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Abstract 

Preterm birth and low birth weight are linked to increased neonatal morbidity and mortality 

and can harm a child's health and development. An expanding corpus of research confirms that 

a number of genetic and immunological variables contribute to premature delivery and low 

birth weight. Vitamin D can have substantial impact on pregnancy and birth outcomes by 

influencing calcium balance, immunity, and cell proliferation. Its deficiency in pregnant 

women can lead to adverse results. The vitamin D receptor (VDR) is crucial to the endocrine 

system, regulating gene expression alongside encoding the VDR protein. This review explored 

the impact of the maternal vitamin D receptor gene's single nucleotide polymorphism, BsmI 

on VDR activity and their associations with preterm delivery and birth weight. The findings of 

this review revealed a correlation between the VDR gene polymorphism BsmI and preterm 

birth, whereas, no connection was observed for low birth weight. 

Keywords: pregnancy; vitamin D; vitamin D receptor; BsmI polymorphism; gestational 

duration; preterm birth; birth weight.  
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Chapter 1: Introduction 

1.1 An Overview on Preterm Birth and Low Birth Weight 

Despite revolutionary advancements in healthcare technology, unintended pregnancy 

outcomes still pose significant challenges to the public's health (Chiavaroli et al., 2016; 

Goldenberg et al., 2008; Lawn et al., 2011). Preterm birth (PTB), which is characterized as 

birth prior to the 37th week of pregnancy, remains the leading reason for death in newborns 

and the secondary leading cause in under-five children (Blencowe et al., 2012; WHO, 1970). 

Preterm birth has immediate effects within the first month of life and lasting consequences for 

infants, families, and the community. Global Burden of Disease studies reveal that preterm 

birth contributes to 3.1% of lifelong disabilities, surpassing the combined impact of HIV and 

malaria (Howson et al., 2013; Murray et al., 2012). Premature birth exposes infants to risks like 

low blood sugar, sepsis, jaundice, respiratory issues, and long-term neurocognitive deficits, 

posing significant medical, social, and economic challenges (Goldenberg et al., 2008; Hall & 

Greenberg, 2016; S. W. Wen et al., 2004). In addition to PTB, low birth weight (LBW), labelled 

as a neonate weighing below 2500g, is a prevalent cause of both immediate and later childhood 

illness and perinatal death. Low-birth-weight babies have up to 40 times greater mortality rates 

and are more likely to have long-term problems (Goldenberg & Culhane, 2007). The exact 

causes of PTB and LBW remain complex and multifactorial, involving genetics, stress, 

inflammation, infections, environmental or occupational factors, along with pregnant women's 

nutritional status (Crider et al., 2005; Hendler et al., 2005; Kramer et al., 2009; Lawson et al., 

2009; Michalowicz et al., 2009; Scholl, 2005; Tamura et al., 1992). Nowadays, a substantial 

amount of research is being undertaken how vitamin D metabolism affects pregnancy, 

specifically preterm birth (Møller et al., 2013; Qin et al., 2016). 
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1.2 Prevalence of Preterm Birth and Low Birth Weight 

Despite consistent efforts in antenatal care, preterm birth persists as a significant global health 

problem. The estimated worldwide preterm birth rate is 11.1%, leading to about 15 million 

preterm babies in 2010 across 184 countries (Blencowe et al., 2012; Tielsch, 2015). This 

prevalence varies among regions, with Africa and South Asia contributing 60% of preterm 

births. Developed countries also grapple with this issue, showing a prevalence of roughly 6-

7%, while the United States has the highest rate at 10% (Sheikh et al., 2016). Detailed data on 

countries with noteworthy preterm birth counts and rates is available in Figure 1 and.2. 

 

 

Figure 1: The 10 countries with the highest total number of PTBs in 2010 (Blencowe et al., 2012) 
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Figure 2: Top 10 countries with the greatest PTB per 100 live births rates in 2010 (Blencowe et al., 2012) 

 

Approximately 32 million babies are born yearly with low birth weight (LBW) or small-for-

gestational-age (SGA), mostly, 96.5%, in developing nations (Black, 2015). Racial disparities 

are apparent, with a 13.8% LBW rate for non-Hispanic Black (NHB) women in 2007 versus 

7.2% for non-NHW women (Martin et al., 2001). Bangladesh shows a low birth weight 

prevalence of 23% to 60% (Yasmin et al., 2001). 

 

1.3 Vitamin D and its Biological Functions 

The fat-soluble prohormone group, vitamin D, was initially identified in cod liver oils for its 

anti-rachitic properties in the early 1900s (Zhang & Naughton, 2010). This hormone, with a 

history spanning 750 million years, has been generated by a range of organisms. Sunlight 

exposure triggers its synthesis in plants, animals, phytoplankton, and zooplankton (Holick, 

2003). Vitamin D has two primary precursors: plant-based vitamin D2 (Ergocalciferol) and 

skin-produced vitamin D3 (Cholecalciferol) in response to ultraviolet B (UVB) radiation 

exposure (Holick, 2003; Zhang & Naughton, 2010). 
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Figure 3: Structures of vitamin D analogues (PubChem, 2019, 2023b, 2023c, 2023a) 

 

The vitamin D hormone is critical for sustaining proper plasma calcium levels, preventing 

conditions like rickets and osteomalacia. It achieves this through 3 key mechanisms: 

• Firstly, it stimulates calcium absorption proteins in the intestines (Underwood & DeLuca, 

1984).  

• Calcium deficiency triggers the production of Receptor activator of nuclear factor kappa-B 

ligand (RANKL) by osteoblasts, consequently promoting the development of osteoclasts and 
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loss of bone mass through parathyroid hormone (PTH) and vitamin D (Garabedian et al., 1972; 

GARABEDIAN et al., 1974; Suda et al., 2003).  

• Additionally, it assists in the final 1% calcium reabsorption in the renal tubule, working with 

PTH (Yamamoto et al., 1984).  

 

 

Figure 4: Biological functions of vitamin D (Layana et al., 2017; Scientific Image and Illustration Software, 

2023) 

 

Calcium absorption and increasing uptake by enterocytes rely heavily on PTH along with the 

vitamin D hormone. Stable plasma calcium levels trigger PTH secretion, enhancing vitamin D 

hormone release, which mobilizes bone calcium and is influenced by the parathyroid gland's 

calcium sensing (Brenza & DeLuca, 2000; Brown et al., 1993; Tanaka & DeLuca, 1984). This 

dynamic process improves calcium absorption, bone mobilization, and kidney reabsorption. 

Excess calcium prompts the C cells of thyroid gland to produce calcitonin, an inhibitor of bone 

calcium release (JONES et al., 1998), stimulating renal 1α-hydroxylase and generating non-

calcemic vitamin D. The vitamin D system prioritizes normal serum calcium via dietary 

sources (Shinki et al., 1999). In calcium deficiency, it intensifies bone mobilization, kidney 
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reabsorption, and may contribute to osteoporosis. The vitamin D hormone primarily supports 

skeletal mineralization, not direct bone anabolism (DeLuca, 2004). 

