A Comprehensive Study and Analysis of Artificial
Intelligence-based Waiter Robot in Restaurant

by

Allama Bakhtiyar Nafis

18201085
Kawsar Ahammed

19101126

Humaira Rahman Oishi
19101391

Sumya Afroj
19301164
Rezwana Chaudhury Raka

19101128

A thesis submitted to the Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of
B.Sc. Computer Science and Engineering

Department of Computer Science and Engineering
School of Data and Sciences
Brac University
January 2024

© 2024. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Bodehtiyarc oy -

Allama Bakhtiyar Nafis Kawsar Ahammed
18201085 19101126

Humaira Rahman Oishi Sumya Afroj
19101391 19301164

Hegorono~

Rezwana Chaudhury Raka
19101128

Approval

The thesis titled “A Comprehensive Study and Analysis of Artificial Intelligence-
based Waiter Robot in Restaurant” submitted by

1. Allama Bakhtiyar Nafis (18201085)

2. Kawsar Ahammed (19101126)

3. Humaira Rahman Oishi (19101391)

4. Sumya Afroj (19301164)

5. Rezwana Chaudhury Raka(19101128)

Of Fall, 2023 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science and Engineering on January 18,

2024.

Examining Committee:

Supervisor:
(Member)

Program Coordinator:

(Member)

Head of Department:
(Chair)

/@ Moo Flows-

. Md. Khalilur Rahman
Professor

Department of Computer Science and Engineering
BRAC University

Md.Golam Rabiul Alam
Associate Professor
Department of Computer Science and Engineering

BRAC University

Sadia Hamid Kazi
Chairperson and Associate Professor
Department of Computer Science and Engineering
BRAC University

i

Abstract

The rapid development of technology has led to the implementation of numerous
solutions aimed at streamlining processes, one of which is the incorporation of artifi-
cial intelligence. The Simultaneous Localization and Mapping (SLAM) algorithm is
fundamental to the restaurant robots operation and thereby determines its success
or failure in carrying out its tasks. Few studies have looked at how well SLAM algo-
rithm work when combined with path planning for indoor location, even though the
present two-dimensional Lidar-based SLAM algorithm has done quite well, especially
in indoor scenarios. Planning and mapping routes for restaurant robots operating
in an indoor setting is the topic of the following essay. The goal of this research is
to find out how indoor location systems may make use of path planning algorithms
in conjunction with SLAM methods. To verify the mapping data, real-time path
planning must be investigated. For global path planning, the A* algorithm is used
to find the most efficient route while avoiding obstacles. Local path planning makes
use of the Dynamic window approach (DWA) algorithm. After extensive testing in
simulated, emulated, and competitive indoor situations, it was determined that both
the SLAM and path planning algorithms performed admirably. Further, we employ
a speech recognition component to facilitate communication with clients and an ob-
ject identification model to track down lost items. Finally, experts may find this
papers results useful when deciding which algorithms to use when building SLAM
systems that meet their specific needs.

Keywords: Robot Operating System (ROS), Simultaneous Localization and Map-
ping (SLAM), LiDAR, Python, Navigation, Object detection, SpeechRecognition ,
Automation.

1ii

Acknowledgement

Firstly, all praise to the Great Allah for whom our thesis has been completed without
any major interruption. By the grace of Allah, we were able to put our best efforts
and successfully complete it on time.

Secondly, we thank our supervisor Dr. Md. Khalilur Rahman for giving us this
opportunity to research on this topic and assisting us through the process. We
would like to express our special gratitude and appreciation to him for guiding us
throughout the whole phase and giving us such attention and time.

v

Table of Contents

Declaration

Approval

Abstract

Dedication

Acknowledgment

Table of Contents

Nomenclature

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6

Backgroundo
Research Problem
Research Objective
Problem Statement
Scope and Limitations
Thesis Outline

2 Literature Review

2.1

2.2

2.3

24

2.5

2.6

Mapping e
2.1.1 GMapping
2.1.2 Hector-Slam
2.1.3 Cartographer
Localization
2.2.1 Kalman Filter Algorithm
2.2.2 Particle Filter Algorithm
Path Planning
2.3.1 Local Path Planning
2.3.2 Global Path Planning
Object Recognition
2.4.1 SSD MobileNet V3
24.2 Faster R-CNN o
SpeechRecognition o0
2.5.1 Natural Language
The Main Menu Language

ii

iii

iv

iv

viii

2.6.1 The Alternate Menu Language 14

2.7 Machine learning oL o L 14
2.8 Neural Networks 15
2.9 CNNs . . . 15
2.10 YOLO o 15
2.11 NN-based object detection 16
2.12 Related Work 16
3 Methodology, Requirement Analysis, Implementation 20
3.1 Platform, tools and asset selection for Navigation 21
3.1.1 ROS Noetic 21

3.1.2 Ubuntu Linux 20.04 21

3.1.3 Gazebo Simulatoro 21
3.1.4 Testing of Simultaneous Localisation and Mapping Algorithm 22

3.1 Rviz . . . oo 23

3.1.6 Object Recognition (Faster R-CNN) 23
3.1.7 Data Collection 23

3.2 Annotation and Labeling L. 23
3.2.1 Model Selection and Training 23

3.2.2 Testing and Results Analysis 24

3.2.3 Speech Recognition 24
3.2.4 Initialization and Setup L 24

3.2.5 Functions Definition 24

3.2.6 Speech Recognition 24
3.2.7 Intent Matching oL 24
3.2.8 Response Generation 25
3.29 Main Loop 25

3.3 Implementation 25
3.3.1 Simultaneous localization and mapping (SLAM) 25

3.3.2 Localization 26
3.3.3 Path Planning L. 27
3.3.4 Object Recognition 28
3.3.5 SpeechRecognition 33

4 Result Analysis 37
4.1 Mappping 37
4.2 Path Planning 40
4.3 Object Detection and Recognition 42
4.3.1 Faster-R-CNN comparison and SSD MobileNet V3 42

4.4 SpeechRecognition L0 42
4.5 Research Challenges 47
5 Conclusion 48
5.1 Future Works 49
References 50

vi

List of Figures

1.1
1.2

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Line Following Robot [6] 2
SLAM algorithm based Robot 2
Gmapping 7
Path Planning [10] 10
Network structure of SSD-MobileNetV3 [30] 12
Faster R-CNN [13] 13
Autonomous Restaurant Robot Diagram 20
Simultaneous Localization and Mapping. 22
Gazebo Indoor Image 25
Hector Slam 26
Localization 27
Path planning 28
The bot reached to the target node 28
Object recognition code 29
Object recognition using FasterR-CNN 30
Better accuracy using Faster-R-CNN 30
Object Recognition using ssd mobilenet v3 32
use more objects for performance testo 33
Speech Recognitioncode 34
Main Conversation Dataset 35
Jokes Dataseto 35
Birthday Greeting Dataset 36
Mapping comparison 38
Gmapping memory Use 39
Hector slam memory use 40
Comparison between A* Algorithm and Dijkstra Algorithm 41
Google Speech API 43
CMUSphinxo 43
Final results of three different API [53] 45
The Comparison Result [53] 46

vii

Nomenclature

The following list describes several symbols and abbreviations that will be later used
within the body of the document:

AGB Automated Guided Vehicle

AMI Application Programming Interface

AMCL Adaptive Monte Carlo Localization

A PIs Application Programming Interfaces

ASR Automatic Speech Recognition

DWA Dynamic Window Approach

Faster R-CNN Faster Region-Based Convolutional Neural Network
GUI Graphical User Interface

GMapping Grid Mapping

Hector SLAM Hector Simultaneous Localization and Mapping
IMU Inertial Measurement Unit

IoT Internet of Things

LIDAR Light Detection and Ranging

RBPF Rao-Blackwellized Particle Filter Algorithm
ROS Robot Operating System

ROI Region of Interest

RPN Reverse Polish Notation

SIoT Social Internet of Things

SLAM Simultaneous Localization and Mapping
WER Word Error Rate

YOLO You Only Look Once

viil

Chapter 1

Introduction

1.1 Background

4Ds, Specialists in the field of robotics concur that autonomous mobile robots
and manipulators are designed to undertake activities that pose a risk, involve
monotonous repetition, or are tiresome for individuals. A conventional method
for classifying these types of work is through the utilization of the 4 Ds: Dull, Dirty,
Dangerous, and Dear. A specialized type of robotic system tailored for operations
within a restaurant setting is referred to as an automated restaurant robot. These
functions encompass order taking, food and beverage delivery, as well as cleaning
tasks. The primary goal of integrating these robots into restaurant settings is to
streamline processes, boost productivity, and enhance the overall dining experience
for customers. The utilization of automated restaurant robots proves advantageous
for eateries, leading to increased operational efficiency, reduced labor costs, and a
more personalized and efficient service delivery to patrons [1]. Automated restau-
rant robots are diverse and are designed to undertake specific tasks, including order
processing, food and beverage delivery, and various cleaning responsibilities within
kitchen spaces. The incorporation of automated restaurant robots yields several ben-
efits for establishments, including accelerated service delivery, decreased reliance on
human labor, and heightened overall efficiency. Additionally, these robots can tackle
tasks deemed challenging or hazardous for humans, such as kitchen activities like
cooking and cleaning. Furthermore, they contribute to a distinctive and interactive
dining experience for customers [2]. These robots utilize a blend of cutting-edge tech-
nology like natural language processing, computer vision, robotics, machine learn-
ing, and control systems to carry out their tasks [3]. Key technological requisites
for automated restaurant robots involve the ability to navigate and interact with
their surroundings, comprehend customer orders, and execute tasks like transport-
ing dishes and utensils. Machine learning algorithms play a crucial role in enhancing
the robots performance over time. Training these algorithms with simulated envi-
ronments and test data aids in refining the robots capabilities. Integration with
other systems, such as Point of Sale, Inventory Management, and Kitchen Display
Systems, further enhances operational efficiency [4]. The design and implementa-
tion of automated restaurant robots necessitate in-depth comprehension of various
technologies and rigorous testing to ensure their effective and safe task execution.
This involves considering 4D robotics facilities for comprehensive understanding and
optimization of the robotic system [5].

1.2 Research Problem

The problem statement highlights the most difficult parts of making an automatic
robot for a restaurant. This shows the importance of the robot to be able to easily
move through complex environments while focusing on providing quick and excellent
service in order to cut down on labor costs. The first thing we thought of was a way
to solve the problem of finding our way around inside without following the line.

Figure 1.1: Line Following Robot [6]

Line-following robots in Fig. 1.1 follows pre-made paths. They can only follow a
certain path and may struggle in changing situations or with unanticipated im-
pediments. Devices let line followers determine how different the line is from its
surroundings. Lighting and line quality can affect the robots success. Line-following
robots need clean paths to maneuver. They can not navigate unfamiliar places
[6]. The majority of line followers cannot map their surroundings. It hinders their
understanding and memory of spatial assembly.

Figure 1.2: SLAM algorithm based Robot

A Simultaneous Localization and Mapping (SLAM) algorithm based robot in Fig. 1.2
has shown that it can move around without using lines on the ground. The SLAM
technology is effective in enabling robots to move across uneven surfaces, adapt to
new events, and find new paths, demonstrating their ability to see and avoid obsta-
cles in real-time [7].

SLAM allows robots to move without pre-programmed paths, making it useful in
outdoor environments. It allows for accurate location tracking, making it more pre-
cise than line-following methods. SLAM can be used for research, search and rescue,
and self-driving cars, offering an alternative way to navigate [8].

Researchers are developing an Al-driven transport robot that can navigate busy
cities without incident. They are focusing on overcoming issues, creating powerful
perception systems, and building decision-making systems. The project aims to en-
sure safe and useful transportation jobs, allowing people and robots to work together
on tasks like delivering goods and communicating [9].

We want the robots hardware and software to last. Keep solid maintenance plans so
we can fix technological issues and failures quickly. Another crucial step is following
robot and self-driving car laws including safety and responsibility issues. To utilize
technology morally and legally, we must observe all laws and guidelines. Yet, this
issue shows how important it is to protect workers and customers and have a robot
that can adapt to different environments [10].

The team developed a speech recognition system and object identification model
for a restaurant robot. The goal is to improve food service, customer experience,
and human worker jobs. The robot can move independently, handle maintenance,
and adapt to changes in its environment. Researchers must overcome challenges in
creating an Al-driven transport robot, such as navigating busy cities and developing
powerful perception systems to distinguish people, cars, and parcels [10].

1.3 Research Objective

The main goal of the research is to transform the hospitality sector by addressing and
resolving issues related to using human wait staff in establishments like hotels and
businesses. It identifies common issues like forgetting orders and delays in service.
In addition, the conflicts are made worse by the time it takes to wait for customers
to place their orders and the fact that given items have to be carefully remembered
by hand [11]. Because now a days teens and young adults value flexibility and free
time, there is a chance to look into using robot waiters as a revolutionary answer
in the restaurant business [12] . To solve the problems that come with having hu-
man wait staff in hotel settings, putting advanced technologies, Faster R-CNN, into
robots could be a good idea [13].

The study explores advantages of robot waiters, such as increased working hours
and heavier loads. The research proposes solutions using advanced technologies like
Faster R-CNN for object identification and intelligent features like SLAM for navi-
gation and Speech Recognition for effective interaction.

1. The Simultaneous Localization and Mapping (SLAM) algorithm is greatly helpful
in our model for creating accurate maps with information about obstacles. Utilizing
these maps, the robot can accurately pinpoint its location, allowing it to find the

best way to get to its intended locations.

2. Faster-R-CNN, which stands for Faster Region-based Convolutional Neural Net-
work, is used in our model, which makes the robot much more efficient. In particular,
it helps find food and makes it easier to find lost items that belong to customers,
which is useful for situations where customers leave things behind by accident.

3. Our model also has Speech Recognition technology, which is a notable feature.
This feature improves the robot’s capacity to engage with consumers in a more ef-
fective and optimized way, hence enhancing the entire eating experience.

