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Abstract

The NBD (Network Block Device) protocol plays a pivotal role in enhancing the
Android ecosystem, particularly in terms of storage management and optimizing
power efficiency on ARM devices. By facilitating network block-level storage access,
NBD enables Android devices to seamlessly connect to remote storage resources, ex-
panding their storage capacity without needing physical upgrades. This is especially
beneficial for handheld devices, where storage limitations can hinder functionality.
Furthermore, NBD contributes to power efficiency by leveraging large data block
write operations on cloud NBD servers. By minimizing the need for frequent data
transfers and optimizing network communication, NBD reduces power consump-
tion, extending Android devices’ battery life and making them more energy-efficient
and sustainable for users. Moreover, the NBD protocol facilitates the integration
of Android devices with a wide range of hardware peripherals, enabling them to
function as adaptable hubs for interacting with diverse IoT devices and sensors.
The aforementioned feature enables an Android-operated portable device to trans-
form into a resilient and versatile controller for Internet of Things (IoT) networks,
smart home appliances, and various hardware components. This augmentation sig-
nificantly amplifies its functionality and significance within the swiftly progressing
realm of interconnected devices. However, integrating the NBD protocol inside the
Android ecosystem is a prominent catalyst for enhancing efficiency, storage flexi-
bility, and adaptability. Consequently, this integration contributes to ARM-based
Android devices’ increased capabilities and versatility.

Keywords: Network Block Device; Cloud Storage; Android Kernel; Linux; Network
Attached Storage; Internet of Things.
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Chapter 1

Introduction

The block device mechanism plays an important role in the input/output (I/O)
system of the Linux operating system. Block devices are a classification of storage
devices that operate at the block level, whereby data is accessed and altered in
specified block sizes, typically 512 bytes or 4 KB. Block devices consist of a diverse
range of storage media such as solid-state drives (SSDs), hard drives, USB drives
and other similar devices. Block devices are integral components inside the Android
ecosystem, vital to storage and data management. The predominant storage mate-
rial employed by Android devices is NAND flash memory. Acknowledging that the
aforementioned storage is organized and retrieved as block devices on the system
level is vital. The block devices under consideration offer a layer of abstraction for
the storage hardware they are connected to. This abstraction enables consistent
read and write operations on blocks of a fixed size, typically measuring 4 KB. The
maintenance and structure of data stored on block devices is overseen by the file
system employed by Android, such as ext4 or F2FS. Block devices encompass several
possibilities, including internal storage for applications and user data and external
storage alternatives like microSD cards.

Furthermore, Android devices can connect with external block devices, such as USB
drives or external SSDs. These devices are recognized and processed as block de-
vices upon access. Adopting block devices in the Android ecosystem is crucial for
enabling efficient data storage, retrieval and management procedures, substantially
contributing to Android devices’ overall performance and functionality.

The Network Block Device (NBD) is a feature of the Linux kernel that was de-
liberately designed and built to be very advanced. It allows users to view storage
devices remotely on a block-by-block basis. By making a remote storage resource
into a block device, this feature lets a Linux system install, access and use it like a
local storage device. The NBD method is based on the client-server model, in which
a server provides access to block devices. After that, clients can use these block
devices from afar through a stable network link. It is very useful in storage systems
and networks with many nodes. It makes it easier to share and combine info across
different platforms. The NBD method makes storage management more flexible by
letting you connect and disconnect remote block devices without any trouble. NBD
is flexible because it can be used successfully in many situations, such as network
storage, virtualization and cloud computing.
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The NBD protocol and its technologies make sharing block devices like disc drives
and partitions over a network easy. Also, NBD provides a flexible and optimized
solution for remote storage access, empowering various applications such as virtual-
ization, distributed computing and remote disk imaging. The key features will be
elaborated upon in the following sections.

Furthermore, integrating the NBD into the Android operating system presents a
significant opportunity to enhance storage capabilities. This feature allows An-
droid devices, particularly those with limited internal storage capacity, to effectively
connect with and utilize remote block-level storage resources. By establishing con-
nections with remote servers or network-attached storage (NAS) devices, Android
devices can leverage NBD to expand their capacity. It is particularly advantageous
for Android users who heavily depend on their smartphones for scenarios like data-
intensive activities such as video streaming or content creation. It helps seamless
remote access and efficient management of large files. Additionally, NBD’s effective
data retrieval and management capabilities can optimize power efficiency by reduc-
ing the energy consumption linked to ongoing data synchronization. In summary,
integrating Network Block Device (NBD) into the Android ecosystem promises a
scalable and energy-efficient solution to address storage limitations. This has the
potential to enhance the versatility and functionality of Android devices.

1.1 Background

Traditional data-at-rest mechanisms in the Android ecosystem involve storing data
locally on the device’s internal or external storage. This data is typically encrypted
to protect sensitive information, ensuring it remains secure even if the device falls
into the wrong hands. Android provides sophisticated encryption methods, such
as File-Based Encryption (FBE) starting from Android version 7.0 API level 24
and Full Disc Encryption (FDE) starting from Android version 5.0 level 21 till
Android version 7.0 level 24, that effectively protect stored data, including user
files, app data and system data [33]. Users can set up encryption during device
initialization or enable it through security settings, creating a secure environment for
their data at rest. Additionally, Android provides APIs and guidelines for developers
to implement further data protection within their apps, ensuring comprehensive
security for data stored on Android devices.

Traditional data writing in the Android ecosystem consumes power and involves
significant costs and resource utilization. When data is written to storage devices
like NAND flash memory, power is required to program memory cells. This power
consumption impacts the battery life of Android devices, which is a crucial con-
sideration for users. Additionally, more extensive and faster storage options, such
as high-capacity NAND chips or Embedded MultiMediaCard (eMMC), come at a
premium, significantly impacting the overall cost of manufacturing Android devices.
Several factors, especially the expanding size of mobile applications and games drive
the demand for more significant data-writing capabilities. As game developers create
more graphically advanced and immersive experiences, the file sizes of these games
have grown significantly. To ensure seamless gameplay and app experiences, An-
droid devices need to handle these large game installations and updates efficiently.
Hence, the ability to write large volumes of data quickly and reliably is paramount
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for delivering the best user experience. As of 12 September 2023, the price of the
iPhone 15 128GB, 256GB and 512GB is respectively 799 USD, 899$ USD and 1099$
USD, which suggests a parabolic relationship between price and storage [35]. Thus,
this increased demand for storage capacity and speed poses challenges regarding
power efficiency and cost management, making it essential for Android device man-
ufacturers and developers to strike a balance between storage capabilities, power
consumption and affordability.

Network

Hardware Stack

Linux Kernel

NBD Server

NBD
Module

Network
Stack

Network Hardware Stack

Android Kernel

Android Client

NBD
Module

Network
Stack

Figure 1.1: Overview

In this figure 1.1, we can see that a network-based approach can be implemented to
address the challenges of extensive data writing, particularly for resource-intensive
applications like games. Instead of storing these large game files directly on the An-
droid device, games can be designed to write data commands locally, which are then
efficiently processed and transferred to a remote server via a network connection.
This server-side storage can accommodate significant game assets and updates, re-
ducing the need for extensive local storage on Android devices. By leveraging this
network-centric model, devices can prioritize efficient data processing over local stor-
age, contributing to enhanced power efficiency and cost savings while still delivering
high-quality gaming experiences. This approach aligns with the cloud gaming and
content streaming trend, allowing users to enjoy resource-intensive content without
needing massive local storage capacity.

The emergence of 5G networks is a significant milestone in the context of Android
devices, especially concerning extensive data writing and energy efficiency. While
local disk write speeds have improved over the years, 5G networks offer data trans-
fer rates that can rival and sometimes even exceed, the speed of writing data to
local storage [23]. This allows Android devices to offload extensive data writes to
remote servers efficiently, reducing local power consumption during intensive data
operations [28].

Network Block Device (NBD) can be a crucial beneficiary of this trend. By lever-
aging the high-speed and low-latency capabilities of 5G networks, NBD can enable
Android devices to access and write data to remote block devices seamlessly. This
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approach conserves energy and reduces the need for extensive local storage infras-
tructure, contributing to more energy-efficient and cost-effective Android devices.

The synergy between 5G networks, Android devices and NBD technology highlights
the potential for a more energy-efficient and scalable approach to managing extensive
data writes. This evolution aligns with the growing demand for resource-intensive
applications and games, offering users an enhanced experience without compromis-
ing power efficiency or storage costs.

1.2 Motivation

Our motivation is to implement the Network Block Device (NBD) in the Android
ecosystem, which is deeply rooted in the desire to explore unidentified features within
the Android platform and to push the boundaries of what this versatile ecosystem
can achieve. The inspiration for this study is derived from the significant advance-
ments observed in network technologies, specifically the advent of 5G networks. We
have demonstrated these networks’ potential to facilitate rapid and efficient data
transfer with minimal delay, potentially revolutionizing the handling of big data
read/write on Android devices. The necessity for efficient data storage and man-
agement, given the ever-increasing size of applications and content, became evident.
The idea that NBD, a well-established technology in the Linux realm, could be
adapted for Android, thus bringing a new level of flexibility and efficiency to the
Android storage ecosystem, served as a driving force. We aim to enable Android
devices to access remote block-level storage resources quickly and easily, enabling
users to expand their storage without physical restrictions and maximizing energy
efficiency and cost-effectiveness.

Motivation was sustained throughout the research process by the intricate tech-
nical aspects of implementing NBD on a platform like Android, characterized by
differences in architecture and system requirements. The prospect of enabling An-
droid devices to access remote block-level storage resources efficiently remained a
significant driving force and overcoming the technical challenges due to Android’s
non-development-friendly and tightly integrative commercial perspective was chal-
lenging and intellectually stimulating. Collaboration played an instrumental role in
sustaining motivation, with the team’s diverse skill sets and perspectives fostering
an environment of creativity and problem-solving. Ideas were shared, approaches
were debated and technical hurdles were overcome collectively. Furthermore, the en-
thusiasm of the Android community for innovation and the potential impact of the
research fueled determination. It was recognized that the work could benefit users,
developers and manufacturers seeking more efficient storage solutions for Android
devices.

As the research progressed, tangible outcomes began to reinforce motivation. Wit-
nessing the successful integration of NBD into the Android ecosystem, with the
ability to access and utilize remote block devices efficiently, marked a gratifying
milestone. It demonstrated the practical applications and benefits of the research
efforts, further propelling the team forward.

However, the research journey involving the implementation of NBD in the Android
ecosystem is a testament to the power of motivation, teamwork and the pursuit of
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technological advancement. Inspiration was drawn from the research’s possibilities
and its potential for reshaping how storage and data are managed on Android de-
vices. The collective motivation remains unwavering as new horizons continue to be
explored, contributing to the evolution of the Android ecosystem.

1.3 Objectives & Contribution

Implementing a Network Block Device into the Android ecosystem involves a range
of technically sophisticated objectives. The primary objective is to optimize and
empower Android devices with the essential scalability and adaptability required to
excel in today’s dynamic digital landscape. These objectives are aligned synergisti-
cally to optimize the platform’s storage and energy efficiency, thereby expanding the
capabilities of Android as a robust command center for the Internet of Things (IoT).
Android smartphones leverage Network-Based Data (NBD) to streamline data cen-
tralization and empower seamless remote accessibility.

Utilizing cloud infrastructure enables and facilitates enhanced content management
efficiency. This cost reduction and enhanced storage scalability make Android de-
vices adaptable to dynamic data requirements. Integrating NBD in Android elevates
its capabilities in efficiently navigating the intricacies of the modern digital land-
scape, merging technical prowess with practical utility.

• Storage Efficiency: Enhance storage efficiency by enabling Android devices
to seamlessly access remote block-level storage, catering to the expanding di-
mensions of applications and media.

• Power Efficiency: Optimize power efficiency by leveraging remote server
infrastructure for offloading storage operations, thereby effectively conserving
battery life.

• IoT Control Hub: Empower Android devices to function as IoT control
hubs through the seamless attachment and management of block-level devices
via network connectivity.

• Data Centralization: Facilitate seamless cloud-based storage for centralized
data, empowering users to retrieve their data from any location conveniently.

• Cost-Effective Storage: Enhance cost-effectiveness by leveraging remote
storage resources, enhancing Android device’s affordability.

• Scalability and Flexibility: Enhance the adaptability of Android devices
by providing scalable and flexible storage solutions to cater to a wide range of
use cases.

The experimental implementation of Network Block Device (NBD) through Way-
droid on Ubuntu 23.04 presents a valuable contribution to the ecosystem. It show-
cases the potential of leveraging NBD technology within the Android environment.
It offers a glimpse into a future where Android devices can seamlessly access and
manage remote block-level storage resources. This demonstration enhances storage
efficiency and exemplifies how Android devices can evolve into versatile hubs capable
of controlling IoT devices and seamlessly centralizing data. Such experiments lay the
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foundation for more efficient and adaptable Android ecosystems, catering to users’
ever-evolving storage and data management needs in today’s digital landscape.

