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Abstract

In the past decade, surveillance cameras have been a necessary integration for se-
curity measures in all types of localities. The omnipresence of these devices has
substantially aided in tackling violent criminal activities. In larger systems, con-
tinuous manual monitoring becomes a cumbersome task and often causes delayed
response. Therefore, automated recognition of aggressive activities in surveillance
systems can enhance the remote monitoring experience and increase the preciseness
of response. Previous experiments on various deep-learning techniques and Convo-
lutional Neural Networks (CNN) have tackled the challenge by identifying potential
violent activities in real-time with good accuracy. The aim of this research is to
benefit from reduced computational cost while maintaining optimality for practical
implementation in real life. Hence, in this study, preliminarily a lightweight yet
highly effective CNN model has been proposed that extracts spatial features by
2D convolutions. Later on several custom models based on combinations of CNN
and RNN architectures have been developed for spatio-temporal features from the
videos. The models have undergone robust tuning and training and are capable
of accurately extracting frame-level and temporal-level features based on the ar-
chitectural types. They have been then conclusively evaluated on a combination
of multiple benchmark datasets to compare how well each of them performs. In
conclusion, the proposed spatial feature-based model obtained an outstanding test
accuracy of 99.6% and the best spatio-temporal feature-based model in terms of
performance attained a test accuracy of 98.75%.

Keywords: Violent activity, Surveillance system, Activity Recognition, Deep Learn-
ing, Neural Network, Image Processing
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Chapter 1

Introduction

1.1 Background Information

Mankind has witnessed numerous significant breakthroughs, wondrous discoveries,
and colossal technological advancements throughout the years of its existence on
Earth. However, one of the major issues that have been consistent since the be-
ginning of the human race still remains to be violence. The horrors of violence,
both massive and petite, have stunned the world and permanently altered the lives
of the victims to an incomprehensible extent. The encounter with violence leaves
its victims with a severe traumatic experience that may be impossible to recover
from, and in the worst-case scenario, it may even result in death. Hence, it is of
utmost importance that violence must be contained with appropriate measures for
the betterment of humankind and its continuance of a healthy and safe life.

There are several forms of violence that are targeted toward certain victims or groups
of victims at disparate sites and scenarios. This is why each form of violence needs
to be acted upon individually and tackled in a unique way. Consequently, we have
decided to contribute and dedicate our efforts to act upon the aspect of physical
violence of different forms. According to the article [22], the use of firearms results
in the deaths of more than 250,000 people each year globally. This number may be
assumed to increase greatly when other factors such as cases where weapons other
than firearms are used, non-fatality cases, and unreported cases are also taken into
consideration.

Real-time detection of physical violence from the video footage of the surveillance
cameras installed throughout a city is aspired to be achieved in this research with
the help of Deep Learning. Once physical violence is detected through the proposed
CNN model, it would be able to alert the authorities of the crime and allow them to
take appropriate action in response to the incident. This system would undoubtedly
assist law enforcement agencies to provide a better and safer city for its citizens
while they are on the streets. It would not only allow people to feel less vulnerable
but also strongly discourage violence due to the fear of being apprehended. As a
result, crime rates would decrease significantly and the standards of living would
rise notably.



1.2 Problem Statement

Surveillance cameras have played a huge role in determining criminal activities.
However, with the rise in crime rates and their devastating consequences, it has be-
come imperative to swiftly detect crimes in real-time and respond effectively. Man-
ual monitoring consumes considerable time and may hinder prompt action against
crimes. To address this, an automated approach is suggested for identifying vio-
lent activities in surveillance videos, eliminating the need for manual assessment of
potentially violent actions. This automated method proves invaluable in detecting
criminal activities within large crowds, where manual intervention is impractical and
might result in overlooked incidents.

The primary focus of this research is to find a constructive model to deal with
fast and potent automated violence detection from real-time videos. This can be
achieved by different deep learning models.While several techniques exist for ob-
ject detection and action recognition, not all of them are suitable for lightweight
devices due to their massive computational demands. Hence, this work will fo-
cus on analyzing CNN architectures like VGG19, MobileNet V2, ResNet 50, and
DenseNet-201, Inception V3 for spatial features extraction and the combination of
CNN and RNN custom models such as Long-term Recurrent Convolutional Networks
(LRCN), ConvLSTM, SepConvLSTM and two pre-trained CNN architectures with
the integration of LSTM - MobileNet V2-LSTM and SqueezeNet-LSTM for spatio-
temporal features. It might be also necessary to modify hyper-parameters with the
aim to obtain the best accuracy. These models will be trained on extensive datasets
comprising violent videos, enabling them to distinguish between videos depicting
violence and those that do not.



1.3 Research Objective

Automatic anomaly detection in real-time surveillance videos is an active area of re-
search today. Different deep-learning techniques which include VGG19, ResNet50,
MobileNet V2, DenseNet-201 and Inception V3 centered on CNN architectures and
LSTM relying on RNN architecture have been widely used to ensure optimal per-
formance and reliability of the models. The goal of this thesis is to compare the
most popular and efficient deep learning techniques by training and testing the
models with different datasets and classifying the type of violence detected and find
an efficient, computationally inexpensive architecture for violence detection with
efficacious accuracy. In order to achieve this, the following must be achieved:

1. Make use of a variety of distinctive and extensive datasets.

2. Deeply understand how various machine learning models work and how they
are pertinent to the research.

3. Examine the significance of integrating temporal and spatial features in the
context of violence detection.

4. Apply the deep learning algorithms and analyze the results.

5. Build an effective and reliable model for violence detection.



Chapter 2

Literature Review

In paper [12], the authors introduce a method called temporal segment network
(TSN) which uses segment-based sampling and aggregation modules. The goal of
this paper is to tackle difficulties like scale variations, viewpoint changes, and camera
motions in videos while obtaining information. TSN is analyzed as an alternative
to traditional ConvNets. It takes samples in divided segments modifying the global
and sparse sample-taking method. TSN operates on short snippets sampled from
different parts of the videos covering most parts of the video at a reasonable com-
putational cost. Four action recognition benchmarks are used for evaluation, where
HMDB51 and UCF101 are trimmed datasets and THUMOS14m and ActivityNet
v1.2 are untrimmed datasets. The accuracies obtained were 71.0%, 94.9%, 80.1%,
and 89.6% respectively on the listed datasets.

With the goal to design an object detector with fast and optimal speed, the au-
thors in paper [14] analyze the YOLOv4 architecture. Many CNN-based object
detectors fail to process live footage and are dependent on many GPUs. The paper
also analyzes the impact of the SOTA Bag-of-Freebies and Bag-of-Specials methods
for object detection and establishes the new Mosaic and Self-Adversarial Training
for augmenting input images. YOLOv4 consists of CSPDarknet53 as its backbone.
However, CSPResNext50 or ResNet-50 can also be used, but the performance is less
optimal. Besides that, the paper also explores other backbones for the architecture
and effects of weights saved from previously trained networks and mini-batch size on
detector training. The selected dataset is the MS COCO dataset. With YOLOv4,
43.5% AP (65.7% AP50) has been achieved using the mentioned dataset. Working
with real-time footage, 65 FPS was attained on Tesla V100 using mid-tier GPUs. A
sizeable portion of measurable attributes has been verified that consequently can be
used in the future to present an improved and more accurate version of the detector
and the classifier.

While working with violence detection it is also important to be able to analyze
human activity in general. In paper [§], the You Only Look Once (YOLO) architec-
ture is investigated for human action recognition with the aim to reduce computation
time and training overhead by recognizing a scene just by instances of visual data.
The model takes in frames successively from a video and predicts the action label.
YOLO is an architecture with 24 convolutional layers and 2 fully connected lay-
ers. The Liris Human Activities dataset is used for this classification problem. For



testing, 30 video frames are selected in certain intervals. The action is labeled and
localized. An action label was determined to be the concluding action label if it pro-
duced a confidence threshold of 0.5 in at least 5 out of the selected 30 frames. Using
a confusion matrix, an average of 89.9% precision, 88.08% recall, and 88.4% F-Score
are obtained. The overall accuracy obtained by the methodology was 88.372%. In
the future, the aim is to complete recognition within a few frames and incorporate
a frame-by-frame detection of objects in frames to predict human activities with
greater complexities.

Paper [25] proposes a reinforcement learning model for violence detection using a
semi-supervised approach. It is based on a hard attention mechanism that removes
needless data from the network’s input and keeps the valuable features in a smaller
vector space. Input images are also reduced to smaller sizes. The above-mentioned
model uses a pre-trained I3D backbone for training on the RWF dataset contain-
ing 2000 videos, Hockey and Movie Fight Scenes datasets, containing 1000 and 200
videos respectively. On the RWF dataset, the proposed model obtains a precision
of 0.9%, 0.91% recall, and an Fl-score of 0.9%. Using the RGB-only architecture
overall accuracies of 90.4%, 98.5%, and 99.5% are obtained using RWF, Hockey, and
the Movies datasets respectively. To enhance the outcomes the core focus is to ap-
ply hard attention mechanisms on recognizing actions and multi-attention scenarios
using collaborative agents.