1.4 Problem Statement

Robots in restaurants can revolutionize the industry by enhancing efficiency, re-
ducing costs, and improving customer satisfaction. They offer fast, personalized
service while minimizing contact with food, which is particularly valued for clean-
liness and safety concerns post-outbreaks. Making restaurant robots that use less
trash and energy is good for the environment [2]. These technological advancements
require ongoing maintenance, updates, and repairs to ensure longevity and opti-
mal performance. In Bangladesh, where labor shortages can affect service quality
and prices, implementing robots in fast food and casual dining establishments can
address these challenges effectively. When comparing restaurant robots, a compar-
ison between line-following and SLAM-based models highlights clear differences in
their operational methods [14]. The comparison between line-following and SLAM-
based robots reveals distinct operational methods, with SLAM-based models offering
greater adaptability and autonomy, making them more suitable for dynamic restau-
rant environments. Embracing restaurant robots not only enhances operational
efficiency but also aligns with sustainability goals by potentially reducing waste and
energy consumption. Overall, integrating robots into restaurant settings presents
significant opportunities for improving both business operations and customer ex-
periences. Although line-following robots are effective for regular work in regulated
areas, SLAM-based robots provide more adaptability and autonomy, rendering them
well-suited for dynamic restaurant settings where the arrangement may vary [15].

1.5 Scope and Limitations

Although ROS SLAM is an effective instrument for mapping and navigating environ-
ments, it is important to acknowledge its limits when using it in a restaurant robot
or similar scenarios. Quality of initial map influences SLAM accuracy. Poor sensor
data or unknown features may hinder robot navigation. Device kind and quality
affect SLAM performance. Electronics, obstacles, and reflections influence sensors.
Flexible restaurant layouts, waitstaff, and lighting. Dynamic environments might
create SLAM map problems. Big, sophisticated settings can make SLAM compu-
tationally demanding. Resources may be limited for restaurant robots. Processing
overload might delay real-time navigation [16]. A restaurant robot can do a lot more
and connect with people better if it has object recognition and speech recognition

built-in [17], [18]. But there are some limitations and challenges also. Restaurant
lights impair navigation. Uneven illumination, glare, and shadows impede clas-
sification and detection. Robots need real-time object recognition for sensitivity
[19]. Robots may have trouble seeing hidden objects. Restaurants change food of-
ten. Object identification technology is updated constantly to reflect these changes.
Quality and variety of training data affect object recognition model performance.
Restaurants have background chatter, clinking dishes, etc. Background noise im-
pairs voice detection. Dialects and accents complicate speech recognition. Training
linguistically diverse models is difficult. Crowded restaurants can host simultaneous
discussions. Many voices may be difficult for voice recognition. Restaurant-specific
language can confuse speech recognition. Voice recognition records and processes
sound, raising privacy concerns. Speech recognition failures can slow robots and
upset users. To work around these problems, we pick SLAM, object detection and
speech recognition algorithms [20], [21] that are strong and flexible, keeping models
up to date [22]. Context awareness and designing ways for humans and robots to
communicate can also help restaurant robots do their jobs better and make people
happier.

1.6 Thesis Outline

The remaining portion of the paper has been structured in the following manner.
Chapter 2 consists of a literature review that examines relevant and existing method-
ologies connected to the planned research. It provides a comprehensive description
of the works that are already well-known in the field. Chapter 3 focuses on the
explanation of the methodology. We presented our proposal and detailed all the
procedures employed in our research. Chapter 3.3 clarifies the implementations
that are employed in this research. The text provides information regarding the
process of constructing the simulator using the concept of SLAM. Furthermore, it
covers the execution of Object Recognition and also SpeechRecognition. The sec-
tion containing the production of data and the analysis of results can be found in
Chapter 4. This section provides comprehensive information regarding the struc-
ture of the methodology employed to get the result. Additionally, it encompasses
a comparative analysis of the obtained data. It provides an overview of the result
analysis and discusses the problems that were successfully solved. Finally, chapter 5
provides a comprehensive summary of the research conducted in the study, including
a discussion on future work about potential extensions or implementations of the
findings.

Chapter 2

Literature Review

We have discussed the current research papers and achievements in the literature
review and associated studies. This literature review explores restaurant robotics
advancements, focusing on sensor technology, localization, mapping, and navigation
algorithms. It examines robot-human interaction, user satisfaction, and potential
obstacles. The review also examines the impact of AI, machine learning, and sensor
technologies on autonomous restaurant robots. It evaluates their design, perfor-
mance, pros and cons, challenges, and remedies. It also addresses legal and regula-
tory issues, emphasizing safety and compliance. Future research considers existing
knowledge and technological restrictions to ensure the feasibility and implementa-
tion of new ideas.

2.1 Mapping

In the world of Robotic Operating System (ROS), mapping is the process of making
a picture of the world around a robot. The robot can understand its surroundings
and find its way around different settings with the help of this representation, which
is often called a map. Mapping is an important part of autonomous robotic systems
because it helps robots make smart decisions about where to go and how to connect
with their surroundings. The mapping system in ROS is a key part of making it
possible for robots to understand and move around in their own environments. The
method includes processing data from sensors to make a picture of the surroundings.
Then, this image is used to make smart choices about how the robot moves and
interacts with other things [23].

2.1.1 GMapping

Grid mapping is accomplished by the SLAM with a laser technique known as grid
mapping (GMapping). Presumably, this is the most often used SLAM algorithm.
OpenSLAM.org provides an implementation of the standard algorithm on the PR2,
a widely used platform for manipulating mobile devices. The core idea of the tech-
nique, which was first proposed in, is to guess the function that modifies the state by
using Rao-Blackwellized particle filters (RBPFs). Another term for this technique
is the RBPF SLAM algorithm. The Rao-Blackwellized particle filters that are em-
ployed are the source of its name. Two key modifications that significantly improved

the method for practical use were the optimization of the proposal distributions and
the addition of adaptive resampling. Then, because grid maps are used, it is termed
GMapping, which is G for grid [24].

©) @ ®

turtlebot3_core «——— turtlebot3_teleop sensor_node
l velocity
odom
K 7
~—— tf scan
.hil.\t.'_fl.!l.ll[)l’i.lﬂ. \ @ /
it

[base_link |

T gmapping

(slam_gmapping)

" base_scan

l 5 nap_scrver
Iﬂélp (map_saver)

|

map.pgm & map.yam|

Figure 2.1: Gmapping

A Light Detection and Ranging (LiDAR) is part of the robots sensor node, and
when it is turned on, it sends scan data through a laser scan topic. The telemetry
core node in Fig. 2.1 starts working at the same time and gets data on linear and
rotary speeds from a teleoperation node. After that, the telemetry core node sends
out automatic orders and transforms (TF) that are linked in the telemetry model.
In ROS, the tf package handles transformations and how different coordinate frames
relate to each other. After that, the GMapping node draws a map using the robots
TF and LiDAR scan data. The GMapping SLAM algorithm uses sensor data and
odometry information to make a map of the surroundings and guess where the robot
is at the same time. After making the map, the map server nodes are run to get a
map file. For the navigation step to work, this map file is very important. It gives
the robot a sense of it is surroundings that it can use to move around on its own.
For accurate mapping and movement in the robots working area, the TF framework
makes sure that all of its parts use the same coordinate transformations.

2.1.2 Hector-Slam

Hector SLAM, also known as Hector Simultaneous Localization and Mapping, is a
highly utilized algorithm in the field of robotics for the purpose of mapping and

7

determining the location of objects. An important advantage of this technology is
its capacity to do Simultaneous Localization and Mapping (SLAM) in real-time,
enabling robots to dynamically traverse and comprehend their environment. Hector
slam demonstrates exceptional performance in contexts characterized by constrained
computational resources, rendering it very suitable for deployment in applications
such as autonomous restaurant robots. The utilization of a laser scanner for mapping
ensures precise and intricate depictions of the surroundings. Nevertheless, there
are obstacles that arise when dealing with extensive settings and the possibility
of gradual deviation. To resolve these problems, it is necessary to meticulously
adjust and calibrate the system, and ongoing progress is being done to improve the
resilience and expand ability of hector slam for wider implementation in the field of
robotics. Hector-SLAM works very well in real time, which means it can be used
in situations where the robot needs to work quickly and efficiently. The algorithm
can be set up quickly, which means that the robot can start moving right away
after being released. Hector-SLAM might use a lot of memory, which could be a
problem for a restaurant robot that doesn’t have a lot of tools on board. Effectively
managing big loops might be hard in places where spaces are connected [16].

2.1.3 Cartographer

It is possible to make thorough 3D maps with Cartographer, which makes it useful
in situations that need it. The algorithm is made to handle loop closing well, which
improves the accuracy of mapping when the robot goes back to an area. Cartog-
rapher allows multi-sensor fusion, which lets the robot combine data from different
sensors to get a better picture. Setting up a Cartographer to work in a certain
environment can be hard, and you might need to modify some settings, which could
make quick launch harder. Cartographers can use a lot of resources, which could be
a problem for a restaurant computer that can not do a lot of computing [16].

2.2 Localization

In robotics, localization is the process of figuring out where and how a robot is po-
sitioned in it is surroundings. This is a very important part of independent robotics
because it lets the robot know where it is in relation to a map of its surroundings.
Different algorithms are used to find the location of something. The Kalman filter
algorithm and the particle filter algorithm are two popular ones [25].

2.2.1 Kalman Filter Algorithm

The method developed by Jeong et al. (2014) to track different objects is based on
the Kalman filter. The cost function is configured using a few parameters, and the
number of Kalman filters it runs is equal to the number of moving objects in the
frame. Matlab experiments demonstrate the multi-item tracking capability of the
proposed technique. A method for locating objects and corresponding with them
via ROS master messages is built into a NuBot soccer robot. TX2 and the industrial
computer of the robot exchange these messages. It is a challenging profession in the

realm of computer vision, though. When some of the things are in the way of one
another, it becomes more difficult to match them correctly. Numerous techniques,
including the mean shift based object tracking by L. Ido, the condensation filter by
K. Hyun-Bok, the dynamic Bayesian network by Wu, the feature correspondence for
occlusion handling by Tao Yang, and others, have been proposed for successful mul-
tiple object tracking. Still unresolved, though, is the issue of tracking several objects
in rapidly changing scenes. A robust foundation for tracking objects in ambiguous
conditions is offered by the Kalman filter. It can track many objects effectively and
consistently while accounting for occlusion problems in dynamic environments. The
issue of tracking several items in dynamic scenes is resolved by doing this [26].

2.2.2 Particle Filter Algorithm

The Particle Filter Algorithm is a probabilistic localization method that is widely
used in robotics, such as for self-driving robots in restaurants. It works by using a
set of particles, each with a chance of being the robots real location, to show what
it thinks about its location. The algorithm changes the particle weights based on
sensor readings and movement data as the robot moves and looks around. Particles
with higher weights are copied during resampling, while particles with lower weights
are thrown away. This process brings the particle cloud closer to where the robot
is, which gives a good idea of where it is in settings that change over time. Particle
Filter can handle uncertain and non-linear sensor data, which makes it a good choice
for restaurant robots that need to move through busy and changing areas on their
own. Its ability to respond to real-time updates and strong performance in the face
of doubt make it useful for improving the accuracy of localization in these particular
situations [25].

2.3 Path Planning

Restaurant robot path planning involves determining the optimal trajectory for the
robot to navigate within the restaurant. Local route planning is a method used to
enable robots to navigate around tables and customers by addressing immediate ob-
stacles and making necessary adjustments. The utilization of sensors and real-time
data enables the avoidance of collisions through prompt decision-making. Never-
theless, global path planning takes into account the arrangement of the restaurant
[27]. It is necessary to do environmental mapping and establish a general route.
This meticulous approach enables the robot to fulfill its objective while taking into
account spatial constraints. Navigation method we can see that the process of a
robots navigation where map, localization, global path planning and local planning
works in Fig. 2.2 together to complete the navigation process. Local and global
path planning must be interconnected to ensure seamless navigation. The global
plan provides a predetermined path, whereas the local plan adapts to the prevailing
circumstances. The two collaborate to assist the restaurant robot in circumventing
barriers and adhering to the overarching plan. The robot may respond to the restau-
rants real-time adjustments and broader spatial arrangement using this integrated
approach.

e nav.rviz* -RViz x e nav.rviz*-RViz

File Panels Help File Panels Help

&% Move Camera &] Interact » l‘%}‘ Move Camera J @ Interack »

‘.___......_._,.._.._..‘_._]'

Reset 31fps | Reset | Left-Click: Rotate. Mid: 31 fPs

Figure 2.2: Path Planning [10]

2.3.1 Local Path Planning

The goal is to move the robot around in real time while keeping an eye on its
near surroundings and avoiding obstacles. The Dynamic Window Approach (DWA)
is a popular local path planning technique. Based on the robots kinematics and
dynamics, it dynamically considers a window of potential velocities and chooses the
one that optimizes a particular objective function.

Differential-Drive Dynamic Window Approach, or DWA, is a motion planning ap-
proach that is frequently used in robotics, particularly for path planning and nav-
igation in the restaurant robotics industry. Sensor data from laser range finders,
depth cameras, or other perception sensors are sent to the local planner so that it
can understand its near surroundings. The robots allowed speeds and angle speeds
are shown by the dynamic window. It is constantly changed based on the current
situation, which lets the robot think about what it can do right now. The local
planner looks at possible paths for each set of speeds in the dynamic window by
modeling the robots movement over a short period of time. Trajectories are given
points based on how close they are to obstacles, how well they line up with the goal,
and how smooth they are. The best route is chosen as the one with the highest
score. This path tells the robot how to move right now. The DWA algorithm is
often built into ROS as part of the Navigation Stacks local planner function. The
local planner gets information from sensors and the global path, then makes a path
for the robot to follow and sends it out into the world. While trying to line up
the robot with the world path, DWA tries to avoid collisions first. It lets the robot
move through changing surroundings, avoid obstacles, and get where it needs to go
[28]. Robots benefit from the Dynamic Window Approach (DWA) motion planning

algorithm in dynamic situations like restaurants. It generates a dynamic window
of allowable velocities for real-time obstacle avoidance and safe crowded navigation.
DWA avoids sudden curves with velocity limits, improving security. Trajectories are

10

evaluated using cost functions for obstacle avoidance, essential for safe navigation in
dynamic settings. DWA optimizes delivery by setting local goals for table-to-kitchen
routing. Its adaptive velocity control adjusts speed dynamically, boosting efficiency
and safety in busy locations. DWA reduces wait times for robots handling orders
and delivery, improving customer service [28].

