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Abstract

In the realm of cellular network internet data traffic assessment, the imperative task
of forecasting and comprehending traffic patterns assumes pivotal significance for
the effective management of network-designed Quality of Service (QoS) benchmarks.
Conventional methodologies employed for predicting data traffic often suffer from
inaccuracies. These traditional traffic forecasts, typically conducted at a higher-
level or within generously sized regional cluster contexts, tend to exhibit limitations
in terms of accuracy. Furthermore, the absence of readily accessible eNodeB-level
utilization data in conjunction with traffic forecasting exacerbates these challenges.
This, in turn, may lead to compromised user experiences or unwarranted network
expansion decisions based on outdated methodologies. This research embarks upon
an ambitious journey encompassing an extensive dataset encompassing 6.2 million
real network time series data points derived from Long-Term Evolution (LTE) net-
works. It also delves into associated parameters, including eNodeB-wise Physical
Resource Block (PRB) utilization. The core objective revolves around the develop-
ment of a traffic forecasting model that harnesses multivariate feature inputs and
cutting-edge deep learning algorithms. Various advanced deep learning algorithms,
including Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and
Gated Recurrent Unit (GRU), have been separately tested for training purposes,
with the most suitable model being chosen among the three for eNodeB-level pre-
dictions. This state-of-the-art deep learning model not only enables highly granular
eNodeB-level traffic forecasting but also provides insights into anticipated eNodeB-
wise PRB utilization. The selected optimal deep learning model, BiLSTM, achieves
a robust R2 score of 0.793, notably surpassing the performance of the other deep
learning algorithms. Beyond the realm of PRB utilization, the study establishes a
Quality of Service (QoS) threshold at 70% – a benchmark rooted in real network
experience. This threshold serves as a pivotal trigger for decisions pertaining to soft
parameter tuning. Leveraging the projected PRB utilization, the research introduces
a pioneering algorithm designed to estimate eNodeB-level soft capacity parameter
optimization. This algorithm empowers network operators to address short-term
capacity enhancement solutions as well as long-term network expansion, all aimed
at maintaining steadfast QoS benchmarks. Situated within the context of network
planning, this study not only unravels the intricate dynamics of cellular data traffic
but also catalyzes the concept of democratization. By harnessing the capabilities
of deep learning, network operators are equipped with potent tools to navigate the
intricate landscape of network optimization. Through this research endeavor, strides
are made toward an envisioned future where technological advancements seamlessly
converge with accessibility, thereby reshaping the contours of mobile network plan-
ning.

Keywords: LTE networks, network planning, machine learning in networking, traf-
fic prediction, deep learning, mobile network capacity, physical resource block, re-
source management.
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Chapter 1

Introduction

The exponential growth of mobile Internet data traffic in recent decades has pre-
sented significant challenges for mobile network operators (MNOs). According to the
Ericsson Mobility Report (Jan 2022), global mobile network data traffic is projected
to reach nearly 300 exabytes per month by 2027 [54]. As the demand for data con-
tinues to surge, MNOs face the crucial task of maintaining quality of service (QoS)
benchmarks, optimizing resource utilization, managing mobility, and ensuring high
availability of the network system. These challenges predominantly fall within the
realm of network planning.
One of the key challenges in mobile network planning is the maintenance of QoS
benchmarks. As data traffic surpasses the designed capacity of eNodeBs, the QoS
can be significantly affected [31]. Moreover, the rising number of users and their
increasing demand for high-speed, high-quality mobile internet further exacerbate
the QoS challenge. The Ericsson Mobility Report 2021 reveals that the monthly
average internet usage per smartphone is approximately 11.4 GB, a figure projected
to quadruple by 2027 [54]. Additionally, the diverse behavior of users in different
locations imposes an additional burden on LTE networks and cells. For instance,
video traffic currently accounts for nearly 70% of all mobile data traffic [54]. Pre-
dictions indicate that video traffic will reach approximately 79% by 2027, resulting
in a surge of data transfers over mobile networks. Consequently, it is evident that
without proper forecasting and proactive network utilization management, MNOs
may struggle to meet user demands promptly, leading to potential QoS degradation.
To address these challenges and enhance mobile network planning, emerging tech-
nologies such as deep learning offer promising avenues for improvement. Deep learn-
ing techniques have demonstrated remarkable capabilities in various domains, in-
cluding computer vision, natural language processing, and speech recognition. By
leveraging deep learning algorithms, mobile network planning can benefit from ad-
vanced predictive analytics, intelligent resource allocation, and optimized decision-
making processes. The utilization of deep learning in mobile network planning has
the potential to democratize the field, empowering MNOs with efficient and effective
tools that enhance their network management capabilities.
In this thesis, we explore the potential of deep learning techniques to empower mo-
bile network planning. We investigate the application of deep learning algorithms
in addressing the challenges faced by MNOs, particularly in relation to QoS main-
tenance, resource utilization optimization, and overall network performance. By
analyzing and evaluating various deep learning approaches, we aim to contribute to
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the advancement of mobile network planning practices and pave the way for a more
democratized and efficient future in the field.

1.1 Research Motivation

The significance of deep learning in mobile network planning is multifaceted. Firstly,
deep learning algorithms enable accurate traffic forecasting, allowing MNOs to di-
mension their networks effectively and allocate resources optimally. By leveraging
the power of deep learning models, MNOs can make informed decisions regarding
the placement of new cells or sites, minimizing capital expenditure and reducing
operational costs [45]. Furthermore, deep learning techniques can capture complex
patterns and correlations in sequential data, such as network traffic trends, user be-
havior, and network performance metrics [51]. This enables MNOs to gain deeper
insights into the behavior of their mobile networks and make proactive adjustments
to ensure optimal performance and quality of service.
Traffic forecasting is a critical component of network planning and dimensioning [45].
To make cellular network businesses more profitable, investors continuously seek the
optimal Capital Expenditure (CAPEX) allocation in the right cells/sites/locations
while reducing Operational Expenditure (OPEX). Incorrect traffic forecasting can
misguide network dimensioning, resulting in additional CAPEX and OPEX as well
as QoS degradation.
In recent years, deep learning-based approaches have been extensively studied to
identify patterns in sequential data and classify similar data types together [51].
Various Recurrent Neural Networks (RNN) algorithms have been employed to fore-
cast multiple time series sequential data types. Recognizing the immense potential
of deep learning algorithms in predictive analytics, the authors of this thesis focus
on building a model to address one of the most critical problems in cellular network
dimensioning—traffic forecasting [36]. Modern GPUs are utilized to run complex
deep learning algorithms efficiently, incorporating various features in an optimistic
runtime.
The advancement lies in the ability to accurately forecast traffic and user demand,
enabling the network to promptly manage resource allocation among connected
users, ultimately improving the quality of user experience [36]. This research will
contribute to a better understanding of mobile network traffic behavior and recom-
mend the expansion triggers for eNodeBs based on deep learning algorithm-based
traffic forecasts and utilization correlation charts. By leveraging deep learning tech-
niques, MNOs can achieve enhanced resource optimization, more efficient network
planning, and improved QoS.
Additionally, deep learning algorithms provide the ability to intelligently allocate
network resources based on predicted traffic patterns. By accurately forecasting fu-
ture traffic demand, MNOs can dynamically allocate bandwidth, optimize network
capacity, and prioritize resources to meet the needs of different user groups and ap-
plications [36]. This adaptive resource management enhances the overall quality of
user experience by minimizing congestion, reducing latency, and improving network
stability. Consequently, deep learning empowers MNOs to deliver a seamless and
satisfactory user experience, fostering customer loyalty and satisfaction.
Furthermore, the application of deep learning in mobile network planning con-
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tributes to the democratization of the field. Traditional network planning ap-
proaches often require specialized expertise and extensive manual effort. In con-
trast, deep learning models can automate and streamline various planning tasks,
reducing human intervention and enabling MNOs of varying sizes and capabilities
to benefit from advanced planning capabilities [36]. This democratization leads to
more efficient and cost-effective network planning, allowing smaller operators and
organizations with limited resources to compete on a level playing field.
In summary, deep learning has the unleashed potential to play a crucial role in em-
powering mobile network planning. By leveraging deep learning algorithms for traf-
fic forecasting, resource allocation, and network optimization, MNOs can overcome
the challenges of maintaining quality of service, efficient resource utilization, and
network scalability. The utilization of deep learning techniques not only enhances
network performance and user experience but also enables a more democratized and
inclusive approach to mobile network planning.

1.2 Research Problem

Understanding the traffic demands in a cellular network poses a significant challenge
due to the dense and diverse nature of mobile users, the variety of devices, and the
ever-changing user patterns [23]. Additionally, the availability of detailed datasets
specific to individual eNodeBs, with valuable features, is limited as most Call Detail
Records (CDRs) provide aggregated traffic data without technology segregation or
per-protocol categorization [5]. Therefore, there is a pressing need to address these
challenges and develop effective solutions for network traffic forecasting and resource
allocation in mobile network planning.
A pivotal aspect of mobile network dimensioning hinges on accurate traffic forecast-
ing, which directly influences eNodeB-level utilization. The symbiotic relationship
between eNodeB-level traffic and utilization entails that fluctuations in the latter
can exert significant impacts on overall network performance and user satisfaction.
Uncontrolled spikes in utilization can culminate in resource sharing bottlenecks,
triggering declines in user experience and Quality of Service (QoS). Conversely, un-
derutilization of eNodeBs represents an inefficient allocation of network resources.
Traditionally, network engineers could only react post-occurrence, leading to delayed
responses and customer discontent. It becomes imperative for network planners to
discern traffic patterns and estimate radio parameters at the eNodeB level preemp-
tively, thereby enabling proactive measures and minimizing user impact.
In light of the foregoing, two primary research questions arise:

1. How can deep learning algorithms be leveraged to empower mobile network
planning, through accurately predicting granular network design components
like traffic and utilization, and ensuring the Quality of Service (QoS) bench-
marks?

2. Is it possible to devise an innovative algorithm that strategically reduces ca-
pacity expansion costs for Mobile Operators through scientific soft radio pa-
rameter optimization?

In summary, the ever-changing landscape of cellular network traffic analysis and
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the limited availability of detailed eNodeB-specific data for academic research un-
derscore the pressing need for viable solutions in traffic forecasting and resource
allocation. This research aims to highlight and address these challenges through a
systematic and scientific approach, ultimately enabling the identification of issues
before they manifest within the network and cause disruptions for customers.

1.3 Research Methodology

This subsection presents the end to end research methodology employed in this
study with a visual graphic (in Fig 1.1), outlining the steps and procedures followed
to achieve the research objectives. The methodology encompasses the data collec-
tion process, the selection and implementation of deep learning models, and the
evaluation of the research outcomes.

Figure 1.1: High level End to End Research Methodology.

1.3.1 Data Collection

The first step in this research involved collecting relevant data for mobile network
planning from MNO. To ensure the availability of diverse and representative data,
multiple sources were utilized. These sources included network performance logs,
user counts, and network configuration data. The collected data encompassed vari-
ous parameters such as network traffic, user behavior, and network topology.

1.3.2 Deep Learning Model Selection

The next phase of the research involved selecting suitable deep learning models
for mobile network planning tasks. Extensive research and experimentation were
conducted to identify the most appropriate models. Considering the complexity
and nature of the data, three widely adopted deep learning architectures were cho-
sen: Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and Gated
Recurrent Unit (GRU). These models have demonstrated strong capabilities in cap-
turing temporal dependencies and have been successfully applied in various time
series prediction tasks.
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1.3.3 Model Implementation and Training

Once the deep learning models were selected, they were implemented and trained
using the collected data. The implementation was performed using a popular deep
learning framework, taking advantage of its extensive functionalities and optimiza-
tion capabilities. The training process involved feeding the models with the historical
data and iteratively updating the model parameters to minimize prediction errors.
Careful attention was given to hyperparameter tuning and regularization techniques
to ensure optimal model performance.

1.3.4 Evaluation Metrics

To assess the performance of the deep learning models, appropriate evaluation met-
rics were employed. These metrics included but were not limited to Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage
Error (MAPE). The selection of evaluation metrics aimed to provide a comprehen-
sive understanding of the models’ predictive accuracy and their ability to capture
the underlying patterns in the mobile network data.

1.3.5 Experimental Validation

To validate the effectiveness of the proposed deep learning models, extensive exper-
iments were conducted. The experiments involved splitting the collected data into
training, validation, and testing sets. The models were trained on the training set,
and their performance was evaluated using the validation set. The final assessment
of the models’ performance was conducted on the testing set, which represented un-
seen data. Through rigorous experimentation and analysis, the models’ strengths,
limitations, and potential areas of improvement were identified.

1.3.6 Ethical Considerations

Throughout the research process, the study placed a high emphasis on ethical con-
siderations. The data employed in this investigation underwent anonymization and
were managed in adherence to established privacy regulations and industry best
practices. The research adhered strictly to ethical guidelines, safeguarding the pri-
vacy and confidentiality of individuals. No personal user data or identifiable informa-
tion was gathered, and all eNodeB data underwent appropriate masking procedures
to ensure the preservation of privacy.

