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Abstract

The convergence of technology in mobile operator networks has ushered in a new
era of interconnectedness and communication efficiency. As these networks become
increasingly complex, ensuring their optimal performance and addressing customer
concerns become paramount. This thesis delves into the realm of ”ML Based Per-
formance Assurance and VoC Management of Highly Convergence Mobile Operator
Network,” presenting a multifaceted approach to tackling these challenges through
advanced machine learning (ML) techniques by obsolete traditional manual work-
ing approach of MNOs.Within the scope of ML-based performance assurance, this
study places a strong emphasis on Forecasting Time Series and detecting Anomalies.
Leveraging the power of predictive analytics, the research harnesses a spectrum of
algorithms including ARIMA, XGBoost, LSTM, Dynamic Linear Model, Prophet,
VAR, and GRU. This enables the anticipation of network behavior and facilitates
proactive measures for optimization. Additionally, the study integrates sophisticated
Anomaly Detection methods encompassing DBSCAN, Isolation Forest, Local Out-
lier Factor (LOF), One Class SVM, Elliptic Envelope, and Autoencoders. These
techniques empower the system to identify and mitigate aberrations in real-time,
safeguarding network statistics and ensure business growth. Extending the purview
of the research, the study delves into Voice of Customer (VoC) Management within
the context of highly converged mobile operator networks. By employing diverse
algorithms such as SVM, CNN, GNB, MNB, and LR, the research addresses the
critical task of understanding customer insights, preferences,thoughts and concerns.
Through effective VoC analysis, operators can tailor their services to meet customer
expectations, thereby enhancing overall satisfaction. This thesis contributes to the
field by providing a all-encompassing structure for the enhancement and design of
mobile operator networks. The amalgamation of ML-based performance assurance
and VoC management techniques presents a holistic solution for network operators
and service providers. By proactively forecasting network behavior and promptly
addressing anomalies, operators can ensure seamless operations. Simultaneously,
a holistic and customer centric approach driven by advanced ML algorithms en-
ables the refinement of services based on customer feedback to obsolete traditional
working approach of mobile network operators.

Keywords: Machine Learning; Time Series Forecasting; Anomaly Detection; VoC
Management; Algorithms
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Chapter 1

Introduction

1.1 Background

Globally, the telecom industry is experiencing instability in the areas of compliance,
operations, strategy, business and finances. Even if implementing innovation princi-
ples in light of technical improvements might be positive, the telecom industry must
make sure it takes advantage of unpredictability.

Degrading Average Return per User (ARPU), uptrending churn, increasing compe-
tition, and high cost of technological convergence provide the main difficulties to the
industry. Data services are getting more difficult to distinguish from one another,
and the voice industry is practically at the end of its lifetime. As organizations are
now required to offer distinctive client services, it is no longer sufficient to meet the
traditionally anticipated consumer demands such as technical assistance, customer
service, and network remediation. In this digital era, when reputations can be key
to excellence, this requirement cannot be dismissed.

Sustainability requires a comprehensive strategy that incorporates ethical corporate
values, continuous advancement in technology, innovation in customer experience
and service assurance. In this research a AI-ML based methodology has been pro-
posed for performance assurance and VoC management to enhance digitization and
Sustainability in telecom industry.

The telecommunications industry is in the midst of a trans-formative era charac-
terized by the convergence of technologies and services.Its high time to evolve to
digital way of by dumping traditional human intervened working approach. Highly
convergent mobile operator networks, where traditional boundaries between mobile,
fixed-line, and internet services blur, have become the cornerstone of modern con-
nectivity. This convergence promises increased efficiency, seamless user experiences,
and a plethora of new opportunities. However, it also presents unprecedented chal-
lenges in terms of network performance assurance and the management of the Voice
of the Customer (VoC).

In this context, the deployment of Machine learning (ML) techniques have gained
a lot of traction as a tool to address these intricate challenges. ML offers the
potential to not only enhance the performance of mobile operator networks but also
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to harness valuable insights from customer feedback and behavior. The fusion of
ML and telecommunications promises a paradigm shift in the way network operators
ensure service quality and satisfaction.

Highly Convergent Mobile Operator Networks: Highly convergent networks
represent a confluence of diverse services, such as voice, data, video, and IoT, gam-
ing, cashing, cloudification, edge computing,network slicing, EMBB,Ultra low la-
tency all integrated into a single platform. The coexistence of these services creates
a complex ecosystem where network performance issues in one domain can ripple
across others. Moreover, the introduction of emerging technologies like 5G adds
further layers of complexity. As a result, ensuring the uninterrupted and optimal
delivery of services within these networks has become a pressing concern.

Machine Learning in Telecommunications: Machine Learning techniques has
eminence potential to open a new horizon in telecommunication industry, It must
already have achieved outstanding results in a number of fields, such as natural lan-
guage processing, computer vision, and data analytics. In the telecommunications
industry, ML’s potential to optimize network operations, detect anomalies, and pre-
dict failures has been recognized. However, applying ML effectively in the context
of highly convergent networks requires extra attention from MNOs to increase it
footprint for sustainable business growth.

Voice of the Customer (VoC) Management: In the highly competitive telecom-
munications landscape, understanding and meeting customer expectations are essen-
tial for retaining and attracting subscribers. ML offers a way to analyze vast amounts
of customer data, including feedback, customers need, insights, complaints, usage
patterns, and preferences, enabling network operators to tailor their services and im-
prove customer satisfaction. However, developing comprehensive VoC management
strategies that harness the full potential of ML is a multifaceted endeavor.

1.2 Problem Statement

As mobile operator networks continue to evolve towards higher levels of convergence,
ensuring their optimal performance and meeting the demands of customers become
increasingly complex. In this regard, this thesis seeks to explore the challenges
posed by the convergence of mobile operator networks and the critical need for effec-
tive performance assurance and Voice of Customer (VoC) management.The current
working practise of the telecommunication network operators are mostly tradition
and manual approach, which are ineffective and labour-some.By leveraging the ca-
pabilities of Machine Learning, the research aims to develop innovative approaches
that can comprehensively monitor, analyze, and enhance network performance, all
while integrating real-time customer feedback to drive continuous improvements.
Through this investigation, the study intends to contribute to the development of
novel strategies for managing the intricate landscape of converged mobile operator
networks. The ultimate goal is to not only elevate the overall quality of service or
elevate customer satisfaction but fully autonomous network by use of AI-ML.

In today’s rapidly evolving telecommunications landscape, mobile operator networks
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face the challenges of delivering high-performance services near realtime, minimizing
interruption and optimizing CAPEX and OPEX, while simultaneously managing the
Voice of the Customer (VoC) effectively.
Machine Learning (ML) has surfaced as a formidable instrument for enhancing net-
work performance assurance and VoC management. However, despite the potential
benefits, there is a pressing need to address several critical issues within this domain.

Network Performance Assurance: The convergence of various technologies,
including 2G, 3G, LTE, 5G, IOT, VAS, Cloud Core, Gaming, VR, and internet
services, introduces intricate network inter dependencies. Ensuring high-quality ser-
vice delivery in this context requires ML-based solutions that can predict, diagnose,
and proactively address network performance issues, faults, degradation, anomalies.
These solutions should adapt to the dynamic nature of these networks and deliver
actionable insights in real-time.

Voice of the Customer (VoC) Management: Understanding and meeting cus-
tomer expectations, insights, satisfaction are paramount in the telecommunications
industry. ML can be harnessed to analyze customer feedback, preferences, and
behavior patterns to enhance service offerings and improve overall customer sat-
isfaction. However, a gap exists in developing comprehensive VoC management
strategies that leverage ML effectively.

Highly Convergent Mobile Operator Networks: Adapting all technologies
(2G, 3G, LTE, 5G, IOT, VAS, Cloud Core, Gaming, VR etc) in single architecture
called convergence network.The specific challenges posed by highly convergent net-
works, where traditional boundaries between services blur, require specialized ML
models and algorithms. These networks must manage a multitude of services, each
with its unique performance requirements and customer expectations.

This thesis aims to address these challenges by developing innovative ML-based ap-
proaches tailored to the context of highly convergent mobile operator networks. By
doing so, it seeks to provide network operators with the tools and insights necessary
to not only ensure optimal network performance but also to create a seamless and
satisfying experience for their customers.

1.3 Research System Goals

The primary research goals of the ML Based Performance Assurance and VoC Man-
agement of Highly Convergence Mobile Operator Network are as follows:

• Enhance Network Performance: The system should actively monitor network
performance, predict potential issues, and optimize network resources to en-
sure high-quality service for users. The ultimate goal to introduction AI based
self healing and self optimized network.

• Prioritize Customer Experience: VoC data should be analyzed to understand
user experiences and concerns. The system should prioritize issues that di-
rectly impact customer satisfaction. which saves time and money of VoC
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Management operation.Long term goal to implement AI based predictive cus-
tomer experience analytic.

• Integration of ML: The system should seamlessly integrate ML algorithms
for real-time anomaly detection, time series prediction, and VoC sentiment
analysis.In these sector ML can enhance operational process and mean time
and cost of remediation of each issues.

1.4 Research Objectives

The main goal of this research is to leverage machine learning techniques to en-
sure the network performance assurance ( system Quality of Service (QoS), network
health, network availability, network KPI and KQI of a highly converged mobile
operator network, while concurrently managing the Voice of the Customer (VoC)
effectively. This research seeks to address the challenges posed by network conver-
gence in the telecommunications industry and aims to provide practical solutions to
optimize network performance and enhance customer satisfaction. The aim of this
research are:

• Investigate the application of ML algorithms for real-time performance moni-
toring and fault detection in a highly converged mobile operator network.

• Develop ML models using ML techniques to proactively identify and mitigate
network performance issues, Anomalies, ensuring Quality of Service (QoS).

• Obsolete traditional manual and highly human intervened performance moni-
toring and remediation process. Which is very ineffective and time consuming.

• Implement natural language processing and segmentation within the VoC man-
agement framework to extract actionable insights from customer feedback.

• Create a comprehensive VoC data collection and analysis system that incorpo-
rates various sources, such as customer surveys, social media, and call center
interactions.

• ML to antiquate VoC Management Manual process of segment, escalation and
fixation process.

• Address the unique challenges posed by network convergence, including the
integration of different technologies, services, and network elements, within
the ML-based performance assurance framework.

• Evaluate the effectiveness of ML-driven performance assurance and VoC man-
agement in enhancing customer satisfaction and network reliability through
empirical testing and case studies.

• Provide practical recommendations and guidelines for mobile operators to im-
plement ML-based solutions for improved network performance and customer-
centric network management.

4



1.5 Research Methodology

This thesis’s major research methodology will be a mixed-approaches approach that
combines quantitative and qualitative research methods. Quantitatively, data re-
lated to network performance metrics, such as LTE attach, and failure trend, will
be collected from the highly converged mobile operator network under study. This
data will be subjected to analysis and machine ML to create predictive models for
performance assurance. Additionally, quantitative data will be gathered from Voice
of the Customer (VoC) sources, including customer surveys, social media sentiment
analysis, and customer support interactions, to gain insights into customer feed-
back and sentiment. Qualitatively, these customer feedback datasets will undergo
natural language processing and qualitative content analysis to extract meaningful
insights. The combination of quantitative and qualitative data will enable a holistic
approach to enhancing network performance and customer satisfaction within the
highly converged mobile operator network.

Figure 1.1: Diagram of Research Methodology

Furthermore, the research will employ a case study methodology, selecting one or
more highly converged mobile operator networks as the research context. This will
allow for in-depth exploration and empirical validation of the ML-based performance
assurance and VoC management frameworks developed. The case study approach
will involve real-world data collection and implementation of ML models within
the chosen network(s). Key performance metrics will be monitored, and customer
feedback will be analyzed to evaluate the impact of the proposed ML solutions.
Additionally, expert interviews and focus groups with network engineers, operators,
and customer service representatives will be conducted to gather qualitative insights
and validate the practicality and effectiveness of the proposed methodologies. The
triangulation of data from various sources and the combination of quantitative and
qualitative approaches will ensure robustness and reliability in the research find-
ings and contribute to the development of practical recommendations for mobile
operators in the highly converged network domain.

The first method of this study focuses on Time Series Forecasting to predict network
performance metrics. Several algorithms have been chosen to assess their effective-
ness in this context. These algorithms include ARIMA (AutoRegressive Integrated
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Moving Average), Vector Auto Regression (VAR), XGBoost, Prophet, LSTM (Long
Short-Term Memory), and Dynamic Linear Model.

ARIMA and VAR are traditional statistical models widely used in time series fore-
casting. provide a benchmark for comparison with more sophisticated machine
learning models. An ensemble learning method called XGBoost is well renowned for
its great prediction accuracy. Facebook created Prophet, a specialized time series
forecasting tool that can manage seasonality and vacations. A deep learning model
called LSTM is capable of detecting intricate temporal relationships, making it suit-
able for sequential data like time series. Dynamic Linear Models are a Bayesian
approach to time series forecasting, offering a probabilistic framework for modeling
uncertainties.

The methodology involves preprocessing the historical network performance data,
including data cleansing, normalization, and feature engineering, to make it suitable
for input into the selected forecasting algorithms. These algorithms will then be
implemented, trained, and fine-tuned using appropriate hyperparameters. Metrics
including Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE) will be used to assess each algorithm’s performance. The
generalizability of the models will also be ensured by the use of cross-validation
techniques.

The second method of the research is Anomaly Detection, which aims to identify and
flag abnormal network behavior or performance issues. One-Isolation Forest,Class
SVM ,DBSCAN, Local Outlier Factor,Autoencoder, and Elliptic Envelope are just
a few of the anomaly detection methods that will be used to accomplish this.

A supervised learning algorithm One-Class SVM classify data into two classes: nor-
mal and abnormal. Isolation Forest is an ensemble-based approach known for its
ability to isolate anomalies efficiently. A type of neural network Autoencoder used
for unsupervised learning and feature extraction, making it suitable for anomaly
detection tasks. A density-based clustering technique called DBSCAN may be mod-
ified to find outliers. Measures the local density deviation of data points is the
local outlier factor, making it effective for identifying local anomalies. Elliptic En-
velope is a probabilistic model used to detect outliers by modeling the inlying data
distribution.

For the Anomaly Detection method, the research methodology will involve prepro-
cessing the network performance data similarly to the Time Series Forecasting com-
ponent. A labeled dataset including both typical and abnormal network behavior
will be used to train each anomaly detection method. Utilizing criteria like Recall,
F1-score, Precision,and Receiver Operating Characteristic curves the effectiveness
of these algorithms will be evaluated.

VoC (Voice of the Customer) Algorithm:
The third method of the study focuses on managing the Voice of the Customer to
enhance network performance and user satisfaction. Several machine learning algo-
rithms will be employed for this purpose, including Deep Neural Networks (DNN),
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Support Vector Machines (SVM), Convolutional Neural Networks (CNN), Logistic
Regression (LR)Gaussian Naive Bayes (GNB) and Multinomial Naive Bayes (MNB),
and SVM is a versatile algorithm capable of both classification and regression tasks,
making it suitable for VoC analysis. DNN and CNN are deep learning models
known for their ability to process and extract meaningful information from unstruc-
tured data like customer feedback and comments. GNB and MNB are probabilistic
models used for text classification and sentiment analysis, which are essential for
understanding customer sentiment. An efficient approach for binary classification
tasks is logistic regression.

The VoC Algorithm will involve data preprocessing steps such as text cleaning, tok-
enization, and feature extraction from customer feedback and reviews. The selected
algorithms will be trained on labeled datasets to classify customer sentiment, identify
common complaints or issues, and provide insights into improving network perfor-
mance. Metrics like Recall, Confusion Matrix , Precision, F1-score, and Accuracy
will be used to assess these algorithms.

In conclusion, the research methodology for the thesis ”ML-Based Performance As-
surance and VoC Management of Highly Convergent Mobile Operator Network”
incorporates a comprehensive approach that involves the selection and implementa-
tion of machine learning algorithms for Forecasting Time Series, Anomaly Detection,
and VoC Management. The evaluation of these algorithms using appropriate per-
formance metrics will provide valuable insights for enhancing the performance and
customer satisfaction of highly convergent mobile operator networks.

1.6 Research Questions

The following research questions will be covered in this paper:

1. How can Machine Learning (ML) techniques be effectively leveraged to en-
hance the real-time performance assurance capabilities of highly convergent
mobile operator networks?

2. What are the most crucial Key Performance Indicators that need to monitor
and analyzed using ML algorithms to ensure the optimal functioning of highly
convergent mobile operator networks?

3. How can Voice of the Customer (VoC) data be systematically collected, pro-
cessed, and integrated into network management to enhance customer satis-
faction and drive network improvements?

4. What ML-driven anomaly detection techniques are most suitable for identi-
fying network irregularities and potential issues in highly convergent mobile
operator networks, and how can they be seamlessly integrated into the existing
network monitoring infrastructure?

5. What is the impact of ML-based performance assurance and VoC management
on the overall network quality, operational efficiency, and customer perception
in highly convergent mobile operator networks?
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1.7 Research Scope

In this thesis, the primary scope revolves around the utilization of machine learn-
ing (ML) techniques for the enhancement of performance assurance and Voice of
the Customer (VoC) management within the context of highly converged mobile
operator networks. The research will delve into the application of various ML algo-
rithms, focusing on their practical implementation to proactively monitor network
performance, optimize Quality of Service (QoS) parameters, and address network
convergence challenges. The study will also encompass the collection and analysis
of VoC data from diverse sources, including customer feedback channels such as
surveys, social media, and customer support interactions. The ultimate goal is to
develop a comprehensive framework that leverages ML to enhance real time network
reliability, customer satisfaction, and overall operational efficiency. Tradition work
approach are time consuming and inefficient to manage huge volume of performance
KPI and VoC management.

1.8 Research Limitations

Despite the ambitious scope, there are certain inherent limitations to this research.
Firstly, proposed models rule based Robotic Process Automation (RPA) part is
out of this research scope and the effectiveness of ML-based solutions heavily re-
lies on the availability and quality of historical network data and VoC feedback.
Limited access to such data or data quality issues may constrain the depth and
reliability of the study’s findings. Additionally, while the research aims to provide
practical recommendations, the feasibility of implementing ML solutions may vary
across mobile operator networks due to resource constraints, including computa-
tional resources and technical expertise. Furthermore, ethical considerations, such
as data privacy and potential biases in ML algorithms, will be acknowledged but
may not be comprehensively addressed within the immediate scope of this research.
Finally, time constraints may limit the extent of data collection, analysis, and prac-
tical implementation and testing, potentially influencing the breadth of the study’s
outcomes.