Vitamin D expands its functions beyond bone by aiding the promyelocytes differentiate into 

monocytes, the progenitors of giant osteoclasts. Through the RANKL system, this essential 

process helps vitamin D trigger osteoclast formation. Upon differentiation into a functioning 

cell line, cell growth remarkably halts, and this mechanism is unrelated to calcium or 

phosphorus (Suda et al., 2003). 

Parathyroid gland's vitamin D receptor is crucial for renal osteodystrophy treatment using 

vitamin D hormone and analogs. It regulates gene production and inhibits cell growth, aiding 

parathyroid health in healthy individuals and dialysis patients (Darwish & DeLuca, 1999; 

DeLuca, 2004; JONES et al., 1998; Slatopolsky et al., 2003). 

Vitamin D modulates the renin-angiotensin system (RAS), reducing hypertension as well as 

heart disease risk (Akter et al., 2022; Wu-Wong et al., 2007). 

Vitamin D positively impacts pancreatic beta cell function. Experiments on deficient mice 

showed reduced insulin secretion, improved by vitamin D supplementation. Vitamin D also 

guards beta cells from cytokine-induced apoptosis (Bornstedt et al., 2019; Gysemans et al., 

2005; Wolden-Kirk et al., 2014). 

Regarding immunology, Hypovitaminosis D impacts T cell-mediated immunity, while excess 

suppresses immune functions. Immune-mediated illnesses including multiple sclerosis, type 1 

diabetes, and systemic lupus are being researched (Cantorna et al., 1998; Lemire et al., 1992; 

Zella & DeLuca, 2003). Vitamin D therapy reduces inflammation, improves immunity (Griffin 

et al., 2001), and aids transplant rejection reduction (Hullett et al., 1998). More investigation 

is required to comprehend vitamin D analogs' mechanisms against autoimmune conditions. 
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1.4 Sources of Vitamin D 

Vitamin D, a vital fat-soluble nutrient which functions as a hormone, comprises vitamin D2 

(Ergocalciferol) from plants and fungi, including Mushrooms with UV exposure, and vitamin 

D3 (cholecalciferol), naturally present in foods like fatty fish and egg yolks. It's additionally 

added to fortified foods and supplements in many countries (J. Liu, 2012). 

 

Table 1: Common Dietary Sources of Vitamin D (Uriu-Adams et al., 2013) 

Food IUs/serving % DV 

1 tablespoon of cod liver oil 1360 340 

3 ounces cooked swordfish 566 142 

3 ounces cooked salmon (sockeye) 447 112 

3 ounces canned tuna in water 154 39 

1 cup vitamin D-fortified orange juice 137 34 

1 cup vitamin D-fortified nonfat, reduced fat, 

and whole milk 

115-124 29-31 

Yoghurt fortified with 20% of the DV for 

vitamin D, 6 oz. 

80 20 

1 tablespoon fortified margarine 60 15 

2 sardines, canned in oil, drained 46 12 

3 ounces cooked beef liver 42 11 

1 big egg (the yolk contains vitamin D) 41 10 

10% DV of vitamin D added to 0.75–1 cups of 

ready-to-eat cereal  

40 10 

1 ounce Swiss cheese 6 2 
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Table 1 presents vitamin D content in different dietary sources, including unfortified Western 

diets offering about 100 IU or 2.5 mg/day of vitamin D (Institue of Medicine, 1997). US retail 

milk and infant formulas are often fortified with varying levels, and traditional multivitamins 

contain 200-400 IU (5-10 mg) of vitamin D, with higher doses emerging (Hathcock et al., 2007; 

Patterson et al., 2010). 

Outdoor workers' sun exposure can elevate serum 25(OH)D similar to oral doses of 2800-5000 

IU (70-125 mg) per day. Sunlight converts 7-dehydrocholesterol to provitamin D, more 

available in the past. Certain professions have 25(OH)D levels around 122 nmol/L, while 

healthy sunbathers reach over 200 nmol/L (Barger-Lux & Heaney, 2002). However, levels 

decrease to 74 nmol/L (40% reduction) in winter, indicating intense sun exposure doesn't 

guarantee higher winter concentrations (Vieth, 1999).  

 

1.5 Synthesis and Metabolism of Vitamin D 

Vitamin D is distinct based on its availability from food sources and skin synthesis. Vitamin 

D3 is produced by ultraviolet B radiation acting on 7-dehydrocholesterol (7DHC), enabling its 

acquisition through diet and skin (Provitamin D3). The precursor, provitamin D3, transforms to 

vitamin D3 via heat isomerization in the skin, also converting to inert forms or reverting to 

7DHC (MacLaughlin et al., 1982; Webb, 2006). Vitamin D gets into the bloodstream through 

a binding protein (WEBB et al., 1989). Figure 5 depicts the synthesis and metabolism of 

cutaneous vitamin D.  
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Figure 5: Cutaneous Vitamin D synthesis and Metabolism (Scientific Image and Illustration Software, 2023; 

Vuolo et al., 2012) 

 

In the kidney, 1α,25(OH)2D (calcitriol), the active hormone, results from the conversion of 

vitamin D3 by 1-α-hydroxylase (CYP27B1). Before this, the liver's enzyme 25-hydroxylase 

(CYP2R1) converts it to 25-hydroxyvitamin D (25(OH)D) (Uriu-Adams et al., 2013). 

 

1.6 Vitamin D Deficiency and its Complications 

Vitamin D deficiency's definition is debated. Experts generally see levels below 50 nmol/L (20 

ng/mL) as deficient, 51–74 nmol/L as insufficient, above 30 ng/mL as sufficient, and exceeding 

375 nmol/L as toxic (150 ng/mL) (Chapuy et al., 1996; Dawson-Hughes et al., 2005; Holick, 

2007; Holick et al., 2005; Malabanan et al., 1998; Thomas et al., 1998). Deficiency can have 
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both musculoskeletal and non-skeletal consequences (Heaney et al., 2003; Holick, 2007; Vieth, 

1999). 

 

Musculoskeletal Consequences 

Inadequate vitamin D levels can result in rickets among children, accompanied by related signs, 

symptoms, and growth complications. In adults, insufficient vitamin D can exacerbate 

conditions like osteopenia and osteoporosis, increasing the likelihood of fractures 

(Bakhtiyarova et al., 2006; Chapuy et al., 1996; Holick, 2007; Huldschinsky, 1919; Nesby-

O’Dell et al., 2002). Long-standing evidence associates musculoskeletal weakness with a lack 

of this nutrient, resulting in muscle weakness, body instability, and a heightened risk of falling 

(Bischoff-Ferrari, Dietrich, et al., 2004; Broe et al., 2007; Simpson et al., 1985; Visser et al., 

2003). Insufficiency of vitamin D in adults may cause issues in bone mineralization, resulting 

in osteomalacia characterized by thickened osteoid layers on bones, potentially contributing to 

osteoporosis, both of which can elevate the likelihood of fractures, especially fractures in the 

hip (Lips, 2001). The interaction between PTH and serum 25(OH)D levels was explored in 

older adults, revealing that adequate 25(OH)D stabilizes status of PTH and that vitamin D 

supplements enhance bone mineral density, an effect subjected to the genotype of the vitamin 

D receptor (Lips, 2001). 

