
An Android Application to Predict Human Activity using a
Deep Learning LSTM Model

by

Debabrata Sikder
19366011

A project submitted to the Department of Computer Science and Engineering in
partial fulfillment of the requirements for the degree of Master of Engineering

(M.Engg.) in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University
September 2023

© 2023. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The project submitted is our own original work while completing degree at
Brac University.

2. The project does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The project does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Debabrata Sikder
19366011

i

Approval

The project titled “An Android Application to Predict Human Activity using a
Deep Learning LSTM Model” submitted by

1. 1. Debabrata Sikder (19366011)

Of Summer, 2023 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of Master of Engineering (M.Engg.) in Computer Science
and Engineering September 21, 2023.

Examining Committee:

Supervisor:
(Member)

Dr. Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Dr. Amitabha Chakrabarty, PhD
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

skazi@bracu.ac.bd
Signature

Ethics Statement

I will remain curious, objective, and open minded about other people’s ideas, choices,
and beliefs.

iii

Abstract

The machine learning approach to estimate human activity using smartphone sensor
data is challenging. In this project, the HAR approach is conducted based on the
LSTM model and can recognize six different behaviors, i.e., Downstairs, Jogging,
Sitting, Standing, Upstairs, and Walking. To achieve the best potential result,
various machine learning and statistical approaches were explored. The long short-
term memory (LSTM) is a recurrent neural networks (RNNs) capable of learning
long-term dependencies, especially in sequence prediction problems. This LSTM
model was applied in this project, to obtain the desired result. This model shows
97% test accuracy. Finally, the model was exported and deployed in the Android
application, which has an user interface that could provide a user-friendly experience.

Keywords: Machine Learning (ML), Deep Learning, Human activity (HA) Human
activity recognition (HAR), TensorFlow, Recurrent neural networks (RNNs), Long
short-term memory networks (LSTM).

iv

Dedication

This endeavor is dedicated to all researchers who generate unique ideas by working
hard to solve critical problems.

v

Acknowledgement

In the beginning, I sincerely recall the immense power of nature for helping me
to complete this task. In addition, I want to express my profound gratitude and
respect to my supervisor, Dr. Md. Golam Rabiul Alam, Professor, Department of
Computer Science and Engineering at BRAC University, for his informative ideas,
scholarly suggestions, significant support, and compassionate cooperation through-
out the entire progress of this project. Finally, I want to thank my parents, who
always encourage me to achieve my goal.

vi

Table of Contents

Declaration i

Approval ii

Ethics Statement iii

Abstract iv

Dedication v

Acknowledgment vi

Table of Contents vii

List of Figures ix

List of Tables x

Nomenclature xi

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 2
1.3 Project Challenges . 3
1.4 Project Objectives . 3
1.5 Contributions . 4
1.6 Organization of the Report . 5

2 Related Work 6

3 Methodology 10
3.1 Data Collection . 11
3.2 Data Preprocessing . 12
3.3 Model Specification . 15

3.3.1 Long Short-Term Memory (LSTM) 15
3.3.2 Forget Gate . 16
3.3.3 Input Gate . 17
3.3.4 Output Gate . 18

vii

4 Application Development 19
4.1 Permission and Dependencies . 19
4.2 Designing . 20
4.3 Development . 20

4.3.1 Importing Necessary Libraries 22
4.3.2 TensorFlowClassifier Class . 22
4.3.3 Pre-trained Model in the Android Application 22
4.3.4 Prediction Estimation . 23
4.3.5 MainActivity Class . 23
4.3.6 Storing the Accelerometer Data 24
4.3.7 Text View of the Main Activity 24
4.3.8 Showing the Layout . 24
4.3.9 Storing Each Activity Probability 25
4.3.10 Showing the Human Activities 25
4.3.11 Text-to-Speech . 26

5 Performance Evaluation 27
5.1 Performance Metrics . 27
5.2 Result Analysis . 28
5.3 Comparative Study . 31

6 Conclusion 32
6.1 Future Works . 32

Bibliography 35

viii

List of Figures

3.1 Top level overview of the HAR system 10
3.2 Training examples by activity type 12
3.3 Training examples by user . 13
3.4 Sitting . 13
3.5 Standing . 14
3.6 Jogging . 14
3.7 Walking . 15
3.8 LSTM Structure . 16
3.9 Forget Gate . 17
3.10 Input Gate . 17
3.11 Output Gate . 18

4.1 TableView layout . 21
4.2 The application outlook . 21
4.3 Nodes of a deep-learning model . 23
4.4 Probability shown in float format . 26

5.1 Training sessions progress over iterations 28
5.2 Confusion matrix . 29

ix

List of Tables

3.1 Data sample . 12

5.1 Accuracy of the model . 30
5.2 F – 1 scores of the model’s classes . 30
5.3 Sensitivity and Specificity of the model 31
5.4 Comparative Study . 31

x

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

GUI Graphical User Interface

HAR Human Activity Recognition

LSTM Long Short-term Memory

PA Physical Activity

PASE Physical Activity Scale for the Elderly

PB Protocol Buffers

RNN Recurrent Neural Network

WISDM Wireless Sensor Data Mining

xi

Chapter 1

Introduction

Human activities are functions, tasks, or works done by human beings over time
for achieving certain objectives. Some primary human activities are walking, jog-
ging, standing, sitting, and walking upstairs and downstairs. We can detect these
activities by our senses easily. But, machines can not detect our activities as we
do by our senses, so we need to build a machine learning system to detect human
activities properly. Sometimes, we need to detect these types of human activities
for specific purposes, i.e., game analysis and health care. In this case, we need to
continuously detect activities for a certain period and store the data for analysis.
But, a manual approach to detecting activities continuously for a long time is very
difficult to do. Moreover, the usage of a manual system is expensive and can create
a lot of human errors. An automatic artificial intelligence or machine learning-based
system can solve this problem. So, we need to construct a system that can detect
human activity continuously and efficiently.

Human activity recognition (HAR) can be referred to as the mechanism of iden-
tifying and labeling human activities using Machine Learning (ML) approach and
raw human activity data collected from sources like Wearable sensors [30], elec-
tronic device sensors such as smartphone sensors [25], camera devices such as Kinect
[28], closed-circuit television (CCTV) [26]. Smartphones are essential communica-
tion devices with modern technologies that give smart support to consumers daily.
Nowadays, smartphones have different types of sensors, i.e., Accelerometer, Gyro-
scope, Proximity sensor, Magnetometer, etc. These sensors data can be used to
detect human activities. The Human Activity Recognition (HAR)[21] framework
takes raw data from sensors and analyzes human activity using deep learning al-
gorithms [4]. As we want to use smartphone sensor data, we must make a system
directly connected to the smartphone. Android applications are very popular these
days. Because it is an open-source operating system, a vast pool of programmers
can provide their best and improve Android. There are around 200000 Android
applications available, with over 3 billion downloads. Therefore, if we develop an
Android application for the HAR system, it will be very convenient for the users.
In this case, we decided to make an Android application to detect human activi-
ties. This application will identify human activity using the deep learning model
and real-time sensor data. The output of the Android application is an extensive
system that identifies and labels different types of human activities. This HAR uses
the LSTM deep learning technique and, smartphone sensors dataset and real-time

1

smartphone sensor data to recognize and classify human activities and motions. It
can potentially transform various sectors, including healthcare, sports performance
analysis, gaming, intelligent monitoring, and human-computer interface. Through
improved classification methods and an improved dataset, the project tried to create
a graphical user interface that can detect human activities and be easy to understand
for a general user.

