
A Deep Dive into Node-level Analysis with Fusion RNN
Model for Smart LTE Network Monitoring

by

Md Rashidul Islam
20366008

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

M.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University
September 2023

© 2023. Brac University
All rights reserved.



Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Md Rashidul Islam
20366008

i



Approval

The thesis/project titled “Deep Dive into node-level analysis with Machine Learning
Models for Smart LTE Network Management” submitted by

1. Md Rashidul Islam (20366008)

Of Summer, 2023 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of M.Sc. in Computer Science on September 12, 2023.

Examining Committee:

Supervisor:
(Member)

Dr. Md. Golam Rabiul Alam
Professor

Department of Computer Science and Engineering
Brac University

Examiner:
(External)

Prof. Mohammad Zahidur Rahman, Ph.D.
Professor

Department of Computer Science and Engineering
Jahangirnagar University, Savar, Dhaka

Examiner:
(Internal)

Dr. Amitabha Chakrabarty
Professor

Department of Computer Science and Engineering
Brac University

Examiner:
(Internal)

ii



Dr. Md. Ashraful Alam
Associate Professor

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Dr. Amitabha Chakrabarty
Professor

Department of Computer Science and Engineering
Brac University

Chairperson:
(Chair)

Sadia Hamid Kazi, Ph.D
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

iii



Abstract

Predicting and understanding traffic patterns have become important objectives for
maintaining the Quality of Service (QoS) standard in network management. This
change stems from analyzing the data usage on cellular internet networks. Cellular
network optimiser frequently employ a variety of data traffic prediction algorithms
for this reason. Traditional traffic projections are often made at the high-level or
generously large regional cluster level and therefore has the lacking in precised fore-
cation. Furthermore, it is difficult to obtain information on eNodeB-level utilisation
with regard to traffic predictions. As a result, using the conventional approach
causes user experience degradation or unnecessary network expansion. Developing
a traffic forecasting model with the aid of multivariate feature inputs and deep learn-
ing techniques was one of the objective of this research. It deals with extensive 6.2
million real network time series LTE data traffic and other associated character-
istics, including eNodeB-wise PRB utilisation. A cutting-edge fusion model based
on Deep Learning algorithms is suggested. Long Short-Term Memory (LSTM),
Bidirectional LSTM (BiLSTM), and Gated Recurrent Unit (GRU) are three deep
learning algorithms that when combined allow for eNodeB-level traffic forecasting
and eNodeB-wise anticipated PRB utilisation.The proposed fusion model’s R2 score
is 0.8034, outperforms the conventional state-if-the-art models. This study also pro-
posed a unique method that thoroughly examines individual nodes for the Smart
Network Monitor. This approach follows adjustments made to soft capacity param-
eters at the eNodeB level, aiming for immediate improvement or long-term network
growth to meet a consistent QoS standard. The algorithm relies on expected PRB
utilization.

Keywords: LTE Networks, Machine Learning in Networking, Traffic Prediction,
Deep Learning, Mobile Network Capacity, Physical Resource Block, Resource Man-
agement

iv



Acknowledgement

First and foremost, glory be to the Great Allah, with whose help me and able to
finish writing our thesis without too many setbacks.
Second, I want to thank my mentor, Md. Golam Rabiul Alam, for his kind assistance
and counsel with my work. He was there for me anytime I needed him.
Thirdly, IEEE Access 2023 and the judging panel where the paper ”Deep Learning
Based Fusion Model for Multivariate LTE Traffic Forecasting and Optimized Radio
Parameter Estimation” got accepted. DOI: 10.1109/ACCESS.2023.3242861
And ultimately, without my parents’ ongoing support, it might not be possible.
With their kind support and prayer I am now on the verge of my graduation.

v

https://doi.org/10.1109/ACCESS.2023.3242861


Table of Contents

Declaration i

Approval ii

Abstract iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables ix

Nomenclature ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Research Approach . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 Machine Learning Model Development . . . . . . . . . . . . . 4
1.3.4 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . 5
1.3.5 Scope and Limitation . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical Background 7
2.1 LTE Air Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 LTE QoS Parameter Understanding . . . . . . . . . . . . . . . . . . 10
2.3 Knowledge Discovery and EDA . . . . . . . . . . . . . . . . . . . . . 11
2.4 Deep learning algorithm in time series forecasting . . . . . . . . . . . 12

2.4.1 Long Short-Term Memory (LSTM) . . . . . . . . . . . . . . . 13
2.4.2 Bidirectional LSTMs (BiLSTM) . . . . . . . . . . . . . . . . 14
2.4.3 Gated Recurrent Unit (GRU) . . . . . . . . . . . . . . . . . . 15
2.4.4 Deep Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vi



3 System Model 18
3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Datasets Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Exploration of Patterns and Correlation in Datasets . . . . . . . . . 23
3.5 Multivariate Deep Learning Algorithms . . . . . . . . . . . . . . . . 26

3.5.1 Architecture for Multivariate Time Series Prediction . . . . . 26
3.6 Introduction of Fusion Model . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Architecture and Strategy of Fusion Model with RNN . . . . . . . . 28
3.8 Comprehensive RNN and Deep Regression . . . . . . . . . . . . . . . 29

4 Experimental Results 30
4.1 Environment setup and Sequential model design . . . . . . . . . . . 30
4.2 Evaluation and Performance Metrics . . . . . . . . . . . . . . . . . . 32

4.2.1 Regression Metrics . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Experimental Model Outcome . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Performance of the Fusion Model . . . . . . . . . . . . . . . . . . . . 33
4.5 Discussion of Performance Evaluation . . . . . . . . . . . . . . . . . 34

5 Smart Network Management 35
5.1 LTE QoS plaining and Over utilization solution . . . . . . . . . . . . 35
5.2 Capacity Monitoring after Planning and Deployment . . . . . . . . . 35
5.3 Problem Statement in Legacy Capacity Management . . . . . . . . . 36
5.4 Traditional Network Management . . . . . . . . . . . . . . . . . . . 36
5.5 Smart LTE Node monitoring . . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusion 41
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 45

vii



List of Figures

2.1 LTE Architecture and interfaces . . . . . . . . . . . . . . . . . . . . 8
2.2 Physical Resource Block the LTE air interface . . . . . . . . . . . . . 9
2.3 LSTM architecture for predicting future traffic . . . . . . . . . . . . . 14
2.4 BiLSTM architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 GRU architecture for predicting future traffic . . . . . . . . . . . . . 16
2.6 Single layer regression with deep neural network . . . . . . . . . . . . 17

3.1 Proposed System Model of Cellular Network Traffic Prediction, PRB
Utilization and eNodeB Capacity Based Smart Network management. 20

3.2 Data structure of a sample Node . . . . . . . . . . . . . . . . . . . . 23
3.3 Month by Month Average traffic (GB) per eNodeB . . . . . . . . . . 24
3.4 Boxplot of Month-by-Month Average traffic (GB) . . . . . . . . . . . 24
3.5 Weekday vs. Weekend hourly traffic Pattern . . . . . . . . . . . . . . 25
3.6 Daily Average traffic (GB) . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Correlation Plot from different features . . . . . . . . . . . . . . . . . 26
3.8 Architecture of the proposed multivariate Deep Neural Network for

multiple parallel time-series prediction . . . . . . . . . . . . . . . . . 27
3.9 Fusion Model with blended approach . . . . . . . . . . . . . . . . . . 29

4.1 Sequential model for LSTM, BiLSTM and GRU . . . . . . . . . . . . 31
4.2 Training vs Validation loss of a sample eNodeB . . . . . . . . . . . . 31
4.3 Regression plots of the models at the training phase . . . . . . . . . . 33
4.4 Regression plots of the Fusion Model . . . . . . . . . . . . . . . . . . 34
4.5 Actual vs. Predicted Traffic based on different Model . . . . . . . . . 34

5.1 Characteristics of two LTE 10Mhz BW Nodes . . . . . . . . . . . . . 37
5.2 Correlation Heatmap of LTE KPI . . . . . . . . . . . . . . . . . . . . 38
5.3 Network Busy Hours Samples eNodesB . . . . . . . . . . . . . . . . . 38
5.4 Capacity Utilization vs PRB Utilization from NBH Sample . . . . . . 39
5.5 Outliers detection and remove for one sample eNodeB . . . . . . . . . 39
5.6 Capacity Utilization vs PRB Utilization with Deep-Dive Approach . . 40

viii



List of Tables

4.1 Performance of the model in the testing phase . . . . . . . . . . . . . 33
4.2 Performance of the Fusion Model . . . . . . . . . . . . . . . . . . . . 34

ix



Chapter 1

Introduction

The usage of mobile internet data traffic has seen a significant increase in recent
decades. According to the Ericsson Mobility Report released in November 2021,
it is predicted that by 2027, global mobile network data traffic will approach 300
exabytes per month [36]. Although 5G and beyond technology are still under de-
velopment, at present and over the next 2-3 years, LTE will carry most of the data
traffic, especially in developing countries, as it is already established and covers 84%
of the global population as of 2020, The report also highlighted the importance of
sustainable business practices in the mobile industry and emphasized the need for
more energy-efficient mobile networks, with the goal of reducing carbon emissions
and achieving a net-zero carbon footprint by 2030. With the growth of mobile data
traffic, new challenges are emerging, with the topmost being the eNodeB-wise uti-
lization prediction, as the quality of network services, such as speed and latency,
relies on this parameter. The average monthly internet usage per smartphone is
approximately 11.4 GB as of the Report 2021, which is expected to increase almost
four times by 2027. Video traffic currently accounts for nearly 70% of all mobile
data traffic and is predicted to reach around 79% by 2027. With the variation in
user behavior based on location, the LTE network or cell may experience additional
loads. Therefore, it is imperative to predict network utilization accurately in ad-
vance to ensure that Mobile Network Operators (MNO) can handle the user demand
on time and avoid QoS degradation. The report also highlighted that QoS require-
ments varied depending on the application and user behavior.

