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Abstract
Gliomas are the primary brain tumors that are most commonly observed in adult
patients and exhibit varying degrees of aggressiveness and prognosis. The accurate
identification and diagnosis of Gliomas in surgical procedures heavily rely on the
acquisition of precise segmentation results, which involve delineating the tumor re-
gion from magnetic resonance imaging (MRI) scans of the brain. The segmentation
process in conventional 3D CNN methods is often reliant on patch processing as
a result of the limitations in GPU memory. This paper presents an approach for
segmenting brain tumors into distinct subregions, namely the WT, TC, and ET,
utilizing a 3D tiled convolution-based segmentation method. The utilization of the
3DTC method enables the inclusion of larger patch sizes without requiring hardware
with high GPU memory. This study presents three significant modifications to the
standard 3D U-Net. Firstly, we incorporate 3D tiled convolution as the initial layer
in our proposed models. Secondly, we substitute the trilinear upsampling layer with
a dense upsampling convolution layer. Lastly, we replace the standard convolution
block with recurrent residual blocks in the proposed R2AU-Net. The best framework
was utilized to apply an average ensembling technique, aiming to achieve accurate
results on the validation set of the BraTS 2020 dataset. The network proposed in
this study was utilized for the analysis of the BraTS 2020 dataset. The evaluation
of our method on the validation dataset yielded Dice scores of 90.76%, 83.39%, and
74.77% for the WT, TC, and ET regions, respectively.

Keywords: Deep learning; 3D tiled convolution; MRI; Segmentation
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Chapter 1

Introduction

1.1 Overview
The use of convolutional neural networks (CNNs) to problems in computer vision
and medical image processing has increased recently [1]. In recent years, CNN has
found a huge usage in medical image processing methods. Despite this extensive
use, most methods only support processing 2D images, even though 3D images
make up the overwhelming majority of recorded medical imaging data. There are
many different kinds of 3D imaging modalities, such as MRI, CT, and micro CT
scanners, and 3D image segmentation is used to find and extract relevant regions
from the generated datasets. With the development of 3D CNN technology, they
will have access to greater geographical context [1], [2]. Because of its complex struc-
ture—often including many nonlinear processes and many trainable parameters—To
extract meaningful visual representations from pictures, Convolutional Neural Net-
works (CNNs) may be very helpful [3]. Most 3D image analysis relies on segmented
images, while real-time measurement and analysis of 3D images is possible in certain
cases. Scanned items may be measured and seen with the use of 3D models, which
can be transformed utilizing 3D image segmentations to extract the geometry of an
area of interest. By completing the segmentation of the 3D pictures, virtual inspec-
tions of these models may be performed by means such as computer simulations or
the building of a physically represented problem through 3D printing. In [4], we
see an examination of the ways in which medical images may be processed using
graphics processing units (GPUs), including procedures like segmentation, visual-
ization, and registration. Many computationally intensive applications may now be
greatly accelerated because to the GPU’s increased processing power, which was
highlighted in contrast to older GPU-based computing frameworks. Recently, GPU
has become a competitive platform due to its massive processing capability, which
has allowed for improved computing performance [4]. Because of the GPU mem-
ory constraints introduced by a full conversion to 3D, modern techniques depend
on patch-processing and sub-volumes. Even with a powerful graphics processing
unit (GPU) and no specialized hardware, the size of the patch to be entered is often
rather tiny, making it difficult to synthesize large amounts of contextual information
at a reasonable pace [5]. For our 3D Semantic Segmentation problem, we propose
using 3D Tiled Convolution to address the loss of contextual information and reduce
the computational cost.
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1.2 Motivation
With the advancement of AI, more people hope to use AI approaches for the auto-
mated segmentation of tumors in MRI datasets. CNNs are a specific kind of ANN
utilized in deep learning for the purpose of interpreting pictures. Some examples
of these applications are IP [6], classification or segmentation, BCI, financial series
data, and picture and video recognition. Convolutional Neural Networks (CNNs)
may be regarded as a notable instance of a distinct kind of deep learning model,
as highlighted in [7]. According to [8], there are segmentation techniques that may
directly manipulate the original dataset [9]. CNN has been used before to facili-
tate 2D computer vision tasks and to do image processing for medical applications.
CNN is used before for the purpose of driving 2D CV and performing tasks associ-
ated with the processing of medical images [8]. Given that a significant proportion
of clinical pictures now accessible are obtained in three-dimensional (3D) format,
there exists a compelling impetus to continue advancing the development of three-
dimensional convolutional neural networks (3D CNNs). This is primarily driven by
the need to harness the supplementary spatial context offered by such networks.
Two-dimensional convolutional neural networks (CNNs) are used to predict seg-
mentation maps for single-plane anatomical MRI scans. While 3D-CNNs solve this
problem by using 3D convolutional kernels to predict segmentation for volumetric
areas of a scan, this kind of network is still in its infancy. It is generally agreed that
fully convolutional networks represent a superior class of models capable of perform-
ing a wide range of pixel-level tasks. FCNs mimic the behavior of fully linked layers
as CNNs do but lack depth layers. As an alternative, they use 1 x 1 convolutions [10].
Recently, FCNs for semantic segmentation have seen significant accuracy improve-
ments thanks to the transfer of pre-trained classifier weights, layer representations, a
fusion of several models, and end-to-end learning on whole image volumes data sets.
To predict semantic segmentation without spatial data disagreement and to identify
illnesses circling around the area, we may use 3D-TC in conjunction with efficient
3D FCNs in volumetric MRI images. We provide a method for 3D segmentation
that makes use of 3D-TC on volumetric pictures to get optimal results. Our aim is
to deliver a significant decrease in the computation cost associated with 3d Medical
Image Processing and improve overall segmentation performance with the use of 3D
Tiled Convolution & 3D Fully Convolutional Networks.

1.3 Problem Statement
Obtaining accurate volumetric images of a patient’s internal organs is essential for
medical professionals when establishing a diagnosis or identifying an abnormality.
Diagnostic and therapeutic success rely heavily on the accurate segmentation of
volumetric images such as MR (Magnetic Resonance) scans [11].Analysis of medical
images using digital image analysis and other imaging modalities is a growing field of
study. However, a quick and effective surgical treatment is ensured by very accurate
segmentation, which aids in diagnostic and surgical planning. [5]. Simply said,
it ensures higher quality medical attention. Inter-patient anatomical heterogeneity
makes it difficult to automate volumetric medical visual segmentation, since different
organs have different sizes, forms, and architectures. We had to find a way to fix
the evident accuracy issue without causing any patients’ therapy to be stalled out
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for too long. This necessitated a very efficient segmentation technique, which could
be achieved by the deployment of a powerful 3D U-net model. Segmentation of 2D
medical images is well established by CNN. [11]. However, because to the additional
complexity of 3D volumes and the variety in organ size and shape, segmenting 3D
image volumes remains a challenging problem.
As a result, 3D Fully Convolutional Networks may be used to successfully segment
the volumetric images and address these concerns. However, the high computational
cost of implementing a 3D FCN is a serious drawback. Unless specialized hardware
with a lot of GPU RAM is used, the input patch’s size maybe limiting in 3D FCNs,
making it difficult to provide more context information for improved performance.
The computational load may be lightened while the spatial context is preserved
using 3D Tiled Convolution (3D-TC). Many different kernels are learnt in the same
layer using 3D Tiled Convolution (3D-TC). The processing time for 3D medical
image volumes is not significantly impacted by the reduced amount of GPU RAM
required by 3D-TC. In this research, we propose an ensembled 3DTC segmentation
architecture for performing efficient brain tumor segmentation.

1.4 Research Objectives
The main objective of our research is to learn about the 3D Tiled Convolution on
segmenting volumetric Brain images. More spatial context is often included when
using 3D CNNs for volumetric picture segmentation as opposed to the more common
2D CNNs method. 3D Convolutional Neural Networks require substantial GPU
memory which becomes huge restraint. This study proposes 3D-TC that greatly
lowers the GPU memory consumption involving 3D medical image processing. The
objectives of this study are:

1. To deeply evaluate 3D-TC, how it impacts the performance in semantic seg-
mentation .

2. To evaluate popular 3D semantic segmentation architecture.

3. To develop a model that incorporates the 3D-TC approach along with the 3D
segmentation architectures.

4. To provide suggestions about how the model can be made more accurate and
how 3D tiled convolution may be used to better segment 3D data in the future.