2.3.2 Global Path Planning

The objective is to locate a path that is either optimal or nearly optimal from
the current position of the robot to a goal position while taking into account the
complete environment. Approaches that are based on grids involve representing the
environment as a grid in which each cell is either currently occupied or vacant. Dijk-
stra’s algorithm and A* (A-star) are two examples of algorithms that are frequently
utilized. Approaches that are based on graphs involve representing the environment
as a graph, with nodes representing distinct places and edges representing potential
transitions [29]. Applications include algorithms such as dijkstra’s algorithm and
A* algorithm.

Cost Function for A* Algorithm

The cost function for the A* algorithm is given by:

f(n) = g(n) + h(n)

Through node n, f(n) shows how much it is thought to cost to get from the beginning
to the end. The cost of the road from the beginning to node n is g(n). As a rough
guide, h(n) tells you how much it will cost to get from point n to the goal [29].

2.4 Object Recognition

Object recognition is a computer vision technology that allows machines to accu-
rately detect and classify things present in an image or video stream. The process
involves collecting distinctive characteristics and patterns from visual information
and comparing them to pre-existing models or databases. Within the framework
of an autonomous restaurant, the utilization of object recognition demonstrates nu-
merous benefits for a range of jobs. The restaurant robot uses cameras and image-
processing algorithms to detect and recognize items such as tables, seats, and plates,
which helps it navigate and interact more effectively. The utilization of this tech-
nology proves highly advantageous for a restaurant robot as it allows the system to
proficiently maneuver through congested areas, evade obstructions, and manipulate
objects with accuracy. Consequently, this technology greatly enhances the robot’s
operational efficiency and safety within the dynamic setting of a restaurant [13].

11

Extra Feature Layers

VGG-16 o -
Pool5 laver Classifier:Conv:3%3* (3% (Class+4))

_Through P
| ' \; Classifier:Conv:3%3% (6% (Class+d))
SSD(2016)—— & :

IConvil_3 | 7
| ‘onv
1 7
|
I 4

Conv:3%3%1024 Conv:1%1%1024 Conv:1%1%256 Conv:I*I*128 Conv: [*1%128
Avg Pooling:Global
Conv:3#3%512-s2 onv:3*3*256-s2 onv:3*3*256-s2

Figure 2.3: Network structure of SSD-MobileNetV3 [30]

2.4.1 SSD_MobileNet V3

MobileNetV3 has an optimized structure that delivers exceptional accuracy and
speed for tasks such as object recognition and image classification, surpassing cur-
rent performance benchmarks. The SSD_MobileNet_ V3 model integrates the Mo-
bileNetV3 architecture in Fig. 2.3 and the SSD algorithm to provide both accu-
rate object identification and efficient feature extraction. The SSD_ MobileNet_ V3
model utilizes MobileNetV3 as the underlying network for extracting features, with
the aim of achieving precise real-time object recognition on devices with limited re-
sources. SSD_ MobileNet V3 is a deep learning model designed primarily to achieve
rapid and precise object identification on mobile and edge devices. It utilizes the
multi-scale object localization capabilities of SSD and the efficient feature extrac-
tion capabilities of MobileNetV3, making it ideal for applications with restricted
computer resources [30].

2.4.2 Faster R-CNN

Object recognition is a crucial task in computer vision, and Faster R-CNN, also
known as Faster Region-Based Convolutional Neural Network, is an innovative deep
learning model designed specifically for this purpose. Faster R-CNN in Fig. 2.4 is
an integrated region proposal network, efficiently generating region suggestions for
potential object locations inside an image. The Region Proposal Network (RPN)
uses anchor boxes of different sizes and shapes to propose areas. It does this by
analyzing the convolutional feature maps produced by the backbone network. Uti-
lizing a RPN eliminates the need for external region proposal methods, resulting in
a seamless and trainable item identification process. Faster R-CNN utilizes a Con-
volutional Neural Network (CNN) as its basis to extract hierarchical information
from the input image [13]. Any form of backbone network can be utilized, although
networks with topologies capable of capturing intricate visual components, such as
ResNet or VGG16, are frequently selected. The Region of Interest (ROI) pooling
technique is employed to align the region proposals generated by the RPN to a
predefined size, facilitating consistent feature extraction. ROI pooling is a tech-
nique used to simplify the processing and classification of variable-sized regions by
converting them into a fixed-size representation. In Smarter R-CNN, a bounding

12

box regressor is employed to refine the bounding box coordinates, while a classifier
network is utilized to provide class labels to each suggested region. These features
enable accurate categorization and identification of objects within the designated
areas. The concept of utilizing a Region Proposal Network to generate region pro-
posals within the same network was initially introduced by the pioneering object
detection model Faster R-CNN . The integration enhances precision and effective-
ness in real-time object recognition applications by optimizing the object detection
process and enabling end-to-end training [21].

I Il Output [

} | Classifier Regressor : :

S I Rol pooling ! = [

~ S | | AT S . S |
3 . -

= T } S FCs] |

: |- <

| | !

| L vz] |

k. ‘. ‘ A [

b ~ ‘ — |

2 - | Rol feature vector |

~. Improved Convolutional

convolutional layers layers

Imput image

Feature map @ —f — e e e e e e e |

=

. FCs

|

| \
| T R . 1
| \.T D |
' I | ‘
| |

| \
| ‘ {H} I
N =i 1 I
| ol Hoh |
| Convolutiohal Sliding window Feature vector RPN 1
|

| feature map

Figure 2.4: Faster R-CNN [13]

2.5 SpeechRecognition

Speech recognition is a technological process that translates spoken language into
written text, as well as converting written material into spoken words. This enables
machines to understand and react to spoken orders given by humans. The system
functions by employing acoustic and linguistic models to analyze and interpret audio
data, thereby identifying spoken words and translating them into written text. It
also has the capability to convert written text into spoken words using text-to-
speech technology. Speech recognition is beneficial for human-robot interaction in
an autonomous restaurant setting. It improves the user experience by enabling
customers to verbally place orders, obtain information, or provide directions. This
technique is especially beneficial in a loud restaurant setting where conventional
entry methods may be less efficient. Through the incorporation of speech recognition
technology, autonomous restaurant robots are able to effectively comprehend and
address client inquiries, hence enhancing a smooth and instinctive contact between
customers and the robotic system [12].

2.5.1 Natural Language

Restaurant focused recognition is a sort of AI that enables robots to locate and
establish connections with eateries. Thanks to this technology, robots can now in-

13

teract with restaurants and navigate their surroundings by reading menus, compre-
hending orders, and even having conversations with patrons. Robotics uses natural
language processing and computer vision to identify restaurants. To identify the
items in a restaurant, such as menus, tables, and seats, computer vision is em-
ployed. Using natural language processing enables you to ascertain the customers
needs and provide them with the appropriate response. There are several applica-
tions for robot-based restaurant recognition. People can order food, pay for their
meal, and navigate a restaurant with the assistance of robots. Furthermore, indi-
viduals can receive customized recommendations from robots depending on their
interests. Although it is still in it is infancy, robot-based restaurant identification
has the potential to significantly alter the food industry. Due to their autonomous
recognition and interaction capabilities, robots can improve customer satisfaction
and operational efficiency in restaurants [22].

2.6 The Main Menu Language

The main menu language of a robot in a restaurant should be simple and easy to
understand. It should be able to communicate the different options available to
customers in a clear and concise manner [12]. For example, the robot could say
“Welcome to our restaurant. Please select from the following options: Appetizers,
Entrees, Desserts, Drinks, and Specials.”

2.6.1 The Alternate Menu Language

The alternate menu language of a robot in a restaurant should be more conversa-
tional and engaging. It should be able to engage customers in a friendly manner
and provide more detailed information about the different options available. For
example, the robot could say “Happy Birthday” or able to tell short jokes [22].

2.7 Machine learning

According to Bai et al. (2020), machine learning is being utilized more and more
to combine robots and machine vision to improve grab speed and accuracy. CNNs
are a worldwide center of research, but the acquisition of labeled data restricts their
expansion. The research on tactile feedback in the domains of robot grasping and
target recognition is reviewed in this paper. It has been discovered that combining
vision and touch feedback can improve the accuracy and success of robot grasping.
Many applications such as regular machine learning, deep learning, reinforcement
learning, unsupervised learning, self-supervised learning, and merging vision and
touch have been carried out using it. Conventional machine learning techniques
are fast, simple to understand, and need little data. However, these programs be-
come less and less effective as the volume of data increases. The success of the
Alex network in 2012 led to a resurgence of the deep neural network. It is applied
in numerous machine vision domains. Unsupervised and self-supervised learning

14

systems have been developed since labeled data is necessary for deep learning. Re-
inforcement learning considers issues that occur repeatedly and considers long-term
returns, whereas supervised learning considers problems that occur just once and
considers short-term returns. A novel approach to studying robot grasping involves
attaching pressure sensors to the dexterous hand to provide tactile feedback and
combine it with vision [21].

2.8 Neural Networks

This literature review explores diverse applications of artificial intelligence and neu-
ral networks in robotics. Jiang et al. delve into the evolution of You Only Look Once
(YOLO) algorithms for efficient object detection, while Kim et al. employ neural
networks for dynamic object recognition in robotic systems [31]. Luo et al. utilize
convolutional neural networks for soccer robot tracking, Jeong et al. introduce a
Kalman filter-based method for multi-object tracking, and Bai et al. discuss the
integration of machine learning, vision, and tactile feedback in robot grasping. The
review also touches upon the emerging field of robot-based restaurant recognition,
emphasizing language customization and event detection in the restaurant industry
(32].

2.9 CNNs

Luo et al. (2017) present a novel approach to track and locate soccer robots in the
RoboCup MSL using convolutional Neural Networks (CNNs) in their 2017b study.
The method consists of two steps: first, the robot is located using an RGB picture,
and then it is located using a depth point cloud. The suggested approach demon-
strated good performance in terms of Mean Average Precision (MAP) and high
accuracy for robot recognition in the MSL competition. This will support strategy
planning and future barrier avoidance. CNNs have proven to be quite effective in
locating objects, segmenting images, and identifying certain areas and objects [32].
Artificial neural networks in deep learning on the MSL are trained with images from
an omnidirectional vision sensor to find objects. A Deep Learning approach for lo-
cating NAO robots was introduced in the RoboCup Standard Platform League, and
it functions incredibly well. With the state-of-the-art object recognition technol-
ogy YOLO v2, the entire image is processed by a single neural network. Next, the
bounding boxes and probabilities for every position are predicted by this network.
Nowadays, object recognition algorithms like SSD, YOLO v2, Faster-RCNN, and
others may operate at various resolutions, making it simple to establish the ideal
balance between accuracy and speed (67 FPS with mAP 76.8) [32].

2.10 YOLO

Jiang et al. (2022) highlighted the YOLO approach and its more sophisticated vari-
ations are introduced. According to the findings, there are distinctions as well as

15

parallels between the many iterations of YOLO and CNNs. YOLO V2, V3, V4,
and V5 are the varying iterations of the meme. Limited edition versions exist as
well, such as YOLOLITE. YOLO can detect time-based videos quickly because it
only needs to submit an image to the network and wait for the outcome. YOLO
directly employs the global picture for identification [33]. In order to reduce the
possibility of the background being mistaken for the item, this might encrypt the
data globally. Although the challenge of target identification is transformed into a
regression problem, identification accuracy still requires improvement. YOLO uses a
considerable number of lower sampling levels in order to advance more quickly. De-
tection, Darknet-19, High Resolution Classifier, Fine Features, Multi-scale Training,
and Classification Training are a few of these [34].

2.11 NN-based object detection

According to K. Kim et al. (2017), the dynamic identifying objects system uses neu-
ral networks to recognize landmark features, which enables it to function similarly
to robots that can pick objects at random, take items out of bins, and visually repo-
sition objects. Determining the object’s location, posture, distance, and type is how
the work is evaluated. In this study, moving objects are recognized using a neural
network-based object classifier and feature extractor. To minimize the impacts of
illumination, a dynamic recognized object system includes dynamic object recogni-
tion, linked NN-based object detection, and landmark feature extraction. The use
of neural network-based feature detectors has made it possible to identify landmark
features that distinguish between an object area and a complex background. Neural
networks are very good at generalizing to slightly changing or absent data, hence
NN-based feature descriptors have been used to detect objects even when their prop-
erties have changed [33]. The performance evaluation approach includes finding and
labeling several types of things, including bin-picking objects, visual servoing ob-
jects, and other varieties of mixed objects. To evaluate the effectiveness of object
recognition, robot operators have been given tasks such as selecting which objects
to move and where to place them [35].

2.12 Related Work

A paper with the title “ORB-SLAM: A Versatile and Accurate Monocular SLAM
System” presents ORB-SLAM, a real-time monocular simultaneous localization and
mapping (SLAM) system. ORB-SLAM is specifically built to operate effectively in
various indoor and outdoor environments, regardless of their size [36].

In the article “Non-Contact Service Robot Development in Fast-Food Restaurants”
emphasized the use of ORB-SLAM, a real-time monocular simultaneous localiza-
tion and mapping (SLAM) system. ORB-SLAM is specifically designed to operate
effectively in various indoor and outdoor environments, regardless of their size [37].

The study titled “A Collaborative Visual SLAM Framework for Service Robots”
discusses a specialized framework for service robots that enables cooperative visual

16

simultaneous localization and mapping (SLAM). By utilizing an edge server that
oversees a map database and does global optimization, each robot has the ability to
join an existing map, update the map, or create new maps. These tasks are made
easier by using a standardized interface, resulting in very little computational and
memory costs. We have developed an advanced communication system that enables
robots to share information in real-time. By utilizing a cutting-edge method of
organization and retrieval on the server, every robot is able to access landmarks
that are expected to be within its visual range, thereby improving its local map
(38].

The proposed scheme titled “Offloading SLAM for Indoor Mobile Robots with Edge-
Fog-Cloud Computing,” focuses on mobile robots specifically designed for indoor
use. These robots are commonly employed in industrial environments, such as large
logistics warehouses, where their main tasks include collecting and sorting products.
For these robots, tasks that need a lot of computing power make up a significant
part of their total energy usage, which in turn affects how long the battery lasts

[39].