For example, real-time applications, such as online gaming and video conferenc-
ing, required low latency and high reliability. In contrast, applications such as web
browsing and social media could tolerate higher latency but required fast download
speeds. So, QoS would continue to be a critical factor for mobile network operators
to differentiate themselves in a highly competitive market and provide superior user
experience.

1.1 Motivation

The most complex aspect of network dimensioning is traffic forecasting, according to
[23]. Investors are constantly seeking for the optimal Capital Expenditure (CAPEX)
in the right cell/site/location and minimizing Operational Expenditure (OPEX) to
increase the profitability of the cellular network company. Inaccurate traffic pre-
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dictions might lead to incorrect network sizing, which would increase CAPEX and
OPEX costs and degrade QoS.

In recent times, deep learning-based approaches have gained attention for their abil-
ity to identify patterns in sequential data and group similar data types together [18].
Researchers have explored various algorithms based on Recurrent Neural Networks
(RNN) to forecast multiple types of sequential time series data. Recognizing the
immense potential of deep learning algorithms in predicting future trends, the au-
thors of the study were particularly interested in leveraging this technology to tackle
one of the most critical challenges in cellular network dimensioning: traffic forecast-
ing [22]. To achieve this, modern graphics processing units (GPUs) were utilized to
efficiently execute complex deep learning algorithms with a diverse range of features.

The significance of accurate traffic and user demand information lies in the network’s
ability to effectively manage resource allocation among connected users, ultimately
resulting in an improved quality of user experience [22]. This study aims to enhance
our understanding of traffic behavior in mobile networks and provide valuable rec-
ommendations for triggering the expansion of eNodeBs. By leveraging deep learning
algorithm-based traffic forecasts and utilization correlation charts, network opera-
tors can make informed decisions regarding capacity expansion and ensure optimal
resource allocation in response to changing user demands.

In summary, deep learning has the unleashed potential to play a crucial role in em-
powering mobile network planning. By leveraging deep learning algorithms for traf-
fic forecasting, resource allocation, and network optimization, MNOs can overcome
the challenges of maintaining quality of service, efficient resource utilization, and
network scalability. The utilization of deep learning techniques not only enhances
network performance and user experience but also enables a more democratized and
inclusive approach to mobile network planning.

1.2 Research Problem

Forecasting traffic in cellular networks is crucial for anticipating network conditions,
understanding user usage patterns, and estimating important parameters related to
quality-of-service and resource allocation [30]. Previous research by Fang, Ergüt,
and Patras [37] employed a cell handover-aware graph neural network for city-scale
traffic forecasting. Xu, Lin, Huang, et al. [13] analyzed time series data to cre-
ate geographical distribution maps of forecasted traffic heatmaps for a specific city.
Similarly, Kirmaz et al. from Nokia Bell Lab [26] conducted research on traffic
prediction by dividing the geographic area into pixels.
While these works [37] [13] [26] focused on predicting traffic at a geographical
level, our research concentrates on predicting traffic at each eNodeB or cell level.
Trinh, Giupponi, and Dini [16] and Sun, Wang, Zhao, et al. [39] explored mobile
traffic forecasting and network-level mobile data estimation, respectively, at different
time scales. However, our developed model specifically predicts traffic at an hourly
level, offering more insights into time series data and easy conversion to daily level
predictions [16].
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Lo Schiavo, Fiore, Gramaglia, et al. [38] developed a hybrid approach using Thresh-
olded Exponential Smoothing and Recurrent Neural Network (TES-RNN) to man-
age traffic anomalies at a particular time. Yu, Wang, Li, et al. [40] employed Graph
Attention Network (GAT) and Temporal Convolutional Network (TCN) to predict
traffic overload with large amounts of small-scale redundant data. In contrast, our
focus lies on cellular network traffic forecasting at a granular cell level, treating each
cell as a separate eNodeB. This approach allows easy conversion of cell-level fore-
casts into city or province-level predictions by aggregating all eNodeB traffic within
the geographic area. Furthermore, our research differentiates itself by addressing
two major factors: hourly granularity in time and eNodeB-level or geographical
granularity. This emphasis on granular data traffic prediction aligns with the real-
life challenges faced in network planning. By considering these factors, we aim to
develop an hourly traffic forecast model that meets the specific needs of network
planning.

In summary, the distinctive features of our research compared to other similar
works are the granularity of the traffic prediction in terms of both time (hourly)
and network or geography (eNodeB level). These factors contribute to the unique
contributions of our research in the field of cellular network traffic forecasting.

The central objective of this research was to concentrate on network PRB Uti-
lization using forecasted traffic data. Consequently, we have provided a sequential
examination of the latest network traffic forecasting methods and the approach for
estimating PRB Utilization. While there are some prior works related to cellular
network traffic forecasting that employ different techniques, the Deep-Dive based
smart network Management from forecasted traffic has received limited attention
from researchers. In this section.

The second phase of our research focuses on predicting future network utilization
using forecasted traffic and introduces an algorithm to handle anticipated traffic by
estimating utilization. While some scattered research exists on radio capacity anal-
ysis at various times, Jang, Lee, Kwon, et al. [31] developed a model to estimate
the resource block usage rate, addressing the fixed-length input problem in tradi-
tional RNN models. However, this research [31] does not address how Fusion model
can be utilized to estimate RB usage rate (RBUR). Similarly, Hasan, Kwon, and
Na [15] proposed deep-dive approach for adaptive network management to maintain
throughput in LTE Small-Cell networks, but it primarily follows a reactive approach
without defining proactive measures [15]. Importantly, none of these research works
devise a Fusion model and smart network monitoring based on predicted future traf-
fic.

In contrast, our research tackles this specific issue and proposes an algorithm and
method that triggers actual high capacity utilized site based on forecasted traffic.
This approach aims to proactively optimize and monitor in response to predicted
traffic conditions.
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1.3 Research Methodology

This section refers to the systematic approach and techniques used to conduct re-
search. Also encompasses the overall strategy and procedures employed to acquire,
organize, analyze, and interpret data in order to answer research questions or inves-
tigate a specific problem.

1.3.1 Research Approach

The research design specifies the overall approach that was used in the study as a
quantitative research approach. The research relies on empirical evidence and aims
to be as objective as possible by minimizing biases and subjective interpretations.

1.3.2 Data Collection

The collected LTE 4G datasets from the Operations Support System (OSS) of one of
the MNO were preprocessed to ensure data quality and relevance. This study relies
on authentic network-generated data and the MNO’s configuration as the funda-
mental pillars for its investigation. Here also steps involved handling missing values,
data normalization, feature engineering, and outlier detection. The preprocessing
steps were carefully applied to avoid any bias in the subsequent analysis.

1.3.3 Machine Learning Model Development

Algorithm Selection

In the subsequent stage of the research, the focus shifted towards the selection of
appropriate deep learning models for mobile network planning tasks. Thorough in-
vestigation and experimentation were carried out to determine the most suitable
models. Given the intricacy and characteristics of the data, three widely recog-
nized deep learning architectures were ultimately chosen: Long Short-Term Memory
(LSTM), Bidirectional LSTM (BiLSTM), and Gated Recurrent Unit (GRU). These
models have shown remarkable proficiency in capturing temporal dependencies and
have been successfully employed in diverse time series prediction tasks.

Model Training and Evaluation

After the evaluation of the deep learning models, they were put into action and
trained using the gathered data. The implementation was carried out utilizing a
widely used time series forecasting algorithm, leveraging its rich functionalities and
optimization capabilities. The training process entailed feeding the models with
historical data and iteratively refining the model parameters to minimize predic-
tion errors. Particular emphasis was placed on hyperparameter tuning and regu-
larization techniques to guarantee the attainment of optimal model performance.
The evaluation of the deep learning models’ performance involved the use of suit-
able assessment metrics, including but not limited to Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and
squared correlation (R2). The chosen evaluation metrics were carefully selected to
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offer a comprehensive insight into the models’ predictive accuracy and their capa-
bility to capture underlying patterns within the mobile network data. Throughout
the research, ethical considerations were prioritized. Any potential biases in the
data or models were addressed, and the limitations of the research were openly
acknowledged.

1.3.4 Ethical Considerations

Ethical considerations were given utmost importance during the entire research pro-
cess. The data utilized in this study were anonymized and managed in adherence
to privacy regulations and best practices. The research was conducted with great
respect for ethical guidelines, safeguarding individuals’ privacy and confidentiality.
This chapter has offered an outline of the research methodology utilized in this
study. The subsequent chapter will present the findings and analysis obtained from
applying deep learning models to tackle mobile network management challenges.

1.3.5 Scope and Limitation

Scope

The primary aim of this research is to showcase the revolutionary capabilities of deep
learning algorithms in the field of network management. The study centers around
a particular top mobile network operator (MNO) with an extensive subscriber base
exceeding 50 million users nationwide. Real network-generated data and the MNO’s
configuration are fundamental to this research. Numerous machine learning fusion
models have been developed to cater to the network management objectives, tai-
lored to suit the unique characteristics and needs of the selected MNO. Through
the utilization of available data, these proposed models seek to optimize network
performance and improve the overall user experience.