1.9 Research Significance in telecommunication

industry

This research is significant within the telecommunications industry as it addresses
the pressing need for innovative solutions to ensure the performance, network fault,
availability and Quality of Service (QoS) of highly converged mobile operator net-
works. With the proliferation of diverse services, technologies, and network elements
in such environments, the effective application of machine learning (ML) techniques
can be transformative. By developing and implementing ML algorithms for real-
time network performance monitoring and predictive maintenance, this research
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can contribute to a substantial reduction in downtime, improved network reliabil-
ity, and optimized QoS. This, in turn, will lead to enhanced customer satisfaction
and loyalty, which is critical for mobile operators in today’s competitive landscape.
Moreover, the inclusion of VoC management within the scope of the research ensures
that customer feedback is not only collected but also utilized to drive network im-
provements, aligning network performance more closely with customer expectations.
This customer-centric approach is vital for maintaining a positive brand image and
ensuring long-term success in the telecommunications sector.

Beyond the telecommunications industry, the research significance extends to the
broader field of machine learning and artificial intelligence. It offers a real-world
application of ML in a complex and dynamic network environment, serving as a
valuable case study for academia and industry practitioners alike. The research out-
comes have the potential to inform best practices and guidelines for ML adoption in
similar contexts, demonstrating the adaptability and effectiveness of ML algorithms
in optimizing operations and customer experience. Furthermore, by addressing the
challenges of network convergence, the research can pave the way for future devel-
opments in the management of integrated technologies, which is relevant not only in
telecommunications but also in other sectors undergoing digital transformation. In
summary, this research carries substantial implications for both the telecommunica-
tions industry and the broader field of machine learning, contributing to improved
network performance, customer satisfaction, and the advancement of ML applica-
tions in complex operational environments.

1.10 Thesis Organization

In Chapter 2 of the thesis, a comprehensive literature review of related works is
presented, structured as follows: it provides an introduction to the pertinent tech-
nologies examined in this study and offers in-depth insights into the interconnected
research endeavors, Related Studies and Research in Telecom Network Analysis.
Also discuss the advancement.

Chapter 3 presents a collection of the data, data types, data collection methodology,
data preprocessing techniques, and proposed solution and further into the assump-
tions considered in this thesis. Analysis of the data considered is also presented.

Chapter 4 presents a general overview of the telecom evolution and customer behav-
ior analysis, telecom network availability analysis, technology evolution prediction,
customer behavior analysis considered in this thesis.

Chapter 5 shows the Data Trainingand Validation data Splitting , and Test Sets
performed. The data segregation into training, validation, and test sets, model
training process for availability prediction, model training process for technology
evolution prediction, model training process for customer complaint analysis, model
deployment strategies for mobile network operators, integration with existing net-
work management systems considered in this thesis.

In Chapter 6 of this thesis, the case studies, experiments, and results are presented.
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The outcomes are thoroughly examined, including an analysis of the factors con-
tributing to the numerical findings and an exploration of the impact of specific
features compared to others. Additionally, a comparison study of the performance
of various models considered in this study is conducted.

Chapter 7 serves as the conclusion of this thesis, outlining future directions for
research and summarizing the primary contributions made throughout the study.
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Chapter 2

Literature Review

The goal of this literature study is to present a thorough analysis of the body of
knowledge about the convergence of mobile operator networks, performance assur-
ance using machine learning, and Voice of Customer (VoC) management. The con-
vergence of telecom-networks has been a significant trend in the telecommunications
industry, driven by the growing demand for data and the need to support various
services efficiently. This chapter will explore the key concepts and advancements in
these areas, laying the foundation for the research conducted in the thesis.

The telecommunications industry is ongoing a significant alteration with the con-
vergence of numerous services, such as voice, data, and video, over a single network
infrastructure. This convergence, facilitated by advances in mobile and broadband
technologies, presents both opportunities and challenges for mobile operators. En-
suring the performance and quality of service in these mobile operator networks is
crucial to meeting customer expectations and maintaining competitiveness. Machine
learning (ML) has become an effective instrument for addressing these challenges by
replacing the traditional working method, particularly in the context of Performance
Assurance and Voice of the Customer (VoC) management.

2.1 Evolution of Mobile Operator Networks

Mobile operator networks have undergone a remarkable evolution over the years,
shaped by advancements in technology and the changing demands of users. This
section explores the key stages in the evolution of mobile networks, leading up to
the highly converged environment we see today.

Figure 2.1: Flow of Telecom Network Evolution
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2.1.1 Early Mobile Networks

The inception of mobile networks dates back to the 1980s with the advent of first-
generation (1G) cellular networks. These networks were analog and primarily offered
voice services. They were characterized by limited coverage and capacity.

2.1.2 Digital Revolution: 2G and 3G Networks

The transition to digital networks marked the emergence of second-generation (2G)
and third-generation (3G) networks. 2G networks introduced digital voice calls,
while 3G networks brought data services such as mobile internet and video calling.
These advancements expanded the range of services but led to network complexity.

2.1.3 Data-Centric Networks: 4G and 5G

The deployment of fourth-generation (4G) and fifth-generation (5G) networks sig-
naled a shift towards data-centric services. 4G networks offered high-speed data
connectivity, paving the way for video streaming and mobile applications. 5G net-
works, with their low latency and massive device connectivity, have unlocked the
potential for IoT and industrial applications.

Figure 2.2: Telecom Network Evolution & Convergence

2.2 Related Studies and Research on Telecommu-

nication Networks

The concept of network convergence involves the integration of multiple network
technologies, including cellular, Wi-Fi,fixed-line networks, into a unified infrastruc-
ture, VAS services, IoT, IT Infrastrutcure, cloud computing, virtualization etc. Con-
vergence aims to optimize resource utilization, reduce operational costs, and deliver
a seamless experience to users and open a horizon for next generation evolution.

This paper conducted a comprehensive study on the effect of network convergence on
network performance ,Service quality, Service Assurance and performance Assurance
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.Their research highlighted the potential for converged networks to efficiently utilize
resources, improve QoS[20].

This work represent a comprehensive comparison of models like ARIMA, LSTM, and
Prophet models,GRU in forecasting time series analysis on performance management
. The study utilizes real network data from a major Asian mobile operator to
access the performance of these models. Outcome shows LSTM, GRU outperforms
ARIMA,VAR, and Prophet, demonstrating its potential as an accurate predictor for
time series forecasting [65].

The study utilizes real-time network data from a major Asian mobile operator to
evaluate network anomaly detection algorithms the performance of these models.
Results show that Elliptic Envelope and Isolation Forest better in Anomaly detection
[63].

This research explore options for anomaly detection in telecommunication network
with OneClassSVM, AutoEncoder, Isolation Forrest model.Quality of available data,
proper model most crucial part for anomaly detection , it directly impact to the mod-
els performance.In usual cases most of the models are validated by public datasets
or by the the simulation, it is required to validate these models in the real network
data. [47].

While network convergence offers numerous benefits and opportunity to the MNO’s
to accelerate business, it presents a set of challenges. Managing diverse technologies
and ensuring seamless integration,operations, management while maintaining high
performance are among the foremost challenges.

Figure 2.3: Telecom Network Evolution & Convergence

The intricacies of managing network convergence in dynamic environments. Their
study emphasized the need for adaptive management solutions that can respond
to changing network conditions [21]. Security concerns in converged networks were
examined by stressing the importance of robust security measures [22].

This research, customer VoC segmentation has been performed by text classification
for improving MNOs traditional work approach which also helps churn prediction.
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This research focused by the consideration that the improvement of customer sat-
isfaction will reduce churn and the customer satisfaction will be reflected in im-
provement by applying on VOC, the unorganized VoC information which captures
a review of customer’s insights, expectation and feed backs. To the best of our
knowledge, this is the unique work that introduces segmentation of VOC to MNOs
working approach improvement[37].

2.2.1 Concept of Network Convergence

The telecom sector’s evolution, from the inception of 2G networks to the emergence
of 3G, 4G, and the anticipated 5G technology. This section emphasise the key
technological evolution, and the shift towards digitalization, Cloudification and data-
driven communication systems [27].
Recent years have seen a substantial increase in interest in network convergence,
or the merging of many network technologies into a single infrastructure. The con-
vergence aims to enhance resource utilization, reduce operational costs, and deliver
seamless services to end-users. Researchers and industry experts have explored var-
ious aspects of network convergence.

Figure 2.4: Layer of Telecom Networks

The investigated the impact of network convergence on resource allocation and Qual-
ity of Service (QoS). Their study revealed that converged networks can achieve more
efficient resource utilization, leading to improved QoS and cost savings. Convergence
has also been a driving force behind the emergence of 5G networks [23]. In this paper
discussed the benefits of network slicing in 5G, allowing the isolation of resources
for different services, ensuring efficient resource utilization [24].

2.2.2 Challenges in Network Convergence

While the benefits of network convergence are evident, it comes with its set of
challenges. Convergence of technologies making network more complex, hard to
manage by traditional tools and process. Most of the time its required hours to
isolate fault and anomaly identification. Ensuring the seamless integration of diverse
network technologies while maintaining high performance remains a complex task.
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The focused on the challenges of managing network convergence in highly dynamic
environments. They highlighted the need for intelligent management solutions that
can adapt to changing network conditions. Network security is another critical con-
cern [25]. These Author explored security issues in converged networks, emphasizing
the importance of robust security measures to protect against cyber threats [26].

2.3 Performance Assurance in Mobile Networks

2.3.1 Key Performance Indicators (KPIs)

Performance assurance in mobile networks revolves around monitoring and optimiz-
ing Key Performance Indicators (KPIs). KPIs are essential metrics that assess the
quality and efficiency of network services. Common KPIs include call success rate,
Network Accessibility, Network Availibility, Call Drop rate,MOS, data throughput,
latency, packet loss, throughput, and signal strength etc.

Figure 2.5: Performance KPI Matrices

2.3.2 Traditional Approaches to Performance Assurance

There are 3.5M KPIs and performance data generated every hour in MNOs. Tra-
ditionally, performance assurance in mobile operator networks relied on manual
monitoring and intervention. Its very hectic task to unsure 3.5Million KPIs manu-
ally and its really time consuming.Usually team monitor KPIs 12Hr interval Hence,
Network performance, downtime, service quality hard to ensure. However, strategy
is no longer adequate given the complexity and size of contemporary networks.

This author introduced an early ML-based approach for network fault, KPI degra-
dation and anomaly prediction. Their system utilized historical data to train pre-
dictive models, significantly improving the accuracy of fault prediction and reducing
downtime. Similarly [27], In this paper authors explored the concept of SONs and
how ML-driven optimization can automate network management tasks, leading to
enhanced performance [28].
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2.3.3 Machine Learning for Performance Assurance

The advent of Machine Learning (ML) has brought a paradigm shift in performance
assurance. ML techniques can analyze vast volumes of network data in real-time,
detect anomalies, and proactively optimize network parameters.

Figure 2.6: ML Based Perfromace Assurance

In this research, ML based performance assurance model proposed their MNOs can
obsolete their tradition working approach, where a monitoring team constantly mon-
itoring KPI, KQI and degradation.Incase of degradation the issue raised to mainte-
nance engineer for remediation.Howeverm, in the proposed ML model to detect real
time service quality degradation and network fault in service and a rule based RPA
to remediate and fix the technical issue.

This authors conducted research on ML-driven network performance management,
highlighting the benefits of anomaly detection algorithms in predicting network fail-
ures. Their study showcased the potential for ML to enhance network stability and
reliability [29]. Furthermore, the explored the use of ML for auto resource ballance
in 5G networks, ensuring efficient utilization of network resources and consequent
performance improvements [30].

2.4 Voice of the Customer (VoC) Management

VoC Management is refer to the process of systematically capturing, analysing,
investigation, addressing and utilizing customer feedback, issues, enquiries, require-
ments and insights to improve products, services, policies, and overall customer
experience. VoC Management involves various methods of collecting customer feed-
back, issues, and insights such as service centre, mobile application, mail, surveys,
reviews, social media mentions, customer support interactions, and more.

Understanding the Voice of the Customer (VoC) is critical for effective network
management and delivering superior user experiences. VoC data provides insights
into customer satisfaction, service quality, and areas needing improvement.
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2.4.1 Importance of VoC in Network Management

VoC management involves collecting and analyzing customer feedback to improve
services and customer satisfaction. In the context of mobile operator networks,
VoC data provides valuable insights into user experience and network performance
enhancement.
In this work focused on conducted a comprehensive study on VoC analysis in the
telecommunications industry. They highlighted the significance of timely feedback
in addressing network issues and proposed a framework for integrating VoC data
into network management systems [31]. This author contributed to the field by
applying sentiment analysis techniques to extract valuable insights from customer
feedback related to network services [32].

2.4.2 Challenges in VoC Management

Effectively managing VoC data poses challenges, particularly in complex mobile
operator networks. The volume and diversity of data generated by modern telecom-
munications services require advanced analytic and management strategies. Main
Challenges are:

• Multi channel VoC source

• Manual Process

• Huge Data Varity and volume

• Inadequate tools

• ineffective Communication

• Frequent technology advancement

• Network Complexity

• Service Quality and reliability

This author discussed the challenges of handling large-scale VoC data and proposed
a Big Data analytics framework to extract meaningful insights. They highlighted the
potential of this approach in improving VoC management in converged networks [33].
Additionally, in this paper emphasized the importance of real-time VoC analysis and
its role in identifying and addressing network issues promptly [34].

2.4.3 Machine Learning in VoC Management

Traditional VoC management process where executives manually go through VoC
and segregate based on serving Area.Later the VoC escalated to concern team based
on serving area mapping. Related concern team implement remedy.

In this thesis, ML based VoC management process has been purposed. Where
MNOs traditional working approach to segment VOC manually and escalate to the
concern teachnical team to be replaced by ML. A rula based RPA to provide 1st
level remediation and resolution of VoC.
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Figure 2.7: ML Based proposed VoC Management

2.5 ML-Based Performance Assurance and VoC

Management Integration

Integrating Machine Learning (ML) into performance assurance and VoC manage-
ment is a powerful strategy for enhancing network quality. ML algorithms can
analyze vast datasets, detect anomalies, and predict network issues in real-time.
Integrating ML-based performance assurance with VoC management enables oper-
ators to proactively identify and address network problems, resulting in improved
customer satisfaction and operational efficiency.

On the other hand the integration of ML-based performance assurance and VoC
management is a relatively unexplored area but holds significant potential. By com-
bining real-time network performance monitoring with customer feedback analysis,
operators can proactively identify and address issues, ultimately improving customer
satisfaction.

This paper the author experimented a framework that integrates ML-based network
performance monitoring with VoC data analysis. Their study demonstrated that this
integration can lead to quicker issue resolution and improved network performance
[35]. Similarly, other author developed a system that uses ML algorithms to correlate
network KPIs with customer complaints, enabling operators to prioritize and resolve
issues effectively [36].

2.6 Performance Assurance and VoC Managemen

in ML Techniques

Anomaly Detection:
Anomaly detection is a critical component of performance assurance in highly con-
vergent mobile operator networks. Detecting unusual behavior or anomalies in net-
work data can help operators proactively identify and address issues. Historically,
traditional statistical methods and rule-based systems were used for anomaly de-
tection. However, with the growth in data complexity, Machine Learning (ML)
techniques have gained prominence.
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An analysis of time series data anomaly detection methods was suggested by this
author. Their work highlighted the limitations of traditional methods and the need
for advanced ML algorithms [37].

Clustering, classification, and deep learning etc Machine Learning techniques such
have shown promise in anomaly detection. Isolation Forest, One-Class SVM, and
Autoencoders are examples of ML algorithms commonly used for this purpose. On
the other hand this author introduced a comprehensive review of anomaly detec-
tion techniques, including statistical, neural network-based, and clustering methods.
They discussed the challenges and trade-offs associated with different algorithms
[38].

In the context of mobile networks, anomaly detection plays a crucial role in identify-
ing network faults, security breaches, and performance irregularities. This authors
applied Random Forest and SVM for anomaly detection in mobile networks [39].
Their research highlighted the effectiveness of ML algorithms in improving fault
prediction.

Time Series Prediction:
Time series prediction is vital for forecasting network performance, traffic patterns,
and resource utilization. Accurate predictions enable proactive network manage-
ment and resource allocation.

ARIMA and Exponential Smoothing are common time series prediction techniques.
While these methods are widely used, they may not capture complex patterns in
network data. This authors provided an extensive guide to time series forecasting,
covering traditional approaches and their limitations [40].

Time series prediction has completely changed as a result of machine learning, par-
ticularly as it relates to RNNs and LSTM neural networks. In this study, writers
analysed the scope of deep learning methods, such as LSTMs, for time series fore-
casting [41]. Their work experimented huge improvements in prediction accuracy
compared to traditional methods.

Time series prediction is indispensable for anticipating network traffic, resource de-
mand, and service quality in mobile networks. In thgis paper employed LSTM
networks for time series prediction in 5G networks [42]. Their research showcased
the potential of deep learning in optimizing resource allocation and QoS.

VoC Management:
Voice of the Customer (VoC) management is essential for understanding user ex-
periences, preferences, and grievances. Algorithms that can efficiently process and
analyze VoC data are integral to network management.

Sentiment analysis, a subfield of Natural Language Processing (NLP), is commonly
used for VoC management. It involves classifying customer feedback as positive, neg-
ative, or neutral, providing insights into customer sentiment. This authors presented
a comprehensive review of sentiment analysis process, including dictionary-based,

19



machine learning-based as well as deep learning-based approaches [43]. The study
emphasized the applicability of sentiment analysis in understanding VoC.

ML models and techniques, including classification, clustering, and topic modeling,
can be employed for VoC analysis. In this paper developed a VoC management
system using text classification algorithms [44]. Their research demonstrated how
ML can automate the categorization of customer feedback, making it easier for
operators to identify common issues. But in this paper I used DNN, CNN, SVM,
GNB, MNB, and LR model in VoC management.

The integration of Anomaly Detection, Time Series Prediction, and VoC Manage-
ment Algorithms in highly convergent mobile operator networks is a promising av-
enue for network optimization and customer satisfaction improvement. The pro-
posed a comprehensive framework that integrates Anomaly Detection with Time
Series Prediction for network performance monitoring [45]. Their study showed
that combining these techniques can lead to quicker issue resolution and improved
network performance. Additionally, the integration of VoC Management Algorithms
can enhance the understanding of customer experiences, enabling more targeted net-
work improvements.

2.7 Research Gaps in the Literature

While significant progress has been made in the areas of network convergence, ML-
based performance assurance, and VoC management, there is a notable gap in the
literature concerning the integration of these concepts. Existing studies have es-
tablished the benefits of each area separately, but the synergies and challenges of
combining them remain relatively unaddressed. Network performance assurance and
VoC management building ML models and identify best suited models in the key
scope in this exercise.
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Chapter 3

Methodology

3.1 Research Design

This chapter outlines the research approach taken to examine how machine learning
(ML) for performance assurance and Voice of the Customer (VoC) management may
be integrated in highly convergent mobile operator networks. The study plan, meth-
ods for gathering data, tools for analyzing data, and ethical issues are all discussed
in detail.

3.2 Research Approach

Quantitative Research Approach: This study primarily adopts a quantitative
research approach. Quantitative research is suitable for examining the relation-
ships between variables, measuring performance metrics, and conducting statistical
analysis on large datasets. This approach is well-suited for assessing the impact of
ML-based performance assurance and VoC management on network performance.