For this research, a significant factor is computational power and the ability to in-
tegrate the proposed approach in smaller mid-tier devices too. The study in [7]
introduces the MobileNetV2 architecture which outperforms SOTA performance for
lightweight devices with limited resources. The architecture is established with
the help of the concept of inverted residual structure and bottleneck layers con-
taining shortcut connections in between. It is also observed that the removal of
non-linearities between narrow layers can enhance performance. The architecture is
evaluated using the ImageNet, COCO, and VOC datasets. Along with MobileNet,
a modified Single Shot Detector is used and the authors compare the approach with
YOLOv2. Later the MobileNetV2 is also compared with ResNet-101. Combined
with SSDLite, it requires only 4.3M Params and 0.8B Madds whereas YOLOv4 re-
quires 50.7M and 17.5B respectively. The architecture alone attains an mIOU of
75.32% at only 2.75B Madds against ResNet-101 attaining 80.49% mIOU at 81.0B
mAdds

In paper [24], the model used for violence detection from real-time videos is known
as Twostream Multi-dimensional Convolutional Network (2s-MDCN). To detect vio-
lence, the proposed model uses RGB frames and optical flow by extracting temporal
and spatial information separately using multi-dimensional convolution networks.
The selected datasets are RWF-2000, Hockey-Fight, and Movies-Fight consisting of
2000, 1000, and 200 clips respectively. The data for training and validation is split
in the ratio of 80-20. It achieves an accuracy of 89.7% when both RBG stream and
optical flow are used whereas using a single input gives an 87.5% accuracy for RGB
stream and 78.5% accuracy for optical flow. The chosen model obtained 100.0% on
the Hockey Fight dataset and 99.0% accuracy on the Movies Fight dataset. Hence,
it shows remarkable results with lower computational cost and less parameter size



when compared to other models.

For this study, one of the future work involvesto work with Video Vision Transform-
ers. The research in [28] proposes this novel framework that uses deep learning tech-
niques to detect violence in video footage. This technique outperforms the existing
results in comparison with the SOTA approaches with higher accuracy and compu-
tational efficiency for the same dataset. The sample datasets used are Hockey-Fight
and Violent Crowd having 1000 and 246 samples respectively and split into 60-40
ratios for training and validation. The video is initially split into 56 frames, and
each frame is subsequently reduced to have smaller fixed pixel sizes. After apply-
ing some preprocessing techniques, the resulting frames were put through a ViViT
architecture, which utilizes the transformer encoder to extract spatiotemporal data
from the clips and learn specific patterns. The proposed architecture obtains an
accuracy of 96.57% in training data and an accuracy of 97.14% in validation data
for the Hockey-fight dataset. Similarly, for the Violent Crowd dataset, the training
and validation accuracies are 98.73% and 98.46% correspondingly. In the future,
the aim is to train the model with larger datasets and also apply variants of the
transformer model to enhance its performance further.

The main purpose of paper [20] is to differentiate different existing violence-related
datasets and introduce a dataset named RWF-2000 consisting of 2000 videos(1000
violent, 1000 non-violent) captured by surveillance footage. This dataset is obtained
from several Youtube videos that cover different types of violence and are edited into
5-second clips at 30 FPS. Furthermore, this paper proposes a new methodology to
test the RWF-2000 dataset titled Flow Gate Network structured into 4 different
parts which include the Merging Block, the RGB and Optical Flow channels, and
the Fully Connected Layer. The dataset is divided in the ratio of 80:20 for training
and testing respectively. For the training portion of RWF-2000 datasets, it obtains
an accuracy of 87.25%. Additionally, the future work of this paper is to expand the
size of the dataset.

This paper [37] focuses on building intelligent surveillance systems using deep learn-
ing video classification techniques to detect violence in real-time CCTV footage
using spatio-temporal features. Traditional image classification methods fall short
in video classification, so the researchers explored various deep learning models, in-
cluding ConvLSTM, LRCN, VGG-16 BiLSTM, CNN-Transformer, and C3D. Among
these models, CNN-Transformer achieved the most optimal performance with 0.74
being the F1 score for non violent and 0.79 being for the violent case. In case of
test accuracy, the LRCN with custom CNN integrated with LSTM had the 83.33%
accuracy, whereas ConvLSTM, VGG16-BiLSTM, CNN-Transformer and C3D had
accuracy of 80%, 70%, 76.76% and 80% respectively. The research dataset contains
350 video clips, with 230 clips labeled as violent and 120 clips as non-violent. The
videos have a frame rate of 30 frames per second (fps), and their resolution is con-
sistently set at 1920x1080 pixels for all the clips. The models successfully identify
and classify violent and non-violent behaviors but still face some false positive pre-
dictions. Future plans include optimizing the models and deploying them on more
capable devices like Jetson Nano for better performance.



The study in [26] offers a novel method to identify violent behavior utilizing a
combination of two CNN architectures- AlexNet and SqueezeN. Each network was
then followed by a separate Convolution Long Short Term Memory (ConvL.STM)
to extract deeper and stronger features from a video in its final concealed state.
The max-pooling layer receives the concatenated states after which a series of fully-
connected layers and the softmax classifier were used to classify the features. The
three novel datasets: Hockey-Fight, Movie-Fight, and Violent Flow were used to
train and test both architectures. The following datasets were divided in the ratio
of 3:1:1 for training, testing, and validation respectively. It achieved accuracies of
97%, for the Hockey dataset, 100%, for Movie, and 96% for Violent Flow datasets.
These results show the promising capabilities of the proposed methods over other
techniques. It also trounces the SOTA approaches, especially for the Violent Flow
dataset.

Surveillance system consists of embedded devices like CCTV Cameras. The research
in [16] introduces a method for the detection of fast objects which is derived from
the YOLO-v4-tiny architecture ideal for embedded devices. To begin with, in the
ResNet-D network of the proposed method, there are two sections of ResBlock-D
whereas in the YOLOv4-tiny architecture, there is CSPBlock instead. This con-
tributes to reducing the complexity of the computational capability of the proposed
method. Furthermore, there is an auxiliary residual network block for the extrac-
tion of more feature information of the objects, which would result in less detection
error. For designing the auxiliary networks, 2 3x3 convolutions are applied one after
another to acquire 5x5 receptive fields for the extraction of the global features. At
the same time, channel attention and spatial attention are also used for the extrac-
tion of further details. The dataset which is used for this research is MS COCO and
the evaluation metrics used are FPS, mAP, and GPU utilization. The results of the
proposed method are 294 (FPS), 38.0 (mAP), and 1003 (GPU utilization) which
outperforms YOLO-v4-tiny.

In paper [19], sliding window and region proposal are the two approaches which
are used. As there was a scarcity of dataset that was best suited for the research,
the authors worked with a custom dataset consisting of images from the Inter-
net Movies Firearms Database (IMFDB), different GitHub repositories, their own
pieces of equipment, related images found over the Internet, clips of video contents
of CCTV footages found over on YouTube and contents provided by the University
of Granada. The dataset is divided into three parts: (i) Dataset I (initial dataset;
sliding window classification algorithms to be trained and tested), (ii) Dataset II
(customized for scenarios that are real-time with more diverse cases and background,
classification and detection algorithms to be trained and tested), (iii) Dataset III
(customized for scenarios that are real-time by enhancing Dataset II; object detec-
tion algorithms to be trained and tested). The sliding window /classification model
creates patches of the image by a box sliding over to different regions of the pic-
tures and for each path the object recognition model gives an outcome. However,
due to its mechanism, it is quite an expensive method for computation. The region
proposal /object detection model takes in bounding boxes as input and looks for
matching objects to give the outcome. However, this method can be a source of
noise. For both Dataset I and Dataset II, Inception-ResNetV2 (Precision: 79.24%,



Recall: 89.54%, F1-Score: 84.07% for Dataset I and Precision: 85.52%, Recall:
85.92%, F1-Score: 85.74% for Dataset II) outperforms VGG-16 and Inceptionv3.
For Dataset 111, YOLOv4 (Precision: 93%, Recall: 88%, F1-Score: 91%) outper-
forms SSD-MobileNet-v1 and FasterRenn-InceptionResNetV2.

For the field of multiple object tracking (MOT), paper [30] suggests a proposed
method that adds YOLOvT7 as an object detection network to DeepSORT in order
to get the YOLOvV7-DeepSORT model. YOLOv7 enhances object detection accu-
racy and speed more than its former variants. In this model, the input goes through
the YOLOVT object detector. It is then followed by the DeepSort sequence imple-
menting the Kalman filter to deal with correlation. The correlation with the predic-
tion is then measured by Hungarian matching. It is observed from the experiment
that YOLOvT7-DeepSORT achieves better results in terms of tracking accuracy in
comparison to the previous YOLOv5-DeepSORT. The latter attains an accuracy of
40.82% with a precision of 82.01% compared to its counterpart which could achieve
an accuracy of 40.77% with a precision of 81.96%.

In paper [13], another attention-based approach with Context R-CNN is proposed,
which improves object detection despite the frame rate or sampling irregularity. It
deals with practical challenges like degraded image quality, background noise, and
partially visible objects of interest in the frames. The framework uses both long-
term attention and short-term attention and also implements a long-term memory
bank. The detections made frame-by-frame form the feature vector which conse-
quently makes up the memory bank. It is shown that the mAP can be improved
at 0.5 ToU by 17.9% on a commonly-used camera trap dataset. Context R-CNN
is better on the Snapshot Serengeti (mAP: 55.9, AR: 58.3), Caltech Camera Traps
(mAP: 76.3, AR: 62.3) datasets and CityCam (mAP: 42.6, AR: 30.2) traffic camera
data in comparison to Single Frame.