Limitation

The suggested model does have some limitations as well. Under normal day-to-day
circumstances, the model performs well. However, its performance may experience
a slight decline during social gatherings or events where the number of users in a
particular location significantly exceeds the typical load. Additionally, during the
development of the algorithm for soft parameter tuning, our primary focus was on en-
hancing LTE capacity. As a result of this dynamic resource sharing technique from
GSM to LTE, GSM networks might occasionally encounter resource constraints.
This challenge can be addressed through optimization techniques. Furthermore,
there is a need to improve computational power to accommodate the increasing
number of eNodeBs. In the upcoming chapter, we will provide the outcomes and
detailed examination resulting from the implementation of the developed machine
learning models to tackle the network planning challenges encountered by the se-
lected MNO.
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1.4 Research Contributions

This research delves into the untapped potential of intelligent mobile network man-
agement, aiming to contribute valuable insights to the academic and practical realms.
Our primary objective is to propose a methodology that leverages deep learning al-
gorithms to predict key network components and to address prevalent challenges in
mobile network operations through in-depth node-level analysis.
The major contributions of this research paper are as follows:

• Advanced Fusion Model: We introduce a sophisticated fusion model that
amalgamates deep learning algorithms, including LSTM, BiLSTM, and GRU,
to enhance the precision and efficacy of network traffic forecasting. This ap-
proach factors in multiple variables to model and predict data traffic within
mobile networks. Our specific focus lies in predicting the utilization or cell
load at the eNodeB level, based on forecasted traffic. This prediction holds im-
mense significance for Mobile Network Operators (MNOs), empowering them
to make well-informed decisions about network expansion and ensuring the
maintenance of top-tier service quality.

• Node-Level Analysis Innovation: We present an innovative technique in-
volving a deep dive into node-level analysis to overcome capacity management
challenges. Leveraging the XGBoost Regression method, we identify consistent
patterns of high resource utilization across nodes while filtering out outliers
and sporadic spikes. This approach emphasizes the significance of monitoring
each node individually to uphold QoS benchmarks effectively.

• End-to-End System Architecture: We propose a comprehensive end-to-
end system architecture for intelligent mobile network maintenance. This
architecture not only contributes to cost reduction in terms of Capital Ex-
penditure (CapEx) and Operational Expenditure (OpEx) but also ensures the
continual adherence to QoS benchmarks.

1.5 Thesis Organization

Chapter 2 will delve into the theoretical foundation related to this study, with a par-
ticular emphasis on the knowledge discovery process, machine learning techniques,
machine translation, and technical documentation. Subsequently, in Chapter 3, the
chosen methodology will be outlined. Chapter 4 will present the empirical data and
the corresponding results obtained from the experiments. Moving forward, Chapter
5 conduct a critical identification of the approaches and methods employed, and
assess the validity and reliability of Smart Network Management. Finally, Chapter
6 will offer a comprehensive summary of the work and provide insights into potential
future research and expansions on this subject.
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Chapter 2

Theoretical Background

This section provides an overview of the relevant theoretical foundations pertinent
to the experiment’s framework. It aims to address the following questions:

• How LTE Architecture work and elements of LTE Air interface.

• Importance of LTE QoS Parameter.

• What are the advantages of Exploratory Data Analysis (EDA) and which
algorithms are promising in the field of time series forecasting?

To answer these questions, the first part of this section delves into the knowledge
discovery process in databases. This is followed by an exploration of Exploratory
Data Analysis and a comprehensive discussion on deep learning principles and rel-
evant algorithms. Subsequently, the section presents the current state-of-the-art
fusion models and their quality evaluation. Finally, the section concludes by char-
acterizing traffic patterns and examining the distinct features associated with them.

2.1 LTE Air Interface

LTE Architecture: Long-Term Evolution or LTE, is a wireless high-speed data
communication standard for mobile devices and data terminals. It is a technol-
ogy that cellular networks use to provide high-speed internet access to portable
devices like smartphones, tablets, laptops, and other connected devices. LTE is
designed to offer significantly faster data speeds, lower latency, and better overall
performance than previous generations of cellular technology. Its foundations are
the GSM/EDGE and UMTS/HSPA network technologies, with modifications to in-
crease capacity and speed through the use of a different radio interface and a more
straightforward core network.

The components of the LTE network: A standard LTE system architecture
consists of an E-UTRAN (Evolved UMTS Terrestrial Radio Access Network) and
main component is the Evolved Packet Core, also known as an EPC.
Below is the components:

• User Equipment (UE): The user equipment refers to the mobile devices
or data terminals used by individuals. These devices include smartphones,
tablets, laptops, and other wireless devices capable of connecting to LTE net-
works.

7



Figure 2.1: LTE Architecture and interfaces

• Evolved NodeB (eNodeB): The eNodeB, often referred to simply as “base
station” or “cellular tower,” is a key component of the LTE network. It con-
nects directly to the UE and provides the wireless air interface. It’s responsible
for transmitting and receiving data to and from the user equipment. Each eN-
odeB covers a certain geographical area known as a cell.

• E-UTRAN (Evolved UMTS Terrestrial Radio Access Network): E-
UTRAN consists of multiple eNodeBs and the interfaces that connect them.
It handles the radio access part of the network and ensures that the data is
transmitted efficiently between the user equipment and the core network.

• Evolved Packet Core (EPC): The EPC is the core network component of
LTE architecture. It is responsible for handling tasks related to mobility, se-
curity, and various services. The EPC is composed of several key components:

– Mobility Management Entity (MME): The MME is responsible for
tracking the location of the user equipment, handling authentication, and
managing handovers as the UE moves between cells.

– Serving Gateway (S-GW): The SGW routes and forwards user data
packets between the eNodeB and the packet data network (PDN). It also
manages user-plane mobility within the E-UTRAN.

– PDN Gateway (P-GW): The PGW connects the LTE network to
external packet data networks (such as the internet) and performs tasks
like IP address allocation, policy enforcement, and packet filtering.

– Home Subscriber Server (HSS): The HSS stores subscriber informa-
tion, including user profiles and authentication information. It’s used for
authentication, authorization, and mobility management.

– Policy and Charging Rules Function (PCRF) The PCRF manages
policy enforcement and quality of service (QoS) rules. It helps determine
how different types of traffic are treated on the network and how they
are charged.
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Figure 2.2: Physical Resource Block the LTE air interface

LTE Air Interface: In LTE, the wireless channel used for data transmission and
reception between user equipment (UE) and the LTE base station (eNodeB) is re-
ferred to as the air interface. LTE divides the available frequency and temporal
resources into smaller units known as Resource Blocks (RBs) and Physical Resource
Blocks (PRBs) in order to effectively manage the scarce radio spectrum.

Resource Block known as the The fundamental radio resource unit for LTE.
Within a specified bandwidth, it represents a certain portion of the frequency
spectrum. Each RB in the LTE standard has 12 subcarriers and covers a
frequency range of 180 kHz [18], [12]. An RB’s time duration varies depending
on the type of specified subframe, but it normally corresponds to one slot,
which lasts for 0.5 ms.

1 RB = 12(Sub-carriers) x 7 (Symbols) = 84 Resource Elements. (For
Normal CP: 7 symbols)

1 RB = 12(Sub-carriers) x 6 (Symbols) = 72 Resource Elements. (For
Extended CP: 6 symbols)

Physical Resource Block (PRB) are allotted collectively in A particular
group of RBs that are in both the time and frequency domains. A PRB is, in
other words, a two-dimensional unit for resource allocation. The PRB occupies
a frequency range of 180 kHz and is made up of 12 sub-carriers that follow
one another throughout a period of time (0.5 ms).

The e-NodeB assigns PRBs to particular UEs in the downlink (from the base sta-
tion to the UE) so that they can transmit data. Similar to downlinks, PRBs are
assigned to UEs for data transmission in uplinks (from the UE to the base station).
The LTE scheduler manages the PRB distribution, dynamically allocating PRBs to
UEs according to their quality of service specifications and channel conditions.

LTE can efficiently manage the distribution of radio resources and guarantee that
various users receive enough bandwidth to satisfy their communication needs by
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dividing the available spectrum into PRBs. The system may modify the data rate
dependent on the channel circumstances for each UE with the use of adaptive mod-
ulation and coding methods made possible by the usage of PRBs.

In a nutshell the LTE Resource Block and Physical Resource Block are essential
components of the air interface because they allow for the efficient and adaptable
use of radio resources to provide customers with high-speed data and a variety of
services.

2.2 LTE QoS Parameter Understanding

Quality of Service (QoS) mechanisms are provided by LTE (Long-Term Evolution)
networks to guarantee that various types of traffic receive adequate levels of service
based on their unique requirements. Network operators may properly manage net-
work resources and provide different services the attention they deserve based on
their value and performance standards thanks to these QoS factors. Here are some
significant LTE QoS factors and how to interpret them:

QoS Class Identifier (QCI) for a particular kind of traffic or service, the
QCI is a numeric value (ranging from 1 to 9) that represents the priority level
and the QoS features related to it. Services including telephony, video stream-
ing, best-effort data, and others are given different QCIs. Packet latency,
packet loss rate, and data rate are all determined by specified parameters for
each QCI. The priority is higher and the QoS is better the higher the QCI
value [18], [9].

Bit Rate is the highest data rate that a certain QoS flow is capable of. It
is measured in bits per second (bps) and connected to several QCIs. For
instance, compared to streaming high-definition video, speech services could
have a lower bit rate demand.

Block Error Rate (BLER) is calculated as the ratio of incorrect blocks
to all blocks. CRC is the method used to find errors in the transport block.
The receiver will ask for HARQ NACK for re-transmission if the calculation
does not produce the desired results. 90% effective transmission at the re-
ceiver end suggests that the standard BLER objective should be 10% in order
to guarantee service quality [4]. If the BLER target is not met, further re-
transmissions may be needed, increasing the radio resource consumption. To
maintain the desired QoS benchmark of maximising throughput, ensuring user
equality, and minimising Block Error Ratio, optimised and valuable resource
scheduling strategies are necessary [11].

Resource Allocation based on QoS requirements, LTE dynamically dis-
tributes radio resources like PRBs (Physical Resource Blocks). Critical services
are given the resources required for dependable performance when flows with
higher priorities or QCI require more resources. The scheduler continuously
modifies the PRB allocation as the network load and environmental factors
change. When allocating resources, flows with higher priorities or stricter QoS
specifications are given preference. This makes sure that vital services, like
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voice calls or real-time video streaming, get the resources they need to keep
up their quality.

