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Abstract
Bangla is one of the most popular languages in the world and more than 210 Mil-
lion people use it as their first or second language. The literature of Bangla has a
rich history and dates back thousands of years. However, Bangla characters have a
compound structure; some contain more than one simple character to form a sin-
gle compound character. There is a lot of work on character recognition but the
structure of the compound characters makes the detection of Bangla Compound
Characters a difficult task. The existing method on Bangla compound characters
uses a list of compound characters as the dataset, trains models on the whole im-
age, and detects the characters. Using this method on handwritten characters, the
accuracy decreases when the characters are slightly different from the train images
or the characters consist of two different simple characters that are not in the train
images. To overcome this problem, our research focus is to detect character type i.e.
simple or compound using VGG 16 architecture and YOLO, and if it is a compound
character, it can detect the underlying simple characters inside the compound char-
acters. To conduct our research, we created a new Bengali Handwritten character
dataset called “BanglaBorno” as the existing datasets had some limitations in the
quantity of compound characters or the quality of the images.

Keywords: Bangla Text Recognition, Compound Characters, VGG16 architecture,
YOLOv8 models, BanglaBorno.
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Chapter 1

Introduction

Handwritten character recognition has emerged as a prominent interest due to its
broad range of applications [1]. For thousands of years, writing by hand has been the
most convenient method of storing information. However, digital copies of handwrit-
ten images are also frequently used to store information in the twenty-first century.
Recognizing handwritten forms, understanding different fonts used in posters and
newspapers, translating languages, and many other fields all require the ability to
create digital copies of handwritten images.
Recognizing handwritten characters is a very fragile technique as the fonts and sizes
of each character vary depending on the person’s handwriting style. So it is very
difficult to get a 100% accuracy result [2].
The number of works that have been done on English handwritten character recog-
nition and other similar languages is very overwhelming, however, the number is
very unpleasant in Bangla. Even though Bangla is the seventh most spoken lan-
guage in the world it is a very disappointing fact that there has not been enough
research done on recognizing Bangla handwritten characters [3]. Bangla has very en-
riched characters and some characters are a combination of two or more characters.
This makes the task of recognizing handwritten Bangla characters difficult. Con-
volutional Neural Network (CNN), Support Vector Machine (SVM), Deep neural
network, Deep learning, Machine learning, Multilayer Perceptron (MLP), Modified
Quadratic Discriminant Function (MQDF), a combination of deep convolutional
neural network with Bidirectional long short-term memory (CNN-BiLSTM) and
many more methods were used to detect handwritten Bangla characters.
Furthermore, all the research that has been done on detecting handwritten Bangla
compound characters, detects it by using the whole image. This means that they
consider each compound character as a whole new character. But none of the Bengali
handwritten character datasets contain all the compound characters in them as
the combinations of simple characters to form up a compound character has no
fixed amount and as a result, there have not been any fixed numbers of compound
characters yet. However, when we detect which simple characters are in a compound
character, it is not a very complex task to predict the compound character inside it.
So we came up with the approach to detect the underlying simple characters in the
compound character so that it can work for every compound character even if it is
not included in the training dataset.
In this paper, we have tried to overcome the limitations of Bangla handwritten basic
and compound character detection and detect both simple and compound Bangla
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handwritten characters. We have also attempted to detect the underlying simple
characters in a compound character.

1.1 Research Problem
English, Chinese, and some other languages have a very remarkable number of re-
searches on recognizing handwritten characters and the success rates are outstand-
ing. This successful research on English and other languages have made text-to-
speech and many more things related to text detection possible. On the other hand,
the Bangla language is still not there in the text recognition field like English and
other languages because of its obstacles in detecting complex characters.
The key problem in recognizing handwritten Bangla characters is the compound
characters because of its cursive nature [4]. Again some compound characters are
almost identical to each other which makes the process very difficult. These types
of characters can only be recognized by short straight lines, circular curves etc.
[5]. The compound characters become more complex to recognize by the increasing
number of basic character combinations [6].
Furthermore, some handwritten characters do not resemble their printed characters
and this also makes the recognition process tough [6]. Also, each person has a
unique style of writing, and the shape of the characters becomes different. This
means that handwritten characters add a lot of variability in the characters which
makes recognition problems challenging [7].
Though there is some research on detecting Bangla handwritten compound charac-
ters, however, no research has been done on recognizing the simple characters by
which the compound character is formed. All the research done until now has only
detected the compound characters as the whole character. According to Das (2014)
[8] Bangla script has more than 300 compound characters and none of the existing
datasets contain all of the compound characters. This creates a challenge for the
existing models to identify a compound character that is not included in the train-
ing dataset. So it is one of the significant problems of this research that no work of
segmentation for Bangla compound characters has been done yet.
To eliminate this problem we took a new approach of segmenting the compound
character and identifying the underlying simple character. This method will help
the model to detect a compound character that is not present in the dataset. For
instance, if a compound character “¥” does not exist in a training dataset but the
dataset has “�” and “Ş”. We aim to train our model by segmenting the compound
character so that it can detect the “ক” and “ল” from “¥” by using its knowledge
from “�” and “Ş”. By using segmentation, we can overcome the disadvantage of not
having all the compound characters in the training set.
Keeping these problems in mind, the question implies if it is possible to separate
the underlying simple characters from the handwritten Bangla compound characters
accurately and also will it be able to segment the compound characters into simple
characters precisely?
In this research, we aim to answer the above question by studying and exploring the
character recognition field.
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1.2 Research Objectives
The research aims to develop a system that can detect Bangla Compound characters
with better accuracy. The objectives of this research are:

• To improve the current state of Bangla OCR using segmentation techniques

• To create a new Bengali Handwritten Character Dataset BanglaBorno with
a more enriched amount of compound characters.

• To deeply understand the VGG-16, and YOLO Models and use them in Bangla
OCR

• To detect Bangla Compound characters including simple characters

• Detect characters from handwritten texts with different handwriting styles

• Detect the underlying simple characters from the compound characters accu-
rately

1.3 Thesis Structure
We have followed the following structure for each step in our research

• Chapter 1: Handwritten Character recognition has lots of applications in vari-
ous fields and there are lots of work on Bangla Compound character recognition
but there are so many constraints and no work on segmentation has been done
yet.