 

Non-skeletal Consequences 

Due to decreased synthesis of vitamin D3, living in higher latitudes in the US is linked to an 

elevated incidence of common malignancies like prostate, colon, and breast cancer (Holick & 

Chen, 2008), with adults having below 50 nmol/L 25(OH)D status experiencing 30–50% 

enhanced likelihood of these cancers (Ahonen et al., 2000; Garland et al., 2006; Giovannucci 

et al., 2006; Grant, 2002; Grant & Garland, 2006).  
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Higher latitudes are additionally linked to elevated risks of multiple sclerosis, type 1 diabetes, 

and hypertension (Embry et al., 2000; Ponsonby et al., 2002; Rostand, 1997; Stene et al., 2000). 

Children with vitamin D intake of 2000 IU daily in their first year have a 78% lower type 1 

diabetes risk, likewise women consuming over 400 IU of vitamin D daily possess a 40% lower 

chance of rheumatoid arthritis and multiple sclerosis (Hyppönen et al., 2001; Munger et al., 

2004).  

Moreover, higher latitudes and hypovitaminosis D elevate the likelihood of developing 

schizophrenia (McGrath, 2002) and depression (Gloth et al., 1999), while extreme vitamin D 

deficiency in African Americans raises tuberculosis risk and severity (Chan, 2000). 
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1.7 Rationale of the Study 

The study investigates the link between maternal vitamin D Receptor gene's single nucleotide 

polymorphism, BsmI and the incidence of preterm birth and low birth weight. VDR BsmI SNPs 

impact vitamin D receptor protein and vitamin D metabolism, influencing bone wellness, 

immune function, and cellular growth. These SNPs reflect individual responses to vitamin D 

and disease susceptibility. The VDR gene is vital for fetal development and can potentially 

serve as a genetic predictor for assessing the risk adverse pregnancy outcomes. This review 

examines vitamin D's impact on pregnancy outcomes, extensively explores the correlation 

between BsmI SNP within the VDR gene and preterm birth & low birth weight, identifies 

additional genetic predictors, proposes prevention strategies, and provides future research 

recommendations. 

 

1.8 Aim and Objectives of the Study 

 Aim 

The study aims to examine the link between mothers’ single nucleotide polymorphism of the 

vitamin D receptor gene (BsmI) and the risk of preterm birth and low birth weight among 

neonates. 

 

Objectives 

Specific objectives of the study are to:  

• Demonstrate the need for mothers’ vitamin D level for optimal pregnancy outcomes. 

• Examine if maternal vitamin D intake, sun exposure, and age impact the relationship between 

mothers’ VDR SNPs (specifically BsmI) and preterm birth & low birth weight. 

• Examine the biological mechanisms underlying the association between maternal VDR SNPs, 

particularly BsmI and PTB & LBW, including changes in gene expression and protein function. 
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Chapter 2: Methodology 

This review is based on credible scholarly articles from reputable sources. Relevant search 

terms and keywords were identified, including "pregnancy," "vitamin D," "vitamin D receptor," 

"BsmI polymorphism," "gestational duration," "preterm birth," and "birth weight." Multiple 

databases, such as PubMed, Google Scholar, Elsevier, ScienceDirect, and Wiley Online 

Library, were searched using advanced options to narrow results. Keywords were combined 

for better relevance, and reference lists were checked for additional sources. Initially, around 

300 articles were found, with irrelevant ones excluded after title and abstract screening. Over 

100 articles were extensively studied, notes were taken, and essential data were highlighted. 

Proper citations in "APA 7th Edition" style were ensured throughout the paper, with all sources 

well organized for easy access during writing. The gathered information was critically analyzed 

and used to compose the project paper. 
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Chapter 3: Vitamin D and Pregnancy  

3.1 Significance of Vitamin D for Maternal and Child Health 

Insufficient vitamin D levels at several life phases, including conception, fetal development, 

childhood, and adulthood, raise concerns about potential impacts. The diet of expectant and 

lactating mothers can affect fetal and newborn growth, potentially leading to lasting 

consequences like physical changes and health issues including type 2 diabetes, heart disease, 

obesity, and hypertension (Momentti et al., 2018). Adequate levels of this vitamin are 

imperative to both fetal and maternal well-being, especially for proper bone growth, dental 

health, and overall development during pregnancy (Fiscaletti et al., 2017).  

Expectant mothers with ample vitamin D levels and increased calcium transfer to the fetus 

support proper bone development, reducing the risk of low blood calcium in newborns and the 

chances of both innate and developmental rickets in children. Mother’s 25(OH)D may cross 

the placenta, potentially transmitting vitamin D deficiency (VDD) onto the fetus and newborn, 

with both immediate and prolonged effects (Fiscaletti et al., 2017). 

In the course of pregnancy, calcitriol, the vitamin D’s active form, substantially rises 

throughout the first trimester and doubles by the third. Beyond its role in providing fetal 

calcium, this rise is vital for immune adjustments essential for a healthy pregnancy. Vitamin D 

influences dendritic cell maturation and T-cell response balance, favoring Th2 dominance to 

prevent fetal rejection. This shift toward Th2 dominance critically supports a healthy pregnancy 

(Hayes et al., 2003; Raghupathy, 2001; Spilianakis et al., 2005). 
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Figure 6: Schematic depiction of pregnancy factors and physiological alterations that promote optimal bone 

health in offspring (Fiscaletti et al., 2017; Scientific Image and Illustration Software, 2023) 

 

Overall, vitamin D is essential for immune regulation during pregnancy, contributing to the 

maintenance of a healthy pregnancy and possibly protecting against pregnancy-related 

disorders such as preeclampsia. Nonetheless, further study is necessary to fully understand the 

mechanisms and determine the ideal vitamin D levels or supplementation for pregnant women 

(Evans et al., 2004). 
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3.2 Vitamin D Requirements for Pregnant Women 

Pregnant women don't get enough vitamin D from the recommended 200 IU (5 g) per day, as 

specified by the Institute of Medicine, is 200 IU (5 g). In order to fulfill the nutritional 

requirements, it is recommended that pregnant women include a supplement comprising 1,000 

IU of vitamin D with their prenatal nutrient containing 400 IU, resulting in a daily intake 

ranging from 1,500 to 2,000 IU. The maximum safe dosage may be extended up to 10,000 

IU/day (Food and Nutrition Board Institute of Medicine, 1997; Holick et al., 2011). 

 

3.3 Prevalence of Vitamin D Deficiency among Pregnant Women 

Despite prenatal nutrient recommendations, alarmingly high rates of vimanin D shortage are 

seen during conception: 4% to 60% in mothers and 3% to 86% in newborns across countries 

(Palacios & Gonzalez, 2014; Prentice, 2008). In a recent North West England study, 27% of 

expectant mothers had insufficient vitamin D levels (50 nmol/L), which increased to 48% after 

delivery. In addition, 7% were deficient in vitamin D (25 nmol/L), and 11% remained deficient 

postpartum. 24% of four-month-old infants had unsatisfactory (25-50 nmol/L) vitamin D status 

(Emmerson et al., 2018). A UK study on pregnant teenagers raised concerns as 30% had below 

25 nmol/L 25(OH)D readings (Baker et al., 2009). 84% of expecting women in India showed 

vitamin D concentrations below 22.5 ng/mL (Sachan et al., 2005). A rural Bangladesh research 

showed 47.2% had insufficient amount (30–50 nmol/L) of vitamin D, while 17.3% were 

deficient (less than 30.0 nmol/L) (Ahmed et al., 2021).  