Qualitative Research Approach: In addition to the quantitative approach, a
qualitative research approach will be employed to gather insights from network op-
erators and users. Qualitative research methods, such as interviews and surveys, will
be used to collect VoC data and gain a deeper understanding of user experiences
and preferences.

3.3 Data Collection

3.3.1 LTE Attach

The KPI has chosen for this experiment has immense importance in MNOs Network.
LTE Network Attach is a metrics which signifies of LTE(4G) users accessibility
connectivity to LTE IMS network.

When a UE initiates a procedure for attaching to the EPC network for fresh location
update, the UE includes its IMSI in the Attach Request message. LTE attach
procedure includes user authentication, location update in HLR, PCRF data quota
reservation, radio resource connection with eNB.
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LTE combined attach success rate=( LTE join attach 4G and non-4G services success
times + LTE EPS services and SMS join success times EPS services only+ LTE join
attach success times for EPS services only + LTE join attach success times for EPS
services only(#18 CS domain not available)) (point 13, M1 ) / LTE combined attach
request times ( Point 2, M5) * 100% )

Figure 3.1: LTE Combined Attach

If a UE initiates a procedure for attaching to the EPC network for fresh attach, in
the Attach Request message IMSI included by UE. The initial attach consists of the
following phases:
• S1 initial attach message sent alone with signaling establishment (IMSI carried)
The UE creates a connection with the LTE eNodeB over the S1 interface.
• Authentication
The MME transfers the IMSI, obtains the authentication quadruplets from the HSS,
and helps the network and handset both authenticate with one another. After
authentication succeeds, the MME obtains UE subscription data from the HSS.
• Location update
The MME generates LU Request message to register with the HSS.
• Default bearer establishment
Default bearer established on the EPC network based on the default APN and PDN
subscription context in the UE subscription data. After the default bearer is created,
the UE successfully attaches to the EPC network.
As shown in Figure 3.1, Mx is a measurement point on the MME, Sx is a measure-
ment point on the S-GW, and Px is a measurement point on the P-GW.
• MME:
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M1; M2; M3; M4; M5
• S-GW:
S1; S2; S3; S4; S5
• P-GW:
P1; P2; P3; P4

1. Attach Request message sent by UE to the eNodeB.

2. The eNodeB transparently transmits the Attach Request message to the MME
for establishing an S1 signaling connection. The message carries the IMSI, TAI,
and S1 interface–related IDs.

3. The eNodeB transparently transmits to MME the Attach message for estab-
lishing an S1 signaling connection. The message carries the IMSI, TAI, and
S1 interface–related IDs.

4. The MME sends an Authentication Request message to the UE upon receiv-
ing the Authentication Information Answer message. The message contains
RAND, AUTN, and KSIasme (which functions as the Key Set Identifier for
Kasme).

5. The network is verified by the UE. The UE computes the RES using the
RAND and sends the RES in an Authentication Response message to the MME
if the network authentication is successful. Once the UE has been verified,
the network. The RES and XRES in the quadruplets of authentication are
compared by the MME. UE authentication is successful if they are identical.
In the absence of that, the MME notifies the UE that its authentication has
been rejected.

6. To collect subscriber data, the MME contacts the HSS with an Update Loca-
tion Request message. The MME attaches first using the HSS domain since
it lacks the UE’s valid subscription context.

7. By communicating with the MME via an Update Location Answer message,
the HSS adds subscription data. One or more PDN subscription contexts and
a default APN are included in this subscription data. Each PDN subscription
context has an EPS subscribed QoS profile and the subscribed APN-AMBR.
The MME denies the UE’s request to attach if the UE connects to the network
using an APN to which it has not subscribed or if the HSS denies the Update
Location request.

8. the UE’s Attach Request message includes an APN, the MME utilizes that
APN to initiate the default bearer. In the absence of an APN, the MME resorts
to the default APN associated with the subscription for activation. The MME,
based on the Tracking Area Identity (TAI), retrieves a list of S-GWs through
DNS resolution. Simultaneously, it retrieves a list of P-GWs based on the APN
through DNS resolution as well. Subsequently, the MME selects a combination
of S-GW and P-GW to establish a default bearer, taking into account the
priorities and weights of available S-GWs and P-GWs. It follows the principle
that a combined S-GW/P-GW is preferred, and proximity in terms of network
topology is prioritized. The MME then assigns an EPS bearer ID to the default
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bearer and forwards a Create Session Request message to the selected S-GW,
requesting the establishment of the default bearer. Key Information Elements
(IEs) contained within this message are described as follows.

9. The S-GW establishes an EPS bearer in the bearer list and sends the CCR
message to the P-GW based on the P-GW IP address carried in step 9. The
message contains the TEID of the S-GW, IP address of the S5/S8 interface,
and QCI. The S-GW caches the downlink packets delivered by the P-GW
upon receiving a CCR message from the P-GW, and forwards the packets
after obtaining the eNodeB TEID from the Modify Bearer Request message
in step 20.

10. Optional: If dynamic Policy and Charging Control (PCC) is used, the P-
GW initiates a procedure for establishing an IP-CAN (IP-connectivity access
network) session the UE.to obtain default PCC rules ,the P-GW uses locally
configured policies.

10a. The P-GW sends a CCR-I message to the PCRF, instructing the PCRF
to create an IP-CAN session.

10b. The PCRF performs authorization and policy decision-making.

10c. The PCRF responds to the P-GW with a CCA-I message, carrying the
selected IP-CAN bearer establishment mode.

11. The P-GW establishes an EPS bearer within the EPS bearer list and generates
a charging ID. It is capable of forwarding UP PDUs between the S-GW and the
PDN. Charging initiation occurs at the P-GW, and a Create Session Response
message is transmitted to the S-GW.

3.4 Data Set for Performance Assurance

Performance assurance experimental data set is one of the key parameter of LTE
network.The performance indicate who stable and efficient the LTE data network.
This is one of the KPI among 3.5M KPIs but its very crictial to the MNOs data
network.Key characteristics of the dataset:

Figure 3.2: LTE Combine Attach Histogram Plot

1.The dataset is time series data of 1hr interval data.
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Figure 3.3: LTE Combine Attach Scatter Plot

2.There 714 rows and 16 columns in the dataset.

3.“LTE combined attach success rate” represent LTE rate and “LTE combined at-
tach request times” represents attach request from user equipment.

4.LTE join attach failure count( 19 ESM failure) and LTE join attach failure counts
(ESM failure 29 User authentication failed) demonstrate attach failure counts.

5.Histogram Plot most frequency of success rate is 70-75.

3.5 Data Set for VoC Management

VoC related to customer’s complain, enquiries, insights, information, suggestions etc
are collected from various source.MNOs VoC Management Categorization , Analysis
and Investigation are done manually.Usually a Customer experience executive reads
insight manually and segregate of its Business area/type based on his understand-
ing.
Key characteristics of the dataset:

1. In this experiment VoC data of 2834 samples has been used.

2. There are 5 columns in this data set among them “AREA” and “Description”
Column will used on this experiment.

3.“Business Area” refers to a specific business unit/vendor/concern who will be re-
sponsible to take care the VoC.

4. There are 85 unique Business Area, among them sample count ¿60 considered for
the experiment.

5. “Description” Column is the detail of customers VoC. “Description” Column
Data is unorganized.

6. There are Special characters, Banglish words, unreadable contents, date, time,
amount are exists this data set.

25



Figure 3.4: VoC Sample Count

Figure 3.5: VoC Word Length Distribution

Figure 3.6: VOC Most Frequency Word

3.6 Time Series Algorithm Selection and Imple-

mentation

Selecting and implementing the appropriate time series prediction algorithm is cru-
cial for accurate forecasts in network optimization. This process involves choosing
from various algorithms like ARIMA, XGBoost, LSTM, Dynamic Linear Model,
Prophet, VAR, and GRU based on the character of the data and the specific re-
quirements of the network. Equipped with these algorithms, their mathematical
foundations, and insights from the data, the prediction process can be outlined as
follows:

Data Preprocessing: Prepare the time series data for analysis by cleaning, con-
verting, and organising it. This might include dealing with missing values, scaling,
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and dividing the data into training and testing sets.

Algorithm Selection: Select an algorithm that usitable for the data properties
and forecasting goals. For instance, if the data exhibits strong seasonality, Prophet
or ARIMA might be appropriate. If the data is complex with nonlinear patterns,
XGBoost or LSTM might be considered.

Algorithm Parameter Tuning: Many algorithms have hyperparameters that
need to be optimized to achieve the best performance. This is accomplished by
employing approaches such as random search and grid search to choose the best set
of parameters.

Model Training: Train the chosen algorithm on the training data to extract the
patterns and correlations found in the historical data.

Equation Implementation: Depending on the chosen algorithm, equations spe-
cific to that algorithm are used during the training process. For instance, in ARIMA,
the autoregressive and moving average coefficients are calculated iteratively. In
LSTM, the equations governing the gates and cell state updates are utilized for for-
ward and backward passes.

Model Evaluation: Using the testing dataset, evaluate the trained model’s perfor-
mance. Prediction accuracy is typically measured using metrics such as Root Mean
Squared Error (RMSE),Mean Squared Error (MSE),Mean Absolute Error (MAE)
etc.

Forecasting: Once the model’s performance has been determined to be good, it
may be used to forecast future data points.

Visualization: To evaluate the model’s predictions’ accuracy graphically, compare
the projected values to the actual values.

Iterative Refinement: Depending on the forecasting results, you might need to
go back to steps 2-6 to fine-tune the algorithm and improve the predictions.

In conclusion, the process of time series prediction algorithm selection and imple-
mentation involves a thoughtful evaluation of data characteristics and forecasting
goals. The equations underpinning each algorithm guide the training and prediction
process, enabling accurate network optimization and informed decision-making.

3.7 Anomaly Detection Algorithm Selection and

Implementation

Here’s a detailed explanation of the steps involved in selecting and implementing
anomaly detection algorithms, along with equations for some common methods:

Insights of Anomaly Detection: Anomaly detection is the process of identifying
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patterns and data that deviate significantly from the norm. It’s crucial for network
security and performance optimization as it helps in identifying unusual behaviors
that might indicate potential issues.

Data Preprocessing: Similar to time series prediction, data preprocessing is es-
sential. Clean the data, handle missing values, and standardize or normalize it if
necessary. Data that isn’t preprocessed well can lead to inaccurate anomaly detec-
tion.

Algorithm Selection: Choose an anomaly detection algorithm based on the char-
acter of your data and the types of anomalies you’re interested in detecting. Algo-
rithms include DBSCAN,One Class SVM,Isolation Forest, Elliptic Envelope, Local
Outlier Factor (LOF), and Autoencoders.

Algorithm Parameter Tuning: Most anomaly detection algorithms have param-
eters that need tuning for optimal performance. For instance, in DBSCAN, you’d
set parameters like the minimum number of points and the radius. In Isolation
Forest, the number of trees could be tuned.

Model Training: In anomaly detection, ”training” often involves creating a model
that captures the normal behavior of the data. This model then helps identify de-
viations from the norm, which are considered anomalies.

Equation Implementation: While anomaly detection algorithms might not have
explicit equations like those in prediction algorithms, they are guided by specific
principles. For instance, Isolation Forest uses the length of the path traversed in a
tree to isolate anomalies. The local density deviation of a data point in relation to
its neighbors is calculated using the Local Outlier Factor (LOF).

Model Evaluation: Use relevant metrics to evaluate the effectiveness of your
anomaly detection model, such as F1-score,accuracy recall, or Area Under the ROC
Curve (AUC-ROC). These metrics help quantify how well the model is detecting
anomalies.

Threshold Setting: Determine a threshold for classifying data points as anoma-
lies. This threshold is often set based on the evaluation metrics, the balance of and
false negatives and false positives as well as the acceptable amount of risk.

Implementation and Deployment: Implement the chosen algorithm and inte-
grate it into your network monitoring system. The algorithm should run in real-time
or periodic intervals to detect anomalies as they occur.

Iterative Refinement: Similar to other processes, you might need to fine-tune
parameters, adjust the threshold, or even switch to a different algorithm based on
real-world performance.

Visualization and Reporting: Visualize the detected anomalies in a way that
makes them understandable to stakeholders. Provide clear reports indicating what
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anomalies were detected, their severity, and recommended actions.

In summary, the selection and implementation of anomaly detection algorithms in-
volve understanding data patterns, choosing suitable algorithms, tuning parameters,
training models, setting thresholds, deploying the algorithm, refining the process it-
eratively, and presenting results. The application of mathematical principles and
algorithmic techniques enables effective anomaly detection and contributes to net-
work security and optimization.

3.8 Voice of the Customer Management Algorithm

Implementation

Certainly, here’s a comprehensive explanation of the steps involved in implementing
Voice of the Customer (VoC) management algorithms, along with a description of
some common methods:

Understanding Voice of the Customer Management: VoC management in-
volves capturing, analyzing, and leveraging customer feedback to improve products
and services. It’s crucial for enhancing customer satisfaction and making informed
business decisions.

Data Collection and Preprocessing: Gather customer feedback data from var-
ious sources like surveys, reviews, and social media.

1. Cleaning Special Characters, non english characters, Number, Date, time etc..

2. Cleaning unusual sentence “As per customer voice” , “as per Cx”, “As per
mail”etc.

3. Making of vocabulary dictionary of 400 words Tokenize convert raw string “De-
scription” input into integer input.

4. Label encoding “AREA” to convert categorical variables into numerical form.

5. Converts the labels to a one-hot representation

Algorithm Selection: Select the best algorithms for assessing consumer feed-
back. Support Convolutional Neural Networks (CNN),Vector Machines (SVM), Lo-
gistic Regression (LR), Gaussian Naive Bayes (GNB) and Multinomial Naive Bayes
(MNB) are popular options.

Model Training: Train the selected algorithm using labeled data. Labeled data
consists of customer feedback samples categorized as positive, negative, or neutral
sentiment.

Equation Implementation: Each algorithm has its equations that define its be-
havior.For example, the SVM equation entails determining the optimum hyperplane
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to divide various classes while maximizing the margin.

Algorithm Parameter Tuning: Tune algorithm parameters to achieve optimal
performance. Parameters might include kernel type in SVM, number of layers in
CNN, or regularization strength in logistic regression.

Model Evaluation: Use measures like precision, recall, accuracy,F1-score and
confusion matrices to assess the trained model’s performance. These measurements
demonstrate how well the model classifies user feedback.

Sentiment Prediction: Implement the trained model to predict sentiment (posi-
tive, negative, neutral) for new, unseen customer feedback.

Integration and Automation: Integrate the sentiment prediction process into
your customer feedback pipeline. Automate the sentiment analysis step to process
a large volume of feedback in real-time.

Visualization and Reporting: Visualize sentiment trends and customer feedback
patterns over time. Create dashboards or reports that showcase valuable insights
derived from sentiment analysis.

In summary, implementing VoC management algorithms involves collecting and pre-
processing customer feedback, selecting appropriate sentiment analysis algorithms,
training models, fine-tuning parameters, evaluating performance, predicting senti-
ment, integrating the process, visualizing insights, and iteratively refining the model.
These algorithms, guided by mathematical principles, enable businesses to effectively
leverage customer feedback for service enhancement and informed decision-making.

3.9 Architecture of the ML-Driven Performance

Assurance and VoC Management System

The architecture comprises the following critical requirement or components:

1. Data Collection Module:

• Network Performance Data: This part is constantly gathering informa-
tion on the performance of the network from numerous sources, such
as network devices, sensors, and monitoring tools. Data includes Key
Performance Indicators (KPIs), latency, traffic, accessibility, throughput,
packet loss, and more.

• Historical Network Data: Historical network data, containing past per-
formance records, incidents, and resolutions, is retrieved from network
archives and databases.

• Voice of the Customer (VoC) Data: VoC data is gathered from multi-
ple sources, including customer feedback surveys, social media, and cus-
tomer support interactions. It includes textual feedback, ratings, and
comments.
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2. Machine Learning Models and Algorithms:

• Anomaly Detection Algorithms: ML algorithms for anomaly detection
are at the core of performance assurance. These models identify unusual
patterns in network data and trigger alerts when anomalies are detected.
Examples include Isolation Forest, One-Class SVM, and Autoencoders.

• Time Series Prediction Models: Time series prediction models forecast
network performance metrics based on historical data. These models
help in proactive resource allocation and traffic management. RNNs and
LSTM networks are often used for this purpose.

• Natural Language Processing (NLP) Algorithms: NLP algorithms per-
form VoC management analysis and topic modeling on VoC data. They
categorize customer feedback, identify common issues, and assess cus-
tomer satisfaction.

3. Integration Layer:

• The integration layer serves as a middleware that connects data sources
and ML models. It preprocesses and prepares data for analysis and model
training.

• This layer facilitates the seamless integration of ML models into the net-
work management system and VoC analysis module.

4. Network Management System (NMS):

• The NMS is responsible for network monitoring, configuration manage-
ment, and performance optimization. It receives real-time performance
insights from ML models and takes corrective actions based on predic-
tions and feedback.

• The NMS is the operational hub of the system, where network adminis-
trators can view performance metrics, incidents, and recommendations.

5. VoC Management Module:

• This module manages VoC data, conducts sentiment analysis, and ex-
tracts valuable insights from customer feedback. It categorizes feedback
into topics, identifies network-related issues, and assesses customer satis-
faction.

• It provides a platform for network operators to understand the Voice of
the Customer and prioritize network improvements based on customer
feedback.

3.10 Data Flow and Processing Stages

The architecture follows a systematic data flow process to ensure effective perfor-
mance assurance and VoC management:
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Figure 3.7: Telecom Convergence Core Network Architecture

1. Data Collection:

• Network performance data is continuously collected from network devices
and sensors.

• Historical network data is retrieved from archives, and VoC data is gath-
ered from various sources, including surveys and social media.

2. Data Preprocessing:

• Raw data undergoes cleaning and validation to remove inconsistencies
and errors.

• Feature engineering is performed to extract relevant features from the
data for improved ML model performance.

• VoC data is integrated with network performance data to correlate cus-
tomer feedback with network events.

3. ML Model Integration

• Anomaly detection models process real-time performance data to identify
anomalies and trigger alerts.

• Time series prediction models forecast network performance metrics, help-
ing operators proactively allocate resources.

• NLP algorithms perform sentiment analysis and topic modeling on VoC
data, categorizing feedback and identifying network-related issues.

4. Insights and Actions:

• The system provides real-time performance insights and alerts to the
NMS. Operators can monitor network health and respond to anomalies.

• VoC insights, including sentiment analysis results and identified network
issues, are presented on the dashboard. Operators can prioritize issue
resolution based on customer feedback.
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• A feedback loop is established, where actions taken by the NMS are ana-
lyzed for their impact on network performance and customer satisfaction.
This feedback informs future network optimization strategies.