• Chapter 2: In this section, we have explored and analyzed all the existing work
on Bangla handwritten character recognition and understood their shortcom-
ings and solutions. We have explored different models that we will be using
in our research to find out the ways of optimizing our test and training sets.

• Chapter 3: In this section, we have explored all the available datasets on
Bangla characters and analyzed them to find out the limitations and lastly
proposed our own dataset BanglaBorno.

• Chapter 4: In this chapter, we have explored different models that we will be
using in our research to find out the ways of optimizing our test and training
sets. We have processed our dataset in various ways to make it suitable for
training. We have used augmentation, thresholding, annotation, and other
techniques. After that, we trained and tested the models.

• Chapter 5: In this section, we have analyzed our results, compared the ac-
curacy between different models, and found out our limitations and improve-
ments.

• Chapter 6: Finally we have concluded our works and explained the future
works that can be done further in this research.
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Chapter 2

Literature Review

2.1 Existing Works
At present, there is a lot of work going on to detect handwritten characters from im-
ages. For simple languages like English, we have achieved great accuracy in detecting
the language. However, there have been very few works on the Bangla language for
handwriting recognition. The most difficult part about detecting the handwritten
Bangla language is the compound characters in it. Compound characters are made
of two or more characters together and it is hard for the computer to recognize these
characters.
The technique that is used to transform a picture of a text character into a text
format that can be used for data processing is known as optical character recognition
(OCR). Using this process, there exists a great deal of work for character recognition.
However, when it comes to bad-quality images of text characters, the accuracy falls
as it becomes difficult to understand the text. Therefore, in a work [9], the authors
introduced a technique to increase the accuracy of the recognition using a Deep
Neural Network. They implemented a deep neural network, which is a pre-trained
V3 model with the application of the Transfer learning concept. Transfer learning
accelerates the training speed and improves character recognition precision. The
rate of inaccuracy in picture text recognition was lowered by around 21.5% with the
introduction of this improved OCR.
In another research, the study demonstrates the handwritten Telugu compound
character Guninthalu (Muppalaneni, 2020) [10]. In their Convolutional, Pooling and
Fully connected layer approach they got 79.61% test accuracy and 96.13% training
accuracy. They have created a Convolutional Neural Network-based machine learn-
ing model for Telugu Handwritten Gunithalu. Even though they have gained high
accuracy, their model could not differentiate between two compound characters.
The letter samples (Kru) wass projected as (Ku) and (Ko) are predicted as (Ku)
(Kaa). They have experimented with several structures to improve accuracy, but it
was difficult to improve accuracy with a tiny dataset because each letter was similar
to the others.
In an additional research on Marathi Compound Characters, a unique segmentation
method for handwritten Marathi compound letters is proposed (Golait & Malik,
2016) [11]. The proposed method used the idea of Minutiae extraction from finger-
prints to split apart complex characters. Basically, Morphological processes, such
as erosion and dilation, serve to create the segments. To separate a single character
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from a string of compound ones, we look for ends and forks. The proposed method
additionally made use of the hit-or-miss transform morphological operation to pin-
point the endpoint and bifurcation point. Based on the experimental findings, we
can confidently pinpoint termination and bifurcation points with a 90% degree of
accuracy.
In a research, Deep Convolutional Neural Network is used on all the Bengali char-
acters (Purkaystha et al, 2017) [12]. It was applied on the BanglaLekha-Isolated
dataset. They have achieved 98.66% accuracy on Bangla digits, 94.99% on Bangla
vowels, 91.60% accuracy on compound letters, 91.23% accuracy on Bangla alpha-
bets. The average accuracy of the Bangla characters is 89.93% in their research.
The accuracy of compound characters is very low compared to other works. Again
here the author mentioned that their models make some errors in generating the
output different from their label.
In another work, MLP and SVM classifiers were used to recognize Bangla basic
and compound handwritten characters (Das et al, 2010) [13]. Here, the authors
have used shadow features, longest run features and quad-tree based features to
recognize the characters. In this research, authors have gained 79.25% accuracy
using MLP and 80.510% accuracy using SVM. In the paper, the author showed a
figure of misclassified characters by the approached method.
In a paper, Hasan et al. (2019) [14] have approached with deep convolutional neural
network combined with Bi-directional short-term memory. They combined these two
methods to identify the dependencies in images and they believed that this would
give a better accuracy rate than the other models. CMATERDB 3.1.3.3 dataset
was used in the paper and to improve the accuracy the authors used a preprocessing
method on the dataset. The proposed method gave 98.50% test accuracy. However,
the hybrid model sometimes has a hard time recognizing the similarly structured
characters and misclassifies them.
In another research, Kibria et al. (2020) [15] used the SVM classifier for handwritten
character detection and recognition. Here, they utilized CMATERdb 3.1.3.3 for
the dataset, which consists of 55,278 Bangla compound character gray-level images
grouped into 199 pattern shapes and 171 classes. Longest Run Feature based on
CG based Partitioning, Histogram of oriented gradients (HOG) feature and Diagonal
Feature, are the three feature sets which were integrated to estimate the recognition
performance on the chosen dataset. Their proposed approach was able to obtain
89.43% precision, 88.73% recall and 88.89% F1 score.
In a work, Roy et al (2017) [7] applied a revolutionary deep learning methodol-
ogy and contrasted with the traditional methodologies of Support Vector Machines
(SVM) and Deep Convolutional Neural Nets (DCNNs). The authors performed the
training to DCNN layer-by-layer. The procedure was implemented on the CMA-
TERdb 3.1.3.3 dataset. Using the 8520 test samples of the dataset and a total of
34439 training samples, which are image samples, they achieved recognition accu-
racy of 90.33%. Furthermore, in order to improve the convergence rate, they applied
the RMSProp algorithm, which produced successful results. The proposed method
misclassifies the highly structured compound characters which have at least one
similar basic character in it.
In another research by Fardous & Afroge (2019) [16], CMATERdb 3.1.3.3 dataset
was used. The authors have used the Convolutional Neural network Model using
convolutional layers and fully connected layers. This method has gained an average
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accuracy of 95.5%. However, it’s unfortunate that the method fails to classify some
characters and misrecognizes them as other characters.
In another research by Pal et al (2007) [17] worked on Bangla compound characters
using Modified Quadratic Discriminant Function (MQDF). Their research uses the
information of the direction that they get from the arc tangent of the gradient. The
authors have used gray level images and applied 2x2 filtering 4 times on that. A
non linear size normalization and Roberts filter is used on the images. Arc tangent
of the gradient is converted into 32 directions and its strength gradient is calculated
in each direction. They have used 20,543 samples and gained 85.90% accuracy
using 5-fold cross validation technique. The drawback of this research is that the
proposed method cannot recognize the actual printed characters of the handwritten
characters. It generates some similar but not the same compound printed characters
which is actually an error.
The authors [18] have used DCNN with Dropout and ELU in the CMATERdb
3.1.3.3 dataset and gained an accuracy of 93.68%. But even though the accuracy
is large, in some cases the algorithm misclassifies in the testing phase. The authors
think that the reason behind this is the small size of the dataset.