Research About Haas
(Hardware as a Service)

Research About
Android Storage
(Possible ways of

expandable storage)

Research About NBD
(Network Block

Device)
Literature Review

Problem Identification Research About Linux
Kernel

Research About NBD in
Android Linux Kernel

Research About Cloud
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Research About NBD in
Linux Kernel
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State of the art Cloud

Services

Implement Linux to Linux
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Performance Comparison
of NBD, and FTP, HTTPS,

SFTP

Implement Security Layer
and Evaluate Stability

Issue

Performance Comparison
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Storage and MicroSD card

Testing NBD Protocol
Under Different Network

Conditions
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Disadvantages for Android
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Evaluate Feasibility of
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Kernel
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Dependencies

Discussion Future
Aspects

Start

End

Figure 1.2: Workflow Diagram of NBD for Integrating on Android

1.4 Research Structure

We divide our paper into several sections to enhance its organization. Section 1
contains the background, motivation and research contributions to integrate remote
server storage on the Android operating system using NBD. Following that, in Sec-
tion 2, we explain the terminologies such as *nix philosophy, Linux Kernel, LKM,
Android Kernel, NBD, SELinux, Symlink and Waydroid. Section 3 contains similar
concepts and comparisons based on findings. Section 4 proposes our methodology
and security architecture. Section 5 shows the implementation according to experi-
mental evaluation needs. Section 6 elaborates on the results by testing file transfer
performance and a game. Furthermore, we discuss the possibilities and challenges for
remote Android storage servers in Section 7. Finally, we state the future prospects,
impacts of remote storage servers using NBD and the conclusion of our research in
Section 8.
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Chapter 2

Context & Overview

2.1 *nix Philosophy

*nix is a lineage of UNIX-based operating systems. It behaves and follows the
manners of UNIX. UNIX was introduced in 1969 with a philosophy of ”Do one
thing, do it better” [32]. Following that philosophy, UNIX has introduced a simpler
mechanism for interacting with hardware peripherals through file I/O operation.
*nix has also shown how simple virtualization can be and how the file system can
be implemented based on that. *nix, like the operating system, has mainly the
following types of file system implementation, which are [9]:

1. Special Files

2. Ordinary Files

3. Sockets

4. Directories

5. Symbolic Links

6. Pipes

The “Special Files” implementation of those three types of file systems has the most
distinctive features and we are interested in it. All the UNIX systems support I/O
operation with one of those systems and normal disk files require permission to read
and write [2]. This basic feature is available in “Special Files” but the core unique
part is any requests to read or write special files cause the corresponding device to
be activated. There is an entry directory using special files where all the files reside
under /dev directory [2].

2.1.1 File System

In the Unix operating system, regular files, directories, devices and network sock-
ets are represented and accessed through file abstraction. Consistency facilitates a
straightforward method of engaging with diverse data types. The design of Unix file
systems is characterized by modularity and simplicity, where each component fulfills
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a distinct function. The modular architecture facilitates the system’s seamless man-
agement, expandability and compatibility. It enables users to adapt and provide
options for end-users. We can choose and adjust various modules according to their
requirements, establishing a personalized system that meets their demands. The
flexibility also applies to the development process because multiple teams or peo-
ple can concurrently work on various modules, fostering collaboration and enabling
parallel development.

2.1.2 Symbolic Links

The Unix system also supports the implementation of the mounting concept. It
means diverse file systems can be connected to designated directories within the
hierarchical structure. The idea of abstraction allows seamless access to storage
devices and external file systems, leading us to Symbolic Links. The feature referred
to as soft links, sometimes known as symbolic links, is present in Unix-like operating
systems. It enables the creation of a specific type of file that serves as a pointer to
another file or directory. Symbolic links efficiently access or traverse the file system
as shortcuts or references to the desired file or directory. When users access or open a
symbolic link, the operating system seamlessly sends them to the designated target
file or directory. Symbolic connections can extend across disparate file systems
and even reference non-existent files or directories. In Unix systems, it is widely
employed for diverse functionalities such as establishing expedient links to frequently
accessed files, arranging file system structures and facilitating flexible file location
management. In our research, we have used the symbolic link concept to access the
files of remotely located NBD (Network Block Device) storage files.

2.1.3 User Space and Kernel Space in Linux

Another important *nix philosophy crucial to our research is the user space and
kernel space separation. The user space is the defined environment for running user
applications and the kernel space is defined for containing the operating system
kernel. The process of separation serves numerous essential purposes. First of all,
it offers memory protection. The kernel works in privileged mode, granting it direct
access to system resources. Conversely, user programs operate in a restricted mode,
which limits their access to system resources. This measure guarantees that user
programs cannot disrupt or compromise essential system resources. Additionally,
the act of separation facilitates hardware protection. The kernel directly controls
hardware devices and oversees access and utilization. In contrast, user programs
establish an indirect interaction with hardware through the kernel, which serves
as a mediator and ensures appropriate access and utilization. Moreover, the clear
distinction between user and kernel space facilitates effective task management. The
kernel manages low-level activities and offers various resources and services to user
applications. User applications can initiate system calls to request specific services
and it is the responsibility of the kernel to execute the required activities on behalf
of the applications. Our research opens the door to reanalyzing using the NBD
module in the kernel space for a unique purpose to amplify the available options for
cloud storage serving the Android community.
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2.2 Linux Kernel

The Linux kernel’s file system exhibits a modular and extensible design, enabling
the incorporation of novel file system kinds and functionality. The inherent flexibil-
ity of Linux allows for seamless compatibility with a wide range of storage devices.
It contains traditional HDD (hard drives), modern SSDs (solid-state drives) and
NAS (network-attached storage) systems. The storage devices are locally denoted
as files under the /dev directory. These files are sometimes referred to as device files
or device nodes. Every device file is associated with a particular physical device or
device driver. Device files are generated either during the initialization of the system
or upon establishing a connection with a new appliance. Interfaces are designed to
facilitate the interaction between the operating system and users, enabling them to
engage with various devices. The device files provide both read and write opera-
tions on the corresponding devices. In the Linux operating system, device files are
classified into two distinct categories: character devices and block devices.

2.2.1 Block Devices

Block devices are put to use to facilitate random access to data. They are usually
used to attach solid-state drives (SSD), hard drives and sometimes USB drives.
Fixed-size blocks are permitted for both the reading and writing of data. Block
devices offer a file system interface that enables efficient access and management
of data stored on these devices by the operating system and applications. Linux
encompasses various block devices, such as /dev/sda, which represents a hard drive
and /dev/nvme0n1, which denotes an NVMe SSD. The device files are in the /dev
directory and function as intermediaries between the user and kernel spaces. It
enhances the standardized access and management of the devices.

2.2.2 Character Device

Character devices are utilized to access data sequentially and serve as interfaces for
devices that transmit data as one-by-one characters. Examples of such devices are
terminals, serial ports and printers. In contrast to block devices, character devices
lack a predetermined block size and do not provide the capability for random access.
In contrast, these entities offer a continuous sequence of characters that can be read
or written. Character devices are frequently employed in real-time or streaming
data processing. Linux encompasses various character devices that are essential for
interacting with the system. Two prominent examples of such character devices are
/dev/tty, which facilitates communication with a terminal and /dev/ttyS0, which
enables communication through a serial port.

With the help of the Network Block Device philosophy, NBD enables network-based
storage solutions by exporting block devices from a server to client systems. The
client systems can treat the remote storage in a similar way to devices that are
connected locally. The NBD protocol operates at the block level, transferring data
in fixed-size blocks rather than individual characters. This makes it suitable for
accessing remote storage devices efficiently.
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2.3 Loadable Kernel Modules (LKMs)

Loadable kernel modules (LKMs) serve as a means to incorporate supplementary
functionality into the kernel, thereby establishing a distinct barrier for compart-
mentalization. We do not notice any significant difference at the source level when
comparing the core kernel code and the Loadable Kernel Module (LKM) code. So,
both can be compiled in a general way into the main kernel image. On the other
hand, the bootloader loads the primary kernel image and the Loadable Kernel Mod-
ules (LKMs) separately, so the LKMs do not form any part of the core kernel image.
In contrast, the kernel exhibits the behavior of dynamically loading a Loadable Ker-
nel Module (LKM) only when it necessitates the particular capability provided by
said LKM. Hence, throughout the execution of a program, a distinct and coher-
ent distinction exists between Loadable Kernel Modules (LKMs) and the remaining
components of the kernel. However, the monolithic architecture of the kernel ef-
fectively eliminates this separation [31]. The next stage is of particular significance
importance to the loading mechanism.

The current task is preparing the module’s symbol table to provide access to poten-
tial future modules. It is necessary to acquire a comprehensive understanding of the
precise data structures. As shown in 2.1, the definition of each particular module
is characterized by a module structure. Several primary fields are introduced. The
fields include:

• Name of the module

• Next pointer module in the linked list

• Size of the module

• Number of dependents

• Number of symbols

A pair of structures should be mentioned as “module symbol{}”, which is utilized
to locate the exported symbol table of the module and “module ref{}”, which is
important for maintaining dependence information [1].

Every Loadable Kernel Module (LKM) is kept as an individual file within the file
system. The files are commonly denoted as “.ko” file extensions. The files include
the compiled code and data necessary for the module. A module will load when
a user or system process uses the insmod or modprobe commands to call on the
kernel’s module loader. The loader is responsible for locating a specified module
file and, upon successful discovery, loading it into the kernel’s address space. Once
the module has been loaded, it can be initialized by invoking its initialization func-
tion. The function mentioned above commonly registers the module with the kernel,
establishes necessary data structures or resources and readies the module for uti-
lization. The loaded module can incorporate additional kernel system calls, device
drivers, or other functionalities. As a demonstration, a module could enhance the
functionality of a system by integrating compatibility for a novel network card, file
system, or hardware sensor. Lastly, the module’s functionality becomes accessible
to apps in user space. Applications can engage with the module using system calls
or other mechanisms made available by the module.
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Figure 2.1: Data structures in kernel development for module implementation [1]

2.4 Android Kernel

Android is built on top of the Linux kernel. That said, the Android kernel is very
similar to the Linux kernel in architecture and functionality. The Unix operating
system is the foundation for both kernels, sharing similarities in many ways. The
Android kernel is a customized Linux kernel tailored for portable electronics. Pro-
cess management, memory management and device drivers are just a few similarities
between it and the Linux kernel’s features and functionalities. Mobile-specific fea-
tures like power management and support for touchscreens and other input devices
are also included.

One of the key similarities between the Android kernel and the Linux kernel is
their open-source nature. Both kernels are released under open-source licenses. So,
the source code is available in public privacy, where anyone can modify, view, or
distribute it. This has caused a large group of developers and contributors to work
to improve and enhance the functionality of both kernels. Overall, the Android
kernel is very similar to the Linux kernel in architecture and functionality. However,
it includes additional features and optimizations specific to mobile devices.

The Android platform has been further developed with many libraries in addition to
the Linux kernel for enabling complex functionality; see figure 2.2. These libraries
were sourced from numerous open-source projects. The Android team created their
own C library to deal with licensing issues. Moreover, the ”Dalvik Virtual Machine”
is a Java runtime engine they developed that has been optimized for mobile platforms
with limited resources. Finally, the end-users were provided with an application
framework that can give them access to system libraries.

12



Figure 2.2: Android Architecture, Linux Kernel & Libraries [12]

2.5 Network Block Device (NBD)

The NBD suggests an access model, which can be seen in the figure 2.3 that replicates
a block device, specifically a hard disc drive (HDD) or a hard disc partition, on the
user’s local machine. However, it connects to a geographically located remote server,
which provides the actual physical storage over the network [3]. This model can be
seen in the NBD.

The NBD protocol operates by breaking the block device into manageable ”blocks”
and sending them over the network as needed. The remote machine can then access
these blocks as a local block device. As a result, the network’s bandwidth can be
used more effectively because it is only used to transmit necessary blocks.

NBD is widely utilized in virtualization environments because it enables access to
block devices hosted on distant machines by virtual machines. Additionally, it can
be used in distributed storage systems, enabling numerous machines to connect to a
single shared block device over a network. As there is an involvement of networks,
the question of security arises inevitably. Security for Network Block Devices (NBD)
in Linux systems is primarily managed through a combination of access control
mechanisms and encryption; these can be:
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Figure 2.3: Network Block Device

2.5.1 Access Control

NBD (Network Block Device) devices are managed by adhering to the established
Linux file permissions [30]. This implies that the NBD devices can be accessed
and managed at the file level, similar to any other file within the system [3]. File
ownership and permission settings can be employed to impose limitations on the
accessibility of NBD device files for specific groups and users.

2.5.2 Network Security

Network security is paramount in Network Block Devices (NBD) as it runs across
a network [30]. Utilizing established network security protocols and techniques can
result in network-level security. Frequently, this entails implementing firewalls, using
Virtual Private Networks (VPNs) and adopting additional network security proto-
cols [3].

2.5.3 Authentication

In particular, Network Block Device (NBD) configurations authentication proce-
dures are sometimes employed to guarantee that only clients with proper authoriza-
tion can access NBD devices [3]. This may encompass using login and password
authentication and alternative authentication methods, such as SSH keys.

2.5.4 Encryption

Encryption can address data privacy and confidentiality concerns in the context of
NBD traffic. One potential method for achieving this objective involves the uti-
lization of SSH tunneling as a means to encrypt Network Block Devices (NBD)
communication. The utilization of SSH for tunneling NBD enables the secure trans-
mission of encrypted data across the network. However, implementing encryption
decryption functionality at the kernel level may not be feasible because of the min-
imal memory allocation at the lower level kernel.
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2.5.5 NBD Server Configuration

The proper configuration of the NBD server is of utmost importance in ensuring
security. The process encompasses establishing access controls, determining permis-
sible hosts or IP addresses that can establish a connection with the NBD server and
configuring authentication processes.