3



Chapter 2

Related Work

Each year, there are about 60 million MRIs conducted globally among which about
12 million MRIs are conducted on the brain to diagnose any anomaly. One of the
main purposes of the MRI is to detect regions of the tumor and categorize the re-
gion with its distinctive importance. To analyze brain MRI, image segmentation is
commonly utilized for surgical planning, image-guided procedures, assessing brain
changes, measuring and visualizing the anatomical features of the brain, and defin-
ing diseased areas. When it comes to image segmentation and other forms of visual
identification, deep convolutional networks have made great strides in recent years.
Although CNNs have been available for some time, their usefulness has been lim-
ited by the limitations of both the training sets and the evaluation networks. The
suggested network in [3] evaluated the issue and found a solution: it has two paths.
Where shortening strategy used standard layout in two 3x3 convolutions. The re-
searchers used an overlap-tile method to successfully split the massive picture. Sev-
eral biological segmentation tasks have been completed using the 2D U-net-based
network.

Exploring the well-established 2D U-net published in [3], a 3D U-net design was
introduced on [12] in 2016. In this design, all 2D tasks are replaced by their cor-
responding 3D equivalents. The proposed network was developed specifically for
volumetric image segmentation, and it is meant to be trained with just a few labels
applied to the training images. Both a semi-automated configuration in which cer-
tain slices of the volume to be segmented have been annotated and a fully-automated
design in which the network is expected to learn from existing sparsely-annotated
volumes are covered in this study. The suggested networks were built with volu-
metric image segmentation in mind, and it was designed to be able to learn from
minimally labeled volumetric imagery during training. Some slices of the volume
to be segmented have been annotated, as in the semi-automated configuration ad-
dressed in this study; in the fully-automated setup, the network is intended to learn
from existing sparsely annotated volumes included in the training dataset. This
building benefited greatly from the addition of volumetric photos since they pro-
vided crucial contextual information about the surrounding environment that had
been lacking in previous, 2D methods. Experiments utilizing the network suggested
that a completely automated setup performed better when presented with a bigger
sample size. In [1], a volumetric full CNN is presented as a means of 3D image
segmentation. As part of the training process, researchers established a unique goal
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function based on the DSC and then optimized it to maximize training performance.
This allowed for the handling of cases when the ratio of foreground to background
voxels was very high or low. It was broken up in many phases, could run at a higher
or lower resolution. Volumetric kernels of size 5 × 5 × 5 voxels were employed in
all convolutions throughout all stages. By distributing the network workload over
numerous GPUs, we can build the necessary scale to divide volumes into various
regions.

A 3D densely convolutional network was designed to maintain multi-scale contextual
information [13]. The suggested network design was built on the existing DenseNet
framework, which allowed for a seamless transition across network levels. Through
the combination of fine and coarse dense blocks in feature maps, the suggested net-
work design enhanced the flow of information. The suggested architecture combines
fine and coarse dense blocks of feature maps to gather multi-scale contextual in-
formation for integrating local forecasts with global projections. After comparing
with the 3D U-net design having 18 layers and 19 million learned parameters, this
network architecture achieved 92.50% with a smaller amount of parameters while
still performing adequately. During testing, the 3D U-net architecture performed at
91.58% accuracy.

Segmentation designs have traditionally included a DS route, coarse semantic, an
US path trained restoring input picture resolution at the model’s output, and a post-
processing module optimize model predictions. Densely Connected Convolutional
Networks (DenseNets) are a revolutionary CNN design that has recently shown out-
standing results in imagery classification. DenseNets are founded on the premise
that a network will be more accurate and simpler to train if every layer has a direct
feed-forward connection to every other layer. The network presented in [14] makes
use of an upsampling route to restore the entire input resolution in the output, al-
lowing it to function as an FCN. According to the proposed network architecture,
the upsampled dense block integrates data from many dense blocks between the
two paths, and a regular skip connection carries the higher-resolution data. Since
a fully convolutional DenseNet has fewer parameters than most other segmenta-
tion topologies, it naturally benefits from (1) parameter efficiency. As opposed to
a simple extension of DenseNets, where feature maps grow linearly, the upsampling
method reduces size which showed a very complex network with great depth, with
56 to 103 layers but few distinguishing features. DenseNet, the recommended net-
work, includes drawbacks such as data redundancy and layer-mixing feature maps.
The exponential development in compute and memory cost during training occurs
because the number of model parameters increases exponentially with the network
layers. Therefore, if there are too many layers inside the network, the entire model’s
performance suffers.

A different dual-pathway-based network which was 11 layers deep, incorporating
a 3D convolutional neural network was proposed in [15]. Since class imbalance is a
problem common to biomedical datasets, the suggested network was able to auto-
matically adjust to the data. Soft segmentation 3D fully linked CRF was utilized
which helped in segmentation. Pathways provided local features at high resolution
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and the second pathway provided global features at low resolution. After several
iterations of convolution, the network’s residual connections and global and local
paths were combined. Another difficulties from 3D CNNs was alleviated by this
network, which demonstrated the analysis of massive visual context employing in
multi-scale processes.

The authors of [16] presented an architecture called 3D Dense U-Net for fully au-
tomated high-resolution 3D volumetric segmentation of medical imaging data using
supervised deep learning. The proposed network’s implementation was modified
to optimize for GPU-accelerated high-resolution image processing, enabling direct
processing of three-dimensional images. The 3D Dense-U-net model demonstrated
superior performance on the brain MRI dataset, achieving an accuracy of 99.72%.
This result surpasses the performance of the previously disclosed 3D U-net architec-
ture. The use of a 3D U-net extension has the potential to significantly enhance the
performance of semantic segmentation tasks. The suggested separable 3D U-Net
architecture in [17] utilizes individual 3D convolutions for separation purposes. The
”S3D-UNet” network used for brain segmentation effectively utilizes the 3D volumes
by using a unique separable 3D convolution approach. This approach involves divid-
ing each 3D convolution into three parallel branches. The proposed network utilizes
a convergent pathway and a divergent trajectory, similar to that of an auto-encoder.

In [18], a novel unsupervised segmentation algorithm was proposed for 3D medical
pictures. Since the introduction of convolutional neural networks (CNNs), image
segmentation has made tremendous strides. However, most existing methods fo-
cus on supervised learning, which calls for a massive quantity of labeled data. As a
consequence, the ever-increasing volume of medical images overwhelms conventional
approaches. Together, clustering and unsupervised deep representation learning are
offered here as a unified approach to segmentation. JULE’s ability to analyze 3D
medical images is thanks to the incorporation of 3D convolutions into the architec-
ture of CNN. Here, we work on biomedical picture segmentation using JULE and
k-means. Since there is room for error in MRI, it is helpful that JULE can learn
characteristics that distinguish between regions of high and low intensity.