1.1 Motivation

This project aims to improve the effectiveness and efficiency of human activity recog-
nition by developing an Android application which uses a deep learning model. The
difficulties of human operators in real-time human activity recognition emphasize
the need for automated solutions. By adopting deep learning methodologies, this
project intends to improve the effectiveness and efficiency of human activity recog-
nition. This will be accomplished with a dataset that contains more relevant smart-
phone sensor data and an advanced deep-learning model. The fundamental goal of
this project is to contribute by improving the accuracy of human activity recognition
using advanced algorithms for automated recognition processes. There are several
HAR methods that are based on sensor types, i.e., cameras, wearable devices, and
smartphone sensors. Camera-based HAR was popular previously. In a dark situ-
ation, camera performance degrades rapidly. Having cameras installed in certain
areas, such as beds and bathrooms, will dramatically violate human privacy and
cause moral and legal issues [29]. As a result, regular cameras have been abandoned
as HAR sensors in recent years. Wearable technologies [35] such as smartwatches
and fitness trackers are expensive and have a short battery life. But most of us
have a smartphone, and we carry our smartphone a big part of the day. So, we
need to make a HAR system to reduce the cost of extra devices like the Apple and
Samsung Galaxy watches. The use of various sources makes HAR important for
a wide range of usage, including healthcare [30], surveillance ([22], remote care to
older people living alone [27]. This systemm can be used for sports performance
analysis, gaming, intelligent monitoring, and human-computer interface. The broad
deployment of HAR have a lot of benefits for human security and quality of life [24].

1.2 Problem Statement

The usage of human activity detection is increasing all around the world, and im-
plementation of the HAR systems into an Android application ensures automated
human activity recognition. However, this system’s dependency on human operators
limits its success. Furthermore, a computerized system can perform better perfor-
mance and reduce cost. We have explored numerous related works and methodolo-
gies, highlighting the significance of precise human activity detection. The purpose
of activity recognition is to identify human activities in real-world situations. Hu-
man activity recognition (HAR) is essential in surveillance, smart environments,
and man-machine communication. Because human activity is dynamic and diverse,
accurate activity identification is difficult. In the past, questionnaires like the Phys-
ical Activity Scale for the Elderly (PASE) were commonly used to assess Physical
Activity (PA)[2]. Such questionnaires are limited because they cannot give accurate

2

continuous predictions. Therefore, we must build a system that can face continuous
sensor data and detect human activity. Moreover, if we can develop an Application
for smartphones that can detect human activity, we won’t have to buy wearable
devices. Consequently, it will reduce costs. Our main goal was to develop an An-
droid application that can detect HA using the LSTM deep-learning approach. We
searched for applications like this in the Google Play store, but they all use only
sensors to record the data. None of them used a deep-learning approach to detect
HA. We found some projects from GitHub, but most were old and could not be in-
stalled on the latest smartphones. Their accuracy was poor, and they were confused
to detect differences between non-moving activities like sitting and standing. This
project aims to provide a solution by developing a new human activity detection
system. Our main goal is to enhance the accuracy of HAR systems and develop
an Android application which can detect human activities. We collected a precise
dataset to achieve better results. Then, combining a deep learning algorithm for au-
tomated recognition processes has been used. This project strives to build a system
which emphasises creating a human activity recognition Android application.

1.3 Project Challenges

The first problem was to find a dataset that would fit the model. We found the
WISDM Lab Dataset from Fordham University’s website. However, the dataset had
null values. We removed it using Python programming. There was an imbalance in
the dataset; some rows were overlapped with another. So, we separate them so the
model can consider them a unique value. For the developing section, sometimes we
took help from different websites; many websites provided old techniques, which are
not compatible with the recent updates of the high-level languages. So, we learned
the new techniques and connected the old techniques together. During the model
training, it took too long because Google Colab doesn’t give as much computational
speed as we want. So, we can not run as many epochs as we want.

1.4 Project Objectives

The primary objective of this project is to create an effective human activity recogni-
tion system by using a deep learning technique which is implemented in an Android
application later. We focused on improving the identification and classification of
different human activities to get increased accuracy in recognition. Moreover, we
have done a thorough analysis of current procedures for detecting human activities.
Finally, we perform careful testing in real-life situations and evaluation of the per-
formance of the HAR system. We also compare its accuracy and efficiency to other
methods and algorithms. In the future, the project can potentially improve human
tracking, health and game analysis.
The aim is to prepare a deep learning LSTM [3] model first, to predict activities
of a human. We used Wireless Sensor Data Mining (WISDM) dataset [20] from
Fordham University, Bronx, NY. After that, we create a graphical user interface
(GUI) for smartphones to detect a person’s activities.Therefore, in summary, the
key objectives of this project are as follows:

3

• To use a deep-learning model to recognize human activity using smartphone
sensors dataset.

• After that to transform the deep-learning model into an Android application
as general users can use it.

1.5 Contributions

Our project contributions include improved datasets, innovative system design, im-
proved preprocessing approaches, and the implementation of an Android application.
We significantly improve the accuracy of the system and build a human activity de-
tection Android application. Furthermore, our effort provides a solid framework
for future research in the domain. The datasets were processed, removing null val-
ues [30] before being fed into the deep-learning model. This method produced more
accurate results in identifying human activities in real-life. Our primary goal was
to design and develop a HAR system. There is much research on HAR. However,
there was no graphical user interface (GUI) to show HA in real time. That is why
we decided to build a GUI for the HAR system. We developed an Android appli-
cation that is compatible with most of the latest smartphones. In summary, our
contributions are illustrated bellow:

• This project began with the careful collection of an enriched dataset named
WISDM Dataset. This new dataset has 1,098,207 rows, which have six differ-
ent labels: Walking: 424,400 (38.6%), Jogging: 342,177 (31.2%), Upstairs:
122,869 (11.2%), Downstairs: 100,427 (9.1%), Sitting: 59,939 (5.5%) and
Standing: 48,395 (4.4%). Notably, this dataset was made by collecting smart-
phone accelerometer sensors. We used the accelerometer x,y, and z-axis values
to generate a typical pattern associated with the specific activities. After col-
lecting the dataset, we removed the null values and separated some overlapped
values.

• The following contribution of our project was to compare some machine learn-
ing methods and select the best method that shows the best accuracy for hu-
man activity recognition. We found the LSTM shows the best accuracy, and
its execution time was the fastest. We developed a HAR system by integrating
a preprocessed dataset and LATM deep learning model.

• The final contribution was to build a graphical user interface that would show
a user-friendly experience for general users. We developed an Android ap-
plication to detect human activities. The deep learning model is written in
Python and exported as a Protocol buffers (PB) file so the Android application
can understand and use the deep learning model for implementation purposes.
Next, we developed the graphical user interface, an Android application called
”Activity Recognition.”

4

1.6 Organization of the Report

The report is constructed in the following manner - Chapter I demonstrates the
introduction, motivation, problem statement, project objectives, and contribution.
Chapter II explains the related works associated with HAR. Chapter III will method-
ology of the project. Then, in Chapter IV, includes application development. Af-
terward, Chapter V will present the performance analysis. Finally, the conclusion
and the future scopes are shown in Chapter VI.

5

Chapter 2

Related Work

Activity identification has recently become a research issue because of the increas-
ing availability of accelerometers in consumer items such as cell phones and the
numerous possible uses. Early work in accelerometer-based activity recognition con-
centrated on using many accelerometers placed on various regions of the user’s body.

Bao and Intille [7] employed five biaxial accelerometers worn on the user’s right
hip, dominant wrist, non-dominant upper arm, dominant ankle, and non-dominant
thigh to collect data from 20 users in one of the early types of research on this
topic. They developed models to recognize twenty daily tasks using decision tables,
instance-based learning, C4.5, and Nave Bayes classifiers. Their findings revealed
that the accelerometer on the thigh was the most effective at discriminating between
activities. This discovery backs up our decision to have our test subjects carry their
phones in the handiest location—their jeans pockets. Krishnan et al. [16] used two
accelerometers to collect data from three users to recognize five activities: walk-
ing, sitting, standing, running, and lying down. According to this article, data
from a thigh accelerometer is insufficient for identifying activities, including sitting,
lying down, walking, and running. As a result, several accelerometers were required.

Tapia et al. [11] collected data from five accelerometers placed on various body sites
for twenty-one individuals and utilized it to build a real-time system that recognized
thirty gymnasium activities. Incorporating data from a heart monitor in addition
to accelerometer data resulted in a slight improvement in performance. Mannini
and Sabitini [19] identified twenty behaviors from thirteen users using five tri-axial
accelerometers mounted to the hip, wrist, arm, ankle, and thigh. Three postures
(sleeping, sitting, and standing) and five movements (walking, stair climbing, run-
ning, and cycling) were identified using a variety of learning strategies. For activity
recognition, Foerster and Fahrenberg [5] used data from five accelerometers in one
set of studies and two accelerometers in another. The study included 31 male indi-
viduals. A hierarchical classification model was developed to discriminate between
postures, such as sitting and lying at specific angles, and actions, such as walking
and climbing stairs, at different rates. To achieve activity recognition, researchers
used a combination of accelerometers and other sensors.Parkka et al. [10] used
twenty different types of sensors to create a system that recognizes activities such
as lying, standing, walking, running, football, swinging, croquet, playing ball, and
using the toilet in specific locations.