In this paper [27], different methods of detecting violence in videos have been an-
alyzed. It mainly focuses on architectures based on deep sequence learning and
localizing the desired action to detect violence. Two methods are discussed partic-
ularly: the traditional method includes machine learning and the modern method
comprises deep learning models. Machine learning is useful for simple abnormal
video detection, but not much of a help when it comes to complex real-life scenar-
ios. Meanwhile, deep learning methods impose several temporal and spatiotemporal
ways. Spatial strategies classify frames of the video and determine the activities
associated with the frame. ResNet and VGG-19 models are used to distinguish the
frames and classify them. Deep learning has the ability to detect abnormal violent
activities by comparing the sequence of frames with normal frame patterns. Un-
til recent studies, spatiotemporal methods and 3D ConvNets have performed the
best in classifying abnormal sequences. The datasets used in violence detection
include Violence in movies, Violent crowd, Hockey Fight, RWF-2000, UCF Crime
and UT Interaction. Various deep learning models have different accuracy percent-
ages on these datasets. Another challenge in violence detection models is reducing
the number of parameters needed. 13D features take 12.3 million parameters while
MobileNet model along with 3D convolutional layers implying depth-wise separable
convolutions has reduced the parameters to 0.27 million only.



Elevating the performance of detecting anomalies in videos is an essential crite-
rion. Video classification can be a robust tool to achieve that. The study in [29]
analyses that and applies a weakly supervised approach. This method annotates
videos and looks for anomalies. Multiple Instance Learning and its varieties are
used to categorize two different sets of data - the positive bag which contains ab-
normal videos and the negative bag which comprises normal videos. Videos are
classified with the aid of BERT on CNN refined snippets. LSTM is also applied
for classifying videos. RGB, RGB+Flow, and Flow modalities play a vital role in
comparing the classification accuracies. For the first step in training the dataset,
video snippets are first trained using MIL and BERT video classifiers. The video is
first extracted into 32 frames then binary cross entropy determines the loss which
finally computes the anomaly. As for datasets, three sets are focused on: UCF-
Crime set, ShanghaiTech set and XDViolence set. Accuracies using MIL-BERT
are as follows: UCF-Crime- 82.69% (RGB), 85.56%(Flow), 86.71%(RGB + Flow).
ShanghaiTech - 91.55%(RGB), 96.75%(Flow), 97.54%(RGB+Flow). However, this
MIL-BERT method faces difficulty in detecting abnormal videos. The classification
score for determining a positive bag is noisy and a normal snippet can be mistaken
for an anomaly video. This problem can be overcome using binary classification
and a graph convolution neural (GCN) network to remove the background noise
which can successfully determine an anomaly data input without being mistaken for
a normal input.

Gun violence is a pressing security challenge, necessitating the development of ef-
fective gun detection algorithms, especially for CCTV surveillance data. Detecting
guns in such images is challenging due to their small size, inconspicuous appear-
ance, occlusion, and similarity to other objects. Additionally, the lack of suitable
benchmarks and datasets hampers progress in this field. To address this, the paper
[40] introduces the CCTV-Gun dataset, meticulously annotated to focus on detect-
ing handguns in real-world CCTV images. To construct this dataset, the authors
utilized three existing publicly available datasets: Monash Gun Dataset, US Real-
time Gun detection dataset, and UCF Crime scene dataset. They carefully selected
and annotated images from these datasets, focusing on CCTV perspectives and sce-
narios. The resulting CCTV-Gun dataset includes images from various indoor and
outdoor settings, captured by CCTV cameras. The paper’s contribution lies in the
careful selection and annotation of images, defining challenge factors, and proposing
a cross-dataset evaluation protocol. Classical and state-of-the-art object detection
algorithms are thoroughly evaluated using CCTV-Gun, providing insights into their
generalization capabilities. Overall, the CCTV-Gun benchmark aims to stimulate
further research and advancements in gun detection, ultimately enhancing security
measures.

The combination of CNN and LSTM is once again explored in paper [6], using a
deep neural network to detect violence in videos. A CNN architecture is particularly
applied to acquire frames from videos. The frames are then combined with the aid
of an LSTM variant using convolutional gates. These models are specialized in per-
ceiving localized spatiotemporal features that can analyze local motions in a video
by comparing consecutive frames to see if there are any changes in them. Over here,



a deep neural network model is developed for detecting violence in videos. Its main
purpose is to generate a better spatiotemporal method that requires fewer param-
eters. RNN is required to encode the temporal changes while convLSTM encodes
both temporal and spatial changes with the help of convolutional gates. The model
uses AlexNet which is pre-trained on the ImageNet database while the CNN model
extracts frame-level features. The Hockey Fight, Movies and Violent-Flows datasets
obtained an accuracy of 97.140.55%, 1004+0% and 94.57+2.34% respectively. As ag-
gressive behavior is considered violent, problems might arise when positive excited
movements are mistakenly considered to be violent. However, the proposed method
can avoid this by encoding the motion of localized regions which includes limb mo-
tions or emotional responses.

This research paper [33] tackles the challenge of training an efficient video action
recognition model with limited computational resources. Existing methods focus
on reducing model size or using pre-trained models, limiting their adaptability to
various backbone architecture. However, the paper sheds light on the overlooked
dense frame sampling of videos, which can accelerate model training but often leads
to performance drops due to the loss of context. To overcome this, the authors
propose the Sample Less Learn More (SLLM) approach, which efficiently uses fewer
frames while reconstructing intermediate vision features. Extensive experiments
show that SLLM significantly improves efficiency by over 50% without a substan-
tial drop in accuracy and even enhances the generalizability of the models under
zero-shot settings. To assess the performance of the approach, experiments were
conducted on four well-known public datasets: Kinetics-400, ActivityNet, UCF-101,
and HMDB-51. Furthermore, this method was also applied to three widely-used
baselines: TAM, ActionCLIP, and Text2Vis where TAM is a temporal CNN model
with ResNet as the backbone, trained from scratch. On the other hand, ActionCLIP
and Text2Vis are state-of-the-art action recognition models based on vision-language
models, pre-trained on WIT-400M.
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Chapter 3

Working Plan

The first step of this work involves collecting different datasets, involving primarily
violent and non-violent video clips, and merging them into one single dataset so
that the selected models can be trained using a larger sample of data. The merged
dataset will be analyzed and subsequently classified into violent and non-violent la-
bel activities.

For training the models, the clips will be converted into frames and each frame will
be resized to 112 x 112 with 3 color channels making the input size 112x112x3.
Furthermore, the color channel will be converted from BGR to RGB. Once it is
achieved, several image augmentation techniques are used to effectively train the
model and avoid overfitting. Some of the preprocessing techniques that will be used
are flip, zoom and random rotation.Upon completion of the necessary preprocessing,
the dataset will be subsequently split into three segments: 65% for training, 25%
for validation, and 10% for testing.

The retrieved data will be used to train the pre-trained CNN architectures such as
VGG19, ResNetb0, Inception V3, DenseNet201, and MobileNetV2 and the custom
CNN model for spatial features.Additionally, custom LRCN, ConvLSTM, and Sep-
ConvLSTM models will be developed for capturing spatiotemporal features. For
training these models, the frames will be resized to 144 x 144 pixels and stacked as
a sequence of 25 frames. Two other pre-trained CNN architectures, integrated with
LSTM, will also be utilized. All these models will ultimately classify the output as
violent or non-violent.

As mentioned, the main focus will be on constructing a custom CNN model for
this specific problem that is preliminarily lightweight yet highly effective. This
involves not only stacking hidden and fully connected layers but also fine-tuning
the model to determine the optimal number of layers, parameters, hyperparameter
values, activation functions, learning rate, and other factors. To achieve this, a
robust tuner will be utilized, running various permutations of hyperparameters on
the dataset to obtain the best possible results.
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Chapter 4

Dataset

4.1 Dataset Analysis

For the research purposes of this paper, a compilation of four different datasets was
used: (a) the Real Life Violence Situations Dataset [11], (b) the Smart City Vio-
lence Detection dataset [32], (c) the Hockey Fights Dataset [1], and (d) Bus Violence
dataset [23]. This was done in order to get a wider range of data with the goal to
train the model better and achieve better accuracy.

4.1.1 The Real Life Violence Situations Dataset (RLVD)

The Real Life Violence Situations Dataset contains a collection of 1000 videos with
instances of violence and non-violence, respectively. These videos were sourced from
YouTube and real-life street fights occurring in different situations where the violent
videos consist of genuine situations of fights and the non-violence videos consist of
other human actions that are not related to violence.
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Figure 4.1: RLVD Class Distribtution
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4.1.2 Smart City Violence Detection (SCVD)

The Smart City Violence Detection dataset is a collection of videos categorized into
three groups: Non-Violence, Violence, and Weapon Violence. It contains 248 videos
categorized under Non-Violence, 112 videos categorized under Violence, and 124
videos specifically categorized as Weapon Violence. The dataset is carefully de-
signed to acknowledge that any handheld object capable of causing harm to humans
or property can be classified as a weapon.
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Figure 4.2: SCVD Class Distribtution

4.1.3 Hockey Fights Dataset

The dataset consists of 1000 sequences divided into two distinct groups: fights and
non-fights. Through experiments conducted on this dataset, as well as another
dataset comprising fights from action movies, it has been demonstrated that the
detection of fights can be achieved with an accuracy rate of approximately 90%.
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4.1.4 Bus Violence

The Bus Violence dataset consists of 1400 dash-cam videos inside a bus divided
equally into two distinct classes: violence and no violence. It is an essential addition
to incorporating violence in public transportation and generalizing the scene of the
public sphere.
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Figure 4.4: Bus Violence Class Distribtution

4.1.5 Compiled Dataset

These four datasets had been used as the primary reference material, incorporating
them into one cohesive dataset. In total, 4815 videos have been collected for the
final dataset for the research. However, due to memory restrictions of the computing
device, only 2506 videos were selected and distributed into two categories: NonVio-
lence (1258 videos) and Violence (1248 videos). After these videos underwent certain
preprocessing, the dataset was further divided into three parts: training (90%), val-
idation (25%), and testing (10%). For the testing phase, the remaining videos from
the compiled dataset that were not initially included in the original dataset were
used.
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4.2 Data Preprocessing

To begin with, it was necessary to convert the video files into frames to utilize them
in the models. Videos from different sources had obvious differences in dimensions.
Furthermore, modification of raw data can contribute to enhancing the performance
of the neural network. Hence, the pre-processing was done in 3 stages; i) Frame
extraction, ii) Frame resize, and iii) Frame Augmentation. Firstly, frame extraction
has been done by iterating through each video file and extracting frames from each
video. Then the BGR color channels of each have been converted to RGB color
channels. Resizing each frame is typically done to conform to the expected input
shape of the model. So, each frame was represented as a 3-dimensional array along
with its color channels. The frames were reshaped to 112x112 pixels. Frames were
augmented by zooming and adjusting brightness. Finally, each resulting frame has
been normalized before storing it for further use.