1.3.7 Scope and Limitations

Scope

This research sets out to demonstrate the transformative potential of deep learning
algorithms in the realm of network planning. The study focuses on a specific mobile
network operator (MNO) with a vast subscriber base of over 50 million users across
the country. Real network-generated information and the MNO’s configuration serve
as the foundation for this research.
Multiple machine learning models have been devised to address network planning
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objectives. These models are tailored specifically to the characteristics and require-
ments of the chosen MNO. By leveraging the available data, the proposed models
aim to optimize network performance and enhance the overall user experience.

Limitations

While the proposed models demonstrate strong performance under normal operat-
ing conditions, it is important to acknowledge certain limitations. Specifically, the
models’ performance may experience a slight degradation during periods of high user
density, such as social gatherings, where the number of users in a specific location
surpasses the typical day-to-day usage patterns. The models’ effectiveness in such
scenarios may be subject to further optimization and refinement.
Additionally, the algorithm for soft parameter tuning primarily focuses on LTE
capacity enhancement. As a result, GSM networks may occasionally encounter re-
source constraints. However, these limitations can be addressed through dedicated
optimization techniques that take into account the specific requirements of GSM net-
works. Furthermore, as the number of eNodeBs increases, it is crucial to enhance
computational power to maintain efficient network planning and management.
It is worth noting that this research is conducted within the confines of the selected
MNO and its network configuration. The findings and recommendations may not be
directly applicable to other MNOs with distinct network architectures or operational
environments. However, the methodology and insights gained from this study can
serve as a valuable reference for future research endeavors and industry-wide ad-
vancements in mobile network planning.

1.4 Research Contributions

The primary objective of this research is to explore the potential of deep learning in
revolutionizing mobile network planning. The aim is to make significant advance-
ments in the democratization and optimization of mobile network management,
ultimately improving the user experience and meeting the growing demands of the
mobile data era.
The research paper makes the following major contributions:

1. Identification of Optimal Deep Learning Algorithm: The research
presents a pioneering contribution by meticulously evaluating and selecting the
most suitable state-of-the-art deep learning algorithm from a range of options
including LSTM, BiLSTM, and GRU for Mobile Network design fundamental
component predictions. This chosen algorithm is utilized for both forecast-
ing network traffic and predicting granular eNodeB-level utilization through
a regression technique. This approach takes into account multivariate inputs,
allowing for the modeling and prediction of mobile network data traffic. The
accurate prediction of utilization (cell load) stands as a crucial asset for Mobile
Network Operators (MNOs), enabling them to make well-informed decisions
regarding network expansion while upholding benchmark Quality of Service
(QoS) standards.
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2. Categorizing eNodeBs into Precise Clusters: This research involves cat-
egorizing all eNodeBs into distinct clusters to ensure precise data traffic predic-
tions. The accuracy of clustering is attained through a comparative analysis of
Euclidean distance and Dynamic Time Warping (DTW) algorithms with the
Self Organized Map (SOM) technique. The performance of both Euclidean
and DTW algorithms is evaluated for a specific cluster, and based on compu-
tational accuracy, the DTW-SOM approach is recommended for further inves-
tigation. Clustering facilitates the grouping of similar eNodeBs into common
clusters, allowing network planners to efficiently address similar clusters col-
lectively. This approach streamlines the planning process, enhancing efficiency
and effectiveness.

3. Innovative Algorithm for Radio Parameter Estimation to Uphold
QoS Benchmarks This research introduces a groundbreaking algorithm de-
signed to estimate radio parameters, ensuring the maintenance of Quality of
Service (QoS) benchmarks. This algorithm empowers network planners to
proactively meet customer demands, preventing the breach of QoS thresholds
or significant deterioration in customer experience. Additionally, it safeguards
Mobile Network Operators (MNOs) from unnecessary capacity-related invest-
ments by fine-tuning soft parameters. By leveraging this algorithm, network
planners can make informed decisions to optimize network performance and
resource allocation, aligning with QoS targets and prudent resource manage-
ment.

1.5 Thesis Organization

This thesis embarks on a thorough exploration of how deep learning can revolutionize
mobile network planning. The following chapters take you on a step-by-step journey,
where we blend advanced technology with the intricacies of telecom infrastructure.
Chapter 2 discusses about the related works, which delves into previous planning
methods and shines a light on how deep learning can transform the field. Moving
forward, Chapter 3 provides a clear understanding of the foundation by introducing
various deep learning algorithms that predict mobile network trends. As we progress
to Chapter 4, we lay out the groundwork—how we collect data, examine it, and
design our deep learning systems. Chapter 5 is where we unveil the results, breaking
down how different deep learning models perform and highlighting the strengths of
best-suited model. In Chapter 6, we take a detour to optimize LTE radio parameter
estimation, connecting radio quality with how we use resources. Finally, in Chapter
7, we wrap up our journey by reflecting on what we’ve learned, acknowledging both
progress and limitations, and envisioning how deep learning can democratize mobile
network planning.
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Chapter 2

Related Works

2.1 Introduction

In this recent era, mobile networks are playing a vital role in driving our society
towards digital revolutions. As mobile networks continue to evolve and expand, the
challenges associated with network planning become increasingly complex. Network
planning is essential for translating customer requirements and quality of services
into efficient operational realities. Traditional approaches to mobile network plan-
ning often struggle to keep pace with the rapid growth in traffic demand, techno-
logical advancements, and changing user requirements. One of the key objectives
of this research is to manage the quality of service (QoS) in mobile networks by
effectively handling the ever-growing traffic demand. Predicting traffic demand is a
crucial component in managing the network ecosystem, as traffic directly correlates
with utilization, which in turn affects the performance of cellular networks [61]. This
chapter provides various challenges faced in traditional mobile network planning and
explores an overview of the state-of-the-art methods in network traffic forecasting
and LTE radio parameter estimation, highlighting their relevance to the research
objectives.

2.2 Legacy Planning Approaches: Hand tuned man-

ual heuristics

This section critically examines the limitations associated with traditional mobile
network planning methodologies. These legacy approaches are typically character-
ized by their reliance on assumptions and static models, which fail to capture the
dynamic nature of network traffic patterns and user behavior. Moreover, they of-
ten rely on manual interventions, lacking the scalability necessary to accommodate
the growing complexity of modern mobile networks. As a result, these approaches
often fall short in terms of timely action, as they lack visibility into future network
growth. Instead of proactively addressing potential issues, traditional approaches
tend to respond reactively after problems have already occurred, leading to customer
dissatisfaction and a decline in quality of service in specific areas.
Furthermore, legacy network planning systems heavily depend on hand-tuned heuris-
tics employed by network planners. However, these heuristics are often inadequate,
either due to their inappropriate granularity or the time-consuming nature of their
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implementation. Consequently, such legacy approaches fail to provide the necessary
level of accuracy and efficiency required for effective network planning.
In light of these specific shortcomings, there is a clear need for more adaptive and
data-driven solutions with the help of deep learning algorithms in mobile network
planning.

2.3 Traffic Demand Analysis and Prediction

In this section, we will explore the challenges and significance of traffic demand
analysis and prediction specifically in the context of mobile network planning. The
classification of internet traffic into various types has become crucial in today’s dig-
ital landscape, with different applications requiring specific bandwidth and latency
requirements. When considering internet traffic over cellular networks, it can be
primarily categorized into five major types: streaming, social networking, browsing,
OTT audio and video calling, and online gaming. However, accurately predicting
the demand for such traffic poses significant challenges.
Traffic prediction or forecasting is crucial for anticipating the status of cellular net-
works, identifying user usage patterns, and estimating quality-of-service parameters
and resource allocation requirements [45]. One of the major hurdles lies in predicting
internet traffic at a spatial granularity suitable for mobile network planning. While
mobility is a significant advantage of mobile networks, it is equally essential to fore-
cast traffic patterns with the utmost precision. The ability of network planners to
enable precise traffic prediction at a granular level facilitates more effective network
design and planning.
The field of mobile network planning recognizes the importance of traffic prediction
using spatio-temporal data, which has garnered significant attention in both aca-
demic and industry domains. With the advancement of the Internet and location-
based technologies, a wealth of spatio-temporal data is collected by government
agencies and mobile network operators. For instance, user-centric data, network
measurements, and historical traffic patterns can be leveraged to improve the ac-
curacy of traffic prediction models. This data-driven approach empowers network
planners to proactively allocate network resources, optimize capacity, and enhance
the quality of service.
According to Yuan and Li’s survey on traffic prediction (2021), the problem en-
compasses several aspects within the domain of mobile network planning. Traffic
status prediction, for example, involves anticipating the congestion levels of specific
network segments in the future, allowing proactive measures to be taken [53]. This
prediction can be achieved by estimating traffic speed or travel time, with slower
speeds or longer travel times indicating potential congestion areas. Traffic flow pre-
diction aims to forecast the volume of traffic on different network paths, enabling
efficient resource allocation and traffic management. Additionally, predicting travel
demands within the mobile network context is crucial for capacity planning and
optimizing resource utilization.
Several studies have addressed cellular network traffic forecasting using different
techniques. For example, Fang et al. [55] presented a city-scale traffic forecast-
ing model based on a cell handover-aware graph neural network. Xu et al. [18]
demonstrated the geographical distribution of forecasted traffic in a particular city
by analyzing time series data. Similarly, Kirmaz et al. [42] divided the geographic
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area into pixels for traffic prediction. However, these studies focused on predicting
traffic based on a geographical unit of measurement, which can encompass multiple
LTE eNodeBs or cells. In contrast, our research focuses on predicting traffic at the
granular eNodeB or cell level, allowing for more localized and accurate predictions.
Trinh et al. [23] introduced mobile traffic forecasting using recurrent neural networks
(RNNs) at a daily level, while Sun et al. [59] estimated network-level mobile data
based on user mobility patterns. Although these studies provide valuable insights
into traffic forecasting, our research distinguishes itself by predicting traffic at an
hourly level, which provides more detailed information about time series data and
can be easily converted to daily-level forecasts [23].
Additionally, L. Lo et al. [56] developed a Thresholded Exponential Smoothing
and Recurrent Neural Network (TES-RNN) model for managing network traffic and
resources using a hybrid approach of statistical modeling and machine learning.
However, this research specifically focused on predicting traffic anomalies at specific
times rather than regular hourly or daily traffic patterns. Q. Yu et al. [60] utilized
Graph Attention Networks (GATs) and Temporal Convolutional Networks (TCNs)
to predict traffic overload considering large amounts of small-scale redundant data.
Unlike most related research works, our study focuses on cellular network traffic
forecasting at the granular cell level, where each cell represents a different eNodeB.
This level of granularity is crucial for mobile network operators’ network planning
activities. Furthermore, evaluating traffic forecasting at the cell or eNodeB level
enables easy conversion to city or province level forecasts by aggregating the traffic
of all eNodeBs in a given geographic area. Considering the real-life challenges of
network planning, we specifically develop an hourly traffic forecast model, which
offers a suitable time horizon for effective planning activities.
In summary, traffic prediction plays a pivotal role in mobile network planning, ad-
dressing the challenges associated with accommodating varying traffic demands. By
leveraging spatio-temporal data and advanced prediction models, network planners
can make informed decisions to meet the dynamic requirements of mobile network
users. The key difference between our research and previous works lies in the gran-
ular data traffic prediction based on two major factors: hourly time granularity and
eNodeB or cell-level granularity. By addressing these aspects, our research aims to
provide more accurate and localized traffic forecasts, facilitating efficient network
planning and optimization.

2.4 Maintaining QoS Benchmark or Maximizing

Throughput

Ensuring a consistent Quality of Service (QoS) benchmark is a significant challenge
for Mobile Network Operators (MNOs) in the face of increasing network traffic.
With limited resources available for network design, accommodating the growing
traffic demands becomes a complex task. In LTE networks, the allocation of physi-
cal resource blocks (PRBs) plays a crucial role in resource management.
As more users request data from the network, the QoS and throughput tend to
degrade, impacting the overall network experience. However, in this research, we
aim to address this challenge and demonstrate how MNOs can maintain the QoS
benchmark even with growing traffic.
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Our approach involves leveraging advanced machine learning techniques and deep
learning algorithms to predict traffic patterns and estimate cell-level utilization. By
analyzing historical data, we can anticipate traffic demands with greater accuracy.
This enables MNOs to allocate resources more effectively and optimize network per-
formance, ensuring that the QoS benchmark is met even during peak traffic periods.
In addition to traffic prediction, we also focus on estimating radio parameters to fur-
ther enhance QoS. By applying deep learning algorithms to analyze network data,
we can optimize radio resource allocation and improve network efficiency. This en-
ables MNOs to maximize throughput and deliver an enhanced user experience.
Through the utilization of machine learning and deep learning algorithms, our re-
search presents innovative solutions for MNOs to overcome the challenges associated
with maintaining a QoS benchmark. By accurately predicting traffic patterns and
optimizing radio resource allocation, MNOs can ensure consistent QoS levels, even
as network traffic continues to grow.
In conclusion, our research emphasizes the importance of maintaining a QoS bench-
mark and maximizing throughput in the face of increasing network traffic. By lever-
aging machine learning and deep learning techniques, MNOs can effectively predict
traffic patterns, optimize resource allocation, and deliver an enhanced network ex-
perience to their users. Our findings contribute to the development of practical
solutions that enable MNOs to meet the growing demands of mobile networks while
maintaining high QoS standards.