PRB Utilization is measured the efficiency with which the assigned PRBs
are being used to transmit data, control signals, and other communication
components within the network. It shows how effectively the radio spectrum
is being used to meet the communication needs of user equipment (UE) and
guarantee top network performance. Low PRB utilisation may imply that
resources are underutilised or maybe wasted, whereas high PRB utilisation
shows that a large amount of the given resources are being used. Several factors
influence PRB utilization like Traffic Load, Service Types, QoS Requirements,
Channel Conditions, Scheduling Algorithms, Network Congestion.

Capacity Utilization is how effectively the available resources within an
LTE network are being used to handle user traffic and data demands. It’s
an important metric for ensuring a high-quality user experience and guiding
network management decisions. Capacity utilization is not like PRB utiliza-
tion and its depend on the Spectral Efficiency (SE), SE is usually expressed
in units of bits per second per hertz (bps/Hz). The higher the SE the more
volume traffic can carry with in the limited spectrum.

2.3 Knowledge Discovery and EDA

Knowledge Discovery in the Dataset process, commonly referred to as KDD, is a
systematic approach to extract valuable and previously unknown information from
extensive datasets. It is a part of data mining, which is an essential step within
the broader KDD process. The KDD process encompasses various stages, including
data cleaning, data integration, data selection, data transformation, data mining,
pattern evaluation, and knowledge representation. This iterative and interactive
process involves multiple iterations and feedback loops to uncover accurate and
valuable insights from the data. The ultimate goal of the KDD process is to address
real-world challenges by employing data analysis techniques and tools. Numerous
applications of KDD exist, ranging from market basket analysis, network intrusion
detection, customer segmentation, fraud detection, to recommendation systems

Exploratory Data Analysis (EDA) offers several advantages that make it an es-
sential step in the data analysis process. Here are some of the key advantages of
EDA:

1. Data Understanding: EDA helps researchers and analysts to get a better un-
derstanding of the dataset they are working with. It allows them to explore
the structure, patterns, and relationships within the data, providing valuable
insights into the nature of the variables and their distributions.

2. Data Cleaning and Preprocessing: During EDA, data inconsistencies, missing
values, and outliers are identified. This helps in cleaning and preprocessing
the data before performing any statistical modeling or machine learning tasks,
ensuring that the subsequent analyses are based on accurate and reliable data.
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3. Feature Selection: EDA assists in identifying the most relevant and informa-
tive features (variables) for the analysis. By understanding the relationship
between variables and their impact on the target variable, researchers can
make informed decisions about which features to include in their models.

4. Identification of Patterns and Trends: EDA helps in detecting patterns, trends,
and anomalies in the data. It allows analysts to uncover potential insights
and hidden relationships that may not be evident through summary statistics
alone.

5. Hypothesis Generation: Exploratory data analysis often leads to the genera-
tion of hypotheses for further investigation. By observing patterns or trends,
researchers can form initial hypotheses about relationships between variables,
which can be formally tested in subsequent inferential analyses.

6. Visual Representation: EDA involves the use of various data visualization
techniques such as scatter plots, histograms, box plots, and heatmaps. These
visual representations make it easier to grasp the data’s characteristics and
convey complex information in an accessible manner.

7. Decision-Making Support: EDA provides a solid foundation for decision-making
in various domains. Business leaders, policymakers, and researchers can use
the insights gained from EDA to make informed decisions and take appropriate
actions based on data evidence.

8. Efficient Resource Allocation: By understanding the distribution and char-
acteristics of the data, organizations can allocate their resources effectively.
For example, in marketing, EDA can help identify target customer segments,
leading to optimized marketing strategies.

9. Early Detection of Data Anomalies: EDA allows the identification of data
anomalies and errors at an early stage. Detecting and resolving these issues
early on saves time, resources, and potential complications during later stages
of the analysis.

10. Communication and Collaboration: EDA facilitates communication and col-
laboration among data analysts, domain experts, and stakeholders. Visualiza-
tions and insights from EDA can be shared and discussed, fostering a deeper
understanding of the data and its implications.

Overall, Exploratory Data Analysis serves as a powerful and essential tool in the data
analysis process, providing valuable insights, aiding in decision-making, and guiding
subsequent steps in research and analysis. It helps analysts gain a comprehensive
understanding of the data, paving the way for more accurate and meaningful results.

2.4 Deep learning algorithm in time series fore-

casting

According to Singh and Chauhan [5], Artificial Neural Networks (ANNs) are a math-
ematical model inspired by biological neural networks, emulating their functionality.
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When compared to conventional algorithms, neural networks demonstrate the capa-
bility to handle significantly complex problems with relatively simpler algorithmic
complexity. The primary advantage of using Artificial Neural Networks lies in their
straightforward structure and self-organizing nature, enabling them to tackle a broad
spectrum of problems without requiring additional intervention from the program-
mer. For instance, a neural network could be trained on customer behavior data in
an online shop and predict whether a person is likely to make a purchase or not. An
Artificial Neural Network is composed of nodes, also known as neurons, intercon-
nected by weighted connections that can be adjusted during the network’s learning
process. Each node’s output value is determined by an activation function based
on its input values. Neural networks are organized into different layers: the input
layer receives information from external sources, such as attribute values of the cor-
responding data entry, the output layer generates the network’s final output, and
hidden layers facilitate connections between the input and output layers. The input
value of each node in every layer is computed by summing all incoming nodes’ val-
ues multiplied by their respective interconnection weights [1]. Additionally, neural
networks can be categorized into two primary types [5].

• Feedforward Networks encompass all networks that do not receive feedback
from the network itself. In this type of network, input data flows in a unidi-
rectional manner, starting from the input nodes, passing through 0 to n hidden
nodes, and finally reaching the output nodes. The absence of feedback means
that there is no information sent backward to readapt the system.

• Recurrent Networks comprise all networks that include a feedback mechanism,
enabling them to reuse data from later stages during the learning process in
earlier stages.

2.4.1 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) ar-
chitecture that addresses the limitations of traditional RNNs in capturing long-term
dependencies in sequential data. Regular RNNs struggle with long sequences due to
the vanishing or exploding gradient problem, which makes it challenging for them to
retain information over long periods. LSTMs were introduced by Sepp Hochreiter
and Jürgen Schmidhuber in 1997 to overcome this issue. They introduced additional
components called ”gates” within the LSTM units to control the flow of information.
These gates, namely the input gate, forget gate, and output gate, work together to
selectively allow information to be stored or discarded in the memory cell [2].

Some explanation of how LSTMs work:
Input Gate: It controls which information from the current input should be stored
in the memory cell.
Forget Gate: It determines what information should be discarded from the mem-
ory cell from the previous time step.
Output Gate: It decides what information from the memory cell should be used
as the output of the LSTM unit.

The ability to control information flow through these gates enables LSTMs to re-
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tain important information over longer sequences and efficiently capture long-term
dependencies in the data. This makes LSTMs particularly well-suited for various
sequential tasks such as natural language processing, speech recognition, time series
analysis, and more.

ft = σ (Wf · [ht−1, xt] + bf ) (2.1)

Here ht−1 is the output value of the previous time, as well as xt, denoting the in-
put value of the present time. ft is the output gate whose value range is (0,1). The
weight of the forget gate is represented as Wf , where bi is the bias of that forget gate.

In addition of that, input to input gate, output value and condition of candidate cell
at input gate can also be calculated through output value of previous time and the
input value of present time, which can be calculated through the below equations –

it = σ (Wi · [ht−1, xt] + bi) (2.2)

C̃t = tanh (Wc · [ht−1, xt] + bc) (2.3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.4)

Ot = σ (W0 · [ht−1, xt] + bo) (2.5)

ht = Ot ∗ tanh (Ct) (2.6)

This LSTM is used as a sequential layer for building traffic forecasting model. This
LSTM architecture is modified from [3], [35]. From the above equation (2.1),(2.2),(2.3)
and (2.5) information transfer is based on dot product outcome. If the dot product
result is zero, it means information is not transferred [32]. Information will transfer,
in case of dot product outcome is one.

Figure 2.3: LSTM architecture for predicting future traffic

In these equations (2.3),(2.4) and (2.6), Ct is the cell state of the candidate cell in
t time, which value ranges (0,1). Ot denotes the output gate, it is the input gate,
and ht is the hidden layers in the cell. Here, xt is the cellular network data traffic.
The bias of the network indicates by b function.

2.4.2 Bidirectional LSTMs (BiLSTM)

Bidirectional Long Short-Term Memory (BiLSTM) is an extension of the Long
Short-Term Memory (LSTM) architecture. While traditional LSTMs process se-
quential data in a unidirectional manner, i.e., from past to future, BiLSTMs process
the data in both directions simultaneously.
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In a BiLSTM, the input sequence is fed into two separate LSTM layers: one layer
processes the data from the beginning of the sequence to the end (forward direc-
tion), while the other layer processes the data from the end of the sequence to the
beginning (backward direction). This bidirectional processing allows the BiLSTM
to capture information from both past and future contexts, making it more capable
of understanding the overall context and dependencies in the data.

The hidden states from both the forward and backward LSTM layers are typically
concatenated to obtain the final output of the BiLSTM. This final output incorpo-
rates information from both directions, providing a more comprehensive represen-
tation of the input sequence.