Figure 4.7: Random Frames from violent detection

Figure 4.8: Random Frames from non-violent detection
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Chapter 5

Pre-trained CNN Architectures
For Spatial Features

5.1 VGG 19

[2] Simonyan et al. (2015) suggested the VGG19 CNN model. Tt is a 19 layers deep
CNN which is a variant of the VGG-16 model with small filters. It has already been
trained on images from the ImageNet database which consequently is able to detect
up to 1000 image classes. However, using transfer learning, it is possible to tune the
pre-trained network to classify a custom set of images. VGG-19 architecture has
16 convolution layers(Conv 3x3) along with three Fully Connected layers and five
MaxPool layers and lastly the SoftMax layer[21][35]. A visual representation of the
conventional architecture is shown by figure:5.3. By eliminating the traditional fully-
connected layers of VGG-19, a Flatten layer was integrated that converts the output
of the convolutional layer into a single one-dimensional vector. The starting input
layer has an image of size 112 x 112 with a depth of 3 which represents the number
of filters used for generating the feature map. Figure:6.1 depicts the model summary
of VGG19 architecture when trained with the proposed dataset. The architecture
is the traditional model that contains 2D Convolutional layers and 2D MaxPooling
layers. It starts with 64 filters, and the number is multiplied by 2 in every subsequent
block until it reaches 512. In this case, the flatten layer was then fed into the dense
layer, also known as the fully-connected layer to transform the input data into a
desired output format by learning the appropriate weights and biases during the
training process. Lastly, sigmoid activation function was used as the output layer
to predict the violent and non-violent classes accordingly. The accuracy and loss of
the model on test data is represented using figure:5.1 and figure:5.2 accordingly.
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Layer (type) QOutput Shape Parameters
input_1 (InputLayer) [(None, 112, 112, 3)] 0
blockl convl (Conv2D) (None, 112, 112, 64) 1792
block1 conv2 (Conv2D) (None, 112, 112, 64) 36928
blockl pool (MaxPooling2D) (None, 56, 56, 64) 0
block2 convl (Conv2D) (None, 56, 56, 128) 73856
block2 conv2 (Conv2D) (None, 56, 56, 128) 147584
block2 pool (MaxPooling2D) (None, 28, 28, 128) 0
block3 convl (Conv2D) (None, 28, 28, 2506) 295168
block3 conv2 (Conv2D) (None, 28, 28, 2506) 590080
block3 conv3 (Conv2D) (None, 28, 28, 256) 590080
block3 conv4 (Conv2D) (None, 28, 28, 256) 590080
block3 pool (MaxPooling2D) (None, 14, 14, 256) 0
block4 convl (Conv2D) (None, 14, 14, 512) 1180160
block4 conv2 (Conv2D) (None, 14, 14, 512) 2359808
block4 conv3 (Conv2D) (None, 14, 14, 512) 2359808
block4 conv4 (Conv2D) (None, 14, 14, 512) 2359808
block4 pool (MaxPooling2D) (None, 7,7, 512) 0
block5 _convl (Conv2D) (None, 7,7, 512) 2359808
block5_conv2 (Conv2D) (None, 7,7, 512) 2359808
block5 _conv3 (Conv2D) (None, 7,7, 512) 2359808
block5 conv4 (Conv2D) (None, 7, 7, 512) 2359808
block5 pool (MaxPooling2D) (None, 3, 3, 512) 0
flatten (Flatten) (None, 4608) 0
dense (Dense) (None, 2) 9218

Figure 5.4: Summary of Layers with Output Shape
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5.2 Inception V3

In Inception version 3, there is a significant focus on reducing the computational
resources required to run the program [4]. This is achieved by implementing various
changes to the earlier Inception architectures. While not many changes were made
to the layers themselves, an output layer with 2 nodes was established to accom-
modate the specific categories in the selected dataset. To enhance the efficiency
of the network and reduce computational requirements, factorized convolutions are
utilized. These convolutions help in maintaining efficiency by decreasing the overall
number of parameters involved within the network. Larger convolutions were being
replaced with smaller ones, leading to faster training. By sharing weights among
themselves, the processing power required for a fully linked layer and a 3x3 convo-
lutional layer can be reduced. To further decrease the number of parameters, the
asymmetric convolutions method is employed [38]. This method replaces a 3x3 con-
volutional layer with a combination of a 1x3 convolutional layer followed by a 3x1
convolutional layer. During the training process, minor CNN layers are introduced
between the main layers, and the loss from these layers is added to the loss from
the main network. In conclusion, pooling layers are utilized to decrease the grid
size,which helps to lessen the network’s computational complexity. The figure:5.7
represents a schematic diagram that shows the visual representation of Inceptionv3
architecture [36] [18] and figure:5.8 represents the layers in the architecture. Lastly,
the accuracy and loss of the model on test data is represented using figure:5.5 and
figure:5.6 accordingly.
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Figure 5.5: Inception V3 Accuracy Figure 5.6: Inception V3 Loss
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Type Kernel size/stride Input size
Convolution 3 x3/2 299 x 299 x 3
Convolution 3 x3/1 149 x 149 x 32
Convolution 3 x3/1 147 x 147 x 32

Pooling 3 x3/2 147 x 147 x 64
Convolution 3 x3/1 73 %73 x 64
Convolution 3 x3/2 71 <71 % 80
Convolution 3 x3/1 35 %35 x 192

Inception module Three modules 35 x 35 x 288
Inception module Five modules 17 x 17 x 768
Inception module Two modules 8 x 8 x 1,280

Pooling 8x8 8 x 8 x2,048

Linear Logits 1 x1x2,048

Softmax Output 1 x1x1,000

Figure 5.8: Summary of Inception V3 Architecture
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5.3 ResNetbH0

ResNet50 is a deep residual network model [3] which is an artificial neural network
(ANN) that forms its network by layering up multiple residual blocks. As the
name implies, it contains 50 neural networks(48 Convolution layers,1 MaxPool and
1 Average Pool layer) [34] but uses a concept called shortcut connections which
leaves out some layers. It has an initial convolutional layer of 64 kernels each of
7x7 consisting of stride size of 2 and a 3x3 Max Pooling layer. Then comes a 3x3
and 1x1 with 64 kernel convolution and another with 1x1, 256 kernels, each iterated
three times to add 9 layers. After that comes 12 layers each repeated 4 times with
1x1 and 3x3 each consisting of 128 kernels and another 1x1 with 512 kernels The
next 18 layers contain 1x1 and 3x3 with 256 cores and 1x1 with 1024 cores where
each layer is repeated six times. Finally comes 3 more cores with 1x1,512 cores,
3x3,512 cores, and 1x1,2048 cores, each repeated 3 times to give 9 more layers [9].
Following the convolutional layers, there is an Average pooling operation, which
is subsequently followed by a fully connected layer, and ultimately the Softmax
activation function is utilized. The summary of the layers in ResNet50 architecture is
represented by figure:5.12 and the schematic representation by figure: 5.11. Finally,
the model’s performance on the test data is visualized through figure:5.9 for accuracy
and figure:5.10 for loss.
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Layers

ResNet 50

Number of Layers

2D Convolutional Layer

7 x 7, 64, stride 2

1

2D Convolutional Layer

3 x 3 max pool, stride 2
[Ix1,64]x3
[3x3,64]x3
[Tx1,256]x3

2D Convolutional Layer

[1x1,128] x4
[3x3,128] x4
[1x1,512]x4

12

2D Convolutional Layer

[1x1,256]x6
[3x3,256]x6
[1x1,1024]x 6

18

2D Convolutional Layer

[Tx1,512]x3
[3x3,512]x3
[1x1,2048] x 3

Average Pool, 2

Figure 5.12: Summary of ResNet50 Model
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5.4 DenseNet 201