An additional noteworthy 3D AlexNet Network-based automatic segmentation setup
was suggested in [19]. When compared to ResNet50 and Inception-V4, the proposed
3D AlexNet network performed very well in terms of the time and number of param-
eters required for training. The 3D AlexNet network was presented as an extension
of AlexNet, which was first proposed by Krizhevsky et al. [20]. The input for-
mat for this model was 227 × 227 × 3, and it had 8 layers. Convolutional neural
network AlexNet was proposed, and it employed a residual connection with pReLu
activation. The 3D AlexNet approach utilized for the automated classification of
prostate cancer MRIs minimized the number of network layers and channels, which
in turn minimized the number of model parameters and shortened the training time.
Prostate cancer may be effectively diagnosed using the proposed 3D AlexNet net-
work, which achieved a 96.40% accuracy rate when classifying prostate tumors as
benign or malignant using MRI scans. At this point, we may conclude that AlexNet
can serve as a foundation for training on more extensive data sets or across many
modalities.
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The framework known as ”No-new-Net,” or nnU-Net, is a resilient and adaptable
system built around the fundamental principles of vanilla U-Nets in both two and
three dimensions [21]. The approach relies on a set of three U-Net models, which
exhibit a very simple structure and make minor adjustments to the original U-Net
architecture proposed by Ronneberger et al. (2015). The neural network designs of
nnU-architectures Net are dynamically adapted to match the specific geometry of the
input picture. Commencing with the network configurations that were previously
determined to be compatible with our technology, our objective was to construct
a network from its foundational elements. The input patches have dimensions of
256x256. There are a total of 42 batches. In the 2D U-Net architecture, the deepest
layers consist of 30 feature maps. It is worth noting that the number of feature maps
increases twofold with each downsampling step. Similar to its 2D counterpart, the
3D U-Net used 30 feature maps in the layers with the highest resolution. In this
particular instance, the original setup included a batch size of 2, with the input
patch size being 128x128x128. The authors proposed the use of the MSS U-Net
technique, as documented in [22], to segment kidneys and renal tumors via the anal-
ysis of CT images.In order to improve the effectiveness of the 3D U-training Net,
the suggested framework integrates both deep supervision and exponential logarith-
mic loss. The proposed network is derived from the well-recognized nnU-net design
for neural networks. The network architecture that was put forth had six discrete
layers. The depth of feature maps does not exceed an 8x8x8 grid. Concurrently, the
volume of the model was decreased by setting the fundamental kernel number to
30. In comparison to more complicated structures, which may have inflated models
and poor reproducibility, the advantages of this streamlined design include greater
repeatability and broader applicability of findings.

To efficiently execute both learning and inference from beginning to finish, the pro-
posed 3D DSN makes use of a fully convolutional architecture [11]. To overcome
possible optimization challenges during training, a deep supervision mechanism was
included; as a result, the suggested model was able to achieve a much quicker con-
vergence rate and stronger discriminating capabilities. The proposed DSN was built
considering complete three-dimensionality for optimal encapsulation of spatial in-
formation in the volumetric data. While the 3D DSN may provide high-quality
probability maps, simply thresholding the probabilities is not necessarily a reliable
technique to identify the contour of unclear areas. By using a contour refinement
CRF model, the segmentation results were made even more accurate.

In [23], it was proposed to automatically search for a 3D segmentation network
utilizing C2FNAS. The search was carried out in two phases: the first, a coarse
phase, concentrated on the topology of the network as a whole, or how each convo-
lution module is connected to other modules; the second, a fine phase, concentrated
on the micro-level and sought out operations in each cell by using the network’s
topology as a starting point. Due to the memory-intensive nature of 3D segmen-
tation, traditional NAS techniques often fall short when tasked with segmenting
3D medical images; nevertheless, the proposed C2FNAS automatically generates a
transferrable 3D segmentation network.

Tiled convolutional neural networks (CNNs) provide the computational flexibility

7



to learn different uniforms while also recognizing the value of basically minimizing
the number of absorbable boundaries. This study details an unaided pretraining
approach, based on a tweaked version of Topographic ICA, for learning how to
recognize and locate the various features of a geographical reference work (TICA).
TICA may be utilized effectively to pre-train Tiled CNNs utilizing local symmetry,
as demonstrated by [24] which showed how to group similar feature sets. The subse-
quent application of Tiled CNNs and their mention in the TICA study demonstrates
that these networks are indeed well-equipped to learn uniform representations and
feature pooling units that are resilient to scaling and rotation. Tiled CNNs were
able to take seriously the newly distributed findings on the NORB and CIFAR-10
datasets when they found them, improving order execution in the process. Further-
more, the aforementioned studies demonstrated the efficacy of CNNs in performing
several different types of acknowledgment tasks. Examples include mutual recogni-
tion of numbers from the MNIST dataset, recognition of objects from the NORB
dataset, and the establishment of shared vocabularies. The outcomes proved the
worth of reducing pressure throughout the order execution process. Pre-trained
networks with 2.5 million unlabeled pictures from the small image dataset revealed
a presentation increase from k = 1 to 3 and a plateau at k = 4. It was simple to
prepare the Tiled CNN using any unlabeled data that was already available. Based
on these results, it seems that mounting k = p is a viable option wherever there is
sufficient data to prevent overfitting. In addition, Tiled CNNs were presented as a
development of CNNs that support unsupervised pretraining and weight tiling.

The advancement of semantic segmentation in volumetric images was significantly
enhanced by the introduction of a novel Holistic Decomposition Convolution method,
as shown in the study conducted by the authors in [25]. This approach is effective
and cost-efficient. The implementation of the suggested approach resulted in a
substantial reduction in the amount of raw data necessary for further processing.
The latest approaches using three-dimensional convolutional neural networks (3D
CNNs) use a convolutional structure that involves downsampling and upsampling.
The downsampling technique used in this method has a notable spatial resolution,
and its primary objective is to gradually reduce the resolution of low-level features,
hence facilitating the enhancement of feature abstraction. As stated in the afore-
mentioned article, the diminishment of substantial contextual information arises due
to the utilization of small input patch sizes in these procedures. To get volumet-
ric dense prediction at the final output, the recommended approach utilizes HDC
(Hierarchical Dilated Convolutions) in conjunction with sub-sequential CNNs (Con-
volutional Neural Networks). The proposed network then recovers its full resolution
by using dense up-sampling convolution. The proposed approach shows enhanced
efficacy by the integration of HDC and DUC with 3D U-net, HighRes3DNet, and 3D
V-net. A high-dimensional convolution (HDC) was used as a cyclic down-shuffling
operator followed by a low-resolution convolution, while a downsampling and up-
sampling convolution (DUC) was developed as the inverse of the HDC. The HDC
algorithm generated a set of k feature maps. The performance of the 3D U-net was
shown to be superior when using a larger patch size. However, due to limitations in
GPU memory, we were constrained to a patch size of 200 × 200 × 40. The dimen-
sions of the patch for the 3D LP U-net were consistently set at 400x400x80. Various
shuffling factors were tested, and the optimal results were obtained with a shuffling
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factor of (4, 4, 2). The inclusion of a larger patch in the 3D LP-U-net model resulted
in significant benefits, as seen by the considerable flattening of the learning curves.
Despite having the fewest training parameters, the High-requirements ResNet ex-
hibited the largest demand on GPU RAM to accommodate intermediate outcomes.
The LP-U-net, V-net, U-net, and HighRes3DNet achieved average Dice Overlap
Coefficients (DOC) of 96.76 ± 0.92%, 94.01 ± 2.80%, 93.35 ± 3.21%, and 90.51
± 7.32%, respectively. The proximal femur diagnostic outcomes for the LP-U-net,
V-net, HighResNet, and 3D U-net models were reported as 98.14 ± 0.47 %, 96.89
± 0.85 %, 96.47 ± 1.54 %, and 89.99 ± 4.91 %, respectively. The findings from the
suggested network architecture indicate that HDC and DUC might be effectively
combined with other FCNs to get the highest level of performance in the task of
semantic segmentation.
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Chapter 3

Methodology

3.1 System Model
The suggested system uses the U-Net architecture to conduct brain MRI segmen-
tation, to identify tumor core, and total tumor, and to enhance tumor areas, all
of which are interconnected in some way. To achieve this, the U-net model neces-
sitates the construction of a mechanism that accepts three-dimensional images as
inputs, then the systematic extraction of required characteristics from those images,
followed by segmentation. One of the significant additions to our 3D U-Net is incor-
porating 3D Tiled Convolution into our model. 3D-TC significantly reduces GPU
memory for MRIs such as the one provided in the BraTs dataset. One of the changes
in our UNet is that we have added a Dense Upsampling Convolution layer before
the 1×1×1 convolution layer; hence resulting in an upsampled segmentation of the
given image with a higher patch size. After the segmentations have been performed
it is compared against ground truth labels for better system evaluation.
The proposed system and the 3D-TC approach are network agonistic meaning that
the U-Net model and its internal architecture can be replaced with other segmen-
tation architecture that poses a Fully connected network. Hence, this system will
allow for improved performance with different FCNs combined with the 3D-TC and
DUC layers. To evaluate the tumor ratio, the aforementioned system, which consists
of the U-Net model, will be employed to execute segmentations.
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Figure 3.1: The Work Flow of Proposed 3D-TC Brain Image Segmentation Model
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3.2 Model Architecture

3.2.1 CNN
A CNN is a kind of artificial neural network in machine learning that takes sensory
data as input. CNNs can fulfill a huge variety of purposes [15], such as IP, NLP,
and other specialized applications. CNNs are standardized multilayered perceptions
made up of multiple layers of artificial neurons. In most cases, a multilayered sense
is described using fully connected networks, and all the neuron in every layer is
coupled into each neuron in the next layer. As of late, the CNN [26] has been the
go-to tool for automatic picture identification and detection. Convolutional neural
networks (CNNs) are very productive, and image identification uses surprisingly
little computational resources. CNN is a straightforward approach that relies on
stacked layers of neurons to achieve detection.