2.2 Model Architectures
As there have been few studies on the recognition of Bangla compound characters,
optical character recognition (OCR) continues to be a difficult task. Deep learning
has proven to be a highly effective technology due to its ability to process vast
quantities of data. Therefore, we employed a number of deep learning approaches
and models on a dataset to determine which model provides the best results.

2.2.1 VGG-16 Architecture
VGG16, also known as Visual Geometry Group 16, a convolutional neural network, is
named due to its architecture which consists of 16 layers proposed by K. Simonyan
and A. Zisserman from Oxford University. So the 16 in VGG16 indicates its 16
layers architecture. This 16 layered model contains 138 million parameters which
is a very large model compared to today’s standard [19]. The main attraction of
the VGGNet16 architecture lies in its inherent simplicity. Among the 16 layers
of VGG16 architecture 13 layers are convolutional layers and the other remaining
layers are fully connected layers.

Figure 2.1: VGG-16 Model Architecture
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VGG16 architecture is used widely for image processing, recognition and classifi-
cation work. The VGG16 architecture is designed to process image inputs with
dimensions of 224×224. The convolutional layers of VGG16 architecture use con-
volutional filters of the size of 3×3, which is the smallest possible size. To linearly
transform the input the VGG architecture also incorporates a 1×1 convolutional
filter. This makes sure that the feature maps of spatial dimensions do not change
following each convolutional layer. The hidden layers increase both training time
and memory usage while providing only marginal enhancements to the overall ac-
curacy. Furthermore, a pooling layer following several convolutional layers helps to
reduce the spatial dimensionality and the number of parameters of the feature maps
created by each convolution step while making sure of getting the maximum salient
information.

2.2.2 YOLOv8 Architecture
YOLO, You Only Look Once is a very fast, accurate but simple object detection
model developed in 2015 by Joseph Redmon of the University of Washington. In
Yolo, A single convolutional network is responsible for continuously predicting mul-
tiple bounding boxes and class probabilities for those boxes. YOLO resizes the input
images to 448x448 and then runs a single convolutional network on the image and
finally thresholds the detections by the model’s confidence. Yolo is very fast, the
base network runs at 45 frames per second which makes it perfect for processing
real-time streaming video with less than 25 milliseconds of latency and more than
twice the mean average precision of other real-time systems.
Unlike other detection systems that use classifiers to perform detection, YOLO
considers object detection as a single regression problem and as the name suggests
You Only Look Once to predict the objects from an image which makes it fast. The
Yolo algorithm mainly works on three techniques- 1. Grid Blocks, 2. Bounding Box
Regression, 3. Intersection Over Union (IOU).
First, the image is divided into grids, 7x7 in the original YOLO Algorithm. The
grid cells are of equal dimensions and every grid cell will detect objects that appear
within them. The object’s center-appearing cell is responsible for detecting it on
that particular cell.
Secondly, For each cell in the image, YOLO predicts bounding box coordinates that
highlight an object in an image and the confidence scores.
The confidence score tells the possibility of having an object in that cell and the
accuracy of detection. YOLO only chooses one predicted bounding box using the
confidence scores and predicts conditional probabilities for each class.
Finally, The first step of filtering is done through the Intersection over the Union
threshold. In YOLO, the filtering of box predictions by confidence level is done
manually with a default 0.5 threshold value.
IoU calculates the overlap of the two bounding boxes divided by their union to
provide an accurate estimate. The IoU value ranges from 0 to 1 where 0 means no
overlap between boxes and 1 represents complete overlap. It is essential to determine
if the predicted object is a true positive or a false positive.
The most recent version of YOLO was released by Ultralytics in January 2023.
YOLOv8 provides five different scaled versions from YOLOv8n (nano) to YOLOv8x
(extra-large), and supports object detection, segmentation, pose estimation, track-

7



Figure 2.2: Intersection over union

ing, and classification. YOLOv8’s architecture is similar to YOLOv5 but more ad-
vanced. Some changes are made in the characteristics of CSPLayer, which is called
the C2f module in v8, to combine high-level features with contextual information
for improved detection accuracy. It employs an anchor-free model with a decoupled
head, enabling independent processing of objectness, classification, and regression
tasks for enhanced accuracy while the output layer uses the sigmoid function for
objectness score (detection probability) and softmax for class probabilities. For
bounding box loss YOLOv8 uses CIoU and DFL loss functions and for classification
loss, it uses binary cross-entropy, which provides improved object detection, espe-
cially for smaller objects. Additionally, YOLOv8 offers a semantic segmentation
model called YOLOv8-Seg, which uses CSPDarknet53 feature extractor and C2f
module, which achieves state-of-the-art results for object detection and semantic
segmentation, maintaining high speed and efficiency [20].
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Chapter 3

Dataset Description

3.1 Existing Datasets
3.1.1 CMATERdb 3.1.3.3 Dataset
The CMATERdb 3.1.3.3 dataset [21] is a comprehensive collection of handwritten
characters commonly used in the Bengali script created by the Center for Micro-
processor Application for Training Education and Research, Computer Science and
Engineering Department, Jadavpur University, Kolkata, India. It is composed of
a vast collection of 55,279 images and encompasses a total of 171 unique classes.
The dataset displays a range of diverse characteristics that make it suitable for the
creation and evaluation of models related to the recognition of compound characters.