The DenseNet-201 architecture is a deep CNN introduced by Huang et al. in 2017
[5]. Tt is 201 layers deep and is specifically designed for image classification tasks.
DenseNet-201 is distinguished by its closely connected layers that facilitate effective
information propagation and feature reuse across the network. It starts with a
7x7 convolutional layer followed by 3x3 max pooling for dimension reduction. It
employs dense blocks with multiple layers, including batch normalization, ReLLU
activation, and 3x3 convolutions [41]. Dense layers concatenate feature maps from
preceding layers within the block, enhancing information flow. Transition layers
with batch normalization, 1x1 convolutions, and 2x2 average pooling reduce feature
map dimensions. Global average pooling compresses feature maps into a fixed-sized
vector. A fully connected layer with softmax activation performs classification,
with the output nodes corresponding to the number of classes. In this case, again
include_ top is set ot false to exclude the fully connected layer at top and is replaced
with a Flatten layer which acts as the fully connected layer for the proposed dataset
with sigmoid activation for binary classification problem. The table 5.16 below
represents the summary of the layers of a traditional DenseNet-201 architecturein
a feed-forward manner[39] using the ouput shape of this work. To provide a visual
representation of the architecture, a schematic diagram is added in figure:5.15. The
model’s performance on the test data is graphically represented with figure:5.13
illustrating accuracy and figure:5.14 depicting loss.
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Figure 5.13: DenseNet 201 Accuracy Figure 5.14: DenseNet 201 Loss
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Figure 5.15: Schematic diagram of DenseNet 201 Architecture
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Layers Output size DenseNet-201
Convolution 112x 112 7 x 7 Conv, stride =2
Pooling 56 x 56 3 x 3 MaxPool, stride =2
Dense Block(1) 56 x 56 [1 x 1 Conv]x6
[3x3 Conv]x6
Transition Layer(1) 56 x 56 1 x1 Conv
28 x 28 2 x 2 Average Pool, stride = 2
Dense Block(2) 28 x 28 [1x1Conv]x 12
[3x3 Conv]x 12
Transition Layer(2) 28 x 28 1 x 1 Conv
14x 14 2 x 2 Average Pool, stride = 2
Dense Block(3) 14x 14 [1x 1 Conv]x 48
[3x 3 Conv] x 48
Transition Layer(3) 14x 14 1 x1 Conv
Tx7 2 x 2 Average Pool, stride =2
Dense Block(4) Tx7 [l x 1 Conv]x 32
[3x3 Conv]x 32
I1x1 7 x 7 global average pool

Classification layer

1000D, fully connected, softmax

Figure 5.16: Summary of DenseNet 201 Model
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5.5 MobileNet V2

It is a lightweight CNN model consisting of 53 layers [31]. MobileNetV2 is suitable
for devices with lower computational capability. MobileNetV2 incorporates two
types of blocks. The first type is a residual block having a stride of 1, meaning it
maintains spatial size of the input feature map. The second type of block has a stride
of 2, allowing for downsizing of the feature map [42]. The architecture consists of
an initial fully convolutional layer with 32 filters, which is subsequently followed by
an additional 19 residual bottleneck layers [10]. For both types of blocks, there are
three layers involved. In this case, the first layer is a 1x1 convolution followed by the
ReLU6 activation function. The second layer is the depthwise convolution, which
focuses on filtering individual channels of the input separately. The third layer is an-
other 1x1 convolution, but without any non-linearity applied. The rationale behind
excluding non-linearity in this layer is that if ReLU were used again, it would re-
strict the deep networks to function as linear classifiers solely on the non-zero volume
section of the output domain [17]. The diagram of 6.2 below shows the summary
of layers in MobileNetV2 [15] and the figure:5.19 represents the schematic diagram
of the architecture. Figure:5.17 illustrates accuracy, while figure:5.18 demonstrates
loss, showing the model’s performance on the test data graphically.
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Figure 5.17: MobileNet V2 Accuracy Figure 5.18: MobileNet V2 Loss
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Chapter 6

Proposed Methodology

6.1 Spatial Features

Throughout the research, the focus had been to maintain a reasonable model size
for a lightweight computation and obtain the maximum accuracy while utilizing the
minimum number of parameters with a balanced tradeoff between the two. First
of all, the videos in the dataset have been iterated extracting the frames from each
video along with the corresponding label for each frame. Since it had been a com-
piled dataset, the dimensions of the frames are unequal and need to be resized
accordingly. The resolution of the frames has been reduced to only 112x112 pixels
and 3 color channels for each frame and was normalized subsequently. The pro-
posed model contains blocks of layers. Each block contains a Conv2D layer, a Batch
Normalization layer, and a MaxPooling2D layer sequentially. There are a total of
seven such blocks of such layers. To standardize the inputs to subsequent layers
and stabilize the learning process the Batch Normalization layer has been utilized.
MaxPooling2D reduces the dimensions of the hidden layer and minimizes computa-
tion. To tackle the overfitting problem, one Dropout layer with a rate of 50% has
been used in the hidden layer. Each of the seven convolution layers contains the
RELU activation function. RELU has been the desired choice because, unlike other
activation functions, it has proven to speed up the stochastic gradient descent. Af-
terward, a Flatten layer was used to obtain a one-dimensional array which was then
sequentially fed into the output layer. The output layer used the Sigmoid activation
function for the binary classification.

It is to be noted that the choices of parameters and hyperparameters were not
entirely random. The layers have been finely tuned for the best hyperparameter
combinations using the Bayesian Optimization Tuner. Each convolution layer has
been tuned with the kernel sizes of 3x3, 5x5, and 7x7. By setting up boolean values,
it was also determined whether a convolution block will be followed by a dropout
layer or not with each dropout layer, if present, having a combination of dropout
rates of 20%, 30%, and 50%. The number of fully connected layers has also been
decided using rigorous tuning. However, after obtaining the best result, it was iden-
tified that no Dense layers were required apart from the output layer.

Finally, the tuned model contained two SeperableConv2D layers with 64 filters and
a kernel size of 3x3 followed by two SeperableConv2D layers with 128 filters and
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a 5xb kernel. It then sequentially had just one SeperableConv2D with 512 filters
and 3x3 kernel size followed by a Dropout layer with a 50% dropout rate. Finally,
another two SeperableConv2D layers followed with 1024 filters and a 3x3 kernel
size. As mentioned above, each layer was followed by a batch normalization and a
pooling layer. Figure 6.1 illustrates the architecture of the model and a summary
of the layers can be found in figure 6.2.

sepConvi

sepConv2

sepConv3

sepConv4

sepConvh
° sepConvé sepConv? denset

7x7x512 4x4x1024 2x2x1024 Tx1x1024 1x1024

14x14x128

28x28x128

S Separable Conv2D
. BatchNormalization
. MaxPooling2D
. Flatten

112 x 112 x 64 @ Dense
- Dropout

Figure 6.1: Visualization of Proposed CNN Model

During compiling the model, the Adam optimizer has been utilized with an initial
learning rate of 1 x 10~*. However, the same learning rate throughout the learning
process leads to local minima for the validation loss. To tackle this problem, the Re-
duceLROnPlateau function has been used to decrease the learning rate should local
minima be reached. It had also been observed that the model converges very early
in the training process even though 80 epochs have been set for training. Hence,
to avoid repetition, the Early Stopping technique has been utilized with a patience
level of 12.

To visualize the outputs, a completely unseen portion of the dataset has been used.
Similar to the preliminary preprocessing, the videos were once again converted to
frames and passed to the trained model. This time the model predicts a label, 0
or 1, for the frames and outputs the decision on the video frame. Figure 6.4 to fig-
ure 6.7 show some sample outputs for the predicted labels in the visualization phase.

30



Layers Output Shape Parameters
Separable Conv2D (None,112,112,64) 283
BatchNormalization (None,112,112,64) 256
MaxPooling2D (None,56,56,64) 0
Separable Conv2D (None,56,56,64) 4736
BatchNormalization (None,56,56,64) 256
MaxPooling2D (None,28,28,64) 0
Separable Conv2D (None,28,28,128) 9920
BatchNormalization (None,28,28,128) 512
MaxPooling2D (None,14,14,128) 0
Separable Conv2D (None,14,14,128) 19712
BatchNormalization (None,14,14,128) 512
MaxPooling2D (None,7,7,128) 0
Separable Conv2D (None, 7,7, 512) 67200
BatchNormalization (None, 7,7, 512) 2048
MaxPooling2D (None, 4,4, 512) 0
Dropout (None, 4,4, 512) 0
Separable Conv2D (None, 4,4, 1024) 538112
BatchNormalization (None, 4,4, 1024) 4096
MaxPooling2D (None, 2,2, 1024) 0
Separable Conv2D (None, 2,2, 1024) 1075200
BatchNormalization (None, 2,2, 1024) 4096
MaxPooling2D (None, 1,1, 1024) 0
Flatten (None , 1024) 0
Dense (None,2) 2050

Total Params: 1,728,989

Trainable Params: 1,723,101

Non-Trainable: 5,888

Figure 6.2: Summary of Layers
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Figure 6.7: Sample output for label non-violence
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6.2 Explainable AT Model

Over the years, professionals in the field of artificial intelligence had sought to com-
prehend how and why a model produces the results it does. However, this is quite
difficult to interpret as the models are often non-linear, highly complex, and com-
prise millions of parameters, far beyond the scope of the capability of humans to
understand. To alleviate this issue, Explainable Al (XAI) is used which enables us
to interpret the outcomes of a model. One of the fundamental approaches of XAl
involves evaluating the model’s prediction accuracy. This is carried out through
simulations and by comparing the output of XAl against the actual training dataset
results. Consequently, we achieve a measure of prediction accuracy which can be
obtained through algorithms such as LIME (Local Interpretable Model-Agnostic
Explanations). This assists in making the model’s predictions more understandable
and transparent.

6.2.1 Working Mechanism of LIME

LIME is an algorithm that is designed to be applied to any model and explain the
predictions of any black box classifier in the neighborhood of a predicted instance in
a form that can be understood by people. It allows a complex model’s local region
to be fitted using a linear model. LIME can be used for both text classification and
image classification, however, since the focus of our paper is image processing, we
have used LIME to give clear justifications for how and why we got the outcomes
we did. For images, we can use LIME to determine and provide an explanation as
to which elements of the image resulted in the prediction of its class.