 

3.4 Unfavorable Pregnancy Outcomes linked to Vitamin D deficiency 

Inadequate vitamin D levels throughout conception remain a rising concern globally. Studies 

report deficiencies in 30–80% of expectant females (Ginde et al., 2010). Low vitamin D  levels 

result in undesirable consequences like gestational diabetes, pre-eclampsia, and preterm birth 
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(Aghajafari et al., 2013; J. Wen et al., 2017). It affects fetal size, bone formation, and neonatal 

health (Eckhardt et al., 2015; Miliku et al., 2016). 

 

Fetal Repercussions 

The fetus relies on maternal vitamin D and calcium stores, raising deficiency concerns (Walsh 

et al., 2013). Deficiency of vitamin D in newborns (cord blood at 11 ng/mL) occurs in 46% of 

supplemented mothers' babies (Basile et al., 2007). Maternal hypovitaminosis D is correlated 

with adverse neonatal outcomes, including small-for-gestational-age births, premature 

delivery, impaired tooth and bone growth, and higher infection risk (Karras et al., 2014). 

 

Short for Gestational Age and Low Birth Weight  

Burris and colleagues discovered that inadequate (below 10 ng/mL) 25(OH)D serum status 

tripled the incidence65 of Short for Gestational Age (SGA) in the second trimester in one 

research finding (Burris et al., 2012). Another research involving more than 3,000 pregnancies 

discovered that low serum 25(OH)D at 13 weeks was connected to low weight at birth and 

increased SGA risk (Leffelaar et al., 2010). Adequate vitamin D (>15 ng/mL) prior to 26 weeks 

is related to a higher weight at birth and reduced SGA risk (Gernand et al., 2013). Despite 

mixed results, a 2013 meta-analysis confirmed the connection of low vitamin D with SGA 

prevalence (Aghajafari et al., 2013). 

 

Bone Health  

Gestational deficiency of vitamin D can affect long-term bone development and mineralization 

in childhood, since vitamin D is linked to fetal femoral growth (Ioannou et al., 2012; Morley 

et al., 2006; Walsh et al., 2013; Weiler et al., 2005). While several researches show shorter 
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long bones in babies of mothers with hypovitaminosis D (Morley et al., 2006), others contradict 

this (Gale et al., 2008; Weiler et al., 2005), prompting further research (Lawlor et al., 2013). 

 

Respiratory Illness  

Newborns are more likely to get respiratory syncytial virus infection and other respiratory 

illnesses if their mothers have vitamin D insufficiency (Belderbos et al., 2011; Camargo et al., 

2011). Recurrent wheezing risk might be lower in kids with higher cord blood vitamin D 

(Camargo et al., 2007, 2011). The link to asthma remains unclear (Camargo et al., 2011; Gale 

et al., 2008), warranting more investigation. 

 

Type 1 Diabetes  

Children of moms with vitamin D insufficiency are potentially in threat of acquiring type 1 

diabetes. A nested case-control research revealed a twofold greater chance in the offspring of  

pregnant women with inadequate vitamin D (Sorensen et al., 2012), while certain Finnish 

research showed no differences (Miettinen et al., 2012). 

 

Atopic Symptoms  

Atopic symptoms, including eczema and food-related allergies, might have a correlation with 

the mother's vitamin D level (Gale et al., 2008; Weisse et al., 2013). However, a study of 231 

newborns over the span of their first year found that vitamin D levels below 20 ng per mill in 

cord blood corresponded to an increased prevalence of eczema (Jones et al., 2012). 

 

Psychomotor development and neurological disease 

Higher vitamin D levels corresponded with superior cognitive and psychomotor growth at 14 

months in a Spanish sample (Morales et al., 2012), suggesting its role in pregnancy. Limited 
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sunlight exposure during birth month linked to multiple sclerosis risk (Torkildsen et al., 2012), 

while maternal milk intake and proper vitamin D could lower child multiple sclerosis risk 

(Mirzaei et al., 2011) 

 

Maternal Repercussions  

Pre-eclampsia  

Low vitamin D has been attributed to an elevated prevalence of pregnancy issues, including 

pre-eclampsia. Studies associate pre-eclampsia with low vitamin D, especially in high-risk 

groups  (Azar et al., 2011; Fernandez-Alonso et al., 2012; Powe et al., 2010; Shand et al., 2010). 

While a 2013 meta-analysis hints at a link, more research is needed for clarity, especially in 

high-risk women (Aghajafari et al., 2013). 

 

Type 2 Diabetes  

Gestational diabetes mellitus (GDM) is caused, or at least exacerbated, by a lack of vitamin D, 

which disrupts glucose regulation during conception (Aghajafari et al., 2013; Senti et al., 2012). 

Early in pregnancy, hypovitaminosis D enhance GDM risk, without regard for age, race, or 

weight. Higher vitamin D status lowers maternal hyperglycemia risk, notably for smokers 

(Tomedi et al., 2013), suggesting improved levels might reduce GDM risk. 

 

Cesarean delivery  

Research on vitamin D and caesarean delivery varies. Some studies suggest low vitamin D 

could raise caesarean likelihood, while some dispute this impact. Clarifying this connection is 

vital due to caesarean-related complications (Merewood et al., 2009; Scholl et al., 2012). 
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Depression  

Initial findings hint at a relationship between low early pregnancy vitamin D and higher 

postpartum depression (Brandenbarg et al., 2012). African-American women show a similar 

association (Cassidy-Bushrow et al., 2012). Establishing causality is complex due to timing. 

More research is required to understand depression's possible link to vitamin D deficiency. 
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Chapter 4: Pathophysiology of Preterm Birth and Low Birth 

Weight  

Approximately 70% of preterm births are spontaneous, with 45% due to early labor, while 25–

30% from preterm premature rupture of membranes (PPROM). Additionally, roughly 30% 

result from obstetricians inducing early delivery due to an unfavorable uterine environment 

(Goldenberg et al., 2008). Genetic influences significantly impact maternal and fetal genomes 

and pregnancy duration. Recent studies encompass factors like the in utero environment, 

familial context, mother's genetics (13-25%), fetal genetic variation (11–35%), collectively 

shaping pregnancy duration (York et al., 2014). Exploring pregnancy complications, especially 

preterm birth (PTB), reveals disruptions in maternal immune responses, including the 

escalation of infection-related cytokines triggering premature labor, akin to preterm labor 

(Romero et al., 2006). The intricate interplay of fetal genotype effects and maternal genotype-

influenced in utero environment further complicates our understanding (Alkhuriji et al., 2013; 

Crider et al., 2005; Grisaru-Granovsky et al., 2007; Rai, 2014; Siddesh et al., 2014). Given 

these complexities, it's clear our grasp of preterm birth mechanisms is limited, underscoring 

the need for intensified research and effective preventive strategies. 