2.5 Cost-Effective Resource Management and Op-

timization

The availability of resources, including spectrum, power, and physical infrastructure,
poses significant challenges in mobile network planning. All these resources incur
a large amount of costs for the network. When the demand increases from the
cellular network, operators have to invest more to meet the demand. However,
incorrect predictions of demand can result in higher capital expenditure (CapEx)
investments as well as increased operating expenditure (OpEx) for the network. In
this research, a proposed innovative solution is presented that not only solves the
technical problems but also lowers the cost of network investment and operation.

2.5.1 Resource Management Challenges and Cost Implica-
tions

1. Resource Availability and Demand Prediction: Accurately predicting
the future demand for resources is a challenge for mobile networks. Inaccu-
rate predictions can lead to underinvestment or overinvestment in resources,
resulting in financial losses for network operators. Careful analysis and man-
agement of the availability of spectrum, power, and physical infrastructure are
necessary to meet the increasing demands of cellular networks while optimizing
costs.

2. Capital Expenditure (CapEx) Investment: Network operators need to
invest in acquiring additional resources to meet the growing demand. However,
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incorrect predictions of resource requirements can lead to higher CapEx invest-
ments than necessary. This can result in the wastage of financial resources and
negatively impact the overall profitability of the network.

3. Operating Expenditure (OpEx): Inefficient resource management can in-
crease the operational costs of the network. Inadequate resource utilization,
poor energy efficiency, and ineffective network planning can contribute to
higher OpEx, putting additional financial strain on network operators. There-
fore, optimizing resource allocation and management is crucial to reducing
ongoing operational expenses.

2.5.2 Proposed Solution on LTE Radio Parameter Estima-
tion: Lowering Network Investment and Operation
Costs

The proposed research presents an innovative solution that not only addresses tech-
nical challenges but also aims to lower the overall cost of network investment and
operation. By leveraging advanced techniques such as data analytics, machine learn-
ing, and optimization algorithms, the solution focuses on optimizing resource man-
agement and allocation to achieve cost-effective network planning.

1. Accurate Demand Prediction: The solution incorporates sophisticated
demand prediction models that utilize historical data, user behavior analysis,
and network traffic patterns to accurately forecast future resource require-
ments. By improving the accuracy of demand prediction, network operators
can make informed decisions regarding resource investments, minimizing the
risk of overinvestment or underinvestment.

2. Optimized Resource Allocation: The system utilizes advanced optimiza-
tion algorithms to allocate resources effectively, considering factors such as
network capacity, user demand, and cost constraints. By optimizing resource
allocation, the aim is to maximize the utilization of available resources while
meeting the desired quality of service requirements. This approach helps re-
duce the need for excessive resource acquisition, resulting in cost savings for
network operators.

3. Energy Efficiency: The proposed solution emphasizes energy efficiency in
resource management. By optimizing power allocation, network operators
can reduce energy consumption, leading to lower operational costs. Energy-
efficient strategies, such as intelligent sleep mode activation and dynamic re-
source allocation, are employed to minimize power wastage and improve the
overall cost-effectiveness of the network.

By implementing the proposed solution, network operators can achieve cost-effective
resource management and optimization, mitigating the risks of excessive CapEx in-
vestments and high OpEx. The accurate prediction of resource demand, optimized
allocation strategies, and emphasis on energy efficiency contribute to reducing over-
all network costs while meeting the growing demands of cellular networks. Ulti-
mately, this leads to improved profitability and sustainable operations for network
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operators. The second part of our research focuses on estimating future network uti-
lization based on predicted traffic and proposing an algorithm for handling expected
traffic by estimating LTE radio parameters. While there have been sporadic research
efforts on radio capacity analysis at different times, none of the existing studies have
specifically addressed the estimation of radio parameters from predicted future traf-
fic.
Han Seung Jang et al. [46] developed a model to estimate the resource block us-
age rate (RBUR) in order to solve the fixed-length input problem in traditional
RNN models. However, their research did not explore how radio parameters could
be utilized to estimate RBUR. On the other hand, Mehedi et al. [20] proposed
an algorithm for Adaptive Mobility Load Balancing in LTE Small-Cell networks to
maintain throughput. However, their approach was reactive and did not provide
proactive measures for handling expected traffic based on predicted future patterns.
In contrast, our research addresses this gap by investigating the estimation of ra-
dio parameters from forecasted traffic. We propose an algorithm that leverages
predicted traffic patterns to trigger appropriate radio parameter adjustments. By
integrating traffic forecasting and radio parameter estimation, our approach enables
proactive and optimized handling of expected traffic demands, leading to improved
network performance and quality of service.
By bridging the gap between traffic prediction and radio parameter optimization,
our research offers a comprehensive solution for efficient network planning. The
proposed algorithm not only anticipates future traffic demands but also provides
actionable insights for optimizing the utilization of LTE radio resources. This in-
tegration of traffic forecasting and radio parameter estimation contributes to the
overall objective of managing network quality of service and addressing the ever-
growing traffic demand in mobile networks.
By embracing adaptive planning, operators can respond to dynamic demands and
optimize resource allocation. Data analytics provides valuable insights for informed
decision-making and proactive optimization. Deep learning algorithms offer automa-
tion and intelligent resource allocation.Adopting these strategies enables operators
to overcome limitations of traditional approaches and build future-ready networks
with superior performance and reliability. In the following chapters, we will discuss
the practical implementation of these techniques, showcasing how they modernize
network planning activities. In conclusion, this research represents a pivotal conver-
gence of network traffic forecasting and LTE radio parameter estimation, unlocking
valuable contributions to the field of mobile network planning. The combination of
these techniques offers a pathway for operators to proactively address challenges, ef-
ficiently manage resources, and ultimately deliver an unparalleled quality of mobile
network experience to their customers.
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Chapter 3

Theoretical Background: Deep
Learning for Solving Network
Planning Problems

3.1 Introduction

Within this chapter, we embark on a journey into the theoretical underpinnings of
our groundbreaking approach to network planning, one that harnesses the immense
potential of deep learning. Our pursuit leads us to unveil a meticulously crafted cel-
lular network traffic prediction system model, where the deep learning algorithms
guide in a new era of precision in traffic projection and proactive resource manage-
ment. This intricate synergy of Long Short Term Memory (LSTM), Bidirectional
LSTMs (BiLSTM), and Gated Recurrent Units (GRU) algorithms bolsters the realm
of time series forecasting, enhancing predictive capabilities with unprecedented fi-
nesse. The narrative unfurls further as we unravel the intricacies of Self-Organizing
Maps (SOM) and Dynamic Time Warping (DTW) based clustering, instrumental
in categorizing eNodeBs and orchestrating optimal resource allocation. Beyond the-
ory, this chapter unearths the blueprint for practical implementation, an ode to the
transformative prowess of deep learning in reshaping the contours of contemporary
network planning.

3.2 LTE Network Architecture

The Long-Term Evolution (LTE) network architecture is a complex system com-
posed of interconnected components and interfaces that work together to provide
seamless wireless communication services. Understanding these components and in-
terfaces is essential for grasping the intricate workings of modern cellular networks
[10].

3.2.1 Components of LTE Network Architecture

1. User Equipment (UE): UE, commonly referred to as mobile devices or
terminals, serves as the endpoint for user communication. It encompasses
smartphones, tablets, laptops, and various wireless devices used by consumers
to access network services [12].
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2. Evolved NodeB (eNodeB): The eNodeB is the cornerstone of the LTE
network. It consists of the base station and radio equipment responsible for
transmitting and receiving wireless signals to and from UEs. Each eNodeB
covers a specific geographical area known as a cell, which can be further divided
into sectors for more efficient coverage.

3. Evolved Packet Core (EPC): The EPC is the core network architecture
responsible for managing various network functions, including data traffic rout-
ing, mobility management, and policy enforcement. It comprises several key
components [8] [3]:

Figure 3.1: LTE Network Architecture.

(a) Mobility Management Entity (MME): The MME handles authenti-
cation, UE tracking, handovers, and security functions. It ensures seam-
less mobility and secure access for UEs.

(b) Serving Gateway (SGW): The SGW manages data traffic routing,
packet forwarding, and mobility management within a specific area. It
plays a pivotal role in maintaining data connectivity during UE mobility.

(c) Packet Data Network Gateway (PGW): The PGW connects the
LTE network to external networks, such as the Internet. It manages IP
address allocation, traffic filtering, and charging functions [3].

4. Home Subscriber Server (HSS): The HSS stores user-related information,
including authentication details, service profiles, and mobility information. It
is a central repository for user-related data, facilitating secure and efficient
network operations.

5. Policy and Charging Rules Function (PCRF): The PCRF manages pol-
icy control and charging rules within the LTE network. It ensures that Quality
of Service (QoS) requirements are met while controlling and monitoring data
usage for accurate billing [3].

3.2.2 Interfaces in LTE Network Architecture

1. Uu Interface: The Uu interface is the wireless air interface between the UE
and the eNodeB. It enables the transmission of user data, control signals, and
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mobility-related information, ensuring seamless communication between UEs
and the network.

2. X2 Interface: The X2 interface connects neighboring eNodeBs within the
same LTE network. It facilitates direct communication between eNodeBs,
allowing them to exchange control and data information for optimized han-
dovers, load balancing, and interference coordination.

3. S1-MME Interface: The S1-MME interface links the MME in the EPC with
the eNodeBs. It handles signaling for functions like initial attach, handovers,
and location management, ensuring efficient mobility management and UE
session maintenance [4].

4. S6a Interface: The S6a interface connects the MME in the EPC with the
HSS. It is responsible for authentication, authorization, and the exchange of
user-related information, facilitating secure and accurate user management.

5. S11 Interface: The S11 interface connects the SGW and PGW within the
EPC. It manages session management, traffic routing, and mobility across
different ePDNs and external networks, maintaining seamless connectivity.

6. S5/S8 Interface: The S5/S8 interface connects the SGW and PGW in the
EPC. It is crucial for tunneling user data between gateways, ensuring proper
data routing and maintaining quality of service during data transmission. [3]

7. Gx Interface: The Gx interface connects the PCRF with the PCEF within
the PGW. It facilitates the exchange of policy and charging-related informa-
tion, enabling accurate enforcement of policies and appropriate charging based
on data usage [4] [3].

In conclusion, the LTE network architecture is a sophisticated ecosystem compris-
ing diverse components and interfaces that work in tandem to deliver reliable and
efficient wireless communication services. The seamless coordination between these
components and interfaces ensures high-speed data transmission, seamless mobility,
and optimal network performance for users across various geographical areas.

3.3 Deep Learning Algorithms for Predicting Time

Series Data

Predicting time series mobile network data is a multifaceted challenge, often requir-
ing sophisticated tools to decipher intricate patterns within the data. This section
delves into the theoretical underpinnings of three such tools: Long Short-Term Mem-
ory (LSTM), Bidirectional LSTMs (BiLSTM), and Gated Recurrent Unit (GRU).
These Deep Learning techniques offer solutions to the intricacies of temporal data
forecasting.
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3.3.1 Long Short-Term Memory (LSTM)

In the realm of recurrent neural networks (RNNs), LSTM emerges as a ground-
breaking innovation to surmount the limitations of traditional RNNs. The challenge
with RNNs lies in their inability to retain contextual information across lengthy se-
quences, resulting in the vanishing gradient problem [1]. LSTM introduces memory
cells and gating mechanisms to address these shortcomings.
LSTM’s architecture consists of three gates: forget gate, input gate, and output
gate. The forget gate decides what information to retain or discard from the pre-
vious state, while the input gate determines the new information to be added to
the current state. The output gate regulates the output based on the current state.
These gates, orchestrated through intricate calculations, enable LSTM to capture

Figure 3.2: LSTM architecture for predicting future traffic.

long-range dependencies and discern patterns that elude traditional RNNs. Equa-
tion 3.1 represents the computation of the forget gate, with subsequent equations
3.2 to 3.6 depicting the cascade of operations within LSTM.

Why do we choose LSTM?
We have chosen to utilize Long Short-Term Memory (LSTM) in place of the conven-
tional RNN model, strategically addressing the memory challenge that plagues tra-
ditional setups. LSTM stands as a refined iteration of the recurrent neural network
(RNN) framework, introducing an architecture that excels in modeling chronological
sequences and their intricate long-range dependencies. Unlike conventional RNNs,
LSTMs were meticulously crafted to tackle the persistent long-term dependency is-
sue.
The essence of LSTM’s architecture lies in its prowess to grapple with the challenges
of temporal data. The journey commences with the computation of an output value
based on preceding time data. Subsequently, this output value interfaces with input
series data, serving as an input to the forget gate [2], [6]. This orchestration cap-
tures the essence of LSTM’s functioning – an orchestration designed to decode and
understand temporal patterns and dependencies inherent in data.

ft = σ (Wf · [ht−1, xt] + bf ) (3.1)

Here ht−1 is the output value of the previous time, as well as xt , denotes the input
value of the present time. ft is the output gate whose value range is (0,1). The
weight of the forget gate is represented as Wf , where bi is the bias of that forget
gate. In addition of that, input to input gate, output value and condition of candi-
date cell at input gate can also be calculated through output value of previous time
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and the input value of present time, which can be calculated through the below
equations –

it = σ (Wi · [ht−1, xt] + bi) (3.2)

C̃t = tanh (Wc · [ht−1, xt] + bc) (3.3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.4)

Ot = σ (W0 · [ht−1, xt] + bo) (3.5)

ht = Ot ∗ tanh (Ct) (3.6)

In the context of equations (3.3),(3.4) and (3.6), Ct signifies the cell state of the
candidate cell at time t, with its values ranging from 0 to 1. Ot denotes the output
gate, it signifies the input gate, and ht represents the hidden layers within the cell.
In this particular context, xt symbolizes cellular network data traffic. The presence
of the network bias finds representation in the b function.
This LSTM model functions as a sequential layer, forming the foundation for the
construction of a traffic forecasting model. The architecture of this LSTM has been
custom-tailored, drawing inspiration from the insights of references [17] and [13].
The equations (3.1), (3.2), (3.3), and (3.5) pivot on the outcome of a dot prod-
uct, facilitating information transfer. In cases where the result of the dot product
amounts to zero, it signifies a lack of information transfer [1]. Information will
transfer, in case of dot product outcome is one.