The architecture is designed to be scalable and adaptable to the evolving needs of
highly convergent mobile operator networks. It accommodates the integration of
new ML models and incorporates changes in data sources and network configura-
tions. This section I have presented a comprehensive architecture for the ML-Driven
Performance Assurance and VoC Management System. The architecture leverages
Machine Learning techniques to enhance network performance, prioritize customer
experience, and integrate real-time anomaly detection, time series prediction, and
VoC sentiment analysis. The structured data flow and components ensure a holistic
approach to network management and optimization.

3.11 Interaction between Performance Assurance

and VoC Components

In the context of my research, it is essential to establish a robust interaction between
the Performance Assurance and VoC components of the ML-Based system designed
for highly convergent mobile operator networks. This interaction is pivotal as it
bridges the technical aspects of network optimization with the customer-centric
focus of VoC management.

Performance Assurance Component: The Performance Assurance component
within the ML-Based system operates as the technical backbone, continuously mon-
itoring network performance using Machine Learning algorithms. It actively collects
real-time data on Key Performance Indicators (KPIs) like as throughput, latency,
packet loss, and others. These metrics are crucial for assessing the network’s health
and identifying anomalies or performance degradation promptly. For instance, ML
models specialized in anomaly detection, such as Isolation Forest or One-Class SVM,
analyze the KPI data to pinpoint deviations from expected patterns. When anoma-
lies are detected, alerts are triggered, and corrective actions are initiated by the
system, including reconfiguration or resource allocation adjustments. This tech-
nical vigilance ensures that network issues are identified and addressed promptly,
contributing to improved performance.

VoC Management Component: On the other side of the spectrum, the VoC
Management component focuses on capturing the Voice of the Customer. From a
many channels, including surveys, social media, and contacts with customer ser-
vice, it gathers client input. This feedback provides invaluable insights into user
experiences, satisfaction levels, and concerns related to the network’s performance.
The data is subjected to NLP techniques, including VoC analysis and topic model-
ing, to categorize and quantify customer sentiments and identify common network-
related issues. The results of this analysis are then fed into the network management
decision-making process. For example, if sentiment analysis reveals widespread cus-
tomer dissatisfaction due to frequent network outages, the system can prioritize
addressing these issues based on customer feedback, thus aligning network manage-
ment strategies with customer expectations.
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Synergistic Interaction: The synergy between the Performance Assurance and
VoC components is where the true value of your research lies. Performance As-
surance relies on data-driven insights to optimize network performance, and VoC
Management taps into customer feedback to drive network improvements. This
interaction operates as a feedback loop: Performance Assurance ensures that net-
work issues are detected and resolved swiftly, while VoC Management ensures that
customer experiences and feedback are integrated into performance optimization
strategies. When network anomalies are detected and addressed by the Perfor-
mance Assurance component, the VoC Management component can measure the
subsequent impact on customer satisfaction and perception. This iterative process
fosters a dynamic and responsive network management system, aligning the techni-
cal aspects of performance assurance with the customer-centric goals of enhancing
the network’s quality of service. The end result is a highly convergent mobile oper-
ator network that not only meets technical benchmarks but also delivers a superior
customer experience, a critical factor in today’s competitive telecommunications
landscape.

In summary, the interaction between the Performance Assurance and VoC compo-
nents in my ML-Based system for highly convergent mobile operator networks is a
dynamic process that marries technical network optimization with customer-centric
strategies. Through this connection, network concerns are swiftly resolved, and con-
sumer input is crucial in determining how to maintain the network. The synergy
between these components forms the backbone of a responsive and customer-focused
network management system, ultimately enhancing both network performance and
customer satisfaction.
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Chapter 4

ML Based Performance Assurance

4.1 Time Series Forecasting Algorithms

Time series prediction plays a pivotal role in optimizing network performance, offer-
ing insights into future trends and aiding in proactive decision-making. In the view of
network optimization, time series forecasting techniques such as XGBoost, ARIMA
(AutoRegressive Integrated Moving Average), LSTM (Long Short-Term Memory),
Prophet, Dynamic Linear Model,VAR (Vector AutoRegressive), and GRU (Gated
Recurrent Unit) are employed to predict network behavior and facilitate strategic
adjustments.

4.1.1 ARIMA Model (AutoRegressive Integrated Moving
Average)

Popular time series forecasting model ARIMA handles non-stationary data by com-
bining autoregressive (AR), moving average (MA), and differencing integration (I)
components. With univariate time series data that have temporal relationships, it
functions well.

Equations:

The ARIMA model is explained as ARIMA(p, d, q)

- p = Autoregressive component order.
- d = Differencing (integration) degree.
- q = Moving average component order.

The basic equation for an ARIMA(p, d, q) model is :

Yt = c+

p∑
i=1

ϕiYt−i +

q∑
j=1

θjεt−j + εt

Where:
- Yt = Observed value at time t
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- c= A constant term
- p= Autoregressive component order
- ϕi= Autoregressive coefficients
- q= Moving average component order
- θj= Moving average coefficients
- εt = White noise error term at time t

Model Components:

i. AutoRegressive (AR) Component: The AR component express the relation-
ship between the current value and its previous values (lags). The autoregressive
equation is Yt = ϕ1Yt−1 + ϕ2Yt−2 + . . .+ ϕpYt−p + εt.

ii. Integrated (I) Component: The integration component shows differenc-
ing the time series data to make it stationary. The differenced data is denoted as
Y ′
t = Yt − Yt−1.

iii. Moving Average (MA) Component: The MA component express the rela-
tionship between the current value and past, white noise error terms. The moving
average equation is Yt = θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt.

Steps for ARIMA Modeling:

i. Identification: To identify the order p, d, and q by analyzing plots of autocor-
relation and partial autocorrelation .

i. Estimation: T estimate the coefficients ϕi and θj using methods like Maximum
Likelihood Estimation (MLE).

i. Diagnostic Checking: To check the model’s residuals for randomness and sta-
tionarity.

iv. Forecasting: To use the trained ARIMA model to make future predictions.

Advantages:

- ARIMA can model time series data patterns and seasonality whith a wide range
of data.
- It provides interpretable coefficients that can offer insights into the time series
behavior.

Limitations:

- ARIMA assumes linear relationships, which might not hold for all data.
- The model’s performance can degrade with noisy data or when underlying patterns
change over time.

ARIMA is a powerful model for time series forecasting, polular in various fields such
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as economics, finance, and engineering. Its combination of autoregressive, differ-
encing, and moving average components allows it to capture and predict complex
temporal dependencies in data.
Stationary Check:

The Augmented Dickey-Fuller (ADF) test is a statistical hypothesis test employed
to assess the stationarity of a given time series dataset. A stationary time series is
characterized by unchanging statistical properties like mean, variance, and autocor-
relation over time.
The p-value associated with the Augmented Dickey-Fuller (ADF) test is significantly
low, with a value of 4.3134080073948825e-16, which indicates strong evidence in fa-
vor of stationarity.

4.1.2 XGBoost (eXtreme Gradient Boosting)

XGBoost (eXtreme Gradient Boosting): Popular ensemble learning technique
XGBoost is well known for its ability to create a robust predictive model by ac-
cumulating the predictions of multiple weaker models. Furthermore, it has gained
recognition for delivering impressive performance across wide range of machine learn-
ing tasks, such as classification and regression. The base equation for XGBoost can
be defined as:

ŷi =
K∑
k=1

fk(xi)

Where:
- ŷi = Predicted value for observation i
- K = Weak models (trees) Number
- fk(xi) = Prediction made by the k-th tree for observation i

Equations:

The core equation for XGBoost involves optimizing a loss function by accumulating
a series of weak learners (typically decision trees) to build a strong predictive model.
Let’s break down the equation step by step:

i. Objective Function:
XGBoost optimizes a regularized objective function L that combines a loss term
L(yi, ŷi) with a regularization term Ω(f):

L(f) =
n∑

i=1

L(yi, ŷi) +
K∑
k=1

Ω(fk)
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ii. Loss Term:

The loss term L(yi, ŷi) measures differences between the predicted value ŷi and the
actual label yi. For regression tasks, the squared error (MSE) is pupolar, while for
classification tasks, the log loss (cross-entropy) is often employed.

iii. Regularization Term:

The regularization term Ω(fk) discourages complex models that may overfit. It usu-
ally consists of L1 (Lasso) and L2 (Ridge) regularization terms to constrain feature
weights and tree structures.

iv. Additive Training:

XGBoost builds an ensemble model by adding weak learners (decision trees) to the
ensemble. Each new tree attempts to rectify the errors of the previous trees.

v. Prediction:

The final prediction ŷi for a data point xi is obtained by summing the predictions
from all individual trees in the ensemble:

ŷi =
K∑
k=1

fk(xi)

Key Concepts:

Gradient Boosting: XGBoost employs gradient boosting, where each new tree is
built to minimize the negative gradient of the loss function.

Regularization Techniques: XGBoost includes L1 and L2 regularization, as well
as a ”max-depth” hyperparameter to control the depth of individual trees.

Feature Importance:XGBoost delivers feature importance ratings, assisting in
determining the model’s most important features.

Handling Missing Values: XGBoost can manage missing values when building
trees.

Early Stopping: XGBoost supports early stopping to prevent overfitting by mon-
itoring a validation dataset’s performance.

Advantages:

- XGBoost demonstrates cutting-edge performance across a diverse array of tasks..
- It handles missing values and regularization effectively.
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- Feature importance analysis provides insights into model behavior.

Limitations:

- XGBoost requires careful parameter tuning to prevent overfitting.
- It might be computationally expensive for very large datasets.

In summary, XGBoost is a powerful and versatile algorithm that delivers excep-
tional performance by employing gradient boosting with regularization techniques.
Its flexible nature and ability to handle various types of data make it a popular
choice in machine learning competitions and real-world applications.

4.1.3 LSTM (Long Short-Term Memory)

LSTM:
LSTM is a specialized form of recurrent neural network (RNN) uses for the process-
ing of sequential data. It has a unique architecture that introduces gates to control
information flow over time. Unlike traditional RNNs, which struggle with the van-
ishing gradient problem, LSTM units are equipped with mechanisms to remember
and forget information over extended sequences.

Equations:

The LSTM design uses a variety of gating techniques to regulate the information
flow over time steps. Here are the key equations that govern the behavior of an
LSTM unit:

i. Input Gate:
The decision regarding which data from the latest time step should be incorporated
into the cell state is governed by the input gate. It has a sigmoid activation function
that generates values in the range of 0 and 1, indicating which areas of the input
should be updated.

it = σ(Wxixt +Whiht−1 + bi)

ii. Forget Gate:
The forget gate undermine what information from the previous cell state should be
kept or discarded. It utilizes a sigmoid activation function, just as the input gate.

ft = σ(Wxfxt +Whfht−1 + bf )

iii. Cell State Update:
The cell state Ct is updated by combining the input gate output with the proposed
new cell state C̃t, which is computed using a tanh activation function.
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C̃t = tanh(Wxcxt +Whcht−1 + bc)

Ct = ft · Ct−1 + it · C̃t

iv. Output Gate:
Components of the cell state should be conducted to produce the hidden state out-
put are decided by the output gate. Both sigmoid and tanh activation functions are
involved.

ot = σ(Wxoxt +Whoht−1 + bo)

ht = ot · tanh(Ct)

Key Components:

Cell State: The cell state Ct acts as the memory of the LSTM unit, allowing it to
remember relevant information over long sequences.

Gating Mechanisms: Input gate, forget gate, and output gate facilitate the LSTM
unit to control information flow, recall crucial information, and provide valuable out-
puts.

Long-Term Dependencies:Traditional RNNs have a vanishing gradient problem,
but LSTMs solve it, enabling them to represent long-range relationships in sequen-
tial data.

Backpropagation Through Time (BPTT): Training LSTMs involves BPTT, a
technique for propagating gradients through time to update the model’s weights.

Advantages:

- LSTMs excel at capturing sequential patterns and long-term dependencies.
- They are effective in various tasks, including text generation, speech recognition,
and time series forecasting.

Limitations:

- LSTMs may need careful parameter tweaking and can be computationally costly.
- For simpler tasks, they can be overkill and less interpretable than other models.

In summary, LSTMs are a fundamental advancement in neural network architec-
tures, enabling the effective modeling of sequential data. They are a cornerstone in
several disciplines, including time series analysis and natural language processing,
due to their capacity to capture long-term dependencies.
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4.1.4 Dynamic Linear Model (DLM)

Dynamic Linear Model (DLM): A Dynamic Linear Model (DLM) is a proba-
bilistic model used for forecasting and time series analysis. It is a flexible framework
that captures the dynamics of time-varying processes through a combination of lin-
ear transformations and stochastic components. DLMs are particularly useful when
dealing with time series data that exhibit changing patterns over time.

Equations:

The key equations of a DLM involve two main components: the observation equa-
tion and the state equation.

i. Observation Equation:
The observation equation represents how the observed data yt at time t is related
to the underlying state θt and an observation noise εt.

yt = Ftθt + vt

Where:
- Ft = observation matrix relates the state to the observed data at time t. - θt =
state vector at time t.
- vt = observation of noise.

ii. State Equation:
The state equation models the evolution of the underlying state θt over time t in
terms of a state transition matrix Gt, a control vector ut, and a state noise wt.

θt+1 = Gtθt + ut + wt

Where:
- Gt is the state transition matrix that defines how the state evolves from t to t+1.
- ut is a control vector that may represent exogenous inputs.
- wt is the state noise.

iii. Initial State Distribution:
The initial state distribution p(θ1) specifies the initial state at time t = 1. It is often
assumed to follow a Gaussian distribution.

Components and Features:

Time-Varying Dynamics: DLMs allow for changing dynamics over time by adapt-
ing the state transition matrix Gt and observation matrix Ft at each time step.

Latent States: The underlying states θt capture the unobservable dynamic pat-
terns in the data. These states can represent trends, seasonality, or other latent
features.

Observation Noise and State Noise: The observation noise vt and state noise
wt account for uncertainties and random fluctuations in the observed data and the
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state evolution.

Forecasting and Filtering: DLMs can be used for both forecasting future obser-
vations and filtering past observations to estimate the underlying states.

Advantages:

- DLMs provide a flexible framework to capture various time-varying patterns in
data.
- They can handle missing data and accommodate exogenous inputs.

Limitations:

- DLMs require proper specification of state transition and observation matrices,
which might be challenging in complex scenarios.
- Interpretation of DLM results might be less intuitive compared to simpler models.

In summary, Dynamic Linear Models offer a probabilistic approach to modeling and
forecasting time series data, hence it highly able to adapt to changing dynamics and
incorporate uncertainty makes suitable for a variety range of applications, such as
financial modeling, macroeconomic forecasting, and sensor data analysis.

4.1.5 Prophet

Prophet: Prophet is a forecasting tool developed by Facebook that handles time
series data with strong seasonal patterns. While the model doesn’t have a single
equation, it uses an additive model that accounts for seasonality, holidays, and trend
components to make predictions.

Equations:
Prophet uses an additive model that combines several components to model time
series data. While Prophet does not rely on explicit equations as some other models
do, it is based on the following components:

i. Trend Component:
The trend component captures the underlying growth or decay patterns in the data.
Prophet allows for flexible trend specification by using piecewise linear functions
with changepoints, enabling the model to adapt to shifts in the data trend.

ii. Seasonality Component:
Prophet accommodates multiple seasonalities, both daily and yearly. Each seasonal
component is modeled using Fourier series expansion, which approximates complex
seasonal patterns with a sum of sinusoidal terms.

iii. Holiday Effects:
Prophet can include custom holiday effects by incorporating additional regressors
into the model. It provides the flexibility to define holidays and their impact on the
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time series.

iv. Additional Regressors:
In addition to holidays, Prophet allows for the inclusion of user-defined regressors
that might have an impact on the time series.

Key Features: Automatic Seasonality Detection: Prophet automatically de-
tects and models yearly and weekly seasonality patterns in the data.

Holiday Effects: You can specify holidays and their impact on the time series,
accounting for significant variations during holiday periods.

Changepoint Detection: Prophet automatically detects changepoints in the data,
enabling the model to adapt to shifts in trends.

Forecast Uncertainty: Prophet provides uncertainty intervals around the fore-
casts, helping to quantify the uncertainty in the predictions.

Flexibility: It can handle missing data and outliers gracefully, making it suitable
for real-world and messy time series data.

Advantages:

- Prophet is easy to use and requires minimal tuning, making it accessible to both
beginners and experts.
- It manages a variety of time series data characteristics, including seasonality, hol-
idays, and trend variations.
- Prophet’s automatic seasonality detection and changepoint detection simplify the
modeling process.

Limitations:

- Prophet’s model structure is designed for forecasting rather than modeling under-
lying dynamics.
- While it is versatile, it might not handle extremely complex or irregular data pat-
terns as well as some other advanced models.

In summary, Prophet is a valuable tool for time series forecasting, particularly when
dealing with data that exhibits multiple seasonalities, holidays, and changing trends.
Its ability to handle various components of time series data with ease makes it a
popular choice for both beginners and experienced data analysts.

4.1.6 VAR (Vector AutoRegressive) Model

VAR (Vector AutoRegressive) Model: A multivariate time series model Vector
AutoRegressive (VAR) model that captures the linear relationship between multiple
variables over time. Unlike univariate autoregressive models, which consider only one

43



variable’s past values, VAR models incorporate lagged values of multiple variables
to predict their future values. The basic equation for a VAR(p) model is given by a
system of equations:

Yt = c+

p∑
i=1

AiYt−i + εt

Where:
- Yt = vector of observed values at time t
- c = constant term
- p = order of the model
- Ai = coefficient matrices
- εt = error vector at time t

Equations:
The VAR model involves a system of equations, each representing the evolution of
one variable over time based on its own lagged values and other variables lagged
values. The general equation for a VAR(p) model with K variables is:

yt = c+ Φ1yt−1 + Φ2yt−2 + . . .+ Φpyt−p + εt

Where:
- yt = K-dimensional vector of variables at time t.
- c = constant term.
- Φi are K ×K coefficient matrices for lag i.
- yt−i = the lagged values of the variables at time t− i.
- p is the order of the autoregressive model.

In matrix notation, the equation can be written as:

Yt = C + Φ1Yt−1 + Φ2Yt−2 + . . .+ ΦpYt−p + εt

Where
Yt is the matrix of K variables at time t, C is a constant matrix, and εt is the
K-dimensional vector of error terms at time t.

Model Order Selection:
Selecting the appropriate order p is crucial for the VAR model. This can be done
using methods such as information criteria (AIC, BIC) or cross-validation.

Granger Causality:
One of the key insights from VAR models is the concept of Granger causality. If the
lagged values of one variable help predict another variable, the first variable is said
to ”Granger cause” the second.

Advantages:
- VAR models capture the interactions and feedback between multiple variables,

44



making them suitable for analyzing interconnected data.
- They can be used for forecasting multiple variables simultaneously.
- VAR models provide insights into Granger causality relationships.