Figure 3.2: CNNs Basic Architecture

3.2.2 FCN
Some higher-class models known as fully convolutional networks can tackle a wide
variety of pixel-wise tasks. [10] Instead of using thick layers as CNNs do, as dis-
cussed, FCNs employ 1× 1 convolutions to simulate the effectiveness of completely
17-connected layers, rather than dense layers as is the case with CNNs. In recent
times, many methods have been developed to significantly enhance the accuracy
of semantic segmentation, including the export of pre-trained classifier-weights, the
combination of multiple layers of representations, and learning the end-to-end on
whole images [27]. Primary architecture for FCNs often looks like the diagram
below, however, exact details may vary across models.

3.2.3 3D-U-net
Development and application of models vary greatly concerning both the nature of
the work and the intended audience. U-net was created specifically for semantic
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separating. Its architecture has earned it the name ”U-net.” In the area of semantic
segmentation, it remains one of the most well-liked full-pipe solutions[28] because of
its success in a variety of applications. Researchers, O. Ronneberger, first suggested
3D-U-Net in a 2013 publication [29]. Here at 3D-UNet, we provide a variant tailored
to Fabian I. et al. work on segmenting brain tumors. With its adaptability, 3D-
UNet can be used to solve a wide range of segmentation issues, and it enables the
continuous segmentation of 3D volumes with enhanced accuracy and performance.
The first half of the U-shaped route, representing a down-sampling process, is known
as the encoder path, while the second half, representing an up-sampling operation,
is known as the decoder path. Because the actions or routes are joined together,
we have regionalized data, which allows for semantic dissection. Here, We give
128 × 128 × 128 input pixels. The typical combination of 3D convolution and 3D
max pooling is carried out. Every layer in the architecture consists of two 3x3x3

Figure 3.3: Architecture

3D convolutions, a ReLU, a 2 × 2 × 2 3D max pooling with two stages in each
dimension, and a ReLU. In the mixed approach, each layer is constructed from an
up-convolution of 2×2×2 by steps of 2 in each dimension, two 3×3×3 convolutions,
and a ReLU on top of that. The core high-goal items discovered in the research path
are transferred to the synthesis path through direct route connections across layers
with similar objectives. A 1× 1× 1 convolution is used in the last layer further to
lower the ratio of result channels to total marks. Each ReLU activation begins with
a group standardization process.

3.2.4 Attention Gate
The attention U-Net, first proposed in [30], is an improvement upon the standard
U-Net design by including an attention gate mechanism inside the decoder. The
attention gate modifies the feature map produced by the encoder before the con-
catenation in the decoder block. It learns which parts of the encoder’s feature map
are crucial by examining the feature map of the previous decoder block. The feature
map from the encoder is multiplied by the attention gate’s estimated weights to get
this result. The weight values between 0 and 1 in a neural network represent the
amount of attention being paid to each pixel.
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Figure 3.4: The construction of the attention gate, the process involves the multi-
plication of input characteristics (xl) with attention weights (α). Initially, the input
features (xl) and the feature map from the appropriate encoder level are subjected
to a 1 × 1 × 1 convolution operation, followed by the computation of their sum.
Subsequently, a rectified linear unit (ReLU) activation function is used, followed by
an extra 1× 1× 1 convolution operation.

3.2.5 Residual Connection
Residual U-Net was proposed in [31] which took inspiration from the ResNet model
which proposed the residual connections to better mitigate the vanishing gradient
problem. When training a deep neural network, the addition of residual connections
improves gradient flow. The difference between the traditional convolution block
used in U-Net and the residual block used in residual U-Net is depicted in the figure
demonstrated below:

Figure 3.5: Distinctions between the building components of (a) a standard U-Net
and (b) a Residual U-Net. An instance normalization operation is represented by the
green IN, a Rectified Linear Unit activation by the blue ReLU, and a convolutional
layer’s 3× 3× 3 kernels by the orange Convolution block.

3.3 3D Tiled Convolution
The fundamental elements of 3D tiled convolution consist of low-resolution (LR)
convolutions and a periodic down shuffling operator. The design of 3D-TC is guided
by two goals that prioritize quick relevance to the supplied data. In the first phase,
the 3D-TC method aims to acquire a set of independent kernels inside a single
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layer, with dimensions sx× sy × sz. Here, sx, sy, and sz represent the variables that
consider the down-shuffling along with the three axes. In contrast to conventional
convolutions, which involve the sharing of convolutional kernels across all neurons
within a certain layer, this approach enables the use of separate kernels for individual
neurons. In contrast to a simple down-sampling procedure, the whole of the input
data is employed without consideration of the down-sampling factors. The use of
a three-dimensional tensor decomposition technique, known as 3D-TC, has promise
in efficiently reducing data size to conduct non-linear analysis. The anticipated
output dimensions of 3D-TC are expected to be (d · h · w) · k, where C represents
the number of input channels in the input volume and k represents the number of
output channels from the LR conv layer. Here, d, h, and w denote the dimensions of
the input and output, respectively. Before applying convolutions with a kernel size
of 3×3×3, we use a periodic down-shuffling operator on the input data to generate
C × (d× sx)(h× sy)(w × sz) channels of low-resolution (LR) feature maps.

Figure 3.6: 3D Tiled Convolution Schematic View

As demonstrated in Fig. 3.6, the 3D-TC technique comprises a PDS operation
followed by a low-resolution (LR) convolution. The periodic down-shuffling process
is implemented by using the pixel shuffle approach as described in the work of Shi
et al. (2016). In contrast to conventional convolutions, which involve the sharing
of kernels among all neurons in a given layer, the 3D tiled convolution approach
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distinguishes itself by seeking to learn separate kernels of dimensions sx × sy × sz
within a single conv layer. Here, sx, sy, and sz represent the down-shuffling factors
along the three spatial axes, respectively. Hence, regardless of the down-shuffling
factors used on the input data, all data will still be available for the next layer
to use; which differs from the traditional down-sampling techniques. Secondly, the
most significant benefit of the 3D-TC approach is the reduction of the data size for
subsequent processing that needs to be executed by the model. Assuming that the
high-resolution input data (IHR) is of size (d×sx)(h×sy)(w×sz)×C, the output of
3D-TC will have a size of d ·h ·w ·k, where C is the number of channels in the input
data. To obtain the k feature maps of size (d×h×w), we did not perform subsequent
convolution to the high-resolution image but instead used a periodic down shuffling
operation on the input to obtain the C × (sx × sy × sz) channels of low-resolution
feature maps. The following equations describe the 3D-TC mathematically.

TC(ILR,Wl, b1) = φ(Wl ∗ PDS(IHR) + bl) (3.1)

Here, the φ refers to a non-linear activation function; Wl, bl are the weights and
bias of last layer; PDS signifies the periodic-down-shuffling operation which is used
to rearrange the high-resolution space tensor (THR) from the shape of (d× sx)(h×
sy)(w × sz)× C into the low-resolution space tensor (TLR) which will be the shape
of (d · h · w)× (sx × sy × sz × C). The operation to get the TLR = PDS(THR) can
be represented as the following:

TLR(x
′, y′, z′, c′) = THR(x

′ · sx + bmod(c′, sx · C)/Cc,
y′ · sy + bmod(c′, sxsy · C)/(sx · C)c),

z′ · sz + bc′/(sxsy · C)c,
mod(c′, C))

(3.2)

In the given context, the variables x′, y′, and z′ represent the coordinates of the
voxels in the low-resolution space. Specifically, x′ takes values within the interval
[0, d − 1], y′ takes values within the interval [0, h − 1], z′ takes values within the
interval [0, w − 1] and c′ takes values within the interval [0, C · sx · sy · sz − 1].