Figure 3.1: CMATERdb 3.1.3.3 Dataset Barchart

3.1.2 BanglaLekha-Isolated Dataset
BanglaLekha-Isolated is one of the cleanest Bengali handwritten character datasets
available currently. This dataset was created by the Computer Science and Engineer-
ing Department of the University of Liberal Arts, Bangladesh, and the University of
Asia Pacific, Bangladesh (Biswas, 2017)[22]. It was also funded by the ICT Division
of the Ministry of ICT, Bangladesh. BanglaLekha-Isolated consists of 84 characters
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of which 50 are basic characters, 10 are numeral characters, and 24 are compound
characters. This dataset contains more than 1900 images for each character and
contains a variety of handwriting in it. It also stored the age, gender, district, etc.
of people while collecting the data so that research based on these characteristics
can be done.

Figure 3.2: BanglaLekha-Isolated Dataset Barchart

3.1.3 MatriVasha: Compound Character Dataset
The “MatriVasha: compound character dataset” is an extensive compilation of
Bangla handwritten character images, which includes both simple and compound
characters [23]. This Bangla handwritten character dataset’s usefulness is not lim-
ited to only handwritten character recognition. There are several other applications
as well, such as writer gender prediction, age prediction and location identification.
There are a total of 122 different characters in the dataset. Among them, 50 char-
acters are basic characters of Bangla language, 10 characters are Bangla numeral
characters, 52 compound characters and 10 are Bangla Sharachinno. Each unique
character has a unique class for them, with more than 1200 images in each class
and the collection is recorded in jpg format. Moreover, each image in the dataset is
stored with a unique name which includes comprehensive details of the writer who
wrote the character such as gender, age, location and occupation. This dataset is
an invaluable resource in the field of Bangla handwriting recognition.
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Figure 3.3: MatriVasha: Compound Character Dataset Barchart

3.2 Limitations of Existing Datasets
3.2.1 CMATERdb 3.1.3.3 Dataset Limitations
The CMATERdb 3.1.3.3 dataset is very popular and large. Though the CMA-
TERdb 3.1.3.3 dataset provides a diverse collection of compound characters that
are frequently utilized in the Bengali language, there are some flaws in the dataset
which was creating an obstacle in achieving efficient accuracy. Many of the images
in the dataset are problematic which made our job very difficult. Some images were
very vague and some letters were unclear which made it hard for the models to
learn. Again, some parts of the character were missing from the images which made
the accuracy lower. Furthermore, as the dimensions of the images are very low, it
is simply too blurry and unsuitable for the dataset to be used for the YOLO object
detection model.

3.2.2 BanglaLekha-Isolated Dataset Limitations
Though Bangla-Lekha-Isolated contains a variety of handwriting for each charac-
ter, it contains only 24 compound characters. Whereas, the number of compound
characters used in the Bengali Language is far greater than that. This makes the
ML/DL models trained on this dataset vulnerable to new compound characters that
are not available in this dataset.
Another problem is, that some of the handwritten characters are incorrect and some
of the characters are unclear in this dataset which may cause the models’ lower
accuracy. Some of the examples are shown in Table 3.1.
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Table 3.1: Incorrect images inside BanglaLekha-Isolated Dataset

The above characters have no existence in the Bengali language and they were the
result of incorrect handwriting or pre-processing and these characters may cause
errors in the prediction models.

3.2.3 MatriVasha: Compound Character Dataset Limita-
tions

The “MatriVasha: compound character dataset” has several applications in the field
of nlp but the number of compound characters is very low. The dataset only has 52
compound characters, which can be called its biggest disadvantage as the number of
compound characters in Bangla language is more than 3 or 4 times of this number.
As a result, the machine will be unable to detect a large number of compound
characters. Again, even if it has a great number of images in each class, there
are also a good number of images that are unrecognizable. There are also some
images that are misplaced. Moreover, different images in this dataset have different
dimensions, and they are all of very low resolution, which makes them unsuitable
for annotation and YOLO object detection.

12



Table 3.2: Incorrect images inside MatriVasha: Compound Character Dataset

3.2.4 Solution
To address these issues, we decided to create a new dataset. By creating this new
dataset we aimed to overcome the flaws of CMATERdb 3.1.3.3 dataset and train
our model with more clear and precise sample images.

3.3 Proposed Dataset
3.3.1 BanglaBorno Dataset
BanglaBorno Handwritten Bangla Characters dataset is a new dataset created
by the authors of this research paper. The motivation behind the construction of
BanglaBorno is to overcome the flaws that CMATERdb 3.1.3.3 dataset contains. We
achieved this goal by collecting clear handwritten samples. BanglaBorno contains 50
simple characters and 162 compound characters. This led us in achieving improved
accuracy results through VGG-16 architecture and YOLO classification and object
detection.

3.3.2 Database Creation and Label Assignment for BanglaBorno
Dataset

As the amount of compound characters in Bangla are huge, creating the database
of compound characters was a challenging task. Initially, we stored the 50 simple
characters labeled from 1-50 and after that, we started storing the compound char-
acters. After storing the most common compound characters used in Bangla, the
amount of compound characters was not very large. Then we started analyzing the
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compound characters in the existing dataset and stored the ones which are used
in Bangla language. After analyzing the existing datasets, we were left with 162
compound characters and 50 simple characters. Label 51-226 were the compound
characters. A part of our dataset is shown below for better understanding.