One can set up Oracle Real Application Clusters using only standard PC hardware
and Linux operating systems via NBD [37]. In Linux NBD, we only have access to a
single client at a time to access the identical block device [3]. Furthermore, the NBD
shares common branches such as Extended-Network-Block-Device (ENBD), then it
shares with Global-Network-Block-Device (GNBD), lastly shares with Distributed-
Replicated-Block-Device (DRBD) etc [26]. They are responsible for different use
cases of NBD depending on the demands of the cloud architecture [30]. The adapt-
ability of NBD is one of its main advantages. It can be used with various block
devices and network setups and is simple to incorporate into current systems. NBD
is also an open protocol, meaning anyone can use it and is not dependent on any
vendor or platform.

2.6 NBD as Loadable Kernel Module (LKM)

The Network Block Device (NBD) is a module inside the Linux kernel that facilitates
the remote access of block devices over the network [3]. Although NBD is frequently
utilized in Linux operating systems, it is not typically implemented as a Loadable
Kernel Module (LKM) for Android kernels. The Android kernels are purposefully
customized for mobile devices, exhibiting distinct requirements and configurations
compared to conventional Linux kernels. The Android kernel has been designed
to cater to the Android operating system’s unique hardware and software needs.
Integrating NBD support as an inherent feature in the Android kernel is feasible
instead of utilizing it as a loadable module. However, this would require modifying
the kernel source code and rebuilding the kernel specifically for the Android device
you are working with.

Network Block Device (NBD) is not natively supported in the Android kernel and
there are no official indications of it being deprecated or planned for inclusion.
The Android kernel primarily focuses on the Android operating system’s needs and
hardware requirements. NBD, which is typically used for networked block storage.
As there are devices with limited local storage, NBD could obsolete the limitations
imposed by the bounded storage as it provides a means to access data stored on
remote servers, cloud storage, or network-attached storage [1].

2.7 Android SELinux Policy

The Android SE (Security-Enhanced) Linux Policy is a security framework imple-
mented on the Android operating system based on SELinux (Security-Enhanced
Linux) [15]. SE Android augments the security of the Android platform by imple-
menting mandatory access controls and rules. These measures effectively restrict
and regulate the behavior of processes and applications operating on an Android
device.
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SE Android, which stands for Security-Enhanced Android. It is a robust security
framework designed to fortify the Android operating system against various security
threats. The system primarily functions based on the Mandatory Access Control
(MAC) notion, which represents a deviation from the traditional Discretionary Ac-
cess Control (DAC) approach, in contrast to discretionary access control (DAC),
which grants resource access decisions primarily to the owner [15]. MAC imposes a
central control mechanism based on predefined and stringent policies.

One of the critical uses of this technology is isolation and sandboxing. SE Android is
proficient in establishing unique security contexts for each Android application and
system function. Each application operates within its distinct sand-boxed environ-
ment, imposing substantial limitations on its ability to access fundamental system
resources, as well as the data and functionalities of other applications. Implement-
ing isolation measures enhances overall security by mitigating the possible harm a
hacked application can cause.

Furthermore, SE Android enforces privilege separation, which is crucial for minimiz-
ing the attack surface and reducing the impact of potential security vulnerabilities.
This separation involves restricting certain system components and apps to only the
minimum privileges they need to operate effectively. By adhering to the principle of
least privilege, SE Android significantly mitigates the risk associated with privilege
escalation attacks and other security breaches.

One characteristic of SE Android is its capacity for policy customization. Manu-
facturers and system administrators can customize SE Android’s security policies
to align with the unique security needs of a device or system. The ability to adapt
facilitates the precise adjustment of security restrictions, ensuring their alignment
with the Android device’s specific usage and threat environment.

Moreover, SE Android provides a framework for implementing security enhance-
ments to the Android platform. These enhancements encompass a wide range of
features and mechanisms, one of the most notable being system call filtering. By
controlling system calls, SE Android can proactively prevent certain actions that
might otherwise lead to security breaches, further bolstering the platform’s overall
security posture.

SE Android is a notable advancement in bolstering the security of Android devices.
SE Android enhances the protection of the Android operating system by imple-
menting measures such as MAC (Mandatory Access Control), isolation, privilege
management, policy customization and a range of security-oriented features. These
measures strengthen the system’s ability to withstand diverse security threats and
attacks.

2.8 Our Adhered SELinux Policies

Regarding utilizing the Network Block Device (NBD) as a Loadable Kernel Module
(LKM) for remote storage on the Android platform, we have adhered to a set of
considerations and policies:

• Access Control: We have followed Android’s access control mechanisms and
SE Android policies when loading the NBD module. Ensured that only au-
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thorized users or processes could load and use the module by implementing
and enforcing Security Policy Language (SPL) [15].

• Module Signature: A potential method exists for digitally signing the NBD
module to guarantee its integrity and authenticity. The Secure Boot techniques
employed by the Android operating system may necessitate loading modules
that have been signed.

• Testing and Validation: These were conducted on the NBD module within
our prototypical Android device and kernel to ascertain its stability and com-
patibility. In the absence of adequate testing, the introduction of custom
kernel modules may result in the manifestation of instability.

• Documentation: We have comprehensively documented the loading process
and the NBD module to facilitate future reference and address potential trou-
bleshooting scenarios. This documentation encompasses several aspects, such
as security considerations and access control policies, which are crucial for
ensuring the integrity and confidentiality of the system.

• Device Rooting: Depending on the device and Android version, a user may
need to root the device to load custom kernel modules. But one must under-
stand the implications and risks of rooting before proceeding.

2.9 Symbolic Linking Philosophy

Symbolic links are a feature that improves the transparency and flexibility of file
and directory management in Unix-like systems. The system permits users and
administrators to conveniently generate references to files and directories, providing
an extra degree of abstraction. The Unix philosophy places significant emphasis
on the principle of modularity, which entails that each component should excel at
executing a singular task. Symbolic links align harmoniously with this philosophical
approach by offering a means to modularize and disentangle file structures. Using
file or directory replication facilitates the existence of a single instance of data in
several locations, enhancing operational efficiency and reducing complexity. The
single program tree, a tree of symbolic links, namely /System/Index, assembles the
instances of the files from each program in the system. [29].

Two types of linking are introduced in the Unix philosophy: soft links (symbolic
links) and hard links. Hard links are a file system feature wherein various directory
entries, also known as filenames, are related to an isolated inode. An inode is a data
structure representing a disk file [5]. In essence, there are distinct file designations
denoting the same data. Soft links are references to files or directories by name.
They act as shortcuts or pointers to the target file or directory. Symbolic connections
have the advantage of being able to span several devices and file systems, unlike hard
links, which are limited to the same file system. Those above characteristics endow
them with the ability to serve as adaptable instruments for referencing across various
devices. Relevant and significant symlinks or network device labels deliver a course
to identify devices based on their configured properties or latest configuration [39].
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2.10 Waydroid

Waydroid is a free and open-source project that aims to run Android apps on Linux
distributions [40]. It provides a compatibility layer between Android and Linux,
allowing Android apps to be executed on a Linux system. As Waydroid focuses
on app compatibility rather than kernel-level modifications, our goal is to enable
the NBD module support in the Android kernel to allow the Android system to
attach block storage devices remotely. Using the available support for Waydroid, we
have established a bridge between Waydroid’s Android environment and the host
Linux system. This enables seamless data sharing between the Android and Linux
environments, allowing Android apps to interact with Linux files and vice versa.
It opened the door to remote data access for Android devices without using any
third-party applications in the user space. Users can also migrate Android app data
from one Waydroid instance to another or from one host system to another; NBD
can simplify the process by allowing you to transfer data over the network. But the
most important and noticeable attribute we have achieved is the expandable cloud
storage connected at the kernel level.

We can mirror Android systems running on remote servers and access them as local
devices if we implement Waydroid on top of Linux. This can be useful for scenarios
where you must maintain synchronized copies of Android systems across different
locations. We can also perform operations such as resizing partitions, creating file
systems and managing block devices on remote Android systems. By combining
Waydroid with the NBD module, you can create virtualized environments where
Android systems run on top of a Linux host. This can benefit testing, developing
and running Android apps on Linux.
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Chapter 3

Related Works

3.1 Background

Android devices offer a range of storage solutions to cater to different user needs.
Let’s discuss the existing storage options available on Android devices:

1. Internal Storage: Android devices typically come with built-in internal stor-
age, which is non-removable and used to store the operating system, system
apps, user data and installed applications. Internal storage provides fast ac-
cess to data and is usually available in different capacities, ranging from a few
gigabytes to several hundred gigabytes.

2. External SD Card: Many Android devices support expandable storage
through external SD (Secure Digital) cards. Users can insert an SD card
into a designated slot on the device to increase storage capacity. SD cards
come in various sizes and speeds and can store media files, documents and
other user data. However, not all Android devices support external SD card
storage, as some newer models may omit this feature.

3. USB On-The-GO (OTG): Android devices with USB OTG support can
connect to external USB storage devices such as USB flash drives, external
hard drives, or SD card readers using a USB OTG cable. This allows users
to access and transfer data between the Android device and the connected
external storage.

4. Cloud Storage Services: Android devices provide seamless integration with
various cloud storage services such as Google Drive, Dropbox, OneDrive and
others. Users can upload their files and data to the cloud, allowing convenient
access from multiple devices and providing an additional backup solution.
Cloud storage often comes with a limited amount of free storage, with options
to purchase additional storage capacity if needed.

5. Network Attached Storage (NAS): Android devices can access network-
attached storage devices on the local network. By connecting to a NAS, users
can access shared folders and files on the network, enabling centralized storage
and file-sharing capabilities.

6. Adoptable Storage: Introduced in Android 6.0 Marshmallow, the adoptable
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storage feature allows users to merge the device’s internal storage with external
storage (like an SD card) to create a single unified storage pool. This feature
treats the external storage as an extension of the internal storage, increasing
the overall available space.

It’s important to note that storage options’ availability and specific features can
vary across Android device models and manufacturers. The Android version and
device specifications may also impact the supported storage options.

In the modern era of technologies, hardware components are getting up to date
incessantly. For example, we get new components almost yearly to utilize the current
market demand. Multiple studies have been done regarding distributed component
sharing or sharing files over the internet. Moreover, as researchers always try to find
an efficient solution continuously for upcoming complex problems, after studying
multiple types of research and their limitations, we are proposing the HCaaS model.
Currently, everyone is fascinated by cloud computing. If we move back to our past
and find the limitations of that research, we can overcome those complex problems
with the latest technology. Furthermore, it is nearly impossible to demolish all the
challenges. However, we are only focused on improvising the sharing system of the
Hardware Component as a Service (HCaaS).

3.2 Taxonomy of NBD, Linux and Android

This section presents a taxonomy of NBD, Linux and Android studies. It encom-
passes various aspects such as storage expansion by the method based on Network
File System, storage expansion by the method based on File Transfer Protocol,
Storage expansion using Flash Storage, the usability of cloud storage on the server
side, the usability of cloud storage depending on users in different platforms, cloud
storage using SaaS, storage cache hierarchies in shared server farms, virtual ma-
chine migration via WAN, Linux based implementation, Linux vs. Android, x86 vs.
ARM, build-ability of NBD with higher performance, network storage protocols for
reduced protocol overhead, security and data privacy, I/O parallelism, user space
and kernel space, distributed source sharing, high-performance distributed systems
and loadable kernel module. These studies contribute to understanding NBD, Linux
and Android characteristics in different aspects, enabling better decision-making.

3.2.1 Android Storage System Expansion

In this section, we talk about different methods of expanding the storage systems of
Android, like network file systems, file transfer protocols and flash storage.

Storage Expansion by Method Based on Network File System: The
study [17] has proposed a solution for storage systems of mobile devices by im-
plementing RFS, a network file system optimized for wireless communication, on
Android and the cloud. The RFS file system that the authors have proposed is a
client-centric design that allows mobile devices to store files in the cloud. RFS uses
TCP/HTTP protocol, while NFS and Coda use TCP/UDP and UDP, respectively,
allowing RFS to transmit more packets than the others. The performance of RFS
is tested with Wired, WiFi and WCDMA networks over RFS, Coda and FScache,

20



where RFS performs better than the other two. The RFS is evaluated on an Asus
EeePC 1000H netbook that utilizes 1GB of memory and a 1.6GHz Atom processor
and is measured on Ubuntu Mobile. The privacy overhead is also evaluated over
WiFi, WCDMA and Wired networks, while Android booting is done over wired,
native, WCDMA and WiFi.

Storage Expansion by Method Based on File Transfer Protocol: This
study [18] proposes FTP4Android, an FTP client aimed to solve the limited storage
issue in Androids. With this system, users can upload, download, delete and create
folders for their data. Additionally, they developed a treasure hunt application to
demonstrate the usability of FTP4Android. With this, a user (the master) can use
the application in the remote file system to store a file (such as a clue, a treasure
map or a reward). To begin with, the file system root folder is already set up in
the application to be inside a localized folder that permits writing files and folders.
Subsequently, it is set up to use a specific set of remote FTP servers. However,
there is only one restriction: the FTP servers that are selected must support two
connections that are simultaneous at the least. Nonetheless, to perform operations
on each FTP server in the list of servers, a folder or directory is created to prevent
an inconsistent remote file system. Uploading files generates chunks of the file.
However, downloading files would create a download thread for each chunk. For
deleting, a thread is created to remove the specified chunks. Ultimately, using
threads is feasible to utilize all the uploading and downloading bandwidth fully. The
cons of FTP4Android depend on internet connectivity, the unavailability of a utilized
free server and inconsistency of the visualization in the file system. Furthermore,
the time it takes to download, upload or remove a file from the distant file system
is tested under two scenarios. One of them is when the quantity of fragments the
file is chopped into is varied. The other is when the quantity of threads in action is
varied.