3.3.2 Bidirectional LSTMs (BiLSTM)

Building upon the foundation of LSTM, Bidirectional LSTMs (BiLSTM) broaden
the horizons of temporal modeling. In a conventional LSTM, information flows
sequentially from past to future, posing challenges in capturing future context. BiL-
STM overcomes this by employing two separate hidden layers – one processing the
sequence in its natural order and the other in reverse [32]. This bidirectional
processing enables the model to capture past and future context simultaneously,
enriching the understanding of intricate temporal relationships [15].

In the context of this research, the Bidirectional Long Short-Term Memory (BiL-
STM) model is harnessed to ascertain the optimal prediction methodology. During
training, the BiLSTM model capitalizes on input data in a dual-directional manner,
embracing information from both forward and backward passes. This process en-
tails two phases: first, analyzing the data from right to left, followed by analyzing
it from left to right. This bidirectional mechanism augments the BiLSTM model’s
precision and performance by addressing and alleviating potential long-term depen-
dencies [15]. Furthermore, this bidirectional framework not only facilitates more
comprehensive training but also yields enhanced outcomes in BiLSTM algorithms
[58]. As a result of these intrinsic advantages, BiLSTM models often showcase su-
perior performance compared to their traditional LSTM counterparts, a notion that
will be extensively discussed in subsequent sections of this thesis.
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Figure 3.3: BiLSTM architecture for predicting future traffic.

3.3.3 Gated Recurrent Unit (GRU)

Introduced as a sibling to LSTM, the Gated Recurrent Unit (GRU) is a stream-
lined yet powerful alternative. GRU shares similarities with LSTM, featuring gating
mechanisms to control information flow. It condenses LSTM’s architecture, com-
bining the forget and input gates into a single update gate and introducing a reset
gate. These streamlined components result in simpler training and more efficient
computation, making GRU an attractive choice for various sequence modeling tasks
[45]. In the context of this research, the process of comparing models involves the

Figure 3.4: GRU architecture for predicting future traffic.

incorporation of a Gated Recurrent Unit (GRU). GRU, introduced by Kyunghyun
Cho et al. in 2014, stands as a relatively contemporary member of the RNN family.
Although it shares a comparable architecture with LSTM, GRU models exhibit a
higher degree of convenience and simplicity in terms of training and implementation.
The characteristic architecture of a typical GRU model is showcased in Figure 11,
with the design having been adapted from reference [32]. The neural network archi-
tecture of GRU carries a distinct advantage in computational efficiency, owed largely
to the presence of update and reset gates. These components collectively contribute
to the model’s ability to retain long-term memory states within the cell [45]. In a
manner akin to the LSTM forget gate, the reset gate in the GRU model plays a
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pivotal role.
Within the framework of GRU, the hidden state output at time t can be computed
through a general expression, as outlined below:

ht = f (ht−1, xt) (3.7)

In equation (3.7), ht−1 is the hidden state status in t − 1 time and xt input time
series value at t time. For explaining to the GRU NN model as shown in architecture
(Fig. 3.4) below equation can be used –

rt = σ (Wr · [ht−1, xt]) (3.8)

zt = σ (Wz · [ht−1, xt]) (3.9)

h̃t = tanh (Wh̃ [rt ∗ ht−1, xt]) (3.10)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (3.11)

yt = σ (Wo · ht) (3.12)

In these equations (3.8),(3.9) and (3.12), Sigmoid function is represented as σ, which
output is (0,1). rt is the updated, which works for determining stored information
quantity from one movement to another. Reset gate zt determines the status of
information of the last state, whether the information is kept or erased. The pa-
rameter which needs to train are denoted as Wr, Wz, Wh, Wo [36], [15], [25] & [45].
In the quest to forecast time series mobile network data, the arsenal of Deep Learn-
ing tools, including LSTM, BiLSTM, and GRU, stands as a testament to the field’s
advancements. These models transcend the limitations of traditional neural net-
works, offering mechanisms to capture long-term dependencies, bi-directional con-
text, and streamlined information flow. As the subsequent sections delve into their
application and results, the significance of these theoretical foundations becomes
abundantly clear in shaping accurate predictions for mobile network planning.

3.3.4 Regression Technique for Utilization Prediction

In the realm of network planning, the journey to accurate utilization prediction is
paved by regression techniques. These techniques hold the key to addressing the
critical challenge of forecasting continuous values based on inputs [49], [35]. In the
ambit of this study, our focus pivoted towards predicting utilization subsequent to
deriving forecasted traffic outcomes from our deep learning model. In this context,
the prowess of Deep Regression emerges as a beacon, empowered to forecast utiliza-
tion based on eNodeB-wise traffic predictions. The heart of this endeavor lies within
the equation (3.13)

ŷ = w1x1 + w2x2 + · · ·+ wdxd + b (3.13)

Within this equation, w signifies the weight assigned to input traffic x1 to xd,
and b takes on the mantle of bias or offset.The weight element intricately defines
the influence wielded by features within the model [9], [29] & [27]. As we journey
through the following sections, the potency of this methodology will be unveiled in
its ability to illuminate the path towards optimized utilization prediction.
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Figure 3.5: Single layer regression with deep neural network.

3.4 Evaluation and Performance Metrics

In the landscape of predictive modeling, the accurate assessment of model perfor-
mance becomes an essential endeavor. To this end, an arsenal of comprehensive
metrics is employed, each with its own distinct purpose in evaluating the efficacy
of forecasting. The evaluation criteria comprising Mean Square Error (MSE), Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), and Squared Correla-
tion (R2) are the cornerstone of this assessment framework [51]. The formula is
describing as below in equations (3.14):

MSE =
1

N

n∑
k=1

(yt − xt)
2

RMSE =

√√√√ 1

N

n∑
k=1

(yt − xt)
2

MAE =
1

N

n∑
k=1

|yt − xt|

R2 = 1−
∑n

k=1 (yt − xt)
2∑n

k=1 (ȳ − xt)
2

(3.14)

Let’s delve into the intricacies of these metrics and their equations.

Mean Square Error (MSE) serves as a cardinal measure, quantifying the aver-
age squared difference between the actual and predicted data points. It enables the
capture of the extent to which predictions deviate from the truth across the entire
dataset.

Root Mean Square Error (RMSE) acts as an extension of MSE, introducing
the element of scale into the equation. By taking the square root of MSE, RMSE
offers an understanding of the average magnitude of the prediction errors.

Mean Absolute Error (MAE) adopts an absolute approach, measuring the av-
erage magnitude of prediction errors without consideration for their direction. It
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provides a clearer understanding of the errors’ absolute impact.

Squared Correlation (R2) delves into the realm of correlation between actual and
predicted values. It quantifies the proportion of the variance in the dependent vari-
able that can be predicted from the independent variable. Its calculation is expressed
as:

These metrics collectively form the cornerstone of performance assessment, guiding
the interpretation of forecasting accuracy and directing the course towards refined
predictions.

In Chapter 3, a comprehensive theoretical foundation for addressing network plan-
ning challenges through deep learning was established. By delving into various tech-
niques, including LSTM, Bidirectional LSTMs, GRU, and Regression, the chapter
showcased the versatility of deep learning in predicting time series data. Through
rigorous analysis and evaluation using diverse performance metrics, this chapter un-
derscores the potential of these techniques for enhancing network planning solutions.
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Chapter 4

Proposed System Model and
Methodology

4.1 Introduction

Nestled within this chapter is a meticulous dissection of the structured deep learn-
ing paradigm that navigates the complexities of cellular network traffic forecasting.
This elucidated journey guides us through a meticulously crafted sequence of steps,
illuminating the art and science of modeling within the dynamic realm of mobile
networks.
At the beginning of this chapter, we’ll briefly discuss the dataset description, includ-
ing EDA, aggregation of datasets, and feature correlation plot. Then, we formulate
the problem scientifically. Next, we present the proposed system model, which aims
to predict mobile network traffic demand and optimize resource allocation.
In this chapter, we discuss the methodology employed for data analysis, traffic pre-
diction, and utilization optimization. By leveraging innovative approaches, our
methodology ensures proactive decision-making and efficient network planning to
meet the dynamic demands of cellular networks. Let’s explore these aspects in de-
tail to gain a comprehensive understanding of our research approach.

4.2 Dataset Description

The LTE 4G dataset used in this research was obtained from the Operations Sup-
port System (OSS) of a Mobile Network Operator (MNO). The dataset consists of
hourly data traffic from the Radio Network for approximately 890 eNodeBs over
351 consecutive days, resulting in a total of 8424 samples. To ensure data privacy,
a data masking process was applied, resulting in a dataset of around 6.2 million
records.
In addition to the data traffic, various associated features from the eNodeBs were
collected, including Utilization, Max UE, Avg UE, Cell TP , User TP , and traffic.
For the analysis, the focus was specifically on Downlink (DL) traffic, as it plays the
most significant role in cellular network utilization.
The Cellular Network dataset comprises the following key information and features:

• eNodeB: eNodeB is the Radio network element of the LTE network, which is
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also known as Evolved Node B.

• Traffic: Traffic means a combination of Uplink (UL) and Downlink (DL) in-
ternet Traffic from the Radio network end. The counter formula of traffic is
as below: ∑

downlink traffic volume for PDCP

+
∑

uplink traffic volume for PDCP

The unit of traffic is Gigabits here.

• Utilization: Utilization indicates the usage of Physical Resource Block (PRB)
in LTE system. The higher number of utilization indicates more usage of LTE
resources. Utilization can be formulated in counter level by the below formula:

AvgnumberofusedPRBs

NumberofavailablePRBs

• Max UE: Maximum number of Users connected at an instance in a particular
node considered as Max UE.

• Avg UE: Avg UE is the average number of connected Users per hour in a
particular node

• Cell TP: Cell TP means Cell Throughput, which is the sum of all users’
throughput in a particular eNodeB or any node for a unit time frame. The
counter level formula can be represented as below:∑

downlink traffic volume for PDCP∑
duration of downlink data transmission in a Node

• User TP: A particular user receives an amount of data on average, known as
User Throughput or User TP. In other words, the average number of packets
received by the User in a unit time frame. The counter level formula for
User TP as below –

(
∑

DL traffic−DL traffic volume sent in last TTI)

Data transmit duration except last TTI

During the data modeling phase for traffic forecasting and utilization prediction, all
eNodeBs were classified into different classes based on their time-series behavior.
Detailed information regarding the classification procedure will be provided in the
later part of this paper.

4.2.1 Exploratory Data Analysis

The process of understanding cellular network data, known as Exploratory Data
Analysis (EDA), is akin to piecing together a puzzle with many parts. EDA aids
in uncovering concealed patterns and narratives within the data, which is available
in various snapshots – think of it as hourly, daily, weekly, or even monthly glimpses
into network activity.
The journey begins by amassing this data, akin to assembling puzzle pieces, to
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extract its revelations. However, data can sometimes have gaps, much like an in-
complete puzzle. Identifying and addressing these gaps is paramount to ensure a
comprehensive dataset. To maintain organization, the data is stored in a dedicated
repository known as a database, serving as a canvas where the entire picture is vis-
ible.
The ultimate objective is to predict network activity accurately. To accomplish this,
a foundational understanding of the existing data is indispensable. Enter EDA,
likened to the work of a detective seeking crucial clues. EDA facilitates the iden-
tification of significant clues hidden within the data. One notable clue pertains to
missing data – the gaps previously mentioned. Filling these gaps involves employing
certain strategies.
For minor gaps, such as missing data within an hour, the mean of analogous peri-
ods on the same day of the month is utilized. This approach resembles the act of
deducing the appearance of a missing puzzle piece based on its neighboring pieces.
In instances of more substantial gaps, spanning beyond an hour, historical trends
are consulted. This strategy is analogous to drawing insights from the past to infer
the present.
Thus, in the quest to comprehend cellular network activity, Exploratory Data Anal-
ysis emerges as a guiding compass. It aids in locating missing components and
uncovering the patterns that imbue the data with vitality, preparing the ground-
work for the ensuing predictive endeavors.