Label Character
90 Ɔ
91 Õ
92 Ĉ
93 Ŏ
94 Ć
95 ¨
96 ů
97 ı
98 ŷ
99 Ƒ

Table 3.3: Part of the database of BanglaBorno dataset

3.3.3 Data Collection for BanglaBorno
In the process of assembling our dataset, we initiated by creating a structured tem-
plate using Adobe Illustrator software. This template consisted of multiple slots
which were demarcated by black borders, arranged in multiple rows and columns.
We utilized these borders to clearly define boundaries for each character so that the
volunteers can easily understand how much space they have to write a character and
also based on these boundaries we will split the a4 paper and have many images of
a character. Subsequently, we saved this Illustrator file as a PDF of A4-sized paper.
The next step involved printing multiple copies of this PDF template, which we
distributed to students at Brac University. We requested the students who were
our coursemates in different courses to provide handwriting samples by writing a
specific character within each designated slot on the paper. To ensure clarity and
organization, we labeled each sheet according to our database to indicate that only
one particular character should be written on that page. This process was replicated
for various characters, thereby yielding a diverse range of handwriting styles.
Also the assistance by our classmates, who helped by writing the assigned characters
on multiple papers, allowed us to collect a wide array of handwriting samples for
each character. Consequently, this procedure enabled us to gather a substantial
amount of data for our dataset.
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Blank Handwritings

Table 3.4: Structured template for writing character

The dataset has the potential to give better performance for researchers and develop-
ers seeking to train and evaluate models designed to recognize handwritten Bengali
compound characters who faced similar problems like us while using CMATERdb
3.1.3.3 dataset. The dataset’s image quality, equal distribution and annotated la-
bels make it a valuable resource for enhancing the current level of knowledge in this
field. The aforementioned enables the creation of precise and resilient mechanisms
for identifying compound characters in practical Bengali handwriting situations.

3.3.4 BanglaBorno Preprocessing
Once we had gathered the data, our next step was data processing. We secured
permission from our supervisor, Mr. MIH, to utilize the scanner located on the 8th
floor of Brac University’s UB8 building. Given the large number of samples we had
collected, we conducted scanning in multiple sessions and generated PDF files.
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Table 3.5: Samples of the Collected Data

These PDF files were then transferred to our personal computers. To facilitate
further processing, we initially converted the PDFs into JPG format. Subsequently,
we designed a method to segment each page into individual images, taking into
account the multiple rows and columns of characters present on each page.
After analyzing the images, we found that certain letters are written with very light
and thin strokes. In order to overcome these challenges, we were going to need
to preprocess our dataset and come up with a workaround. Because some of the
photographs lacked clarity, we needed to make the pictures or the pixels darker.
We came up with a method of binarization that is not only efficient but also very
speedy.
To ensure uniformity and enhance the clarity of the dataset, we transformed black
pixels to white and vice versa, effectively segregating the various handwriting styles
for each character into separate images. For that, we used a thresholding method
to convert the white pixels to black and the black pixels to white. First, the pixel
values greater than 200 are converted into 255 and lower than 200 are all converted
to 0. In this method, if a pixel is already quite black, it will become darker, and if
it is already predominantly white, it will become completely white. This will allow
the writing and pen strikes to be seen more clearly. When we used this method, we
obtained outcomes that met our expectations.
After that, we inverted the process and made the white pixels black and the black
pixels white.
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Table 3.6: Before and After Thresholding

After that, we imported the necessary libraries for processing the image. Then we
converted the image to a numpy array, cropped the image to remove white borders
and returned the cropped box image which is stored in the specified output file.

Table 3.7: Cropped character images from collected data

The images shown in Table 3.6 were then organized into folders based on the char-
acter they represented. In total, we established 212 classes of handwritten charac-
ters, each corresponding to a unique character, thereby thoroughly categorizing our
dataset.
Furthermore, corrupted images and incorrect characters needed to be removed.
Therefore, we were required to manually check each of the 212 classes to remove
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those images and characters and ensure there are no unnecessary images. This is to
make sure that the machine does not learn with any unnecessary characters which
could reduce the performance. After that, we moved all of the classes into a folder
named Train and created another folder named Test folder containing the same
classes. Then, we transferred 10% of images from each class within the Train folder
to the corresponding class within the Test folder. Thus, we created a Train and a
Test folder in our dataset.

3.3.5 Dataset Informations

Train Test
10,095 3,713

Table 3.8: Train and Test image count of BanglaBorno Dataset

The images of this dataset were obtained at a resolution of 96 dots per inch. Owing to
the use of a document scanner the images of our dataset have very precise characters
with reduced distortion and image noise. The dataset has a total 13,808 images,
212 annotated folders containing.

Figure 3.4: BanglaBorno Dataset Informations

The dataset has the potential to give better performance for researchers and develop-
ers seeking to train and evaluate models designed to recognize handwritten Bengali
compound characters who faced similar problems like us while using CMATERdb
3.1.3.3 dataset. The dataset’s image quality, equal distribution and annotated la-
bels make it a valuable resource for enhancing the current level of knowledge in this
field. The aforementioned enables the creation of precise and resilient mechanisms
for identifying compound characters in practical Bengali handwriting situations.
When we started experimenting with the dataset, we discovered a few characteristics
of our dataset. In Bangla, one compound character can be written in multiple
handwritings. Our dataset contains different kinds of handwriting styles of different
people which will make the OCR perform better.
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Image 1 Image 2 Image 3

Image 1.1 Image 1.2 Image 1.2

Table 3.9: Different writing style of same compound character in BanglaBorno
Dataset

3.3.6 Augmentation
Because of time constraints, the amount of images in the dataset is not very large.
But we needed to counterfeit overfitting or underfitting before using our model. In
order to do that, image augmentation was performed with the rotation range of
5, width_shift range of 0.08, height_shift_range of 0.08, shear_range 0f 0.2 and
zoom_range of 0.2. Each folder had a maximum of 400 images in the training set.

Table 3.10: Before and After Augmentation

After doing the augmentation, the number of images in each class had become
400 and it was a balanced number of images in order to train the models. These
preprocessing processes reduced biases, improved model performance, and captured
a wide range of real-world writing patterns.
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Figure 3.5: Images count per Class before and after Augmentation

3.3.7 Comparison with BanglaBorno

Cmaterdb BanglaLekha-Isolated MatriVasha BanglaBorno
Compound characters 171 24 52 162

Table 3.11: Number of Compound characters in the Datasets
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Chapter 4

Model Employment &
Preprocessing

4.1 Pre-processing for VGG-16 and YOLOv8 Clas-
sification

4.1.1 Image Segmentation
Most of the compound bangla characters are built in such a way that they can be
split either horizontally or vertically and separate the simple characters. Thus, our
first approach was to segment the compound characters into the top, right, left,
and bottom. So to do this we created a bounding box, made the character’s color
white, the background black color, and divided the character into a total of 4 parts.
We kept the 4 parts (top, right, left, and bottom) in 4 separate folders labeled top,
right, left, and bottom. Now our next step was to train these data via VGG-16 and
YOLO classification models.