The study titled “A Lidar SLAM based on Improved Particle Filter and Scan Match-
ing for Unmanned Delivery Robot” discusses the rapid advancement of robotics.
Intelligent robots have increasingly become essential in human daily life, performing
specific tasks and greatly improving convenience. SLAM technology is crucial in
guiding mobile robots to effectively carry out delivery operations in confined spaces
like dining establishments, hotels, and logistics warehouses. The algorithm utilizes
a scan matching technique that incorporates both point and line features. It takes
advantage of the geometric information from the two-dimensional point cloud by
employing a unique error function. This methodology demonstrates higher match-
ing accuracy compared to standard methods that rely purely on point features. The
researchers perform two-dimensional SLAM tests in both the Gazebo simulation en-
vironment and a real-world natural context. The results suggest that the suggested
approach exhibits superior mapping precision in comparison to the commonly em-
ployed two-dimensional SLAM technique, Gmapping, at this point in time. The
efficacy of their technique is further supported by path planning experiments con-
ducted on a two-dimensional grid map, utilizing our algorithm and an enhanced A*
algorithm [40].

In their paper titled “Application of Simultaneous Location and Map Construction
Algorithms Based on Lidar in the Intelligent Robot Food Runner,” Jia Cheng, Zhen-
dong Liu, Jiaxi He, Yuting Deng, and Hao Zhang examined the rapid progress of
artificial intelligence. They highlighted the growing prominence of Al applications
in dining establishments. The expensive cost of intelligent robot food runners on
the market is impeding their wider adoption. This study presents a cost-efficient
and highly efficient intelligent robot food runner specifically designed for restaurant
applications. This research aims to investigate the utilization of laser radar SLAM
for the purpose of constructing restaurant maps, achieving localization, and facili-
tating navigation. Furthermore, it explores the advancement of tactics for avoiding
obstacles and designing paths. By utilizing the ROS platform, the entire operation
of the intelligent robot food runner is simulated and verified, effectively meeting the
precise demands of restaurants [41].

17

The research titled “Visual Perception Framework for an Intelligent Mobile Robot”
demonstrated that visual perception is a fundamental capacity essential for intelli-
gent mobile robots to interact efficiently and safely with humans in real-world set-
tings. In recent years, there has been significant and innovative development in deep
learning, resulting in notable breakthroughs in vision technology. However, the in-
corporation of various visual perception techniques into robotic systems is currently
in its initial phases and lacks confirmation through real-world testing. This arti-
cle presents a visual perception framework specifically developed for an intelligent
mobile robot. Our framework is based on the robot operating system middleware
and smoothly integrates a diverse range of advanced algorithms. These algorithms
are capable of accurately identifying individuals, objects, human poses, and offering
detailed descriptions of observed scenarios. The proposed framework’s effectiveness
and applicability are evaluated in diverse and demanding scenarios encountered in
international robotics competitions, employing two mobile service robots [42].

The paper titled “To build a smart unmanned restaurant with multi-mobile robots”
presents a comparison between a single robot and a system comprising many mo-
bile robots, highlighting the various advantages of the latter. By breaking certain
jobs into smaller parts, many robots can work on different subtasks at the same
time, which improves total performance. Furthermore, the cooperation among the
members enhances the stability of the robot, enabling the development of more so-
phisticated designs for robots specialized in particular jobs and increased adaptabil-
ity. This study proposes the creation of an automated smart restaurant by utilizing
the combined capabilities of many robots. The MATLAB software is used as the
preferred platform for this system, while the Vision C# a design tool is employed
to model the ultimate result. The system employs dynamic allocation of robots,
adjusting their numbers according to the number of guests. It prioritizes assigning
the nearest robot to a task through decision-making processes. In addition, the sys-
tem utilizes Particle Swarm Optimization for path planning, which results in faster
convergence speed and enhances global search capabilities. This method enhances
communication, coordination, and collaboration among the robots, allowing them
to independently handle tasks such as guest hosting, meal delivery, table cleaning,
and other operations in the restaurant [43].

The A* method in artificial intelligence is a very effective pathfinding algorithm
that effectively determines the shortest path in a graph by taking into account both
the current cost and an estimation of the remaining cost. The paper titled “A
path planning method based on the geometric A-star algorithm” proposes an ap-
proach to address the challenges of navigating an Automated Guided Vehicle (AGV)
through complex paths with numerous nodes, long distances, and sharp turning an-
gles. These challenges commonly arise in sawtooth and cross paths generated by
the traditional A-star algorithm. This method is highly effective for path planning
[44].

In the paper titled “An approach to restaurant service robot SLAM” we aim to find
the shortest weighted path using the A Star algorithm. We improve the algorithm
by adjusting the weight of the restaurant channel in real-time based on the degree
of congestion. To validate our results, we use a gridded map of a restaurant. The
findings demonstrate the effectiveness of the suggested method in comparison to the

18

conventional gridded map of a restaurant. An A* algorithm with a fixed path weight
and enhanced performance. The utilization of the A* algorithm can effectively
mitigate channel congestion and enhance the operational efficiency of mobile service
robots. The restaurant service robot systems find it to be of significant practical
utility. In this study, the A* algorithm is defined as the most efficient method for
path planning, surpassing other algorithms in terms of finding the shortest path
[45].

A study titled “Optimal mapping trajectory for autonomous robot waiter” presents
the findings of a series of tests conducted with Dijkstra’s algorithm. The results
demonstrate that the robot is capable of efficiently navigating from the starting point
to the desired destination, even when there are modifications to the working envi-
ronment and the movement is executed smoothly using the three omni-directional
trajectories. In summary, it is evident that the Dijkstra algorithm operates with
precision and finesse in the domain of robot path planning [46].

19

Chapter 3

Methodology, Requirement
Analysis, Implementation

The research methodology adopts a multimodal approach to create an autonomous
restaurant robot in Fig. 3.1 with core functionalities in object recognition, speech
recognition, and navigation. Navigation, a primary focus, is implemented and tested
through simulation using Simultaneous Localization and Mapping (SLAM) methods,
aiming to identify optimal techniques for smooth restaurant navigation [16]. Object
recognition involves sequential processes such as image capture, annotation, labeling,
dataset generation, and rigorous testing of various models to determine the most
accurate and effective one for integration into the robot. For voice recognition,
Application Programming Interfaces (APIs) are employed to enhance human-robot
interaction, enabling the robot to comprehend and respond to spoken orders in a
restaurant setting, contributing to a coherent and context-aware speech experience
[47].

Autonomous_Restaurant_Robot

Navigation
Path_Planning
Local_Path_Planning

Mapping Localization

Global_Path_Planning

Object_Recognition

SSD_MobileNet_V3 Faster_R_CNN

Speech_Recognition

Google_Speech_API CMUSphinx

Figure 3.1: Autonomous Restaurant Robot Diagram

20

3.1 Platform, tools and asset selection for Navi-
gation

The selection of a suitable platform, tools, and assets is vital for the navigation of a
robot. The choice of the platform, such as Linux 20.04, Gazebo, and Rviz, is based
on the specific requirements of the robots environment, considering factors such as
terrain, size, and weight capacity. Robot Operating System (ROS), Simultaneous
Localization and Mapping (SLAM) algorithms, object identification, and speech
recognition algorithms are essential tools that enable the robot to comprehend and
map its environment. Lidar sensors are commonly favored for precise distance read-
ings in navigation. By combining dependable sensor and software components, the
robot may achieve effective navigation, obstacle detection, and smooth interaction
with its surroundings, resulting in a resilient and competent system.

3.1.1 ROS Noetic

Robot Operating System (ROS) Noetic is a middleware framework designed to de-
velop software for robots. It provides a flexible and distributed architecture for de-
veloping modular and scalable robotic systems. In this study, we use ROS Noetic as
the basis for the TurtleBot3 robots Simultaneous Localization and Mapping (SLAM)
simulation. In order for various software components, or “nodes,” to share informa-
tion without any problems, a communication framework is the core of ROS Noetics
functioning. These nodes can be created in multiple programming languages, which
makes it easier for different modules to communicate with one another. ROS Noetic
is a stable and adaptable framework that we have chosen for our researchs TurtleBot3
SLAM simulation. Our research goals are aided by ROS Noetic, which makes use
of simulation capabilities, modular architecture, and community support to make it
easier to develop and test complex robotic systems [48].

3.1.2 Ubuntu Linux 20.04

The popular and adaptable open-source Linux distribution Ubuntu 20.04 is renowned
for its dependability, security features, and robust package management system.
Ubuntu 20.04 is the operating system used in our study for installing and setting up
ROS Noetic packages. Like other Linux distributions, Ubuntu 20.04 runs on a kernel
resembling Unix and adheres to the open-source and free software philosophy. The
selection of Ubuntu 20.04 as the operating system for our research provides a stable,
secure, and well-supported environment for deploying ROS Noetic. Its community
support, large package repository, ROS interoperability, and user-friendly features
all work together to provide a research technique that is both simplified and effective
[49].

3.1.3 Gazebo Simulator

A popular open-source robot simulation program in the robotics community is called
Gazebo. It offers a platform that is both realistic and expandable for simulating
robots and their interactions in various situations. In our study, Gazebo is used
as the simulation environment, specifically for the TurtleBot3 SLAM simulation, to

21

test and validate ROS Noetic packages. Gazebo Simulator is a feature-rich robotic
system simulation tool that comes with the following main attributes: Sensor sim-
ulation, ROS integration, physics engine, and 3D visualization. The following are
some advantages of using Gazebo Simulator: reproducibility, compatibility with
ROS, realistic simulation, sensor and actuator simulation, and community support

[38).

3.1.4 Testing of Simultaneous Localisation and Mapping Al-
gorithm

Simultaneous Localization and Mapping (SLAM) is a key part of robotic naviga-
tion. It helps robots not only understand and map their surroundings, but also
figure out where they are in that area. In this study, we applied three different
Simultaneous Localization and Mapping (SLAM) algorithms in Fig. 3.2 to enable
the TurtleBot3 robot to navigate and map on its own. The three SLAM algorithms
(gmapping, Hector SLAM, and Cartographer) that were selected were carefully ap-
plied to different robotic navigation tasks [49]. The implementation of Gmapping,
which is another name for Grid-based FastSLAM, aimed to generate a probabilistic
occupancy grid map of the surrounding area. The program concurrently creates
a map using data from laser scans and estimates the robots attitude using parti-
cle filters [50]. Hector SLAM uses a grid-based mapping technique in conjunction
with a scan matcher to predict the robots trajectory and produce a high-resolution
map. The method works very well in settings with lots of open areas and few
loop closures. Google created Cartographer, a flexible SLAM system that makes
use of both 2D and 3D mapping methods. To produce intricate maps, it combines
data from multiple sensors—including Light Detection and Ranging (LIDAR) and
Inertial Measurement Unit (IMU) using a global optimization technique. Our re-
search employed a methodical approach that included parameter adjustment, data
collection, and thorough testing in order to deploy gmapping, Hector SLAM, and
Cartographer [51]. The goal in choosing these algorithms was to provide us a com-
prehensive understanding of their capabilities so that we could base our selections
on the particular needs of autonomous navigation in various contexts [45] .

SLAM Localization

Start

While True

[SLAM self | |
End Odometry Data Localization

Update

MAP Server

Figure 3.2: Simultaneous Localization Mapping

Figure 3.2: Simultaneous Localization and Mapping.

22

3.1.5 Ryviz

The data processing stage of our study uses ROS Visualization (Rviz) to create
dynamic 3D graphs and visual representations from the outputs of the SLAM algo-
rithm. A useful tool for analyzing and assessing how well implemented algorithms
perform is Rviz. To summarize, the process of creating a Rviz graph entails setting
up ROS subjects, starting Rviz with the proper parameters, setting up visual repre-
sentations, and utilizing Rviz interactive features to conduct thorough data analysis.
The SLAM algorithms performance in the simulated environment is assessed and
understood better thanks to the insights and visualizations produced by Rviz.

3.1.6 Object Recognition (Faster R-CNN)

A robots object recognition quickly identifies and categorizes nearby things to help
find misplaced items. The robot can efficiently scan and analyze the environment to
find lost items using modern computer vision techniques. The system can also save
accessory information like location, description, and usage for intelligent retrieval.
This makes the robot a better assistant, especially when users need help finding
things or accessories.

3.1.7 Data Collection

Collecting a wide range of picture data that accurately depicts the restaurant setting
in which the autonomous robot will work. After that it ensure that the dataset
includes a range of backgrounds, objects, and lighting scenarios that the robot is
probably going to come across.

3.2 Annotation and Labeling

Labeling objects of interest in the photos with manual annotation tools. To train
the Faster R-CNN model, annotate each objects bounding box with the class label.
Additionally, we have partitioned the annotated dataset into test, validation, and
training sets. The validation set helps with hyperparameter tweaking, the test set
assesses the models ability to generalize to new data, and the training set is used to
train the model.

3.2.1 Model Selection and Training

We opted for the Faster R-CNN architecture for object recognition, enabling pre-
cise item localization and classification by combining a classifier with a region pro-
posal network (RPN) [13]. Initially, the Faster R-CNN model was pre-trained using
weights from a large-scale dataset like COCO, leveraging transfer learning. Fine-
tuning was performed on the annotated restaurant dataset, with ongoing perfor-
mance assessment on the validation set. Model optimization involved adjusting
hyper parameters, such as batch sizes and learning rates, based on validation met-
rics.

23

3.2.2 Testing and Results Analysis

The finalized model underwent testing on a dedicated set of cases to ensure appli-
cability to new, untested data. Evaluation encompassed correctness and robustness
under diverse scenarios, including practical trials on a self-governing food service
robot equipped with the Faster R-CNN object identification mechanism. Precision
in object identification and localization within the bustling restaurant environment
was assessed. Results were documented in the analysis, considering model correct-
ness, computational efficiency, and real-world performance. Challenges encountered
were outlined, along with potential enhancements for future tasks.