Exploratory Data Analysis (EDA) serves as a crucial preliminary step before

Figure 4.1: Month by Month Average traffic (GB) per eNodeB.

delving into any dataset modeling. In this research, a primary objective is to com-
prehensively understand the dataset, shedding light on the ebb and flow of traffic
over time and pinpointing pivotal hours that contribute significantly to the overall
data traffic. The visual cues offered by the four aforementioned figures provide quick
insights into the patterns ingrained within the hourly traffic dataset spanning 351
days.
To precisely discern data patterns per eNodeB, a fundamental equation, 4.1, comes
into play:

E(t) =
351∑
i=1

(Traffic in hours) /Number of Days (4.1)
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Figure 4.2: Boxplot of Month-by-Month Average traffic (GB).

Figure 4.3: Weekday vs. Weekend hourly traffic Pattern.

Figure 4.4: Daily Average traffic (GB).

Figure 4.1 vividly elucidates the progressive increase in traffic over time. Further
scrutiny of the visualizations brings to light another intriguing observation: the
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distinction in hourly traffic between weekdays and weekends, a revelation evident in
Figure 4.3.
Shifting our gaze to Figure 4.2, the box plot portraying the monthly average traffic
accentuates a consistent uptick in median (Q2) traffic across each passing month.
Meanwhile, Figure 4.4 takes us to a distinct day within the week, a day that emerges
as an outlier by exhibiting traffic volumes nearly double those of the other days.
In essence, this early stage of pattern identification establishes the groundwork for
subsequent modeling endeavors. These insights lay bare the underlying dynamics
of network traffic, setting the stage for more informed predictions and meaningful
revelations as we navigate through this exploration.

4.2.2 Aggregation of Datasets

The cornerstone of our analytical voyage rests upon a meticulously curated dataset
brimming with encrypted eNodeB-wise parameter information, harvested from the
bustling urban landscape of South Asia. Let’s conceptualize this reservoir of data
as Et = {Ec1t, Ec2t, . . . , Ecit}. In this nomenclature, Et symbolizes the comprehen-
sive collection of all eNodeBs, while Ecit encapsulates the rich tapestry of features
associated with each individual eNodeB, regardless of the temporal dimension t.
This comprehensive dataset serves as the bedrock for a deeper understanding of
network dynamics. To embrace a holistic perspective, we introduce the concept
of aggregated eNodeB-wise traffic A(T ), meticulously compiled over a defined time
frame T . This amalgamated representation manifests as:

A(T ) =
∑

r(t)∈R(T )

E(t)
∑
t∈T

a(t)

In this formulation, A(T ) resonates as a summation of E(t) across the spectrum
of eNodeBs r(t) contained within R(T ), coupled with the cumulative influence of
features a(t) expressed through the timeframe T . This aggregation affords us a
panoramic view of network behaviors and patterns, fueling our journey towards
informed forecasting and strategic decision-making.

4.2.3 Feature Correlation Plot

In the pursuit of predicting future eNodeB-wise traffic, this study has meticulously
gathered an ensemble of five additional features. These attributes, pivotal in fore-
casting cellular network traffic and comprehending the overarching LTE network
dimensions, form the bedrock of our analysis. Within this context, we delve into the
realm of feature correlation plotting, an endeavor facilitated by the equation (4.2) :

r =
n (

∑
xy)− (

∑
x) (

∑
y)√[

n
∑

x2 − (
∑

x)2
] [
n
∑

y2 − (
∑

y)2
] (4.2)

Enveloped in the graphic representation of correlation, as depicted in Fig. 6, we
unveil insights of paramount significance. This visual tapestry reveals a direct cor-
relation between utilization and traffic, an observation that aligns with intuition. In
stark contrast, the metric of User Throughput (TP) exhibits a negative correlation
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with both traffic and utilization. This discovery intimates that heightened traffic
manifests as augmented utilization, while also contributing to a decrease in User TP
or a potential degradation in the quality of services (QoS). In striving for optimal
network design, our paramount objective revolves around maintaining utilization at
a level that ensures network integrity. Elevating the discourse, the import of our

Figure 4.5: Correlation Plot from different features.

findings resonates in network management practices. Elevated utilization flags the
advent of burgeoning traffic, thereby triggering the need for network expansion. In
this manner, Mobile Network Operators (MNOs) can aptly balance utilization and
QoS, steering clear of untenable network conditions. As we traverse deeper into
the heart of this research, a subsequent juncture will unveil finely tuned utilization
parameters, poised to anchor QoS within the desired threshold.

4.3 Problem Formulation

This research endeavors to tackle these questions by formulating a non-deterministic
polynomial NP -hard problem that addresses the intricate challenges inherent in mo-
bile network planning. The objective revolves around maximizing user throughput
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(Th) for individual eNodeBs, a factor inversely related to Physical Resource Block
Utilization (PRBU) and other network variables. The formulation of this problem
bridges theoretical research [38], [24], and practical implementation to create a
well-rounded approach. The objective function can be defined as follows:

Objective function, Max Th =
1

PRBUt

+ C1 (4.3)

In the objective function (4.3), the value of constant C1 varies based on the config-
ured radio bandwidth of each eNodeB. Notably, the user throughput of a particular
eNodeB can vary even with the same PRB utilization due to different configured
bandwidths.
Furthermore, predicting future PRB utilization for a cluster of eNodeBs requires
considering factors such as predicted traffic volume, average user equipment count,
downtime, and other unknown factorsC2. The equation for PRB utilization in a
cluster of eNodeBs can be expressed as follows:

median {PRBUT} ×BW lim
T→+∞

1

T

t+60∑
t+1

∑
e∈E

(V olT,e + UET,e −DT,e) + C2 (4.4)

In equation (4.4), the medianPRBUt represents the median PRB utilization for a
cluster of eNodeBs, and BW denotes the bandwidth. The equation considers the sum
of the predicted traffic volume

∑
e∈E V olT,e, average user equipment count (UETe),

and downtime(DT )for each eNodeB in the cluster. It accounts for the factors that
affect PRB utilization in a real network scenario.
To simplify the PRB utilization equation for a single eNodeB, we can assume that
PRB utilization is directly proportional to traffic growth and the bandwidth of a
particular spectrum band. Therefore, the equation for PRB utilization for a single
eNodeB can be simplified as follows:

PRBUt∈T ×BW = lim
T→+∞

1

T

(
V olT,e + UET,e −DT,e

)
+ C2 (4.5)

In equation (4.5), T represents the time frame of maximum 60 days hourly future
PRB utilization, denoted as PRBUt+60, and V olt+60 indicates the predicted traffic
volume for the same time frame.
Considering the immense potential of deep learning algorithms for time series data
prediction, we have developed prediction models for future traffic volume and PRB
utilization by using deep learning algorithms. Our research work extends beyond
predicting future traffic and PRB utilization. Based on the assessment of predicted
PRB utilization from traffic, we have developed an algorithm for estimating radio
network parameters. This algorithm enables the triggering of actions to maintain
network QoS benchmarks and optimize resource allocation in mobile network plan-
ning.
By addressing the challenges of understanding traffic demands, collecting appropri-
ate datasets, and leveraging deep learning algorithms, our research aims to enhance
the efficiency and accuracy of mobile network planning. The proposed models and
algorithms provide network planners and engineers with valuable insights into traf-
fic patterns, PRB utilization, and radio parameters, empowering them to make
informed decisions and take proactive measures to ensure optimal network perfor-
mance and user experience.
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4.4 Proposed System Model

In this section, we delve into the intricacies of the cellular network traffic prediction
system model, elucidating each phase with comprehensive detail. Illustrated in
Figure 4.6, our proposed system model is built upon the foundation of deep learning
algorithms, signifying a sophisticated approach to achieve accurate predictions.

Figure 4.6: Proposed system model for cellular network traffic and PRB utilization
prediction driven optimized parameter estimation.

At the outset, our journey commences with meticulous data collection. We meticu-
lously gather eNodeB-wise traffic data and associated parameters through an ex-
haustive data mining process. This raw dataset finds its abode within a local
database, ensuring seamless storage of complex LTE data. Given the intricate amal-
gamation of underlying features and information, efficient data storage is paramount.

The primary research goal of traffic prediction leads us to the realm of Exploratory
Data Analysis (EDA). Through EDA, we not only unveil significant features and
patterns embedded within the dataset but also identify any gaps in the data. These
gaps, a common occurrence in real-world datasets, require adept handling. We adopt
a dual-step strategy: for short, discrete data gaps within a specific hour, we leverage
the mean value of that particular day of the month. For more substantial data gaps
surpassing an hour, we employ trend predictions extrapolated from preceding data
to intelligently populate the missing periods.

With EDA complete and gaps addressed, the dataset takes a central role within our
system model. This phase unfolds in two folds. First, we forge clusters of eNodeBs
based on their time-series traffic patterns. The prime objective of this clustering lies
in grouping eNodeBs with analogous consumption patterns, facilitating subsequent
cluster-wise resource utilization comparisons vis-à-vis predicted traffic.

In a research landscape encompassing 890 eNodeBs, clustering stands as a vital
instrument for performance visualization. To cater to this need, we adopt the SOM-
DTW-based clustering model—a robust mechanism for time series unsupervised
data clustering. A comprehensive elucidation of the SOM-DTW model awaits in
the Methodology section.

In the subsequent part, we extract critical features from the dataset through fea-
ture engineering. Essential features are those that exhibit high correlations with
traffic data. As we consider multivariate inputs for the traffic prediction model,
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these inputs may have different units. To eliminate systematic bias and ensure fair
comparisons, data normalization is necessary. In this research, we utilize the min-
max method to transform all multivariate inputs to a common range of zero to one.
By scaling input data, we effectively reduce bias and enhance the accuracy of the
traffic forecasting model. The data transformation equation (Equation 4.6) is used
for normalization:

zn =
x− xmin

xmax−xmin

(Newmaxx −Newminx) +Newminx (4.6)

Here, xmax and xmin represent the maximum and minimum data values, respectively.
Newminx and Newmaxx represent zero and one, respectively. After normalization
and transformation, we split the data into two parts: the test set and the train set.
In this research, we maintain a training and test data ratio of 79:21 for 290 days of
hourly data from 890 eNodeBs, with the remaining 61 days of hourly data serving
as the validation dataset.

4.4.1 Clustering with SOM-DTW

The dataset obtained from traffic and associated parameters revealed a substantial
amount of unstructured data. Taming this data requires significant time, resources,
and effort. Nonetheless, overcoming the challenges of unsupervised data structuring
was imperative to fashion an intelligent traffic forecasting model and an eNodeB uti-
lization model. The efficacy of supervised algorithms is well-recognized in scenarios
with properly labeled data. Augmenting the dataset count invariably enhances the
precision of the model [34]. In this study, we employ a Self-Organizing Map (SOM)
for clustering eNodeBs based on their hourly time series data.

SOM, a variant of unsupervised neural networks, comprises solely two layers [33],
an input layer and a mapping layer, which also serves as the output layer. The
connection between each neuron in the input and mapping layers is complete in
SOM-based clustering. In accordance with its operational principle, each mapping
neuron searches for the weight closest to the input vectors during the iterative devel-
opment of the SOM-based cluster. The optimal matching pair of neurons is referred
to as the Best Matching Unit (BMU) [48], [26].

This research explores both Euclidean and Dynamic Time Warping (DTW) match-
ing methodologies for creating SOM clusters. The selection of the appropriate al-
gorithm for cluster formation is the ultimate objective. In the initial stage of the
Euclidean matching model, the input comprises d-dimensional Mobile Network time
series data (with d input units). Therefore, the input patterns are represented as
x = {xi : i = 1, 2, 3, 4, ...d}.. The weights connecting the input unit to the comput-
ing layer’s neurons are denoted by wij, where j ranges from 1 to N and i ranges from
1 to d.

Consider N as the total number of neurons. The Euclidean distance (ED) between
the input vector x and the weight vector wj for each neuron j can be computed as
follows:
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Figure 4.7: DTW Matching based 36 SOM cluster according to eNodeB hourly time
series data pattern of 351 days.

EDj (x) =

√√√√ d∑
i=1

(xi − wij) ∧ 2 (4.7)

Utilizing equation (4.7), the Euclidean distance matching results in the division
of 890 eNodeBs into 36 clusters. Equation (4.7) is analogous to the Pythagorean
theorem in Cartesian coordinates, representing the distance between two points.
However, this method has limitations; while combining eNodeBs with similar traf-
fic loads into clusters, the SOM-Euclidean matching considers only the endpoints.
This might not accurately depict the most representative cluster trend-line for all
eNodeBs [48], [28].

To surmount the shortcomings of Euclidean Matching-based SOM clustering, an
alternative approach is proposed: Dynamic Time Warping (DTW)-driven SOM
clustering. Unlike Euclidean distance, DTW-based clustering isn’t confined to end-
points; it involves a comprehensive evaluation. Within DTW, the neuron corre-
sponding to the Best Matching Unit (BMU) is sought using a minimal DTW sample
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from eNodeB-wise traffic data (as depicted in Fig. 4.7). Moreover, the DTW-based
distance method incorporates a distance decay kernel function [50].

WdtNew = Wdtprevious +Θ •Krs • (x−Wdtprevious) (4.8)

The DTW matching algorithm updates the model using learning rates, in contrast

Figure 4.8: DTW-based cluster represented traffic trend line able to capture each
spike or pattern of long traffic trend (circular green marked), whereas Euclidean
based clustered trend line missed those details.

to Euclidean matching which merely computes distances between two points. Con-
sequently, DTW-SOM affords greater accuracy in generating cluster representative
trend-lines, as illustrated in Fig. 4.8.

