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Abstract
The present has made us more dependent on technology than ever before. As tech-
nology develops and new fields emerge, it has become more complicated to maintain
a safe, secure, and covert environment for transmitting valuable information. Al-
though cryptographic techniques are pretty strong in communication systems, they
cannot be used as a standalone tool to communicate covertly. Covert transmission
is vital for those who require extreme privacy and security, such as national defense
organizations. Over the years, much research has been done based on covert data
sent over a network. Our research has produced a new model to provide secure and
hidden data transmission in a LAN. Our system model will be divided into secret
sharing, network steganography, and hashing for integrity checks. The model will
split the secret message into shares using Shamir’s secret sharing scheme to add
redundancy to our model so that even if some shares are lost during transmission,
the message can still be reconstructed. Each share is hashed, and selected bits from
the hash are appended to the corresponding share to provide integrity. Finally, we
have used an ARP steganography technique and an IP steganography algorithm to
send the shares, where each share is sent through one of the covert channels but
not both. The steganographic algorithms provide a covert transmission channel and
confidentiality for the transmission. A comprehensive security analysis of the over-
all model has been provided, highlighting how it provides security and covertness,
potential vulnerabilities and weaknesses, and possible solutions.

Keywords: Covert Transmission, Secret-Sharing, Network Steganography, ARP
Steganography, IP Steganography
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Chapter 1

Introduction

1.1 Introduction
In today’s digital age, the world has become more connected. With the increase in
consumption of internet-connected devices, the security and integrity of the large
amount of information passed across the globe have become a concern. Cyberat-
tacks have become common, compromising the security, integrity, and privacy of
the transmitted data. Cybercrime trends and attacks globally from 2012 to 2015
and proposed countermeasures to these attacks are discussed in [1]. The surge in
cyber attacks during the COVID-19 pandemic is discussed in [2]. The impact that
cybercrime has financially, politically, and on a military scale and their preventive
methods are explored in [3]. Much research has been done to improve data security
while in transmission [4]–[6]. However, moving away from traditional communica-
tion methods, it is often necessary to communicate covertly to counteract cyber
threats, communicate in government intelligence operations, or the individual pref-
erences for personal privacy and autonomy.

The application of steganography is a viable solution in these cases. Steganography
is the technique of hiding data inside a text file, image, video, network packet, audio
file, and so on [7]. It can provide invisibility and concealment of the data, be flex-
ible across multiple forms of media without damaging or extensively changing the
media, and be complementary with other forms of cryptographic techniques, adding
additional layers of security.

Secret sharing protocols split confidential information into multiple shares, requir-
ing a threshold number of shares to reconstruct the data. Hence, it offers resiliency
against data compromise or loss by introducing redundancy. However, if these shares
are sent across an open channel, attackers can intercept traffic, extract these shares,
and reconstruct the data. These shares must be distributed among regular network
traffic using steganography techniques to hide them. If multiple channels of covert
data transmission are used, it is even more difficult for attackers to collect the shares
to get the data.

The main goal of our research is to build such a model that can transfer confidential
data through a network in a hidden and robust manner with the help of network
steganography and secret sharing. In this paper, we transfer sensitive data on a LAN
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using a combination of a secret sharing scheme, hashing, and network steganography,
ensuring the confidentiality, integrity, availability, and secrecy of the data. The
secret message is split into multiple shares by a threshold secret-sharing scheme.
Each share is hashed, and the hash bits are appended to the shares, which are then
sent to the recipient through multiple channels, employing network steganography
to hide these shares.

1.2 Research Problem
Ensuring secure and covert communication in the era of increasing cyber threats
has become a critical concern. Covert communication is pivotal in various scenarios
where maintaining secrecy is imperative, such as in military operations, intelligence
activities, and confidential corporate communications. It is vital to have secure and
discreet communication, as unauthorized access or detection could jeopardize the
success of the operation.

Traditional steganography techniques that hide data in the medium of transmission
do not ensure high security if the data is not encrypted or reliability and integrity
if the medium is discovered or altered.

If the data is sent through multiple channels of steganography, the data has to
be ordered, and error detection mechanisms have to be used to check the validity.
Secret-sharing schemes can be used to distribute the data and reconstruct the data
at the receiver. However, an attacker can collect the shares and read the data if used
in regular communication without encryption. As a result, there is a possibility of
sensitive information being compromised.