 

4.1 Risk Factors for Preterm Birth 

Preterm birth (PTB) risk is heightened by numerous factors, as examined extensively in various 

reports (Alleman, 2014; Anum et al., 2009; Goldenberg et al., 2008; Richard E Behrman, 

2007), with Figure 7 illustrating key risk factor categories (Sheikh et al., 2016).  
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Behavior & Socio-demographics 

This category includes maternal demographic risk variables like socioeconomic position, age, 

race, marital status, and education, along with behavior such as consuming tobacco, alcohol, 

or drugs that increase susceptibility. Additional risk factors comprise vitamin D, folic acid, iron 

deficiencies, low prenatal weight, obesity, anxiety, depression, stressful work environments, 

and abuse, all implicated in PTB. Recent reviews delve into behavioral and sociodemographic 

aspects (Sheikh et al., 2016).  

 

 

Figure 7: Risk factors associated with preterm birth (Scientific Image and Illustration Software, 2023; Sheikh et 

al., 2016) 

 

Medical & Pregnancy Conditions 

Factors such as multiple pregnancies, prior PTB history, short interpregnancy intervals, uterine 

distension, vaginal bleeding, hypertension, diabetes, thyroid disorders, cervical conditions, and 

uterine over-distension further heighten PTB risk, with medical and pregnancy conditions 

thoroughly explored in recent reviews (Sheikh et al., 2016).  
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Genetic Influence 

Genetic factors significantly influence PTB, accounting for 25% to 40% of cases, as indicated 

by familial aggregation, genetic correlations, twin studies, and SNP-based investigations 

(Sheikh et al., 2016).  

 

Environment 

Additionally, environmental pollutants like Bisphenol A, air pollution, agricultural factors, and 

electronic waste contribute to PTB, which is under ongoing investigation (Richard E Behrman, 

2007; Sheikh et al., 2016).  

 

Biological Pathways 

Biological pathways, including infections, inflammation, adrenal activation, decidua defects, 

uterine distension, and microbial infections, play critical roles in PTB, offering insights into its 

complexities (Sheikh et al., 2016).  

In total, PTB, being a complex condition, stems from diverse factors, with about half having 

identifiable causes and the rest remaining idiopathic (Sheikh et al., 2016). 

 

4.2 Complications of Preterm Birth  

Premature delivery carries significant consequences, including higher newborn mortality, 

increased infection susceptibility, and greater risks of future health problems like 

neurodevelopmental, cardio-metabolic, and inflammatory disorders in premature infants 

(Arpino et al., 2010; Goedicke-Fritz et al., 2017; Markopoulou et al., 2019; Moster et al., 2008; 

Sonnenschein-van der Voort et al., 2014).. Inadequate bone mass worsens these effects, leading 

to post-birth growth issues (Finken et al., 2016) and frequent intensive care stays, driving 
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healthcare costs to over $26 billion in the US and contributing to about 35% of infant deaths 

(IOM, 2007). Even late preterm births (34–36 weeks) show raised mortality risks up to age 36 

due to various health concerns (Crump et al., 2011).  

Despite better survival rates, concerns remain about learning, psychological challenges, and 

adulthood issues. Decreasing gestational age is linked to more medical and social problems in 

adulthood, posing unique challenges in motor skills, cognition, behavior, psychology, and 

social functioning during early education for very premature births (Bhutta et al., 2002; Hack 

et al., 2005; Hille et al., 2001; Litt et al., 2005; Marlow et al., 2005; Saigal et al., 2003). Recent 

studies link premature toddlers to autism spectrum disorder (Limperopoulos et al., 2008). 

Earlier research also suggests lower academic performance and reduced likelihood of 

parenthood among very preterm individuals, perpetuating a cycle of health challenges that 

extends to women born prematurely, who face higher preterm birth risks (Swamy et al., 2008). 

 

4.3 Risk Factors for Low Birth Weight 

A research performed by Yadav and colleagues, investigated variables that may lead to low 

birth weight (LBW) in 258 mothers, with 80% from rural areas. It found that the majority of 

LBW infants were born to moms aged 19 to 30, while normal birth weight babies had mothers 

aged 20 to 29, consistent with similar research in developing countries (Karim et al., 2011; 

Nahar et al., 1998).  

Residence didn't significantly impact birth weight, implying equal access to maternal and child 

health services. Illiteracy was prevalent (61% of mothers), with 26% having LBW babies; 

educated mothers had lower LBW rates (15%), possibly due to greater health awareness. 

Household head education influenced birth weight, but parental education didn't. Religion and 

birth weight were not significantly linked (Yadav et al., 2011). Higher family income is 

correlated with fewer LBW cases (Yadav et al., 2011).  
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The birth-to-conception interval had minimal impact, indicating nutrition as a more influential 

factor. Previous pregnancy history (abortion, stillbirth, and neonatal death) had no significant 

link to birth weight (Yadav et al., 2011), aligning with prior studies (Khatun & Rahman, 1970). 

 

4.4 Complications of Low Birth Weight 

Babies born with very low weight have an 85% chance of surviving hospitalization, while 

premature birth carries a 2-5% risk of medical complications leading to death within 2 years 

(Fanaroff et al., 2007). Table 2 outlines major short and long-term issues tied to low birth 

weight (Eichenwald & Stark, 2008).  

 

Table 2: Major Complications in Infants with Extremely Low Birth Weight (Eichenwald & Stark, 2008) 

Affected Organ or 

System 

Acute/Immediate Problems Long-Term Problems 

Pulmonary Neonatal apnea, 

bronchopulmonary dysplasia, 

RDS, air leak 

Reactive pulmonary illness, 

asthma, BPD 

Gastrointestinal food intolerance, necrotizing 

enterocolitis, growth failure, 

hyperbilirubinemia 

Short bowel syndrome, 

cholestasis, growth failure 

Central nervous 

system 

Periventricular white-matter 

degeneration, intraventricular 

haemorrhage, hydrocephalus 

hearing loss, hydrocephalus, 

cerebral shrinkage, 

neurodevelopmental delay 

Immunologic Immune deficits, perinatal and 

hospital-acquired infections 

Bronchitis, respiratory syncytial 

virus infection 
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Ophthalmologic Premature retinopathy Myopia, strabismus, retinal 

detachment, blindness 

Cardiovascular pulmonary hypertension, 

patent ductus arteriosus, 

hypotension 

pulmonary hypertension, adult-

onset hypertension 

Renal Acid-base disturbances, 

electrolyte and water 

imbalances 

Adulthood hypertension 

Hematologic Iatrogenic anemia, the 

requirement for frequent 

transfusions, preterm anemia 

N/A 

Endocrine Hypoglycemia, momentary 

low thyroxine levels, a lack of 

cortisol 

Impaired control of blood sugar, 

elevated insulin resistance 
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Chapter 5: Vitamin D Receptor Gene Polymorphisms 

5.1 Vitamin D Receptor and its Location 

A pivotal steroid hormone receptor, the vitamin D receptor (VDR), often called the calcitriol 

receptor, oversees diverse biological effects attributed to vitamin D. Encoded by the VDR gene 

(gene Identifier: 7421 and Molecular Identification Number: 601769), it actively manages gene 

transcription, mediating vitamin D's impact (Whitfield et al., 1995), including nuclear 

transcription factor activity prompted by ligands (Kato, 2000). Calcitriol, the primary ligand, 

notably binds to VDR in the nucleus (Knabl et al., 2017). 