BiLSTMs are particularly beneficial for tasks that require a deep understanding of
the context, such as natural language processing tasks like named entity recognition,
part-of-speech tagging, sentiment analysis, and machine translation. By capturing
information from both past and future contexts, BiLSTMs can effectively model
complex patterns and dependencies in the data, leading to improved performance
in various sequential tasks.
In Fig 2.4 li represent the forward LSTM, li’ represent the reverse directional LSTM,
si and s′i is the time series information delivering in LSTM cells

Figure 2.4: BiLSTM architecture

2.4.3 Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is a variant of the traditional Long Short-Term Mem-
ory (LSTM) architecture and is used in recurrent neural networks (RNNs). Like
LSTM, GRU is designed to address the vanishing gradient problem in traditional
RNNs, allowing it to effectively capture long-term dependencies in sequential data.
GRU was introduced by Kyunghyun Cho et al. in 2014 as a simplified version of
LSTM. It achieves similar performance to LSTM but with fewer parameters, making
it computationally more efficient and easier to train. The key components of a GRU
unit are as follows:

Reset Gate (r): This gate determines which information from the previous time
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step should be discarded or ”forgotten.” It controls how much of the past informa-
tion is relevant for the current time step.
Update Gate (z): The update gate regulates the flow of new information into the
current memory cell. It decides which parts of the new input should be considered
for updating the memory.
Candidate Activation (h ): The candidate activation computes the new candi-
date value that could potentially be added to the memory cell.
Hidden State (h): The hidden state at each time step is the output of the GRU
unit and represents the information that is passed on to the next time step or to
the output layer of the RNN.

In GRU, hidden state output at time t can be calculated as below general expression:

ht = f (ht−1, xt) (2.7)

In equation (2.7), ht−1 is the hidden state status in t − 1 time and xt input time
series value at t time. For explaining to the GRU NN model as shown in architecture
(Fig. 2.5) below equation can be used –

rt = σ (Wr · [ht−1, xt]) (2.8)

zt = σ (Wz · [ht−1, xt]) (2.9)

h̃t = tanh (Wh̃ [rt ∗ ht−1, xt]) (2.10)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (2.11)

yt = σ (Wo · ht) (2.12)

In these equations (2.8),(2.9) and (2.12), Sigmoid function is represented as σ, which
output is (0,1). rt is the updated, which works for determining stored information
quantity from one movement to another. Reset gate zt determines the status of
information of the last state, whether the information is kept or erased. The pa-
rameter which needs to train are denoted as Wr, Wz, Wh, Wo [22], [21], [19] & [23].
During the computation of the GRU, the reset and update gates are determined

Figure 2.5: GRU architecture for predicting future traffic

by the input data and the hidden state from the previous time step. These gates
allow the GRU to control the flow of information and effectively learn long-term
dependencies in the sequential data.
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2.4.4 Deep Regression

The essential challenge of predicting a continuous value based on input may be
solved using the regression approach. [20], [33] After receiving the expected traffic
based on the deep learning model, our study concentrated on utilisation prediction.
In this situation, eNodeB-wise predicted traffic may be used to anticipate utilisation
using deep regression (as indicated in the system model, Fig. 3.1) from the equation
(2.13)

ŷ = w1x1 + w2x2 + · · ·+ wdxd + b (2.13)

Here, w is the weight of input traffic x1 to xd, and b is known as bias or offset.
Weight determines the influence of features in the model. [20], [33] & [34].

Figure 2.6: Single layer regression with deep neural network
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Chapter 3

System Model

In this chapter, the suggested system model was presented with problem formula-
tion, which tries to forecast mobile network traffic demand and optimise resource
allocation. The system combines deep learning algorithms, Fusion Model frame-
work, and data analytics. Finally, we go through the techniques used to analyse
data and anticipate traffic and usage. Our technique provides proactive decision-
making and effective network design to address the changing demands of cellular
networks by utilising cutting-edge technologies.

3.1 Problem Formulation

The complexity of comprehending traffic demands within a cellular network arises
from the vast and irregular distribution of mobile users connected to a specific net-
work. Moreover, this undertaking becomes even more challenging due to the mul-
titude of diverse devices and constantly changing user patterns. It is important to
note that various applications exhibit varying rates of data traffic consumption [30].

From an academic research perspective, gathering a substantial amount of data
to train a model poses a significant challenge. Mobile Network Operators (MNOs)
do not provide eNodeB-specific detailed datasets with valuable features. Typically,
the available Call Detail Records (CDR) present the traffic data in an aggregated
format, lacking segregation based on technology, user count per technology, or per-
protocol category [6]. As a result, the CDR dataset is not particularly helpful for
this research endeavor. Various efforts and initiatives have been made to mine data
from Operation Support Systems (OSS) and the radio and core network endpoints
to collect a suitable dataset for analysis.

Network traffic forecasting is a crucial task in network dimensioning due to its direct
impact on eNodeB-level utilization. Essentially, the traffic and utilization at the eN-
odeB level exhibit a direct correlation, influencing the overall network performance
and user experience. If the utilization increases in an uncontrolled manner, leading
to additional users sharing the same physical resource block (PRB), it will adversely
affect the user experience since the initial design did not account for such high shar-
ing. To prevent this, network expansion needs to be triggered before reaching the
capacity threshold in such cases. On the other hand, if the traffic fails to increase
as predicted, the eNodeBs will be underutilized, resulting in wasted resources.
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The main challenge lies in the fact that network engineers typically become aware
of these scenarios only after they have occurred in specific eNodeBs within a live
network. Subsequently, engineers must take proactive measures to address the issue
by implementing capacity solutions to increase or decrease resources, as required.
However, during this lead time, customers may suffer from a degradation in the
quality of service (QoS). It would be highly advantageous for network planners and
engineers to identify eNodeB-level traffic patterns, PRB utilization, and estimate
radio parameters before these issues manifest in the network. This would enable
network engineers to initiate timely actions, mitigating the impact on customers
and minimizing their suffering.

Consequently, we have devised a Non-deterministic Polynomial (NP) hard prob-
lem based above-sated situation to address the solution. NP -hard problems are
commonly used in formalized research problems [25], [17]. This research question
can be classified as an optimization problem as our objective is to find out the
maximum user throughput (Th)in a particular time for each eNodeB and which is
inversely proportional with PRB Utilization (PRBUt), and other network contains.

Objective function, Max Th =
1

PRBUt

+ C1 (3.1)

Here in the objective function (3.1), the value of constant C1 will change according to
the configured radio bandwidth of each eNodeB. In other words, a user throughput
of a particular eNodeB can vary based on configured bandwidth even in the same
PRB utilization.
Similarly, future PRB utilization can be computed based on predicted traffic volume
on that node and other factors. Suppose we want to calculate a cluster of eNobeB
(number of eNodeBs in same geographic are creates cluster) future performance or
PRB Utilization (PRBU). In that case, this can be possible with predicted traffic
volume (V ol), and other factors i.e., Average user equipment

(
UE

)
, Maximum user

equipment Max (UE), Downtime (DT ), and other unknown factors C2. Thus, we
can write the PRB Utilization equation as below for a cluster of eNodeBs:

median {PRBUT} ×BW lim
T→+∞

1

T

t+60∑
t+1

∑
e∈E

(V olT,e + UET,e −DT,e) + C2 (3.2)

In the above equation (3.2), we have considered only UE (User Equipment), because
Max (UE) varies in a certain geographic area or cluster only because of special cir-
cumstances and social events. Prediction of max UE for a particular eNodeB could
be another research question we will address in our future work. However, we have
considered average UE in the computation process, representing the number of con-
nected user equipment in a particular eNodeB for a specific time frame. eNodeB-wise
count of UE for a particular hour depends on cellular network operators’ market
share and population of that eNodeBs coverage area. So, in most cases, the UE
will not change drastically for the yearly business plan (BP). In standard network
conditions, there is minimum eNodeB downtime (DT ), where DT negatively impacts
traffic volume and PRB Utilization. So, it’s easily understandable that future traffic
is the most vital thing for predicting utilization as well as user throughput. If we
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can rightly predict the traffic or user throughput, then it’s possible to take action
to maintain the quality of service. In equation (3.2),

∑
e∈E V olT,e is the summation

of all eNodeB (E) traffic in a cluster.

By taking into consideration all of these actual network factors, we can simplify
the PRB Utilization equation for one single eNodeB -

PRBUt∈T ×BW = lim
T→+∞

1

T

(
V olT,e + UET,e −DT,e

)
+ C2 (3.3)

As eNodeB-wise bandwidth (BW ) and UE is almost constant for a particular net-
work planning year, so it can assume that PRB utilization is directly proportional
to traffic growth and bandwidth of a particular spectrum band. In equation (3.2)
and (3.3), time T = {t+ 1, t+ 2, · · · , t+ 60}, that means maximum 60 days hourly
future PRB Utilization is denoted as PRBUt+60, where V olt+60 indicates predicted
traffic volume (unit bits) in the same time frame.

The researchers have recognized the significant potential of deep learning algorithms
in predicting time series data. Considering this, they have developed prediction mod-
els using a unique fusion strategy of deep learning algorithms. These models aim to
forecast future traffic volume and physical resource block (PRB) utilization.

However, their research goes beyond solely predicting traffic and PRB utilization.
They also assess the predicted PRB utilization based on the traffic data. Using this
assessment, they have developed an algorithm for estimating radio network param-
eters. The purpose of this algorithm is to trigger appropriate actions to maintain
the network’s quality of service (QoS) benchmark. In other words, they aim to dy-
namically adjust the network parameters based on the predicted PRB utilization to
ensure optimal QoS for users.

3.2 System Model

Figure 3.1: Proposed System Model of Cellular Network Traffic Prediction, PRB
Utilization and eNodeB Capacity Based Smart Network management.

In this system model section, the cellular network traffic prediction system model is
presented. In Fig. 3.1, we have proposed a cellular network traffic prediction model
using deep learning algorithms.
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Through a thorough data mining method, eNodeB-wise traffic and other associate
parameters were gathered in the first step. Due to the complexity of LTE data,
which includes a number of underlying attributes and information, it is kept in the
local database after collection. The model forecasts traffic, which is the main goal
of this study, thus after data storage, we completed the exploratory data analysis
(EDA) portion. Exploratory Data Analysis (EDA), as we all know, is the process of
locating significant characteristics and patterns in datasets. We have discovered any
missing data in the datasets from EDA, which is explained in the section Exploring
Patterns and Correlation in Datasets.