In order to produce explanations, LIME mathematically uses —

{(x) = argminL (f, g, mx) + €2(g) (6.1)
geG
where x is the input data; f is the complex model, g is the simple interpretable
model from a family of interpreted models (G) and 7, is the local neighborhood of
the data point.

Initially, we begin with the black-box model - the model we aim to be explained by
LIME. Next, it generates a random set of data points in the vicinity of a specific
input data. Following this, weights are allocated to all the new data points based
on their distance from the original input data point. Subsequently, we use the
model to predict outcomes for these new data points. Ultimately, this results in
a new dataset on which we can apply a simpler linear model. Finally, we obtain
the explanations for the obtained results. Figure 6.8 shows a short summary of the
working mechanism of LIME.
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Figure 6.8: LIME Working Mechanism

In our case, after our image is classified as violent or non-violent, it is then passed
on to LIME. This allows us to discern which parts of our input image are being
utilized to determine if it depicts a violent activity or not.

Figure 6.9: Sample Frame from Hockey Fights

In figure 6.10a, we can observe the area of the image used to categorize it as a
violent activity as highlighted. The marked boundaries act as a separator for pixels
with significance and those that were excluded from decision-making. Upon fur-
ther analysis by LIME, we can observe that in figure 6.10b, much of the irrelevant
background activity has been rendered into a gray area, separate from the rest of
the image. This reflects our model’s decision to disregard the background as an
insignificant factor in making its prediction, a fact confirmed by LIME.

Following this, figure 6.10c further illustrates the sections of the image used to label
it as a violent activity using distinct color codes. The green zones represent areas
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Figure 6.10: Lime Explained Images

from which most data were extracted for the prediction, while the red zones signify
areas contributing minimal or no data. Finally, figure 6.10d presents a heatmap of
the image, spotlighting the presence of violence in a graphic representation. The
heatmap further solidifies the explanation process with indicators for intensity pix-
els. The deeper blue shades symbolize data that was most crucial for the prediction,
while the red region signifies data that was deemed unimportant. Formulating from
this, it can be observed that many extra pixels contribute to identifying the par-
ticular frame as violent action. However, the deepest blue shades cover the hockey
players who are actually involved in the fight.
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6.3 Spatio-Temporal Features

The spatial feature extractor remains to be a straightforward and minimalist ap-
proach for determining labels for a single-shot action pattern in a single frame.
However, it cannot be always relied upon to be able to reach a conclusion without
understanding the essence of the whole sequence of action. The sequencing of a se-
ries of actions and their continuation plays a pivotal role in depicting their motive.
Considering this crucial aspect of the action recognition task, several approaches
have been proposed while keeping both performance and computational resources
in check. For all the developed models the video frames were resized to 144x144 pix-
els and were stacked as a sequence of 25 frames. Against each sequence of frames,
there was one label determining the state of violence.

All the proposed models have incorporated recurrent units and the layers were kept
constant across all the different models. For this, Bi-directional LSTM (Bi-LSTM)
layers have been used. The recurrent connections in a typical LSTM are unidirec-
tional, meaning that data only flows in one direction through time (from the past
to the future). As a result, the LSTM is able to remember and use data from the
past to predict the future.

A Bi-LSTM, on the other hand, combines two LSTM layers that operate in con-
junction, one moving forward (from the past to the future) and the other moving
backward (from the future to the past). Every LSTM layer processes the sequence of
inputs in the opposite direction, enabling them to gather data from each time step’s
past and future contexts. The forward and backward LSTM outputs are combined
to produce the Bi-LSTM output.

The general flow of a Bi-LSTM network is as follows:

1. Input Sequence: The Bi-LSTM receives the input sequence as a series of
time steps.

2. Forward LSTM: The input sequence is processed by the first LSTM layer
from the first time step to the last time step. The forward LSTM modifies its
internal hidden state based on the current input and the prior hidden state at
each time step. Each time step’s output is also produced.

3. Backward LSTM: The same input sequence is processed by the second
LSTM layer, but in the opposite direction (from the final time step to the
first time step). Similar to that, it creates outputs for each time step and
updates its hidden state.

4. Concatenation: The outputs of the forward and backward LSTMs are con-
catenated once they have each finished processing the whole input sequence.
At each time step, the output integrates knowledge from the input sequence’s
past and future contexts.

5. Output: The final output performs the classification.
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Figure 6.11: Traditional Bi-LSTM Flow Diagram

6.3.1 Long-term Recurrent Convolutional Networks (LRCN)

Unlike regular ConvLSTM models, LRCN combines CNN and LSTM layers in a
single model. In order to model the temporal sequence, the spatial data from the
frames are sent to the LSTM layer(s) at each time step using the convolutional
layers. In this manner, a robust model is produced as the network directly learns
spatiotemporal properties in end-to-end training.

Additionally, employing a TimeDistributed wrapper layer enables the model to inde-
pendently apply the same layer to each frame of the video. Thus, if the layer’s initial
input shape was (width, height, num of channels), it makes that layer (around which
it is wrapped) capable of taking input of the shape (no of frames, width, height,
num of channels), which is particularly advantageous because it enables input of the
entire video into the model in one take. Regular convolutional layers do not take
sequences of frames into account.

LSTM Unit LSTM Unit
: :
LSTM Unit LSTM Unit
Convolutional Layer

Figure 6.12: Typical LRCN FLow Diagram

|:> VIOLENCE

Unlike regular ConvLSTM models, LRCN combines CNN and LSTM layers in a
single model. In order to model the temporal sequence, the spatial data from the
frames are sent to the LSTM layer(s) at each time step using the convolutional
layers. In this manner, a robust model is produced as the network directly learns
spatiotemporal properties in end-to-end training.
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Additionally, employing a TimeDistributed wrapper layer, as demonstrated in figure
6.13, enables the model to independently apply the same layer to each frame of the
video. Thus, if the layer’s initial input shape was (width, height, num of channels),
it makes that layer (around which it is wrapped) capable of taking input of the shape
(no of frames, width, height, num of channels), which is particularly advantageous
because it enables input of the entire video into the model in one take. Regular
convolutional layers do not take sequences of frames into account.

19Ae paynquysigawi]

Figure 6.13: Working Mechanism of a TimeDistributed Layer

The spatial feature extractor contains blocks of convolutions where each block con-
tains a Conv2D layer, a BatchNormalization layer, followed by a MaxPooling2D
layer. A TimeDistributed layer wraps both the Conv2D and MaxPooling2D layers.
The model has a Conv2D block with 32 filters followed by a Conv2D block with 64
filters. The final two blocks contain Conv2D layers with 128 and 512 filters respec-
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tively. For all the convolution layers, the RELU activation function has been used
and each has a kernel size of 3x3. A Flatten layer wrapped by a TimeDistributed
layer then follows before feeding the extracted spatial features to the LSTM layers.
For this, Bidirectional LSTM layers have been used sequentially with 512, 128, and
64 units respectively. Before the output layer, there is just one Dense layer with 256
nodes activated by the RELU function. And finally, the Softmax function activates
the output layer.

convi
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25x41472

. BatchNormalization
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Figure 6.14: Visualization of Proposed LRCN Model
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Layers Output Shape Parameters
time_distributed 9(TimeDistributed) (None, 25, 144, 144, 32) 896
batch_normalization _4(BatchNormalization) (None, 25, 144, 144, 32) 128
time_distributed 10(TimeDistributed) (None, 25, 36, 36, 32) 0
time_distributed 11(TimeDistributed) (None, 25, 36, 36, 64) 18496
batch_normalization 5(BatchNormalization) (None, 25, 36, 36, 64) 256
time_distributed 12(TimeDistributed) (None, 25, 18, 18, 64) 0
time_distributed 13(TimeDistributed) (None, 25, 18, 18, 128) 73856
batch_normalization 6(BatchNormalization) (None, 25, 18, 18, 128) 512
time_distributed 14(TimeDistributed) (None, 25,9,9, 128) 0
time_distributed 15(TimeDistributed) (None, 25,9,9, 512) 590336
batch_normalization 7(BatchNormalization) (None, 25,9,9, 512) 2048
time_distributed 16(TimeDistributed) (None, 25, 5,5,512) 0
time_distributed 17(TimeDistributed) (None, 25, 12800) 0
bidirectional 3(Bidirectional) (None, 25, 1024) 54530048
bidirectional 4(Bidirectional) (None, 25, 256) 1180672
bidirectional 5(Bidirectional) (None, 128) 164352
dense 2(Dense) (None, 256) 33024
dense 3(Dense) (None, 2) 514

Total params: 56,595,138

Trainable params: 56,593,666

Non-trainable params: 1,472

Figure 6.15: Summary of LRCN Layers with Output Shape

6.3.2 ConvBidirectionalLSTM

ConvLLSTM is a modification of the standard LSTM architecture made to work with
spatiotemporal data such as video or image sequences. Convolutions are added into
the LSTM cell, enabling the model to process spatial data right there in the recur-
rent unit. ConvLSTM integrates convolutional operations right into the LSTM cell,
whereas LRCN combines distinct convolutional and recurrent layers. This is the pri-
mary distinction between ConvLSTM and LRCN. This method efficiently captures
the spatial features in the individual frames and the temporal relation across differ-
ent frames for video categorization. Due to the ConvLSTM'’s convolution structure,
it can accept 3-dimensional input (width, height, num of channels), whereas a simple
LSTM can only accept 1-dimensional input, making it impossible for an LSTM to

model spatiotemporal data on its own.
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The ConvLSTM cell extends the LSTM cell to process spatiotemporal data. It op-
erates on 3D data, where the dimensions are usually (height, width, channels). The

ConvLSTM cell introduces convolutional operations to process both the input data
and hidden states of the LSTM.