3.2.3 Speech Recognition

This approach guides the speech recognition technology of the restaurant robot
through an API. After a thorough examination of available speech recognition APIs,
considering factors such as cost, integration ease, language support, and accuracy
[47], we selected an API aligned with the robot’s specifications. The emphasis
is on meticulous API selection, integration with ROS, data gathering, potential
model training, system integration, testing in virtual and real scenarios, correctness
assessment, continuous development, and documentation for the thesis report.

3.2.4 Initialization and Setup

o Importing pyttsx3 and speech_recognition libraries.
o Initializing the text-to-speech engine using the ’sapi5’ backend, and setting

the voice.

3.2.5 Functions Definition
o speak(audio): for text-to-speech.

o takeCommand(): for speech recognition.

3.2.6 Speech Recognition

The takeCommand () function captures audio input through the microphone, prints
“Listening...” to indicate that it’s ready, and listens for user input. The recognized
speech is printed, and the function returns the recognized query.

3.2.7 Intent Matching

The get_intent(query) function matches the recognized query with predefined
intents in the data list. It uses a simple scoring mechanism based on word matching
to determine the best-matched intent.

24

3.2.8 Response Generation

The response (intent) function generates appropriate responses based on the matched
intent. For “jokes” and “wish” intents, random jokes and birthday wishes are fetched
from dedicated functions (fetch_joke() and fetch_birthday wish()). For other
intents, random responses from the predefined list are selected. Data Definitions:
The data list contains dictionaries for each intent, specifying associated queries and
responses.

3.2.9 Main Loop

The main loop continuously listens for user input, determines the intent, and re-
sponds accordingly. Overall, the model forms a conversational interface where the
restaurant robot can engage in simple interactions, providing information, jokes,
birthday wishes, and responding to various user queries. It serves as an introduc-
tory implementation for a voice-driven restaurant assistant.

3.3 Implementation

This section provides a comprehensive simulation of the navigation system, as well
as the object recognition model and the speech recognition model.

3.3.1 Simultaneous localization and mapping (SLAM)

We start by setting up the operating system, which is Linux. The version we use
is 20.04. After that, we need to set up the ROS (Robot Operating System). After
that, we set up the necessary packages to run the simulation, such as ROS Tool
Box, Adaptive Monte Carlo Localization (AMCL), and others.

> # O -~ e8| ESZ|BA R O|E

11)] steps: 1. RealTime Factor:

Figure 3.3: Gazebo Indoor Image

25

The Gazebo simulator in Fig. 3.3 is used to make the indoor area. Then we could
run the maps with the Gazebo Simulator. Then the Rviz generates the map.

Eile Parels Help
foetersct | uoveComers [ltelet ffocusCames Masute < DPoselitimste #I0MwCesl @ hblshPont & =

5]

Plane Cell Count o
Hormal cell €ount)
cell size 3
Line Style Lines
Color 0 160; 160; 164
Alpha o
Plane X
+ Offset 0.0
-~ LaserScan ¥
v seatus: Ok
Tapic fscan
unreliable
Queue Size = T W | AT
Selecable v
Style Flat Squares
size (m) 200
Alpha
Decay Time

rmer XYZ
Calor Transformer FlatColor

add | Duplicate || Remove | Renome

Figure 3.4: Hector Slam

We can see that the white part is in Fig. 3.4 the occupied place, those black points
are unoccupied places meaning there are objects, and the rest of the blue part is an
unknown area for the robot. The data that the Lidar camera collected is shown in
bright green, and the landscape map that has been made is a light gray color that
we can see in the Rviz. As more of the map is filled in, the Lidar scan area slowly
changes from a light gray color to a white color.

3.3.2 Localization

In the localization part a particle filter can help a restaurant robot figure out where
it is and how to get around in the restaurant. It state includes where it is and how it
is facing. The particle filter helps guess these things by using readings from sensors
like cameras, lidars, and other environmental sensors.

Particle Filter Algorithm

A particle filter is a type of recursive Bayesian filter that is often used to estimate
the state of systems that are dynamic and whose state changes over time. It works
especially well when the distributions are not linear or Gaussian. The particle filter
in Fig 3.5 uses a group of particles, each of which is a guess about the current state
of the system, to show what people think about its state. These particles move
around over time and are changed based on sensor readings to get a better idea of
what is going on with the system

26

Figure 3.5: Localization

The filter starts with a base set of particles, each of which represents a possible state
of the system. The particles are moved through the dynamic model of the system
to figure out what their future states will be. Particles are given weights based
on how well their predicted states fit the actual measurements when new sensor
measurements come in. The filter copies the particles with higher weights because
they are more likely to be correct. It gets rid of the particles with lower weights.
This process of resampling makes sure that the particles better show the state of the
system. The process is done over and over, and each time the guess of the systems
state gets better.

A particle filter can be used to figure out where the robot is right now, for instance
if it has a picture of the restaurant and sensors that can find landmarks or recognize
specific spots. As the robot moves and gets data from its sensors, the filter will
change what it thinks about its location.

3.3.3 Path Planning

The environment map was acquired and then imported into the ROS framework
for route planning. To simulate routes and use the ROS framework, we employ the
Rviz program. This in Fig. 3.6 on the left, shows the finished map. Also, the cyan
area shows how far away the robot should be from the obstruction, while the black
dot shows that there is an obstacle.

27

Eile EBanels Help
SrmowCamea | fymieact [lselect .~ DPusetstmate S 20WmGod SMemwe d = &
Displays [s]

+ @ Global Options -

+ ¥ Globel Status: Ok

+ ® Gid

* h RobotModel

b TF

¥ A Laserscan

+ o Planaer Plan
+ [Globsl Map
« B Local Map

3
v

“

+ P2 mMap Ci
Ci

C

v

* wl Polygon 'l

+ P costmap b
» o Status: Ok
Topec fmove_baseflocal <o,
o7

Alpha
Color Scheme costmap
Dranw Behind
Resslution 605
width L]
Height %

+ Pasition 085170

+ Orientation oot
Unreliable
Use Timestamp

* ~ Planner

» o Stanus: Ok
Topic fmove_base/DiwaPla...
Unreliable

Figure 3.6: Path planning

We can see the red arrow indicates the robots intended path and destination location.
The red line in Fig. 3.7 using DWA (Dynamic Window Approach) and A* algorithm
get the results of the path planning and navigation process, which are located on
the right side of the figure.

Eile Banels Melp
Grmowcamen fywwat [lseec - DPueEomae S 0RWGel e = &
© Desplays s]
+ @ Global Options. =
* ¥ Global Status: Ok
v Gid
* s RobotModel
Ak TF
» o Lasersean
+ B mage
+ 2 Map
+ # Planner Plan
+ [Global Map
- B Local Map
* wl Polygon

e €))) () R

fmove_baseflocal_go..

10
Color Mo o0
1

- Plcostmap W
o Status: Ok
Tope fmove_base/local ...
or

Alpha
Color Scheme costmap
Draw Behind
Resslution 005
width 60
Height 60

» Position 085110

» Orientation G001
unreliable
Use Timestamp

=~ Planner

o Stakus:Ok
Topse fmowe_base/TWARa.
unreliable

Figure 3.7: The bot reached to the target node

The robot will begin its journey in Fig 3.7 just below the obstacle. The virtual route
not only bypasses the obstruction with ease, but it also follows a very straight line.
Finally, the bot reached the target node.

3.3.4 Object Recognition

The Faster R-CNN object recognition model helps a robot quickly find lost things by
correctly identifying and classifying objects in its environment. It quickly finds areas
of interest with its region suggestion network, which ensures accurate localization.

28

The ability of the model to give users specific information about accessories, like
where they are and what they do, makes it even more useful. Faster R-CNN is more
accurate than SSD MobileNetV3 because its two-stage architecture allows for more
accurate localization and fewer false positives. This makes it a better choice for jobs
that need very accurate object recognition and localization.

Faster R-CNN

Faster R-CNN is a deep learning model created by Shaoqing Ren, Kaiming He, Ross
B. Girshick, and Jian Sun. (2015) to help find objects. It is based on the Region-
based Convolutional Network (R-CNN) design and aims to make object detection
faster and more accurate. In our object identification model represented in Fig 3.8 we
utilize the coco names dataset combined with our own custom data to enhance the
accuracy of the object recognition model.It is evident that the system can accurately
identify all the parts with improved precision.

torch
torchvision
torchvision transforms T
PIL Image
cv2
cv2_imshow

model 5 - .fasterrcnn_resnet5@_fpn(pretrained
model.

img = Image.
transform = T. ()
img_tensor = transform(img)

torch. O:
pred = model([img_tensor])

an

bboxes, 1abe1§, scores pred[@] , pred[@]["labels"], pred[@]["scores"]

Figure 3.8: Object recognition code

The keyboard and cell phone represent the highest levels of accuracy in Fig 3.9 with
percentages of 0.96 and 0.93 respectively. In addition, the mouse, cup, and table
represent accuracy of 0.54 | 0.59 , and 0.56 percent correspondingly.

29

cell i:n'om 0.93

——

Figure 3.9: Object recognition using FasterR-CNN

The accuracy of the phone in Fig 3.10 is 0.91, the accuracy of the cup is 0.92, and
the detection percentage of the person is 1.00 percent. These are the results that
the object detection model shown in Figure 3.10 is able to determine.

person 1.00°

Figure 3.10: Better accuracy using Faster-R-CNN

30

Overall we get better accuracy than the ssd mobilenet v3 model and the model is
also much faster than the others. Accuracy is raised as a result of improvements in
image quality. We selected the model based on its fast and better accuracy.

SSD MobileNet V3

In the case of an automated restaurant robot, SSD MobileNet V3 is used to find and
identify objects. It works by turning a picture you give it into a grid and guessing
multiple bounding boxes and the class scores that go with them for each grid cell at
the same time. The design of MobileNet V3 helps keep the model small and fast,
which makes it good for real-time use on devices with limited resources, like robots.

The robot uses cameras to take pictures of things around it, like tables, chairs, and
other things.SSD MobileNet V3 looks at these pictures and figures out what things
are in them, like people, tables, or barriers. The model predicts where each item it
finds will be by drawing a box around it.

31

-~

) File Edit Selection View Go - ,OUnmle;[\._'w;:}—a
= YOrKsp

EXPL i js.
ORER {} allintents_jsjson @ main.py

" UNTITLED (WORKSPACE) ObiectDetector-OpenCV-main > @ mainpy > ...

cap = cv2.VideoCapture(e)
cap.set(3,1280)
cap.set(4,720)
cap.set(10,70)

classNames= [] I

classFile = 'coco.names’

with open(classFile,'rt') as f:
classNames = f.read().rstrip(‘\n').

configPath = ‘ssd_mobilenet_v3_large_co
weightsPath = 'frozen_inference_graph.p

net = cv2.dnn_DetectionModel(weightspPat
net . st TnnitSizel1720.320)

oL @ OuTPUT DEBUGCONSOLE TERMINAL

N 96 322 308 337]]
= 71] [[372 189 436 236]
76 229 393 331]]
1]77]37132092906 386]17]
76 128 222 362]]
421383]1§§3705230 98 117]
261118]4pp3382)88 96 131]
21 385 480 366]]
= 1521383]11[3795288 96 131]
2211120 219 Bge]7 284 97 132]
[132 388 172 203]]
[72601283 72} [{3]7 284 97 132]
[122 318 392 362]]
[[36@785[128 182]361
[282 278 153 101]] e,
[71 71]#2[15541:233311353]‘:]
[388 269 112 133]]
[72211387]1{£4133257 191l1§6]1l
[[2481105 4:3 izgia) 100 140
221 367 1
[%Jua1213 77] [[a20 252 100 140]

-
=
-

Figure 3.11: Object Recognition using ssd mobilenet v3

The model gives each bounding box a class score that shows in Fig 3.11 how likely
it is that the object belongs to a certain class, like “table,” “cup,” or “human.”
Moreover, the model can recognise the person with a higher accuracy.

32

84.21" (l

F'—I
U
L‘J’%

&)

U

Figure 3.12: use more objects for performance test

We use more object to test the performance of our ssd mobile net v3 model and get
the accuracy result in Fig 3.12 . We can see that it can detect cup, keyboard and
mouse with highest accuracy result. Moreover, the ssd mobile net v3 model a few
lower than the Faster-R-CNN model. The Faster-R-CNN model also faster than the
ssd mobile net v3 model.

3.3.5 SpeechRecognition

The given code utilizes the Google Web Speech API in Fig 3.13 to perform speech
recognition. This Speech Recognition model will help our robot to interact with the
customer more efficiently.

pyttsx3 and speechrecognition libraries are imported. The text-to-speech engine is
initialized using the ‘sapi5’ backend, and the voice is set.

33

engine)
voices = engine
engine.setProperty(

speak(audio):
engine.say(audio)
engine.runAndWait()

takeCommand

P . Mic source:
print(“Listening...
r.pause_threshold 1

audio = r.listen(source)

print(” =)
query .rec i oogle(audio, language='er

print

Figure 3.13: Speech Recognition code

Here two functions are defined. One is speak(audio) for text-to-speech and the other
is takeCommand() for speech recognition.

The takeCommand() function captures audio input through the microphone, prints
“Listening...” to indicate that it is ready, and listens for user input. The recog-
nized speech is printed, and the function returns the recognized query. The get-
intent(query) function matches the recognized query with predefined intents in the
data list. It uses a simple scoring mechanism based on word matching to deter-
mine the best-matched intent. The response (intent) function generates appropriate
responses based on the matched intent.

34

able to tell j
to eat? That's di

yn o I '

at on the menu?",

"Is taking th

ilab

Figure 3.14: Main Conversation Dataset

The waiter bot has the ability to generate all the necessary information such as
the greetings, payment method in Fig 3.14, the opening and closing time of the
restaurant, all the available food items etc.

fetch_joke():
jockes_wishes

you should be half left.

of water! I

Figure 3.15: Jokes Dataset

For “jokes” and “wish” intents, random jokes in Fig 3.15 and birthday wishes in
Fig 3.16 are fetched from dedicated functions (fetchjoke() and fetchbirthdaywish()).
For other intents, random responses from the predefined list are selected. Data
Definitions: The data list contains dictionaries for each intent, specifying associated

35

queries and responses. The main loop continuously listens for user input, determines
the intent, and responds accordingly.

fetch_birthday_wish():
birthday_wishes
y Birthdsz May y -, be filled with lo

TlllEd w1th

2z = nt of your s
Hopp your ecial day you qll that your heart
"On your birthday, g happiness and joy for th
"May your blrthda\ be fllled with sunshine and smiles. H: y Birt hday‘
L jou a day filled with happiness and y ille with joy. Happv Eirfh

s for suc hﬂdlth, dﬂd
ble with many
L EVY lled wi

- love on your

Figure 3.16: Birthday Greeting Dataset

The Speech Recognition model is being utilized in our model in an effort to develop
the interaction between the customer and the waiter robot. We have put into action
the primary discussion in which the waiter is responsible for generating all of the
information regarding the restaurant, including the opening and closing times, the
meal items, the payment system, greetings, and further information.