Our investigation shows no existing research has explored secret-sharing combined
with network steganography. This research intends to contribute to developing a
more reliable solution for covert data transmission by integrating secret sharing,
network steganography, and hashing techniques that will enhance cybersecurity mea-
sures.

1.3 Research Objectives
The primary objective of this research is to develop a novel framework that merges
secret sharing and network steganography to send data covertly, which is also robust
and secure. The objectives to achieve this goal are outlined as follows:

• Develop a hybrid model combining secret sharing and two network stegano-
graphic algorithms using ARP and TCP/IP.

• Enhance the security mechanisms of the steganographic algorithms to fit our
model better.

• Combine the use of hashing and provide an integrity checking mechanism.

• Address possible vulnerabilities of the model and their solutions.
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The rest of the paper is structured as follows: In Section 2, we examine related
research and definitions related to secret-sharing schemes, network steganography,
and recent work in other covert systems. Section 3 outlines our approach to method-
ically accomplishing our research and provides the flowcharts for our algorithms. In
Section 4, we provide a security analysis of our model, details about the environ-
ment and implementation of our work, and the evaluation results of our model’s
algorithm.
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Chapter 2

Literature Review

Before we describe our proposed model, a comprehensive literature review on secret-
sharing and network steganography has been provided, and an overview of the al-
gorithms of two network steganography techniques which are used in our work, is
also included.

2.1 Secret Sharing
In general, secret-sharing is a data distribution technique where the data is defined as
a secret and this secret is divided into shares, which are distributed among multiple
participants. The important concept here is that the secret can only be reconstructed
if a sufficient number of shares have been combined. This is set by the term threshold
k as shown in Fig 2.1. There have been numerous research studies on this technique
for various uses where there is a need for secure multi-party computation (some
applications discussed in [8]), in cloud computing [9]–[11] or key management [12].

Shamir’s Secret Sharing Scheme, also known as the k-n threshold sharing scheme,
was developed by Shamir in 1979 [13]. This scheme works as follows:

Step 1: Choose a prime number P, which must be greater than the secret S.
Step 2: Choose a threshold value, k, the minimum number of shares required to
reconstruct the secret S. The value of k must be less than or equal to n, the total
number of shares to be generated.
Step 3: A random polynomial of degree k − 1 is generated over the finite field of
integers modulo P

f(x) = a0 + a1x+ a2x
2 + . . .+ ak−1x

k−1 (2.1)

Here, a0 is the secret S we want to share.

Step 4: Calculate n pairs of points on the polynomial at different values of x, where
x is generally from 1 to n.

(x1, f(x1)), (x2, f(x2)), . . . , (xn, f(xn)) (2.2)

Each participant receives one of these shares as (xi, f(xi))
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Figure 2.1: Visual representation of secret-sharing

For reconstruction, the Lagrange interpolation is used with minimum k shares

a0 =
k∑

i=1

f(xi) · Li(x) (2.3)

Where:

a0 : The secret to be reconstructed.
xi : The x-values from the k shares.

f(xi) : The corresponding y-values (shares).
Li(x) : Lagrange basis polynomials for each share.

Li(x) is calculated by:

Li(x) =

k,j ̸=i∏
j=1

x− xj

xi − xj

(2.4)

Numerous studies have been conducted on the application of secret sharing for
information security. Krawczyk(1994) modified Shamir’s secret sharing scheme to
propose a new scheme that is computationally secure [14]. His scheme used a pseudo-
random function, which allows for the efficient generation and distribution of secret
shares among a group of participants. Beimel, A. (2011) has compiled more se-
cret sharing schemes in [8], among which are Ito, Saito and Nishizeki’s Construc-
tions, Monotone Formulae Construction, and Multi-Linear Secret Sharing Scheme
are noteworthy. Harn et al. (2020) proposed a threshold secret-sharing scheme
where the secret remains safe from malicious actors in the reconstruction phase [15].
In traditional secret-sharing schemes, an attacker can reconstruct the secret if k
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shares can be intercepted. Their proposed scheme requires the attacker to intercept
all the shares to reconstruct the secret. Lee (2018) proposes a method for secret
communication that utilizes Shamir’s secret sharing scheme [16]. He divided the
secret message into shares and used a public website to hide the shares among nu-
meric data. The proposed method also includes a self-authenticable scheme on the
receiver side to ensure the integrity of the secret message.