Recent research highlights elevated VDR gene expression across various cell types, including 

the immune system, thymus, type-II alveolar cells, osteoblasts, chondrocytes, skin epithelium, 

and placental components like villous trophoblasts, decidua, and placental vessel smooth 

muscle cells (Barrera et al., 2008; Knabl et al., 2017; Pike & Meyer, 2012; Pospechova et al., 

2009; Shahbazi et al., 2011). However, a distinct pattern emerges, with fewer vitamin D 

receptors present in erythrocytes, fully developed striated muscle cells, and differentiated 

cerebral cortex neural cells (Bischoff-Ferrari, Borchers, et al., 2004). 

 

5.2 How does Vitamin D Receptor Work? 

Compelling evidence strongly highlights the significant repercussions of vitamin D level 

imbalances on human wellness, leading to diseases (Zhang & Naughton, 2010). The vitamin D 

receptor in the nucleus plays an integral part in how the body reacts to this nutrient. Vitamin 

D’s active form, calcitriol, attaches to the blood’s vitamin D binding protein (VDBP). It then 

works with VDR in the cytoplasm of cells to form a molecular ensemble. Accompanied by the 

retinoic acid X receptor (RXR), the combination departs for the nucleus, forming a heterodimer 

(Barsony & Prufer, 2002; Bikle, 2014). Together, they enable gene transcription relying on 

vitamin D, which governs a significant portion of the human genome (3–10%), particularly in 
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mineral metabolism. This regulatory mechanism extends to metabolic pathways and is 

intertwined with embryological and immunological responses (Nair & Maseeh, 2012; Rosen 

et al., 2012; Zhu et al., 2013).. 

 

 

Figure 8: VDR protein's function in regulating gene expression (Agliardi et al., 2023; Scientific Image and 

Illustration Software, 2023) 

 

5.3 Signaling by VDRs during Preterm Birth 

In their research, scientists have found significant links between maternal vitamin D levels and 

placenta's defense against infectious microbes via toll-like receptors (Evans et al., 2006; N. Liu 

et al., 2009). Vitamin D stimulates cathelicidin production in decidua and cytotrophoblasts, 

crucially countering bacterial infections. Insufficient vitamin D limits toll-like receptor 

activation in systemic macrophages, decreasing cathelicidin levels and compromising 

microbial defense (Hewison, 2011; N. Q. Liu & Hewison, 2012). Moreover, vitamin D’s active 

form, calcitriol, suppresses key immune response cytokines (IL-6, TNF-α, & GMCSF-2). 
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During pregnancy, myometrial smooth muscle cells and tissue display heightened 

inflammatory responses to lipopolysaccharides (LPS) and IL-1, which are associated with 

premature birth in mouse models (Helmer et al., 2002; Sehringer et al., 2000). An important 

discovery is that vitamin D inhibits protein production induced by LPS and IL-1 in UtSM cells, 

reducing levels of inflammation-associated contractility proteins (Buhimschi et al., 2003; 

Romero et al., 1991; Thota et al., 2013). This finding underscores the significance of mitigating 

premature birth risk and highlights vitamin D's protective role in regulating placental and 

uterine responses to infections and inflammation (N. Q. Liu et al., 2011). 

 

5.4 Gene Polymorphism and their Types 

The concept of genetic polymorphism pertains to the inheritance of an attribute that is 

controlled by a solitary genetic locus containing 2 alleles, where the allele with the lower 

prevalence has an abundance of 1% or above. It includes random processes or exogenous 

influences like viruses or radiation causing DNA sequence changes in individuals, groups, or 

populations. Mutations are DNA sequence differences linked to diseases. External 

perturbations are termed "mutations," not "polymorphisms," even if they create 

polymorphisms. Mutations in nucleotides cause polymorphisms, which are inherited from 

parents (Ismail & Essawi, 2012). 

It's important to note that polymorphisms in genes come in a variety of forms: 

• Tandem repeat polymorphisms 

• Copy-number variations 

• Single Nucleotide polymorphism 
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5.5 Single Nucleotide Polymorphism of VDR Genes 

Located on chromosome 12 (12q13-14) over 75 kilobases, the VDR gene has nine exons 

(Suksawatamnuay et al., 2020) and allelic variations akin to other receptor genes on the same 

chromosome (Taymans et al., 1999). Extensive research has honed in on the genetic 

polymorphism of VDR, notably BsmI (rs1544410), ApaI (rs797532), TaqI (rs731236), and 

FokI (rs2228570), in relation to clinical outcomes (Agliardi et al., 2023). Figure 5.1 visually 

represents VDR activation and associated polymorphisms. 

 

 

Figure 9: Common SNPs of the VDR gene (Agliardi et al., 2023; Scientific Image and Illustration Software, 

2023) 

 

The exact mechanisms behind genetic variations within the VDR gene impacting observed 

traits in association studies are uncertain. Specific SNP locations, like TaqI at exon-9; FokI at 

exon-2; ApaI and BsmI at intron-8, are of interest. Such SNPs involve distinct nucleotide 

changes, such as A to G for TaqI, G to A for FokI, G to A for BsmI, and A to C for ApaI (Kosik 

et al., 2020). TaqI alters protein function, while BsmI and ApaI change mRNA stability and 

expression, impacting VDR synthesis, vitamin D levels, calcium balance, and non-classical 

functions (Swamy et al., 2011).  
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5.6 VDR BsmI Gene Polymorphism 

The VDR BsmI gene polymorphism (rs1544410), found within an intron between exons 8 and 

9, is believed to impact the translational activity of VDR and the stability of its mRNA. because 

of significant linkage disequilibrium with a polyadenosine microsatellite repeat in the 3' 

untranslated region (Mangin et al., 2014; Mory et al., 2009), frequently co-occurring with the 

A allele (ApaI) and the T allele (TaqI). This relationship is linked to enhanced serum 

1,25(OH)2D3 levels (Marco et al., 1999; Morrison et al., 1994), while some studies indicate a 

link between the B allele and reduced VDR activity (Morrison et al., 1994; Uitterlinden et al., 

2004), suggesting a negative feedback mechanism where the VDR ligand causes CYP27B1 

inhibition, limiting excessive 1,25(OH)2D3 production (Takeyama et al., 1997). This 

interaction may protect heterozygous individuals by maintaining intermediate 1,25(OH)2D3 

concentration in the serum and activity of VDR (Carless et al., 2008). According to recent 

studies, the VDR gene polymorphism BsmI is linked to enhanced intestinal calcium absorption 

in children & women (Ames et al., 1999; Gennari et al., 1997), and heightened renal phosphate 

absorption in men, shedding insight on its influence on calcium and phosphate metabolism 

(Ferrari et al., 1999). 

 

5.7 VDR Gene Polymorphisms and Adverse Pregnancy outcomes 

The vitamin D Receptor gene variations have been linked to a range of health conditions, 

including metabolic disorders, immune challenges, and different cancers (Valdivielso & 

Fernandez, 2006). These variations have prompted investigations into their potential roles in 

predicting complications during pregnancy and impacting the health of both mothers and 

newborns (Baczyńska-Strzecha & Kalinka, 2016; Barchitta et al., 2018; Randis, 2008). 