Storage Expansion Using Flash Storage: The study [19] demonstrates
that several widely used applications, including Facebook, email, maps, Web surfing
and app installation, are affected by storage performance by implementing and thor-
oughly analyzing the I/O characteristics of device program on flash storage systems
and Android-based handset to tackle the storage performance issues. To conduct
this study, the authors created a measuring infrastructure for Android and modified
the Linux kernel to provide resource utilization data. Using MonkeyRunner, they
create a benchmark harness for automated testing of GUI-based apps. According
to their comparisons, SD cards’ “speed class” designation is not always a reliable
indicator of application performance. They also noticed higher overall CPU usage
for the identical application when using less speedy cards. The cause might be
traced to weaknesses in the network, storage subsystem, or both. Next, they found
that efficiency is achieved by imposing a modest quantity of knowledge in terms of
domain or application, for instance, in the occasion of test solutions. The intended
device should be attached to the host computer over TCP/IP or USB in the debug-
ging mode. Eight detachable cards with microSDHC, two from each of the four SD
speed groups and an internal, permanent flash storage were used for the experiment.
They performed tests with and without the measuring environment to determine the
overheads of the apparatus and discovered that the modifications only add less than
2% of runtime overhead. Program runtime performance, concurrent program, pro-
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gram launching and CPU metric consumption are used to conduct the experiments.
A glaring example emerged through what-if analysis: SQLite’s overbearing control
of program caches. Writing a cache map in the web browser to SQLite slows down
the writing of the caches significantly.

3.2.2 Storage I/O in Cloud Enviroment

This section discusses cloud storage and its usability on the server side and through
Saas. We also talk about storage cache hierarchies and virtual machines.

Usability of Cloud Storage on the Server Side: In this paper [17] different
usabilities of cloud storage are illustrated; for example, the files or RFS images that
reside in the mobile devices include user files (/usr/file) and system files (/bin/app)
which can be in the cloud storages. The RFS client interacts with the RFS server
that retrieves resources into a local cache to store the user information in the cloud
[17]. Unlike the close-to-open stability of MFS and LBFS, the suggested program
RFS inconsistently caches data until the user requests an explicit synchronization.
In the server model of RFS, features like cloud cache and adapter are implemented
to better map the performance characteristics in mobile device usage. The cloud
cache is a remote cache that amplifies the performance of accessing the file made by
mobile device users and the cloud adapter is a remote cloud adapter that hides the
cloud storage system interface variety [17]. On the other hand, the server of RFS is
directly set up on the cloud storage.
The following study paper [16] describes a mechanism for distributing resources un-
der the I/O borderline. This technology can be used on platforms that are very
different from each other. They have prioritized using a personal working environ-
ment with I/O peripherals so that users can use smartphones and PCs employing
different interconnections to make a fully personal Cloud. They have made the ini-
tial hardware resolution for smooth pro-migration PCIe I/O access for peripherals,
showing that the idea works and can make a big difference for the end user. They
have also examined the logic that can be combined for personal Cloud Experiences.

The following paper [14] talks about the vast amount of information/data provided
through cloud computing. This study discusses building a specialized resource-
sharing technique that allows cloud members to share I/O devices by designing
composable USB. A transferred application operating on the targeted host can access
the USB I/O devices on the source host, as the USB was created with a special
design. Moving VMs to various physical computers may change the pool of resources
thanks to the live VM migration functionality. This paper has also mentioned
virtualization technologies such as VMware Vsphere, Xen and KVM. They have
discussed one problem with sharing I/O peripherals: the necessary computing and
I/O resources might be on different physical machines. This is a case of resource
sharing that a basic migration can’t handle. A USB that can be folded and used
with personal cloud apps was made and tested to solve this issue. When a program
requires computing assets and I/O peripherals at several physical systems, pro-
migration IO sharing makes it easier for the cloud to arrange and assign resources.

Platform-Based Cloud Storage Usability: This study [27] investigates
the efficiency of data transfer and the system’s objects by looking at a dataset of
logs containing 349 million HTTP requests made by 1.1 million individual mobile
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device users within a wide-ranging storage service over cloud. Their analysis includes
sessions and burstiness where individual users’ inter-file operation times are modeled
by a Gaussian mixture with two components, one corresponding to insession intervals
and the other to intersession intervals. It also includes storage-dominated access
behavior, showing that mobile users seldom conduct both operations in a single
session. Instead, they solely store data files that occurred in 68.2%

Cloud Storage Using SaaS: This paper [34] proposes a system that helps
users to share device-oriented information and data with the help of a private cloud
and SaaS. This system primarily focuses on delivering information between different
devices where a website is available for the users to access their account and can
retrieve data such as missed call history, texts, battery status and GPS information.
An Android application is also integrated into the system to update the cloud and
web requests.

Storage Cache Hierarchies in Shared Server: In this research [10], a
novel method for managing application interference in shared server farms’ cache
hierarchies is presented. The authors designed and implemented a mechanism for
partitioning storage caches and the buffer pool dynamically online. To begin with, a
cache controller planted in the DBMS activates the segmentation of the two caches.
In addition, they wanted to assess the relationship involving cache allocation limit
settings and the resulting Quality of Service (QoS) for each program dynamically.
According to the authors, this paper aims to locate a configuration that enhances
the overall usefulness of a certain group of apps linked to the Service Level Objec-
tives (SLOs). Meanwhile, the RUBiS online bidding benchmark and the TPC-W
e-commerce benchmark are two applications that the authors of this paper uti-
lize in their tests. They employed these two applications and scheduled them to
employ a unified DBMS sample and the storage server. They also test the MySQL
database engine. Moreover, they contrasted two approaches: SHARED and IDEAL.
In SHARED, programs distribute the DBMS, the storage cache and the buffer pool
without quota implementation. On the other hand, in IDEAL, they experimentally
iterated through all feasible partitioning configurations of both caches. Through
this, they selected the best setting where they met the SLO for TPC-W. Besides, ap-
proximative performance models called application surfaces were constructed. One
reason is that mapping cache allocation limits the delay experienced by the pro-
gram and its corresponding utility for every program. It is also done as part of
an effective sel-executing hunt for the ideal cache with a tiers partitioning solution.
Another reason is that each program’s performance models are leveraged to answer
“what-if” cache segmenting instances for every app collection. Moreover, MySQL
utilizes Standard Linux system operations and drivers such as iSCSI or NBD (net-
work block device) to interconnect with the virtual storage device. In this study,
the authors alter the initial NBD processing module on the remote server, which is
utilized in Linux for virtual disk access, to alter the NBD data package into their
internal protocol packets.
This paper [13] works with an efficient multi-resource assignment method built on a
unified resource-to-performance design that takes into account pre-existing general
system knowledge and resource dependencies, such as those caused by cache re-
placement policies, the tracking of application and recording of baseline system are
documented on the internet. The authors demonstrated through experiments utiliz-
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ing a variety of common e-commerce benchmarks and simulated workloads that their
performance model is accurate enough to converge to a nearly ideal global partition-
ing solution quickly. The following disk schedulers’ performance isolation guaran-
tees have been built and compared: Start-time Fair Queuing (SFQ), Quanta-based
scheduling, Lottery-based, Earliest Deadline First (EDF) and Façade. The authors
continuously run two simulated workloads on the storage server: a small workload
(Workload-A) with one outstanding request and a big workload (Workload-B) with
ten outstanding requests. Without any notable changes to the DBMS and no specific
alterations to the existing interfaces between each component, the method used in
the study automatically establishes data quotas for each application in the database
and storage caches in a clear way. To achieve this, the authors track all I/O opera-
tions at the extent of the DBMS buffer pool and periodically sample the average disk
latency of each application in a baseline configuration in which the application is
given complete access to the disk bandwidth. The authors used a single-level cache
model to simulate the cache hierarchy. They specialized this model for the two most
widely used or suggested cache replacement policies: uncoordinated LRU and co-
ordinated Demote. The authors implemented access trace collecting and computed
the miss ratio curve (MRC) only at the buffer pool level to derive a comprehensive
resource-to-performance model. The virtual storage system prototype that makes
up the infrastructure (Akash1) is made to function on affordable hardware. Any
storage client, including file systems and database servers, can access data from
numerous virtual volumes with its support. It reads and writes logical blocks from
the virtual storage system by employing the Network Block Device (NBD) driver
already implemented in Linux [13].

Virtual Machine Migration via WAN: This paper [11] proposes a cutting-
edge storage access technique that significantly encourages live VM migration via
WAN. According to the authors, it frequently oscillates between VM disks between
the source and the destination having the minimum influence on Input/Output per-
formance. To begin with, the main problem with wide-area live migration is the
consistency of Input/Output operations in the virtual disks before or after migra-
tion. The suggested mechanism addresses this. So, the suggested mechanism func-
tions as a server dedicated to data storage for a block-level storage Input/Output
protocol (like iSCSI and NBD). The implementation prototype is known as xNBD.
In addition, the Linux kernel’s netem module was implemented between two distinct
networks to simulate a WAN scenario. To conduct this study, the configuration pa-
rameters were 120ms RTT and 100Mbps bandwidth. Moreover, a virtual machine
host node is connected to its storage server through a 1Gbps Ethernet connection
in the source and the destination’s local networks. Furthermore, after launching a
virtual machine (VM) that has 512 MB of memory and a 4GB virtual disk that is
formatted by ext3 from the source, a Linux kernel compile was started. Initially,
they began migrating the VM to the target site at a specific time. Then, the WAN
bandwidth was used for memory transfer traffic for about 80 seconds. In the end,
the VM at the destination site was restarted once memory migration was finished.
In conclusion, this paper is similar to our work utilizing Linux kernel and NBD
protocol. However, our work delves deeper into these subjects.

The following journal [25], the authors set up a multi-GPU-based management
framework that dynamically allocates cloud resources based on their needs. The
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authors made a GPU load balancing algorithm that uses DMLS-GPU (Dynamic
Multi Load Status) to determine how much work each GPU is doing and how much
it is being used. The architecture has three layers: the User layer, the Computing
Resources Service layer (CRS) and the Virtual Resource Management (VRM) layer.
Comparing physical GPU and virtualized GPU, the paper analyzed the performance
of virtualization, an evaluation of the ability to scale and an analysis of the system’s
performance. To sum up, the DMLS-GPU algorithm is suggested and AHP is used
to examine its parts. Soon, the corresponding change will be made to make the
system run more smoothly.

This research [4] demonstrates in detail how an operational computer, including the
state of its CPU, RAM, disks, registers and I/O devices, can be rapidly transferred
over a network using the metaphor of a capsule. Even though x86 capsules may hold
terabytes of disk data and hundreds of megabytes of RAM, x86 computer systems
have been chosen for transfer because they are common, inexpensive, can run the
apps used in this research and provide migration tools. A prototype system has
been used to illustrate these optimizations, which construct and execute x86 cap-
sules employing VMware GSX Server’s VM monitor that works with networks with
a 384 kbps maximum speed. A unified program uses serialization and the capsules’
flexibility to deliver client backup, hardware management and software administra-
tion. This study demonstrated a technique that transfers the state of a computer
across a sluggish DSL link in minutes instead of hours has been demonstrated in
this study and the experiments show that the capsules move over a 384 kbps DSL
link in a maximum of 20 minutes or less.

This study [8] demonstrates effective ways to create virtualization of the I/O subsys-
tems and peripheral devices. The authors of this study suggested a highly efficient
solution for I/O virtualization and the self-virtualized system method that is in-
tended for I/O virtualization to have higher performance. With the help of the
system’s internal processing data, the consistency in implementing SV-NIC ensured
great scalability and overall performance. It also allows flexible and effective map-
pings of virtualization features by adding self-virtualized I/O to the definition of a
self-virtualized device. The paper talks about The CDNA prototype and The OSA
network interface as examples of similar work that could be done. This study looked
at ways to make the system even better and more organized, such as substituting
micro-engine programmed Input/Output by employing DMA to make the upstream
VIF work better. This paper also improved TCP efficiency by employing TCP seg-
ment offload and deploying more support for large Maximum Transmission Unit
(MTU) sizes.

3.2.3 Difference Between Linux and Android

This section discusses the differences between Linux and Android, Linux-based im-
plementations and the differences between x86 and ARM.

Linux vs Android: This study [20] talks about the differences between Linux
and Android. The Android OS is structured over Linux and both kernels have strik-
ing similarities. However, there are differences in both kernels as many changes have
been made to the Linux kernel to build the Android kernel. Several modules have
been installed into or removed from the Linux kernel to make modifications. The
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authors discussed the changed files, including YAFFS2 (35 Files), a solid-state flash
memory chip and Goldfish (44 Files), an Android emulator that executes a virtual
CPU. It also includes Bluetooth (10 files), Scheduler (5 files), timed GPIO support,
New Android Functionality (28 files) whose subsystems are: IPC Binder that works
with higher-level APIs than the standard Linux, Low Memory Killer and Ashmem,
which is an Anonymous Shared Memory system. Further changes include RAM
Console, Log Device and Android Debug Bridge, all of which help in debugging.
Furthermore, other changed files are a better real-time clock (RTC), Miscellaneous
Changes (36 files), switch support, Power Management (5 files) which is the most
difficult part of getting right on a mobile device and finally, NetFilter. The authors
mention that a CPLD controls an Android device’s functions as several processes
being executed simultaneously inside an integrated circuit can communicate using
signals inside the CPLD. This study discusses loadable kernel modules (LKM) and
/dev/kmem device access technology. Advanced Configuration and Power Interface
(ACPI) and Power Management, are mentioned to manage the Linux system, where
the latter is used on the newer systems. However, Android uses Power Manager
instead of APM and ACPI. If an application needs a managed device to be powered
on, WakeLocks are run through APIs to execute this task. The power management
also includes monitoring the battery life of the devices.