2.2 Prisoners’ Problem
The prisoners’ problem relates to a situation where two people need to communicate
over a public network so that even though anyone can access the messages, the hid-
den message can only be understood by the sender and receiver [17]. In the Fif 2.2,
Alice and Bob are prisoners, and the warden watches all their activities. The warden
allows them to use computers to communicate and disclose their escape plan. The
warden checks all the messages passed between them, called the passive warden, and
can even modify them to trap them, called the active warden. Alice and Bob know
this and communicate with each other without any use of cryptographic measures;
thus, the warden is very knowledgeable about the contents of the messages. In such
a situation, Alice and Bob have to devise a technique to hide their plan in a plain
message and ensure that only they can find and understand it.

Figure 2.2: Prisoner’s Problem

The solution to this problem is to apply a method where their plan is hidden from
plain view and the messages passed between them seem innocuous. Steganography
helps to achieve the objective here. Steganography hides secret data in plain text,
audio or video files, images, or network packets. Network steganography is the
technique where a covert channel or medium hides secret messages in the regular
network traffic. Bob and Alice can use network steganography in different ways
to communicate with each other secretly. For example, they can hide their plan
in the TCP or IP header section or other network packets. They can also use the
time delay between subsequent packets to convey their plan. Distinguishing network
steganography-implemented network traffic from regular traffic can be challenging,
and the usual detection method cannot distinguish them. Further study on network
steganography has been detailed below.
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2.3 Network Steganography
Information has become our most valued asset in the current age, where technologies
are becoming our needs. Scientists and researchers worldwide are working day and
night to find a way to keep this valuable asset from falling into the wrong hands.
Here, steganography plays an important role in ensuring that security. Steganogra-
phy is the technique of hiding data inside a text file, image, video, network packet,
or audio file. There are five ways to implement steganography. Network steganog-
raphy is one of them. It represents a covert communication method that secretly
incorporates regular traffic to send data over an unreliable network. It uses different
protocols to implement covert communication. There has been ongoing research
about ways to hide messages using the protocols used for data transmission.

Figure 2.3: Visual representation of network steganography

In Fig 2.3, three devices are connected through the internet, and device C is a ma-
licious device that wants to eavesdrop on the messages between them. Now, device
A and device B want to communicate in such a way that the malicious device C
does not know that they are secretly communicating. So, device A embedded reg-
ular network packets with hidden messages and sent them to device B. During this
data transmission, even if device C followed network traffic, it would not be able to
find that those network packets contained data. As a result, receiver B receives the
packets containing secret data without anyone knowing them.

Data can be hidden in the network packet using a method called StegBlocks which
is described in [18]. Two types of StegBlocks have been explained: StegBlocks TCP
and StegBlocks SCTP. The TCP or SCTP header packet contains the hidden infor-
mation. They developed a method to integrate the data in the packets such that
the packets with hidden data and the normal packets seemingly blend in. Another
paper [19] used the DNS protocol to hide data. They proposed using the header
and answer fields of DNS message packets. Later on, other protocols like ARP in
[20], and IPv4 in [21] were used with network steganography to transfer information
undetected. The idea in [20] was to use the ARP reply packet. This method was
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developed for a LAN network where the sender and receiver can execute the tech-
nique simultaneously. The idea of using the overflow field in the timestamp option
of the IPv4 protocol, which can carry 4 bits, was described in [21]. They then sent
the packet with hidden data using the UDP protocol, a faster transmission protocol,
though TCP can also be used to send the packet.

2.3.1 ARPNetSteg

ARP is a protocol used in local area networks to map IP addresses to MAC ad-
dresses. The sender inserts the covert message in ARP packets in fields like the
sender’s hardware (MAC) address, padding bits, or other non-critical sections of
the ARP packet, ensuring the packet’s outward appearance remains primarily un-
changed. This steganography technique is used in Local Area Networks (LAN).
The Mac address of the sender is used to hide the covert message in [20]. First,
the receiver sends an ARP broadcast request. When the sender gets the request, it
sends an ARP reply with the message hidden in it. The sender divides the message
into several partitions of 44-bit length, and each 44-bit covert message portion is
used to make the Mac address. A total of 44 bits is hidden here, and the last 4
bits of the MAC address work as the control flag that checks whether there is any
other ARP reply with a covert message portion. Upon receiving the reply packet,
the receiver retrieves the message using the same algorithm used to hide the message.