Overall, the model forms a conversational interface where the restaurant robot can
engage in simple interactions, providing information, jokes, birthday wishes, and
responding to various user queries. This feature will help to improve the customer
waiter interaction more enjoyable

36

Chapter 4

Result Analysis

All of the models, including navigation, object identification, and speech recogni-
tion, are compared in this section, and the results are displayed according to their
performance.

4.1 Mappping

In this section on mapping, we analyze and compare various algorithms that produce
maps. We also evaluate their performance to determine the most suitable option for
our research. The choice between these SLAM algorithms depends on the specific
requirements and constraints of the robotic application in a restaurant setting.

We can observe that the map that was formed is referred to as (a) gmapping here
in Fig 4.1 The white part is the occupied place, those dotted black points are un-
occupied places meaning there are objects, and the rest of the green part is an
unknown area for the robot. Gmapping is a simple and efficient SLAM algorithm
for robotic mapping, suitable for robots with limited processing power. With a
particle filter-based approach, it handles uncertainty in pose estimation, making it
robust. Gmapping supports map merging techniques, making it suitable for collabo-
rative mapping in multi-robot systems. Gmapping is mostly made for 2D mapping,
and it might not work straight with 3D mapping without some changes. It might
react badly to changes in its surroundings, and moving parts could affect how well
it works [10].

37

(a) Gmapping (b) Hector SLAM (c) Cartographer

Figure 4.1: Mapping comparison

The third image in Fig 4.1 is referred to as (c¢) Cartographer Slam. This particular
map offers a higher level of clarity compared to other maps. But It needs the most
complex set up and also the computational complexities are very high. It is possible
to make thorough 3D maps with Cartographer, which makes it useful in situations
that need it. The algorithm is made to handle loop closing well, which improves
the accuracy of mapping when the robot goes back to an area. Cartographer allows
multi-sensor fusion, which lets the robot combine data from different sensors to get
a better picture. Setting up a Cartographer to work in a certain environment can
be hard, and it might need to modify some settings, which could make quick launch
harder. Cartographers can use a lot of resources, which could be a problem for a
restaurant computer that can not do a lot of computing [49].

In addition, we can see that Fig 4.1 shows that the produced map is known as (b)
Hector Slam and the black part that actually the objects and the green parts are
unknown areas. Here we can see the map generated more clearly than the previous
map. Hector-SLAM works very well in real time, which means it can be used in
situations where the robot needs to work quickly and efficiently. The algorithm can
be set up quickly, which means that the robot can start moving right away after
being released.

38

Process Name User %CPU ID Memory Disk read toti Disk write tot Disk read Disk write Priority
WINeaevice.exe DaKnciyar U orur 23 MIB 2UB.UKIB /A A NyA Normat
xdg-document-portal bakhtiyar 0 2226 668.0KIB 220.0KiB N/A N N/A Normal
gsd-power bakhtiyar 0 1978 6.2 MiB 240.0KiB N/A N/A N/A Normal
chrome ~type=renderer —crast bakhtiyar] 3622 209.3MiB 296.0KiB 8.2 MiB N/A N/A Normal
plugplay.exe bakhtiyar 0 6691 2.2 MiB 308.0KiB N/A N/A N/A Normal
chrome ~type=utility -utility-s1 bakhtiyar 1 3606 13.4MiB 352.0KiB N/A N/A N/A Normal
gzserver bakhtiyar 0 5314 104.0KiB 392.0KiB N/A A N/A Normal
chrome -type=renderer —crast bakhtiyar 0 4633 25.7MmiB 476.0KiB 320.0KiB N/A N/A Normal
pulseaudio bakhtiyar 0 1576 2.2 MiB 548.0KiB 36.0KiB N/A N/A VeryHigh
xdg-desktop-portal-gtk bakhtiyar 0 2240 9.2 MiB 608.0 KiB N/A N/A N/A Normal
chrome ~type=renderer —crast bakhtiyar 0 3621 175.4MiB 620.0KiB 9.5MiB N/A N/A Normal
chrome —type=renderer —crast bakhtiyar 0 3397 17.1MiB 648.0KiB 12.0KiB N/A N/A Normal
WebExtensions bakhtiyar 0 2337 18.7MmiB 720.0KiB NA N/A N/A Normal
ibus-extension-gtk3 bakhtiyar] 1870 8.2 MiB T48.0KiB N/A N/A N/A Normal
xdg-desktop-portal bakhtiyar 0 2221 1.3 MiB 804.0KiB N/A N/A N/A Normal
roslaunch bakhtiyar 0 5991 28.9MiB 828.0KiB 28.0KiB N/A N/A Normal
chrome —type=renderer —crask bakhtiyar 4 5065 91.0MiB 904.0 KiB 1.6 MiB /A /A Normal
ibus-x11 bakhtiyar 0 1872 4.2 MiB 1.0MiB N/A N/A N/A Normal

(~evolution-alarm-notify bakhtiyar 0 2026 N/A 1.1 MiB N/A N/A N/A Normal
chrome =type=renderer ~crast bakhtiyar 0 3455 37.2MiB 1.2 MiB NfA N/A N/A Normal
chrome_crashpad_handler bakhtiyar 0 3265 344.0KiB 1.3 MiB 16.0KiB N/A N/A Normal

B slam_gmapping bakhtiyar 4 Y, Narmal
services.exe bakhtiyar 0 6688 2.5MiB 1.5MiB NA N/A N/A Normal
Utility Process bakhtiyar 0 2398 10.9MiB 1.5 MiB N/A N/A N/A Normal
turtlebot3_drive bakhtiyar 1 6466 8.9 MiB 1.5MiB N/A N/A N/A Normal
chrome ~type=renderer —crast bakhtiyar 0 3387 17.0MiB 1.6 MiB 44.0KiB N/A N/A Normal
chrome —type=utility —-utility-s1 bakhtiyar 0 3311 13.1MiB 1.7 MiB 436.0KiB N/A N/A Normal
gnome-terminal-server bakhtiyar 0 4910 12.6MiB 1.7 MiB 20.0KiB nN/A N/A Normal
Isolated Web Co bakhtiyar 0 2778 274.1MiB 1.7 MiB 2.6 MiB N/A N/A Normal
chrome ~type=renderer —crast bakhtiyar 0 3634 254.3MiB 1.8 MiB 13.0 MiB N/A N/A Normal
Socket Process. bakhtiyar 0 2218 9.2 MiB 2.0 MiB N/A N/A N/A Normal
tracker-miner-fs bakhtivar 0 1578 912.0Kig 2.1 MiB N/A N/A N/A Very Low

Figure 4.2: Gmapping memory use

Gmapping use less memory than hector slam. We can see from the image in Fig 4.2
that gmapping uses 58.7 mb memory. Moreover hector slam uses a lot memory in
Fig 4.3 we can see that 100.9 mb memory used by hector slam.

39

Process Name User % CPU [[+] Memory Disk read tot: Disk write tot Disk read Disk write Priority
gdm-x-session bakhtiyar 0 1669 640.0KiB /A NA N/A N/A Normal
ssh-agent bakhtiyar v] 1793 100.0KiB N/A N/A N/A N/A Normal
ibus-portal bakhtiyar V] 1874 68.0 KiB NfA N/A N/ N/A Normal
at-spiz-registryd bakhtiyar V] 1888 220.0KiB N/A N/A N/A N/A Normal
gjs bakhtiyar 0 1942 N/A N/A N/A /A N/A Normal
gsd-a1ly-settings bakhtiyar 0 1967 284.0KiB Nfa N/A N N/A Normal
gsd-datetime bakhtiyar v] 1969 280.0KiB N/A N/A N/A N/A Normal
gsd-housekeeping bakhtiyar 0 1971 372.0KiB NfA N/A N/ N/A Normal
gsd-print-notifications bakhtiyar 0 1979 372.0KiB N/A N/A N/A N/A Normal
gsd-rfkill bakhtiyar 0 1980 236.0KiB NA N/A N/A N/A Normal
gsd-screensaver-proxy bakhtiyar 0 1983 224.0KiB NfA N/A N/A N/A Normal
gsd-smartcard bakhtiyar 0 1985 16B8.0KiB NfA NA NfA N/A Normal
gsd-sound bakhtiyar 0 1987 220.0KiB NA N/A /A N/A Normal
gsd-printer bakhtiyar 0 2108 N/A N/A N/A N/A N/A Normal
Isolated wWeb Co bakhtiyar 0 2409 11.5MiB NA N/A N/A N/A Normal
cat bakhtiyar 0 3262 64.0KIB N/A N/A N/A N/A Mormal
cat bakhtiyar 0 3263 68.0KiB N/A N/A N/A N/A Normal
chrome -type=broker bakhtiyar V] 3347 24.0MiB NfA N/A N/A N/A Normal
chrome -type=renderer —crast bakhtiyar 0 5202 65.3MmiB N/A 20.0KiB N/A N/A Normal
web Content bakhtiyar 0 8046 11.4MiB NA N/A N/A N/A Normal
robot_state_publisher bakhtiyar 1 8156 9.8 MiB NfA N/A N/A N/A Normal
chrome -type=renderer —crast bakhtiyar 0 8210 24.7MiB N/A NA N/A N/A Normal
roslaunch bakhtiyar 0 8239 28.5MiB N/A 16.0KiB N/A N/A Normal
web Content bakhtiyar o 8315 11.3MiB N/A NA N/A N/A Normal
chrome -type=renderer —crast bakhtiyar 0 8368 14.6MiB NfA N/A N/ N/A Normal
gvfsd bakhtiyar 0 1607 468.0KiB 4.0KiB NA N/A N/A Normal

® dconf-service bakhtiyar 0 1921 484.0KiB 4.0KiB 120.0KiB N/A N/A Normal
rosmaster bakhtiyar 1 7202 27.6MiB 4.0KiB 60.0 KiB N/A N/A Normal
roslaunch bakhtiyar [v] 8140 28.8MiB 4.0KIB 28.0KiB N/A N/A Normal
goa-daemon bakhtiyar 0 1636 340.0KiB B.0KIB N/A N/ N/A Normal

0

xdg-permission-store bakhtiyar 1892 N/A 8.0KiB N/A N/A N/A Normal

Figure 4.3: Hector slam memory use

Although, gmapping use less memory than hector slam but gmapping can generate
the clear map and also slower than hector slam. Hector-SLAM might use a lot of
memory, which could be a problem for but providing better accessories, downsample
sensor data and adjusting parameter setting can solve this problem [49].

For our restaurant robot model hector slam can generate a better map than gmap-
ping and also it could perform very well in a dynamic environment with moving
objects. Hector slam is not that complex and also does not require more resources
like cartographer. Moreover, it quickly generates maps more than any other algo-
rithm.

4.2 Path Planning

The path planning process for an autonomous restaurant robot includes finding the
best way to get from where it is now to a certain location in the restaurant. It looks
at things like obstacles, changes in the environment, and the skills of robots to find
a path that works well and does not hit anything. This process makes it easier for
the robot to move around, serve orders, and do other tasks on its own, which makes
it safer and more useful in a busy restaurant.

A* algorithm and Dijkstra algorithm comparison shows in Fig 4.4 This section
focuses on comparing the A* algorithm and the Dijkstra algorithm in the context of
mapping. Additionally, we analyze their respective performance to determine better
one for our research.

40

A* Algorithm

Dijkstra
Algorithm

Figure 4.4: Comparison between A* Algorithm and Dijkstra Algorithm

Dijkstra Algorithm is acceptable, but it does not reflect reality. It promises that
the solution is optimal without using heuristics. A* and dijkstra algorithm in Fig
4.2 are the most popular for path planning algorithms. In A* algorithm heuristic
knowledge is used to help the search go quickly. The dijkstra algorithm does not
use any heuristic data. It looks for paths based only on edge weights. A* algorithm
uses heuristic information to put more promising paths at the top of the list, which
narrows down the search area. The dijkstra algorithm may not be as good at
exploring, especially for bigger graphs that do not have clear rules. A*-based method
by focusing on ways that are most likely to lead to the goal, it tends to be more
efficient. The dijkstra algorithm Usually needs less memory than the A* method.
A*-based method might need more memory, especially when there are a lot of nodes.
O((V+E)log V) is the time complexity of dijkstra algorithm where v is vertex and
E means edge and the time complexity is A* algorithm is O(b?) where b is the
branching factor. So, comparatively A* algorithm is faster than dijkstra algorithm
[52]. To consider all above the fact, we choose A* algorithm to our model.

41

4.3 Object Detection and Recognition

This section focuses on comparing the object recognition model in the context of
fast and better accuracy. Additionally, we analyze their respective performance to
determine better one for our research.

4.3.1 Faster-R-CNN comparison and SSD MobileNet V3

In the beginning, we built ssd mobile net v3 and used the most famous coco names
dataset. It is able to identify the things. This is then compared to the Faster-R-
CNN model using the same set of data. The Faster-R-CNN model gives us better
precision.

Object SSD MobileNet V3 Faster-R-CNN
Person 69.74 1.00
Cell Phone 69.33 0.93
Cup 67.16 0.92
Keyboard 72.33 0.96
Mouse 64.21 0.54

Table 4.1: Comparison between SSD MobileNet V3 and Faster-R-CNN

Based on the table above in Fig 4.3 we can see that person has the best accuracy
in the FasterRCNN model at 1.00 percent, while mouse has the lowest accuracy at
0.54 percent. The keyboard is the most accurate in the SSD MobileNet V3 model,
at 72.33 percent, while the mouse is the least accurate, at 64.21 percent. Another
thing is that the cup gets 67.16 percent accuracy in the SSD Mobile Net V3 model
and 0.9 percent accuracy in the Faster RCNN model. If we look at cell phones again,
the SSD mobile net v3 model gets 69.33 percent accuracy and the FasterRCNN
model gets 0.93 percent accuracy. In the Faster-R-CNN model, all of the parts
are more accurate. Plus, it is faster than SSD Mobile Net V3. So, we picked this
Faster-R-CNN model for our research.