4.4.2 Deep Learning Algorithms for Traffic and Utilization
Prediction

In this section, we embark on an exploration of the intricate landscape of multivariate
deep learning algorithms—a realm that stands as the cornerstone of our endeavor
to achieve unparalleled accuracy in the prediction of cellular network traffic time
series. Our journey traverses the integration of recurrent neural networks (RNNs).
The fusion of these methodologies not only amplifies the predictive capabilities of
our models but also unveils new vistas in predictive accuracy. With an overarching
commitment to precision, we have scientifically crafted an architecture that resonates
with the network-specific complexities of cellular data traffic prediction.

Architecture for Multivariate Time Series Prediction

Cellular network traffic is influenced by various factors beyond the immediate his-
torical trend. Numerous variables can impact the data traffic volume of a specific
eNodeB. For instance, traffic might experience a significant drop if an eNodeB expe-
riences extended downtime. Moreover, factors like local social and religious events
can lead to increased gatherings under specific eNodeBs, resulting in heightened traf-
fic. Acknowledging these complex network dimensioning challenges, we embarked on
a path of predicting time-series traffic through a Multivariate input-based approach
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Figure 4.9: Architecture of the proposed multivariate Deep Neural Network for
multiple parallel time-series prediction.

[17].
Taking into account these diverse influencing elements for traffic forecasting, let us
denote the relevant variables as x1,t, x2,t, . . . , xk,t. At time t, the traffic T1,t can be
represented as follows (equation (4.9)):

T1,t = f1 (x1,t, x2,t, · · · , xk,t, x1,t−1, x2,t−1, · · · , xk,t−1 · · · ) (4.9)

Upon forecasting the traffic T1,t, the subsequent time t + 1 traffic becomes reliant
on the entirety of the preceding variables. Given this notion, equation (10) can be
extended for predicting the t+ k time traffic Tk,t+k:

Tk,t+k = fk (x1,t, x2,t, · · · , xk,t, x1,t−1, x2,t−1, · · · , xk,t−1 · · · ) (4.10)

Aligned with the principles of multivariate time series analysis, where variables
interdependently rely on their past values and other associated features [17], the
goal of multivariate time series prediction, akin to univariate cases, is to anticipate
data trends. However, the inclusion of additional correlated parameters allows the
multivariate approach to yield more precise outcomes. This research incorporates
these principles in its approach.

Algorithm 1: Time-Series generation with sliding window technique

Data:
A: array of traffic and feature
p: number of days in past as sliding window
f: number of total features
Result: return array of X and target Y

initialization;
x, y ← 0;
for i← p to length(A) do

append(A[i− p : i, 0 : f ])toX

append(A[i : i+ 1, 0])toY

end
return X, Y

Illustrated in Figure 4.9 is the architecture of the deep neural network model. The
process initiates with the collection of raw time-series input data, from which salient
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features are extracted. Subsequently, we employ the sliding window technique algo-
rithm to generate time series from the feature-extracted data. The sliding window
technique operates on historical time series data up to N − 1 points [14]. Following
feature extraction, the ts function generates time series data (as depicted in Figure
4.9), a process further elucidated in Algorithm 1.

Algorithm 1 employs a comprehensive approach, integrating multivariate input data
encompassing historical time-series traffic, downtime, and user counts denoted as X,
along with the output data (traffic at t+1) denoted as Y. The dataset is partitioned,
assigning 79% for training purposes, while reserving the remaining 21% for test data.
The algorithm harnesses the sliding window technique, orchestrating a sequential
shift of both X and Y across windows, orchestrated in correspondence to array
A[i..]. This procedural operation is effectively illustrated in the third segment of
Figure 4.9.

Optimal Model Selection for Predictions

Figure 4.10: Best-suited Model Selection Approach.

The next crucial phase in our system model development centers on training the pre-
diction model. Here, we determine the most suitable model for training eNodeB-level
data from a range of deep learning algorithms: LSTM (Long Short-Term Memory),
BiLSTM (Bidirectional LSTM), and GRU (Gated Recurrent Unit). These algo-
rithms are well-regarded for their prowess in time-series prediction and are syner-
gistically combined to enhance accuracy. If you’re interested in a deeper dive into
these algorithms, you can refer to the theoretical background section.

Our study introduces a method for selecting the best-fitting model from various
Recurrent Neural Networks (RNNs) to construct a robust predictive model for data
traffic forecasting. LSTM, BiLSTM, and GRU lay the foundation for our multi-
variate Deep Neural networks, designed to make simultaneous parallel time-series
predictions, as illustrated in Figure 4.9. This selection strategy stems from a metic-
ulous analysis of the RNN model’s performance, specifically evaluated for individual
eNodeBs. Ultimately, we pinpoint a single model that exhibits optimal performance
across the majority of eNodeBs. The objective here is to bolster predictive precision,
simplify the model, and enhance its overall practicality.

Our research journey culminates in the prediction phase. Equipped with a trained
model, we embark on predicting traffic patterns through deep regression. These pre-
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dicted traffic values serve as the cornerstone for utilization forecasts, facilitating a
comprehensive comparison of overall cluster utilization. This pivotal step marks the
heart of our research—an endeavor where we successfully forecast mobile network
traffic demand, estimate resource utilization, and engage in enlightening compar-
isons across clustered eNodeBs. The approach of identifying the best-fitting model
among deep learning algorithms and employing innovative data analysis techniques
underscores the creation of an efficient cellular network traffic prediction system
model. Through this multifaceted approach, our model is primed to provide accu-
racy and valuable insights into cellular network traffic forecasting.

4.4.3 Network Optimization Decisions from Predictions

Having predicted the crucial network components for network design, our subsequent
task is to scientifically develop heuristics for network optimization. As previously
discussed in an earlier chapter, network demand is continually on the rise, and Mo-
bile Network Operators (MNOs) strive to optimize their networks in a manner that
minimizes investment costs.

Various popular solutions exist for network capacity expansion scenarios, includ-
ing cell splitting solutions, dynamic power allocation solutions, additional spectrum
resource allocation solutions, or the deployment of new eNodeBs to cater to the
increased demand [7] [22] [11] .

These solutions can broadly be categorized into two sections. Leveraging the pre-
dicted PRB utilization assessment, we can classify network optimization techniques
into either ”step-up” or ”soft parameter tuning” approaches. As a long-term, sus-
tainable solution, we propose the deployment of new eNodeBs to maintain QoS
benchmarks [61]. Also, we need to derive a threshold point for PRB utilization;
at that point, quality of service breakdown starts or throughput degrades rapidly.
Further details about this optimized LTE radio parameter estimation are briefly
discussed in Chapter 6.

In summary, Chapter 4 has unravelled the intricacies of methodology and the under-
lying system model, shedding light on the core mechanisms that drive our pursuit of
accurate cellular network traffic prediction. The journey commenced with data ag-
gregation, a critical step that laid the groundwork for subsequent analysis. Through
feature correlation plotting, we unearthed insightful relationships between variables,
setting the stage for informed decision-making.

The SOM-DTW clustering technique emerged as a powerful tool for unravelling
patterns within unstructured traffic data. This chapter seamlessly transitioned into
the realm of multivariate deep learning algorithms, where the architecture for time
series prediction was meticulously elucidated. Choosing the best-suited model strat-
egy introduced within Recurrent Neural Networks (RNNs) promises to elevate our
predictive models to new heights.

The system model, offered a comprehensive overview of the stages that lead to cel-
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lular network traffic prediction and optimization decisions. From data collection
and exploratory data analysis to feature engineering, training deep learning mod-
els, forecasting traffic and utilization, and optimization decisions, each phase was
expounded upon in detail.

This chapter, an embodiment of structured methodology and a coherent system
model, not only equips us with the tools to navigate cellular network data com-
plexities but also paves the path for accurate predictions and enhanced resource
utilization within the network. The fusion of innovation, deep learning, and rigor-
ous analysis underscores our mission to unlock insights into the dynamic world of
cellular network traffic prediction.
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Chapter 5

Experimental Outcomes and
Performance Evaluation

5.1 Introduction

This chapter takes us on a journey to evaluate how well our deep learning models
perform and to uncover the outcomes of our experiments for predicting mobile net-
work traffic data. We’re exploring this territory because predicting mobile network
traffic and understanding its utilization is becoming increasingly vital as well as a
necessary step for network planning and optimization. This chapter is like a treasure
hunt, where we’ll follow the path from our research methods to the actual results
we’ve achieved.
In this chapter, we’ll carefully examine how our models performed and the selection
process of the best-suited model. We’ll use numbers, graphs, and comparisons to
understand how well our predictions match the real data. As we continue, we’ll
dive into the details of our analysis. We’ll talk about how our different models did
and how they worked together. We’ll present the actual numbers and predictions
side by side to see how close they are. Through this process, we’ll uncover how
successful our methods are in real-world situations. So, let’s embark on this journey
and explore the insights awaiting us in the following sections.

5.2 Experimental Setup

The experimental setup for this best-suited model selection has been successfully
configured using TensorFlow, scikit-learn, and several standard Python libraries
such as pandas, seaborn, among others. This setup is tailored for compatibility
with Windows 10 as the operating system. The hardware specifications include an
AMD Ryzen 5 3600 processor, 32GB of RAM, and an RTX 3070 GPU. The model’s
parameter configuration, which ultimately yields the best evaluation score, is as fol-
lows:

• For each model, the number of epochs: 100

• Batch size: 128
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Figure 5.1: Sequential model for LSTM, BiLSTM, and GRU.

• Adam optimizer employed with a learning rate of 0.001

To ensure the training process is optimized and efficient, specific callback mecha-
nisms have been integrated:

• EarlyStopping: This halts training when a monitored metric no longer shows
improvement.

• ModelCheckpoint: This facilitates the preservation of Keras models or their
weights at regular intervals.

• ReduceLROnPlateau: This dynamically reduces the learning rate when a met-
ric’s improvement reaches a plateau.

Fig 5.1 illustrates the proposed architecture of the multivariate LSTM, BiLSTM, and
GRU models designed for predicting multiple time-series instances. These models
are configured with five features and 24-time steps for the prediction process. The
entire ensemble of 890 nodes across various sites undergoes training through this
tailored model and proceeds to generate predictions for the subsequent 62-day pe-
riod.

5.3 Experimental Outcomes

The experimental results of forecasting traffic using distinct deep learning algorithms
are showcased in Fig. 5.2 and 5.3. These figures present sample outcomes for two
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different eNodeBs, highlighting the predictive performance of each algorithm.

Figure 5.2: Actual vs. Predicted Traffic based on different Model.

Figure 5.3: Actual vs. Predicted Traffic based on different Model.

This analysis is conducted across all 890 eNodeBs in our dataset, allowing us to com-
prehensively compare the prediction outcomes. While the deep learning algorithms
exhibit similar performance overall, we remain vigilant about even minor spikes due
to their significance in precision-driven design. As a result, we delve into a more
scientific approach for evaluating performance in the subsequent section.

5.4 Performance of Deep Learning Models

Leveraging the prosed system architecture and trained model, we extend our capa-
bilities to predict the subsequent 62 days’ traffic and anticipate the utilization of
each eNodeB across 36 distinct clusters within the total 890 eNodeBs. This process
unfolds in two stages. Initially, we forecast traffic for each individual eNodeB using
the three considered deep learning algorithms: LSTM, BiLSTM, and GRU. Subse-
quently, we scrutinize the compatibility of each deep learning model with specific
eNodeBs, aiming to discern which models exhibit superior fitting. This endeavor
culminates in the identification of the most suitable models for the majority of eN-
odeBs, enabling us to ascertain the collective performance of all three models.
Evaluating the model’s overall accuracy Evaluation Criteria are combined and shown
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Figure 5.4: Regression plots of the LSTM models at the training phase.

Figure 5.5: Regression plots of the BiLSTM models at the training phase.

Model MSE MAE RMSE R2

LSTM 0.4478 0.4355 0.6692 0.7635
GRU 0.4461 0.4346 0.6679 0.7644
BiLSTM 0.3922 0.4158 0.6262 0.7929

Table 5.1: Performance of the model in the testing phase.
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Figure 5.6: Regression plots of the GRU models at the training phase.

in Fig. 5.4 , 5.5 , 5.6. This plot is used to find the predicted and actual values rela-
tionship. Also, Table 1 presents the testing results of the proposed models.

Figure 5.7: Percentage of eNodeB wise Best-suited Model.

Analyzing the data collected from each node, we find that among the 890 nodes,
BiLSTM delivers promising results in 65% of cases, followed by LSTM with 24%,
and GRU with 20%. Fig. 5.7 and Table 5.1 clearly illustrate that the BiLSTM
model emerges as the dominant performer. BiLSTMs impressive R2 value of 0.7929
outperforms other comparable models, positioning it as the Best-suited model to
work further.
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5.5 Best-suited Model Driven Outcome

Armed with this intricately designed system architecture and our devised best-suited
model (which is BiLSTM), we embarked on the voyage of forecasting the forthcoming
two months’ traffic and predicting the utilization patterns of specific eNodeBs within
the designated clusters. In the ensuing Table 5.2, a detailed panorama emerges:

• Summation of V olAct: Pre-actual Total traffic (GB) over the past 2 months.