Below is an overview of the sender-side algorithm:

Step 1: A covert message is taken as input as a string, and this string is converted
to hexadecimal code.

Step 2: An ARP request is broadcast to discover all the allocated and unallocated
IP addresses on the LAN. Based on the replies, an allocated list is created. An
unallocated list is created for the IP addresses for which no reply was received.

Step 3: A random number between 1 and 255 is generated using a seed value, and
a local IP address is created using this value. This IP address is checked to see if it
is on the unallocated list. If not present, then step 3 is repeated.

Step 4: Wait for an ARP request from the covert data receiver device. Upon re-
ceiving the request, an ARP reply is crafted from the sender side by embedding the
hexadecimal covert data into the first 44 bits of the sender hardware address and
the last 4 bits for the control quad of the ARP reply. Also, the source IP, which
is the IP of the ARP request receiver, will be the IP created using the randomly
generated number.

Step 5: The ARP reply will be sent by repeating steps 3 and 4 until the receiver
has received all the covert data.

Below is an overview of the receiver-side algorithm:
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Step 1: On the receiver side, first, they initialized a covert message to NULL.

Step 2: Like the sender-side device, it discovers all the allocated and unallocated IP
addresses on the LAN. Two lists are created to separately store the allocated and
unallocated device IP addresses.

Step 3: A random number between 1 and 255 was generated using the same seed
value used by the sender device, and using this value, a local IP address was created.
This IP address was checked to see if it was present in the unallocated list. If not
present, then step 3 was repeated.

Step 4: An ARP request is made using the local IP address made in Step 3 as the
Target IP address and waits for an ARP reply.

Step 5: Upon receiving the ARP reply, the receiver side will start to process the
covert data embedded in the sender hardware address field of the ARP reply. The
control quad in the last 4 bits of the sender hardware address is checked, and if it
is ‘0’ the first 44 bits of the source MAC address are extracted and appended to a
string variable, and an ARP request is broadcasted. If the control quad is ‘f’, the
first 44 bits are appended; otherwise, the control quad is used to find the padding
bits, where the padding bits are discarded and the remaining bits are appended. No
more ARP requests are broadcasted after these two cases, so the process will con-
tinue until all the covert data is received. It will be converted from a hexadecimal
value to a string upon receiving complete covert data.

2.3.2 Moving IP steganography

Instead of hiding the secret data in network packet fields, [22] proposed an approach
where, instead of inserting any data, the data is extracted using a deterministic
algorithm that utilizes hashing and the concept of permutation. The algorithm also
requires user inputs: evaluation bits, a secret key, and a retry count. Evaluation
bits define the number of bits to be hidden in each packet. The secret key generates
the permutation array of random integers ranging from 0 to 255 if SHA256 hashing
is used. The retry count specifies how many times the sender would send the secret
message if the receiver could not extract the exact message.

The sender-side algorithm in is described below:

Step 1: The secret data is combined with a counter, the first four characters, the last
four characters of the hash of the secret data, and a dash ‘-’ at the end. The hashed
bits are included for integrity verification on the receiver’s side. The formatted data
is converted to binary for transmission.

Step 2: A permutation array generator, seeded with the secret key, generates an
array the same size as the number of evaluation bits, consisting of random integers
from 0 to 255, inclusive. For every marked packet, a new permutation array is pro-
duced.
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Step 3: A TCP/IP packet stream is generated for covert communication if there is
no existing communication channel.

Step 4: For each packet, a hash is calculated with the following parameters: source
IP address, destination IP address, source port number, destination port number,
sequence number, and the data. This hash value is converted to binary.

Step 5: Using the permutation array values as indices, values in binary packet hash
are compared with the binary formatted data, shown in Fig 2.4. Only if all the
values match will the packet be marked in step 6.

Figure 2.4: Packet hash evaluation to check if it can hold covert data

Step 6: The packets that need to be marked are done by activating the packet’s
TCP PSH (push) flag.