Input-to-State Convolution:

The input data at each time step (usually represented as a 3D tensor) is convolved
with a set of filters (also called the input-to-state convolutional kernel). The result
of this convolution is then combined with the previous cell state using the input gate
of the LSTM. This allows the cell to process spatial information from the current
input in relation to the previous cell state.

State-to-State Convolution:

The previous hidden state (also represented as a 3D tensor) is convolved with a set
of filters (also known as the state-to-state convolutional kernel). The result of this
convolution is combined with the new input data using the forget gate of the LSTM.
This enables the cell to learn spatial dependencies from the previous hidden state
in relation to the new input.

Output:

The LSTM cell produces a new hidden state and cell state at each time step. The
updated hidden state is passed through an output gate to regulate how much of
the hidden state should be exposed as the output for the current time step. The
ConvLLSTM cell allows the model to capture spatial dependencies across different
spatial locations and time steps simultaneously.

The spatial feature extractor in this model built for this research contains similar
blocks of convolutions like the LRCN model where each block contains a Conv2D
layer, a BatchNormalization layer, followed by a MaxPooling2D layer. This time,
traditional Conv2D layers have been used without any TimeDistributed wrapper lay-
ers. The input Conv2D layer with 32 filters takes in an input shape of (144,144,3)
and a fifth convolution block with 1024 filters has been added. Both the convolution
blocks with 128 and 1024 filters have a kernel size of 5x5 while the rest uses the 3x3
kernel. Instead of a Flatten layer, the GlobalMaxPooling2D layer has been used. A
single TimeDistributed layer has been wrapped around the whole sequential convo-
lution layer which ensures that convolutions are added within the LSTM cell. The
LSTM and Dense units have been kept constant across all the developed models for
a fair comparison of how different spatial feature-extracting CNN models perform.
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Layers OQutput Shape Parameters
time_distributed (TimeDistributed) (None, 25, 1024) 13929920
bidirectional (Bidirectional) (None, 25, 1024) 6295552
bidirectional 1 (Bidirectional) (None, 25, 256) 1180672
bidirectional 2 (Bidirectional) (None, 128) 164352
dense (Dense) (None, 256) 33024
dense 1 (Dense) (Nong, 2) 514
Total Params: 21,604,034 Trainable Params: 21,600,514 Non-Trainable params: 3,520

Figure 6.16: Summary of ConvLLSTM Layers with Output Shape
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Figure 6.17: Visualization of Proposed ConvLLSTM Model
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6.3.3 SepConvBidirectional LSTM

Separable Convolution is a type of convolutional operation used in deep learning
architectures, especially in scenarios with limited computational resources or when
dealing with large-scale data. The main idea behind Separable Convolution is to de-
compose a standard convolutional operation into two separate convolutions: depth-
wise convolution and pointwise convolution. This technique can significantly reduce
the number of parameters and computations, making the model more efficient while
still capturing important spatial features.

Depthwise Convolution:

o The input data (e.g., an image) is convolved separately with a set of filters,
also known as a "depthwise kernel”.

o In a depthwise convolution, each filter only operates on one channel (or feature
map) of the input data.

e The depthwise convolution essentially processes the spatial information within
each channel independently, learning spatial patterns specific to each channel.

Pointwise Convolution:
o After the depthwise convolution, a pointwise convolution is applied..

 Pointwise convolution is a standard 1x1 convolution, where the depth (number
of channels) of the output is adjusted according to the desired model archi-
tecture.

 Pointwise convolution is a standard 1x1 convolution, where the depth (number
of channels) of the output is adjusted according to the desired model archi-
tecture.

o The purpose of the pointwise convolution is to mix and transform the informa-
tion learned from the depthwise convolution across different channels, creating
new features and interactions.

The spatial feature extractor built for this approach is not much different than the
one built for ConvBidirectional LSTM. All the Conv2D layers have been replaced by
SeperableConv2D layers, keeping the values of filters and kernels unchanged. This
has been done for a comparative analysis to determine how the two differ in balanc-
ing performance and computational resources.
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Layers Qutput Shape Parameters
time_distributed (TimeDistributed) (None, 25, 1024) 618683
bidirectional (Bidirectional) (None, 25, 1024) 6295552
bidirectional 1 (Bidirectional) (None, 25, 256) 1180672
bidirectional 2 (Bidirectional) (None, 128) 164352
dense (Dense) (None, 256) 33024
dense 1 (Dense) (None, 2) 514
Total Params: 8,292,797 Trainable Params: 8,289,277 Non-Trainable params: 3,520

Figure 6.18: Summary of SepConvLLSTM Layers with Output Shape
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Figure 6.19: Visualization of Proposed SepConvLSTM Model
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Chapter 7

Results and Analysis

7.1 Spatial Features

The proposed CNN model results have been compared with the above-mentioned
five other pre-trained CNN architectures which include: VGG-19, DenseNet-201,
Inception V3, ResNet 50, and MobileNet V2. Among these deep learning models,
Inception V3 has the lowest accuracy level with an accuracy score of 0.896 only.
The provided version of the CNN model gave the highest accuracy score with the
least amount of parameters among all the models and maintained a high classifica-
tion accuracy between violence and non-violence predictions on its confusion matrix.
This is what makes the model reliable, lightweight and more accurate than other
pre-trained architectures. Evaluation metrics such as accuracy, precision, recall, and
f1-score have been used to compare the results.

The accuracy of the models is determined by how many true predictions are obtained
among the total number of predictions made on classifying violence and non-violence
in videos. Precision determines the accuracy of the predicted true values. Models can
produce results that show actual positive predictions and false positive predictions.
Hence precision is used to calculate the percentage of true predictions achieved from
all positive predictions. TP stands for True Positive FP stands for False Positive. TP
and FP together give a Total Positive which is all the predicted positive outcomes.
It has the following formula:

TP
Precision = Z—P—}——W (71)

Recall provides the fraction of actual true predictions from total positive actual
values which defines the result accuracy. It is calculated using True Positives (TP)
over the sum of total actual data, that is, True Positive (TP) and False negative
(FN). The formula for recall is given below:

TP
Recall = m—m (72)
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F1-Score combines both precision and recall to determine the prediction quality of
a model. It calculates the average of precision and recall to produce a single value
that takes False Negatives and False Positives into account. A closer value toward
1 shows better accuracy. The formula is as follows:

2 x Precision x Recall
F1-S5 = 7.3
core Precision + Recall (7.3)

7.1.1 Comparison With Pre-Trained Architectures

The proposed model when compared to other pre-trained architectures using the
compiled dataset and the Hockey Fights dataset convincingly shows higher accu-
racy value and higher precision, recall, and Fl-score with the lowest number of
parameters (1.72 million). Hence, it undoubtedly shows the most reliable prediction
capability among other models. Figures 7.1 and 7.2 shows the comparison of dif-
ferent metrics attained by all the respective deep learning models for the compiled
dataset and the Hockey Fights dataset.

It is made sure that the pre-trained architectures and the proposed model have cer-
tain factors like frame dimension, learning rate, and epochs number consistent in
order to maintain a fair comparison among the models. The results are solely based
on the models’ performance and no other factors are altering the outcomes.

Deep Learning Accuracy Precision Recall Fl-score Parameters

Models (in millions)
VGG 19 0.948 0.95 0.95 0.95 20.02M
DenseNet-201 0.966 0.97 0.97 0.97 18.32M
Inception V3 0.896 0.90 0.90 0.90 21.80M
ResNet 50 0.908 0.91 0.91 091 23.58M
MobileNet V2 0.974 0.97 0.97 0.97 2.25M
Proposed Model 0.996 1.00 1.00 1.00 1.72M

Figure 7.1: Testing accuracy and other metrics using compiled dataset
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Deep Learning Accuracy Precision Recall Fl-score
Models

VGG 19 0.948 0.95 0.95 0.95
DenseNet-201 0.966 0.97 0.97 0.97
Inception V3 0.896 0.90 0.90 0.90
ResNet 50 0.908 0.91 0.91 0.91
MobileNet V2 0.974 0.97 0.97 0.97
Proposed Model 0.997 1.00 1.00 1.00

Figure 7.2: Testing accuracy and other metrics using Hockey Fights dataset

7.1.2 Comparison Among Different Datasets

To further evaluate the performance of the proposed model and the significance of
compiling the datasets, training has also been done using the benchmark datasets,
i.e. Hockey Fights and RLVD individually from which the videos have been orig-
inally taken. Both the compiled and Hockey Fights datasets has equal precision,
recall and F-1 score and their test accuracies differing by 0.001 while RLVD slightly
fell behind yet maintained a promising outcome. Figure 7.3 shows the comparison
of different metrics attained by the model using all three respective datasets.

Datasets Accuracy Precision Recall F1-score
Hockey Fights 0.997 1.00 1.00 1.00
RLVD 0.987 0.99 0.99 0.99
Compiled 0.996 1.00 1.00 1.00

Figure 7.3: Testing accuracy and other metrics using different datasets

Even though Hockey Fights and compiled datasets yield the similar results, the
training process was more stable while using compiled datasets. Comparing figure
7.6 and figure 7.4, it can be seen that accuracy and loss curves of the former contains
fewer fluctuations and stabilizes quicker.
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Figure 7.6: Accuracy and Loss curve for compiled dataset

49




7.1.3 Confusion Matrix Of Different Datasets

Figure:7.7 is the confusion matrix for the hockey dataset of the proposed model.
The horizontal axis of the matrix is for actual values and the vertical axis is for pre-
dicted values. There are a total of 1202 data among which 1198 data are correctly
predicted. Most of the data are accurately predicted in this dataset.
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Figure 7.7: Confusion Matrix for Hockey Fights Dataset

Figure:7.8 depicts the confusion matrix for the RLVD dataset of the proposed model.
The total number of data is 4184 of which 4130 data is accurately predicted. Most
predictions are done accurately in this dataset as well.
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Figure 7.8: Confusion Matrix for RLVD
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Figure:7.9 shows the confusion matrix of the proposed model for the combined
dataset. There are a total of 3858 data among which 3836 data are correctly pre-
dicted. The confusion matrices of the three datasets show the proposed model being
successful most of the time in predicting accurate results.

