2018 4th International Conference on Frontiers of Signal
Processing (ICFSP), IEEE, 2018, pp. 115-119.

S. S. Shanta, S. T. Anwar, and M. R. Kabir, “Bangla sign language detec-
tion using sift and cnn,” 2018 9th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), pp. 1-6, 2018.

S. Shivashankara and S. Srinath, “American sign language recognition system:
An optimal approach,” International Journal of Image, Graphics and Signal
Processing, vol. 11, no. 8, p. 18, 2018.

20

https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html
https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html
https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html

[27]

[28]

[29]

[30]

[31]

[32]

[35]

[36]

[37]

S. Ahmed, M. R. Islam, J. Hassan, et al., “Hand sign to bangla speech: A deep
learning in vision based system for recognizing hand sign digits and generating
bangla speech,” ArXiv, vol. abs/1901.05613, 2019.

M. S. Islalm, M. M. Rahman, M. H. Rahman, M. Arifuzzaman, R. Sassi, and
M. Aktaruzzaman, “Recognition bangla sign language using convolutional neu-
ral network,” 2019 International Conference on Innovation and Intelligence
for Informatics, Computing, and Technologies (3ICT), pp. 1-6, 2019.

H. B. Nguyen and H. N. Do, “Deep learning for american sign language fin-
gerspelling recognition system,” in 2019 26th International Conference on
Telecommunications (ICT), IEEE, 2019, pp. 314-318.

A. M. Rafi, N. Nawal, N. S. N. Bayev, .. Nima, C. Shahnaz, and S. A. Fat-
tah, “Image-based bengali sign language alphabet recognition for deaf and
dumb community,” 2019 IEEE Global Humanitarian Technology Conference
(GHTC), pp. 1-7, 2019.

M. M. Rahman, M. S. Islam, M. H. Rahman, R. Sassi, M. W. Rivolta, and
M. Aktaruzzaman, “A new benchmark on american sign language recogni-
tion using convolutional neural network,” in 2019 International Conference
on Sustainable Technologies for Industry 4.0 (STI), IEEE, 2019, pp. 1-6.

B. Shi, A. M. D. Rio, J. Keane, D. Brentari, G. Shakhnarovich, and K. Livescu,
“Fingerspelling recognition in the wild with iterative visual attention,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision,
2019, pp. 5400-5409.

J. Brownlee, 4 types of classification tasks in machine learning, Aug. 2020. [On-
line]. Available: https://machinelearningmastery.com /types-of-classification-
in-machine-learning/.

D. Li, C. Rodriguez, X. Yu, and H. Li, “Word-level deep sign language recog-
nition from video: A new large-scale dataset and methods comparison,” in
Proceedings of the IEEE/CVF winter conference on applications of computer
vision, 2020, pp. 1459-1469.

A. Wadhawan and P. Kumar, “Deep learning-based sign language recognition
system for static signs,” Neural computing and applications, vol. 32, no. 12,
pp. 7957-7968, 2020.

T. A. Abedin, K. S. S. Prottoy, A. Moshruba, and S. B. Hakim, “Bangla sign

language recognition using concatenated bdsl network,” ArXiv, vol. abs/2107.11818,

2021.

R. Dias, American sign language hand gesture recognition, May 2021. [Online].
Available: https:/ /towardsdatascience.com /american-sign-language-hand-
gesture-recognition-{1c4468tb177.

M. A. Ganaie, M. Hu, M. Tanveer, and P. N. Suganthan, “Ensemble deep
learning: A review,” ArXiv, vol. abs/2104.02395, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:233033495.

S. Jiang, B. Sun, L. Wang, Y. Bai, K. Li, and Y. Fu, “Skeleton aware multi-
modal sign language recognition,” in Proceedings of the IEEE/CVFE Confer-
ence on Computer Vision and Pattern Recognition, 2021, pp. 3413-3423.

51

https://machinelearningmastery.com/types-of-classification-in-machine-learning/
https://machinelearningmastery.com/types-of-classification-in-machine-learning/
https://towardsdatascience.com/american-sign-language-hand-gesture-recognition-f1c4468fb177
https://towardsdatascience.com/american-sign-language-hand-gesture-recognition-f1c4468fb177
https://api.semanticscholar.org/CorpusID:233033495

[40]

[41]

[50]

[51]

[52]

S. Jiang, B. Sun, L. Wang, Y. Bai, K. Li, and Y. R. Fu, “Sign language recog-
nition via skeleton-aware multi-model ensemble,” ArXiv, vol. abs/2110.06161,
2021.