Step 7: Both marked and unmarked packets are sent to the receiver. If all the data
is sent, the sender waits for an acknowledgement from the receiver. Otherwise, go
back to step 2. If the integrity check fails at the receiver end, the receiver sends
a negative number as acknowledgement data; the process is repeated from step 2
based on the retry count.

The author mentioned using a more covert approach to mark the data packets as
future work. The algorithm is named Moving Target Network Steganography be-
cause the target bits where the data lies change for every marked packet, making it
difficult for the attacker to guess the bit positions and their order.
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Following is the receiver-side algorithm:

Step 1: The receiver generates the same permutation array using the known secret
key to seed the permutation array generator. The size of the array equals the num-
ber of evaluation bits.

Step 2: The receiver keeps sniffing for incoming network packets and checks if the
packet has the push flag activated. If a marked packet is found, the algorithm moves
to step 3.

Step 3: Using the same parameters as the sender, the receiver calculates the hash
of the packet and converts the hash value to binary.

Step 4: Extract the secret data from the binary packet hash by using the integers
in the permutation array as indices shown in Fig 2.5.

Figure 2.5: Packet hash evaluation to extract hidden bits

Step 5: The receiver reconstructs the complete binary string and checks if ‘-’ is
received, which means the end of transmission.

Step 6: The integrity of the data is checked. The hash of the message is produced,
and the first four characters and the last four characters of the hash are compared
with the provided hash. If the hash does not match, the receiver sends a negative
number, which indicates the secret message was not received correctly. Otherwise,
an acknowledgement is sent to the sender.

For each packet, the generated permutation array has no sequence pattern. Hence,
brute force is not feasible for an attacker. Statistical analysis provides no result
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since no data is hidden in the packet.

The time taken to send the data is proportional to the number of evaluation bits or
the number of bits that are sent per marked packet. On the other hand, the data
transfer rate is inversely proportional to the number of evaluation bits. A higher
number of evaluation bits provides more security since an attacker must guess more
hash positions. While choosing the value of evaluation bits, there is a trade-off
between security and data transfer rate.

2.4 Covert Transmission Systems
This section covers existing research on other covert and secure data transmission
models.

IoT-based Wireless Sensor Networks (WSNs) are lightweight, secure multi-hop data
routing using a secret sharing scheme that is energy efficient [23]. In this method,
sensor zones are first divided into inner and outer zones using the KNN algorithm.
Then, the data is encrypted using a lightweight secret sharing scheme where an
XOR operation is done on the data and the zone key at every zone. The data is
decrypted in the same way. This method is energy efficient as a simple operation
does the encryption method, and by using multi-hop routing, data is safe from data
threats and malicious attacks.

A covert channel that is based on the concept of packet switching is presented in [24].
A modified TFTP (Trivial File Transfer Protocol) application is used for sending
secret messages or data and demonstrates integrity improvement. However, the
authors also highlighted the risk of leaking client data files without user notification.
The paper also introduces a sliding entropy method that detects some cases of covert
channels.

Distributed network covert channels have been analysed in [25]. They made a mod-
ified Distributed Network Covert Channel (DNCC) scheme where three different
steganographic techniques are used for data hiding and secure transmission.

Data transmission using Dynamic Host Configuration Protocol (DHCP) is discussed
in [26]. It incorporates three distinct covert channels using fields within the DHCP
protocol, including xid, Sname and File, and Options, each providing different re-
quirements regarding stealthiness and data capacity. The paper also provides the
method’s reliability and likelihood of detection.

A covert communication method based on Bitcoin transactions, hence blockchain
steganography, is proposed in [27]. The experimental results demonstrated that the
proposed method maintains the necessary security measures while being robust and
resistant to detection.
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Chapter 3

Methodology

3.1 Working Plan
The main goal of the proposed new system is to ensure that data is transmitted
over the network covertly, robustly, and feasibly. We would use a secret-sharing
scheme combined with hashing for integrity validation and create covert channels
to ensure a covert method to send sensitive data over a LAN. To our knowledge, no
such approach has been tried before.

Our proposed system is divided into three parts: Secret Sharing, Hashing, and Net-
work Steganography.