Limitations:
- VAR models assume linear relationships, which might not hold for all types of
data.
- Interpretation of the coefficients can be challenging when dealing with many vari-
ables.

In summary, the VAR model is a valuable tool for analyzing multivariate time series
data. By considering the relationships and interactions between multiple variables
over time, VAR models offer insights into the dynamics of complex systems and can
be used for forecasting and causal analysis.

4.1.7 GRU (Gated Recurrent Unit)

GRU (Gated Recurrent Unit): Vanishing gradient problem and the identifi-
cation of persistent patterns in sequential data were the driving forces behind the
development of the Gated Recurrent Unit (GRU), a particular kind of recurrent
neural network (RNN). While providing a more simplified design than Long Short-
Term Memory (LSTM) networks, GRU offers comparable performance.

Equations:
GRU introduces gating mechanisms to control information flow through the net-
work, which helps it to remember and forget information over time. Here are the
key equations of a GRU unit:

i. Update Gate (z):
The update gate zt determines value of the previous hidden state ht−1 should be
incorporated with the candidate state h̃t to produce the new hidden state ht.

zt = σ(Wz · [ht−1, xt])

ii. Reset Gate (r):
The reset gate rt controls the previous hidden state ht−1 should be ignored or not
when computing the candidate state h̃t.

rt = σ(Wr · [ht−1, xt])

iii. Candidate State (h̃t):
Candidate state h̃t is a temporary state that incorporates the current input xt and
the reset gate rt.

h̃t = tanh(W · [rt ⊙ ht−1, xt])

iii. Hidden State (h):
New hidden state ht is calculated by interpolating between the previous hidden state
ht−1 and the candidate state h̃t based on the update gate zt.
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ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

Key Features:

Gating Mechanisms: The update and reset gates allow GRUs to control infor-
mation flow and prevent the vanishing gradient problem.

Simplicity: GRUs have a simpler architecture compared to LSTMs, which can
make them easier to train and interpret.

Efficiency: GRUs typically have fewer parameters than LSTMs, which can lead to
faster training times.

Advantages:

- GRUs can capture long-range dependencies in sequential data without the risk of
vanishing gradients.
- They perform well on tasks involving sequences with varying time dependencies.
- GRUs can be more memory-efficient compared to LSTMs due to their simplified
architecture.

Limitations:

- GRUs might struggle with very long sequences or tasks requiring precise modeling
of complex temporal dependencies.
- Their performance can vary based on the nature of the data and the problem at
hand.

In summary, GRUs offer an effective solution for capturing temporal dependencies
in sequential data. Their gating mechanisms allow them to regulate information
flow over time, making them a popular choice for various applications in natural
language processing, speech recognition, and time series analysis.

4.2 Anomaly Detection Algorithms

4.2.1 DBSCAN (The Density-Based Spatial Clustering of
Applications with Noise)

Here is a description of the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) technique for clustering and recognizing noise in data, as well as
its main characteristics and guiding concepts:

DBSCAN is a density-based clustering algorithm that is particularly effective at
identifying clusters of arbitrary shapes in data. It defines clusters as areas of high
data point density and is capable of detecting noise points as well. DBSCAN groups
data points that are compacted in the same cluster and marks isolated points as
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noise.

Principles:
DBSCAN operates based on two main parameters: Epsilon (ε): A distance thresh-
old that defines the radius around a data point, forming its neighborhood.
MinPts: The minimum requirement of data for dense region. Points within the ε
neighborhood of a data point are considered part of that point’s neighborhood.

Equations: The DBSCAN algorithm can be described through a few key concepts
and equations:

i. Epsilon Neighborhood:
Given a data point p, the epsilon neighborhood Nε(p) of p is defined as all data
points within a distance ε of p:

Nε(p) = {q | dist(p, q) ≤ ε}

where dist(p, q) is the distance between data points p and q.

ii. Directly Density-Reachable:
A point p is said to be directly density based reachable from point q if p is within the
epsilon neighborhood of q and q has at least MinPts points within its own epsilon
neighborhood:

dist(p, q) ≤ ε and |Nε(q)| ≥ MinPts

iii. Density-Connected:
Two points p and q are density-connected if there exists a data point o such that
both p and q are directly density-reachable from o:

∃o | p and q are directly density-reachable from o

Key Features:

Cluster Discovery: DBSCAN can discover clusters of arbitrary shapes, including
those that might not be well separated.

Noise Detection: DBSCAN can identify isolated data points as noise, which helps
in cleaning the data.

Parameter-Free Clustering: DBSCAN doesn’t require specifying the number of
clusters and is relatively robust to the choice of parameters.

Scalability: It’s suitable for large datasets due to its density-based nature.

Advantages:
- DBSCAN can handle clusters of varying shapes and densities.
- It’s well-suited for noisy data and can automatically detect and label outliers.
- DBSCAN doesn’t assume a fixed number of clusters.
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Limitations:
- It might struggle with clusters of significantly varying densities.
- Choosing suitable parameters (ε and MinPts) can be challenging, and their values
can impact the results.

In summary, DBSCAN is a valuable algorithm for clustering and outlier detection
in data. Its ability to define clusters based on density allows it to identify complex
cluster structures and handle noise effectively.

4.2.2 Isolation Forest

An anomaly detection algorithm that focuses on isolating anomalies rather than
clustering normal data points. It operates by constructing a tree-based structure
to separate anomalies from the other data. Anomalies are expected to be isolated
more quickly during tree construction, making them stand out as shorter paths in
the forest.

Principles:

Isolation Forest operates based on two main principles:
i. Anomalies are Fewer: Anomalies are expected to be fewer in number com-
pared to normal data points in a dataset.
ii. Anomalies are Different: Anomalies are different from normal data points
and are easier to separate.

Equations: Isolation Forest operates without a traditional set of equations. In-
stead, it relies on the following concepts:
i. Path Length:

During the construction of an isolation tree, a data point’s path length is the number
of edges traversed from the root node to the leaf node where the point resides. In
an ideal scenario, anomalies should require fewer splits to be isolated compared to
normal data points.

ii. Path Length and Anomalies:
The intuition behind Isolation Forest is that anomalies will have shorter average
path lengths within trees. Since anomalies are different from normal data points,
they should be separated more quickly.

Key Features:
Random Partitioning: Isolation Forest uses random partitioning to build trees,
leading to efficient and scalable anomaly detection.

Fast Detection: Anomalies are expected to have shorter average path lengths,
enabling faster detection.

Parameter-Free: Isolation Forest does not require specifying the number of anoma-
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lies or clusters in advance.

Advantages:
- Isolation Forest is efficient and scalable for detecting anomalies, making it suitable
for large datasets.

- It works well even with high-dimensional data.
- The algorithm does not rely on assumptions about the distribution of the data.

Limitations:
- Isolation Forest might struggle with datasets where anomalies are of the same
density as normal data points.
- The algorithm might require tuning of hyperparameters like the number of trees
and the maximum depth.

In conclusion, Isolation Forest is a powerful and efficient anomaly detection algo-
rithm that leverages the properties of anomalies to separate them from normal data
points. Its ability to handle high-dimensional data and its parameter-free nature
make it a popular choice for various applications in fraud detection, cybersecurity,
and quality control.

4.2.3 Local Outlier Factor (LOF)

The LOF is an anomaly detection technique that finds data points with densities
that are noticeably different from those of their nearby neighbors. LOF evaluates
a data point’s local density in relation to the densities of its neighbors. Anomalies
are anticipated to have a lower density than their surrounding areas, resulting in
greater LOF values.

Principles:

On the premise that anomalies are less densely surrounded by other data points,
LOF operates. A data point’s local density is calculated by comparing its distance
to that of its k-nearest neighbors. Because anomalies often have lower densities than
their surrounding areas, their LOF values are higher.

Equations:

The LOF algorithm involves a few key equations:

i. Local Reachability Density (LRD):
The local reach ability density of a data point p, denoted as LRDk(p), measures
how reachable p is from its neighbors within a certain radius k. It is computed as
the inverse average of the reachability distances of p from its neighbors:

LRDk(p) =
1

avg(Nk(p))
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where Nk(p) is the set of k nearest neighbors of p.

ii. Local Outlier Factor (LOF):
The LOF of a data point p, denoted as LOFk(p), quantifies the extent to which p
differs in density from its neighbors. It is the average ratio of the LRD of p and the
LRD of its neighbors:

LOFk(p) =
avg(LRDk(Nk(p)))

LRDk(p)

Key Features:

Local Density Comparison: LOF compares a data point’s which are local den-
sity to that of its neighbors.

Anomaly Ranking: When compared to their neighbors, anomalies with lower
density receive higher values from LOF.

Parameter k: The parameter k determines the number of nearest neighbors to
consider when computing LRD and LOF.

Advantages:

- LOF can identify anomalies of varying shapes and densities.
- It can capture local anomalies that might not be clear in global analysis.
- The algorithm does not assume any specific distribution of data.

Limitations:

- LOF’s performance might be sensitive to the choice of parameter k.
- The algorithm can be computationally expensive for large datasets.

In summary, By comparing the density of data points with their neighbors, the Local
Outlier Factor (LOF) algorithm is a potent tool for spotting local abnormalities. It is
excellent for a wide range of applications in anomaly detection, fraud detection, and
quality control because to its flexibility in adapting to different forms and densities.

4.2.4 One Class SVM (Support Vector Machine)

One-Class SVM is an anomaly detection technique that aims to locate a hyperplane
that separates the vast majority of data points from a small subset of likely outliers.
It is a binary classification variation of the classic Support Vector Machine.

Principles:

One-Class SVM operates on the assumption that usual data points are dense and
tightly clustered, while anomalies are relatively far from the majority of data points.
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It constructs a boundary (hyperplane) around the normal data points, aiming to in-
clude as many normal data points within the boundary as possible while excluding
anomalies.

Equations:

The One-Class SVM algorithm involves a few key equations:

i. Optimization Objective:
Finding the best hyperplane to maximize the margin around the training data is
the objective of One-Class SVM. It aims to minimize the classification error while
accommodating a predefined fraction of training data as outliers. The optimization
problem can be represented as:

min
w,ξ,ρ

1

2
∥w∥2 + 1

νn

n∑
i=1

ξi − ρ

subject to:

w · ϕ(xi) ≥ ρ− ξi

ξi ≥ 0
n∑

i=1

ξi ≤ νn

where:
- w is the weight vector.
- ξ represents slack variables for soft margin classification.
- ρ is the offset of the hyperplane from the origin.
- ϕ(xi) is the feature vector transformed by a kernel function.
- n is training data points count.
- ν is a parameter that controls the trade-off between maximizing the margin and
accommodating outliers.

ii. Decision Function:
The decision function of the One-Class SVM classifies a new data point x as an
anomaly (outside the boundary) if f(x) is greater than a predefined threshold ρ:

f(x) = w · ϕ(x)− ρ

Key Features:

Binary Classification: One-Class SVM performs binary classification where the
normal class is labeled as inliers, and anomalies are considered outliers.

Non-Linear Transformations: One-Class SVM can handle non-linear relation-
ships between features through kernel functions.
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Controllable Outlier Fraction (ν): The parameter ν allows you to control the
expected fraction of training data to be considered as outliers.

Advantages:

- One-Class SVM can handle high-dimensional data and is effective for low-density
anomaly detection.
- It works well in scenarios where normal data is well-clustered.

Limitations:

- One-Class SVM might require careful tuning of the kernel and parameter ν to
achieve optimal results.
- It assumes that anomalies are present in the training data, which might not always
be the case.

In summary, One-Class SVM algorithm is a powerful tool for detecting anomalies
by generating a boundary around normal data points. Its ability to handle non-
linear transformations and control the outlier fraction makes it suitable for various
applications in anomaly detection, fraud detection, and quality control.

4.2.5 Elliptic Envelope

The Elliptic Envelope is an anomaly detection algorithm that assumes the normal
data points follow a Gaussian distribution and aims to identify anomalies that de-
viate significantly from this distribution. It models the inlying data as an elliptical
envelope and detects points that fall outside of this envelope as anomalies.

Principles:

The Elliptic Envelope operates based on the assumption that normal data points
follow a multivariate normal distribution. It estimates the mean and covariance of
the data and constructs an ellipse that encompasses a certain proportion of the data
points. Data points falling outside this ellipse are considered anomalies.

Equations:

The Elliptic Envelope algorithm involves a few key equations:

i. Gaussian Distribution:
The Elliptic Envelope assumes that the normal data points follow a multivariate
Gaussian distribution having mean µ and covariance Σ and the probability density
function (PDF) of the Gaussian distribution is given by:

f(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
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ii. Mahalanobis Distance:
To identify how far a data point x is from the mean µ in terms of the covariance Σ,
the Mahalanobis distance is used:

d(x, µ) =
√
(x− µ)TΣ−1(x− µ)

Key Features:

Gaussian Assumption: The algorithm assumes that the normal data points fol-
low a multivariate Gaussian distribution.

Elliptical Envelope: The algorithm models the inlying data as an elliptical enve-
lope defined by the estimated mean and covariance.

Anomaly Threshold: Data points lying outside the envelope are considered anoma-
lies based on a predefined threshold.

Advantages:

- Elliptic Envelope can handle multivariate data and captures correlations between
features.
- It is efficient and suitable for datasets with well-defined Gaussian-like clusters.
- The algorithm is relatively simple to understand and use.

Limitations:

- Elliptic Envelope’s performance might degrade if the data deviates significantly
from the Gaussian distribution assumption.
- It might not be suitable for data with complex or non-Gaussian distributions.

In summary, the Elliptic Envelope algorithm is a valuable tool for detecting anoma-
lies by assuming that normal data points follow a Gaussian distribution. Its sim-
plicity and efficiency make it a good choice for situations where the underlying data
distribution is approximately Gaussian-like.

4.2.6 Autoencoders

Autoencoders represent a neural network structure utilized for tasks like reconstruction-
based anomaly detection, feature extraction, and unsupervised learning, particularly
in the realm of anomaly detection. In this setup, an encoder network compact input
data into a lower-dimensional data representation, while a decoder network aims to
regenerate the original data from this reduced representation.

Principles:

Autoencoders operate based on the principle of reconstructing input data using a
compressed representation in the middle layer. In anomaly detection, the model is
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trained on normal data, and anomalies are identified based on their reconstruction
error.

Equations:

Autoencoders involve a few key equations:

i. Encoder Function:
The encoder function h(x) maps input data x to a lower-dimensional latent space
representation z:

z = h(x)

ii. Decoder Function:
The decoder function g(z) maps the latent representation z back to the original data
space to reconstruct x′:

x′ = g(z)

iii. Reconstruction Loss:
The reconstruction loss measures the dissimilarity between the input x and its re-
construction x′. It is often the mean squared error (MSE) between the two:

MSE(x, x′) =
1

n

n∑
i=1

(xi − x′
i)
2

Key Features:

Feature Learning: Autoencoders can automatically learn relevant features from
the data, capturing important patterns and variations.

Dimensionality Reduction: The latent space representation obtained from the
encoder serves as a compressed version of the input data, reducing dimensionality.

Reconstruction Loss: Anomalies can be detected by comparing the reconstruc-
tion error (difference between input and output) with a predefined threshold.

Advantages:

- Autoencoders can handle complex and high-dimensional data.
- They are versatile and can be applied to various data types, such as images, se-
quences, and tabular data.
- Autoencoders can capture non-linear relationships in the data.

Limitations:
- Autoencoders might overfit to the training data if not properly regularized.
- They might struggle with rare or unseen anomalies during training.

54



In summary, autoencoders are a powerful tool for unsupervised feature learning and
reconstruction-based anomaly detection. By learning a compressed representation
of data, they offer insights into normal data patterns and can be effective in identi-
fying deviations from these patterns.

4.2.7 HBOS (Histogram-Based Outlier Score)

The HBOS is an anomaly detection algorithm that leverages histograms to estimate
the distribution of normal data and identify anomalies based on their deviation from
this distribution. HBOS assumes that anomalies are sparsely distributed and devi-
ate significantly from the majority of data points.

Principles:

HBOS operates based on the principle that anomalies are rare and have distinct
values that differ from those of normal data points. It constructs histograms for
individual features and computes the outlier score by combining the histograms’
values for each feature.

Equations:

The HBOS algorithm involves a few key equations:

i. Feature Histograms:
For each feature xi, a histogram Hi is constructed with b bins, covering the range of
values in that feature. The histogram Hi counts how many data points fall within
each bin.

ii. Outlier Score:
The outlier score S(x) for a data point x is calculated by multiplying the normalized
bin count for each feature:

S(x) =
1

n

d∑
i=1

Hi(xi)

Bi

where:
- n = number of features.
- d = number of dimensions.
- Hi(xi) = count of xi = corresponding bin.
- Bi = width of the bin.

Key Features:

Histogram-Based: HBOS constructs histograms for individual features to capture
the distribution of normal data.
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Outlier Score: Anomalies are identified by their high outlier scores, indicating
they deviate significantly from the normal data distribution.

Scalability: HBOS is relatively lightweight and can be efficient for large datasets.

Advantages:

- HBOS is computationally efficient and suitable for datasets with high dimension-
ality.
- It can capture anomalies that have distinct values in one or more features.
- HBOS does not assume specific data distributions.

Limitations:

- HBOS might struggle to capture complex relationships between features.
- It might require careful tuning of parameters like the number of bins (b).

In summary, the Histogram-Based Outlier Score (HBOS) algorithm is a simple yet
effective tool for anomaly detection by capturing the distribution of normal data
using histograms. Its ability to identify anomalies based on deviations from the nor-
mal data distribution makes it suitable for various applications in fraud detection,
cybersecurity, and quality control.
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Chapter 5

Voice of the Customer (VoC)
Management

5.1 Voice of the Customer (VoC) Management

Algorithms

5.1.1 Support Vector Machine (SVM)

Powerful machine learning techniques like Support Vector Machine (SVM) are em-
ployed for both regression and classification problems. In order to maximize the
gap between the classes, the ideal hyperplane that best separates data points from
various classes is sought after.

Principles:

The foundation of SVM is the idea of locating a hyperplane that optimizes the mar-
gin between two classes of data points. Support vectors are the nearest data points
to the hyperplane and are very important in determining where the hyperplane is.

Equations:

The SVM algorithm involves a few key equations:

i. Hyperplane Equation:
The equation of the hyperplane for a binary classification is following:

f(x) = w · x+ b

where w = weight vector perpendicular to the hyperplane, x = input feature vector,
and b = bias term.

ii. Distance from Hyperplane:
The distance of a data point x from the hyperplane can be calculated using the
formula:
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distance =
|f(x)|
∥w∥

iii. Margin and Support Vectors:
The margin shows how far apart the hyperplane is from the nearest data points in
each class, measured in angles. This separation is what SVM attempts to increase.
The data points that are on the edge of the data distribution and have an impact
on where it is located are referred to as support vectors.

iv. Soft Margin Classification:
In real-world scenarios, it’s often not possible to have a perfectly separable dataset.
SVM handles this by allowing for some misclassification. The concept of a ”soft mar-
gin” involves introducing slack variables ξi that penalize misclassified data points:

min
w,b,ξ

1

2
∥w∥2 + C

n∑
i=1

ξi

subject to:

yi(w · xi + b) ≥ 1− ξi

ξi ≥ 0

where C is the regularization parameter which controls the trade-off between max-
imizing the margin and minimizing the misclassification.