3.4 Dense Upsampling Convolution
For a fully convolutional network that includes the downsample-upsample path,
dense prediction can be achieved on input volumes, we require the full resolution
at the output. To retrieve the full resolution in the output conventional methods
like the bilinear upsampling [32] or trilinear upsampling are not as effective due to
the upsampling parameters being not learnable. The deconvolution layer proposed
in [33] is an alternative to the conventional techniques but even the deconvolution
layer can easily introduce a problem known as “check board artifacts” which is
caused due to the uneven overlap between the neighboring receptive fields during
the upsampling procedure. Secondly, deconvolutional layers have a high processing
overhead. Upsampling is a computationally and resource-intensive process, which
may increase training durations and memory use, particularly for big feature maps.
In [34] an efficient sub-pixel convolution was introduced which consisted of LR space
convolution followed by the periodic up-shuffling operator; which was performed by
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the pixel shuffle technique. This was done to retrieve the HR space image from
a low-resolution counterpart also known as “super-resolution”. The mathematical
procedure of the ESPC is described below:

IHR = fn(ILR) = PUS(Wn ∗ fn−1(ILR) + bn) (3.3)

Here, PS rearranges elements of D×H ×W ×C ∗ (sx × sy × sz) tensor to a tensor
of shape sxD × syH × szW × C. Mathematically the periodic up-shuffle operation
can be broken down in the following way:

PUS(T )x,y,z,c = Tbx/sxc,by/syc,bz/szc,C·sz ·mod(z,sz)+C·sy ·mod(y,sy)+C·sx·mod(x,sx)+c (3.4)

The convolution operator WL thus has shape nL−1 × sx ∗ sy ∗ sz ∗C × kL × kL × kL;
where kL denotes kernel size.
The DUC workflow combines of and 3 × 3 × 3 convolution operation followed by
normalization and a ReLU function and then PS is finally applied to get the re-
sulting upsampled volume which can be used for the output prediction. We have
demonstrated the block diagram for the DUC below:

Figure 3.7: Dense Upsampling Convolution Schematic Diagram showcasing 3x up-
sampling of 5× 5 feature maps from (n− 1)th layer to 15× 15 output

3.5 Deep Supervision
Deep supervision [35] is a technique where loss functions are computed from dif-
ferent decoder levels for better gradient flow. In our experiment, we utilized two
more output heads marked by the sigmoid activation present in the second and third
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decoder levels in Fig. 2. To calculate the deep supervision loss, we obtained supple-
mentary ground truth labels with dimensions (96, 96, 64) and (64, 64, 32) by the
use of closest neighbor interpolation. This was done to align the form of the addi-
tional decoder-level outputs. The calculation of the final loss function is determined
by the labels gti and predictions pi for three specific output heads. These output
heads are labeled as i = 1, representing the last output head, i = 2, representing the
output head on the penultimate decoder level, and i = 3, representing the output
head before the penultimate decoder level.

fl(gt1, gt2, gt3, p1, p2, p3) = fl(gt1, p1) +
1

2
fl(gt2, p2) +

1

4
fl(gt3, p3) (3.5)
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Chapter 4

Implementation

4.1 Dataset Description
For our purpose we used the BraTS’20 MICCAI dataset [36]–[39]. This dataset
went through a lot to get to BraTS’20. Because some of the datasets had been
personally annotated by clinical specialists, there was a large discrepancy between
the datasets published by this source. In this respect, the BraTS’17-’20 had some
overlaps with the BRATS12-13 provided images and annotations. In addition, The
Cancer Imaging Archive datasets from BRATS14–16 were thrown out. One reason
is that the scan descriptions span both pre and post-operative times; another is
that methods that performed well in BRATS12 and 13 were used to annotate the
ground truth labels of the datasets. The initial Cancer Imaging Archive glioma
collections, which included 262 TCGA-GBM and 199 TCGA-LGG, were reportedly
radiologically evaluated and categorized by expert neurologists. Before surgery,
135 glioblastoma multiforme (GBM) and 108 glioblastoma (GBG) images from The
Cancer Imaging Archive were manually labeled for different glioma subregions.
Here, NIFTI-formatted “.nii.gz” files store multimodal scans. The dataset contains
369 and 125 well-arranged folders of annotated brain tumor images for training and
validation purposes. There are 5 “nii” files in each training image description T1
being native, T1Gd being post-contrast T1 weighted images, T2-weighted, Fluid
Attenuated Inversion Recovery volumes being T2-flair and seg. The “seg.nii” and
other validation files include all of these. These documents are generated by the
training model. The Cancer Imaging Archive is where you can find both the TCGA-
GBM and TCGA-LGG collections, as well as data sheets for name mapping and
survival statistics. In addition to the ages of the persons whose MRI scans were
shown, the file also included information regarding the patients’ resection status.
The data was compiled using clinical procedures and scanners from about 19 different
hospitals. The “.nii” files that contain our data are shown in a few examples below.
Images have X, Y, and Z dimensions of 240 by 240 by 155. Each voxel is 1 mm on
a side and 1 mm in volume. Training data were manually segmented by anything
from one to four raters using the same annotation process. The neuroradiologists
checked the labels to make sure they were accurate. According to the TMI articles
from 2012–2013 and the most recent summary studies from the same dataset, the
GD-enhancing tumor is labeled as ET (label 4), followed by the peritumoral edema
(label 2), and lastly the necrotic and non-enhancing tumor core (label 1). Inflated
to the same pixel count after skull removal, they are all co-rosters for the same
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anatomical templates.

Figure 4.1: BraTS 2020 example of training dataset scan and corresponding anno-
tations of different modalities. Each region is highlighted in a different color: red
for the NCR/NET, green for the ED, and yellow for the ET.

4.2 Data Preprocessing
For the image segmentation, we had to pre-process the BraTS’20 MICCAI data and
then use it. We received four types of data, or four distinct volumes of the same
area, in the dataset. There is t1, which is rather light and simple to notice; t1ce, the
t1-weighted image with strong contrast to make it visible; T2-weighted; and T2 flair,
all of which aid in bringing out the finer features of the structures. We were able to
get images in t1, t1ce, t2 and flair. T1 images have higher contrast and it allows us
to see more detail. As the outside of the images has some blank portion which is
unnecessary, we removed them to gain a clearer perspective for data training and a
more conducive physical environment.

4.2.1 Normalizing and Combining Channels
We had to normalize the intensity value of all 4 given channels flair, t1, t1ce, and
t2 so that it could be utilized in the model afterward. For this, we have used
MinMaxScaler from the sci-kit learn library. To normalize the 3D images we needed
to convert the channels into 1D by reshaping them and reconverting them back to
the original dimensions. To normalize there will be a size reduction, resulting in
an even more improved version of the raw data that was initially collected. The
information from the dataset indicated that the value of the pixels required to be
4, but because it was absent from the original labels, it was changed to 3. We
saved the numpy arrays (npy) from each folder and merged the t1, t2, and t1ce,
flair images into a single-multi channel volume to utilize as our 3D input for the
suggested model. The technique of merging the volumes should result in a greater
improvement in the data because employing individual volumes should have less of
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an impact. As a result, our dataset was completely prepared to be used for the
training and validation of our proposed model. Because fixed area cropping would
not provide a lossless solution in this case, we allowed our data to be cropped using
a bounding box approach. By using this technique, there were some parts of the
images that were missing and it limited the area of the outside box also it made
possible for us to eliminate those parts from the picture. As a result, we can say
that more pre-processing of the data is required to preserve all of the sections of
the data also the exception of the region of the data denoted by the label 0 and
the blank area of the data. This was done to ensure that we would not lose any of
the data obtained from any of the slices captured. As a direct consequence of this,
one of our objectives for the post-proposed pre-processing of the data is to acquire
a more precise segmentation validation.

4.2.2 Data Augmentation
Data augmentation is a method that may be efficiently used to expand the training
dataset and mitigate the issue of overfitting, which often arises during the training
process when models struggle to generalize when exposed to validation data. In our
experimentation, we used the following data augmentations:

1. Random biased crop: From the input volume of (4, 244, 244, 155) in
dimension, a patch of dimensions (4, 192, 192, 128) was randomly cropped.
This specific dimension of patch size was chosen due to the higher encoder
level of the deeper u-net that was used for evaluation. Along with that, with a
probability of 0.5 the patch used via the random crop ensured that there was
a significant amount of foreground voxels present in the cropped region.