From the sender side, as shown in Fig 3.1, the data to be transmitted is divided
into shares using a secret-sharing scheme. This mechanism has two variables: the
total number of shares that will be generated n and the threshold value k, which
are known to both the sender and the receiver. At the receiver’s end, the recon-
struction phase only requires a minimum of k shares to reconstruct the message.
Considerations must be taken when assigning the value of n and k because a high
value for n and k means the computational overhead increases due to the computa-
tional resource required to create those n shares and also recreate the secret using
k shares, while a small value for n and k means the secret-sharing scheme cannot
provide sufficient security because an adversary might get the k shares very easily.

We hash the share and append the hash value to it for every share. The shares
are then sent to the receiver through multiple covert channels, which are network
steganographic algorithms in our implementation, where one channel should be used
to send less than k shares to ensure that if one channel gets compromised, the at-
tacker does not possess the threshold amount of shares to reconstruct the secret
message.

On the receiver side in Fig 3.1, the shares and their hashes are extracted from the
covert channels. The receiver generates the hash value of the shares and compares
it with the hash value sent by the sender. A share is only valid if the hashes match.
When k or more valid shares are received, the reconstruction algorithm of the secret-
sharing scheme is used to produce the secret message.

13



Figure 3.1: Proposed model for sender and receiver side

3.2 Algorithm

3.2.1 Modified ARPNetSteg algorithm

Using the algorithm provided in [20], we have modified it to integrate with our
model. Initially, the sender and receiver must generate a list of allocated IPs and
unallocated IPs in the LAN. After creating the lists, a previously defined seed value is
used by both the sender and receiver to generate a list of random local IP addresses.
The sequence of the address in the random IP list is the same on both sides due
to the same seed value. The receiver selects the first IP in the random IP list and
checks it is in the unallocated IP list, as shown in Fig 3.2. If the result is False, the
process is repeated until the result is True. This IP address is used to create and
send an ARP broadcast request from the receiver with the target IP address as the
selected random IP. On the sender side in Fig 3.2, the first IP in the random IP list
is chosen and checked to see if it is in the unallocated list. The process is repeated
until the result is True. The sender now waits for an ARP request from the receiver.
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The ARP request packet must have the destination IP as the selected random IP.

Figure 3.2: ARP steganography flowchart for sender side

As the receiver broadcasted a request for a MAC address using an unallocated IP
in the LAN, the sender will be the only one to create a spoofed ARP reply for this
request.
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Figure 3.3: ARP steganography flowchart for receiver side

The sender sends the covert data by impeding it into the MAC address of the source
hardware address field of the ARP Reply packet. The hardware address is 48 bits
long. The covert data is stored in the first 44 bits of the Ethernet address. The
last 4 bits are used to send a control quad. From the combined string, the first 11
digits (the shares were in hexadecimal) are chosen, and the control quad is set to
‘0’, indicating more data to be sent. If only 11 digits need to be sent and there is
no more data, the control quad is set to ‘f’, indicating that all data has been sent.
If the last n digits are to be sent where n is less than 11, (11−n) zeroes are padded
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to the covert data to be sent, which is the control quad in this case. The source IP
is set as the selected random IP, and the destination MAC and IP are set to that of
the receiver extracted from the ARP request packet.

The seed value is used to generate a 48-bit key pseudorandomly to encrypt the 48-
bit data by an XOR operation. This adds a layer of security if the steganographic
medium is compromised. A new 48-bit key is generated for every packet to avoid
any pattern in the resulting 48-bit ciphertext. Then, the 48-bit ciphertext is inserted
in the ARP reply packet in the source MAC address field and sent to the receiver.

Once an ARP reply packet is received by the receiver in Fig 3.3, the seed value is
used to generate a 48-bit key. The MAC address bits are extracted and XORed
with the key. It returns the actual hexadecimal covert data along with the control
quad that was sent. After that, the control quad is checked, and if it is ‘0’, the first
44 bits of the source MAC address are extracted and appended to a string variable,
and an ARP request is broadcasted. If the control quad is ‘f’, the first 44 bits are
appended; otherwise, the control quad is used to find the padding bits, where the
padding bits are discarded and the remaining bits are appended. No more ARP
requests are broadcasted after these two cases.

3.2.2 Modified MTNS algorithm

The MTNS algorithm for the sender and receiver [22] has been configured to in-
tegrate with our model to send the shares seamlessly. Fig 3.4 shows the modified
MTNS algorithm for the sender side. A detailed overview of the algorithm is de-
scribed below.