Key Features:

Margin Maximization: By locating the hyperplane that optimizes the margin
between classes, SVM seeks to achieve improved generalization.

Kernel Trick: SVM can be extended to nonlinear classification by using kernel
functions data into higher-dimensional space to map.

Binary and Multi-Class Classification: SVM is capable of handling binary
and multi-class classification issues.

Advantages:

- SVM works well in high-dimensional spaces and has the ability to manage intricate
decision limits.
- It is robust against overfitting, especially when using a proper regularization pa-
rameter.

Limitations:
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- SVM might be sensitive to noisy data and outliers.
- Choosing the appropriate kernel and regularization parameter can be challenging.

In summary the Support Vector Machine (SVM) method, which seeks to identify
a hyperplane that best divides classes while maximizing the margin, is a flexible
and effective tool for classification tasks. It is a popular option for many machine
learning applications since it can handle high-dimensional data and nonlinear rela-
tionships to the kernel trick.

5.1.2 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is a highly developed deep learning ar-
chitecture that has been especially designed to handle the complex processing of
visual and sequential data, including areas like images and text. Applying CNNs to
challenging tasks like object detection, image recognition, and the delicate field of
natural language processing brings out their actual potential.

Principles:

CNNs operate based on the principles of feature extraction and hierarchical rep-
resentation. They use convolutional layers to automatically learn pattern features
from dataset, allowing them to capture local patterns hierarchies in the input.

Equations:

The CNN architecture involves a few key equations:

i. Convolution Operation:
Convolution includes moving a tiny filter (kernel) through the input data and com-
puting the dot product between the filter and the overlapped area of the input. The
convolution operation for a specified location is defined mathematically as:

(I ∗K)(x, y) =
m∑
i=1

n∑
j=1

I(x+ i, y + j) ·K(i, j)

where I is the input data and K is the filter kernel.

ii. Pooling Operation:
By combining layers, the spatial dimensions of the data are reduced while key charac-
teristics are preserved. The most popular pooling procedure, known as max pooling,
pulls the most value possible from a small area of the input.

iii. Activation Function: The CNN becomes non-linear because to activation
functions. Commonly employed is the rectified linear unit (ReLU):

f(x) = max(0, x)
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Key Features:

Local Feature Learning: CNNs automatically learn local features and hierarchies
in the data through convolution and pooling operations.

Hierarchical Representation: Deeper layers capture increasingly abstract fea-
tures and relationships in the data.

Parameter Sharing: CNNs share weights across different regions of the input,
reducing the number of parameters and improving generalization.

Advantages:

- CNNs excel in capturing spatial hierarchies in images and sequences.

- They are capable of managing vast and complex datasets, which qualifies them for
jobs like object identification, picture recognition, and natural language processing.

- CNNs can learn meaningful features without manual feature engineering.

Limitations:

- CNNs require a substantial amount of trained data for optimal performance.
- Designing the architecture and selecting hyperparameters can be challenging.

In summary, Convolutional Neural Networks (CNNs) are a cornerstone of modern
deep learning, capable of automatically learn and extract complex features from
visual and sequential data. Their ability to capture local patterns and hierarchical
representations has led to breakthroughs in various fields, making them a strong
tool for wide range of applications.

5.1.3 Gaussian Naive Bayes (GNB)

A probabilistic classification approach called Gaussian Naive Bayes makes the as-
sumption that each class’s features are normally distributed. Although it is a ”naive”
assumption, GNB can be useful for a variety of classification problems.

Principles:

The GNB algorithm relies on the Bayes theorem and assumes that each class’s fea-
tures have a Gaussian (normal) distribution. A data point is segmented to the class
having the highest probability after the probability of each class being the data
point’s home is calculated.

Equations:
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The GNB algorithm involves a few key equations:

i. Bayes’ Theorem:
The Bayes theorem connects the likelihood of a class given its features P (Ck|x) to
the likelihood of its features given its class P (x|Ck), its prior likelihood P (Ck), and
its evidence P (x):

P (Ck|x) =
P (x|Ck) · P (Ck)

P (x)

where Ck represents the class.

ii. Gaussian Probability Density Function (PDF):
In GNB, the Gaussian PDF is used to calculate the likelihood of a feature xi be-
longing to a particular class Ck:

P (xi|Ck) =
1√

2πσ2
k,i

exp

(
−(xi − µk,i)

2

2σ2
k,i

)

where µk,i is the mean and σk,i is the standard deviation of feature xi within class Ck.

iii. Class Prior Probability: The prior probability P (Ck) represents the proba-
bility of a data point belonging to class Ck without considering the features.

iv. Evidence: The evidence P (x) is the probability of observing the features x
across all classes. It is typically calculated as the sum of the product of the likeli-
hood and the class prior for each class.

Key Features:

Independence Assumption GNB assumes that features are independent within each
class, which is a simplifying but ”naive” assumption.

Advantages:

- GNB is computationally efficient and requires fewer parameters compared to some
other classifiers.

- It can perform well when the independence assumption is approximately met.

- GNB is suitable for cases with continuous features following a Gaussian distribu-
tion.

Limitations:

- The independence assumption might not hold for all types of data.

- GNB might not perform well on highly correlated features.
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In summary, the Gaussian Naive Bayes (GNB) algorithm is a straightforward but
efficient probabilistic classification method that relies on the presumption that char-
acteristics are normally distributed within each class. It is a useful tool for a variety
of classification problems because of how well it performs and how well it can handle
continuous data, especially when the features have Gaussian distributions and are
not overly dependent.

5.1.4 Multinomial Naive Bayes (MNB)

Multinomial Naive Bayes is a probabilistic classification algorithm specifically de-
signed for text and discrete data, where features represent the occurrence counts of
words or terms in documents. It assumes that features follow a multinomial distri-
bution.

Principles:

MNB operates based on Bayes’ theorem and the assumption that features are con-
ditionally independent given the class. In the context of text classification, features
correspond to the counts of different terms in a document.

Equations:

The MNB algorithm involves a few key equations:

i. Bayes’ Theorem:
Similar to other Naive Bayes variations, MNB applies the Bayes theorem. It connects
the likelihood of a class given a set of features P (Ck|x) to the likelihood of those
features given a class P (x|Ck), the prior likelihood of the class P (Ck), and the
likelihood of the evidence P (x).:

P (Ck|x) =
P (x|Ck) · P (Ck)

P (x)

where Ck represents the class.

ii. Multinomial Probability:
In MNB, the multinomial probability is used to calculate the likelihood of observing
a set of counts x for different terms in a document, given a particular class Ck:

P (x|Ck) =
(
∑n

i=1 xi)!

x1! · x2! · . . . · xn!

n∏
i=1

P (wi|Ck)
xi

where n is the number of unique terms (features), xi is the count of term wi, and
P (wi|Ck) is the probability of term wi given class Ck.

iii. Class Prior Probability: The prior probability P (Ck) represents the proba-
bility of a data point belonging to class Ck without considering the features.
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iv. Evidence: The evidence P (x) is the probability of observing the counts x across
all classes. It is typically calculated as the sum of the product of the likelihood and
the class prior for each class.

Key Features:

Discrete Data Handling: MNB is suitable for text and discrete data, where fea-
tures represent occurrence counts.

Feature Counts: MNB focuses on the counts of features (terms) in documents.

Probabilistic Classification: MNB calculates the probability of a data point be-
longing to each data class and assigns data it to the class with the highest probability.

Advantages:

- MNB is particularly useful for text classification tasks such as NLP, sentimental
analysis, spam detection, and topic categorization.

- It is computationally efficient and can handle high-dimensional and sparse data.

Limitations:

- MNB’s performance can be affected by the ”bag of words” assumption, where the
order of terms is ignored.

- It might struggle with rare or unseen terms during training.

A specific approach for text and discrete data classification, Multinomial Naive Bayes
(MNB), where the features correspond to word occurrence counts, is described in
this way. It is a popular option for many natural language processing tasks due to
its capacity to handle high-dimensional text input and computational efficiency.

5.1.5 Logistic Regression (LR)

In statistical problems requiring binary categorization, logistic regression is applied.
In contrast to what its name suggests, it is a classification algorithm. A given input
data point’s likelihood of falling into a specific class is modeled by LR.

Principles:

Any input is converted to a value between 0 and 1 by the logistic function, which
underlies how LR operates. The likelihood of the input falling into the positive
class can be calculated using this value. To optimize the probability of detecting
the specified class labels, the algorithm learns the weights and biases that match
the data the best.
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Equations:

The Logistic Regression algorithm involves a few key equations:

i. Logistic Function (Sigmoid):
The logistic function, is often known as the sigmoid function, maps the linear com-
bination of input features x and their corresponding weights w to a value between
0 and 1:

f(x) =
1

1 + e−(w·x+b)

where b is the bias term.

ii. Log-Odds (Logit):
The log-odds, also known as the logit, is the logarithm of the odds that a data point
belongs to the positive class:

logit(x) = log

(
f(x)

1− f(x)

)
= w · x+ b

iii. Binary Cross-Entropy Loss:
The binary cross-entropy loss calculate the difference between the predicted proba-
bilities and the true labels for binary classification:

Loss(y, ŷ) = −[y · log(ŷ) + (1− y) · log(1− ŷ)]

where y is the true label (0 or 1) and ŷ is the predicted probability.

Key Features:

Probabilistic Interpretation: LR models the probability that an input belongs to
the positive class.

Linear Decision Boundary: The decision boundary of LR is linear in the feature
space.

Regularization: LR can be regularized to prevent overfitting problem by adding
regularization terms to the loss function.

Advantages:

- LR is simple to understand and implement.

- It is well-suited for problems with a linear decision boundary.
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- LR provides probabilistic outputs, which can be useful for understanding model
confidence.

Limitations:

- LR might not perform well when the relationship between features and outcome
is complex.

- It can struggle with datasets that have a significant class imbalance.

In summary, Logistic Regression (LR) is a fundamental classification algorithm
which models the probability of an input belonging to a certain class. Its sim-
plicity and interpretability make it a useful choice for various binary classification
tasks, especially when the relationship between features and outcome is relatively
linear.

65



Chapter 6

Implementation and Results

6.1 Time Series Forecasting Results

ARIMA (AutoRegressive Integrated Moving Average):

Figure 6.1: ARIMA

The provided figure offers a comprehensive view of the ARIMA (AutoRegressive
Integrated Moving Average) model’s performance in forecasting LTE traffic. The
Y-axis, representing LTE attach success rate, unfolds its fluctuations over time,
spanning from June 5, 2023, to July 5, 2023, on the X-axis. Within this graph,
three crucial elements emerge:

Firstly, the ”Train Data” segment showcases historical LTE attach success rate val-
ues, which serve as the foundational data used for training the ARIMA model. It’s
from this historical context that the model learns patterns and trends.

Secondly, the ”Actual LTE attach success rate” curve signifies the observed LTE
attach success rate values during the specified timeframe. This continuous line func-
tions as the ground truth, enabling a direct comparison with the model’s predictions.
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Lastly, the ”Forecasted Data” line, often visually distinguished, represents the ARIMA
model’s predictions for LTE attach success rate during the same period. These pre-
dictions are generated based on the model’s understanding of past data.

The ARIMA model’s order, denoted as (1, 2, 1), reveals its constituent components:
autoregressive (AR), differencing (I), and moving average (MA). These components
collectively enable the model to consider previous LTE attach success rate values,
make the data stationary through differencing, and factor in past error terms for
forecasting.

Regarding model performance, key metrics are reported:
The ”Mean Absolute Error” (MAE) at approximately 4.73 quantifies the average
absolute difference between forecasted and actual LTE attach success rate, with
lower values indicating higher accuracy.

The ”Mean Squared Error” (MSE) around 46.88 computes the average squared dif-
ference between forecasts and actual data, penalizing larger errors more.

The square root of MSE is the ”Root Mean Squared Error” (RMSE), which, at
around 6.85, provides an error measure in the same units as the data.

These metrics collectively evaluate the ARIMA model’s precision in LTE attach
success rate prediction, with lower error values signifying more precise forecasts,
ultimately aiding in optimizing network operations and enhancing user experiences.

XGBoost (eXtreme Gradient Boosting):

Figure 6.2: XGBoost

The figure depicting the XGBoost Regression Model offers a clear view of its per-
formance in forecasting LTE traffic. The Y-axis signifies LTE attach success rate,
spanning from June 5, 2023, to July 5, 2023, on the X-axis. Several crucial compo-
nents emerge from this graph:
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Actual Train Data: This section showcases historical LTE attach success rate data
used to train the XGBoost model, providing the foundation for learning patterns
within the data.

Actual Test Data: Displayed on the graph, this segment represents observed LTE
attach success rate during the test period, serving as a benchmark for evaluating
the model’s predictions.

Test Predictions: The graph illustrates the model’s predicted LTE attach success
rate values during the test period, based on its training.

In addition to visual insights, the XGBoost model’s configuration parameters are
listed, including the boosting algorithm (GBTree) and various hyperparameters
like learning rate (0.3), minimum split loss (0), maximum depth (6), minimum
child weight (1), regularization lambda (1), and regularization alpha (0). Further-
more, performance metrics provide quantifiable evaluation: the Mean Squared Er-
ror (MSE) at approximately 41.276, the Root Mean Squared Error (RMSE) around
6.424, and the Mean Absolute Error (MAE) at roughly 4.222. These metrics collec-
tively gauge the model’s ability to provide accurate predictions, with lower values
indicating superior forecasting accuracy, which in turn contributes to optimized net-
work management and improved user experiences.

LSTM (Long Short-Term Memory):

Figure 6.3: Long Short-Term Memory

The visual representation of the LSTM model provides a clear depiction of its per-
formance in forecasting LTE attach success rate. The Y-axis represents LTE attach
success rate, spanning from June 5, 2023, to July 5, 2023, on the X-axis. The graph
comprises three critical elements:
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Train Data: The historical LTE attach success rate data used to train the LSTM
model is shown in this section of the graph, forming the basis for learning patterns
within the dataset.

Actual Data: Represented by a continuous line on the graph, this segment signifies
the observed LTE attach success rate values during the specified period, serving as
a reference for evaluating the model’s predictions.

Forecasted Data: The graph illustrates the model’s predicted LTE attach success
rate values for the same timeframe. These predictions are generated based on the
LSTM model’s training.

Additionally, details about the model’s architecture and configuration are provided,
including the total number of parameters (10,451), which are all trainable. The
learning rate is set at 0.001. The model’s error metrics include a Mean Absolute
Error (MAE) of approximately 2.165, Mean Squared Error (MSE) of about 17.809,
and Root Mean Squared Error (RMSE) at roughly 4.220. Furthermore, the LSTM
model is characterized by specific parameter values, such as the activation func-
tion (’relu’), optimizer (’adam’), and loss function (’mean squared error’). These
parameters define how the model processes data, updates its internal parameters,
and measures the difference between values of predicted and actual. The LSTM
model excels in forecasting LTE traffic, as evident from the graph’s alignment be-
tween actual and forecasted data. With a low MAE, MSE, and RMSE, the model’s
predictions closely match reality, making it a valuable tool for optimizing network
management. The model’s architecture, hyperparameters, and error metrics collec-
tively emphasize its effectiveness in this regard.

Dynamic Linear Model (DLM):

Figure 6.4: Dynamic Linear Models

The figure depicting the DLM provides a compelling glimpse into its capacity for
predicting LTE attach success rate patterns. Along the Y-axis, LTE traffic volume
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unfolds, while the X-axis marks the timeframe spanning from June 5, 2023, to July
5, 2023. Within this graph, three pivotal components emerge:

Train Data: This section encapsulates historical LTE attach success rate data, a
cornerstone for the DLM’s training process. During this phase, the model metic-
ulously discerns intricate patterns and relationships within the dataset, laying the
groundwork for accurate predictions.

Actual Data: Evident as a continuous line on the graph, this segment signifies the
actual LTE attach success rate values observed during the specified timeframe. It
serves as a benchmark, facilitating a direct comparison between the model’s predic-
tions and real-world observations.

Forecasted Data: The graph vividly illustrates the DLM’s predictions for LTE at-
tach success rate values over the same period. These forecasts arise from the model’s
comprehensive understanding of past data, along with its awareness of weekly sea-
sonality trends and dynamic features.

The configuration of the DLM is noteworthy, featuring parameters such as degree
(indicating a linear trend), weekly seasonality patterns, dynamic features extracted
from a specified feature list, a discount factor of 0.9 applied to dynamic features, no
auto-regression incorporated, and no explicitly specified long-term seasonality. Im-
pressively, the DLM exhibits a high level of precision, as evidenced by its low error
metrics: a Mean Absolute Error (MAE) of approximately 2.161, a Mean Squared
Error (MSE) measuring around 7.511, and a Root Mean Squared Error (RMSE)
of roughly 2.740. These error values underscore the DLM’s capacity for accurately
predicting LTE attach success rate patterns, positioning it as a valuable asset for
optimizing network management and refining LTE attach success rate forecasting
methodologies.

Prophet:
The figure illustrating the performance of the Prophet model in forecasting LTE
attach success rate provides a comprehensive view of its capabilities. The Y-axis
portrays LTE attach success rate, covering the timeframe from June 5, 2023, to July
5, 2023, on the X-axis. Within this graph, three crucial elements stand out:

Train Data: This segment of the graph represents historical LTE attach success rate
data used for training the Prophet model. It serves as the bedrock upon which the
model learns intricate patterns and trends embedded within the dataset.

Actual Data: Evident as a continuous line on the graph, this part signifies the real,
observed LTE attach success rate values during the specified period. It functions as
a reference point, allowing us to gauge how closely the model’s predictions coherence
with the actual data.

Forecasted Data: The graph beautifully showcases the model’s predictions for LTE
attach success rate values across the same timeframe. These forecasts are the result
of the Prophet model’s extensive training and understanding of the dataset’s under-
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Figure 6.5: Prophet

lying patterns.

In addition to the data and forecasts, the Prophet model’s configuration param-
eters are notable. These parameters include settings for growth (linear or logis-
tic), changepoints (indicating shifts in data behavior), seasonality patterns (yearly,
weekly, daily), and prior scales for various model components. These parameters
collectively determine how the model interprets and predicts LLTE attach success
rate. As for the model’s performance, it’s highly commendable. The error metrics
reported are quite favorable:

Mean Absolute Error (MAE): The absolute difference between projected and actual
LTE attach success rate numbers is quantified as 2.7503, on average.

Mean Squared Error (MSE): 23.9009, which is the average squared difference be-
tween the predicted and actual data.

Root Mean Squared Error (RMSE): The square root of MSE, or around 4.888, offers
an error measure in the same units as the data.