2. Intensity scaling: Random intensity scaling was incorporated to enhance
the contrast of the input; here the intensity was scaled with a factor of 0.1
and with a probability of 1.0.

3. Flips: With a probability of 0.5, for all of the axes (x, y, z) independently,
the input volume was flipped along the specified axis.

4. Gaussian Noise: To improve the precision of feature extraction in the train-
ing phase, Gaussian noise was introduced to the LGG dataset with a probabil-
ity of 0.15. To increase the input volume, Gaussian noise is introduced to each
voxel. The noise is characterized by a mean of zero and a standard deviation
that is randomly selected from the range of values between 0 and 0.1.

5. Random zoom: The input volume was scaled to its original size using closest
neighbor interpolation, and a random value was selected uniformly from (1.0,
1.2) with a probability of 0.15. The same interpolation was used for the ground
truth.

6. Brightness: A uniformly selected random number between (0.5, 1) was mul-
tiplied by the voxels in the input volume with a probability of 0.15.

21



4.3 Model Implementation

4.3.1 3DTC U-Net
The implemented 3D-TC U-Net architecture can be distinguished into two distinct
parts i.e. the encoder path or downsampling path and the decoder or upsampling
path. The distinction in our 3D-TC U-Net model is the addition of a 3D Tiled
Convolution Block before the contracting path; which groups the feature maps of
the high-resolution input into distinct channels hence in essence down-shuffling the
input rather than downsampling it using conventional algorithms. The encoder
exhibits a modular configuration comprising convolutional blocks. In Fig. 4.2, it can
be observed that each block is comprised of two smaller blocks of transformations,
specifically denoted by the light purple and light gray colors. The initial smaller
block employs a conv layer with 3×3×3 kernels and a stride of 2×2×2 to decrease
the spatial dimensions of the input feature map by a factor of two. Subsequently,
instance normalization and ReLU activation are applied in the light purple block.
The subsequent convolution block has a similar setup except it has a stride 1×1×1
(light gray) which transforms the feature maps from the previous layer. Due to the
use of 192× 192× 128 patch size for our model, the feature map is transformed to
the size of 3 × 3 × 2 at the bottleneck of the U-Net model. The decoder modular
structure enhances the spatial dimensions by shrinking the feature map used by the
encoder path. Three smaller blocks make up the main block in the decoder. The
first block uses trilinear upsampling to make the feature map’s spatial dimensions
four times larger. Next, the encoder’s feature map from the same spatial level is
concatenated to the upsampled feature map, and both maps are changed by two
identical blocks including a convolutional layer with kernels of 3× 3× 3 and stride
1× 1× 1, instance normalization, and ReLU activation (light gray). In addition to
the decoder block, we use deep supervision to compute the loss functions from the
lower level of the decoder (the blue-colored sigmoid block depicts the used decoder
levels in Fig. 4.2).

Figure 4.2: Implemented 3D-TC Unet Model Architecture
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4.3.2 3DTC R2AU-Net
Inspired by the 2D implementation of the R2AU-Net we adopted the 3D Tiled
Convolution with a 3D variant of the R2AU-Net. Similar to the conventional U-Net
architecture this U-Net variant also consists of an encoder path and decoder path.
The encoding path of the 3D R2AU-Net can be broken into 4 distinct steps. To
enhance the model’s ability to integrate contextual information, each stage has a
recurrent residual convolutional unit. This unit consists of two convolutions with
a size of 3x3 and introduces recurrent connections to both convolutional layers. In
each recursive residual convolutional block, the feature maps undergo a reduction
in size by half and an increase in number by a factor of two. The design that has
been implemented involves the expansion of the RCL block to two consecutive time
steps, which are represented by T=2. The RCL architecture comprises a solitary
convolutional layer and two recurrent convolutional layers that are partitioned into
subsequences. Within the decoder route, the process of upsampling is executed via
the use of R2CL blocks, shown by their light purple color. Before concatenating the
output R2CL block and feature map from the encoder path; they are passed through
an attention gate which readjusts the output features. By producing a gating signal,
the attention module adjusts how much distant features matter. Without clipping
ROI areas across networks, attention gates progressively decrease feature responses
unrelated to background regions. To the final decoder output, DUC is applied to
get the segmentation output which is then fed through the sigmoid layer to receive
the required prediction probabilities.

Figure 4.3: Implemented 3D-TC R2AU-Net Model Architecture

4.3.3 3DTC-DUC U-Net
In our experiment, we investigated the effect of replacing the trilinear upsampling
done in our 3DTC U-Net with the Dense Upsampling Convolution (DUC) block.
In this modified U-Net we needed to change the number of feature maps generated
from each of the encoder levels. Instead of having 1024 feature maps the modified
U-Net has 384 feature maps of the dimensions 3× 3× 2 in its bottleneck. Although
we reduced the feature maps we maintained the number encoder-decoder level in
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our U-Net; hence the spatial dimensions are the same as the previous U-Net. This
change was introduced to reduce the model parameters; without this change, the
model would have 264M parameters due to the dense upsampling convolution having
to generate 1024× (2× 2× 2) features maps before passing it through the periodic
up-shuffling operator which will upsample spatial dimensions whilst reducing the
number of feature maps. Due to the number of feature maps being 384 at the
bottleneck, the model had 110M parameters which is a significant reduction. It
should be noted the DUC block applied before each of the sigmoid layers consists
of a convolution with a kernel size of 1× 1× 1(denoted by the light green block in
Fig. 4.4). This model also utilized the deep supervision technique to compute the
loss function at the training stage.

Figure 4.4: Implemented 3D-TC-DUC U-Net Model Architecture

4.4 Evaluation Metrics

4.4.1 Dice-coefficient (F1 Score)
In semantic segmentation, the dice coefficient is used to evaluate the performance
of a given model. Another term for it is the F1 score. The model’s predicted
mask is compared pixel-by-pixel with the mask image to determine their degree of
resemblance. To calculate it, divide the overall area of the two images by the total
area of the overlap between the two image’s segmentation. To do the math, we need
to know how much overlap there is between the raw image and the mask image, as
well as the total number of pixels in both images [40].

DSC =
2× |A ∩B|
|A|+ |B|

(4.1)

4.4.2 Hausdorff Distance
The Hausdorff distance, also known as the Hausdorff metric or Pompeii-Hausdorff
distance, is a mathematical concept used to quantify the separation between two
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subsets inside a metric space. The process converts a collection of non-empty com-
pact subsets of a metric space into a metric space of its own. In the context of set
theory, it may be said that two sets are near concerning the Hausdorff distance if
and only if every individual point included within either set is near at least one point
inside the other set. The Hausdorff distance refers to the maximum distance that an
adversary must go while selecting a point from one of two sets and then transitioning
to the other set. In essence, the quantity being referred to is the supremum of all
distances between a point in one set and the nearest point in the other set.

HD(P, T ) = max

(
max
p∈P

min
t∈T

d(p, t),max
t∈T

min
p∈P

d(t, p)

)
(4.2)

4.4.3 Sensitivity
The ability of a model to effectively detect positive instances or cases is quantified
by sensitivity, which is also referred to as the true positive rate or recall. The data
presented indicates the proportion of cases that are accurately identified as positive
and correctly classified as such by the model.

Sensitivity =
TP

TP + FN
(4.3)

4.4.4 Specificity
Specificity is a metric for evaluating a model’s efficacy in properly identifying neg-
ative instances. It’s a measure of how well the model does at identifying genuine
negative situations. The degree to which a model is specific in distinguishing in-
stances that do not hold the condition or event of interest reveals how well the model
avoids false alarms or false positives.