R. A. Nihal, S. Rahman, N. M. Broti, and S. Ahmed Deowan, “Bangla sign
alphabet recognition with zero-shot and transfer learning,” Pattern Recogni-
tion Letters, vol. 150, pp. 84-93, 2021, 1ssN: 0167-8655. DOT: https://doi.org/
10.1016/j.patrec.2021.06.020. [Online|. Available: https://www.sciencedirect.
com /science/article/pii/S0167865521002269.

F. B. Slimane and M. Bouguessa, “Context matters: Self-attention for sign
language recognition,” 2020 25th International Conference on Pattern Recog-
nition (ICPR), pp. 7884-7891, 2021.

A. Hasib, S. S. Khan, J. F. Eva, et al., “Bdsl 49: A comprehensive dataset of
bangla sign language,” ArXiv, vol. abs/2208.06827, 2022.

P. D. Moral, S. Nowaczyk, and S. Pashami, “Why is multiclass classification
hard?” IEEE Access, vol. 10, pp. 80448-80 462, 2022. por: 10.1109/ACCESS.
2022.3192514.

N. E. Ramli, Z. R. Yahya, and N. A. Said, “Confusion matrix as performance
measure for corner detectors,” Journal of Advanced Research in Applied Sci-
ences and Engineering Technology, 2022.

A. Sen, T. K. Mishra, and R. Dash, “A novel hand gesture detection and
recognition system based on ensemble-based convolutional neural network,”
Multimedia Tools and Applications, pp. 1-24, 2022.

W. H. O. Africa, Ear Health, Jul. 2023. [Online]. Available: https://www.afro.
who.int /health-topics/ear-health.

Hand landmarks detection guide 2023, Jul. 2023. [Online]. Available: https:
//developers.google.com /mediapipe/solutions/vision /hand landmarker.

M. S. Islam, A. Joha, M. N. Hossain, S. Abdullah, I. Elwarfalli, and M. M.
Hasan, “Word level bangla sign language dataset for continuous bsl recogni-
tion,” 2023.

W. H. O. WHO, “Deafness and hearing loss,” World Health Organization,
Feb. 2023. [Online|. Available: https://www.who.int /news-room /fact-sheets/
detail /deafness-and-hearing-loss.

Opencv. [Online]. Available: https://docs.opencv.org/3.4/da/d22 /tutorial
py_canny.html.

K. Team, Keras documentation: Kerastuner. [Online]. Available: https://keras.
io/keras_tuner/.

52

https://doi.org/https://doi.org/10.1016/j.patrec.2021.06.020
https://doi.org/https://doi.org/10.1016/j.patrec.2021.06.020
https://www.sciencedirect.com/science/article/pii/S0167865521002269
https://www.sciencedirect.com/science/article/pii/S0167865521002269
https://doi.org/10.1109/ACCESS.2022.3192514
https://doi.org/10.1109/ACCESS.2022.3192514
https://www.afro.who.int/health-topics/ear-health
https://www.afro.who.int/health-topics/ear-health
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
https://keras.io/keras_tuner/
https://keras.io/keras_tuner/

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	Nomenclature
	Introduction
	Problem Statement
	Background Information
	Research Objective
	Research Contribution

	Literature Review
	Gesture Recognition
	Sign Language Recognition
	Bangla Sign Language Recognition
	American Sign Language Recognition
	Word-level Dataset

	Work Plan
	Workflow

	Dataset
	Data Configuration and Analysis
	Data Preprocessing
	Model 1 Preprocessing Techniques
	Model 2 Preprocessing Techniques
	Model 3 Preprocessing Techniques

	Methodology
	Convolutional Neural Network
	Proposed CNN Models for Sign Language Detection
	Model-1
	Model-2
	Model-3

	Pre-trained CNN Models
	VGG19
	Inception V3
	DenseNet
	Xception
	ResNet50

	Experiment Results
	Results
	Confusion Matrix
	Classification Report
	Ensemble Learning
	Unweighted Averaging Ensemble Technique
	Unweighted Voting Ensemble Technique
	Static-Weight Averaging Ensemble Technique
	Static-Weight Voting Ensemble Technique
	Dynamic-Weight Averaging Ensemble Technique
	Ensemble Stacking Technique

	Ensemble Modle Classification Report

	Future Improvement and Discussion
	Future Improvement
	Discussion

	Conclusion
	Bibliography