The survey [12] also highlights the key distinctions between Linux for desktop, lap-
top and server systems and Android for mobile devices. To understand Android’s
architecture thoroughly, the authors looked at it from the bottom-up fashion. Sub-
sequently, broader topics like architecture, core design of the kernel, Java VM, stan-
dard C Library, power management and file system were focused on this study for a
better understanding of the Specifics of Android’s design. Android does not use the
standard Linux kernel even though it is based on Linux. Besides, YAFFS, the initial
Linux file system that is optimized for NAND flash memory, is used by Android.
Meanwhile, flash file systems don’t have seeking times like general-purpose disk file
systems do. However, they still have lifetime and error correction constraints. More-
over, a faulty file system can quickly cause the system to crash. So, mobile devices
that use YAFFS often tolerate significantly fewer file system problems. Also, the
authors compared the YAFFS flash file system with Ext3, which has 3 levels of
mounting (journal mode, ordered mode and writeback mode). According to the
authors, the fundamental differences between YAFFS and Ext3 are file accessibility,
block erasing and wear leveling technique.

Linux-based Implementation: To conduct this study [19], the authors de-
veloped a measuring framework for Android that consists of general firmware up-
dates and a Linux kernel that has been modified to provide resource utilization data
and shows resource utilization data on a modified Linux kernel 2.6.35.7 that are all
running on the handheld device.

In this Study [22], the authors implemented Tyche, which is implemented in the
Linux kernel 2.6.32. It is operated through the Ethernet and provides operations
similar to RDMA without hardware support from the network interface.

x86 vs ARM: The survey [12] works with the target architectures x86 and
ARM since both architectures are supported by Linux kernel and Android. The x86
family targets Mobile Internet Devices (MIDs). In contrast, the ARM infrastructure
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is more common in handheld devices

3.2.4 Different Implementations of Network Block Device

In this section, we discuss different ways of implementing and building more struc-
tures based on NBD, like using GFS, a higher-performance structure built on NBD
and reducing protocol overhead by using network storage protocols that utilize NBD.

Usability of NBD Using GFS: This study [3] focuses on GNBD on top
of Virtual Interface Architecture (VIA) and later tests the system on Linux-based
clusters of PCs. To begin with, GNBD is an enhanced version of the standard Linux
NBD that provides simultaneous access by different clients to a single block device
at a time. It is different from the standard Linux NBD (which we use in our study)
driver as it only works with an isolated client at a time. The intended NBD layer
the authors have selected is GNBD. It is because GNBD operating on top of VIA
enables the construction of a GFS over system area networks with VIA support.
Furthermore, the authors discuss alternative approaches to implementing GNBD,
such as simulating the IP layer on top of VIA, employing a Sockets layer from the
user side on top of VIA and utilizing a Sockets layer based on the Kernel. From
these, they preferred using a Sockets layer on top of VIA on the kernel level, as
this approach effectively exploits the VIA’s advantages. The KVIPL layer is an im-
portant element, allowing kernel codes to utilize the cLAN adapter and the clan1k
driver directly. However, an intermediate VCONN (VIA CONNection) layer is also
introduced as there has to be a notable change in the GNBD core to tweak GNBD
directly over the KIVPL. This study measures the bandwidth of file reading and
writing using EXT2 and GFS to evaluate GNBD by mounting them on GNBD. Ini-
tially, this study expands the KVIPL layer integrated into the VIA driver of Emulex
cLAN adapters to provide the identical selection of kernel-level APIs as VIPL. Then,
it creates an intermediary layer called VCONN that offers a set of kernel-level in-
terfaces that resemble Sockets over KVIPL. Next, it reduces GNBD’s need for code
modification while increasing performance using the VCONN layer. The testing was
done using TCP/IP over 100Mbps FastEthernet (FE) and LANEVI and VCONN
over cLAN and measuring the performance improvement of the file system using
Bonnie++. When comparing the performance findings, GNBD/VCONN outper-
forms GNBD/LANEVI and GNBD/FE regarding read/write bandwidth. Similar
to this paper, our study utilizes NBD on the Linux kernel to emulate local storage
through a remote server. However, we focus primarily on expanding the storage of
Android devices which was not the aim of this study.

Buildability of NBD with Higher Performance: This study [6] fo-
cuses on developing and implementing a high-performance networking block device
(HPBD) that utilizes InfiniBand fabric. The HPBD is a exchange device that is
used by virtual memory (VM) system of the kernel. It makes the page transfers
between distant memory servers very efficient. The design of the HPBD is based
on the network block device (NBD) framework. The present work presents the
concept of remote paging. This technique automatically includes remote memory
within the local memory hierarchy, specifically between the main memory and disk.
They make a comparison of a design on top of the kernel with a design built on top
of the user level, where the kernel-level design is deemed more advantageous than
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the other since kernel-level design evades the problems of user-level design, such as
pages continuing to be disk pages by the underlying OS, The basic implementation
method for the memory protection system having a substantial overhead and user
space design only being advantageous to apps using the library and is not entirely
application transparent. A kernel module implementation can also lead to portabil-
ity between several platforms. The kernel-based approach requires the support of
asynchronous communication as most OSes do not support preemptive kernel mode.
They utilize VAPI’s thread safety functionality and the verb interface supplied by
their InfiniBand stack and prefer RC service as the network transport.

Network Storage Protocols for Reduced Protocol Overhead:

In this study [22], the authors introduce Tyche, a storage protocol connected on the
network that runs on top of an Ethernet connection and offers functionality identical
to RDMA, which also does not necessitate hardware assistance from the interface
aimed at network connectivity, along with its design, implementation and evaluation.
As claimed by the authors, Tyche effectively handles NUMA affinity, pre-allocates
memory and can effectively minimize host overheads by mapping Iuput/Output
requests to network messages. To reduce synchronization, it isolates the thread pro-
cessing context and the primary structures (rings and memory buffers), normally
shared over today’s protocols. According to the findings of this paper, for sequen-
tial reads and writes Tyche can reach up to 6.4 GB/s and 6.8 GB/s, respectively on
6x10 Gbits/s network devices. The findings also demonstrate that NUMA affinity
must be considered for maximum throughput and scalability. If not, throughput
can decrease by up to 2x. A single packet is utilized by an I/O request/completion
message. Tyche uses two distinct queues already assigned, one for data messages
(damq) and one for request messages (remq), to lessen the burden of memory man-
agement. Tyche picks one connection at the initiating side for every up-to-date
Input/Output request. Through this connectivity, it receives a dm-ID in the damq
and an rm-ID in the remq. When it comes to the topic of synchronization, multiple
threads can send requests at once through the send path and As a result, Tyche
synchronizes the access for the NIC as a whole, along with queues and rings. The
block layer employs a set of mutexes on top of the initiator for access to remq and
damq that is not shared. In the receiving process, a lone thread handles unresolved
occurrences and processes the received rings while network threads query NICs si-
multaneously for events to be received. This reduces synchronization. To minimize
overhead regarding the management of memory when transmitting or accepting data
files and transmitting Input/Output requests to the receiver device, Tyche employs
pre-assigned remq and buffer pools. The pre-defined pages are utilized at the target
to send and receive data and issue regular Input/Output requests to the storage
device. Network Interface Controller (NIC) positioning on server sockets, kernel
Input/Output and Network Interface Controller (NIC) data buffers, protocol data
structures, and application buffers are the four components of the I/O path con-
nected to NUMA affinity. The first method used in this experiment, kmem-NIC
affinity, assigns every page, data structure of each connection, rings, kernel buffers
and NIC pages in a specifically configured node of NUMA. The second of the two
is full-mem affinity, which combines affinity at the Input/Output request level with
the first method mentioned. The study employs a TCP/IP-based Tyche and the
widely used software-only NBD (Network Block Device) for accessing external stor-

28



age. Two systems, initiators and targets, are connected consecutively using various
NICs to form the experimental platform.

3.2.5 Security And Data Privacy

This section talks about the papers that deal with security and data privacy.

This study [17] focuses on data privacy as cloud hosting companies may monitor
personal data stored by users in the cloud storages legally or illegally, resulting in
privacy concerns. The system RFS allows one user to control access to all the files
stored in the cloud and to decide which data they want to encrypt, while the RFS
client software gives protection and synchronizes data with the RFS servers across
the internet.

The study [24] proposes a Secure Block Device, a solution to ensure data privacy
for data at rest. A TA with simple block storage is implemented that uses the SBD
method to store blocks. Authenticated Encryption (AE) working with a Merkle-
Tree is implemented to this system. SBD supports applications that need quick and
reliable random block access to data instead of applications that require a full-scale
file system. The SBD method was proposed for Trusted Applications operating with
Trusted Execution Environment (TEE) on an ARM TrustZone.

This study [18] suggests significant benefits to breaking up files into smaller segments
to transfer files to the server. One of the benefits is allowing users to select multiple
servers from various providers. However, they do not have to worry that they will
have all the pieces necessary to reassemble the original file. Thus, preventing others
from accessing user content, helps safeguard their privacy

3.2.6 Other Topics Regarding NBD, Linux and Android

This section discusses concepts like I/O parallelism, loadable kernel modules and
the contrast between user and kernel spaces.

I/O Parallelism: The article [19] proposed a solution to utilize the I/O par-
allelism already present on the majority of phones. That is a flash drive that is an
internal device and an SD card deemed external. The Input/Output operations are
stripped to the RAID-0 devices segmented into 4KB blocks; they created a straight-
forward software RAID driver for Android. the SQLite interface alterations or the
programs are the solution source. They propose that a data-centric Input/Output
interface may allow the developer to recount the Input/Output requisites involving
its coherence, reliability and the characteristics of the data files with no need to
be concerned about the storing manner. For instance, a key-value store designed
specifically for cache data files does not require super high reliability. It is said that
SQLite, as its Web cache, cannot utilize the key-value store cache as effectively as
the web browser does.

Loadable Kernel Module : The study [17] talks about the client side of
RFS being implemented as an LKM or Linux kernel module and the components
that require higher performance (for example, the local cache storage and metadata
manager) are implemented into the kernel. The NBD module we implemented in
our study is also a Loadable Kernel Module (LKM) similar to RFS.
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User Space and Kernel Space: This paper [7] suggests implementing user
space applications, which are commonly assigned in the user spaces in the kernel.
Applying a network program that works in the Kernel space opens the door to
removing the redundant process between the operating system kernel and the user
buffer. A total of 3 test scenarios were conducted in this paper, where the first test,
a sample code, is altered to achieve the clock ticks needed to execute system calls.
For the second and third test scenarios, UDP applications are implemented in kernel
and user spaces to evaluate. The results show that implementations in the kernel
space decrease CPU load because of the prevention of constantly shifting between
the kernel and user spaces. Even after the positive outcomes, there can be risks of
security breaches and instability, for which the authors suggest implementing I/O
operations within kernel spaces only during critical performance issues.

Distributed Source Sharing: The research work [36] explains distributed re-
source sharing where the authors have presented an information services architecture
that handles the requirements of performance, security, scalability and robustness
of the grid technology-based system. Their architecture followed MDS-2, a part
of the widely deployed and applied Globus Grid Toolkit. Grid Information service
requires few constraints, such as distributing information providers throughout the
system, Managing failure and Diversity in information service components. They
have implemented the system following MDS-2.1 Protocol Engine, GSI-Single sign-
on for security, Information providers GRIS and aggregating the directories with
GIIS. This debate made it quite evident that there are many similarities between
our GRIS and GIIS systems. An LDAP front end is a protocol processor, authenti-
cating users and filtering results. As part of the Globus 1.1.3 software release [36],
their version of this infrastructure, named MDS-2, has been employed in many sev-
eral ways. They are working hard to make push techniques based on subscriptions
and access control strategies that are more complicated.

High-Performance Distributed Systems: According to the research work
[38], working with High-Performance Distributed Systems can be challenging for
many programmers, as they observe various types of performance problems during
the implementation of HPDS. Figuring out what’s going on in this complicated sys-
tem would help understand the performance problems along with finding out ways
to characterize the problems. In this paper [38], a method called NetLogger was
employed to detect complications in networks and distributed systems. Instead of
changing the applications from top to bottom, this performance characterization ef-
fort tries to make very speedy components that can be employed as support materials
for high-performance programs. This paper also discussed other research projects
dealing with network performance analysis. These projects include packages like
Pablo, Paradyn and Upshot. In this paper, it is said that the NetLogger approach
is unique because it combines network-level monitoring with application-level mon-
itoring. Using NetLogger to find and fix performance problems using real-time data
analysis automatically will be studied more in the future.