4.4 SpeechRecognition

In our model for speech recognition, the Google Web Speech API is used for the given
code. Depending on the underlying speech recognition engine, speech recognition
performance and accuracy can change. The CMU Sphinx, commonly referred to as
PocketSphinx, is another well-liked voice recognition engine.

42

print("R

query = r. gni google(audio, language='en-in")
print(”

return query

Figure 4.5: Google Speech API

The Google Web Speech API in Fig 4.4 is known for its high accuracy, especially
in processing natural language. The cloud-based voice recognition solution is highly
robust. Additionally, it is compatible with several languages. Using the speech
recognition library in python is straightforward. As it relies on Google based cloud
services, an internet connection is required. The Google Speech API Programming
Interface (API) allows only for the enforcement of the available rate limitations.
As audio is sent to googles servers for processing, there is a potential for privacy
concerns.

pocketsphinx 1 LiveSpeech

takeCommand():
speech LiveSpeech()
("Listening...")

phrase in speech:
audio (phrase)
("Recognizing...")
("You:", audio)
audiol

speak("Hello, I am your restaurant assistant. How can I help you today?")

g
query = takeCommand()
intent = get_intent(query)
respond(intent)

Figure 4.6: CMUSphinx

43

CMU Sphinx (PocketSphinx) is an embedded speech recognition system in Fig 4.5
that works even where the user is not online. It has a faster response time because it
does not use a cloud-based tool. Once the system is set up, speech recognition does
not need any outside help. It is not as accurate as cloud-based options most of the
time, especially when it comes to conversational or complex language. Compared
to cloud-based solutions, it does not handle as many languages. Needs more setup
and may need to be customized to work best in some situations. Getting the Word
Error Rate (WER) is the best way to compare the quality of different Automatic
Speech Recognition (ASR) systems [53].

WER=(I+D+S)/N

Here I words for included, D words for cut out, and S words for put in where
they belong. Google Speech API has a higher accuracy than the CMU Sphinx
(PocketSphinx) model so we choose the model Google Speech API for our research.

44

The Final Results of Sphinx-4

Eis = N T s D CW EW WA WER
TSX223 1 s 1 1 o 3 2 088 025
TSX293 1 11 o 3 3 7 Fl 064 036
TSI1894 1 9 [v] 2 0 7 2 0.78 0.22
TSI1400 1 14 1 3 0 10 4 0.79 0.20
TSX188 3 3) 3 7 3 El 033 067
TST1628 Fl 12 0 Fl 3 3 7 042 058
TSX314 2 12 [v] 2 2 8 4 0.67 033
DIG001 3 15] 1 0 14 1 0.93 0.07
TSX216 1 5] 1 o g 1 080 011
TSX209 1 7 U] 1 1 5 2 0.71 0.29
TSI1584 2 13 [v] 6 2 E 8 0.38 0.62
TSX371 1 11 0 6 0 E 6 0.45 0.55
TSI373 1 11 o 7 3 3 16 039 071
TSX233 1 7 i 3 g 3 3 071 043
OSEQ03 1 8 1 3 0 4 4 0.63 0.5

AENGME 1 5 0 i o g i 080 0l
AENGFS 1 o [+ H 1 3 6 0.33 0.67
AENGF7 1 1]] 1 0 5 1 0.83 017
AENGM2 1 7 0 i o 3 i 086 014

Mean 037

Table 3. The Final Results of Sphinx-4

The Final Results of Microsoft Speech API

File

S N I S D W EW WA WER
TSX223 1 8 Q 1 [v] 7 1 0.88 €13
TSX293 i i1 [[1] 2] i1 [1] 1.0 0.0
TSI1894 1 9] 2 0 7 2 0.78 .22
TSI1400 1 14 Q 0] 14 1] 1.0 0.0
TSX188 2 6 (] 6 1] 4] 0.0 a9.1
TsSI1628 2 12 0 g 2 2 10 0.17 .83
TSX314 2 12]]] 12 0 1.0 0.0
DIG001 3 15 Q 0 [v] 15 1] 1.0 0.0
TSX216 1 o 0] 0 15] 1.0 0.0
TsSX209 1 7 0] 1 1 > 2 0.71 .29
TSI1584 2 13 Q 3 2 6 7 0.46 .54
TSX371 1 11 Q 1 1] 10 1 091 .09
TSI1373 1 14 [i] 5 1]] 0.57 .43
TSX233 1 7 o 2 o] 5 2 0.71 .29
OSF3 1 -3 o 3 0 5 3 063 3R
AFNGM3 1 4]] 0 [1] 9 0 1.0 0.0
AENGFS 1 o Qo 0 o] o 0 1.0 0.0
AENGF? 1 6] 0] 6 0 1.0 0.0
AENGM2 1 7 0 1 1] 6 1 0.86 .14
Mean 18

Table 4. The Final Results of Microsoft API

The Final Results of Google Speech API

sl s N T s D oW EW WA WER
TSX223 1 [] [1] 0 0 E 0 1.0 .0
TSX293 1 11 o 1 1 9 2 0.82 018
TSI1894 1 o 0 0 0 o 0 1.0 .0
TSI1400 1 14 o 1 0 13 1 093 007
TSX188 2 6 [i] 0 0 6 0 1.0 .0
TSI1628 2 12 [1] 2 0 10 2 0.83 017
TSX314 2 12 Ji] 0 0 12 [i] 1.0 (i1
DIG001 3 15 1] 0 0 15 0 1.0 c.0
TSX216 1 9 [1] Q 0 9 Q 1.0 .0
TSX200 1 7 [i] 0 0 7 [i] 1.0 0.0
TSI1584 2 i3 V] 3 2 6 7 046 034
TSX371 1 11 il 0 0 11 1] 1.0 .0
TSI373 1 14 [1] 0 0 14 0 1.0 .o
TSX233 1 7 1 0 0 6 1 0.71 014
OSEQD3 i] i) 2 1 5 3 0.63 038
AENGME 1 o 0 [1] 1] o 1] 1.0 co
AENGFE 1 Q [i] 2 0 7 2 078 022
AFNGF7 1 6 [1] 0 0 [[] 1.0 c.0

Figure 4.7: Final results of three different APT [53]

45

In their paper titled “ Comparing speech recognition systems (Microsoft API, Google
APT and CMU Sphinx)”, Képuska, V., and Bohouta, G. examine several libraries
such as Text to Speech API, Graph API and Math API for different tasks. Moreover,
this tool was connected with the classes of Sphinx4, Microsoft API and Google API
to work together to recognize the audio files in Fig 4.7 Then they compared the
recognition results with the original recording texts [53].

Sphinx4 Google API Microsoft API
File WA WER WA WER WA WER
TSX223 0.28 0.25 1.0 0.0 0.28 0.13
TEXZX93 0.64 0.36 0.82 018 1.0 0.0
TSI1894 0.78 022 1.0 0.0 078 0.22
TSI1400 0.79 029 0.93 0.07 1.0 0.0
TSX188 0.33 0.67 1.0 0.0 0.0 0.1
TsIl628 0.42 Q.58 Q.83 .17 017 Q.83
TEX314 0.67 0.33 1.0 0.0 1.0 0.0
DIG001 Q.93 Q.07 1.0 0.0 1.0 Q.0
TEX216 0.8% .11 1.0 a0 1.0 Q.0
TSX209 0.71 0.29 1.0 00 0.71 0.29
TSI1584 0.38 0.62 0.46 0.54 0.486 0.54
TSX371 0.45 0.55 1.0 00 091 0.09
TSI1F73 .29 0.71 1.0 0.0 0.57 0.43
TSXZ33 0.71 0.43 0.71 014 0.71 0.29
OSEMD3 0.63 .5 0.63 0.38 063 0.38
AENGMS 0.8% 011 1.0 0.0 1.0 Q.0
AEMNGF2 0.33 0.67 0.78 0.22 1.0 0.0
AENGFT 0.83 0.17 1.0 0.0 1.0 0.0
AENGM2 0.86 0.14 1.0 00 0.86 0.14
hlean WER: 0.37 WER: 0.09 WER]0.18

Table 6. Comparison Between Three Systems

Comparing Speech Recognition Systems

-~

A N N O o N AP A D
il -l e TP gty ("?) AN) <+
oF HL:‘."‘\ P Ac‘j‘ .4':';1;";'-:‘%' X:‘!;) .l\’-Q’ <& ('JQ'

—~ -

o]
v
(:»“-“‘

ﬂ
{'b é" '\,
L S ..&9‘&\

Figure 4.8: The Comparison Result [53]

According to the WER, they also try the different models in ASR systems like the
acoustic model, the language model, and the size of the dictionary. This paper says
that the tool they made to test Sphinx-4, Microsoft API, and Google API using
audio recordings with the original sentences from different sources showed that in
Fig 4.8 Sphinx-4 got 37 percent WER, Microsoft API got 18 percent WER, and

46

Google API got 9 percent WER [53]. As a result, we can say that googles audio
modeling and language modeling are better. In our model we focus more on accuracy
as google Web .

4.5 Research Challenges

Several study problems need to be solved before a SLAM-based autonomous restau-
rant robot with navigation, object detection, and speech recognition can be made.
We have to face difficulties when it comes to the Linux Operating System. We
need to suffer also if one application is supported by any version of linux then the
other may not work. In terms of mapping, using the SLAM algorithm is also a
challenge for us. First, putting these complicated features together requires syn-
chronizing real-time data from different sensors, like mics and cameras, to make
sure that everything works correctly and without any problems. Strong and reliable
simultaneous localization and mapping (SLAM) is hard to achieve in busy, changing
restaurants with lots of people because of things like changing lighting, different lay-
outs, and moving objects. Object detection adds another level of difficulty, calling
for complex algorithms that can find and avoid items, such as tables and customers
that move around. Making sure that speech recognition works well in noisy, busy
restaurants is even harder. Therefore, the models need to be created that can cor-
rectly understand different voices and orders. So, a multidisciplinary method that
combines progress in computer vision, sensor fusion, SLAM algorithms, and natural
language processing to make a SLAM-based autonomous restaurant robot that is
reliable and effective for solving these research problems.

47

Chapter 5

Conclusion

The autonomous restaurant robots promises to revolutionize the food industry by
increasing restaurant efficiency and lowering labor expenses. In addition to the
financial gains, these robots have the capacity to completely transform the customer
experience by providing a more effective and customized level of service. They relieve
human staff of duties like order processing, food and beverage delivery, and cleanup,
freeing them up to concentrate on important areas of quality control and client
interaction.

But it is important to recognize that the field of automated restaurant robots is
still quite young and full of technological difficulties. Overcoming obstacles that
necessitate thoughtful thought and creative solutions including congested navigation
and dynamic surroundings, guaranteeing safety and security, and resolving possible
effects on work.

The deployment of an automated restaurant robot involves a number of critical
procedures. Each stage is necessary for the smooth integration of these robots
into restaurant operations, from specifying requirements and designing the robot to
training, testing, deployment, maintenance, and updates. To further improve overall
efficiency, integration with current systems is essential. Examples of these systems
include Point of Sale, Inventory Management, and Kitchen Display Systems.

Specifically, in the pursuit of advancing the capabilities of our automated restaurant
robot, our work is anchored in the utilization of state-of-the-art technologies, un-
derscoring our commitment to cutting-edge innovation. Specifically, we leverage the
powerful synergy of ROS and SLAM for the critical functionalities of mapping, nav-
igation, and object avoidance. ROS serves as the backbone by providing a robust
middleware framework that facilitates seamless communication between different
components of our robot. This not only enhances the efficiency of data exchange
but also streamlines the integration of various features within the system. Comple-
menting ROS and SLAM plays a pivotal role in enabling the robot to dynamically
map and navigate its environment in real time. This is particularly essential in the
complex and ever-changing landscapes of restaurant settings. Furthermore, to for-
tify our robots perceptual capabilities, we have integrated SSD MobileNetV3 into
its features. This cutting-edge object detection framework empowers our robot with
the ability to accurately and swiftly identify objects within its surroundings. The
inclusion of SSD MobileNetV3 enhances the overall intelligence of our robot, con-
tributing to its proficiency in tasks requiring object identification, a crucial aspect in

48

the context of restaurant operations. By seamlessly integrating these advanced tech-
nologies, our automated restaurant robot not only addresses the challenges posed
by dynamic environments but also elevates its performance in providing efficient
and reliable service. This strategic fusion of ROS, SLAM, and SSD MobileNetV3
represents a significant leap forward in the realm of robotic systems, positioning our
work at the forefront of technological innovation within the culinary landscape.

Even with mentioning the obstacles, autonomous restaurant robots have a bright
future ahead of them. These robots are expected to improve productivity and save
labor costs, which will boost customer happiness and boost business in the restaurant
sector. According to our research, a more dynamic and effective culinary environ-
ment will be possible in the future thanks to the clever solutions that are being used
to address present problems and the seamless integration of technology.

5.1 Future Works

In this research, the slam-based robot has been successfully developed with high
precision in the chosen scenario where the simulation was deployed. Nevertheless,
there is always potential for further expansion of this subject in future investiga-
tions. There are multiple functionalities and characteristics that can improve the
skills and interactions of the robots in various scenarios, such as restaurant settings.
Incorporate the functionality enabling the robot to independently navigate back to
a charging station when its battery level is depleted, guaranteeing continuous op-
eration [54]. Developing functionalities to effectively manage emergency scenarios,
including the capability to halt operations securely or request aid in the event of
technical complications by implementing facial recognition technology to accurately
identify and recall customers, enabling the provision of tailored services or assis-
tance. If relevant to the area, offer language choices and assistance for a variety of
languages spoken by clients. It will create a feedback and rating system for cus-
tomers to enable the restaurant to consistently enhance the performance of robots
and service [53].