Figure 4.1: Drawing bounding box and Segmentation

4.1.2 Database creation
To categorize compound characters we labeled each row corresponding to specific
labels. For instance, for Cmaterdb folders 1 to 171 represent compound characters,
and thus we created a column with the folder names of each character 1-171 repre-
senting the compound characters and the next 60 column values representing simple
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characters and digits from 0 to 1. Each row contained the information for a specific
label. We individually went through the content in the folders corresponding to the
top, right, left, and bottom positions, analyzed the characters for these respective
folders, and identified the most frequent characters for each of them.
For our dataset, BanglaBorno, we followed the same method but the digits and
numbers of characters were different this time. Labels 1-50 represented the simple
characters, 51-60 represented the characters that could not be split and 61-226
represented the compound characters. Like before, Top, Bottom, Left, Right, and
Total columns represented their respective parts of characters in their respective
parts of the image.

Serial Top Bottom Left Right Total Character
96 ত ন ত+ন ত+ন ত+ন û
97 ষ ¤ ষ+¤ ষ+¤ ষ+¤ ſ
98 ঘ র-ফলা ঘ+র-ফলা ঘ+র-ফলা ঘ+র-ফলা ½
99 দ ভ দ+ভ দ+ভ দ+ভ Ď
100 শ ল শ+ল শ+ল শ+ল Ž
101 ব ধ ব+ধ ব+ধ ব+ধ Ň

Table 4.1: Database for Compound character information

Let’s consider label 96 as an example representing the compound character ”û”. We
first inspected the characters in the top folder and saw that the majority were ”ত”,
thus under the Top column for label 96 we wrote ”ত”. Again, for the bottom folder,
we saw that most of the characters were ”ন”, so we wrote ”ন” for label 96 under the
column bottom. However, when checking the right and left folders we found that
both the characters were split in half and thus wrote ”ত + ন” to denote that the
compound character is composed of these two simple characters. We performed the
same process for all the labels and filled up the Google Sheet for all the labeled rows.
So the sheet contains the complete information, accurately reflecting the characters’
distribution across the different positions. We used this systematic approach to
check the compound characters and how they are split within the images across
the top, right, left, and bottom folders and match with the result that we got after
training our model.
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4.2 VGG-16 Model Employment

Figure 4.2: VGG-16 Classification implementation Flowchart

For this research to perform character localization and recognition the VGG16 model
is used with the purpose of focusing on character identification in 4 different folders
named top, right, left, and bottom respectively. For this character identification, we
trained four separate VGG-16 models for the four folders, each trained to predict
characters in their respective positions. Each character has 500 images in the 4
folders respectively for training. After training the models we used them to detect
the characters accurately. So after loading the model separately for the four different
folders the models gave predictions for each of the folders for the test image like what
is the top part, what is the bottom part, and so on in the test image. Then after
getting the four different predictions from the four models for top, bottom, left,
and right respectively, we checked in the sheet we made before for the characters.
For example, if the top model gives prediction 11 then we checked that under the
top column for row 11 it has the character “গ” and if the bottom model predicts
the label 4 then in the sheet it has “র-ফলা” for row 4 column bottom. The left
and right model predicts label 11 and in the Google sheet we saw that it is “গ+র-
ফলা”. As this character cannot be separated horizontally but vertically, the left
and right folder contains both characters. When the character cannot be separated
horizontally but it’s separable vertically then the right and left models may give the
wrong output and when it is not separable vertically but horizontally then the top
and bottom models may give the wrong answer. Even though the bottom model
did not predict label 11, it predicted the label which is the same character. Now
from analyzing the given predictions, we see that the appearance of 11 is more than
2 times so the character must be a compound character in label 11 and also by
cross checking the predictions with the sheet, we can say that the given test image
is “গ+র-ফলা”/”·” which is the compound character of label 11 and it is the
accurate answer. By applying this process using VGG16 we get 60% accuracy.
The approach of splitting the characters vertically and horizontally does not work
for simple characters. As splitting the simple character does not give any meaningful
character, the performance of our model was reduced and the accuracy result was
not satisfactory. So to avoid facing this issue we needed a way to only split the
compound characters and not the simple characters as it would make the images
meaningless. Thus, we adopted a new strategy for training the dataset. In the top,
bottom, left and right folders, compound characters were split like the below image
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but the simple characters were kept in their original shape in all these 4 folders.
Another folder was created to train the simple characters only. As a result, we were
left with 5 folders, Top, Bottom, Left, Right, and simple characters and we needed
to train 5 different models for the total prediction.

Figure 4.3: Top, Bottom, Left and Right images of a Compound character

For prediction, we had initially employed the VGG16 model for character localization
however it gave an unsatisfactory result of 60% accuracy. That’s why we performed
the same process using the YOLO (You Only Look Once) v8 classification hoping
for a better accuracy.