6

By combining a sensor module worn in the pocket with a digital compass worn at
the user’s waist, Lee and Mase [6] created a system that recognizes a user’s location
and actions, such as sitting, standing, walking on level ground, walking upstairs,
and walking downhill. Some studies have focused on combining multiple types of
sensors for activity recognition in addition to accelerometers.

Choudhury et al. [13] used a multimodal sensor device with seven different types
of sensors to recognize activities such as walking, sitting, standing, ascending and
descending stairs, elevator up and down, and brushing one’s teeth. Cho et al. [12]
identified nine activities using a single tri-axial accelerometer and an embedded
image sensor worn at the user’s waist. Although these multi-sensor systems demon-
strate the tremendous potential of mobile sensor data as additional types of sensors
are integrated into devices, our approach demonstrates that only one type of sen-
sor—an accelerometer—is required to recognize most daily activities. As a result,
our solution provides a simple and easy-to-implement approach to doing this work.

Other research, including ours, have concentrated on the use of a single accelerome-
ter for activity identification. Long, Yin, and Aarts [17] used a triaxial accelerometer
worn at the user’s waist without regard for orientation to collect accelerometer data
from twenty-four individuals. To distinguish walking, jogging, running, cycling, and
sports, data was collected naturally, and decision trees, as well as a Bayes classi-
fier mixed with a Parzen window estimator, were utilized. Several academics have
proposed using readily available mobile devices, such as cell phones, to address the
challenge of activity recognition. However, previous techniques did not take advan-
tage of the sensors built into mobile devices themselves.

Gyorbiro et al. [23], for example, employed “MotionBands” affixed to each subject’s
dominant wrist, hip, and ankle to discern between six different motion patterns. A
tri-axial accelerometer, magnetometer, and gyroscope were included in each Motion-
Band. The data obtained by the MotionBand was then communicated to a smart
phone carried by the user for storage. Ravi et al. [8] obtained data from two users
wearing a single accelerometer-based device, which was subsequently transferred to
the user’s HP iPAQ mobile device. Researchers compared the performance of eigh-
teen different classifiers for activity recognition using this data.

Lester et al. [9] recognized eight everyday activities from a small group of users us-
ing accelerometer data, audio data, and barometer sensor data. While this research
could have generated accelerometer data using a cell phone, they did not. Instead,
the data was created using distinct accelerometer-based devices worn by the person
and then stored on a cell phone. A few studies, including ours, did collect data for
activity recognition using an actual commercial mobile device. These systems have
an advantage over other accelerometer-based systems in that they are unobtrusive
and require no additional equipment for data collecting and correct recognition.

Miluzzo et al. [14] investigated the use of commercial smartphone sensors (such as a
microphone, accelerometer, GPS, and camera) for activity identification and mobile
social networking apps. To handle the activity recognition task, they gathered ac-

7

celerometer data from ten users and used J48 to create an activity recognition model
for walking, running, sitting, and standing. This model struggled to discriminate
between sitting and standing activities, a task that our models quickly accomplished.

Yang et al. [18] used the Nokia N95 phone to create an activity identification sys-
tem that distinguishes between sitting, standing, walking, running, driving, and
bicycling. This research also looked into the usage of an activity recognition model
to create physical activity diaries for users. Although the study obtained rather high
prediction accuracies, stair climbing was not taken into account, and the system was
trained and validated using just data from four users.

Brezmes et al. [15] developed a real-time system for distinguishing six user behaviors
using the Nokia N95 phone. Because their technology trains an activity recognition
model for each user, there is no universal model that can be applied to new users
with no training data. This restriction does not apply to our models.

Mekruksavanich et al. [36] proved that the usage of microelectronics mechanical sys-
tems sensor technology in smart wearable devices has substantially increased HAR
capabilities through the use of machine learning and deep learning approaches. On
the other hand, processing lengthy dependent sequence samples with noisy data
remains a substantial difficulty, affecting classification time and accuracy. They
examined noise-tolerant deep learning models for detecting physical activities from
noisy smartphone data. They also examined the performance of the five most com-
mon deep learning networks for HAR under various amounts of Gaussian noise. The
results showed that the BiGRU network was remarkably resistant to Gaussian noise
at various levels.

S. Al Farshi Oman et al. [38] introduce a branch CNN and LSTM structure for iden-
tifying human activity that produces cutting-edge results in their research. Due to
the noisy sensor data, domain analysis and signal processing are required to extract
features from the raw data and fit them into machine learning models. The latest
breakthrough in Deep Learning Models allows features to be learned automatically
rather than by hand. Deep learning techniques such as CNN and RNN are heavily
used in this field. They conducted experiments on the SHOAIB Al and UCI HAR
datasets, which yielded superior results than the previous method.

S. Mekruksavanich et al. [37] investigate how motion sensors respond during the
activity recognition process by employing deep learning (DL) algorithms to identify
physical movements based on smartphone sensor data. The DL models are evaluated
using a dataset from 10 persons doing eight activities while carrying cell phones in
various settings. Their experimental results show that, except for the magnetometer,
each sensor can play a leading role in HAR to detect human activity. Furthermore,
they discovered that combining sensors enhances overall recognition interpretation
only when their performances are poor.

A. N. Tarekegn [39] provided a novel S-HAR approach based on ensemble deep
learning with sensor nodes attached to the waist, chest, leg, and arm. Three deep
learning networks are implemented and trained utilizing a publicly available dataset

8

that includes wearable sensors from eight human actions. The results showed that
the suggested Ens-ResNeXt model outperforms existing strategies regarding accu-
racy and F-score.

Human Actions Recognition, or HAR, is a growing research field with applications in
healthcare, human-computer interaction, assistive learning, and many other fields.
Despite significant progress in this subject over the last few years, there is still a need
to construct robust hybrid machine learning models for human action identification
that must match the application’s objectives, have a reliable prediction, and have
a high recognition rate. A small amount of work has been done on the detection of
anomalies while completing an action. We thoroughly reviewed the related works,
and examined several tools and methodologies for human activity recognition, such
as machine learning algorithms and neural network techniques. The approaches
were tested on various datasets and yielded diverse results depending on the ambient
circumstances and type of data used, such as accelerometer data, other sensor data,
sensor placement, and implementation methods. These strategies are contrasted
in terms of context as well as computational difficulties. Finally, difficulties in
recognizing human behaviour are discussed. We conclude from the previous work
that there is no single way that is best for recognizing any activity; so, in order
to select a specific method for the desired application, numerous variables must be
considered. We can say, that researchers have been working on HAR for a long
time. However, it is still challenging because researchers have found that every
human has a unique activity style, so the pattern match may be difficult. Moreover,
the models get confused when the users do a no-moving activity, such as lying
or sitting. However, most of the models show comparatively better results with
moving objects. In our study, we tried to find out the activities using smartphone
accelerometer data, and we made an Android application to represent the outputs
in real-time. So, even though there are multiple methods, some difficulties remain
unresolved, and the implementation of a HAR system into an Android application
is still very inadequate. So, we need more research and real-life implementation in
the human activity recognition domain.

9

Chapter 3

Methodology

Long short-term memory (LSTM) [3] is used in deep learning. It is able to learn
long-term dependencies and sequence prediction. Due to its ability to understand
long-term connections between data time steps, LSTM is frequently used to learn,
analyze, and classify sequential data. We used LSTM to built our model.