• Summation of V olPred: Post-predicted Total traffic (GB) for the ensuing 2
months

• Count PRB Utilization actual UAct: The tally of sample utilizations exceeding
70% in the pre-timeframe.

• Count PRB Utilization predict UPred: The count of sample utilizations sur-
passing 70% in the post-timeframe.

• The % column illustrates the percentage change between the pre and post
traffic.

Table 5.2 comprehensively presents the traffic details for the past and forthcom-
ing 2 months across the 36 clusters. Moreover, we applied regression techniques to
anticipate the count of instances with high utilization within each cluster (details
refer to Chapter 3, subsection 3.5.4). This information is also included in the ta-
ble. Notably, the table 5.2 offers valuable insights into the occurrence of sample
utilization surpassing the 70% threshold during the specified timeframes. In the
subsequent chapter, we dedicate a section to delve into the rationale behind setting
the utilization threshold at 70% within this specific LTE network configuration.

5.6 Discussion of Performance Evaluation

In this chapter, we have provided an overview of the approach we employed to se-
lect appropriate deep learning models tailored for each individual eNodeB, enabling
accurate traffic prediction. Upon identifying the optimal deep learning model for
eNodeB granular prediction, we compared diverse deep learning algorithms to sort
out the best-suited model for comprehensive training.
Subsequently, we harnessed the trained model to forecast traffic volume (Vol) and
then predict LTE channel Physical Resource Block (PRB) Utilization (U) for dis-
tinct eNodeB clusters through the application of the linear regression technique.
PRB utilization plays a pivotal role in maintaining Quality of Services (QoS) by
ensuring adequate throughput benchmarks [61]. Our best-suited BiLSTM model
and regression technique demonstrated the ability to accurately capture the count
of highly utilized samples with minimal discrepancies (refer to Table 3).
Having forecasted both traffic and utilization, we delved deeper into addressing cases
of overutilization by employing network optimization techniques. These techniques
involved estimating radio parameters with a focus on minimizing Capital Expen-
diture (CapEx) investments for Mobile Network Operators, a discussion further
elaborated upon in Chapter 6.
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Cluster V olAct V olPred % UAct UPred

1 234193 242947 3.74 1015 1697

2 2215 2276 2.77 86 14

3 1092 1126 3.17 0 0

4 88575 86776 -2.03 64 197

5 1565 1599 2.2 0 0

6 464 461 -0.62 0 0

7 1219 1218 -0.04 0 0

8 719 852 18.51 0 0

9 1067 1123 5.25 0 0

10 424 355 -16.31 0 0

11 128599 140779 9.47 8202 8846

12 103936 111979 7.74 11570 14646

13 3485 3630 4.18 2 0

14 133977 138778 3.58 1470 2053

15 174525 182734 4.7 2704 3105

16 1085 1791 65.13 0 0

17 1703 1699 -0.23 0 0

18 1068 1301 21.85 0 0

19 1343 1326 -1.23 0 0

20 2461 2308 -6.22 9 9

21 1574 1579 0.33 0 0

22 178059 182311 2.39 329 756

23 23017 23647 2.74 1193 547

24 321 400 24.44 0 0

25 919 896 -2.56 0 0

26 853 847 -0.63 1 0

27 118642 128411 8.23 3146 4626

28 1739 2164 24.42 0 0

29 113749 122865 8.01 5747 5883

30 1189 963 -19.04 2 0

31 1496 1520 1.61 0 0

32 3473 3697 6.45 105 150

33 2015 2060 2.23 8 0

34 815 758 -6.95 0 3

35 106649 108547 1.78 703 657

36 521 473 -9.25 0 0

Table 5.2: Best-suited Model (BiLSTM) and regression driven outcome.
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Chapter 6

Optimized LTE Radio Parameter
Estimation

6.1 Introduction

As we embark on a deeper journey through the intricate landscape of optimizing
LTE networks, this chapter casts a resolute spotlight on the paramount importance
of estimating LTE radio parameters. These parameters, often hidden behind the
scenes, play an instrumental role in elevating the efficiency and quality of mobile
network services. Think of them as the architects behind the scenes, crafting the
blueprint for a seamless and robust network experience.
In the realm of Long-Term Evolution (LTE) networks, the configuration of radio
parameters holds a profound influence on network reliability and performance. This
influence ripples across the entire network, affecting everything from call clarity to
data speeds. In essence, these parameters act as the guardians of Quality of Service
(QoS), ensuring that your mobile experience is nothing short of exceptional.
Yet, the path to network optimization is riddled with challenges. The delicate equi-
librium between delivering impeccable QoS and keeping operational costs in check
is a puzzle that Mobile Network Operators (MNOs) constantly grapple with. Enter
the art of estimating LTE radio parameters – a strategic tool that empowers MNOs
to make informed decisions. By understanding the intricacies of these parameters,
MNOs can walk the fine line between network excellence and prudent resource allo-
cation.
Within the chapters ahead, we’ll journey through the foundational aspects of LTE
radio parameters, diving into the heart of their functionalities. We’ll unveil a
groundbreaking algorithm designed to estimate QoS parameters, an algorithm that
promises to be a game-changer for the industry. But this isn’t just about innova-
tion – it’s about practicality. We’ll illustrate how this algorithm can strategically
reduce the investment demands for network planning. The ultimate goal? To lay
out a strategic roadmap that allows MNOs to strike the perfect harmony between
optimal network performance and astute cost-effectiveness. So, let’s navigate this
path together and uncover the blueprint for a future where seamless connectivity
and intelligent resource utilization coexist harmoniously.
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Figure 6.1: Physical Resource Block the LTE air interface.

6.2 LTE Air Interface

4G cellular networks embrace the Long-Term Evolution (LTE) wireless communi-
cation standard. Within LTE, the wireless channel facilitating data transmission
and reception between user equipment (UE) and the LTE base station (eNodeB) is
referred to as the air interface. LTE strategically segments available frequency and
temporal resources into smaller units termed Resource Blocks (RBs) and Physical
Resource Blocks (PRBs) to proficiently manage the finite radio spectrum.

Resource Block known as The fundamental radio resource unit for LTE. Within
a specified bandwidth, it represents a certain portion of the frequency spectrum.
Each RB in the LTE standard has 12 subcarriers and covers a frequency range of
180 kHz[43], [30]. An RB’s time duration varies depending on the type of specified
subframe, but it normally corresponds to one slot, which lasts for 0.5 ms.

• 1 RB = 12(Sub-carriers) x 7 (Symbols) = 84 Resource Elements. (For Normal
CP: 7 symbols)

• 1 RB = 12(Sub-carriers) x 6 (Symbols) = 72 Resource Elements. (For Ex-
tended CP: 6 symbols)

Physical Resource Blocks (PRB) are allotted collectively in A particular group
of RBs that are in both the time and frequency domains. A PRB is, in other words,
a two-dimensional unit for resource allocation. The PRB occupies a frequency range
of 180 kHz and is made up of 12 sub-carriers that follow one another throughout a
period of time (0.5 ms).
The eNodeB assigns PRBs to specific UEs for downlink data transmission, allowing
them to transmit data. This allocation mechanism extends to uplinks as well, where
PRBs are assigned to UEs for data transmission from the UE to the base station.
The LTE scheduler dynamically allocates PRBs to UEs based on their quality of
service specifications and prevailing channel conditions.
By segmenting the available spectrum into PRBs, LTE efficiently manages radio
resource distribution, ensuring users receive sufficient bandwidth to fulfill their com-
munication requirements. This division empowers the system to adapt data rates
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according to channel conditions for each UE, facilitated through the utilization of
PRBs for adaptive modulation and coding techniques.
In essence, LTE Resource Blocks and Physical Resource Blocks are essential compo-
nents of the air interface, fostering efficient and adaptable radio resource utilization.
This symbiotic relationship provides customers with high-speed data connectivity
and a diverse array of services.

6.3 LTE Radio QoS Parameters

LTE networks deploy Quality of Service (QoS) mechanisms to ensure various types
of traffic receive appropriate levels of service based on their distinctive demands.
These QoS mechanisms enable network operators to effectively allocate resources
and prioritize services in alignment with their value and performance criteria. The
following key LTE QoS parameters shed light on their significance and interpreta-
tion:
QoS Class Identifier (QCI): Assigned to specific traffic types or services, the
QCI is a numeric value ranging from 1 to 9. It encapsulates the priority level and
associated QoS features. Different services such as telephony, video streaming, and
best-effort data are allocated distinct QCIs. Parameters like packet latency, packet
loss rate, and data rate are determined by predefined specifications for each QCI. A
higher QCI value signifies elevated priority and enhanced QoS [44], [47].
Bit Rate: The highest achievable data rate for a specific QoS flow is represented
in bits per second (bps) and linked to various QCIs. For instance, speech services
may require lower bit rates compared to streaming high-definition video.
Block Error Rate (BLER): Calculated as the ratio of incorrect blocks to total
blocks, BLER relies on the cyclic redundancy check (CRC) method to detect er-
rors in the transport block. If the calculation yields undesired results, the receiver
initiates a Hybrid Automatic Repeat Request (HARQ) Negative Acknowledgment
(NACK) for retransmission. Ensuring a standard BLER objective of 10% guaran-
tees 90% effective transmission at the receiver’s end, upholding service quality [5].
If the BLER target isn’t met, additional retransmissions may be needed, resulting
in increased radio resource consumption. Optimal resource scheduling strategies are
crucial to maintain desired QoS benchmarks of maximizing throughput, ensuring
user equity, and minimizing Block Error Ratio [37].
Resource Allocation: Based on QoS requisites, LTE dynamically allocates radio
resources such as PRBs (Physical Resource Blocks). Critical services receive the
resources necessary for consistent performance when flows with higher priorities or
QCI require additional resources. The scheduler continually adapts PRB allocation
to accommodate evolving network load and environmental variables. Resources are
allocated preferentially to flows with higher priorities or stringent QoS requirements,
ensuring essential services like voice calls and real-time video streaming receive the
necessary resources to maintain their quality.
PRB Utilization: This metric gauges the efficiency of assigned PRBs in transmit-
ting data, control signals, and other communication elements within the network.
PRB utilization showcases the effective use of radio spectrum to fulfill communica-
tion needs of user equipment (UE) and optimize network performance. Low PRB
utilization may indicate underutilized or wasted resources, while high utilization
reflects the substantial use of allocated resources. PRB utilization is influenced by
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factors such as traffic load, service types, QoS requirements, channel conditions,
scheduling algorithms, and network congestion.

6.4 Identifying QoS Breakdown Point from PRB

Utilization

The primary aim of this subsection is to pinpoint the threshold point at which the
breakdown of quality of service or user throughput User TP occurs within the PRB
utilization graph. This facet is of utmost importance in diverse networks. By identi-
fying the threshold point, network engineers can make informed decisions regarding
the adoption of either immediate step-up measures or longer-term solutions (Fig.
6.2). To conduct this analysis, we gathered PRB Utilization and User Throughput

Figure 6.2: User Throughput (User TP) vs. PRB Utilization Graph.

(User TP) data from 890 eNodeBs over a span of 120 days, collected at hourly inter-
vals from a live operator network. Our findings revealed that when PRB Utilization
reaches or surpasses 70%, user throughput experiences a 50% degradation (from 5
Mbps to 2.5 Mbps). This level of degradation corresponds to a significant impact
on user experiences. In such instances, it becomes imperative for responsible engi-
neers to promptly initiate step-up solutions, aiming to reduce PRB utilization and
enhance user satisfaction. Similarly, as PRB utilization exceeds 80%, our analysis
indicates a nearly negligible user throughput, effectively representing a lack of Qual-
ity of Service (QoS). It’s important to note that this threshold point may vary based
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Figure 6.3: Algorithm for predicted PRB Utilization based QoS Parameter Estima-
tion, (a) CQI switch adjustment, (b) Resource block power allocation, (c) Radio
power allocation for LTE from GSM.

on specific network characteristics. For reference, our analysis was conducted on a
live LTE network configured at 1800 Mhz, with a per eNodeB frequency bandwidth
of 10 Mhz.

6.5 Proposed Algorithm for QoS Parameter Esti-

mation

We have put forth an algorithm for radio parameter estimation grounded in predicted
PRB utilization. The algorithm initiates with an initial step where the capacity
requirement of each eNodeB (Fig. 18) is estimated based on an evaluation of 60
days of projected PRB utilization. If 70% of the sample of 60 days’ eNodeB busy
hours (NBH) equals or surpasses 80% PRB utilization (X), it is recommended to
implement hard capacity expansion through solutions like Multibeam Cell Split
Solution [16], New Spectrum addition [57], and the planning and deployment of new
nodes [57], [24]. However, the addition of new nodes incurs higher capital expenses,
making it a final option for maintaining QoS [52]. In cases where PRB utilization (X)
falls within the range of 70% ≤ X < 80%,, three soft step-up solutions are triggered
based on the estimated parameters to mitigate PRB utilization and uphold QoS
standards.

The assessment of actual PRB utilization takes place during the execution of the soft
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step-up solutions. The rationale behind the selection of 70% and 80% as thresholds
for activating action points for Optimized QoS parameter estimation is discussed
later in this paper. Step up Solution 1: Adjustment of CQI Switch:
Downlink CQI adjustment, interactively compensates for inaccurate CQIs reported
by UEs, optimizes MCS (Modulation and Coding Scheme) selection, and increases
throughput [39]. If the network has moderate or heavy loads in the downlink, the
downlink user-perceived rate will increase by 1% to 3% after CQI adjustment Fig.
6.3(a) [14].