These low error values highlight the Prophet model’s exceptional accuracy in fore-
casting LTE attach success rate. Its ability to capture complex patterns and adjust
to seasonality makes it a valuable tool for optimizing network management and en-
hancing decision-making in LTE attach success rate predictions.

VAR (Vector AutoRegressive) Model:
The figure portraying the VAR (Vector AutoRegressive) Model offers a window into
its predictive capabilities. Along the Y-axis, it visualizes the values of interest, while
the X-axis marks the time, spanning from June 5, 2023, to July 5, 2023. Within
this graph, three critical elements emerge:
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Figure 6.6: Vector Autoregression

Train Data: This section encapsulates historical data, a foundational component
used to train the VAR model. During this training phase, the model diligently
learns the relationships and dependencies among the variables within the dataset,
critical for making accurate predictions.

Actual Data: Evident as a continuous line on the graph, this segment represents the
actual values observed during the specified time frame. It serves as the benchmark
against which the model’s predictions are compared, allowing us to assess its accu-
racy.

Forecasted Data: The graph vividly illustrates the VAR model’s predictions for the
values over the same period. These projections are made using the model’s knowl-
edge of historical data and taking into account the lagged values of the endogenous
variables, as determined by the number of lags parameter.

The VAR model’s configuration is notable, with parameters including the number
of lags (10) and the number of endogenous variables (2). The model’s performance
metrics indicate its predictive accuracy, with a MAE of approximately 4.4569, a
Mean Squared Error (MSE) of around 45.7436, and a Root Mean Squared Error
(RMSE) measuring roughly 6.7634. These error values underscore the VAR model’s
capacity to provide accurate predictions, making it a valuable tool for analyzing and
forecasting the relationships between variables over time, crucial in various domains,
including economics, finance, and engineering.

GRU (Gated Recurrent Unit):
The figure depicting the GRU (Gated Recurrent Unit) model presents valuable in-
sights into its performance in predicting LTE attach success rate. On the Y-axis,
it showcases LTE attach success rate volume, while the X-axis represents the time
period from June 5, 2023, to July 5, 2023. Within this graph, three pivotal compo-
nents come into view:
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Figure 6.7: Gated Recurrent Unit (GRU) Networks

Train Data: This segment encapsulates historical LTE attach success rate data,
which forms the bedrock for training the GRU model. Throughout this training
phase, the model meticulously learns intricate temporal patterns and dependencies
within the dataset, crucial for making accurate predictions.

Actual Data: Manifested as a continuous line on the graph, this portion represents
the actual LTE attach success rate values observed during the specified timeframe.
It serves as a reference point for evaluating the model’s predictions against real-
world observations.

Forecasted Data: The graph vividly illustrates the GRU model’s predictions for
LTE attach success rate values during the same period. These forecasts arise from
the model’s grasp of past data, taking into account sequential dependencies and
patterns.

The GRU model’s configuration encompasses key parameters, including a total of
8,001 trainable parameters, highlighting its complexity. The learning rate parameter
is set at 0.001, governing the pace of weight adjustments during training. Addition-
ally, activation functions like ’relu,’ the ’adam’ optimizer, and a loss function of
’mean squared error’ contribute to the model’s architecture and training methodol-
ogy. It’s noteworthy that the error metrics indicate strong predictive accuracy, with
a MAE of approximately 2.6097, a Mean Squared Error (MSE) of about 20.8413,
and a Root Mean Squared Error (RMSE) measuring roughly 4.5652. These error
values underscore the GRU model’s proficiency in forecasting LTE traffic, position-
ing it as a robust tool for optimizing network management and refining LTE attach
success rate predictions.

73



6.2 Anomaly Detection Results

DBSCAN (Density-Based Spatial Clustering of Applications with Noise):

Figure 6.8: Density-Based Spatial Clustering of Applications with Noise

The DBSCAN figure offers a compelling visualization of its anomaly detection ca-
pabilities within the context of LTE attach success rate data. On the Y-axis, it
represents LTE attach success rate volume, while the X-axis tracks the timeline
from June 5, 2023, to July 5, 2023. This graphical representation encompasses sev-
eral critical facets. This component of the dataset, which makes up about 80% of
the total, contains historical LTE attach success rate data necessary for developing
the DBSCAN model. The model painstakingly assimilates the complex patterns
and subtleties connected with typical network behavior during the training phase.
Evident as a continuous line on the graph for actual data, it depicts the actual LTE
traffic numbers seen throughout the selected time period. It acts as the standard
against which the model’s predictions are measured, enabling an assessment of the
model’s accuracy. Red highlights clearly show anomalies in the LTE traffic statis-
tics, especially during the test data period from June 29, 2023 to July 5, 2023. 20%
of the dataset is still represented by these test data. The DBSCAN model exhibits
impressive proficiency in spotting outliers, making it a powerful tool for enhanc-
ing network security and quickly spotting unusual network performance patterns.
These abilities are essential for preserving the dependability and effectiveness of
telecommunications networks.
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Figure 6.9: Confusion Matrix of Density-Based Spatial Clustering of Applications
with Noise

The confusion matrix figure of DBSCAN presents a clear representation of the clas-
sification model’s performance. It distinguishes between true labels, encompassing
both true positives (TP) and true negatives (TN), and predicted labels, which in-
clude positive (1) and negative (0) predictions. In this scenario, the matrix reveals
that there are 137 true negatives (TN), indicating instances correctly classified as
negative. Additionally, there are 5 true positives (TP), signifying correctly classified
positive instances. Only 1 false positive (FP) is noted, which indicates instances in-
correctly classified as positive, and there are no instances of false negatives (FN),
signifying the absence of instances incorrectly classified as negative. This concise
breakdown underscores the model’s overall accuracy and its ability to effectively
distinguish between the two classes.

Figure 6.10: Classification Report of Density-Based Spatial Clustering of Applica-
tions with Noise

The Classification Report for DBSCAN indicates exceptionally high performance.
The accuracy of 99.3% signifies that the majority of data points were correctly clas-
sified. Precision, at 83.3%, demonstrates that when DBSCAN identifies a data point
as an outlier, it is accurate 83.3% of the time. A recall score of 100% highlights
DBSCAN’s ability to capture all true outliers, leaving no outliers undetected. The
F1-score, which harmonizes precision and recall, stands at a robust 90.9%, reinforcing
the algorithm’s effectiveness in correctly identifying and classifying outliers. Over-
all, DBSCAN showcases outstanding performance in anomaly detection, making it
a reliable choice for identifying rare and unusual data points in various applications.
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Isolation Forest:

Figure 6.11: Isolation Forest

In the Isolation Forest figure, the Y-axis represents LTE traffic, while the X-axis
spans from June 5, 2023, to July 6, 2023. Within this visual representation, three
key elements are discernible: Accounting for 80% of the dataset as a train data,
this segment comprises historical LTE traffic data used for training the Isolation
Forest model. During this phase, the model acquires an understanding of typical
patterns associated with normal network behavior. For actual data, Evident as a
continuous line on the graph, this component represents the actual LTE attach suc-
cess rate values observed throughout the specified timeframe, serving as a reference
for evaluating the model’s predictions. Anomalies within the LTE attach success
rate data are distinctly highlighted in red, particularly during the test data period
from June 30, 2023, to July 6, 2023. This test data, constituting the remaining 20%
of the dataset, is precisely where the Isolation Forest model excels. It effectively
identifies deviations from the learned normal patterns, making it a potent tool for
bolstering network security and promptly pinpointing unusual network performance
patterns. This capability is paramount for ensuring the reliability and integrity of
telecommunications networks.
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Figure 6.12: Confusion Matrix of Isolation Forest

The classification performance of the model is briefly summarized in the confusion
matrix for the Isolation Forest. The actual labels, which include both true positives
(TP) and true negatives (TN), and the predicted labels, which include both positive
(1) and negative (0) predictions, are separated into two groups. The matrix in
this situation shows that there are 137 true negatives (TN), or instances that were
appropriately labeled as negative. There are also 5 true positives (TP), which denote
cases that were accurately identified as positive. There is just one false positive
(FP) recorded, signifying cases that were mistakenly classified as positive, and no
false negatives (FN), indicating that there were no instances that were mistakenly
classed as negative. This distinct division highlights the model’s strong performance
in correctly identifying the two classes.

Figure 6.13: Classification Report of Isolation Forest

The Isolation Forest algorithm’s remarkable anomaly detection abilities are high-
lighted in the Classification Report. It shows a high degree of accuracy in catego-
rizing data items as either normal or anomalous, with an accuracy score of 99.3%.
With an accuracy of 83.3%, the Isolation Forest correctly classifies a data point as
an outlier 83.3% of the time. A recall score of 100% demonstrates the Isolation For-
est’s capacity to identify all genuine outliers and discover all other anomalies. A
robust 90.9% for the F1-score, which maintains precision and recall, confirms the
algorithm’s efficacy in correctly finding and categorizing anomalies. Overall, the
Isolation Forest is a useful tool for finding rare and out-of-the-ordinary data items,
making anomaly detection jobs possible.
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Local Outlier Factor (LOF):

Figure 6.14: Local Outlier Factor

The LOF plot gives a visual representation of its extraordinary ability to find anoma-
lies in the LTE attach success rate dataset. The X-axis shows the time period from
June 5, 2023, to July 5, 2023, and the Y-axis shows the volume of LTE attach success
rate. This graphical representation includes a number of important elements. This
component of the dataset, which makes up a sizeable 80% of the train data, contains
historical LTE attach success rate data that is essential for developing the LOF
model. The model gains a full understanding of the complex patterns and behaviors
connected to typical network operation during this training phase. For actual data,
it matches the actual LTE traffic numbers observed over the predetermined dura-
tion and is represented as a continuous line on the graph. It serves as an average
for measuring the model’s forecasts, making it easier to judge the accuracy of the
model. Particularly during the test data period from June 29, 2023 to July 5, 2023,
anomalies within the LTE attach success rate statistics are noticeably highlighted in
red. The remaining 20% of the dataset consists of these test data. The LOF model
exhibits exceptional skill in detecting departures from the predicted norm, making
it a crucial tool for enhancing network security and quickly recognizing unusual net-
work performance trends. For telecommunications networks to remain dependable
and successful, these characteristics are essential.
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Figure 6.15: Confusion Matrix of Local Outlier Factor

LOF confusion matrix gives a precise assessment of the model’s classification per-
formance. It distinguishes between two important labels: true labels (which include
true positives (TP) and true negatives (TN)) and projected labels (which include
positive (1) and negative (0) predictions). In this case, the matrix shows that there
are 137 true negatives (TN), which denote instances that were accurately classified
as negative. It also detects 4 ”true positives” (TP), or cases that were appropriately
labeled as positive. However, 1 false positive (FP) denotes cases that were mis-
takenly classed as positive, and 1 false negative (FN) denotes instances that were
mistakenly classified as negative.

Figure 6.16: Classification Report of Local Outlier Factor

The LOF algorithm’s Classification Report emphasizes its effective performance in
anomaly detection. With a 98.6% accuracy rating, LOF shows a high degree of overall
correctness in identifying data values as either normal or anomalous. According
to the precision score of 80%, LOF correctly classifies a data point as an outlier
80% of the time. Similar to this, LOF’s recall score of 80% illustrates its capacity
to successfully identify a sizeable proportion of real outliers. The F1-score, which
balances precision and recall, is 0.80, demonstrating the efficiency of LOF in correctly
finding and categorizing anomalies. With its balanced precision and recall metrics,
LOF is a dependable option for identifying anomalous data points in a variety of
applications.
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One Class SVM (Support Vector Machine):

Figure 6.17: One Class SVM

The figure depicting the One Class SVM (Support Vector Machine) model provides
a concise view of its capabilities in anomaly detection within LTE attach success
rate. Along the Y-axis, it visualizes LTE attach success rate volume, while the X-
axis spans from June 5, 2023, to July 5, 2023. This graph illustrates three crucial
element. Representing 80% of the dataset as train data, this segment comprises
historical LTE attach success rate data utilized for training the One Class SVM
model. During this phase, the model learns the patterns inherent in normal network
behavior. For actual values, Evident as a continuous line on the graph, it signifies
the actual LTE traffic values observed throughout the specified timeframe, serving
as a reference point for assessing the model’s predictions. The anomalies, depicted
in red, are anomalies in the LTE attach success rate detected by the One Class
SVM model. These anomalies are highlighted in accordance with the test data,
which comprises the remaining 20% of the dataset. The model is designed to flag
any deviations from the learned normal behavior as anomalies, making it a valuable
tool for network security and fault detection.
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Figure 6.18: Confusion Matrix of One Class SVM

A brief summary of the model’s classification accuracy is provided by the confusion
matrix for the One Class SVM (Support Vector Machine). It divides the results
into two categories that are extremely important: true labels, which include true
positives (TP) and true negatives (TN), and predicted labels, which include positive
(1) and negative (0) forecasts. The matrix in this case shows that there are 128
true negatives (TN), which stand for cases that were appropriately identified as
negative. Additionally, it pinpoints 5 ”true positives” (TP), which are cases that
were appropriately classified as positive. While there are 10 false positives (FP),
or cases that were mistakenly classed as positive, it is noteworthy that there are
no false negatives (FN), or absence of instances that were mistakenly labeled as
negative.

Figure 6.19: Classification Report of One Class SVM

According to the Classification Report for the One-Class SVM Support Vector Ma-
chine, it correctly classifies typical data points with an accuracy of 93.0%. Its preci-
sion, however, is 33.3%, which means that it is only 33% accurate in spotting outliers.
The model, on the plus side, earns a recall score of 100%, which means that it suc-
cessfully captures all genuine outliers. The F1-score, which measures accuracy and
precision while balancing recall and accuracy, is currently 0.5. In summary, the
One-Class SVM is ideal for applications that prioritize recall over precision because
it is excellent at recognizing outliers but may also produce some false alarms.
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Elliptic Envelope:

Figure 6.20: Elliptic Envelope

In the LTE traffic dataset, the Elliptic Envelope’s competent anomaly detection
capabilities are shown in the figure. The Y-axis shows the amount of LTE attach
success rate, and the X-axis shows the time period from June 5 to July 5 in 2023.
This visual depiction includes a number of crucial components. This portion of the
dataset, which accounts for an important 80% of the train data, contains historical
LTE traffic data that is necessary for developing the Elliptic Envelope model. The
numerous patterns and traits connected with regular network behavior are painstak-
ingly captured by the model throughout the training process. It replicates the actual
LTE attach success rate levels observed over the designated duration and appears
as a continuous line on the graph for actual data. The model’s predictions are mea-
sured to this real data, allowing the accuracy of the model to be determined. Red
is prominently used to identify anomalies in the LTE attach success rate statistics,
especially during the test data period from June 29, 2023 to July 5, 2023. The
remaining 20% of the dataset is represented by these test data. The ability of the
Elliptic Envelope model to spot deviations from the norm makes it a useful tool for
boosting network security and quickly spotting unexpected network performance
trends. In order to guarantee the durability and effectiveness of telecommunications
networks, such capabilities are essential.

82



Figure 6.21: Confusion Matrix of Elliptic Envelope

The Elliptic Envelope’s confusion matrix offers an informative overview of the model’s
classification performance. It clearly divides the outcomes into two crucial labels:
true labels, which include true positives (TP) and true negatives (TN), and pro-
jected labels, which include positive (1) and negative (0) forecasts. The matrix in
this situation reveals that there are 133 true negatives (TN), or instances that were
appropriately labeled as negative. It also detects 5 true positives (TP), which are
cases that were appropriately labeled as positive. However, there are 5 false posi-
tives (FP), or events that were mistakenly labeled as positive. Notably, there are
no cases of false negatives (FN), indicating that there were no instances that were
mistakenly labeled as negative.

Figure 6.22: Classification Report of Elliptic Envelope

The Elliptic Envelope model’s classification report shows that it can distinguish
between normal and anomalous data points with an accuracy of 96.5%. However, it
only has a 50% precision, meaning it is only 50% accurate when spotting anomalies.
The model correctly catches all real anomalies, as evidenced by its flawless recall
score of 100%. A acceptable trade-off between accuracy and precision is indicated by
the F1-score, which measures how well precision and recall are balanced at 0.67. In
conclusion, the Elliptic Envelope model is well suited for situations where accuracy
is critical because it excels at finding abnormalities with few false positives.
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Autoencoders:

Figure 6.23: Autoencoders

The Autoencoders figure offers a comprehensive view of its anomaly detection prowess
within the context of LTE attach success rate data. On the Y-axis, it represents
LTE attach success rate, while the X-axis covers the time span from June 5, 2023,
to July 5, 2023. This visualization encapsulates several critical aspects. A train’s
data This part, which makes up a sizeable 80% of the dataset, contains the histor-
ical LTE attach success rate data necessary for autoencoding model training. The
model carefully assimilates the complex patterns and traits connected with regular
network behavior throughout this training phase. It displays the actual LTE attach
success rate figures seen during the selected timeframe as a continuous line on the
graph. It acts as the standard against which the model’s predictions are measured,
making it easier to assess the accuracy of the model. Specifically within the test
data period from June 29, 2023 to July 5, 2023, anomalies in the LTE traffic statis-
tics are starkly highlighted in red.The remaining 20% of the dataset consists of these
test data. The Autoencoders model is a powerful tool for boosting network security
and quickly finding unusual network performance patterns since it is excellent at
spotting deviations from the norm. To protect the dependability and effectiveness
of telecommunications networks, these characteristics are essential.
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Figure 6.24: Confusion Matrix of Autoencoders

The model’s classification accuracy can be quickly assessed using the confusion ma-
trix for the Autoencoders. The results are effectively divided into two basic labels:
true labels, which include true positives (TP) and true negatives (TN), and pre-
dicted labels, which include positive (1) and negative (0) forecasts. There are 135
true negatives (TN) in this particular case, which refers to cases that were appro-
priately classified as negative. Additionally, it reveals 5 true positives (TP), which
denote cases that were accurately identified as positive. The number of false positives
(FP), or cases that were mistakenly classified as positive, is just three. In contrast,
there are no false negatives (FN), which suggests that there were no instances that
were mistakenly classified as negative.