Figure 3.1: Top level overview of the HAR system

First, we collected the dataset from Fordham University’s website. The dataset was
compressed into a zip file, so we extracted the file and got a raw text file. The
dataset was stored in the text file. In the data-preprocessing module We checked

10

the null values and removed them. We create fixed-length sequences; each generated
sequence contains 200 training examples. After that, 2 fully connected and 2 LSTM
layers were used for classification. We create placeholders, which are a particular
type of tensor used to supply real data to the model during its execution. Next,
we save our trained model in a Protobuffer(PB) file, as the Android application can
use the deep learning model. We used Android Studio as an IDE and Java as the
programming language in the development module. In the end, we installed the
application on a smartphone and test the application in real-world situations.

3.1 Data Collection

Human activity recognition is helpful for different analytical approaches like public
health, human-machine interaction and game analysis. Applying Artificial Intelli-
gence (Al) and Deep Learning (ML) models can effectively enrich the performance
of the HAR system. This approach can identify human activities correctly. We
need a proper dataset and an effective deep-learning model to enhance the model’s
performance. To classify the different activities correctly, collecting a dataset con-
taining a diverse range of real-world human activities is essential. The dataset
should have features that have attributes of every activity. The performance of the
deep-learning model depends on the quality and quantity of the training dataset
they are fed. We have collected relevant datasets from many online sources named
the ‘WISDM’ dataset. This dataset contains the smartphone’s accelerometer’s x,y,
and z-axis values. This dataset was selected because it shows a significant accu-
racy in detecting human activity recognition. Real-world situation is complex and
challenging because scientists have discovered every person has a unique activity
style. This variety can reduce the performance of the system. Therefore, we need
a dataset with a good number of examples, as our model can generate a typical
pattern associated with different activities. We used data from the Wireless Sensor
Data Mining (WISDM) Lab [20]. It is available on the Fordham University website.
The data was gathered in a controlled laboratory environment. This dataset is made
up of 1,098,207 rows and six columns. There are no values that are missing. We
will try to identify six activities: walking, jogging, upstairs, downstairs, sitting, and
standing. Let’s take a deeper look at the data.
Raw Time Series Data

• Number of examples: 1,098,207

• Number of attributes: 6

• Walking: 424,400 (38.6%)

• Jogging: 342,177 (31.2%)

• Upstairs: 122,869 (11.2%)

• Downstairs: 100,427 (9.1%)

• Sitting: 59,939 (5.5%)

• Standing: 48,395 (4.4%)

11

Table 3.1: Data sample

User Activity Timestamp X-axis Y-axis Z-axis
33 Jogging 49105962326000 -0.6946377 12.680544 0.50395286
18 Upstairs 33338202227000 4.99 5.41 -4.1814466
15 Walking 1224722240000 10.65 8.81 -3.173541
16 Sitting 1002862346000 5.56 2.72 8.16
24 Standing 16157221475000 0.65 9.34 0.46
24 Downstairs 15977701486000 -9.11 10.65 12.53

The table 3.1 shows the first column is the user’s ID number; the second column
is the activity name; the next is the timestamp, then the three-axis values of the
accelerometer, i.e., x, y, and z, respectively.

3.2 Data Preprocessing

This LSTM model expects fixed-length sequences as training data. We used a
familiar method for generating these. Each generated sequence contains 200 training
examples and we visualize the data based on different features here. We can see there

Figure 3.2: Training examples by activity type

are six activities have been demonstrated in the figure. Walking activity has the
highest training sample where Standing activity has the lowest training sample.
We have total 36 user and their given data from their smartphone has been illus-
trated in Figure 3.3. Now we showed the acceleorometer’s X, Y and Z axies signal
based on the activity in the Figure 3.4, Figure 3.5, Figure 3.6 and Figure 3.7 bel-
low. We can see that there are clear differences among the axis based on different
activities. These differences create a pattern for an activity and using this pattern
our model can face real time data to detect a user’s activity.

12

Figure 3.3: Training examples by user

Figure 3.4: Sitting

13

Figure 3.5: Standing

Figure 3.6: Jogging

14

Figure 3.7: Walking

3.3 Model Specification

Our human activity recognition system combines the Long Short-Term Memory
(LSTM) [3] and the WISDM dataset[21]. Long Short-Term Memory (LSTM) is a
Recurrent Neural Network (RNN) [1] form designed to handle sequential data such
as time series, audio, and text. Because LSTM networks can learn long-term depen-
dencies in sequential data, they are well- suited for applications such as language
translation, speech recognition, and time series forecasting. This comprehensive
system shows excellent performance in identifying human activities in real-life situ-
ations. Combining the deep-learning LSTM model and fine-tuned WISDM dataset
enhances the accuracy and precision of the system. This good relationship between
computational efficiency and performance encourages us to implement the system
into an Android application.

3.3.1 Long Short-Term Memory (LSTM)

LSTM is a type of recurrent neural network[33]. It can understand order dependence
in sequence prediction challenges. LSTMs are a complicated field of deep learning.
LSTM has various advantages, making it an effective tool for modelling sequential
data. The advantages are as follows:

• LSTM networks can catch long-term dependencies in sequential data, which
typical neural networks cannot.

• LSTM cells use input, output, and forget gates to recall or forget information
selectively. This allows the network to keep only valuable data while filtering
out noise.

15

• Because LSTM can accept variable-length input and output sequences, it is
suitable for various tasks, such as voice recognition, auto-translation, and im-
age labelling.

• LSTM can tolerate noisy data and missing values in the input sequence, which
is beneficial in real-world applications where data may be incomplete or noisy.

• LSTM can be efficiently taught via back-propagation through time (BPTT)
and readily parallelised, making it scalable to enormous datasets and compu-
tationally efficient.

Overall, LSTM is a powerful tool for modelling sequential data that has been suc-
cessfully used for various tasks, including natural language processing, voice identi-
fication, image captioning, and others. We are dealing with sequential time series
data, and LSTM performs well on these datasets, so we selected LSTM to build our
model. We will discuss the comparative study later.

Figure 3.8: LSTM Structure

The LSTM has a chain structure that includes four neural networks and various
memory blocks known as cells. The cells store information, and the gates perform
memory modifications. There are three entrances.

3.3.2 Forget Gate

The forget gate removes information no longer helpful in the cell state. Two inputs,
time input xt and prior cell output ht-1 are sent into the gate and multiplied using
weight matrices before bias is added. The result is processed via an activation
function, which produces a binary output. If the output for a certain cell state is 0,
the information is forgotten; if the output is 1, the information is saved for future
use. The forget gate’s equation is:

ft = σ(Wf · [ht-1, xt] + bf) (3.1)

Here,

• Wf stands for the weight matrix associated with the forget gate.

• [ht-1, xt] represents the concatenation of the current input and the prior hidden
state.

• σ is the sigmoid activation function.

16

Figure 3.9: Forget Gate

3.3.3 Input Gate

The input gate is responsible for adding important information to the cell state.
First, the information is regulated using the sigmoid function, and the values to be
remembered are filtered using the [ht-1] and xt inputs, similar to the forget gate.
The tanh function is then used to generate a vector with values ranging from -1 to
+1 that encompasses all of the possible values from [ht-1] and xt. Finally, the vector
and controlled values are multiplied to acquire the valuable information. The input
gate equation is as follows:

it = σ(Wi · [ht-1, xt] + bi) (3.2)

Ĉt = tanh (Wc · [ht-1, xt] + bc) (3.3)

Ct = ft ⊙ Ct-1 + it ⊙ Ĉt (3.4)

Figure 3.10: Input Gate

17

Here,

• ⊙ means element-wise multiplication.

• tanh is the activation function.

• Ct means cell state.

• Ĉt means candidate for cell state at timestamp (t).

3.3.4 Output Gate

The output gate obtains valuable information from the current cell state and presents
it as output. A vector is created by applying the tanh function on the cell. The
information is then regulated using the sigmoid function and filtered based on the
values to be remembered via inputs [ht-1] and xt. Finally, the vector and the con-
trolled values are multiplied and sent as output and input to the following cell. The
output gate equation is as follows:

ot = σ(Wo · [ht-1, xt] + bo) (3.5)

Figure 3.11: Output Gate

18

Chapter 4

Application Development

The process of conceiving, specifying, designing, programming, documenting, test-
ing, and bug fixing that goes into building and maintaining applications, frameworks,
or other software components is known as software development [31]. Software devel-
opment entails developing and maintaining source code, but it also encompasses all
steps from the conception of intended software through its final manifestation, often
in a planned and disciplined process. In the development phase, we first determine
how our application works, and based on these criteria, we divide the development
into two sections i.e., design the GUI and the coding. We use Android Studio for
both designing purpose and coding. Android Studio is Google’s official integrated
development environment for the Android operating system. It is based on Jet-
Brains’ IntelliJ IDEA software and is specifically developed for Android software
development.