49

References

[1] A.S. Abdelhakim, M. Abou-Shouk, N. A. F. W. Ab Rahman, and A. Farooq,
“The fast-food employees’ usage intention of robots: A cross-cultural study,”
Tourism Management Perspectives, vol. 45, p. 101049, 2023.

[2] M. A. Qasim, F. Abrar, S. Ahmad, and M. Usman, “Ai-based smart robot for
restaurant serving applications,” in Al and loT for Sustainable Development

in Emerging Countries: Challenges and Opportunities, Springer International
Publishing, 2022, pp. 107-123.

[3] D. Mazzei, F. Chiarello, and G. Fantoni, “Analyzing social robotics research
with natural language processing techniques,” Cognitive Computation, vol. 13,
pp. 308-321, 2021.

[4] J. Jeon, H. R. Jung, F. Yumbla, T. A. Luong, and H. Moon, “Primitive action
based combined task and motion planning for the service robot,” Frontiers in
Robotics and Al vol. 9, p. 713470, 2022.

[5] A.Gonzalez-Ruiz, A. Ghaffarkhah, Y. Mostofi, et al., “A comprehensive overview
and characterization of wireless channels for networked robotic and control
systems,” Journal of Robotics, vol. 2011, 2011.

[6] V.N.Thanh, D. P. Vinh, and N. T. Nghi, “Restaurant serving robot with dou-
ble line sensors following approach,” in 2019 IEEE International Conference
on Mechatronics and Automation (ICMA), IEEE, 2019, pp. 235-239.

[7] H. Temeltas and D. Kayak, “Slam for robot navigation,” IEEE Aerospace and
Electronic Systems Magazine, vol. 23, no. 12, pp. 16-19, 2008.

[8] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid,
and J. J. Leonard, “Past, present, and future of simultaneous localization and

mapping: Toward the robust-perception age,” IEEE Transactions on robotics,
vol. 32, no. 6, pp. 1309-1332, 2016.

[9] M. C. Bingol and O. Aydogmus, “Performing predefined tasks using the human—
robot interaction on speech recognition for an industrial robot,” Engineering
Applications of Artificial Intelligence, vol. 95, p. 103903, 2020.

[10] X. Zhang, J. Lai, D. Xu, H. Li, and M. Fu, “2d lidar-based slam and path
planning for indoor rescue using mobile robots,” Journal of Advanced Trans-
portation, pp. 1-14, 2020.

[11] E. Ma, Y. Bao, L. Huang, D. Wang, and M. Kim, “When a robot makes
your dinner: A comparative analysis of product level and customer experience

between the us and chinese robotic restaurants,” Cornell Hospitality Quarterly,
vol. 64, no. 2, pp. 184-211, 2023.

20

[12]

[13]

[14]

[15]

[16]

[21]

[22]

[23]

[24]

[25]

I. AYDIN, “Investigation of the effect of robot waiter usage desire on word
of mouth communication and robot waiter usage attitude in restaurants,”
Turkish Business Journal, vol. 2, no. 4, pp. 93-105, 2021.

S. Wan and S. Goudos, “Faster r-cnn for multi-class fruit detection using a
robotic vision system,” Computer Networks, vol. 168, p. 107 036, 2020.

I. Z. Tbragimov and I. M. Afanasyev, “Comparison of ros-based visual slam
methods in a homogeneous indoor environment,” in 2017 14th Workshop on
Positioning, Navigation and Communications (WPNC), IEEE, Oct. 2017,

pp. 1-6.

J. Zhang, Y. Ou, G. Jiang, and Y. Zhou, “An approach to restaurant ser-
vice robot slam,” in 2016 IEEE International Conference on Robotics and
Biomimetics (ROBIO), IEEE, 2016, pp. 2122-2127.

S. Saeedi, B. Bodin, H. Wagstaff, A. Nisbet, L. Nardi, J. Mawer, and S. Furber,
“Navigating the landscape for real-time localization and mapping for robotics
and virtual and augmented reality,” Proceedings of the IEEE, vol. 106, no. 11,
pp- 2020-2039, 2018.

C. Cao, B. Wang, W. Zhang, X. Zeng, X. Yan, Z. Feng, and Z. Wu, “An im-
proved faster r-cnn for small object detection,” Ieee Access, vol. 7, pp. 106 838—
106 846, 2019.

S. Kibria, “Speech recognition for robotic control,” 2005, Master’s Thesis in
Computing Science, Umea University, 1-77.

K. Wang and M. Z. Liu, “Object recognition at night scene based on dcgan
and faster r-cnn,” IEEFE Access, vol. 8, pp. 193 168-193 182, 2020.

S. Choudhary, L. Carlone, C. Nieto, J. Rogers, Z. Liu, H. I. Christensen, and F.
Dellaert, “Multi robot object-based slam,” in 2016 International Symposium
on Fxperimental Robotics, Springer International Publishing, 2017, pp. 729-
741.

Q. Bai, S. Li, J. Yang, Q. Song, Z. Li, and X. Zhang, “Object detection recog-
nition and robot grasping based on machine learning: A survey,” IEEE access,
vol. 8, pp. 181 855-181 879, 2020.

O. Mubin, C. Bartneck, L. Feijs, H. Hooft van Huysduynen, J. Hu, and J.
Muelver, “Improving speech recognition with the robot interaction language,”
Disruptive science and Technology, vol. 1, no. 2, pp. 79-88, 2012.

K. Hauser, “Learning the problem-optimum map: Analysis and application
to global optimization in robotics,” IEEE Transactions on Robotics, vol. 33,
no. 1, pp. 141-152, 2016.

C. Tian, H. Liu, Z. Liu, H. Li, and Y. Wang, “Research on multi-sensor fu-
sion slam algorithm based on improved gmapping,” IEEE Access, vol. 11,
pp- 13690-13 703, 2023.

G. Du and P. Zhang, “A markerless human-robot interface using particle
filter and kalman filter for dual robots,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 4, pp. 2257-2264, 2014.

51

[35]

[36]

[37]

[38]

[39]

[40]

J.-M. Jeong, T.-S. Yoon, and J.-B. Park, “Kalman filter based multiple objects
detection-tracking algorithm robust to occlusion,” in 2014 Proceedings of the
SICE Annual Conference (SICE), IEEE, 2014, pp. 941-946.

A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning and
trajectory planning algorithms: A general overview,” pp. 3-27, 2015.

J. Dai, D. Li, J. Zhao, and Y. Li, “Autonomous navigation of robots based on
the improved informed-rrt algorithm and dwa,” Journal of Robotics, 2022.

H. Liu and Y. Zhang, “Asl-dwa: An improved a-star algorithm for indoor
cleaning robots,” IEEE Access, vol. 10, pp. 99498-99 515, 2022.

Q. Bai, S. Li, J. Yang, Q. Song, Z. Li, and X. Zhang, “Object detection recog-
nition and robot grasping based on machine learning: A survey,” IEEE access,
vol. 8, pp. 181 855-181 879, 2020.

K. Kim, J. Cho, J. Pyo, S. Kang, and J. Kim, “Dynamic object recogni-
tion using precise location detection and ann for robot manipulator,” in 2017
International Conference on Control, Artificial Intelligence, Robotics € Opti-
mization (ICCAIRO), IEEE, 2017, pp. 237-241.

S. Luo, H. Lu, J. Xiao, Q. Yu, and Z. Zheng, “Robot detection and localization
based on deep learning,” in 2017 Chinese Automation Congress (CAC), IEEE,
2017, pp. 7091-7095.

M. Koteswararao and P. Karthikeyan, “Accurate and real-time object detec-

tion system using yolo v3-320 in comparison with mobilenet ssd network,” in
AIP Conference Proceedings, AIP Publishing, vol. 2822, 2023.

L. Jiang, B. Yuan, Y. Wang, Y. Ma, J. Du, F. Wang, and J. Guo, “Ma-yolo:
A method for detecting surface defects of aluminum profiles with attention
guidance,” IEEE Access, 2023.

S. X. Yang and M. Meng, “An efficient neural network approach to dynamic
robot motion planning,” Neural networks, vol. 13, no. 2, pp. 143-148, 2000.

R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: A versatile
and accurate monocular slam system,” IFEF transactions on robotics, vol. 31,
no. 5, pp. 1147-1163, 2015.

C. S. Chen, C. J. Lin, and C. C. Lai, “Non-contact service robot development
in fast-food restaurants,” IEEE Access, vol. 10, pp. 31466-31479, 2022.

M. Ouyang, X. Shi, Y. Wang, Y. Tian, Y. Shen, D. Wang, and Z. Cao, “A
collaborative visual slam framework for service robots,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE,
2021, pp. 8679-8685.

V. K. Sarker, J. P. Queralta, T. N. Gia, H. Tenhunen, and T. Westerlund,
“Offloading slam for indoor mobile robots with edge-fog-cloud computing,”

in 2019 1st international conference on advances in science, engineering and
robotics technology (ICASERT), IEEE, 2019, pp. 1-6.

J. Zhang, X. Zhang, X. Shen, J. Wu, and Y. Li, “A lidar slam based on
improved particle filter and scan matching for unmanned delivery robot,”
in Journal of Physics: Conference Series, IOP Publishing, vol. 2506, 2023,
p. 0120009.

52

[41]

[42]

[43]

[50]

[51]

J. Cheng, Z. Liu, J. He, Y. Deng, and H. Zhang, “Application of simultaneous
location and map construction algorithms based on lidar in the intelligent
robot food runner,” in Journal of Physics: Conference Series, IOP Publishing,
vol. 1972, 2021, p. 012010.

C. Y. Lee, H. Lee, I. Hwang, and B. T. Zhang, “Visual perception framework
for an intelligent mobile robot,” in 2020 17th International Conference on
Ubiquitous Robots (UR), IEEE, 2020, pp. 612-616.

G. S. Huang and Y. J. Lu, “To build a smart unmanned restaurant with multi-
mobile robots,” in 2017 International Automatic Control Conference (CACS),
[EEE, 2017, pp. 1-6.

G. Tang, C. Tang, C. Claramunt, X. Hu, and P. Zhou, “Geometric a-star
algorithm: An improved a-star algorithm for agv path planning in a port
environment,” IEEE access, vol. 9, pp. 59196-59 210, 2021.

J. Zhang, Y. Ou, G. Jiang, and Y. Zhou, “An approach to restaurant ser-
vice robot slam,” in 2016 IEEE International Conference on Robotics and
Biomimetics (ROBIO), IEEE, 2016, pp. 2122-2127.

F. Umam, S. Wahyuni, H. Budiarto, and R. M. Putra, “Optimal mapping
trajectory for autonomous robot waiter,” Technology Reports of Kansai Uni-
versity, vol. 62, no. 11, pp. 6429-6435, 2020.

B. Alibegovi¢, N. Prljaca, M. Kimmel, and M. Schultalbers, “Speech recogni-
tion system for a service robot-a performance evaluation,” in 2020 16th Inter-
national Conference on Control, Automation, Robotics and Vision (ICARCYV),
IEEE, 2020, pp. 1171-1176.

J. Zhao, S. Liu, and J. Li, “Research and implementation of autonomous
navigation for mobile robots based on slam algorithm under ros,” Sensors,
vol. 22, no. 11, p. 4172, 2022.

I. Z. Ibragimov and I. M. Afanasyev, “Comparison of ros-based visual slam
methods in a homogeneous indoor environment,” in 2017 14th Workshop on
Positioning, Navigation and Communications (WPNC), IEEE, Oct. 2017,

pp.- 1-6.

C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, and J. J.
Leonard, “Past, present, and future of simultaneous localization and mapping:
Toward the robust-perception age,” IEEFE Transactions on robotics, vol. 32,
no. 6, pp. 1309-1332, 2016.

J. Cheng, Z. Liu, J. He, Y. Deng, and H. Zhang, “Application of simultaneous
location and map construction algorithms based on lidar in the intelligent
robot food runner,” in Journal of Physics: Conference Series, IOP Publishing,
vol. 1972, 2021, p. 012010.

Z. Zhang and Z. Zhao, “A multiple mobile robots path planning algorithm
based on a-star and dijkstra algorithm,” International Journal of Smart Home,
vol. 8, no. 3, pp. 75-86, 2014.

V. Képuska and G. Bohouta, “Comparing speech recognition systems (mi-
crosoft api, google api and cmu sphinx),” Int. J. Eng. Res. Appl, vol. 7, no. 03,
pp. 2024, 2017.

23

[54] A. St. Clair and M. Mataric, “How robot verbal feedback can improve team
performance in human-robot task collaborations,” in Proceedings of the tenth
annual acm/ieee international conference on human-robot interaction, 2015,
pp. 213-220.

o4

	Declaration
	Approval
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	Nomenclature
	Introduction
	Background
	Research Problem
	Research Objective
	Problem Statement
	Scope and Limitations
	Thesis Outline

	Literature Review
	Mapping
	GMapping
	Hector-Slam
	Cartographer

	Localization
	Kalman Filter Algorithm
	Particle Filter Algorithm

	Path Planning
	Local Path Planning
	Global Path Planning

	Object Recognition
	SSD_MobileNet_V3
	Faster R-CNN

	SpeechRecognition
	Natural Language

	The Main Menu Language
	The Alternate Menu Language

	Machine learning
	Neural Networks
	CNNs
	YOLO
	NN-based object detection
	Related Work

	Methodology, Requirement Analysis, Implementation
	Platform, tools and asset selection for Navigation
	ROS Noetic
	Ubuntu Linux 20.04
	Gazebo Simulator
	Testing of Simultaneous Localisation and Mapping Algorithm
	Rviz
	Object Recognition (Faster R-CNN)
	Data Collection

	Annotation and Labeling
	Model Selection and Training
	Testing and Results Analysis
	Speech Recognition
	Initialization and Setup
	Functions Definition
	Speech Recognition
	Intent Matching
	Response Generation
	Main Loop

	Implementation
	Simultaneous localization and mapping (SLAM)
	Localization
	Path Planning
	Object Recognition
	SpeechRecognition

	Result Analysis
	Mappping
	Path Planning
	Object Detection and Recognition
	Faster-R-CNN comparison and SSD MobileNet V3

	SpeechRecognition
	Research Challenges

	Conclusion
	Future Works

	References