Specificity =
TN

TN + FP
(4.4)

The equations described above include the variables FP, TP, FN, and TN, which
correspond to the ideas of false positive, true positive, false negative, and true neg-
ative, respectively. Furthermore, the use of the Hausdorff distance is employed.
To ascertain the geographic discrepancy between the areas projected by the model
and the regions recognized as ground truth. To address the problem of imprecise
forecasts, the Hausdorff95 technique is used as a substitute for the maximum op-
eration. This technique entails using the 95th percentile instead. The symbols ”p”
and ”t” are used as representations for the prediction ”P” and the ground truth
”T,” correspondingly. The symbols d(p, t) and d(t, p) are used to represent the
Euclidean distance, which is a mathematical measure that measures the shortest
distance between two points, p and t, along a straight line.

4.4.5 Dice Loss
Traditionally, the average per-pixel loss has been calculated discretely using the
binary cross-entropy as a loss function when we don’t have information about the
properties of the surrounding pixels or whether or not they belong to the class
we’re interested in. This means that binary cross-entropy measures the minimum
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loss achievable while disregarding any surrounding information. Therefore, it would
be inefficient to use binary cross-entropy to track the prediction loss for semantic
segmentation. To prevent this from happening, we employed dice loss, which was
derived from the Dice Coefficient [41]. Because the dice-coefficient uses the overlap
between the predicted and ground truth pixels to determine similarities, the non-
overlapped area represents our model’s failure. The probability of losing a roll of
dice may be calculated as follows:

DiceLoss = 1−DiceCoefficient (4.5)

4.5 Experimental Setup
We utilized a PC equipped with a 3.6 GHz Intel(R) i7 CPU and a 32 GB RAM
NVIDIA RTX 3080 Ti graphics card to train the data. We use k=64 as the experi-
mentally determined number of 3D-TC output feature maps. Earlier, we indicated
that the resized data we gave included 192x192x128 voxels and 4 different channels.
To foretell how well the model will suit the predicted output, we employed 5-fold-
cross-validation which means in each of the folds there were 295 training and 74
validation samples. The models were validated after every 10 epochs and an exper-
iment for each of the models was run for 150 epochs. The models mentioned as well
as the 3DTC were implemented using the PyTorch framework. The 3DTC U-Net
model in our experimentation had 177M parameters due to its higher encoder depth
and 3DTC R2AU-Net had 64M parameters. For all of the model experimentation,
we used the Adam optimizer with an initial learning rate of 1e-4 and weight decay
of 1e-5.
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Chapter 5

Result and Analysis

5.1 Training Result
In this section, we will be discussing the calculated evaluation metrics during the
training of the various implemented models mentioned in Section 4.3. We evaluate
the training loss, accuracy, and dice score gain of individual tumor sub-regions. The
3DTC U-Net model is the only which was trained using a 5-fold cross-validation ap-
proach; hence each model generated will be individually represented in this section.
It should be worth noting that each of the models went through validation after 10
epochs which is presented in the figures down below. This was done to save the
experimentation time.

5.1.1 5-Fold 3DTC U-Net Model
From the Fig. 5.1 we can inspect the initial train loss, and validation loss on the first
epoch which was around 74% and 35% respectively for Fold-1. After the 150 epochs
completion of the training, the loss was reduced to 12.59% and 12.37%; additionally,
we received around 84.5%, 84.1%, 91.2%, and 78.6% mean dice, TC dice, WT dice,
ET dice respectively. In our experiment, we reached over 99% accuracy for both the
training and validation phases after the 10 epoch.
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Figure 5.1: Fold-1 Accuracy, Loss and Dice curves for the 3DTC U-Net Model

From the Fig. 5.2 we can inspect the initial train loss, and validation loss on the first
epoch which was around 70% and 30% respectively for Fold-2. After the 150 epochs
completion of the training, the loss was reduced to 14.13% and 13.71%; additionally,
we received around 82%, 81.9%, 89.3%, and 74.12% mean dice, TC dice, WT dice,
and ET dice respectively. In our experiment, we reached over 99% accuracy for both
the training and validation phases after the 10 epoch.
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Figure 5.2: Fold-2 Accuracy, Loss and Dice curves for the 3DTC U-Net Model

From the Fig. 5.3 we can inspect the initial train loss, and validation loss on the
first epoch which was around 70% and 30% respectively. After the 150 epochs
completion of the training, the loss was reduced to 12.29% and 12.17%; additionally,
we received around 84.46%, 84%, 91%, and 76.67% mean dice, TC dice, WT dice,
ET dice respectively. In our experiment, we reached over 99% accuracy for both the
training and validation phases after the 10 epoch.
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Figure 5.3: Fold-3 Accuracy, Loss and Dice curves for the 3DTC U-Net Model

From the Fig. 5.4 we can inspect the initial train loss, and validation loss on the
first epoch which was around 72% and 36% respectively. After the 150 epochs
completion of the training, the loss was reduced to 12.37% and 12.29%; additionally,
we received around 86.34%, 86.88%, 91%, and 81% mean dice, TC dice, WT dice,
ET dice respectively. In our experiment, we reached over 99% accuracy for both
the training and validation phases after the 10 epoch. From the Fig. 5.5 we can
inspect the initial train loss, and validation loss on the first epoch which was around
73% and 32% respectively. After the 150 epochs completion of the training, the
loss was reduced to 13.34% and 11.56%; additionally, we received around 84.12%,
84%, 90.25%, and 79% mean dice, TC dice, WT dice, ET dice respectively. In
our experiment, we reached over 99% accuracy for both the training and validation
phases after the 10 epoch.

5.1.2 3DTC R2AU-Net
For our 3DTC R2AU-Net model, we have trained it using the Fold-2 of the training
dataset. Hence 75% of the training dataset examples were included in the training
and 25% was included for the validation of the model. It should be worth noting that
due to the higher model complexity of the R2CL block present in this model, the
training time was increased. In Fig. 4.9 we have showcased the train loss, accuracy
and validation loss, and accuracy curves for the 150 epochs the model was trained
for. The dice curves of the R2AU-Net demonstrate the efficacy of the proposed
model on different sub-regions of the brain tumor. We attained 80.26% mean dice,
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Figure 5.4: Fold-4 Accuracy, Loss and Dice curves for the 3DTC U-Net Model

Figure 5.5: Fold-5 Accuracy, Loss and Dice curves for the 3DTC U-Net Model
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80.68% TC dice, 88.98% WT dice, and 73.18% ET dice after 150 epochs of training
of the model. Although we received over 99% accuracy using this model after 20
epochs; we were not able to exceed the performance of 3DTC U-Net in dice score.

5.1.3 3DTC DUC-U-Net
For the 3DTC DUC U-Net which replaced the decoder path with a dense upsampling
convolution block, we trained it on the Fold-2 of the training dataset of the BraTS
20 dataset to gauge the performance impact and further memory consumption ben-
efit. The model produced similar results to the 3DTC U-Net which is prominent
by looking at Fig. 4.10. This led us to believe that deep supervision helped reduce
the loss effectively hence maintaining significant results on the toughest fold of the
dataset. Additionally, the lower number of feature maps produced in the encoder
path and DUC incorporation in the decoder path helped reduce the memory con-
sumption by 2 times; where we only required 5.8GB memory for this model even
though the patch size was 192 × 192 × 128. For this model, we attained 82.20%
mean dice, 81.68% TC dice, 89.28% WT dice, and 74.18% ET dice scores. The final
training loss was 13.07% and the validation loss was 12.68% after 150 epochs.

Figure 5.6: Fold-1 Accuracy, Loss, and Dice curves for the 3DTC DUC-U-Net Model
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5.2 Effects of Shuffling Factor
In our experiment, we also examined the impact of various shuffling factors that can
be employed in the 3D tiled convolution. In this study, we investigated the potential
impact on memory consumption and evaluation metric when altering the shuffling
factors. To conduct our experiment, we utilized the 3DTC U-Net model, which had
demonstrated superior performance in a previous experiment. The dimensions of the
input patch were set to 192×192×128 for all the trained models. The comparisons
were conducted using fold 5 of the dataset. Table 4 presents the outcomes obtained
from various shuffle factors. Based on the data presented in the table, it can be ob-
served that the optimal outcome was achieved when employing the shuffling factors
of (2, 2, 2), primarily due to the increased inclusion of patches. Furthermore, it is
noteworthy that even when utilizing the most influential shuffling factors of (6, 6, 2),
the segmentation accuracy for all tumor subregions remains below one millimeter.
Furthermore, it is important to note that in the case of shuffling factors (4, 4, 2)
and (6, 6, 2), we had to decrease the encoder level by one. This adjustment was
necessary because the bottleneck would result in a dimension of 1 × 1 × 2, which
cannot be effectively upsampled using the decoder path. It is important to mention
that a substantial decrease in memory usage was observed when transitioning from
a shuffling factor of (2, 2, 2) to (4, 4, 2). Specifically, the memory consumption was
reduced from 9.4GB, which was required by the original model and shuffling factors,
to a mere 4.8 GB. Fig. 5.8 displays the segmentations that were predicted using
different shuffling factors.