4.1 Permission and Dependencies

Android permissions offer tools for enhancing user awareness and limiting an app’s
access to private information. As we want to use the accelerometer data so, we need
to get permission from the Android. We edit our Android manifest file. The Android
manifest file assists in declaring the permissions that an app must have in order to
access data from other apps. The Android manifest file also defines the package
name of the app, which aids the Android SDK in constructing the app. We enable
the permission of the accelerometer as our application can read the accelerometer
sensor’s data of device. Dependencies are external elements created by other devel-
opers that are acceptable to Android for performing a specific task. Dependencies
enable the inclusion of external libraries or other library modules into an Android
project. For example, if we want to display an image in our project app, we can
use the Picasso or Glide libraries. So, dependencies are useful since they simplify
our work by allowing us to just include it and begin using the classes and functions
without having to think about how it was constructed. We used TensorFlow in our
project so, we need to use TensorFlow dependencies in the build.gradle file. We
edit our build.gradle file. This file is the foundation of our build process, containing
all of the instructions required to compile an Android app from source. We set
implementation of TensorFlow version to 1.8.0.

19

4.2 Designing

A user interface (UI) and a user experience (UX) are combined in application design.
User interface Design is concerned with the entire design of the program, such as
colors, fonts, and the overall appearance and feel. The user experience, on the other
hand, will always prioritize functionality and usability. Application design is also
a major factor in determining which applications people will use on a regular basis
and which applications they will avoid in the future. We’re discussing application
design. We must talk about both process sections, as well as user interface and user
experience. User interface design will concentrate on what users must do to ensure
that the interface contains the features that make it easy to access, understand, and
utilize, as well as to facilitate those tasks. User interface design will merge inter-
action design, visual design, and information architecture concepts. Understanding
a user experience is accomplished by better understanding a user’s ”journey” when
interacting with an application. Users must understand what information has the
most value , where they anticipate to find it, how to obtain it, how to engage with it,
and other factors. They look for the flaws and locations that make the experience
unsatisfactory or less than ideal. They then make suggestions for improvement.
People will abandon the application if it is hard to use and confusing. It may not
be as effective in the long run. We carefully designed the application interface and
tried to find user experiences during designing process. We came to the conclusion
that people would prefer a table view layout for the human activity recognition ap-
plication. Moreover, their user experience says that the application size must be
smaller in size and compatible with most smartphones, so we consider these criteria.
Android UI design involves developing the graphical user interface for our applica-
tions using prebuilt Android UI components such as structured layout elements and
UI controllers. XML is an abbreviation for extensible Markup Language, which is
a text-based data description language. Because XML is extensible and extremely
adaptable, it is utilized for a variety of purposes, including creating the UI layout
of Android apps. For the designing purpose we used the xml file. In the application
the name of the file was activity main.xml. In this file we performed coding for the
designing. All the activity i.e., Walking, Sitting, Jogging, Standing, Downstairs,
and Upstairs should be shown in a table view, therefore we set the table view layout
for showing the activities.
We set all the activities name left of the screen and their associated probability was
shown to the right. We define the layout, text size, text alignment, text style, id
of an activity and padding. After the designing we have our desired view of the
application which is shown below.

4.3 Development

In the development, coding is used by computer programmers to connect with com-
puters and instruct them on what to perform. Coding is the process of writing
with programming languages. In this section we used java language for program-
ming purpose. We created tow java class then first one is MainActivity.java and the
second one is TensorFlowClassifier.java.

20

Figure 4.1: TableView layout

Figure 4.2: The application outlook

21

4.3.1 Importing Necessary Libraries

An Android library has the same structure as an Android app module. It includes
source code, resource files, and an Android manifest, as well as everything else
required to develop an app. Furthermore, Support Libraries include convenience
classes and functionality not available in the core Framework API enabling faster
development and maintenance across a wider range of devices. The Android Support
Library developed from a single binary library for apps to a suite of libraries for
app development. We import the necessary ”TensorFlowInference” which is a Java
interface for using a pre-trained TensorFlow model in an Android application. It
allows us to easily import a stored “TensorFlow” model and conduct inference on it
from an Android app. Then we define the TensorFlowClassifier first which is public
class.

4.3.2 TensorFlowClassifier Class

This java class is responsible to take the sensor data from the smartphone and put
the data as an input into our model and perform the estimation of the activity of
the user. We load the tensorflow inference library inside the class. This library
helps to run a TensorFlow model on a device to create predictions based on input
data. To infer with a TensorFlow model, we must first run it via an interpreter. The
TensorFlow interpreter is intended to be lightweight and quick. To achieve minimal
load, startup, and execution time, the interpreter employs static graph ordering and
a specialized memory allocator. Durinng the deep-learning LSTM model creation
we used Google colab to write code for the model. We write code in python and
used TensorFlow, which is a free and open-source machine learning and artificial
intelligence software library. It can be used for a variety of applications, but it fo-
cuses on deep neural network training and inference. After export the model in a
protocol buffer file (PB) we must use that file in our android application. To use it
we must use the TensorFlow inference library. So, we called the System.loadLibrary
method inside the class to use the TensorFlow inference library. Then we call the
”frozen model.pb”, the PB file name, and assign its location as the android asset
folder. We assign the input nodes and output nodes. We also declarer input size
and output size in the TensorFlow class. Finally, we create a method named ”pre-
dictProbabilities”, which feeds the trained deep-learning LSTM model the real-time
data from smartphones and predicts the probability of human activity.

4.3.3 Pre-trained Model in the Android Application

So, we initiate the INPUT NODE as “inputs” and OUTPUT NODE as “y .” We set
the INPUT SIZE, which specify the shape of the input tensor. The input tensor must
have the form of a 3D tensor with dimensions (batch size, time steps, input size),
where: batch size: The number of samples in each training data batch. time steps:
The number of time steps in the sequence of input data. input size: The number of
features in the input data. The shape of a tensor describes how many dimensions
the tensor has, and how many elements are in each dimension. Here, we have a
tensor with shape (1, 200, 3), this means that the tensor has three dimensions, the
first dimension has 1 element, the second dimension has 200 elements, and the third

22

Figure 4.3: Nodes of a deep-learning model

dimension has 3 elements. As we have six activities so we set the OUTPUT SIZE
value to 6.

4.3.4 Prediction Estimation

Predictive modeling is at the heart of predictive analytics. It’s more of a strategy
than a method. Because predictive models often involve a machine learning algo-
rithm, predictive analytics and machine learning go hand in hand. These models
can be trained to adapt to new data or values over time, producing the outputs that
the business requires. Predictive modeling is closely related to machine learning.
Predictive models are classified into two categories. Classification models determine
class membership, while regression models predict a number. Algorithms are then
used to construct these models. Data mining and statistical analysis are carried
out by algorithms, which identify trends and patterns in data. Predictive analytics
software solutions will have built-in algorithms for creating predictive models. The
algorithms are referred to as ’classifiers’ since they determine which set of categories
data belongs to. We create a “predictProbabilities” method which is responsible
for predicting the human activities. In this method we defined an array named “re-
sults”, which will store the probability of each activity. We feed the input data to
input nodes, run output nodes and fetch the output node. After that we store all
the values in the” results” array.

4.3.5 MainActivity Class

An activity is a single, well-defined function that your user can take. We have an
activity that displays the activity labels with the prediction probabilities, as well
as a text-to-speech feature. Activities are often associated with a single screen and
are created in Java. The appearance of the screen is described by a layout. Layouts
are XML files that tell Android how to arrange the various screen elements. The
device starts an app and creates an activity object. The layout is specified by the
activity object. The activity instructs Android to show the layout on the screen.
The layout presented on the device is interacted with by the user. In response
to these interactions, the activity executes application code. The action refreshes
the screen that the user sees on the device. The main Activity handles the user
interface from sensors and feeds them into the activity classifier. We define the
sample size and set its value to 200. The main activity we have created for the

23

Android application displays the layout on the smartphone screen. The users can
see all the activity’s names on the screen. The main activity collects the predicted
results from the TensorFlow class and shows the results on the screen by reacting
to the codes written in Java. It also provides a text-to-speech feature that indicates
the user’s current activity.