Figure 6.25: Classification Report of Autoencoders

The Autoencoders model’s Classification Report shows a 97.9% accuracy rate, show-
ing high overall performance in differentiating between normal and anomalous data
items. The model’s accuracy in detecting anomalies is shown by its precision score
of 62.5%, which shows that it is generally reliable. Additionally, the model achieves
a recall score of 100%, which is the highest possible value and indicates that it can
accurately detect all real abnormalities. A stable trade-off between precision and
recall may be seen in the F1-score, which is 0.77%. In conclusion, the Autoencoders
model is very good at detecting anomalies because it combines precision with a
potent capacity to catch real anomalies.
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HBOS (Histogram-Based Outlier Score):

Figure 6.26: Histogram-Based Outlier Score

The HBOS is an efficient tool for detecting anomalies in LTE traffic statistics, as seen
in the figure. The X-axis shows the time period from June 5, 2023, to July 5, 2023,
and the Y-axis shows the amount of LTE traffic. Several important components
are included in this graphical representation. This part contains historical LTE
traffic data essential for training the HBOS model, making up a sizeable 80% of the
dataset. The model carefully picks up the complex patterns and traits connected to
regular network behavior throughout this training phase. Evident as a continuous
line on the graph for actual data, it replicates the actual LTE attach success rate
levels observed throughout the selected time period. The model’s predictions can
be evaluated using this actual data, allowing an assessment of the model’s accuracy.
The test data period from June 29, 2023 to July 5, 2023 is primarily where anomalies
in the LTE attach success rate data are prominently highlighted in red. The final
20% of the dataset is made up of these test data. The HBOS model is excellent at
spotting departures from the accepted norm, making it a useful tool for enhancing
network security and quickly spotting unusual network performance patterns. The
maintenance of telecommunications networks’ efficiency and dependability depends
on such capabilities.
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Figure 6.27: Confusion Matrix of Histogram-Based Outlier Score

A concise yet thorough evaluation of the Histogram-Based Outlier Score (HBOS)
model’s classification accuracy may be found in the confusion matrix. It successfully
divides the results into two key categories: true labels, which include true positives
(TP) and true negatives (TN), and predicted labels, which include positive (1)
and negative (0) forecasts. The matrix indicates that there are 138 true negatives
(TN) in this situation, which refer to instances that were accurately classified as
negative. Additionally, it reveals 3 true positives (TP), which denote cases that were
accurately identified as positive. Surprisingly, there aren’t any false positives (FP),
demonstrating the model’s accuracy in preventing erroneous positive classifications.
False negatives (FN) are cases where a positive event is mistakenly categorized as a
negative event. There are two such instances.

Figure 6.28: Classification Report of Histogram-Based Outlier Score

The high accuracy of 98.6% displayed in the Histogram-Based Outlier Score model’s
Classification Report demonstrates its robust performance in differentiating between
normal and anomalous data sets. The model receives a precision score of 100 per-
cent, which means that it consistently labels data as abnormal. However, with
a recall score of only 60%, it may overlook some genuine oddities. At 0.75, the
F1-score exhibits a balanced trade-off between recall and precision. In conclusion,
the Histogram-Based Outlier Score model is well-suited for applications where false
positives are expensive because it shines in precision but might use some work on
recall.
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6.3 Voice of the Customer Management Results

Support Vector Machine (SVM):

Figure 6.29: Performance Matrix of Support Vector Machine (SVM)

The Performance Matrix of the Support Vector Machine (SVM) in the context of
Voice of the Customer Management provides critical insights into the model’s per-
formance. With 80% of the data allocated for training and 20% for testing, the figure
reveals the SVM’s competence in accurately classifying customer sentiments. The
precision score of 0.823 reflects the model’s ability to precisely identify positive sen-
timent instances while minimizing false positives—a crucial attribute when making
decisions based on customer feedback. Furthermore, a recall metric of 0.816 show-
cases the SVM’s effectiveness in capturing a substantial portion of actual positive
sentiment instances, demonstrating its sensitivity. Additionally, the F1 score, at a
commendable 0.814, signifies a harmonious balance between precision and recall, in-
dicating a reliable overall performance. These metrics collectively affirm the SVM’s
capability to categorize customer sentiments effectively, which is pivotal for enhanc-
ing Voice of the Customer Management strategies and refining customer services.

88



Figure 6.30: Confusion Matrix of Support Vector Machine (SVM)

Convolutional Neural Network (CNN):

Figure 6.31: Performance Matrix of Convolutional Neural Network (CNN)

In the Performance Matrix of the Convolutional Neural Network (CNN) for Voice
of the Customer Management, with 80% of the data allocated for training and 20%
for testing, key performance metrics are evident. The precision score of 0.846 show-
cases the model’s precision in correctly identifying positive customer sentiments
while minimizing false positives. Additionally, a recall metric of 0.842 signifies the
CNN’s effectiveness in capturing a significant portion of actual positive sentiment
instances, indicating its sensitivity. The F1 score, at an impressive 0.843, strikes a
harmonious balance between precision and recall, reflecting a reliable overall perfor-
mance, essential for enhancing customer feedback-driven strategies.
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Figure 6.32: Confusion Matrix of Convolutional Neural Network (CNN)

Gaussian Naive Bayes (GNB):
In the context of Voice of the Customer Management, the Performance Matrix of
Gaussian Naive Bayes (GNB) provides information on the model’s effectiveness.
The figure shows that GNB exhibits intermediate precision with a score of 0.613,
demonstrating its ability to properly detect positive customer sentiments but with a
significant amount of false positives, with 80% of the data assigned for training and
20% for testing. A part of true positive sentiment instances are captured by GNB,
according to the recall metric, which now stands at 0.441, but its sensitivity might
be increased. The F1 score of 0.433, which strikes a balance between recall and pre-
cision, indicates that there is scope of improvement in overall performance in order
to fully utilize consumer feedback for decision-making and service improvement.

90



Figure 6.33: Performance Matrix of Gaussian Naive Bayes (GNB)

Figure 6.34: Confusion Matrix of Gaussian Naive Bayes (GNB)
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Multinomial Naive Bayes (MNB):

Figure 6.35: Performance Matrix of Multinomial Naive Bayes (MNB):

The performance of the model is shown by the Multinomial Naive Bayes (MNB)
Performance Matrix in the context of Voice of the Customer Management. The
figure shows that MNB exhibits impressive precision, scoring at 0.756, showing its
ability to properly identify favorable client sentiments while retaining a relatively
low incidence of false positives, with 80% of the data allotted for training and 20%
for testing. Recall, at 0.458, indicates that MNB captures some instances of real
positive mood, but that its sensitivity might be increased. However, the F1 score,
which is a solid 0.755, shows a balanced performance and highlights MNB’s ability
to successfully use customer feedback for well-informed decision-making and service
improvements.
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Figure 6.36: Confusion Matrix of Multinomial Naive Bayes (MNB):

Logistic Regression (LR):

Figure 6.37: Performance Matrix of Logistic Regression (LR)

Within the context of Voice of the Customer Management, the Performance Matrix
of Logistic Regression (LR) offers insightful information about the model’s perfor-
mance. The graphic shows LR’s noteworthy precision score of 0.798, with 80% of the
data assigned for training and 20% for testing. This precision metric shows how well
the model can detect favorable customer sentiment while reducing false positives. A
recall value of 0.793 further demonstrates the sensitivity of LR by showing how well
it captures a sizeable share of true positive sentiment instances. Indicating LR’s
dependability in classifying client feelings and assisting data-driven decision-making
processes for service enhancements, the F1 score, which stands at a solid 0.790,
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indicates a harmonic balance between precision and recall.

Figure 6.38: Confusion Matrix of Logistic Regression (LR)

6.4 Comparative Analysis of Different Models’ Per-

formance

The algorithms accuracy of time series forecasting:

Figure 6.39: Comparison of the algorithms accuracy of time series forecasting

GRU is the top performers in this evaluation, offering the best accuracy and predic-
tive capabilities for time series forecasting. These models are particularly adept at
capturing complex temporal patterns, making them ideal choices for organizations
seeking highly accurate forecasts to guide their decision-making and optimize their
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operations.

In time series forecasting, the accuracy of various algorithms plays a critical role
in determining their effectiveness in predicting future values. We conducted an
in-depth evaluation of several popular time series forecasting methods, including
ARIMA, XGBoost, LSTM, DLMs (Dynamic Linear Models), Prophet, VAR (Vector
AutoRegressive), and GRU. These models were assessed based on two key metrics,
MSE and RMSE, to gauge their predictive performance.

ARIMA exhibited an MSE of approximately 64.99 and an RMSE of around 8.06.
ARIMA, a classical and widely used method, is known for its simplicity and effec-
tiveness in capturing linear trends and seasonality in time series data. However, in
this comparison, it produced relatively higher errors compared to other models.

XGBoost achieved an MSE of 63.39 and an RMSE of approximately 7.96. XGBoost
is an ensemble learning algorithm that excels in capturing complex non-linear rela-
tionships in data. It performed well but was outperformed by LSTM and GRU in
terms of predictive accuracy.

LSTM displayed a lower MSE of roughly 23.20 and an RMSE of about 4.82. Recur-
rent neural networks (RNNs) of the Long Short-Term Memory (LSTM) kind are in-
tended to recognize long-distance relationships in sequential input. It demonstrated
significantly improved accuracy, making it a top choice for time series forecasting
tasks.

DLMs (Dynamic Linear Models) yielded an MSE of approximately 34.55 and an
RMSE of roughly 5.88. DLMs are a class of linear models that incorporate dy-
namic components. While they offer reasonable accuracy, they were outperformed
by LSTM and GRU in this evaluation.

Prophet demonstrated an MSE of 23.90 and an RMSE of approximately 4.89.
Prophet is a specialized time series forecasting tool developed by Facebook. It
showed competitive accuracy and is known for its ease of use and robustness.

VAR (Vector AutoRegressive) produced an MSE of 45.74 and an RMSE of approx-
imately 6.76. VAR models are used for multivariate time series forecasting. In this
comparison, they displayed relatively higher errors compared to some other models.

GRU showcased an MSE of approximately 20.59 and an RMSE of about 4.54. Gated
Recurrent Unit (GRU) is another type of RNN that performed exceptionally well in
this evaluation, offering accuracy similar to LSTM.

Upon analyzing these MSE and RMSE scores, it becomes evident that LSTM and
GRU outperform the other models. Both LSTM and GRU exhibit lower MSE and
RMSE values, signifying their superior predictive accuracy in time series forecasting.
These deep learning-based models, characterized by their ability to capture intricate
patterns and dependencies in temporal data, prove to be valuable assets for accurate
forecasting.
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While ARIMA, XGBoost, DLMs, Prophet, and VAR offer respectable performance
and might be suitable for certain applications, they fall slightly short in precision
compared to LSTM and GRU.

The algorithms accuracy of anomaly detection:

Figure 6.40: Comparison of the algorithms accuracy of anomaly detection

Anomaly detection models comparison from the figure that the orange color of DB-
SCAN represents the best accuracy among all the algorithms compared.

Anomaly detection is a critical task in various fields, from network security to fraud
detection and industrial equipment monitoring. In this analysis, we compare sev-
eral popular anomaly detection algorithms, considering their accuracy and specific
characteristics.

Autoencoders, a type of neural network architecture, are adept at capturing com-
plex patterns in data but can be computationally expensive and require substantial
data for effective learning. DBSCAN, a density-based clustering algorithm, excels in
identifying clusters of varying densities, making it suitable for detecting anomalies
in complex datasets, although tuning its parameters can be challenging. The Ellip-
tic Envelope method assumes an elliptical distribution of inliers in high-dimensional
spaces, making it efficient for identifying outliers but less accurate when data devi-
ates significantly from this assumption.

HBOS, a histogram-based approach, is efficient and particularly effective when deal-
ing with multi-modal data distributions, but it may struggle with skewed data dis-
tributions. Isolation Forest, a tree-based ensemble method, isolates anomalies by
constructing random decision trees, making it highly efficient and suitable for large
datasets. However, its performance can vary based on the number of trees and sub-
sampling size.
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Local Outlier Factor (LOF) calculates the local density of data points and compares
it to the density of their neighbors, making it suitable for datasets with varying densi-
ties and complex structures. One-Class SVM, on the other hand, finds a hyperplane
encompassing the majority of data points and treats those outside this boundary as
anomalies. It is effective when anomalies are rare and not well represented in the
training data but is highly dependent on kernel selection and parameter tuning.

Comparing these algorithms based on accuracy, DBSCAN exhibits the highest ac-
curacy level, reaching 99.3%. It excels in scenarios where anomalies are embedded
within intricate relationships or when the data exhibits varying densities. Isolation
Forest also achieves an accuracy of 99.3% and is highly efficient, making it suitable
for large datasets. HBOS and LOF offer commendable accuracy, both scoring 98.6%.
HBOS proves to be efficient and robust, especially in multi-modal data distributions,
while LOF is highly adaptive to varying data densities and complex structures.

Autoencoders, while achieving an accuracy of 97.9%, require substantial computa-
tional resources and extensive data for optimal performance. In contrast, One-Class
SVM, with an accuracy of 93%, is effective when anomalies are rare but is sensitive
to kernel selection and parameter tuning.

The algorithms accuracy of the Customer Management:

Figure 6.41: Comparison of the algorithms accuracy of the Customer Management

From the plot, we can see that CNN has the highest accuracy rating of all the algo-
rithms analyzed, as indicated by its purple color.

In the realm of Voice of the Customer (VoC) Management, the accuracy of algo-
rithms plays a pivotal role in gauging their effectiveness in understanding customer
sentiments and preferences. Analyzing customer feedback and extracting valuable
insights is crucial for businesses aiming to enhance their services and products. In
this context, we’ve evaluated several popular machine learning algorithms, including
Support Vector Machine (SVM), Convolutional Neural Network (CNN), Gaussian
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Naive Bayes (GNB), Multinomial Naive Bayes (MNB), Logistic Regression (LR),
and Deep Neural Network (DNN), to determine their accuracy in customer senti-
ment analysis.

Support Vector Machine (SVM) is a versatile and widely-used classification algo-
rithm known for its ability to handle both linear and non-linear data. In our anal-
ysis, SVM achieved an accuracy of approximately 81.6%. SVM is valuable for tasks
like text classification in VoC Management, where it can effectively categorize cus-
tomer feedback into different sentiment classes.

Convolutional Neural Network (CNN) is a deep learning model particularly power-
ful for image and text data. In our analysis, CNN displayed remarkable accuracy,
scoring around 84.2%. This high accuracy can be attributed to CNN’s ability to
capture intricate patterns and features in customer feedback, making it well-suited
for sentiment analysis.

Gaussian Naive Bayes (GNB) is a probabilistic classification algorithm often em-
ployed for text classification tasks. In our study, GNB exhibited lower accuracy,
approximately 44.1%. While GNB is simple and computationally efficient, it may
struggle to capture complex relationships within customer feedback data.

Multinomial Naive Bayes (MNB), another probabilistic classification algorithm,
achieved an accuracy of roughly 75.8% in our analysis. MNB is suitable for text
data with discrete features, making it a good choice for text-based sentiment anal-
ysis in VoC Management.

Logistic Regression (LR), a linear classification algorithm, displayed an accuracy of
approximately 79.3% in our evaluation. LR is a straightforward yet effective choice
for sentiment analysis tasks, especially when dealing with binary or multi-class clas-
sification.

Deep Neural Network (DNN) achieved an accuracy of approximately 83.4%. DNN’s
strong performance can be attributed to its deep learning architecture, which excels
in capturing intricate features and patterns within textual data, making it ideal for
sentiment analysis tasks in VoC Management.

Analyzing these accuracy scores, we can see from the figure that the purple color
representing CNN exhibits the highest accuracy among the algorithms compared.
CNN’s strong performance can be attributed to its deep learning architecture, which
excels in capturing intricate features and patterns within textual data, making it
ideal for sentiment analysis tasks in VoC Management. SVM also demonstrates
commendable accuracy, making it a valuable alternative for businesses aiming to un-
derstand customer sentiments. While GNB lags in accuracy compared to the others,
it remains a simple and computationally efficient choice for basic sentiment analysis
tasks. MNB and LR strike a balance between accuracy and simplicity, offering rea-
sonable performance for sentiment analysis in VoC Management applications. DNN,
with its competitive accuracy, provides an additional choice for businesses seeking
advanced sentiment analysis solutions.
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In summary, the choice of algorithm for customer sentiment analysis in VoC Man-
agement should be influenced by the specific requirements of the task, the available
data, and computational considerations. CNN and DNN stand out as top perform-
ers in this evaluation, offering high accuracy and the ability to extract intricate
patterns from customer feedback, ultimately aiding businesses in enhancing their
customer-centric strategies.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In conclusion, the field of ”ML Based Performance Assurance and VoC Management
of Highly Convergence Mobile Operator Network” represents a transformative leap
in the realm of telecommunications and network management. With the increasing
convergence of mobile operator networks and the ever-expanding complexity of these
systems, the application of advanced machine learning techniques has emerged as
a paramount necessity. The multifaceted approach described in this context, en-
compassing Time Series Forecasting and Anomaly Detection within the domain of
ML-based performance assurance, paves the way for proactive network optimization.
Leveraging a diverse set of algorithms, from traditional ARIMA to cutting-edge deep
learning models like LSTM and GRU, offers the capacity to predict network behav-
ior and preemptively address irregularities, thus ensuring the seamless operation of
highly converged networks.

Moreover, the integration of sophisticated Anomaly Detection methodologies such
as DBSCAN, Isolation Forest, LOF, and Autoencoders bolsters the network’s re-
silience by rapidly identifying and mitigating anomalous activities, thus preserving
network integrity and data security. Expanding the scope into Voice of the Cus-
tomer (VoC) Management within the context of highly converged mobile operator
networks demonstrates a commitment to enhancing customer-centricity. Employing
a suite of algorithms including SVM, CNN, GNB, MNB, and LR for sentiment anal-
ysis and feedback interpretation underscores the dedication to optimizing services
based on customer feedback. This customer-centric approach is poised to foster
higher levels of satisfaction, customer retention, and market competitiveness. In
essence, this comprehensive framework contributes significantly to the optimization
of highly converged mobile operator networks. The amalgamation of ML-based per-
formance assurance and VoC management techniques offers a holistic solution for
network operators and service providers alike. By proactively forecasting network
behavior and promptly addressing anomalies, operators can ensure uninterrupted
operations. Simultaneously, a customer-centric approach driven by advanced ML
algorithms empowers service refinement based on real-time customer feedback.

As a result, this work underscores the transformative potential of machine learn-
ing in revolutionizing the performance and management of modern mobile operator
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networks, heralding a new era of interconnectedness, efficiency, and customer satis-
faction in the age of convergence.

7.2 Future Work

The future scope of our experiment will be AI driven fully autonomous self heal-
ing network. Our experiment is the initial stage of the journey ,this will identify
and rectify performance based issues. Later levels will be fault, alarm, customer
complain, KPI degradation correlation, root cause analysis, remedy identification
and self healing/rectification. This how our proposed AI-ML based models can de-
tection, response times, and overall network efficiency. AI-ML driven self-healing
networks are extremely valuable in today’s heteronomous and divergent network
environments, where the volume of data and the speed of network traffic make it
challenging for human operators to respond to issues in real-time. By AI-ML driven
convergent networks aim to provide more robust and proficient network services
with minimizing operational costs ,human error and enhance business.

Extend VoC management with predictive analytic to anticipate and prevent cus-
tomer dissatisfaction. Identifying network faults, degradation from VoC. Develop
models that forecast potential negative sentiments, enabling proactive interventions,
analyze customers needs and insights which can lead to business growth, churn re-
duction, Innovation, Customer Satisfaction, Retention and Loyalty.
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