Table 5.1: Result from different shuffling factors on the 3DTC U-Net

Shuffle Factor Dice Score (↑) Mean DiceWT TC ET
3DTC U-Net-(S-2,2,2) 0.9090 0.8688 0.8102 0.8634
3DTC U-Net-(S-3,3,2) 0.8993 0.8616 0.7811 0.8464
3DTC U-Net-(S-4,4,2) 0.8978 0.8569 0.7772 0.8454
3DTC U-Net-(S-6,6,2) 0.8836 0.8332 0.7235 0.8149
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Figure 5.7: Comparison of learning curves using different shuffle factors. The “3DTC
U-Net_S_X_Y_Z” denotes the results obtained from the 3DTC U-net with shuf-
fling factors of (sx, sy, sz).
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Figure 5.8: Qualitative comparison of the segmentation results from different shuf-
fling factors on 3DTC U-Net model. The first row denotes the ground truth and the
following rows are the predicted mask from (6, 6, 2), (4, 4, 2), (3, 3, 2), and (2, 2,
2) shuffling factors respectively.
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5.3 Experimental Results
In this section, we evaluated the performance using evaluation metrics mentioned in
section 4.3 on the BraTS 2020 validation dataset that consisted of 125 multimodal
brain MR. For our main model, we utilized 5-fold cross-validation and compared
the average dice score attained by the model and also inspected the 95 percentile
Hausdorff distance attained in each of the tumor subregions. In our experimentation,
we used a mean ensemble to predict the online validation dataset of the BraTS 2020
challenge; where the checkpoints stored from each of the fold’s runs were used. Due
to using the 3D-TC approach in our model, we were able to incorporate a larger
patch size of 192 × 192 × 128 as we did not face any GPU memory restrictions.
It should be noted without the 3D-TC approach the deeper U-Net model that has
been implemented requires 15GB of GPU memory even processing a patch size of
128 × 128 × 128. Along with the evaluation above metrics we also present the
parameters number and FLOPs measure of our models. It should be noted that
we did not use the DUC decoder-based model in our ensemble inference as it was
only trained on a single fold to gauge the memory reduction impact and compare
the performance impacts of taking such an approach. We will demonstrate the
impact of post-processing from online metrics that were provided by the evaluation
website to discuss the gain or loss of post-processing on the predicted output of the
ensemble model. For a qualitative analysis of our 3D-TC Deeper U- Net model, the

Table 5.2: Performance comparison of the three implemented models on Fold-2

Model Mean Dice Score (↑) Mean HD95 (↓)
3DTC U-Net 0.8260 7.1650

3DTC R2AU-Net 0.8026 9.0912
3DTC DUC U-Net 0.8220 8.1801

Table 5.3: Segmentation performance evaluation of 5-Fold using the Dice score
evaluation metric on the training set.

Model Dice Score (↑) Mean DiceWT TC ET
Fold-1 0.9108 0.8379 0.7838 0.8458
Fold-2 0.8976 0.8235 0.7409 0.8260
Fold-3 0.9122 0.8484 0.7684 0.8446
Fold-4 0.9025 0.8380 0.7867 0.8412
Fold-5 0.9090 0.8688 0.8102 0.8634

evaluation of the validation dataset of BraTS 2020 was compared against previous
SOTA(state-of-the-art) methods and conventional segmentation models such as the
3D-U-Net, and V-Net. We presented the performance comparison against the other
models in Table 5.4.
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Table 5.4: Performance comparison on BraTS 2020 validation set. Per case denote
the computational costs of segmenting a 3D patient case

Method Dice Score (%) ↑ HD95(mm) ↓ Flops
WT TC ET WT TC ET per case

3D U-Net [42] 84.11 79.06 68.76 13.366 13.607 50.983 1669.53
V-Net [1] 84.63 75.26 61.79 20.407 12.175 47.702 749.29

Deep V-Net [1] 86.11 77.90 68.97 14.499 16.153 43.518 -
Res U-Net [43] 82.46 76.47 71.63 12.337 13.105 37.422 407.37
Liu et al. [44] 88.23 80.12 76.37 6.680 6.490 21.390 -
Vu et al. [45] 90.55 82.67 77.17 4.990 8.630 27.040 -

Ghaffari et al.[46] 90.00 82.00 78.00 - - - -
TransU-Net [47] 89.46 78.37 78.42 5.968 12.840 12.851 1205.76
Swin-UNet [48] 89.34 77.60 78.95 7.855 14.594 11.005 250.88
TranBTS [49] 89.00 81.36 78.50 6.469 10.468 16.716 333.09

3DTC U-Net 90.76 83.39 74.77 4.371 6.308 27.179 303.59

5.4 Online Validation Dataset Results
The distribution of the Dice Co-efficient Score received from the online validation
dataset which consisted of 125 cases using the 3DTC-Unet Model is illustrated in
Fig. 5.9. We have also illustrated the Median, Standard deviation, 25th and 75th

percentile score which we received from the BraTS 20 challenge website. The values
attained have been demonstrated in Table. 5.5.

Table 5.5: Quantitative validation set results using the ensembled 3DTC-Unet Model

Dice Sensitivity
ET WT TC ET WT TC

Median 0.8491 0.9243 0.89091 0.862 0.943 0.927
25th quantile 0.74528 0.89256 0.78233 0.74863 0.89686 0.80602
75thquantile 0.89348 0.94731 0.93364 0.91387 0.97305 0.96768

StdDev 0.2719 0.06121 0.15678 0.2959 0.07853 0.17855

5.5 Segmented Image Analysis
In this section, we have showcased the predicted segmentation mask made by our
model. From Fig. 5.10 and the received result we can gauge that our model was able
to make proper inferences on the validation dataset. Our model attained the best
mean dice score of (ET: 0.96, WT: 0.97, TC: 0.97). Additionally, for some samples
small contrast-enhanced region was falsely predicted as an ET region by our model
affecting the ET dice and HD95 metric.
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Figure 5.9: Boxplot of the dice score distribution on the three tumor sub-regions on
BraTS 2020 validation dataset
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Figure 5.10: Prediction from the Ensembled 3DTC U-Net model on the online
validation dataset. The left to rig!htbp column in each row shows the T1, FLAIR,
and corresponding annotation respectively.
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Chapter 6

Conclusion

To enhance semantic segmentation systems, this research presents a straightforward
3D tiled convolution. The input will first be subjected to a periodic down-shuffling
operation before being subjected to the standard 3D convolution in the proposed
3D-TC method. Directly applied to the input data, it benefits from a smaller data
size for sub-sequential processing without losing any of the information contained
within due to down-shuffling. This study aims to apply the 3D-TC on the input data
for reducing the file size. Since there is numerous semantic segmentation done using
FCNs we look to address the memory constraint issue in this study and subsequently
the performance of the architecture improve is improved. This study will evaluate
the network agnostic property 3d tiled convolution & utilize it with other FCNs.

6.1 Future Work
In our research, we employed the U-Net model with the standard VGG-16 back-
bone non-pretrained backbone which was incorporated with 3D Tiled Convolution
and Dense upsampling convolution. In the future, we look to try out the 3DTC
approach with other promising models such as DeeplabV3+, BGNet, PCNet, and
modern 3D semantic segmentation architectures which currently have complex layer
configurations and high GPU memory demand. Along with this, we also want to
monitor the effects of different shuffling factors and evaluate the metrics attained for
a better summarization of the 3DTC approach. In our experiment we only exploited
the 3DTC-based architecture for brain tumor segmentation; in the future, we want
to use the 3DTC approach with other biomedical segmentation challenges to reduce
computational demand, and time required while maintaining the state-of-the-art
performance.
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