4.3.6 Storing the Accelerometer Data

A Java List is an ordered collection. Java List is an interface that extends the col-
lection interface. Java List allows us to specify where we want to insert an element.
We can access elements by index and also search for elements in the list. The List
interface is used to hold the ordered collection. It is a collection’s child interface.
It is an ordered collection of objects that can store duplicate values. Because List
keeps the insertion order, it allows both positional access and element insertion. We
have to keep the obtained data from the accelerometer. The accelerometer has three
axes; so we create three lists, i.e., x, y, and z, for storing accelerometer data. Each
variable can be used to share data across instances of that class. The data type
is float. When sensor values are changed, they are automatically updated by the
method ”onSensorChanged ” and stored in the three lists. In this method, we call
another method named ”activityPrediction()” which use these three axes values and
combine them to predict an activity.

4.3.7 Text View of the Main Activity

A TextView a simple widget which shows text to the user and, if needed, allows them
to alter it. A TextView is a full-featured text editor, but the base class is set to
prevent editing. It should be used for uneditable material that the user want to read
but not modify. By this widget, we represent the text view for each activity labeling,
i.e., joggingTextView, sittingTextView, standingTextView, etc. This text view also
shows the probabilities for each activity on the left side of the screen. Each text
view element is set as the row of the table view. The text view of the main activity
is basically a table view with activity label names on the left side, and we have the
estimated probabilities on the right side. The title ”Activity” and ”Probability” is
shown in the bold italic format, and its text size is 20sp. The activity values are
shown in standard bold format, and the text size is 18sp.

4.3.8 Showing the Layout

The structure of a user interface in an application, such as an activity, is defined by
a layout. The layout’s elements are all built utilizing a hierarchy of View and
ViewGroup objects. A View usually refers to something that the user can see
and interact with. We call “findViewById” a method for locating the view in the
layout resource file associated with the current Activity of the application. So,
when we create the table view, we define the TableRow. In TableRow, we assign the
TableRow id as title row, which is the id of the TableRow. We define layout width as
match parent. Match parent is an attribute that specifies that the width or height
of a view should be the same as the width or height of its parent view. This signifies
that the view will occupy the same amount of space as its parent. This is commonly

24

used when designing a layout with numerous views because it assures that the views
are all the same size. We set the layout height as match parent. Padding is the
space between the content we want to display and its border. Padding is used to
generate extra space within the content. We can use padding to offset the view’s
content by an exact number of pixels. For example, a left padding of two pushes
the view’s content two pixels to the right of the left edge. Any of the specific sides
can be used to provide padding to a widget. We add padding as 22dp. Text views
are used by many Android applications to show text within them. Within our XML
layout, the text view is aligned in several ways. We cannot apply margins from all
sides to align TextView for different screen widths. For different screen widths, we
must align the text view centrally to vertically and centrally to horizontally of the
overall height and breadth of the Android device screen. We set text alignment as
center.

4.3.9 Storing Each Activity Probability

An array is a container object that holds a fixed number of single-type values. The
length of an array is determined when it is constructed. Its length is fixed after
it is created. An array’s items are referred to as elements, and each element is
accessible by its numerical index. To store each activity probability, we define an
array named ”results.” This array holds all the predicted activity values in float
format. It always shows the updated values, which were returned as an array from
the ”predictProbabilities” method of the TensorFlowClassifier class. We call this
”results” array in the ”activityPrediction”, which is a method of the main activity.
The return type of the ”result” array is float type.

4.3.10 Showing the Human Activities

In this developing section, we want to show the activity labels and their probabilities
in a text-view format. Basically, the text view is shown in the application’s main
activity. So, we write all the necessary logic in the main activity class. We create
a method “activityPrediction” which is responsible for showing the probability of
each activity. But if we want to show it on the main activity, we need to convert
it to string. So, we use a built-in method, ”Float.toString.” Because the ”setText”
method is responsible for showing the text view on the main activity and doesn’t
support float data type, we convert it to string. Each value we get are float data
type so we need to convert it to string if we want to show it as a text view. So, we
call “Float.toString” method. When we get the probability convert it to two decimal
places calling the “round” method. Then we call “setText” method to display the
activities along with their probability values. Each time the accelerometer sensor
value changes, the data is stored in the associated list, i.e., x, y, and z. Then we call
the ”activityPrediction” method, which sets the probability of all the activities after
facing the sensor data. Again, the ”setText” method displays the updated value of
the main activity of our application. In this way, we can see the real-time view of
the predicted human activities of the user. A higher value of a labelled activity
indicates the most possible activity done by the user.

25

Figure 4.4: Probability shown in float format

4.3.11 Text-to-Speech

Text-to-speech (TTS) library, sometimes known as the ”read-aloud” library, has cre-
ated how humans interact with printed text. Text-to-speech (TTS) library translates
text into spoken words using a computer-generated voice, which may be sped up or
slowed down in most situations, making them tools with a wide range of uses avail-
able to adults, business professionals, children, and students. We want to make our
application more user-friendly. Therefore, we used a text-to-speak feature, which
converts the activity names to voice. With the voice feature, users can identify any
activity even if they don’t look at the screen. They can put the smartphone in their
pockets, run the application, and recognize the voice. When this feature generates
the voice ”Walking”, that means the user is walking. Then, we set the logic for the
text to speech in the “onInit” method. When an activity has the highest probabil-
ity, the “Text to Speech” library converts the activity name into voice. We used
“Text to Speech” library that provides Text-to-Speech functionality for our Android
application, which converts the text written on the screen to audio. So, the user
can listen to their Activity from the application in real time.

26

Chapter 5

Performance Evaluation

5.1 Performance Metrics

To determine the performance of our HAR system we utilize some performance
measuring mathematical methods [32]. The results were assessed using well-known
performance metrics such as confusion matrix, accuracy [34], sensitivity, specificity,
and F-score. A confusion matrix is a table that is used to define a classification
algorithm’s performance. A confusion matrix visualizes and summarizes a classifi-
cation algorithm’s performance. It is calculated by number of true positive (TP),
false positive (FP), true negative (TN), and false negative (FN) values. Accuracy
is defined as the ratio of correctly classified instances to the total number of cases
under evaluation.

Accuracy =
TP + TN

TP + FP + TN + FN
× 100 (5.1)

The F1-score is a machine learning evaluation metric that determines the accuracy
of a model. It combines a model’s Precision and Recall scores. F-1 score makes use
of precision and recall to estimate accuracy of classification.

Precision =
TP

TP + FP
(5.2)

Recall =
TP

TP + FN
(5.3)

F − score = 2× Precision×Recall

Precision+Recall
(5.4)

A classifier’s sensitivity is its capacity to recognize positive class patterns. It is
possible to compute it as follows:

Sensitivity =
TP

TP + FN
(5.5)

A classifier’s specificity is its capacity to recognize negative class patterns. It is
possible to compute it as follows:

Specificity =
TN

TN + FP
(5.6)

27

5.2 Result Analysis

We will discuss all performance metrics to monitor and measure the performance of
our model.

Figure 5.1: Training sessions progress over iterations

In Figure 5.1, we have taken the Training Epoch along the horizontal axis and the
Training Progress along the vertical axis. Here, we want to measure the Train loss,
Train accuracy, Test loss, and Test accuracy over the iterations. We run 50 epochs
for this purpose.
Train loss measures the model’s error on the training set during the training of the
model. At the beginning of the training, the Train loss (indicated by the broken
red line) was pretty high, which is around 1. It means our model was making errors
at the beginning. But, over the iterations, our model reduced the Train loss to 0.2.
This measurement states that our model made a few errors at the end of the training
session.
Train accuracy measures how well it performs during training. It is the percentage of
successfully predicted labels over the total number of training samples. During the
first stage of the training, the Train accuracy (indicated by the broken green line)
was below 0.8. But when the training was finished, the Train accuracy increased to
0.97. It means our model was precisely predicting labels at the end of the training.
Test loss is used to estimate the errors or loss of a deep learning model on the test
set during testing of the model. When we started to test the model, the Test loss
(indicated by the red line) was high, around 1. But by the end of the testing, the
Test loss was reduced to around 0.25. It indicates our model made a few mistakes
at the end of the testing.
Test accuracy of a model measures how well it performs while testing the model.
At the beginning of the testing, the Test accuracy (indicated by the green line) was
below 0.8. But when the testing was finished, the Test accuracy increased to around
0.97. It means our model could predict labels efficiently at the end of the testing.