Step 1: The data to be sent is passed to the IPSteg algorithm. An array of random
integers of size n + 1, called the permutation array, is generated, where n is the
number of evaluation bits.

Step 2: Random bytes of random size are generated, which will go into the data
payload of the TCP/IP packet.

Step 3: A TCP/IP packet is created with the following parameters: sequence num-
ber, source port number and IP address, destination port number and IP address,
and the data payload. This packet is then hashed using SHA-256 and converted to
binary for bit comparison.

Step 4: The first n integers generated in the range 0 to 255 inclusive in the permu-
tation array serve as indexes in the packet hash and are compared against the data
in binary format. If all the index position values match against the data values, we
try to mark the packet.

Scenario 1: If all the data bits match, the hash bit must be 1 at the index: the last
integer of the array.
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Figure 3.4: Modified MTNS flowchart for sender side

Scenario 2: If the data bits do not match, the hash bit must be 0 at the index: the
last integer of the array.

Step 5: For scenario 1, if the bit is 1, or for scenario 2, if the bit is 0, only then
the packet is sent. Otherwise, the process is repeated from step 2. This is why
generating random data bytes is essential because this is the only parameter that
can be varied, causing the hash value to change as well. If the hash value remained
constant, all the bits could never be matched, and the algorithm would be stuck in
a loop.

Step 6: If no more data is left to send, send a FIN packet to mark the end of trans-
mission.

We have excluded the retry process from the original algorithm since our model con-
siders invalid data received at the receiver end by adding redundancy using secret
sharing, making it more robust. We have also suggested a new approach to marking
the packets in Step 5 without activating the PSH flag of the TCP/IP packet. No
flag has to be activated in this approach, making the transmission more covert.
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The modified MTNS algorithm for the receiver shown in Fig 3.5 is described below.

Step 1: Generate the permutation array and sniff for incoming packets.

Figure 3.5: Algorithm flowchart for receiver side

Step 2: Check whether the FIN flag is activated once a packet is received. If yes,
exit the algorithm. Otherwise, proceed to step 3.

Step 3: Hash the packet using the same parameters as the sender and convert it to
binary format.

Step 4: Check if the bit is 1 at the index given by the last integer of the array to
extract n bits using the values from the permutation array as indexes. Otherwise,
proceed to step 1.

Unlike in the original algorithm, the data received is not validated inside the mod-
ified MTNS algorithm. Validating the data, i.e., the shares, is left to the main
program instead. Only the data is extracted and passed on to the main program.

3.2.3 Model Algorithm

As outlined in Algorithm 1, the model requires pre-determined variables known to
the sender and the receiver: a secret key or seed value, the number of evaluation
bits for the IP steganography algorithm, and the threshold value k for the secret-
sharing scheme. The sender must also provide n, the total shares produced in the
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secret-sharing scheme.

The sender inputs a message, which is split into n shares with a threshold value of
k using Shamir’s secret sharing scheme. The original message can only be recon-
structed using a minimum of k shares. A higher value of k improves security because
an attacker must collect more shares to reconstruct the secret. A higher value of n
adds redundancy, which provides fault tolerance, meaning that if some shares are
lost or modified, the secret can still be reconstructed by brute force if possible if
there are k valid shares by trying all combinations possible, but this may increase
computational needs, making the defined scheme impractical.

Algorithm 1: Algorithm for Sender Side
Data: Original message to be transmitted
Input: Secret key or seed value, Number of evaluation bits i for modified

MTNS, Threshold value k, Total number of shares n
Output: Shares sent through covert channels

1 Initialization:
2 userSeed = seed value or secret key;
3 evalBits = i ;
4 threshold = k ;
5 totalShares = n ;
6 Create Shares using Shamir’s Secret Sharing:
7 Split the message into n shares with a threshold value k;
8 Note: A higher k value enhances security, and a higher n value adds

redundancy;
9 Hash and Append to Each Share:

10 foreach share do
11 Compute SHA-256 hash of the share;
12 Append the first and last four hexadecimal digits of the hash to the share;
13 end
14 Send Shares Through Steganography Channels in Parallel:
15 Divide shares equally into two groups for parallel transmission;
16 Parallel Process 1: Transmit the first group of shares through modified

MTNS channel;
17 Parallel Process 2: Transmit the second group of shares through modified