Hardware as a Service (HaaS): This paper [21] deals with the concep-
tual basis of using hardware as a service where they have implemented the idea
as a middle-ware named Cloud-Disco (Cloud for Distributed Collaboration of Au-
tonomous Organizations). The core idea was to create a distributed cloud for shar-
ing hardware components virtually connected to the machine or embedded systems.
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The Cloud-Disco software has three layers: The service layer, which has a Cloud
Manager module. Its purpose is to control the overall operation of the local system.
The next layer is the middleware layer, divided into a few sub-modules. The Cluster
Controller (CM) handles the process of selecting computers or servers that are eager
to store their data files in the cloud. The Hardware Provider Host (HPH) can access
the locally connected hardware. With the help of Hardware Consumer Host (HCH),
the end users can use the resources provided by the upper layers. In HCH, the Host
Controller (HC) creates the virtualized hardware for end users. Then, in the last
layer, which is the communication layer, the Bus Communication Controller (BCC)
or the Direct Communication Controller (DCC) [21] starts according to the needs of
the end user, which the HPH or HCH determines. The application of Cloud-Disco
was applied in integration testing and system testing. In integration testing, they
have emulated specific hardware for a device. It would give more time to the devel-
opers to develop the driver for that specific hardware. Furthermore, it also helped
to test systems for automobiles’ ECU (Electronic Control Unit) section for brakes
and speed adaptability with the help of sensors.

The related papers provide valuable insights into NBD’s design, performance and
applications in various contexts, including virtualization, cloud computing and disk-
less systems. They shed light on the benefits and considerations when utilizing NBD
for remote storage access, distributed computing and optimizing utilization of re-
sources.
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Chapter 4

Methodology & Security
Architecture

Linux’s Network Block Device (NBD) protocol is a kernel module that allows access
to block devices over a network. The “modprobe” command can load this module,
which is present in most Linux distributions [1]. The “nbd-server” command, which
enables the user to specify the block device to be exported along with the IP address
and port number to listen on, can export a block device over the network after
loading the NBD kernel module [3]. The “nbd-client” command lets the user specify
the IP address and port number of the NBD server and the local mount point for
the block device can be used to access the NBD block device on the client side.
Remote machines can access block devices as if physically connected to the local
machine once the NBD block device has been mounted and is usable in Linux like
any other block device. NBD performs better than iSCSI and can maintain a stable
throughput in the case of read and write operations even with the change of numbers
of NIC ports [22]. This offers a versatile and effective method of managing storage
resources.

Figure 4.1: NBD Use Case Scenario
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Users can resize or create partitions, create a file system (like a local file system)
and also create btrfs/zfs/glusterfs storage pools while using a storage device that
has been mounted via NBD. Operations from the client on /dev/nbd0 will have
the same effect on the server as they would if you were running them locally with
/dev/sda as the target as long as the export that the client is using at /dev/nbd0
is mapped to a device like /dev/sda on the server.

Android is built on the Linux kernel [12]. That said, the Android kernel is very
similar to the Linux kernel in architecture and functionality. The Unix operating
system is the foundation for both kernels, sharing similarities in many ways. The
Android kernel is a customized Linux kernel tailored for portable electronics. Pro-
cess management, memory management and device drivers are just a few similarities
between it and the Linux kernel’s features and functionalities. Mobile-specific fea-
tures like power management and support for touchscreens and other input devices
are also included.

One of the key similarities between the Android kernel and the Linux kernel is
their open-source nature. Both kernels are released under open-source licenses.
So, it means their source code is freely available for anyone to view, modify and
distribute. This has led to a large community of developers and contributors who
work to improve and enhance the functionality of both kernels. Overall, the Android
kernel is very similar to the Linux kernel in architecture and functionality. However,
it includes additional features and optimizations specific to mobile devices.

The Android platform has been further developed with several libraries and the
Linux kernel to enable complex functionality. These libraries were sourced from
numerous open-source projects. The Android team created its own C library to
deal with licensing issues. The “Dalvik Virtual Machine” is a Java runtime engine
they developed that has been optimized for mobile platforms with limited resources.
Finally, the application framework was created to provide system libraries to end-
user applications concisely.

This methodology provided a comprehensive approach for connecting to an NBD
server and accessing the exported block device from a client machine. The instal-
lation of necessary packages, connection establishment, block device operations and
subsequent disconnection were carried out systematically. Adhering to this method-
ology enabled successful interaction with the NBD server and utilization of the
exported block device on the client side.

4.1 Client-Server Architecture

The NBD (Network Block Device) protocol highlights the client-server architecture
within the computer networking domain. A remote server communicating with the
client (typically an Android device) running Linux provides the storage resources
under the following framework. NBD allows access to data over a network by treating
remote block devices as locally attached, providing a highly efficient data access
method.

After successfully connecting to the NBD server, the client will begin communi-
cating with it by actively listening for requests. After successfully establishing a
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connection between the client and the remote storage, the client can request spe-
cific data blocks from the remote storage. After that, the server will obtain the
requested data blocks from the client end and send those blocks throughout the
network. The benefits are the ability to boot from a diskless image, virtualization
support and distributed storage system support. Nevertheless, the NBD protocol
uses a client-server architecture, which encourages modularity, scalability and cen-
tralized management. Consequently, it is an adaptable option that may be used
for a wide variety of storage and data retrieval cases in settings connected to the
internet.

4.1.1 Client

The process of integrating the NBD (Network Block Device) device with the An-
droid OS needs a set of procedures aimed at achieving smooth integration and
implementing access control measures. An NBD (Network Block Device) device will
be eventually connected to the Android kernel space using the NBD client mod-
ule. This module provides a seamless communication interface between the Android
device and remote storage. It enables developers to retrieve and easily manipulate
data over a network connection by recompiling the NBD kernel module as LKM and
loading it using an on-demand request created by Android Daemon.

Android Application

System Call

Native FS Call Native NDK Call

Partition Table Handler Android Library

Static 
Definition

Symlinked 
Definition Linux 

Implementation

Storage 
Module

NBD Client 
Module

Network 
Stack
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Figure 4.2: Client Architecture
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Following the 4.2 figure, after successfully integrating the NBD device into the ker-
nel space, the subsequent task involves mounting it as a directory on the system
partition. The system partition is under the “/system/mnt” directory in the Linux
layer, where the Android operating system usually houses critical system files and
configurations. By mounting the NBD device in this location, it can be integrated
into the Android system, enabling it to acquire the essential privileges and access
rights required for smooth operation within the OS environment.

A symbolic link (symlink) is created from the system partition to the user data par-
tition in “/etc/fstab” entry to achieve regulated user access to the mounted NBD
device. The symlink bridges the NBD device’s contents and the user data area,
following the DAC (Discretionary Access Control) definitions. In the Linux and An-
droid development environments, adhering to the principles of DAC (Discretionary
Access Control) is essential. The DAC principle ensures that users have the nec-
essary control over their objects. By establishing a connection between the NBD
(Network Block Device) and the user data partition, Android users can effectively
manage access control for the data stored within the NBD device.

Nevertheless, it is crucial to acknowledge that if the NBD device fulfills a function
beyond storage, it can still be accessible to Android users via native system calls
using Android NDK. It enables seamless interaction between the Android system
and the NBD device’s functionality, circumventing conventional file-based access
approaches. The ability of Android to effectively handle NBD devices allows for
seamless integration and utilization of various remote resources, such as storage
devices or specialized functionalities, in alignment with MAC principles. It greatly
enhances the flexibility and utility of the Android operating system.

4.1.2 Server

When exposing a hardware device via a network stack using the Network Block
Device (NBD) module, we must design an architecture properly to ensure the data’s
integrity, the system’s security and the user’s ability to restrict their access. The
steps involved in this process are essential in their own right.

The NBD module establishes the connection between the hardware device and the
network. It creates a link between the actual hardware and remote users. We set
up the server with multiple layers to protect technology and data. In this setup,
we set up an interface with the “/dev” (device) directory to make a virtual version
of the actual hardware device. The virtual hardware layer acts as a safety measure
by protecting the actual hardware from direct network interactions. It makes it less
likely that physical damage will happen.

We set up a security abstraction in the virtual hardware layer. This layer has strict
access controls and strong authentication and authorization methods built into it.
This method 4.3 improves security by making it harder for unwanted people to get
in and making the system more secure.

The integration of a load balancer enables efficient resource optimization and traffic
distribution by selecting the most appropriate virtual hardware instance from the
pool of newly created virtual hardware devices. Dynamic allocation in Linux and
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Figure 4.3: Server Architecture

Android development is a crucial aspect that guarantees optimal resource utilization
and prevents any individual instance from being overloaded.

We implement a User Access Control (UAC) mechanism to bolster security further.
This mechanism enables the controlled exposure of the socket address, granting
authorized users or clients access to connect and interact with the hardware device
through the NBD protocol while curtailing access for unauthorized users.

Our approach revolutionizes the hardware device into a securely accessible network
asset. The layered architecture, security abstractions, load balancing and UAC
mechanisms in Linux and Android development collectively guarantee the preser-
vation of data integrity, strict access control and efficient resource management.
Remote users can securely establish a connection and engage in interactions with
the hardware device, ensuring the preservation of the integrity and security of the
underlying physical hardware infrastructure.

4.2 Security Architecture

In designing a security architecture that incorporates both the VFS (Virtual File
System) layer for physical device damage protection and TLS (Transport Layer
Security) with NBD (Network Block Device) for data security, we can create a
robust and layered approach to safeguarding sensitive information. Let’s explore
this architecture 4.4 in detail.
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1. Physical Device Damage Protection with VFS Layer: The VFS layer
acts as an abstraction layer between the operating system and various file
systems, providing a unified interface for file operations. In physical device
damage protection, a virtual device node must be created and provide clear
instructions on sanitization to implement additional security measures. For
example, abstraction tools like “dd” can create an image of the original block-
level storage device to represent a virtual storage device. On the other hand,
tools like “mknode” can be used to create a virtual device file representation
of the actual one to implement the Security Policy Language (SPL) in a log-
ical approach by using DAC or MAC. Here are some key components of this
architecture:

• Filesystem Encryption: The VFS layer can support encryption mecha-
nisms to ensure that data stored on the physical device remains protected
even if the device is compromised. This can involve encrypting file data
at rest using strong encryption algorithms, making it unreadable without
proper decryption keys.

• Access Control: The VFS layer can enforce access control policies to
limit unauthorized access to sensitive files. This includes implementing
file permissions, user/group-based access restrictions and auditing mech-
anisms to track file access and modifications.

• Filesystem Integrity: By implementing checksums or digital signa-
tures, the VFS layer can verify the integrity of files on the physical device.
This helps detect tampering or unauthorized modifications to the files,
providing additional protection against physical attacks.

2. Data Security with TLS and NBD: To ensure secure communication and
data protection over the network, TLS can be used with NBD. This combi-
nation establishes a secure channel for transmitting data between the NBD
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client and server. TLS is natively supported in NBD [3]. Here’s how this
architecture can be implemented:

• TLS Encryption: TLS encrypts data in transit, preventing eavesdrop-
ping and unauthorized access to sensitive information. By configuring
the NBD server and client to utilize TLS, all data transmitted over the
network is encrypted, ensuring its confidentiality.

• Certificate-based Authentication: TLS utilizes digital certificates for
authentication. The NBD server can be configured with a trusted certifi-
cate and the client can verify the server’s identity using the certificate’s
public key. This mutual authentication ensures the integrity of the con-
nection and protects against man-in-the-middle attacks.

• Data Integrity: TLS also ensures data integrity by using Cryptographic
algorithms, such as message authentication codes (MACs), to detect any
tampering or modification of the transmitted data. This guarantees that
the data received by the NBD client is the same as what was sent by the
server, assuring data integrity.

3. UAC and Session Management: A User Access Control (UAC)-enabled
server architecture is a vital part of handling NBD (Network Block Device)-
exposed devices well, giving users precise control over their access and making
session management easier. This robust architecture ensures that only autho-
rized people can get customized access to NBD devices, making the best use
of resources and improving security. With UAC in place, you can set up fine-
grained access rules that say which users can connect to which NBD devices,
what they can do and for how long. This level of control is very important
for businesses because it lets them build flexible service models around NBD
that can be changed to fit their needs. Companies can offer different access
plans and charge users based on how much they use, how much storage space
they need or how long their sessions last. Thus, a thriving business ecosystem
can emerge, providing diverse services and monetization opportunities in NBD
while ensuring that data remains secure and accessible only to those with the
appropriate permissions.

• Granular User Access Control: UAC allows for fine-grained control
over user access to NBD devices. Server administrators can define spe-
cific permissions and restrictions for each user or group, ensuring only
authorized individuals can connect to and interact with particular NBD
resources. It enhances the security and data protection of access control.

• Session Management: UAC also facilitates efficient session manage-
ment for NBD connections. Administrators can set session timeouts,
ensuring that users are automatically disconnected after a defined period
of inactivity. It helps to make the most of the system’s resources and
prevents all unauthorized access due to forgotten or unattended sessions,
making the system more efficient.

• Customized Service Plans: Businesses can make service plans that
fit the needs of each customer with UAC. They can give different levels
of access, storage space, or data transfer rates, which makes it possible
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to use different ways to make money. This flexibility allows the creation
of services based on subscriptions, pay-per-use models, or tiered pricing
systems, which opens up more ways to make money.

• Auditing and Logging: UAC architectures have tracking and logging
features. So, every time a user interacts with an NBD device, it records
it. This makes it possible to see an entire history of access and opera-
tions. These logs are helpful for compliance, fixing and security analysis,
ensuring everything is precise and everyone is responsible.

• Scalability and Resource Optimization: As users grow, computers
with UAC can quickly scale up to meet the growing demand. Adminis-
trators can give resources to users based on their entry levels and needs.
This makes sure that the resources are used in the best way possible.
This improves the user experience and allows companies to change and
grow their NBD offerings as their customer base changes.