28

Figure 5.2: Confusion matrix

We visualize the model’s performance using a confusion matrix. A confusion matrix
shows a table of all a classifier’s predicted and actual values. It presents a table
arrangement of the different outcomes of the prediction and results of a classification
task. We take the Predicted Label along the horizontal axis and the True Label along
the vertical axis. All the correctly predicted activities are shown diagonally in the
confusion matrix. For example, if we consider the second column of the matrix, the
model predicted Jogging, but it was Downstairs; this situation happened 116 times.
The model predicted Jogging, and it was really Jogging; this situation occurred 3380
times. The model never confuses Jogging and Sitting. The model was also never
confused between Jogging and Standing. The model predicted Jogging, but it was
Upstairs; this situation happened 116 times. The model wrongly predicted Jogging
265 times, which was actually Walking.
From the confusion matrix, we can see that Walking has the highest correctly pre-
dicted number, 3820. Then, Jogging has the second position as the correctly pre-
dicted number is 3380. It means our model can predict Jogging as Walking very
precisely. But for Downstairs, the model shows relatively low performance, as the
correctly predicted value is 140. The model shows a regular result for other activi-
ties, i.e., Standing, Sitting, and Upstairs.

29

We run 50 epochs, showing the accuracy changes after every ten-epoch difference.

Table 5.1: Accuracy of the model

Epoch Accuracy Loss
1 0.7736998796463013 1.2773654460906982
10 0.9388942122459412 0.5612533092498779
20 0.9574717283248901 0.3916512429714203
30 0.9693103432655334 0.2935260236263275
40 0.9747744202613831 0.2502188980579376

We can see from Table 5.1, the model’s accuracy was the lowest at the first epoch,
which is 0.77, and the loss was high, which is 1.27. After running 10 epochs, the
model started to improve. At the epoch number 10, the accuracy and loss were 0.93
and 0.56, respectively. The model achieved 0.97 accuracy, and the loss was 0.25.
This table illustrates the model performance increases if we run a significant number
of epochs.

Table 5.2: F – 1 scores of the model’s classes

Activity Label Precision Recall F-1 score Support
Downstairs 0.46 0.11 0.18 1058
Jogging 0.82 0.92 0.87 3447
Sitting 0.94 0.88 0.91 576
Standing 0.86 0.93 0.89 436
Upstairs 0.51 0.44 0.47 1209
Walking 0.76 0.86 0.81 4255

Table 5.2 shows that we can achieve a good F-score in most circumstances. We
typically attain more than 0.8 F-score for the two common activities, Jogging and
Walking. Jogging is easier to distinguish than Walking because Jogging has more
sudden changes in acceleration. The two stair-climbing activities, i.e., Upstairs and
Downstairs, are more challenging to determine because they show similar patterns
to the accelerometer. The two non-moving activities, i.e., Sitting and Standing,
have the highest F-scores, which are 0.91 and 0.89, respectively.

30

Here, in Table 5.3, we show the sensitivity and specificity of the model for different
instances.

Table 5.3: Sensitivity and Specificity of the model

Activity Sensitivity Specificity
Downstairs 0.27 0.97
Jogging 0.99 0.93
Sitting 0.84 1.00
Standing 0.96 0.99
Upstairs 0.33 0.97
Walking 0.88 0.85

Sensitivity determines how well a machine learning model can recognize the true pos-
itives of each available category. It is also known as the true positive rate (TPR).
Downstairs and Upstairs have 0.27 and 0.33 sensitivity scores, respectively. As the
scores are low, our model has limitations in determining Downstairs and Upstairs.
But other activities like Jogging, Sitting, Standing, and Walking have high sensitiv-
ity scores, around 0.90, which indicates our model can predict true positive instances
in most cases.
Specificity determines how well a machine learning model can recognize the true
negatives of each available category. It is also known as the true negative rate (TNR).
The table shows that all activities have high specificity scores (more than 0.90 in
most cases), indicating our model can predict true negative instances precisely.

5.3 Comparative Study

We apply different machine learning techniques to the dataset and compare the
models’ accuracies.

Table 5.4: Comparative Study

Model Name Accuracy
Support Vector Machine 0.20

Logistic Regression 0.48
Multi-layer Perceptron Classifier 0.54

Gaussian Naive Bayes 0.57
Decision Trees 0.61

Long Short-term Memory 0.97

We can see that the Support vector machine (SVM) has the lowest accuracy, i.e.,
around 0.2. The other models, like Logistic Regression, Multi-layer Perceptron
classifier, Gaussian Naive Bayes, and Decision Trees, have medium-level accuracy,
which is around 0.5 to 0.6. But we can see that Long Short-term Memory (LSTM)
has the highest accuracy value, 0.97. Therefore, we chose LSTM as our proposed
model.

31

Chapter 6

Conclusion

This study proposed a unique method for automatically identifying human activity,
addressing the critical need for enhanced public health, game analysis, and human
tracking systems. The project provided here exhibits the use of a deep learning
methodology and its real-world application. On the WISDM datasets, we tested
six machine-learning algorithms in this study. However, the LSTM has the highest
accuracy on the dataset, nearing 97%. The other machine-learning algorithms, on
the other hand, had disappointing outcomes. This project was converted into an
Android application. As a result, it is able to detect considerable human activity by
using a smartphone. The project’s efficiency is demonstrated through practical proof
in the form of graphical representation and comparative evaluation. This initiative
has the potential to significantly improve the domain of human activity recognition
systems by enabling automatic identification.

6.1 Future Works

In human activity recognition, myriad potential areas for additional study have
evolved. We still have some confusion about classifying the activities. For the
improvement of the accuracy of our project, it is crucial to investigate advanced
deep-learning models and combine some approaches. The WISDM dataset was cre-
ated in the controlled lab environment. As a result, we may create a dataset based
on real-life scenarios. In a real-world scenario, this new dataset may show greater
compatibility. Furthermore, we can add gyroscope sensor data to the dataset to
improve the identification process. We may enhance our Android app by adding
additional features. We can calculate an estimated calorie burn based on the du-
ration of a user’s activity. We can include more particular actions such as lying,
playing, driving, limping, falling, and so on. By adding more resources, we may also
improve the design of our application. We can also turn this program into tracking
software, which can run in the background on a smartphone and display the results
on another device.

32

Bibliography

[1] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., Learning internal rep-
resentations by error propagation, 1985.

[2] R. A. Washburn, K. W. Smith, A. M. Jette, and C. A. Janney, “The physical
activity scale for the elderly (pase): Development and evaluation,” Journal of
clinical epidemiology, vol. 46, no. 2, pp. 153–162, 1993.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[4] G. M. Weiss and H. Hirsh, “Learning to predict rare events in event se-
quences.,” in KDD, vol. 98, 1998, pp. 359–363.

[5] F. Foerster and J. Fahrenberg, “Motion pattern and posture: Correctly as-
sessed by calibrated accelerometers,” Behavior research methods, instruments,
& computers, vol. 32, no. 3, pp. 450–457, 2000.

[6] S.-W. Lee and K. Mase, “Activity and location recognition using wearable
sensors,” IEEE pervasive computing, vol. 1, no. 3, pp. 24–32, 2002.

[7] L. Bao and S. S. Intille, “Activity recognition from user-annotated acceleration
data,” in International conference on pervasive computing, Springer, 2004,
pp. 1–17.

[8] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity recognition
from accelerometer data,” in Aaai, Pittsburgh, PA, vol. 5, 2005, pp. 1541–
1546.

[9] J. Lester, T. Choudhury, and G. Borriello, “A practical approach to recogniz-
ing physical activities,” in International conference on pervasive computing,
Springer, 2006, pp. 1–16.