In second stage, basic model build-up done and based on train model Fusion strat-
egy used in RNN model, detail architecture discussed in section Architecture and
Strategy of Fusion Model with RNN, before the model build-up multivariate features
included as train data to introduce events occurrence and forecast simile to realistic
time-series traffic.

Based on predicted traffic, with the help of Deep Regression we forecast the PRB
utilization and build an algorithm which help to Estimation QoS Parameter and
decision direction to Long-term Solutions involving new node growth or Step-up So-
lutions involving PRB load assessment [41].
Finally, in operation phase a Deep-Dive approach taken to identify the abnormally
behaved node for further network management which discussed in chapter 5.

3.3 Datasets Collection

We used telecommunications dataset that typically contains a collection of infor-
mation related to various aspects of a telecommunications LTE network Operations
Support System (OSS) of one of the MNO. This data can include a wide range of
metrics and measurements that help analyze, optimize, and manage the network’s
performance and resources. The dataset spans 290 days of hourly data from 890
eNodeBs, yielding a total of 6.2M data points per metric. The dataset is divided
into training and test sets, with a ratio of 79:21. Additionally, a 61-day validation
dataset is isolated for final model evaluation. The dataset features six key metrics -
traffic, user throughput, cell throughput, average user counts, max user counts, and
PRB utilization.

This dataset contains all encrypted eNodeB-wise parameter information located
in a densely populated city in South Asia. Let’s assume the whole dataset as a
Et = {Ec1t, Ec2t, ...Ecit}, Where Et is the sets of all eNodeB and Ecit is the all features
of each individual eNodeB regardless of time (t). So, the aggregated eNodeB-wise
traffic (Tr) in a time frame T is,

A(T ) = Σr(t)∈R(T )E(t)Σt∈T a(t) (3.4)

The Cellular Network dataset contains the following information and features used
in this work:

• eNodeB: eNodeB is the Radio network element of the LTE network, which is
also known as Evolved Node B.
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• Traffic: Traffic means a combination of Uplink (UL) and Downlink (DL) in-
ternet Traffic from the Radio network end. The counter formula of traffic is
as below: ∑

downlink traffic volume for PDCP

+
∑

uplink traffic volume for PDCP

The unit of traffic is Gigabits here.

• Utilization: Utilization indicates the usage of Physical Resource Block (PRB)
in LTE system. The higher number of utilization indicates more usage of LTE
resources. Utilization can be formulated in counter level by the below formula:

AvgnumberofusedPRBs

NumberofavailablePRBs

• Max UE: Maximum number of Users connected at an instance in a particular
node considered as Max UE.

• Avg UE: Avg UE is the average number of connected Users per hour in a
particular node

• Cell TP: Cell TP means Cell Throughput, which is the sum of all users’
throughput in a particular eNodeB or any node for a unit time frame. The
counter level formula can be represented as below:∑

downlink traffic volume for PDCP∑
duration of downlink data transmission in a Node

• User TP: A particular user receives an amount of data on average, known as
User Throughput or User TP. In other words, the average number of packets
received by the User in a unit time frame. The counter level formula for
User TP as below –

(
∑

DL traffic−DL traffic volume sent in last TTI)

Data transmit duration except last TTI

During data modeling of traffic forecasting for utilization prediction, all eNodeB
has been classified in different classes according to their time-series behavior. One
sample Node Data structure shown in fig 3.2 where 7 major KPIs are illustrated
with hourly values.

With these 7 KPIs like Traffic GB, PRB Utilization, User TP, Cell TP, Max UE,
Avg UE and Downtime a NodeB can be summarized with respect to usages, uti-
lization, QoS and service. There are some other KQIs (key quality indicator) in
LTE like CQI Index but it only define the data quality index, but selected 7 KPIs
indicates over-all performance and have correlation with PRB/Capacity Utilization
which shown in fig 3.7.
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Figure 3.2: Data structure of a sample Node

3.4 Exploration of Patterns and Correlation in

Datasets

We first extracted critical features of the dataset through feature engineering. Es-
sential feature means which information has highly correlated with traffic data. As
we considered multivariate inputs for the traffic prediction model, those inputs have
different units. For this reason, data normalization is necessary to avoid systematic
bias. We have used the min-max method in this work to transform all multivariate
inputs from zero to one. Scaling input data helps reduce biasness as well as in-
crease the accuracy of the traffic forecasting model. Equation (3.5) is used for data
transformation:

zn =
x− xmin

xmax−xmin

(Newmaxx −Newminx) +Newminx (3.5)

Maximum data denoted as xmax, and xmin is the minimum of the data. Newmin and
Newmax is the zero and one respectively [29]. After Normalization and transforma-
tion, we divided data into two parts: test and train. In this research, we have split
the training and test data ratio as 79:21.

We try to comprehend the dataset before trying to identify patterns because it
provides some insight into how traffic fluctuates over time and the crucial hours
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that contribute to overall data traffic [41].

E(t) =
351∑
i=1

(Traffic in hours) /Number of Days (3.6)

Figure 3.3: Month by Month Average traffic (GB) per eNodeB

Figure 3.4: Boxplot of Month-by-Month Average traffic (GB)
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Figure 3.5: Weekday vs. Weekend hourly traffic Pattern

Figure 3.6: Daily Average traffic (GB)

From the above four figures, we can quickly identify the pattern of the hourly traffic
dataset of 351 days. Below equation (3.6) used to identify data patterns per eNodeB.
From Fig. 3.3, it can be easily understood that traffic is increasing over the period.
We have also noticed the hourly traffic difference between weekdays and weekends
in Fig. 3.5. The Monthly average traffic box plot is showing the median (Q2) traffic
is increasing in every month Fig. 3.4. In Fig. 3.6, it represents the one special
day in a week when traffic is almost double the rest of the days. Five features that
are crucial components for forecasting cellular network traffic and comprehending
the whole LTE network for sizing have been gathered in this study to anticipate
future eNodeB-wise traffic. For the Fig. 3.7 correlation (r) plot, we used the below
equation (3.7) for each pair –

r =
n (

∑
xy)− (

∑
x) (

∑
y)√[

n
∑

x2 − (
∑

x)2
] [
n
∑

y2 − (
∑

y)2
] (3.7)

The correlation diagram in graphic form According to Fig. 3.7, utilization and
traffic are directly associated, but User TP (User Throughput) and both traffic and
utilization are adversely correlated. This suggests that increased traffic will result in
increased usage, decreased user throughput, or a reduction in the quality of services
(QoS). From a network design standpoint, we want to maintain usage at its highest

25



Figure 3.7: Correlation Plot from different features

level. If use rises, the eNodeB will experience unacceptable traffic, necessitating the
need for network expansion. MNOs can maintain standard usage and QoS in this
way [41].

3.5 Multivariate Deep Learning Algorithms

With the aid of three cutting-edge deep learning algorithms (LSTM, BiLSTM, and
GRU), we proposed a state-of-the-art fusion model for predicting network traffic.
We have taken into account multivariate inputs for modeling and forecasting Mo-
bile network data traffic, in contrast to the majority of previous studies. Based on
anticipated traffic, we estimated eNodeB-level utilization (or cell load). One of the
important results of this research is the deep learning model-based traffic forecasting
technique’s prediction of eNodeB-level utilization, which will assist MNOs in decid-
ing whether to expand their networks in order to maintain benchmark QoS [41].

3.5.1 Architecture for Multivariate Time Series Prediction

Actual cellular network traffic has other relationships besides those with the prior
data trend. The amount of data traffic on a specific eNodeB might vary depending on
a number of variables. For instance, if an eNodeB is unavailable for a longer period
of time than usual, traffic may drop significantly. The reason for increased traffic is
also any social or religious event that draws more people to congregate beneath one
or more eNodeBs in a specific area. Therefore, we explored Multivariate input-based
time-series traffic prediction in light of those actual network dimensioning issues [41].
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Figure 3.8: Architecture of the proposed multivariate Deep Neural Network for
multiple parallel time-series prediction

If we consider both the factors as affecting elements for traffic forecasting. In other
words, denoting the related variables by x1,t, x2,t, · · · xk,t and at the end of t time
traffic T1,t can be represent as equation (3.8)

T1,t = f1 (x1,t, x2,t, · · · , xk,t, x1,t−1, x2,t−1, · · · , xk,t−1 · · · ) (3.8)

After forecasting traffic T1,t, next t+1 time traffic will be dependent on all previous
stage variables. Considering this logic equation (3.8) can be written as below for
t+k time predicted traffic Tk,t+k:

Tk,t+k = fk (x1,t, x2,t, · · · , xk,t, x1,t−1, x2,t−1, · · · , xk,t−1 · · · ) (3.9)

As per the working principle of multivariate time series analysis, where different vari-
ables are dependent on their previous value as well as other feature or variables [35].
Like univariate time series, the major objective of multivariate time series prediction
is to get the data forecast. But multivariate function enables more accurate results
with the help of other associate parameters, which we include in this research work.
As represented in the deep neural network model architecture in Fig.3.8, after collect-
ing raw time-series input data, key features are extracted from dataset.
Later on, we generated time series from this feature extracted data by using the
sliding window technique algorithm. The sliding window technique works on N-1
historical time series data [14]. The working principle is after feature extraction,
ts function generate the time series data (as shown in Fig.3.8) and explained by
algorithm 1.
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Algorithm 1: Time-Series generation with sliding window technique

Data:
A: array of traffic and feature1

p: number of days in past as sliding window
f: number of total features
Result: return array of X and target Y

initialization;
x, y ← 0;
for i← p to length(A) do

append(A[i− p : i, 0 : f ])toX

append(A[i : i+ 1, 0])toY

end
return X, Y

3.6 Introduction of Fusion Model

In many fields, including finance, weather forecasting, and sales forecasting, time
series forecasting is an essential responsibility. In time series data, complex patterns
and connections are frequently difficult to detect using conventional methods. Due
to their capacity to recognize long-term dependencies, deep learning architectures
like LSTM, BiLSTM, and GRU have demonstrated promising outcomes. Each ar-
chitecture, however, has advantages and disadvantages. The objective of this study
is to develop an ensemble fusion model by utilizing the complementary nature of
these architectures. And in this paper, we propose a fusion model for time series
forecasting by leveraging the strengths of Long Short-Term Memory (LSTM), Bidi-
rectional LSTM (BiLSTM), and Gated Recurrent Unit (GRU) architectures. The
fusion approach aims to improve the accuracy and robustness of predictions by com-
bining the unique features of each individual model. We present the design, training
process, and evaluation results of the fusion model compared to standalone LSTM,
BiLSTM, and GRU models.