By implementing this comprehensive security architecture, Android devices can ben-
efit from enhanced data security and privacy. Combining the VFS layer’s physical
device damage protection mechanisms and TLS with NBD’s secure communication
ensures that sensitive information is protected against unauthorized access, tamper-
ing and interception. This robust security framework establishes a strong foundation
for secure data sharing and storage within Android devices, fostering trust and con-
fidence in their ability to handle sensitive data securely.
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Chapter 5

Implementation

5.1 System Specification

The experimental setup consists of a server, a network device and a client. Here are
the hardware components used in each part:

5.1.1 Server

• Processor: Intel Core i3-8130U. This is a dual-core, four-thread processor
commonly found in laptops. It has a base clock speed of 2.2 GHz, up to
3.4GHz in turbo and supports hyper-threading.

• RAM: 12GB. The server is equipped with 12 gigabytes of random-access
memory (RAM), which provides temporary storage for data and program in-
structions.

• Storage: 128GB M.2 SATA III SSD. The server utilizes a solid-state drive
(SSD) with a capacity of 128 gigabytes. The M.2 form factor and SATA III
interface ensure fast data transfer rates and efficient storage performance.

• Network Connectivity: The server is connected to the network using a local
area network (LAN) connection. We have used an IEEE 802.11 b/g/n wireless
PCIe NIC card as the network interface.

5.1.2 Network Device

• Archer C20 Router: We have used the Archer C20 Router as the network
device in the setup. It has an IEEE 802.11 ac-2013 with a 2.4 GHz and 5GHz
bandwidth network interface. It is a consumer-grade wireless router commonly
used in small environments.

5.1.3 Client

• Processor: We used an Intel Core i7-8750H which has six-core, twelve-
threads. It has a base clock speed of 2.2 GHz, can go up to 4.1GHz in turbo,
and supports hyper-threading.
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• RAM: 16 GB. The configured server is equipped with 16 gigabytes of RAM.

• Storage: 128GB M.2 SATA III SSD. The server utilizes a solid-state drive
(SSD) with a capacity of 128 gigabytes.

• Network Connectivity: The server is connected to a local area network
(LAN) connection. It is an IEEE 802.11 b/g/n wireless PCIe NIC card.

Overall, this experimental setup portrays a server with an Intel Core i3 processor,
12GB RAM and a 128GB SSD connected to the network via LAN. The client has
an Intel Core i7 processor, 16GB RAM and 128GB SSD via Wi-Fi. An Archer C20
Router is used as the network device.

5.2 Configuring the Server

The methodology section outlines the detailed steps to set up an NBD server on
Ubuntu 23.04. The objective was establishing a server configuration capable of
exporting block devices over the network. The following procedure 5.1 explains the
process of installing and configuring the NBD server, ensuring its automatic startup
and verifying its status:

VFS Security Layer

Linux Kernel

Hardware Stack

NBD
Module/dev fs

Hardware Pool

Server Software

Figure 5.1: Implemented Server Architecture

5.2.1 Package Installation

The initial step involved updating the package repositories to ensure the latest soft-
ware versions were available. The command is is executed to perform the update.

sudo apt update

Following that, the “nbd-server” package is installed from the official Ubuntu 23.04
repository using the command

sudo apt install nbd-server

5.2.2 NBD Server Configuration

The configuration file for the NBD server is accessed and modified to define the
exported block devices and specify access permissions. The file is located at
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/etc/nbd-server/config

The command was used to open the configuration file in the nano text editor.

sudo nano /etc/nbd-server/config

This section was identified within the configuration file. This section provides
the opportunity to define the block devices that are exported. The line “export-
name=exportdevice” was uncommented and updated to define an export. For in-
stance, the line “/dev/sdb” referred to the block device that would be exported.
Using the exportname argument, the desired export name, such as “nbd1” was
also assigned. It was ensured that the block device’s right path on the server was
provided; therefore, care was taken with it. After the changes were made, the con-
figuration file was saved by hitting ”Ctrl + X,” then ”Y,” and finally ”Enter”.

5.2.3 Automatic Startup

To ensure the NBD server starts automatically during system boot, it can be con-
verted into a systemd unit using the command

sudo systemctl enable nbd-server

was executed. This command added the necessary system startup links for the NBD
server service.

5.2.4 Server Start

The NBD server was initiated using the command

sudo systemctl start nbd-server

This command started the NBD server service, allowing it to listen for incoming
connections.

5.2.5 Server Status Verification

The status of the NBD server and the exported block devices were verified using the
command

sudo nbd-server -s

This command summarized how the server was running, including information about
which block devices were exported and what their export names were. With this
command, you could ensure the NBD server had started up properly and that the
exported block devices were set up correctly.

With this all-in-one method, setting up an NBD server on Ubuntu 23.04 was easy.
The right packages had to be installed, the NBD server had to be set up, automatic
startup had to be turned on, and the server’s state had to be checked to ensure it
worked. This method ensured block devices could be sent over the network without
damage.
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5.3 Configuring Client

The methodology part explains how to use a client machine to connect to an exported
block device. This is done using the architecture shown in the picture 5.2. The steps
explain how to install the necessary client packages, how to connect to the NBD
server, and how to work with an exported block device:

5.3.1 Package Installation

The next step was to install the appropriate packages on the client system. The
command installs the “nbd-client” package, which has the necessary tools to connect
to the NBD service.

sudo apt install nbd-client

5.3.2 Client Connection

To get access to the exported block device and successfully connect to the NBD
server, you need to run the “nbd-client” tool. The format of the order was as
follows:

sudo nbd-client <server_ip> <export_name> /dev/nbd0

The IP address or username of the NBD server was put in place of the <server ip>.
The placeholder <export name> was replaced with the exact export name set up
on the server. This made it possible for the client to find the desired block device.
“/dev/nbd0’ showed which local device on the client machine would be used to
access the exported block device.

5.3.3 Block Device Operations

Various operations could be performed once the block device was successfully mounted
on the client. For instance, the “mount” command could mount the block device to
a designated directory. The following command demonstrates this operation:

sudo mount /dev/nbd0 /mnt

In the command above, “/dev/nbd0” represents the exported block device, while
“/mnt” is the target directory for mounting. Adjustments to the mount point may
be made as per the specific requirements.

5.3.4 Unmount and Disconnect

When the usage of the block device is complete, it needs to be unmounted be-
fore disconnecting from the NBD server. The ‘umount‘ command facilitates the
unmounting process:

sudo umount /mnt

In the command above, “/mnt” refers to the mount point where the block device
was previously mounted. After unmounting, it is crucial to disconnect from the
NBD server using the “nbd-client” command:

43



sudo nbd-client -d /dev/nbd0

The -d option specifies the termination of the NBD client connection, ensuring a
clean disconnection from the NBD server.

5.3.5 Waydroid

To harness the potential of NBD from the Linux Layer to the Android Layer, we
need to install Waydroid on our Ubuntu machine. First, we must install “curl” &
“ca-certificates” if not present.

sudo apt install curl ca-certificates -y

After that, we have to add the repository.

curl https://repo.waydro.id | sudo bash

Finally, we have to install Waydroid using the following command.

sudo apt install waydroid -y

Dynamic Partition 
Scheme

Waydroid

Linux Machine

Linux Kernel with NBD

Android Application

Android Runtime Linux Transition Layer

NDK ResolverNDK Resolver

Figure 5.2: Implemented Client Architecture

5.3.6 Symbolic Linking for Dynamic Partition

To use the NBD device inside Waydroid’s Android Runtime environment, a Symlink
must be created between the NBD storage mount point and Waydroid’s system
partition. The rest of the steps will be aligned according to the methodology.

To create the Symlink, the command is,

ln -s /mnt/nbd-mount-point /waydroid-rootfs/mnt/sdcard/mydata

To verify the Symlink, we need to use the following command,

ln -l /waydroid-rootfs/mnt/sdcard/mydata
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Chapter 6

Experimental Evaluation

The primary objective of this paper is to comprehensively evaluate the performance
of Network Block Devices (NBD) in Android devices when connected to a server.
We specifically focus on utilizing Android devices as the client device.

To address the persistent issue of limited storage capacity in Android devices, we
propose the inclusion of NBD as a default feature, supplemented by a translation
layer that facilitates communication between NBD and various storage protocols.
We compare NBD with several prominent storage solutions for our evaluation, in-
cluding the HTTP translation layer, SFTP, NFS, SMB, Google Drive, Dropbox,
OneDrive, GCP and local storage.

We look at a wide range of performance metrics to determine how well these storage
options work. These metrics include the read sector, write sector, write file system,
build file system, change position table, mount ability, and random access level.
By looking at these metrics, we hope to learn more about how each storage option
works, how reliable it is, and how fast it is in different situations.

Through our study, we hope to show that adding NBD to Android devices is possible
and could have benefits. We compare NBD to the other storage solutions listed above
and show how it is better regarding read and write speeds, file system operations,
data management, and general performance. This study will help us make a strong
case for making NBD a default feature in the Android kernel. This would solve the
low storage problem and make it easier for Android devices to connect to network-
attached storage (NAS).

Using the Android device as a client, we make a useful and real-world evaluation
setting. The results of this study will help Android become a more powerful NAS
client that can work well with a wide range of storage solutions. Ultimately, we
want to discover things that will help Android devices get better at storage, user
experience, and general performance.

6.1 Configuration for Performance Test

A thorough testing method was used to determine how well the NBD communication
route worked and how well it worked. The tests included measuring the speed of
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read sectors, write sectors, read file system (FS), and write file system (FS) and
testing the ability to mount and do random access on the NBD communication
channel. The following actions were taken:

6.1.1 Preparation

1. NBD server was set up in the methodology.

2. NBD client was set up in the implementation.

3. NBD server and client were connected over the network to establish commu-
nication.

6.1.2 Bandwidth Test for Read Sectors

The bandwidth of reading sectors from the NBD communication channel was mea-
sured by executing the command

sudo dd if=/dev/nbd0 of=/dev/null bs=1M count=1000

6.1.3 Bandwidth Test for Write Sectors

The bandwidth of writing sectors to the NBD communication channel was measured
using the command:

sudo dd if=/dev/zero of=/dev/nbd0 bs=1M count=1000

6.1.4 File System Test for Read FS

1. A mount point directory was created on the client machine

sudo mkdir /mnt/nbd

2. The NBD communication channel was mounted to the created mount point

sudo mount /dev/nbd0 /mnt/nbd

3. Data was read from the mounted NBD file system using various file manipu-
lation commands, such as ls, cat, or cp. For example

ls /mnt/nbd

cat /mnt/nbd/file.txt

cp /mnt/nbd/file.txt /tmp/

6.1.5 File System Test for Write FS

1. A test file was created on the client machine for writing to the NBD file system.
For instance:
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echo "Test data" > /tmp/test.txt

2. The test file was copied to the mounted NBD file system:

cp /tmp/test.txt /mnt/nbd/

6.1.6 Mount and Random Access Test

Random access operations, such as reading and writing specific sectors or files,
were performed on the NBD communication channel. The response time for each
operation was measured. For example, the following commands were executed to
read and write specific sectors:

sudo dd if=/dev/nbd0 of=/dev/null bs=1M skip=1000 count=10

sudo dd if=/dev/zero of=/dev/nbd0 bs=1M seek=2000 count=10

6.1.7 Cleanup

The NBD file system was unmounted with the command:

sudo umount /mnt/nbd

The client disconnected from the NBD communication channel, concluding the test
procedure.

By following this comprehensive methodology, the performance and functionality of
the NBD communication channel were thoroughly examined.

6.2 Comparative Analysis

In the part of the study that deals with contrasts and evaluations, we have divided
it into three subsections for clarity. Each of these subheadings aims to shed light on
a particular facet of the overall functionality and performance of the Network Block
Device (NBD) solution that is of particular importance. These three subsections
comprehensively compare how the NBD compares against various storage solutions
such as Google Drive, Dropbox, OneDrive and GCP.

Table 6.1 describes the storage ability of various storage solutions in terms of low-
level access. In this comparison of data storing and cloud services, we looked at the
features of Google Drive, Dropbox, OneDrive and Google Cloud Platform (GCP).
Google Drive and GCP showed how powerful they are by letting users read and
write sectors, create file systems, change partition tables and use certified services,
among other things. They were also great at mounting and random access. On the
other hand, Dropbox and OneDrive showed off their strengths by confirming that
these tools are there. This comparison shows how different the features of these
cloud services are. It also shows the importance of choosing a provider that fits
your storage and control needs.

Table 6.2 houses bandwidth comparison test reports among NBD and other storage
solutions.
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Feature NBD Google Drive Dropbox OneDrive GCP
Read Sectors x x x

Write to Sectors x x x
Create File System x x x
Alter Partition Table x x x
Mount Operations mount ocamlfuse rclone rclone google-cloud-cli
Random Access mount partial partial partial partial

Verified

Table 6.1: Storage Capability Comparison

Data Read Data Write
Cloud Storage

Bandwidth (MB/s) Time (second) Bandwidth (MB/s) Time (second)
NBD 26.9 30.29 26.9 30.29

Google Drive 10.2 100.39 8.7 119.08
Dropbox 7.8 131.28 7.1 143.66
OneDrive 10.9 93.81 8.5 120.24
GCP 10.4 97.73 9.3 109.94

Table 6.2: Bandwidth Comparison

6.2.1 Storage Capabilities

We examine how much storage NBD has compared to what other options can do.
In this part of the piece, we will look at several topics, such as the speed at which
data can be sent, the reliability of the saved data and the ability to handle vast
amounts of data. The file-level storage methods that HTTP, SMB and SFTP use
are evaluated based on how they affect the system’s speed. The block-level storage
method NBD uses is evaluated based on how it affects the system’s efficiency.