[10] J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola, and I. Korho-
nen, “Activity classification using realistic data from wearable sensors,” IEEE
Transactions on information technology in biomedicine, vol. 10, no. 1, pp. 119–
128, 2006.

[11] E. M. Tapia, S. S. Intille, W. Haskell, et al., “Real-time recognition of physical
activities and their intensities using wireless accelerometers and a heart rate
monitor,” in 2007 11th IEEE international symposium on wearable computers,
IEEE, 2007, pp. 37–40.

[12] Y. Cho, Y. Nam, Y.-J. Choi, and W.-D. Cho, “Smartbuckle: Human activity
recognition using a 3-axis accelerometer and a wearable camera,” in Proceed-
ings of the 2nd international workshop on systems and networking support for
health care and assisted living environments, 2008, pp. 1–3.

33

[13] T. Choudhury, G. Borriello, S. Consolvo, et al., “The mobile sensing platform:
An embedded activity recognition system,” IEEE Pervasive Computing, vol. 7,
no. 2, pp. 32–41, 2008.

[14] E. Miluzzo, N. D. Lane, K. Fodor, et al., “Sensing meets mobile social net-
works: The design, implementation and evaluation of the cenceme applica-
tion,” in Proceedings of the 6th ACM conference on Embedded network sensor
systems, 2008, pp. 337–350.

[15] T. Brezmes, J.-L. Gorricho, and J. Cotrina, “Activity recognition from ac-
celerometer data on a mobile phone,” in Distributed Computing, Artificial
Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living:
10th International Work-Conference on Artificial Neural Networks, IWANN
2009 Workshops, Salamanca, Spain, June 10-12, 2009. Proceedings, Part II
10, Springer, 2009, pp. 796–799.

[16] N. C. Krishnan, C. Juillard, D. Colbry, and S. Panchanathan, “Recognition of
hand movements using wearable accelerometers,” Journal of Ambient Intelli-
gence and Smart Environments, vol. 1, no. 2, pp. 143–155, 2009.

[17] X. Long, B. Yin, and R. M. Aarts, “Single-accelerometer-based daily physical
activity classification,” in 2009 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, IEEE, 2009, pp. 6107–6110.

[18] J. Yang, “Toward physical activity diary: Motion recognition using simple ac-
celeration features with mobile phones,” in Proceedings of the 1st international
workshop on Interactive multimedia for consumer electronics, 2009, pp. 1–10.

[19] A. Mannini and A. M. Sabatini, “Machine learning methods for classifying
human physical activity from on-body accelerometers,” Sensors, vol. 10, no. 2,
pp. 1154–1175, 2010.

[20] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell
phone accelerometers,” ACM SigKDD Explorations Newsletter, vol. 12, no. 2,
pp. 74–82, 2011.

[21] G. Weiss, Wisdm (wireless sensor data mining) project. fordham university,
department of computer and info. science, 2011.

[22] M. Thida, H.-L. Eng, and P. Remagnino, “Laplacian eigenmap with temporal
constraints for local abnormality detection in crowded scenes,” IEEE Trans-
actions on Cybernetics, vol. 43, no. 6, pp. 2147–2156, 2013.

[23] Y.-S. Lee and S.-B. Cho, “Activity recognition with android phone using
mixture-of-experts co-trained with labeled and unlabeled data,” Neurocom-
puting, vol. 126, pp. 106–115, 2014.

[24] H. Ding, L. Shangguan, Z. Yang, et al., “Femo: A platform for free-weight
exercise monitoring with rfids,” in Proceedings of the 13th ACM conference on
embedded networked sensor systems, 2015, pp. 141–154.

[25] J. Qi, Z. Wang, X. Lin, and C. Li, “Learning complex spatio-temporal config-
urations of body joints for online activity recognition,” IEEE Transactions on
Human-Machine Systems, vol. 48, no. 6, pp. 637–647, 2018.

[26] Y. Du, Y. Lim, and Y. Tan, “A novel human activity recognition and predic-
tion in smart home based on interaction,” Sensors, vol. 19, no. 20, p. 4474,
2019.

34

[27] C. N. Phyo, T. T. Zin, and P. Tin, “Deep learning for recognizing human
activities using motions of skeletal joints,” IEEE Transactions on Consumer
Electronics, vol. 65, no. 2, pp. 243–252, 2019.

[28] K. Wang, J. He, and L. Zhang, “Attention-based convolutional neural network
for weakly labeled human activities’ recognition with wearable sensors,” IEEE
Sensors Journal, vol. 19, no. 17, pp. 7598–7604, 2019.

[29] G. Grossi, R. Lanzarotti, P. Napoletano, N. Noceti, and F. Odone, “Posi-
tive technology for elderly well-being: A review,” Pattern Recognition Letters,
vol. 137, pp. 61–70, 2020.

[30] C. Pham, S. Nguyen-Thai, H. Tran-Quang, et al., “Senscapsnet: Deep neural
network for non-obtrusive sensing based human activity recognition,” IEEE
Access, vol. 8, pp. 86 934–86 946, 2020.

[31] V. Sihag, A. Mitharwal, M. Vardhan, and P. Singh, “Opcode n-gram based
malware classification in android,” in 2020 Fourth World Conference on Smart
Trends in Systems, Security and Sustainability (WorldS4), IEEE, 2020, pp. 645–
650.

[32] M. Gong, “A novel performance measure for machine learning classification,”
International Journal of Managing Information Technology (IJMIT) Vol, vol. 13,
2021.

[33] D. Kim, H. Han, W. Wang, Y. Kang, H. Lee, and H. S. Kim, “Application of
deep learning models and network method for comprehensive air-quality index
prediction,” Applied Sciences, vol. 12, no. 13, p. 6699, 2022.

[34] C. Sweeney, E. Ennis, M. Mulvenna, R. Bond, and S. O’Neill, “How machine
learning classification accuracy changes in a happiness dataset with different
demographic groups,” Computers, vol. 11, no. 5, p. 83, 2022.

[35] Y. Zhao, H. Zhou, S. Lu, Y. Liu, X. An, and Q. Liu, “Human activity recog-
nition based on non-contact radar data and improved pca method,” Applied
Sciences, vol. 12, no. 14, p. 7124, 2022.

[36] S. Mekruksavanich and A. Jitpattanakul, “A comparative study of deep learn-
ing robustness for sensor-based human activity recognition,” in 2023 46th In-
ternational Conference on Telecommunications and Signal Processing (TSP),
IEEE, 2023, pp. 87–90.

[37] S. Mekruksavanich and A. Jitpattanakul, “Position-aware human activity recog-
nition with smartphone sensors based on deep learning approaches,” in 2023
46th International Conference on Telecommunications and Signal Processing
(TSP), IEEE, 2023, pp. 43–46.

[38] S. A. F. Oman, M. N. Jamil, and S. T. U. Raju, “Bcl: A branched cnn-lstm
architecture for human activity recognition using smartphone sensors,” in 2023
International Conference on Next-Generation Computing, IoT and Machine
Learning (NCIM), IEEE, 2023, pp. 1–5.

[39] A. N. Tarekegn, M. Ullah, F. A. Cheikh, and M. Sajjad, “Enhancing human
activity recognition through sensor fusion and hybrid deep learning model,”
in 2023 IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing Workshops (ICASSPW), IEEE, 2023, pp. 1–5.

35

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Problem Statement
	Project Challenges
	Project Objectives
	Contributions
	Organization of the Report

	Related Work
	Methodology
	Data Collection
	Data Preprocessing
	Model Specification
	Long Short-Term Memory (LSTM)
	Forget Gate
	Input Gate
	Output Gate

	Application Development
	Permission and Dependencies
	Designing
	Development
	Importing Necessary Libraries
	TensorFlowClassifier Class
	Pre-trained Model in the Android Application
	Prediction Estimation
	MainActivity Class
	Storing the Accelerometer Data
	Text View of the Main Activity
	Showing the Layout
	Storing Each Activity Probability
	Showing the Human Activities
	Text-to-Speech

	Performance Evaluation
	Performance Metrics
	Result Analysis
	Comparative Study

	Conclusion
	Future Works

	Bibliography