3.7 Architecture and Strategy of Fusion Model

with RNN

Three primary parts make up the fusion model: LSTM, BiLSTM, and GRU. Sep-
arate temporal patterns and characteristics are extracted by each component after
individually processing the input time series data to predict for future traffic vol-
ume and PRB utilization. The final forecast is then produced by combining the
results of these components using an ensemble technique, such as Blending. A vali-
dation dataset is kept separate and used to make predictions rather than the entire
dataset being used to train the basic models. Models are trained individually on
each dataset, and their predictive performance is evaluated using various accuracy
metrics. Based on the evaluation results, each dataset is assigned the model that
demonstrated the best accuracy. A systematic comparison of the models’ perfor-
mance showcases their relative strengths.The analysis reveals that the performance
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Figure 3.9: Fusion Model with blended approach

of LSTM, BiLSTM, and GRU models varies across datasets. Some datasets exhibit
strong correlations with LSTM’s ability to capture long-range dependencies, while
others benefit from the bidirectional nature of BiLSTM or the efficiency of GRU.

3.8 Comprehensive RNN and Deep Regression

The conventional recurrent neural network (RNN) algorithm processes inputs indi-
vidually, but it suffers from degraded performance over long time series or sequences
due to its lack of memory in the architecture [27].

To address this memory issue, we have chosen to utilize Long Short-Term
Memory (LSTM) instead of the traditional RNN model. LSTM is an ad-
vanced version of the recurrent neural network model that excels at captur-
ing chronological sequences and their long-range dependencies more effectively
than conventional RNNs. It was specifically designed to tackle the long-term
dependency problem faced by standard RNNs. In the LSTM architecture for
computing forecasting traffic or any type of time series data, the process begins
with calculating the output value from the previous time data and presenting
the input series data, which is then used as input for the forget gate [24], [28].

GRU is a relatively newer RNN model introduced by Kyunghyun Cho et al. in
2014, and it shares a similar architecture with LSTM. However, GRU models
offer greater convenience and simplicity in both training and implementation.
The neural network architecture of GRU reduces computational complexity
due to the presence of update and reset gates, which allows it to effectively
retain long-term states of the cell [23].

Alternative of ML Regression algorithm, Deep architectures, or neural net-
works with several layers, are frequently used in deep regression. An input
layer, one or more hidden layers, and an output layer make up these networks.
The nodes (neurons) that make up each layer use weights and activation func-
tions to alter the input data.By introducing non-linearities, activation func-
tions allow the model to reflect intricate interactions between inputs and out-
puts. Deep regression frequently employs the ReLU (Rectified Linear Unit),
sigmoid, and tanh activation functions.
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Chapter 4

Experimental Results

This chapter will give an overview over the achieved results, the environment setup,
used data and the experiment process to solve the given research questions. The
following questions will be answered in detail, with section focusing on the setup of
the data set and the experiments and section 4.4 presenting the achieved results.

We’ll thoroughly review our models’ performance in this chapter. To gauge how
well our predictions correspond with the actual data, we’ll make use of numbers,
graphs, and comparisons. We’ll also take a closer look at a unique method in which
we combine various models to function as a cohesive one. This collaborative strat-
egy, known as fusion, gives our analysis a fresh perspective.

We’ll get into the specifics of our analysis as we go on. We’ll discuss the per-
formance of our various models and how they interacted. We’ll compare the actual
figures to the forecasts to determine how well they match. We’ll learn from this
process how effective our strategies are in practical settings. So let’s set out on this
voyage and investigate the revelations that lie in store for us in the sections that
follow.

4.1 Environment setup and Sequential model de-

sign

TensorFlow, scikit-learn, and some common python libraries like pandas, seaborn,
etc. are used to set up the virtual environment. The system requirements were
created using Windows 10, a Ryzen 5 3600 processor, 32GB of RAM, and an RTX
3070 graphics card. The parameter configuration for creating the model and taking
Multivariate input below structure shows the best evaluation score.

For each model epochs size: 100, batch size: 128, Adam optimizers with learn-
ing rate: 0.001 is considered. For optimized and efficient training, some callbacks
are used like EarlyStopping : To stop training when a monitored metric has stopped
improving, ModelCheckpoint : To save the Keras model or model weights at some
frequency and ReduceLROnPlateau: To reduce the learning rate when a metric has
stopped improving.
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Figure 4.1: Sequential model for LSTM, BiLSTM and GRU

Figure 4.1 illustrates the Sequential model of the multivariate LSTM, BiLSTM, and
GRU models designed for predicting multiple time-series instances. These models
are configured with five features and 24 time steps for the prediction process. The
entire ensemble of 890 nodes across various sites undergoes training through this
tailored model and proceeds to generate predictions for the subsequent 62-day pe-
riod.

In Figure 4.2 shows that training and validation loss accuracy was closer within
17 epochs for a sample eNodeB

Figure 4.2: Training vs Validation loss of a sample eNodeB
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4.2 Evaluation and Performance Metrics

Performance metrics are an integral component of every machine learning pipeline.
They provide valuable insights into the progress and quantify the model’s effec-
tiveness. Regardless of whether the machine learning model is as simple as linear
regression or as advanced as state-of-the-art techniques like BERT, a metric is essen-
tial to assess model performance. These metrics play a vital role in both regression
and classification tasks, reflecting the nature of the performance evaluation. Metrics
are utilized to monitor and evaluate the model’s performance during both training
and testing phases, and they do not necessarily need to be differentiable.

4.2.1 Regression Metrics

Regression metrics are evaluation metrics used to assess the performance of machine
learning models in regression tasks. In regression, the goal is to predict continuous
numerical values rather than discrete classes.

Mean Squared Error (MSE) is a widely used performance metric in re-
gression tasks within the field of machine learning and statistics. It measures
the average squared difference between the predicted values and the actual
values of a continuous target variable.

MSE =
1

N

n∑
k=1

(yt − xt)
2

(4.1)

Root Mean Squared Error (RMSE) is the square root of MSE and is
preferred when the metric needs to be in the same unit as the target variable.
It represents the average magnitude of errors in the original scale of the data.

RMSE =

√√√√ 1

N

n∑
k=1

(yt − xt)
2 (4.2)

Mean Absolute Error (MAE) measures the average absolute difference
between the predicted values and the actual values. It is less sensitive to
outliers compared to MSE. MAE is robust to outliers because it treats all
errors equally. It is particularly useful when the dataset contains extreme
values or when large errors are less critical for the application. For example,
in some scenarios, being off by a certain amount may have similar consequences
regardless of the actual value, and in such cases, MAE provides a more relevant
evaluation metric

MAE =
1

N

n∑
k=1

|yt − xt| (4.3)

R-squared (R2) also known as the coefficient of determination, evaluates
the proportion of variance in the target variable that can be explained by the
model. It provides a measure of how well the model fits the data.The coefficient
of determination can also be interpreted as a percentage by multiplying it by
100.

R2 = 1−
∑n

k=1 (yt − xt)
2∑n

k=1 (ȳ − xt)
2 (4.4)
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4.3 Experimental Model Outcome

We have forecasted the 62-day traffic as well as the usage of that specific eNodeB
for each of the 36 clusters out of the total 890 eNodeB using the system design and
trained model. In the first stage, we use all three deep learning algorithms—LSTM,
BiLSTM, and GRU—to predict traffic for each enodeB. Then, components using an
ensemble technique, such as Blending, a fusion of deep learning algorithms create
to mix all of the deep learning algorithms to forecast best for our datasets after
determining which deep learning models match well for which specific enodeB.

Figure 4.3: Regression plots of the models at the training phase

Model MSE MAE RMSE R2

LSTM 0.4478 0.4355 0.6692 0.7635
GRU 0.4461 0.4346 0.6679 0.7644
BiLSTM 0.3922 0.4158 0.6262 0.7929

Table 4.1: Performance of the model in the testing phase

Evaluating the model’s overall accuracy Evaluation Criteria are combined and shown
in Fig. 4.3. This plot is used to find the predicted and actual values relationship.
Also, Table 4.1 presents the testing results of the proposed model.

4.4 Performance of the Fusion Model

According to each node’s observation, BiLSTM achieves a high score, 24% in LSTM
and 20% in GRU, out of 890 nodes in 56% of nodes. The model’s forecasting ac-
curacy varied because different nodes’ traffic patterns differ. A fusion model was
used in this situation, and the best model was chosen based on training accuracy
and minimal loss. The overall system’s prediction R2 score from the fusion model
was 0.8034. The experimental outcomes of the suggested model during the testing
phase were ideal, as shown by Fig.4.4 and Table 4.2.

Figure 4.5 also displays an example of eNodeB’s traffic patterns with various model
and R2 values. The finding supports the hypothesis that the proposed multivari-
ate fusion model is capable of time series traffic forecasting and demonstrates the
identical fundamental character of the actual and forecasted data sets.