Script 1 (CQI Switch adjustment)
MOD CELLALGOSWITCH: LocalCellId=0,
CqiAdjAlgoSwitch = DlVarIBLERtargetSwitch-1
CqiAdjAlgoSwitch = DlEnVarIblerTargetSwitch-1;

DlVarIBLERtargetSwitch:In Adaptive configuration, The downlink target initial
block error rate (IBLER) is adaptively adjusted from a fixed configuration based on
the Transport Block Size (TBS) to improve spectral efficiency. The higher the block
size, the higher the throughput. In this scenario, the eNodeB adjusts the target
IBLER to 10% for UEs with large packet services at non-edge locations and 30%
for UEs with small packet services at edge locations.

DlEnVarIblerTargetSwitch:In Enhanced Adaptive configuration, the downlink
target IBLER is adaptively adjusted from a fixed configuration based on TBS and
as well as CQI fluctuation. In this scenario, the eNodeB adjusts the target IBLER
to 5% and 10% for slightly fluctuated CQI values. With heavily fluctuated CQI
values, the target IBLER is 10% and 30% [55].

Step Up Solution 2: PA and PB Power Allocation:
4G LTE RS RE Power (RSRP power) boosting depends on ρB/ρA parameters Fig.
6.3(b). this value is determined by many parameters, such as the max power of
the RRU channel (Pmax), the number of RBs of the cell Nrb, PA, PB etc. Below
describes the impact.

• The higher PA Implies, the lower RS power (ERS), the smaller cell radius and
the higher throughput can get.

• With changing PA, PB need to change as well to make full usage of power.

• The max value of ERS is determined by (Pmax) and PA.

• To configure RS power, first determine PA, then RS and, PB is determined
following the Table 6.1 (for 2T cells).

The following definition from 3GPP. 36.213 protocol [21]:

• TypeA: the PDSCH OFDM symbol without RS

• TypeB: the PDSCH OFDM symbol with RS

• EA: the power of one element in TypeA, in W

• EB: the power of one element in TypeB, in W
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PA ERS ρB/ρA PB

0 EA 5/4 0

-3 2*EA 1 1

-1.77 1.5*EA 3/4 2

-6 4*EA 1/2 3

Table 6.1: The cell-specific parameter for PB.

• ERS: the power of referenceSignal, in W

• RS: referenceSignal = 10log (ERS ∗ 1000), in dbm

• Pmax: the max power of RRU channel, in W

• Nrb: the number of RBs in the cell

• ρA = EA/ERS

• ρB = EB/ERS

• PA = 10log (ρA) = 10log (EA/ERS)

• ρB/ρA = EB/EA

ρB/ρA
PA One Antenna Port Two and Four Antenna Ports

0 1 5/4

1 4/5 1

2 3/5 3/4

3 2/5 1/2

Table 6.2: The cell-specific ratio ρB/ρA.

Script 2 (PA and PB Power Allocation):
MOD CELLDLPCPDSCHPA: LocalCellId=0, PaPcOff=-3 dB; MOD PDSCHCFG:
LocalCellId=0, Pb=1 PaPcOff: Indicates the PA to be used when PA adjustment
for PDSCH power control is disabled, DL ICIC is disabled, and the even power
distribution is used for the PDSCH [40].
Pb: Indicates the Energy Per Resource Element (EPRE) scaling factor index on
the PDSCH. The value of this parameter and the antenna port control this scaling
factor.
After executing script 2, PRB utilization (X) is expected to reduce by 70%. But if
it does not happen next script will be executed.

Step Up Solution 3: Dynamic Radio Power Allocation from GSM:
As per definition, Dynamic Cell Power Off is a BSC feature [40] that enables power
dynamically off or on the TRXs (in GSM Cell) based on the traffic demand of the
co-coverage cell within a certain time frame. When LTE load is high, some radio
power allocates from existing GSM PA to LTE PA through GSM TRX shutdown
Fig. 6.3(c). In this way, the LTE network can be boosted up to 20W PA power.
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Dynamic Power Allocation:
SET GCELLDYNTURNOFF: IDTYPE=BYID, CELLID=0,
TURNOFFENABLE=ENABLE,
SAMECVGCELLIDTYPE=BYID,
SAMECVGCELLID=1,
TURNOFFCELLSTRTIME= [Time PRB Util>70%],
TURNOFFCELLSTPTIME= [Time PRB Util<70%] TURNOFFENABLE: to enable the
Dynamic Cell Power
SAMECVGCELLIDTYPE: Index type of a co-coverage cell. If the coverage area of a cell
is under the coverage area of another cell, the cell can be disabled during off-peak
hours. In this situation, another cell is considered as the co-coverage cell of the cell.
TURNOFFCELLSTRTIME: Start time for dynamically disabling a cell.
TURNOFFCELLSTPTIME: End time for dynamically disabling a cell.
After executing script 3, PRB utilization still persists above 70% then we have no
other option rather implement a long-term solution with node expansion.

Algorithm 2: Decision and QoS Parameter implementation with PRB
utilization assessment
Data:
s : sample count in NBH
l : last n sample
prb : prb utilization
Function QoS-Decision-Estimation(s, prb):

if maxprb ∈ s70% & l60 > 80% then return
decision : NewNodeExpansion ;
else
Script1 ← CqiAdjAlgoSwitch
Script2 ← PowerAllocation
Script3 ← DynamicCellPower
for each, i ∈ Scripti do

U ← argmaxu∈prb Implement(u, Scripti)
decision← QoS-Decision-Estimation(s,U)

end
return decision ;

6.6 Minimizing Investment through the Proposed

Algorithm

Imagine saving money while optimizing network planning – a challenging feat for
Mobile Network Operators (MNOs). MNOs face the tightrope act of delivering
great service without overspending. The solution? Our groundbreaking algorithm
– a financial compass. By shrewdly distributing resources, MNOs can supercharge
network capabilities without straining their budgets.
At its core, this algorithm merges advanced math with historical data to foresee fu-
ture network needs. It predicts potential bottlenecks, enabling MNOs to make well-
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informed choices proactively. No rushed decisions, no costly equipment splurges.
But its versatility goes beyond. This algorithm is a Swiss army knife for networks.
It tweaks operations without adding extra parts, much like a mechanic fine-tuning
a car. It optimizes data flow, power consumption, and resource sharing, enhancing
network efficiency.
What’s truly remarkable is the timing of these changes – seamless and non-disruptive.
It’s like a master chef enhancing a dish without changing its essence. By embracing
this algorithm, MNOs discover that sweet spot where networks thrive, costs stay in
check, and users stay happy.
In a nutshell, this algorithm goes beyond complex math. It employs historical data
to foresee the future, introduces intelligent tweaks, and identifies the golden bal-
ance where networks flourish without financial strain. This innovation proves that
clever thinking can heighten network performance without emptying pockets. As
we move forward, this algorithm sets the stage for networks that are streamlined,
user-friendly, and budget-conscious all at once.

6.7 A Path to Democratization

The idea of democratization become popular after it’s well explanations and impor-
tance by Thomas Friedman (1999) [41]. in the early ages, cutting edge technologies
like high speed internet or space technology typically developed for military [41],
after that it speeded to civilians, the process is known as democratization process.
However, today’s scenario has changed in many cases, as example, tech giant compa-
nies like Microsoft, google, IBM, meta has mission to democratize their developed
technologies by open sources, API, train up peoples by seminars, workshops and
many other formal and informal ways [19].

The one major objective of this research of empowering mobile network planning
through deep learning is to democratize scientific process we developed for mobile
network planning among the relevant parties who become beneficial with this. In
this research we have shown end to end process for traffic and utilization prediction
for LTE network, not only that, how to handle those predicted traffic with our inno-
vative algorithm of radio parameter estimations. In this process we have shown how
can we select the best suited deep learning algorithm for training and performance
evaluation of those models.

This research thesis is the major steppingstone of democratizing scientific process
to empower mobile network planning and make the network management system
more efficient. In future, based on the further interest of relevant parties, we will
organize workshop, seminars on this approach we are proposing for mobile network
planning as a part of democratization.

53



Chapter 7

Discussion and Conclusion

In this concluding chapter, we engage in a comprehensive discussion of the findings
and contributions presented in this thesis. Our journey has led us through the intri-
cate terrain of optimizing mobile network planning using the transformative power
of deep learning. We explore the limitations that our proposed model encounters
and delve into the future prospects that lie ahead in this realm of research. Let’s
reflect on how we are empowering mobile network planning through deep learning
and why this path is being hailed as a route to democratization.

7.1 Discussion and Limitations: Progress and Nav-

igating Challenges

In the realm of mobile network planning, our research acts as a guiding light, har-
nessing the transformative power of deep learning. As we delve into our findings,
achievements, and challenges, we uncover a tapestry woven with advancements and
opportunities. This section reflects on our journey while envisioning a more inclusive
network planning future through the fusion of cutting-edge technologies.

7.1.1 Advancements and Transformations

In our quest for network optimization, our proposed model emerges as a potent
agent of change. It operates smoothly under normal conditions, showcasing its
adaptability and effectiveness. This adaptability is especially evident during busy
social events, where it maintains solid performance even under high user demand.
A significant stride lies in our model’s emphasis on boosting LTE capacity. This
strategic pivot addresses the growing appetite for data-driven services, strengthening
the network’s foundation. However, this focus on LTE capacity could introduce
challenges related to resource allocation for GSM networks. The coordination of
these distinct networks underscores the need for a delicate balance

7.1.2 Recognizing Limits and Overcoming Challenges

To truly understand our research, we must acknowledge its limitations. While our
model excels under normal circumstances, it might experience a slight dip in per-
formance during times of intense user activity. Yet, these challenges motivate us to
recalibrate and optimize the model’s parameters, ensuring it adapts consistently to
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changing conditions.
A crucial consideration revolves around the balance between LTE and GSM net-
works. Our commitment to enhancing LTE capacity raises the question of potential
resource constraints for GSM networks. Addressing this challenge involves careful
resource distribution and comprehensive optimization strategies, fostering a harmo-
nious relationship between these network technologies.
As we peer into the future of network expansion, the increasing number of eNodeBs
demands heightened computational capabilities. Managing this growing network
landscape efficiently necessitates robust processing, highlighting the importance of
optimal computational resource allocation.

7.1.3 Empowering Network Planning and Democratization

Central to our discussion is the idea of empowerment and democratization. Through
deep learning, we unveil a new avenue for network planning, driven by data insights
and predictive capabilities. This approach opens the door for more people to access
sophisticated technologies, equipping network operators with tools to navigate com-
plexities with precision.
Our research journey transcends limitations and challenges, echoing the spirit of
progress. Every constraint becomes a catalyst for innovation, urging us to refine
strategies and develop transformative solutions. As we stand at the intersection of
mobile network planning’s evolution, we envision a landscape where AI and predic-
tive analytics redefine network optimization.

7.2 Conclusion and Future Research

In conclusion, this thesis embarks on an innovative journey to empower mobile net-
work planning through the integration of deep learning. The utilization of three
distinct deep learning algorithms has led to exceptional granular-level cellular net-
work traffic prediction. A pivotal step involves comparing various deep learning
algorithms and selecting the most fitting one that addresses the NP-hard optimiza-
tion challenge of maximizing user throughput.
Our chosen best-suited model, BiLSTM, demonstrates an outstanding R2 score of
0.739, surpassing other model’s (for example LSTM and GRU) performance. Also,
Leveraging a DTW-based self-organized map (SOM), we have streamlined the clus-
tering of distinct eNodeB time series data. Moreover, by anchoring our analysis in
the reference LTE network radio configuration, we’ve identified the QoS breakdown
threshold point, coinciding with the PRB Utilization graph at 70%.
However, the achievements don’t stop there. The introduction of a robust parameter
estimation algorithm triggers dynamic capacity enhancement solutions two months
ahead. This, combined with optimized radio power allocation based on forecasted
LTE network traffic and PRB utilization, leads to a new era of network capacity
optimization.
We dub this endeavor as a path to democratization in mobile network planning.
Why? Because our approach bridges the gap between traditional network plan-
ning intricacies and a more accessible, data-driven decision-making process. By
harnessing the power of deep learning, we are enabling network engineers to not
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only plan and execute soft parameters more effectively but also democratize the ac-
cess to cutting-edge technology for optimizing network performance. This approach
significantly reduces the time lag associated with capacity expansion, enhancing cus-
tomer experiences and empowering Mobile Network Operators (MNOs) to allocate
resources with astute precision.
Looking ahead, our future research trajectory points to addressing the prediction
of traffic peaks during social events, specifically in localized eNodeB serving ar-
eas, through innovative techniques like Restricted Boltzmann Machines (RBM) with
Conditional Random Fields (CRFs). Furthermore, we aspire to achieve seamless dy-
namic resource allocation in complex heterogeneous networks, encompassing GSM,
LTE, 5G, and beyond, based on forecasted traffic patterns and customer demand.
This holistic approach aims to propel the mobile network planning landscape into
a new era of efficiency and accessibility, fostering a democratic network planning
ecosystem.
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