Read Test: In the figure 6.1, we notice a huge difference between NBD and other
cloud services. In our test, NBD can hit 26.9 MB/s, as the average speed of other
cloud services was around 10 MB/s. We can see NBD performed twice as well as
other cloud Services.

Figure 6.2 refers to the duration it took to write the data for NBD and other cloud
services. As the speed of NBD was more than twice that of traditional cloud services,
it only took around 1/3rd of the time (30.29s) compared to others.

Write Test: In this comparison graph 6.3, the NBD can be consistent like it is
in the case of reading data. Here, it performed at a similar speed (26.9 MB/s) of
reading. However, the other cloud services could not maintain the consistency of
speed; however, they have an average speed of 8.35 MB/s, which is decent enough.

Regarding write duration, figure 6.4 concisely portrays the difference. It took 30.29
seconds for NBD to write the data into the disk, whereas the other services’ speed
varied from 109.94 seconds to 143.66 seconds, which is almost 4 times higher than
NBD if we take the mean speed them.

6.2.2 Power Consumption

As part of providing data, we look into how fast NBD uses system resources, espe-
cially power. This analysis 6.3 considers the effect on mobile devices’ battery life
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and NBD’s total energy efficiency compared to other protocols by using the formula

Power Consumption = (u1 − u0 +∆E)

Here, u0 is the power reading before the operation, u1 is the power reading after the
operation and ∆E is time (second * idle power consumption rate within 1 second
and t is the time required to perform the measurement operation.

Data Read Data Write
Cloud Storage

Power (mAh) Time (second) Power (mAh) Time (second)
NBD 0.000001071 30.29 0.000001071 30.29

Google Drive 0.000003345 100.39 0.000002825 119.08
Dropbox 0.000004032 131.28 0.000003694 143.66
OneDrive 0.000003376 93.81 0.000002636 120.24
GCP 0.000003082 97.73 0.000002742 109.94

Table 6.3: Power Comparison

To visualize the power consumption better, even though it is a very small amount,
we plotted it in figure 6.5. We can see that the NBD consumed much less power
than other competitors to perform similar operations in the same environment.

6.2.3 Cost Structure

The cost structure figure6.4 of installing NBD and other storage solutions is evalu-
ated and analyzed. This analysis considers direct and indirect expenses, including
requirements for hardware, license fees (if required), maintenance and scalability
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Category Storage (GB) Price (USD)

iPhone 15
128 799
256 899
512 1099

iphone 15 Pro Max

128 1199
256 1299
512 1499
1024 1699

NBD

128 281.71
256 291.71
512 302.71
1024 322.71

Table 6.4: Cost Comparison

considerations. Our goal is to shed light on whether or not the implementation of
NBD is financially viable in various contexts.
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Figure 6.6: NBD Storage vs iPhone 15 Storage Price Comparison

Figure 6.6 suggests the local storage base solution price increases proportionally with
storage increment while the NBD solution price has a less tendency to go higher even
when the storage capacity exits the equilibrium point.

Our goal is to present a comprehensive and organized analysis of the NBD’s perfor-
mance and suitability in comparison to other storage protocols that are widely used.
We have broken down our evaluation into these three subsections to achieve this.
This method allows us to comprehend how NBD may cater to particular storage
requirements and correspond with goals, regardless of whether they place a higher
value on speed, energy efficiency or cost-effectiveness.
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Chapter 7

Open Discussion & Challenges

7.1 Theoretical Comparative Study

Android devices can potentially serve as Network-Attached Storage (NAS) clients,
offering various use cases and notable benefits. Let’s examine these use cases and
benefits in-depth, using technical terms to illustrate their significance:

1. Media Streaming: Android devices can act as NAS clients by connecting to
NAS servers and streaming media content stored on the network. With sup-
port for protocols such as DLNA (Digital Living Network Alliance) or UPnP
(Universal Plug and Play), Android devices can access media files hosted on
NAS servers and play them seamlessly on compatible media players or stream-
ing applications. This lets users enjoy high-quality media content directly from
their Android devices, leveraging the NAS server’s storage capacity and net-
work capabilities.

2. File Synchronization and Backup: Android devices can synchronize files
with NAS servers, allowing for seamless data backup and access across mul-
tiple devices. Android devices can use protocols like rsync or Syncthing to
maintain file consistency between local and NAS storage, ensuring data in-
tegrity and availability. This capability is particularly useful for professionals
or individuals who require continuous synchronization of files across devices,
providing a reliable backup solution and mitigating the risk of data loss.

3. Remote Access and File Sharing: Android devices can establish secure
connections with NAS servers, enabling remote access and file-sharing func-
tionalities. Android devices can securely connect to NAS servers outside the
local network using protocols such as SSH (Secure Shell) or VPN (Virtual
Private Network). This allows users to access and manage files stored on the
NAS remotely, facilitating collaborative work environments and seamless file
sharing among authorized users.

4. Data Caching and Offline Access: Android devices can utilize NAS stor-
age as a cache partition, optimizing data access and enabling offline access
to frequently used files. By implementing technologies such as NFS (Network
File System) or SMB (Server Message Block), Android devices can store fre-
quently accessed files locally in a cache partition, reducing latency and network
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overhead. This feature is beneficial for applications that rely on quick access
to data, such as media players or productivity apps, providing smooth offline
access to essential files.

5. Distributed Computing and Processing: Android devices can leverage
NAS storage to offload computationally intensive tasks or utilize distributed
computing frameworks. By utilizing protocols such as SSHFS (SSH Filesys-
tem) or NFS, Android devices can access remote storage resources and perform
complex computations or data processing tasks. This distributed computing
capability allows Android devices to tap into the vast storage capacity of NAS
servers, enabling resource-intensive applications such as image recognition,
machine learning, or distributed data analysis.

Traditionally, the NAS (Network Attached Storage) solutions available in Android
often come with client-server apps that aren’t open source, which means it is limited
to a certain environment. For example, platforms like Plex, Jellyfin, DLNA, and
UPnP require users to use special software to view and control their files and media.
This closed, vendor-dependent method can make things less open and fluid.

Network Block Device (NBD) storage options, on the other hand, offer a cross-service
architecture that lets users use their favorite apps for different services. NBD works
at the block level, making it a more neutral and flexible way to store and view data.
With NBD, users aren’t tied to a specific software environment. Instead, they can
choose the apps that work best for them.

However, this flexibility goes beyond streaming video and managing files. NBD can
be used for various tasks, such as synchronizing data, backing it up, letting people
view it from afar, and doing distributed computing. Users can set up NBD to fit
their needs, ensuring their favorite apps work well with their storage options. In
effect, NBD frees users from being locked into one vendor, which makes network
storage and data management more open and flexible.

7.2 Challenges

While this paper aims to evaluate the performance of Network Block Devices (NBD)
in Android devices and provide insights into their potential benefits, it is essential
to acknowledge certain limitations that may impact the scope and generalize ability
of the findings. These limitations include:

7.2.1 Hardware Dependency

Due to consumer-level Android handheld devices as a non-developer-friendly manu-
facturing architecture, it is much harder to implement NBD without OEMs’ proper
licensing agreement. Therefore, to test the functionality and tap the potential of
the Android ecosystem, we had to implement the Android operating system layer
with Waydroid on top of a generic x86 Linux Kernel to imitate the functionality
of an Android device. However, it’s important to note that different Android de-
vices may have varying hardware configurations, potentially affecting performance
results. The findings may not directly translate to all Android devices, and further
testing on a wider range of hardware is warranted.
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7.2.2 Software Compatibility

The evaluation focuses on the performance of NBD with an x86 Linux server. How-
ever, efforts are made to ensure compatibility; variations in software versions, device
drivers, and kernel configurations may influence the results. The outcomes may dif-
fer when using different server configurations or alternative operating systems, which
should be considered in future studies.

7.2.3 Limited Comparison Candidates

While this paper compares NBD with popular storage solutions such as SFTP, NFS,
SMB, Google Drive, Dropbox, OneDrive, GCP, and local storage, numerous other
storage protocols and services are available. The selection of comparison candi-
dates may not encompass the entire landscape of NBD’s horizon storage options,
potentially limiting the breadth of the evaluation.

7.2.4 Performance Metrics Selection

The chosen performance metrics, such as read sector, write a sector, read file system,
write file system, create a file system, alter position table, mount ability, and ran-
dom access level, provide valuable insights into NBD performance. However, other
metrics, such as latency, data transfer rate, and concurrency, may also contribute to
a comprehensive assessment of NBD’s performance. Future studies could consider
incorporating additional metrics for a more holistic evaluation.

7.2.5 Network Environment Variability

The network environment, including network congestion, latency, and bandwidth
limitations, can influence the performance of NBD and other storage solutions. The
evaluation in this paper assumes a relatively stable and optimal network environ-
ment. However, real-world network conditions can vary, and the performance of
NBD may be affected accordingly.

7.2.6 Limited Generalizability

The evaluation in this paper focuses on a specific scenario involving NBD, aWaydroid-
based Android client, and an x86 Linux server. The findings and conclusions may not
directly apply to other configurations, devices, or use cases. The generalized ability
of the results should be considered within the specific context of the evaluation.

By acknowledging these limitations, future research can aim to address these con-
cerns and expand upon the findings presented in this paper. A more comprehensive
understanding of NBD’s performance in various scenarios can be achieved through
further investigations and wider testing.
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Chapter 8

Conclusion & Future Prospects

8.1 Future Prospects

Despite the limitations mentioned earlier, utilizing Network Block Device (NBD)
in Android devices offers the potential to share storage mediums and other block
devices. This can enable a wide range of applications and expand the capabilities
of Android devices. Here are some examples of block devices and potential future
research directions to make them compatible with Android:

1. Network-Attached Storage (NAS): In addition to sharing storage re-
sources, NBD can be extended to share NAS devices, allowing Android devices
to access and utilize remote file systems and network shares. Future research
can focus on developing NBD-compatible drivers and protocols for popular
NAS devices, ensuring seamless integration and maximizing the benefits of
NAS in Android.

2. Printers and Scanners: Block devices such as printers and scanners can
be shared with Android devices through NBD. This would enable Android
users to directly connect to and utilize these devices, expanding printing and
scanning capabilities. Future research can explore the development of NBD
drivers and protocols specific to printer and scanner devices, facilitating seam-
less connectivity and efficient usage.

3. Input/Output Devices: NBD can potentially be extended to share in-
put/output block devices, including keyboards, mice, game controllers, and
more. This would allow Android devices to utilize a wider range of peripheral
devices, enhancing user interaction and enabling diverse applications. Future
research can investigate the development of NBD-compatible protocols and
drivers for different input/output devices, considering device-specific require-
ments and compatibility.

4. Block-level Virtualization: NBD can serve as a foundation for block-level
virtualization in Android devices. This would enable the creation and man-
agement of virtual block devices representing physical devices or partitions.
Future research can focus on developing NBD-based virtualization frameworks
and tools, allowing Android devices to utilize virtual block devices with en-
hanced control and flexibility efficiently.
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5. IoT Devices: With the proliferation of the Internet of Things (IoT) devices,
integrating NBD support for various IoT block devices can enable Android
devices to communicate and interact with a wide range of IoT devices seam-
lessly. The development of NBD drivers is crucial to ensure compatibility and
interoperability with Android Devices. And for popular IoT platforms, future
research can bring improvements to them.

Integrating the Android through NBD can bring specific benefits. Such as printers
and scanners with Android devices would enhance productivity and convenience.
It will also enable seamless control and monitoring of connected devices. But it
is only possible if we can research more on this technology. A few fields namely
NBD-compatible drivers, protocols, and frameworks for block devices are needed
to focus on for future research aspects. It will also need to consider device-specific
requirements, compatibility and standards. This would bring the whole community
of Android developers, device manufacturers and open source community to improve
and improvise new possibilities for Android devices.

8.2 Conclusion

In conclusion, this paper has assessed and thoroughly evaluated the performance of
Network Block Devices (NBD) in the Android ecosystem. We are primarily focusing
on making use of Waydroid to connect client devices to an x86 Linux server. Even
though there are some limitations, we have found more potential and benefits of
incorporating NBD as a default feature in Android devices.

This paper further acknowledges the extensive potential of network block devices
(NBD) to not only open the door to storage sharing but also empower Android
devices to act as middleware between remote block devices and the users themselves.
By utilizing NBD to its full potential in the Android ecosystem, a connection for
smooth communication and control can be created between the users and various
devices, such as network-attached storage (NAS), IoT devices, input/output devices,
scanners, printers and more.

With this prospect, researchers in the future will be able to explore the development
of frameworks, drivers, and other protocols that are compatible with NBD and fur-
ther make a connection with Android devices to NBD and effectively communicate
and interconnect with an extensive range of block devices. This would allow Android
devices to serve as an ingenious mediator, resulting in users having more authority
over block devices that require remote management and access.

A lot of possibilities for data management, and device integration can be enhanced
significantly by enabling NBD in Android. It is also necessary to work on the
compatibility of diverse block devices. This not only enhances the capabilities of
Android devices but also opens up new avenues for innovation in various domains.
Overall, this research paves the way for future advancements in Android with its
storage upgrade. It will enable the seamless integration of diverse block devices into
the Android ecosystem. We can envision a future where users can effortlessly control
and interact with many devices from their Android devices if we can bring out the
convenience and flexibility of NBD integration in Android environments.
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