33



Figure 4.4: Regression plots of the Fusion Model

Fusion Model
MSE 0.3723
MAE 0.4025
RMSE 0.6101
R-Square 0.8034

Table 4.2: Performance of the Fusion Model

Figure 4.5: Actual vs. Predicted Traffic based on different Model

4.5 Discussion of Performance Evaluation

This chapter has given a general overview of the methodology we used to choose
the best deep learning models that were customized for each unique eNodeB and
allowed for precise traffic forecast. We used various deep learning algorithms after
determining the best deep learning model for each eNodeB to create a fusion model
for thorough training. Our results show that this fusion model fared better at pre-
dicting cellular network traffic than individual models.

Then, using the Deep Regression technique, we were able to use the trained model to
estimate traffic volume (Vol) and then predict LTE channel Physical Resource Block
(PRB) Utilization (PRBU) for various eNodeB clusters. By establishing acceptable
throughput benchmarks, PRB utilization is crucial for preserving Quality of Ser-
vices (QoS). Our fusion model showed that it could count highly utilized samples
accurately and with few errors. This proved the fusion model’s usefulness.
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Chapter 5

Smart Network Management

5.1 LTE QoS plaining and Over utilization solu-

tion

After predicting both traffic and utilization, the network planner used network op-
timization techniques to solve over utilization problems. These methods involved
predicting radio characteristics with a goal of reducing Mobile Network Operators’
Capital Expenditure (CapEx) spending. Planner decides whether to use step-up or
long-term solutions based on the design threshold. In step-up solutions, planner
offers soft parameter tuning or enables capacity adjustment of CQI Switch or PRB
power boost, on the other hand in long-term solutions It is recommended for hard
capacity expansion with the implementation of Multibeam Cell Split Solution [7],
New Spectrum addition [8], and planning and deployment of a new node [8], [10].
Capital expenditure (CapEx) also increases with new node expansion.

5.2 Capacity Monitoring after Planning and De-

ployment

After the initial planning or existing eNodeB upgradation and implementation phases,
LTE capacity monitoring is a critical component in maintaining the performance
and efficiency of a cellular network. LTE is a commonly utilised wireless technology
that offers mobile devices high-speed data and multimedia capabilities. Following
the completion of network planning and deployment, continuing network capacity
monitoring is crucial for a number of reasons, including network performance optimi-
sation, congestion management, load balancing, resource efficiency, and subscriber
experience management.

In a nutshell LTE capacity monitoring is essential for preserving the overall func-
tionality and health of cellular networks. It gives network operators the knowledge
and abilities needed to control network congestion, optimise performance parame-
ters, make informed strategic decisions, and guarantee a top-notch user experience.
Operators can dynamically adjust to shifting conditions and demands by keeping a
close eye on how network resources are being used. The ability to proactively address
new difficulties is fostered by this continual process of network capacity monitoring
and analysis, which ultimately improves organisational performance and customer
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happiness. In a constantly changing technical environment, LTE capacity monitor-
ing essentially acts as the cornerstone for preserving the success, responsiveness, and
functionality of cellular networks.

5.3 Problem Statement in Legacy Capacity Man-

agement

The increasing demand for data-intensive applications, and the complex interplay of
network components. In Legacy LTE capacity management faces significant hurdles
in efficiently handling the growing demand for data services, optimizing network
resources, and maintaining a consistent quality of service (QoS) for users. As the
usage of data-hungry applications continues to rise, legacy LTE networks struggle to
accommodate the increased traffic load, resulting in potential congestion, reduced
data speeds, and deteriorating user experiences. Moreover, the legacy architecture’s
static resource allocation approach lacks the flexibility needed to adapt to varying
usage patterns and demands. This rigid allocation can lead to under utilization
of resources in some areas and over utilization in others, hindering overall network
efficiency.

Furthermore, legacy LTE capacity management often relies on manual interven-
tions and lacks real-time insights into network performance. This reactive approach
not only delays issue identification but also limits the operators’ ability to proac-
tively address capacity constraints and bottlenecks. The lack of comprehensive and
automated monitoring tools hampers the operators’ capacity to accurately predict
network congestion points and plan for necessary upgrades or optimizations.

In addition, the complexities introduced by the coexistence of multiple technolo-
gies, such as LTE and earlier generations, exacerbate the challenge of legacy LTE
capacity management. Ensuring seamless interoperability and optimizing the uti-
lization of resources across different technologies poses intricate technical hurdles.

Overall, legacy LTE capacity management struggles to strike a balance between
catering to ever-increasing data demands, efficiently allocating network resources,
and delivering a satisfactory user experience. Transformative strategies and ad-
vanced tools are imperative to modernize capacity management practices and alle-
viate the constraints imposed by the limitations of legacy LTE networks.

5.4 Traditional Network Management

The amount of LTE User Equipment (UE), which includes things like smartphones
and tablets, can have a big impact on how much user throughput (measured in
megabits per second, Mbps), is actually available. However, the user throughput
(Mbps) metric is typically the only consideration when performing an LTE capacity
analysis. Additionally, in the process of aggregating data at the network level to
assess spectrum efficiency, there is a tendency to overlook or smooth out the dis-
tinctive characteristics associated with individual network nodes.
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(a) eNodeB with low LTE UE (b) eNodeB with High LTE UE

(c) eNodeB with High LTE UE 3Dimen-
sion relation

Figure 5.1: Characteristics of two LTE 10Mhz BW Nodes

Fig 5.1 its observe that with same configuration and capacity of two different eN-
odeB have different characteristics, Fig 5.1a shows that eNodeB with lower UE
can serve upto 15 Mbps at height PRB utilization, on the other hand in Fig 5.1b
with high UE can serve upto 10 Mbps and bootblack to height PRB utilization.
As a result, each eNodeB exhibits unique characteristics based on user behavior,
and this is dependent not only on the traffic volume they can handle but also on
the UE/devices that are simultaneously accessing that specific eNodeB. The Fig
5.2 also shows that utilization is highly correlate with UE and traffic volume.
In traditional capacity monitoring with manual interventions, not all usage patterns
are typically recorded and for simplicity only Network Busy Hours (NBH) samples
are taken to determine throughput at a desired PRB usage. But when the NBH
sample of all eNodeBs is combined for regression, the idiosyncrasies of an individual
eNodeB are diluted.
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Figure 5.2: Correlation Heatmap of LTE KPI

In Fig 5.3a, Outliers sample not removed in NBH Sample, so overfitting or under-
fitting will bias the data, Although it shows that the coefficient of determination is
R2 0.8562 and the predicted throughput is 10.9511 mbps at 80% utilization, it is
not true that all eNodeB will provide 10 mbps at 80% utilization.

From Fig 5.4 shows that high capacity utilized eNodeB (> 80%) have lower PRB
utilization (< 85%) (Green dot and Orange dot) which determine that utilization

(a) NBH Sampless with outliers (b) Utilization and Histogram

Figure 5.3: Network Busy Hours Samples eNodesB
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Figure 5.4: Capacity Utilization vs PRB Utilization from NBH Sample

tagging is not identified properly.

5.5 Smart LTE Node monitoring

In this section, we’ll talk about using machine learning algorithms like XGBoost
regression to monitor each individual Node’s capacity use in a methodical man-
ner. Before starting the train test split, we first employ interquartile range (IQR)
to remove outliers from the sample that could dilute eNodeB characteristics.

Figure 5.5: Outliers detection and remove for one sample eNodeB

In next stage, eNodeB sample split into train and test in 70:30 ratio and use XGBRe-
gressor to identify UE throughput at desire PRB utilization (80%). To maximized
the accuracy we introduce GridSearchCV to find best value during hyperparameters
settings “max depth”: [4, 5, 6], “n estimators”: [500, 600, 700], “learning rate”:
[0.01, 0.015]. As outcome with this training for that specific eNodeB the coefficient
of determination is R2 0.9556 and the predicted throughput is 13.2316 mbps at 80%
utilization.
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Figure 5.6: Capacity Utilization vs PRB Utilization with Deep-Dive Approach

This process was repeated for all 890 eNodeB and fig 5.6 shows that there is symmet-
ric relation between Capacity Utilization vs PRB Utilization for individual Nodes.
Now with this Deep-Dive Approach LTE Nodes are monitored and tagged with
proper utilization tag.
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Chapter 6

Conclusion

6.1 Conclusion

In order to solve the NP-hard problem of maximizing user throughput, this research
ingeniously develops a fusion model in a combination of three deep learning algo-
rithms for the most detailed level of cellular network traffic prediction. A Deep-Dive
approach is also suggested in order to correctly identify the high utilized Nodes fol-
lowing the initial planning or current eNodeB upgrade and implementation phases.

Using the Fusion Strategy in RNN, the suggested model’s accuracy is raised by
6.6− 7.0% while maintaining an excellent R2 score, or 0.8034, which denotes a very
accurate forecast of network traffic volume. Another innovation of this research is the
Deep-Drive strategy for managing network capacity, which would assist network en-
gineers in managing the capacity after planning and implementing soft parameters
before the quality of service (QoS) deteriorates in comparison to the benchmark.
Thus, customers will be less sufferer from capacity expansion lead time from the
MNO side.

6.2 Future Research

In the future, we will use Restricted Boltzmann Machines (RBM) with Conditional
Random Fields (CRFs) to address the prediction of traffic peaks during social events
in a specific geographic area or eNodeB serving area. CRFs could help incorporate
contextual information and relationships between different factors affecting network
traffic, such as event type, location, time of day, and more. on other hand RBM
designed to recognize patterns and relationships within data. In this context, RBMs
might be used to analyze historical data and identify patterns in network usage dur-
ing previous social events.

Additionally, depending on anticipated traffic and consumer demand, we will con-
centrate on smooth dynamic resource allocation in heterogeneous complex networks
systems, including GSM, LTE, 5G, and beyond technologies of a specific era.
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