2000

1500

- 1000

- 500

0 1

Figure 7.9: Confusion Matrix for Compiled Dataset
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7.2 Spatio-Temporal Features

The research proposes three models from two different architectures, i.e. LRCN
and ConvLSTM. Two of the models from ConvLSTM architecture contain custom
convolution-based spatial feature extractors. To further analyze and reaffirm the
goal of this study, two state-of-the-art CNN architectures have been used for com-
parison. The MobileNet and SqueezeNet architectures have also been used as spatial
feature extractors for the ConvLSTM architecture. The importance of putting for-
ward a lightweight model has been iterated multiple times throughout this work.
Hence, it has been deemed important to analyze two of the most lightweight CNN
architectures too. Figures 7.10 and 7.11 show the comparison of the test accuracies
and the corresponding losses attained by all the respective models when trained
using the compiled dataset, the Hockey Fights dataset and RLVD dataset.

Compiled Hockey RLVD (Ii)r?rr?lrirllleiz)fss)
LRCN 92.71 9525 95.38 56.6M
SqueezenetLSTM 48.75 50.0 50.0 6.26M
Mobile LSTM 93.45 96.25 96.25 10.98M
ConvLSTM 97.5 98.0 95.0 21.6M
SepConvLSTM 98.75 97.5 94.0 8.29M

Figure 7.10: Test accuracy of the spatio-temporal models

Compiled Hockey RLVD

LRCN 0.2745 0.20 0.1965

SqueezenetLSTM 0.6920 0.6924 0.6932

MobileLSTM 0.26 0.2445 0.1564
ConvLSTM 0.072 0.054 0.22
SepConvL.STM 0.0510 0.095 0.23

Figure 7.11: Test loss of the spatio-temporal models

It can be observed from the tables above that the ConvLSTM comes only second
to SepConvLSTM (98.75%, 0.0510) in terms of both accuracy at 97.5% and loss at
0.072 for the compiled dataset. However, for the Hockey dataset, we can observe that
the ConvLSTM model performs best in terms of both accuracy and loss at 98% and
0.054, respectively. Finally, it comes only third to MobileLSTM (96.25%, 0.1564) in
terms of both accuracy at 95% and loss at 0.22 for the RLVD. The difference in terms
of accuracy and loss is 1.25% and 0.021 respectively for the compiled dataset and
1.25% and 0.0636 for the RLVD. However, this difference is quite considerable if we
observe the number of parameters that each of the better performing models use. For
instance, ConvLSTM has a total of 21,604,034 parameters and MobileLSTM has a
total of 10,980,674 parameters which is quite large in comparison to SepConvL.STM
which has a total of only 8,292,797 parameters. Therefore, we can conclude that
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SepConvLTSM performs quite better across all datasets given its least number of
parameters.

To further evaluate the performances of the models, the training phase accuracies
and losses have been recorded in the form of an accuracy and loss curve against
the number of epochs. Figures 7.12 to 7.14 show the results for the LRCN model.
Training with the Hockey Fights dataset leads to a lot of fluctuations indicating an
unstable training process. The other two datasets yield fairly smoother curves but
with significant overfitting. The validation accuracy for the final compiled dataset
stood at around 93% leaving a lot of room for improvements.
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Figure 7.12: LRCN Accuracy and Loss curve for Hockey Fights Dataset
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Figure 7.13: LRCN Accuracy and Loss curve for RLVD Dataset
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Figure 7.14: LRCN Accuracy and Loss curve for Compiled Dataset

Squeezenet and Mobilnet were two of the pre-trained architectures used as the spa-
tial feature extractor for comparison. As visualized in figures 7.15 to 7.17, the results
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are not at all close to the desired outcomes. The accuracies across all datasets re-
mained stagnant at around 50% while losses were no less than 69%.

However, promising outcomes were yielded when using Mobilenet as the base spatial
feature extractor. The training phases across all the datasets were fairly stable
although overfitting remained to be noticeable. As seen in figures 7.18 and 7.19, the
model attained promising validation accuracy in both Hockey and RLVD datasets.
In contrast, it fell quite short when training with the compiled dataset, reaching a

plateau of around 93% as shown in figure 7.20.
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Figure 7.15: SqueezenetLSTM Accuracy

and Loss curve for Hockey Dataset
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Figure 7.16: SqueezenetLSTM Accuracy and Loss curve for RLVD Dataset
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Figure 7.17: SqueezenetLSTM Accuracy and Loss curve for Compiled Dataset
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Figure 7.18: MobilenetLSTM Accuracy and Loss curve for Hockey Dataset
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Figure 7.19: MobilenetLSTM Accuracy and Loss curve for RLVD Dataset
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Finally, both the ConvLSTM models with custom spatial feature extractors per-
formed significantly well in comparison. Using separable convolutions, overfitting
has been greatly reduced in both the Hockey and Compiled datasets. Between the
two models, separable convolution helped achieve the minimum overfitting in the
compiled dataset.

For the compiled dataset, figure 7.26 shows that before settling at the final validation
accuracy of 98.0%, SepConvLSTM reached a peak of more than 98.5%. It also
achieved the lowest model loss of 5% approximately. In contrast, ConvLSTM in
figure 7.23 did not exceed 97.5% of validation accuracy and was able to bring down
the loss to as low as 7%.
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Figure 7.21: ConvLSTM Accuracy and Loss curve for Hockey Dataset
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Figure 7.22: ConvLSTM Accuracy and Loss curve for RLVD Dataset
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Figure 7.24: SepConvLSTM Accuracy and Loss curve for Hockey Dataset
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Figure 7.25: SepConvLSTM Accuracy and Loss curve for RLVD Dataset
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Figure 7.26: SepConvLSTM Accuracy and Loss curve for Compiled Dataset
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7.3 Analysing With Custom Test Video

The research has further verified the performance of the proposed models using
custom test videos that do not belong to any existing datasets. Both the custom
CNN model for spatial features and the best-performing SepConvLSTM model for
spatiotemporal features have been tested on these videos. Frames from one such
video have been studied for analysis. At first, the spatial feature-based CNN model
has been applied and tested.

Figure 7.27: Frames from Non-Violent sequence

As observed in the frames in figure 7.27, the non-violent sequence has been success-
fully classified. Frames from figure 7.28 contain violent action sequences, and the
model has been able to successfully depict the label once again.

Figure 7.29: Frames from Violent sequence

Diving deep into the analysis of the frames it was noticed that some sequences were
labeled as a violent activity which in real life may not be true. Frames in figure 7.29
show a sequence of a person holding a metal rod who eventually proceeds the hit the
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other person. However, initial frames in 7.29a and 7.29b would not confirm a vio-
lent sequence in an ideal scenario even though it leads to a violent action in this case.

Hence, as mentioned earlier in this study, it is necessary to understand the whole
sequence to depict the state and outcome of the action. The same test video has
been fed through the SepConvLSTM network. The model, in this case, makes a
prediction by looking at every sequence of 25 frames. As a result, the full context
of an action can be deduced.

Figure 7.30: Frames from Non-Violent sequence

As seen in frames from figure 7.30, the class predicted by the SepConvLSTM network
remained unchanged. However, in figure 7.31a the preliminary prediction does not
detect violence. As the model sees a few more frames from the sequence, it changes
its prediction. Similarly in figure 7.32, the initial sequence does not contain any
violent activity. The last frame in figure 7.32c seems to contain an action that
might lead to violence. However, before looking at more frames in future it does not
change its decision based on just one frame.

Figure 7.32: Frames from Non-Violent sequence
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Chapter 8

Future Work and Improvements

The future work of this research paper will be focusing on collecting and annotat-
ing large-scale datasets specifically designed for violent activity detection. Using
this wide range of data, different machine-learning models will be trained for bet-
ter accuracy. Currently, this research focuses on detecting violent and non-violent
activities(binary classification) but the aim will be further classifying the type of vio-
lence such as physical violence, use of weapons and other tools, vandalism, mugging,
and many more(multiclass classification). Moreover, integrating Vision Transform-
ers and comparing them with state-of-the-art models will give a vivid picture of
the performance of transformers in violent activity detection. On the other hand,
understanding the context in which violent activities such as scene context, object
context, and social context can significantly improve detection accuracy.

60



Chapter 9

Conclusion

If modern-day surveillance cameras are equipped with a violence detection algo-
rithm then they can lead to a significant advancement in security systems for law
enforcement and security agencies. Besides, public safety can be ensured in pub-
lic spaces, schools, transportation, etc if security personnel can intervene promptly.
Hence, incorporating an effective and lightweight violence detection model directly
into surveillance cameras can significantly enhance security measures, improve pub-
lic safety, and empower law enforcement and security agencies to respond promptly
to potential threats. As technology and research in this field continue to advance,
violence detection systems have the potential to become an integral component of
modern security infrastructure. With the suggested spatial and spatio-temporal
CNN models, it can be possible to do so since it uses fewer parameters than many
other pre-trained deep learning models.
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