4.3 YOLO CLassification

Figure 4.4: YOLO Classification implementation Flowchart

YOLOv8 is a more recent and faster image classification model that has brought a
new revolution. After the unsuccessful approach in the VGG-16 model, we changed
our strategy slightly. We initially trained the YOLOv8 model with characters that
should not be split into four parts. For example, simple characters should not be
split into four parts, or else they cannot be identified after splitting. There are also
some compound characters that should not be split. Some of these characters are
shown below.
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Table 4.2: Simple characters and Compound characters that should not be splitted

So, a YOLOv8 model was trained on the images which cannot be segmented. This
model is referred to as ‘Simple Model’ here. Then, another four YOLOv8 models
were trained with the Top, Bottom, Left and Right part of the images sequentially.
We begin the prediction of the test images by examining whether a character can
be classified as ”simple” or not by using the model trained with simple characters
only. If this model is at least 99.5% confident about it’s prediction, then we classify
the character as simple and thus we proceed to predict the image using the simple
model. We retrieve the predicted label and cross-reference it with our database to
determine which character corresponds to that label and compare this predicted
character with the actual class label character.
In cases where the initial check does not yield a 99.5% probability then we assume
that the character is not simple and we proceed with more detailed recognition
considering it as a compound character. We split the test image into four parts: top,
bottom, left, and right. We then employ separate four models for each four parts
to make predictions. Then we analyzed the predictions and identified which labels
were predicted two or more times across the four parts. Subsequently, we reference
our database to identify which characters are in these prediction labels and append
them to a list. With the list of predicted characters in hand, we compare them to
the actual label characters to assess the accuracy of our predictions and find out if
any of the predicted characters match the actual characters present in the image.
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Table 4.3: Top Bottom Split

To demonstrate it more, a picture of the character number 101 after splitting into
top and bottom has been shown here. Now, suppose a test image has been split
into the top, bottom, left, and right parts of the image and the top model gives the
predicted label as 101. Then we fetch from the database the representing character
at the top of 101 and understand that there is a ‘ষ’ at the top of the image. After
that, the bottom model gives the prediction label as 118. Using the same method
we find that the bottom of 118 is ‘প’. So, we can conclude that the whole character
is ‘ষ + প = Ƅ’.
Furthermore, in some cases where no characters are predicted more than once, we
consider the individual probabilities of top, bottom, left, and right parts and which
characters have probabilities exceeding 50%. Then we stored the probabilities of
the characters that exceeded 50% probability and included these characters in the
main prediction if they either occur twice or more or if their probability exceeds
80%. Following this, we identify the characters according to the prediction and
again compare them to the actual label characters.
This multi-stage approach allows us to optimize character recognition accuracy. We
first check for simple characters and, if applicable, use a dedicated model so that it
does not reduce the accuracy. For more compound characters, we break down the
image into four parts and incorporate many steps to get the final prediction. Addi-
tionally, we consider individual character probabilities when necessary to improve
prediction accuracy.We attained a maximum accuracy of 81.8% with this multi-stage
approach.
Using YOLO Classification Model, we got better results but it still was not up to
the mark. In order to find out the reason behind this lower accuracy we conducted
an analysis and discovered that some of the images were not perfectly split. As we
drew a bounding box and split it in two, some handwriting was not able to split
properly. So, we tried our next method, YOLOv8 Object Detection Model for a
better result.

4.4 Pre-processing for YOLOv8 Object Detection
4.4.1 Structuring Filename
In order to keep track of all the main classes and subclasses of each character we
needed an efficient way for both training and evaluation testing. So we followed the
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class names sheet and renamed all images with classnames first.

4.4.2 Label Creation and Annotation
Now we needed a YAML configuration file for training with unique class names and
labeled images with those classes. So we carefully determined all the unique simple
character classes and gave them a unique digit number (For Example 39 to ল) and
completed the annotation process.

Figure 4.5: Annotated Image by class

4.5 YOLOv8 Object Detection Model Employment
In our research, we have used YOLOv8 Object Detection to detect individual sim-
ple characters from the compound characters. We have used our own dataset
‘BanglaBorno’ for training and testing. Firstly, we randomly chose 5 images
from each of the 162 compound character classes and combined them in a folder for
annotation. After annotating each image using CVAT manually we had the training
images and corresponding label files containing the coordinates of the boxes.

0 0.554744 0.443414 0.583114 0.282298

Table 4.4: Training image label

Then we prepared a YAML Configuration file with train data location and number
of classes and their names. Now that we have everything we need for training, we
figured out that if we use the simple character classes in our training that would
give us much better results. So, we added the rest of the 50 classes and prepared
them for the final training.
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Figure 4.6: YOLO Training Batch

Once we are done with the training process we need a way to evaluate. In order to
fulfill our requirements and control over the whole testing process with accuracy by
class we came up with our own testing method. We simplified the idea into parts.
Firstly, we prepared a test set from the rest of the images that we hadn’t used for
training in a format that has been renamed classnunber_serial.png format. The
renaming part is simple but crucial for the whole process.
Upon running the test files we found the images with predicted label names and
confidence score
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Figure 4.7: Predicted Classes with confidence score

Next, we modified YOLO to save the predicted results of each test image in a text
file with predicted classes.

39 0.450882 0.452851 0.2267 0.111842

32 0.455919 0.3125 0.2267 0.177632

Table 4.5: Predicted Results in TXT File

So, we had a result text file with the same name as the test image for all the test
images to move to the next progress.
Now, we needed to compare the test result with the actual results for that corre-
sponding image for evaluation. To achieve this, we needed to make another database
that should contain all the sub-simple character classes of a compound character
class formatted so that we can use the data to compare between the subclasses.

{
"100": ["35", "26"]

}

Table 4.6: JSON Database of Main and Subclasses

Finally we are ready to evaluate. We run through each results file and read it’s data
to find the detected subclasses, then, we read the compound class name from the
text file as it has been renamed accordingly. Once we have the main compound class
name and predicted subclasses name, we fetch the actual subclasses name using the
main class name from the database and compare predicted subclasses and actual
subclasses.

29



main_compound = ’100’
actual_subclasses = [35, 26]

predicted_subclasses = [35, 26]

Table 4.7: Evaluation Process

Finally, after evaluation, we achieved 82.44% accuracy. The accuracy percentage is
satisfactory considering the limited number of images we used for training. Even
though we used 5 samples from each class, more data from each class was trained
because there were the same simple characters in multiple compound characters.
The simple character ক was in both ¥ (ক + ল) and � (ক + ট) which helped in the
training process.
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Chapter 5

Result & Analysis

5.1 VGG-16
After using VGG-16, we could not find our desired result but we understood different
limitations in our approach and worked for the improvement of our approach using
other models.
1. Challenges in differentiating simple and Compound characters: Ini-

tially, all of the train images were split into 4 parts and it also split the simple
characters into 4 parts. It created meaningless information in the case of simple
characters. This led us to find a solution for differentiating simple and compound
characters.
2. Accuracy: By using VGG-16, we achieved an accuracy of 60%. One of the
reasons behind the lower accuracy was the split of simple characters. Another
factor that worked behind this was the lower quality of the image dataset after
pre-processing.
The validation accuracy graphs of the Top, Bottom, Left, and Right are shown
below.
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TOP BOTTOM

RIGHT LEFT

Table 5.1: Validation Accuracy for the four VGG-16 models

From the four validation accuracy carves of VGG-16, we can see that the VGG-16
models and our methodology could not give the expected results properly.
3. Training Strategy: The strategy of segmenting the characters into 4 parts
Top, Bottom, Left and Right could solve the problem of detecting the underlying
simple characters most of the time.