Regarding neonatal repercussions, premature infants are vulnerable to conditions like 

respiratory distress syndrome (RDS) due to their underdeveloped lungs (Course & 
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Chakraborty, 2020). Vitamin D has shown potential for reducing RDS risk, particularly at 

elevated levels (Ataseven et al., 2014). Genetic variations within the VDR gene, such as the 

TaqI polymorphism, appear to be correlated with an elevated RDS risk (Ustun et al., 2020). 

Similarly, intraventricular hemorrhage (IVH), which involves genetic and environmental 

factors, might be influenced by VDR gene variations affecting vascular endothelial cell 

function (Ni et al., 2014; Szpecht et al., 2017). The likelihood of bronchopulmonary dysplasia 

(BPD), a condition tied to insufficient lung maturation, has been linked to the VDR gene 

polymorphism ApaI (Kosik et al., 2020). Additionally, the Toll-like receptor 4 (TLR4), 

involved in NEC development, is influenced by the VDR gene polymorphism ApaI, indicating 

a potential role for this vitamin in TLR4 signaling (Kosik et al., 2020). 

Maternal repercussions include pre-eclampsia, where VDR gene polymorphisms like BsmI and 

FokI have been connected to hypertension beyond pregnancy (Bodnar et al., 2007). The FokI 

polymorphism, for instance, may lower hypertension risk through its effect on plasma renin 

activity (Vaidya et al., 2011). Gestational Diabetes Mellitus (GDM), influenced by genetic 

along with environmental factors, has ties to VDR gene variations, potentially predisposing 

people to type-1 and type-2 diabetes (Motohashi et al., 2003; Tizaoui et al., 2014). Certain 

variants like BsmIBB, BsmIBb, and TaqItt predispose to T1DM (Sahin et al., 2017), while 

VDR FokI, TaqI, and ApaI SNPs show associations with GDM in diverse populations (Aslani 

et al., 2011; Rahmannezhad et al., 2016). A possible osteoporosis risk, particularly in 

postmenopausal women, has been explored in relation to VDR gene haplotypes, with varying 

effects observed in different cell lines (Gennari et al., 1997). 
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Chapter 6: Findings on Association of Single Nucleotide VDR Gene 

Polymorphism BsmI with Preterm Birth & Low Birth Weight 

6.1 Interrelation between VDR BsmI SNP & Preterm Birth 

Manzon and colleagues studied ApaI, TaqI, FokI and BsmI polymorphisms among a 

population residing in Israel to determine their impacts on preterm delivery. The research found 

substantial differences between preterm deliveries and controls, notably in mothers' FokI and 

TaqI VDR alleles. Interestingly, the maternal FokI variation had an OR of 3.317%, suggesting 

a higher risk of preterm delivery. ApaI, TaqI, and BsmI genetic variants did not significantly 

affect preterm birth, with odds ratios of 0.41, 0.232, and 1.13, respectively (Manzon et al., 

2014). 

In another study, Baczyńska-Strzecha and her colleague examined 100 preterm and 99 full-

term Polish moms in 2016. Researchers found three genetic variations in participants: ApaI, 

TaqI, and Bsm1. The research found no substantial genetic variation differences between 

preterm and full-term groups, despite these variances. Intriguingly, the preterm cohort 

displayed a higher frequency of BsmI/BB-ApaI/aa-TaqI/tt & BsmI/bb-ApaI/AA-TaqI/TT 

variants. Conversely, the preterm delivery incidence was also lowered by two genotype 

combinations: BsmI/BB-ApaI/Aa-TaqI/tt & BsmI/Bb-ApaI/AA-TaqI/Tt. This shows that 

certain genetic differences may raise the chance of preterm birth, while others may reduce it 

(Baczyńska-Strzecha & Kalinka, 2016). 

Rosenfeld and his colleagues found a substantial correlation among maternal BsmI 

polymorphism and likelihood of PTB in a separate investigation, comprising 146 Israeli-Jewish 

preterm and 229 full-term women. Remarkably, the research found a negative connection 

between maternal BsmI polymorphism A allele count and PTB risk. Even after controlling for 

other covariates, this link remained strong, indicating that a greater A allele count continuously 
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lowered PTB risk. The research also found that mothers with spontaneous miscarriages had a 

higher PTB risk, especially if their babies had non-mutated (homozygous BB or bb) BsmI gene 

variations rather than the mutated (heterozygous Bb) genotype. These data show that the 

maternal BsmI polymorphism may affect PTB risk in women who have had previous instances 

of miscarriage (Rosenfeld et al., 2017). 

In their initial 2018 Mamma and Bambino Cohort research, Barchitta and colleagues found no 

association between the VDR BsmI SNP and preterm birth. Integrating their data with 

Rosenfeld and Baczyńska-Strzecha’s findings and using the Q-test and I2-test for heterogeneity 

evaluation, they found no significant differences. However, their meta-analysis of many 

genetic models found a negative correlation between mothers’ BsmI polymorphism and 

premature birth. The recessive variant of the rs1544410 (BsmI) gene (AA vs. GG + AG) was 

linked to a lower incidence of PTB, suggesting a protective effect. The dominating model 

(AA+AG vs. GG) didn’t show a meaningful correlation. The meta-analysis confirms that BsmI 

protects against preterm birth, with the extent varying by genetic model (Baczyńska-Strzecha 

& Kalinka, 2016; Barchitta et al., 2018; Rosenfeld et al., 2017). 

Dutra accompanied by his colleagues found numerous interesting results in another study of 

40 moms with preterm neonates (PTNs) as cases and 92 moms with full-term newborns (FTN) 

as controls. The maternal BsmI/CT single nucleotide variation (SNV) was more prevalent in 

the FTN group than in the PTN group, indicating a genetic composition linked to a lower 

chance of preterm delivery. Conversely, the BsmI/TT genotype elevated preterm birth risk by 

2.36 times when paired with a 25 (OH)D deficit. This shows that the TT genotype and low 

vitamin D levels increase preterm birth risk. Preterm newborns had more BsmI/TT genotypes, 

whereas FTN neonates had more CT genotypes of the BsmI SNV (Dutra et al., 2020). Another 

case-control study conducted in the same year in Slovenia didn’t reveal any substantial 

association for VDR BsmI SNP with preterm birth  (Gašparović Krpina et al., 2020) 
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A study Wang and colleagues at Zhoushan Maternal and Child Health Hospital, China, Wang 

et al. investigated the link between genetic variation BsmI (rs1544410) and gestational week 

from August 2011 to May 2018. However, their findings showed an absence of correlation 

between BsmI and the gestational week, indicating limited impact on gestation length (Wang 

et al., 2021). 

 

Table 3: Studies on VDR gene variations and preterm birth risk 

Population 

Origin 

Participants VDR 

SNPs 

Findings Reference 

Israel 

(Jewish) 

33 Caucasian 

moms with PTNs 

(between 24 and 35 

weeks), and 98 

with FTNs 

 

TaqI 

BsmI 

ApaI 

FokI 

Preterm mothers were more 

likely to have the FokI/C gene. 

However, no link was seen 

between the BsmI genotype and 

preterm birth. 

(Manzon et 

al., 2014) 

Poland 100 Caucasian 

moms with PTNs 

(22-36.6 weeks) 

and 99 moms with 

FTNs 

 

TaqI 

BsmI 

ApaI 

Despite no differences in 

individual genotype 

frequencies, preterm birth 

mothers were more likely to 

carry the genotypic 

combinations: BsmI/BB-

ApaI/aa-TaqI/tt & BsmI/bb-

ApaI/AA-TaqI/TT 

(Baczyńska-

Strzecha & 

Kalinka, 

2016) 

Israel 

(Jewish) 

146 white moms 

with their PTNs (at 

TaqI 

BsmI 

The genotype ApaI/AA 

appeared to be linked to an 

(Rosenfeld et 

al., 2017) 
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24–36 weeks), 229 

women with their 

FTNs. 

 

 

ApaI 

FokI 

elevated preterm birth 

incidence. If their neonates 

received the non-mutated BsmI 

gene variant (BB or bb), 

mothers who had natural 

miscarriages were more likely 

to deliver prematurely. 

Italy 17 moms & their 

PTNs (< 37 weeks 

gestation), 187 

moms & their 

FTNs 

BsmI 

ApaI 

FokI  

TaqI 

FokI polymorphism genotypes 

enhanced preterm birth risk in 

mothers. However, recessive 

BsmI (AA vs. GG + AG) 

reduced preterm birth risk. 

(Barchitta et 

al., 2018) 

Slovenia 118 spontaneously 

induced PTB 

following natural 

conception cases 

and 119 term 

singleton controls 

ApaI 

TaqI 

BsmI 

FokI 

Cdx2 

No association for BsmI SNP 

was discovered. 

(Gašparović 

Krpina et al., 

2020) 

Brazil 

(Southeast) 

40 moms and their 

PTNs (between 23 

and 32 weeks), and 

92 moms with 

FTNs 

BsmI 

ApaI 

FokI  

TaqI 

Prematurity risk was increased 

by the BsmI/TT as well as 

ApaI/AA genotypes, 

irrespective of  Insufficiency in 

vitamin D. 

(Dutra et al., 

2020) 
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China A total of 3465 

pregnant women, 

with 202 of them 

being PTB  

BsmI No substantial association 

between BsmI and gestational 

week was discovered 

(Wang et al., 

2021) 

 

6.2 Interrelation between VDR BsmI SNP & Low Birth Weight 

Limited research has addressed genetic factors affecting birth outcomes related to vitamin D 

metabolism and overlooked 'maternal' VDR gene variations in newborn birth weight. However, 

potential ethnicity-specific responses to maternal VDR gene polymorphisms regarding birth 

weight hint at the need for further investigation. This emphasizes the necessity of 

comprehensively understanding how genetics and vitamin D contribute to birth outcomes 

across diverse ethnic groups (Swamy et al., 2011). 

Lorentzon and colleagues found a connection between the VDR BsmI SNP & birth height, 

implying its influence on fetal bone development. In contrast, birth weight showed no 

significant correlation (Lorentzon et al., 2000). Within a primarily Caucasian cohort, 

insufficient maternal serum 25(OH)D status was linked to reduced birth weight in higher-

functioning VDR FokI genotypes. However, no noteworthy correlation emerged between the 

BsmI SNP and birth weight (Morley et al., 2009). 

Silvano and his team explored SGA neonates who didn't grow much after birth among 

prepubertal children. Intriguingly, no significant variations were detected in BsmI genotype 

distributions across diverse birth weight categories (Silvano et al., 2011). Similarly, A meta-

analysis conducted on data from the "Mamma & Bambino" Cohort failed to reveal substantial 

variations in gestational length or birth weight among different BsmI genotypes (Barchitta et 

al., 2018).  
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Based on findings from a recent case-control research, it was shown that the FokI/TT variant 

of VDR exhibited an association with reduced birth weight in newborns of European descent 

who had spontaneous preterm birth (SPTB). There were no observed associations between 

VDR BsmI SNP and any further medical characteristics of SPTB mothers and their babies 

(Gašparović Krpina et al., 2020). 

Ultimately, available evidence suggests that BsmI genotypes may not substantially impact 

newborn weight. 

 

6.3 Limitations of the Findings 

Conflicting VDR polymorphism research arises from variable study factors, notably sample 

sizes impacting reliability and generalization. Small studies, like Baczyska-Strzecha's, hold 

limited relevance (Baczyńska-Strzecha & Kalinka, 2016). Ethnicity profoundly affects SNV 

distribution, particularly in mixed populations such as Asians and Caucasians, resulting in 

distinct VDR polymorphism prevalence and associations (Manzon et al., 2014). Racial origins 

contribute to inconsistent findings (Dutra et al., 2020). Unmeasured variables, like maternal 

practices and vitamin D levels, might influence associations (Barchitta et al., 2018). Genetic 

naming variations and analysis methods further complicate interpretation (den Dunnen et al., 

2016). Recognizing ethnicity, unmeasured variables, and genetic nomenclature is vital for 

accurate VDR polymorphism research interpretation. Addressing these complexities in future 

studies is essential (den Dunnen et al., 2016; Dutra et al., 2020). 
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Chapter 7: Conclusion and Future Recommendations 

Conclusion 

Both preterm birth and low birth weight are serious worldwide healthcare concerns with 

complex causes. Maternal vitamin D deficiency is shown to cause preterm birth, and the VDR 

gene, responsible for the encoding of vitamin D receptor, takes part in regulating the levels of 

this vitamin through genetic variations (SNPs). Several researches have delved into the 

correlation between VDR BsmI SNP and the likelihood of preterm birth, with some providing 

evidence for the association while others failing to reach a conclusive outcome. However, 

almost no evidence of a BsmI SNP connection with low birth weight has yet been reported. In 

essence, the current findings are inconclusive, highlighting the need for more research to 

comprehensively comprehend how VDR gene SNPs relate to adverse pregnancy outcomes. 

The mother's health, lifestyle, surroundings, infections, race, ethnicity, and smoking all 

influence birth weight and the premature birth risk. Additionally, the variation in a particular 

gene is not the only genetic component that influences adverse pregnancy outcomes. 

Nonetheless, ensuring sufficient vitamin D intake and closely monitoring pregnant women and 

fetuses are essential for achieving optimal outcomes. 
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Future Recommendations 

Future research recommendations for this subject include: 

• Increasing sample sizes for stronger statistical power by studying larger populations;  

• Including diverse ethnic groups to grasp VDR polymorphisms' impact on PTB and LBW;  

• Analyzing functional aspects of VDR polymorphisms for their link to PTB and LBW;  

• Considering maternal stress, nutrition, and pollutant exposure in future studies to better • 

understand PTB and LBW risk;  

• Conducting longitudinal studies to observe PTB and LBW progression while factoring in 

genetics and the environment; and  

• Exploring epigenetic changes for a deeper understanding of VDR polymorphisms' connection 

to PTB and LBW. 

Health organizations and governments should increase awareness of PTB and LBW risks, 

targeting pregnant women and the public through educational campaigns, materials, and 

community outreach. Pregnant women should prioritize a healthy lifestyle, infection 

prevention, sufficient vitamin D intake, monitoring, safe supplementation, and healthcare 

provider guidance. 
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