5.2 Yolov8 Classification Model
After using the YOLOv8 classification model, we managed to overcome the problems
we faced during VGG-16. But we also observed some new problems that prevented
our model from achieving greater accuracy.
1. Successfully differentiated Simple and Compound characters: While
using the YOLOv8 classification model, we trained the simple characters without
segmenting them and trained the compound characters using the same segmentation
technique we used in the VGG-16 model. By using the simple model to determine if
the test image is a simple character or not, we managed to prevent any simple char-
acter from getting segmented. Thus, the meaningless images that were generated
during VGG-16 were not there anymore and it improved the overall performance.
2. Improvement of Accuracy: After using the YOLOv8 classification model and
preventing the simple characters from being split, we managed to get an accuracy
of 81.8%. Another factor which worked behind the improvement was our multi-step
prediction method.
If we compare the validation curves of the YOLOv8 classification models, we can
notice that it works much better than our previous VGG-16 model.
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Simple Character Train Accuracy Simple Character Train Loss

Top Character Train Accuracy Top Character Train Loss
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Bottom Character Train Accuracy Bottom Character Train Loss

Left Character Train Accuracy Left Character Train Loss

Right Character Train Accuracy Right Character Train Loss

Table 5.2: Validation Carves for the YOLOv8 classification model approach
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To visualize the accuracy for all the class labels, a graph of Class Labels vs Accuracy
is given below.

Figure 5.1: YOLOv8 Classification Accuracy visualization

3. Limitations: Even though we improved the accuracy of detection of underlying
separate characters in the test images, the rate was not good enough. The main
reason behind this was the uneven split of the characters like below. Also, the images
that could not be split into top/bottom were still being split into top/bottom.

Table 5.3: Uneven Split of a character

To overcome the limitations of our training process, we approached a different ver-
sion of YOLO which would solve the uneven split problem. We tried the YOLOv8
object detection model for predicting the underlying simple characters inside the
compound characters.

5.3 Yolov8 Object Detection Model
With the YOLOv8 Object Detection Model, we achieved our goal of segmentation.
Though we achieved higher accuracy and segmentation, we were limited by time
and training resources.
1. Successful segmentation of Compound Characters: We have been able
to successfully determine the simple characters that form the compound character
from the image of the compound characters.
2. Improvement of Accuracy: With the YOLOv8 Object Detection model we
achieved the highest accuracy of 82.44%. By labeling simple characters alongside
compound characters in training, the model improved overall accuracy.
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Figure 5.2: YOLOv8 Object detection Accuracy visualization

3. Limitations: Even though we could increase the accuracy and perform segmen-
tation. However, due to time constraints, we could train only 5 images per class
which gave us this satisfactory result. If we can increase the training images to at
least 100 images per class then it is possible to achieve a much higher accuracy and
confidence score.

5.4 Comparison of Models and Approaches
While evaluating the predictions, a prediction is considered correct if all the charac-
ters in the images can be predicted correctly. Otherwise, we consider the prediction
as wrong.

Model Name Accuracy Position
VGG-16 60% 3

YOLOv8 Classification Model 81.8% 2
YOLOv8 Object Detection Model 82.44% 1

Table 5.4: Accuracy Comparison between models

After the three different approaches to our model, we conclude that the YOLOv8
Object Detection model performed better than the other approaches with 10 times
less training data.
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Chapter 6

Conclusion & Future Work

6.1 Conclusion
The existing Bangla OCR research does not apply segmentation for the detection of
compound characters, but segmentation is capable of identifying the underlying sim-
ple character. It can also help partially detect unclear handwriting. In our research,
we applied different methodologies for the segmentation of compound characters
in order to detect the underlying simple characters. Furthermore, to overcome the
limitations of the existing datasets, a new Bengali Handwritten Character dataset
BanglaBorno has been developed. We performed multiple experiments to conduct
this research and got the most satisfactory results from the YOLOv8 classification
model and the YOLOv8 Object detection model. But our research still has the
scope of betterment which can be done in the future.

6.2 Future Works
6.2.1 BanglaBorno Dataset
Our dataset, BanglaBorno contains images of 162 unique compound characters,
which will be a help in Bangla OCR research. However, we hope to bring improve-
ment in the dataset by adding more variety of handwriting. To do that we plan to
collect the handwriting of the characters from people of different ages and locations.
Thus adding more variety and numbers for each of the unique characters will bring
a huge improvement to our dataset. Moreover, we plan to add more compound
characters to the dataset.

6.2.2 YOLOv8 classification method
Before training the model, we processed our data by splitting every image of our
dataset horizontally and vertically. In both splits, the bounding box of the characters
was equally divided into 2 parts. However, the compound characters’ placement,
length, and handwriting styles were different for different images. As a result, in a
lot of cases, the compound characters were not properly divided. Therefore, in the
future, we plan to bring improvements in our splitting method by making sure the
split is done according to the length of the compound characters and the handwriting
style. This will also increase the performance of the model.
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6.2.3 YOLOv8 Object detection
Lastly, one of the difficulties that we have experienced in the YOLOv8 object de-
tection model is annotating the huge number of compound character images. The
performance of the model depends on the amount of images that have been anno-
tated. In order to enhance the performance of the model, more images of each class
are needed to be annotated. Hence, our future plan includes the annotation of more
compound character images as we expand the dataset.
Another improvement that could be done is, merging the three approaches together
in order to get more accurate results. By using the probabilities and predictions
of VGG-16, the YOLO classification model, and YOLO object detection model
together, the final predictions can be a lot stronger.
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