ARPNetSteg channel;
18 Note: Both groups are transmitted simultaneously using multiprocessing;
19 Handle ACK Packet:
20 if ACK packet is received then
21 Stop sending further data if there is any;
22 Transmission is successful;
23 else
24 Consider the transmission as failed;
25 end
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To solve this problem, each share is hashed using a cryptographic hash like SHA-256.
The first and last four hexadecimal digits are appended to the end of each share.
This approach provides an efficient way to validate the shares on the receiver end.
These shares are then sent through multiple covert channels to the receiver, where
less than k shares are sent through each channel. For our algorithm, we have used
two network steganographic algorithms described in Subsections 3.2.1 and 3.2.2.

Algorithm 2: Algorithm for Receiver Side
Input: Secret key or seed value, threshold k number of shares, evaluation bits

i for the modified MTNS
Output: Reconstructed message if successful

1 Receive Shares:
2 Collect shares sent through modified ARPNetSteg and modified MTNS

channels;
3 Validate Each Share:
4 foreach received share do
5 Separate the share from its hash bits;
6 Compute SHA-256 hash of the share;
7 if hash matches with the appended hash bits then
8 Mark the share as valid;
9 else

10 Discard the share;
11 end
12 end
13 Reconstruct Message:
14 if at least k valid shares are collected then
15 Reconstruct the message using valid shares;
16 Send an ACK packet back to the sender;
17 return Reconstructed message;
18 end
19 Failure Check:
20 if less than k valid shares are collected then
21 Indicate failure in message reconstruction;
22 return Failure notification;
23 end

The shares and their corresponding hash bits are separated at the receiver end in
Algorithm 2. Each share is hashed, and the hash bits are compared with the first
and last 16 bits of the hash value. Once k valid shares are extracted and data
is reconstructed with the secret-sharing scheme successfully, the receiver sends an
ACK packet back to the sender. If the sender receives the ACK packet, it stops
sending more data. However, the secret transmission has failed if no ACK packet is
received.
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Chapter 4

Analysis and implementation

4.1 Security analysis

4.1.1 Secret-Sharing

Shamir’s secret-sharing scheme in the model splits the secret message into multiple
shares. Each individual share holds no semantic meaning or readable data. The
message can only be reconstructed if the user has the threshold number of shares or
more.

k = 4 , n = 7 k = 5 , n = 7

1-390a1400234 1-58ae8d5673f 1-53ff47566f9

2-2dae573130d 2-3724380ce5a 2-7de692747bf

3-17b3a6065e7 3-8964f03bd1a 3-5d314b91287

4-2b98d8c94a 4-2a6b9fa2d6b 4-5b42e4c0d45

5-1359d6aa541 5-3b89b69bee8 5-5ba8f9ec6d6

6-37577f31f4 6-5ad2946b030 6-469e41eaa3d

7-306a94ed44b 7-42a45a8989d 7-90a8e7fea3

Table 4.1: Generated shares using Shamir’s secret sharing scheme

Table 4.1 demonstrates the creation of the shares from the message "Attack" with
a specific value for total shares n and threshold k. Shamir’s secret sharing has its
randomness in share generation, where the shares change every time the same secret
is split, even if the parameters for the scheme are kept constant.

The message is not reconstructed correctly if less than the threshold number of shares
is used. The scheme provides security with its randomness in share generation as
well as with the threshold value. Secret-sharing also introduces fault tolerance in
the model by adding redundancy in the data transmission, meaning even if some
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shares are corrupted or lost, the secret can still be reconstructed if k valid shares
are present. Users can customize the security level by adjusting the values of k and
n. A higher value of k increases security, while a higher value of n adds redundancy.

However, there are two weaknesses to this scheme:

1. An attacker might acquire all the shares and be able to reconstruct and read
the message if the shares are sent through only one communication channel
without encrypting or hiding these shares.

2. A lower k compromises security, while a higher n might lead to computational
inefficiency. The model might only be robust if n− k is substantial.

Our model solves the first problem by using multiple covert channels. The shares
are distributed and hidden in the communication protocol. Now, the attacker has
to figure out how the shares are hidden and collect a minimum of k valid shares by
compromising multiple channels, making the task even more difficult.

For the second problem, a tradeoff between redundancy and security has to be
evaluated to find the optimal value for n and k.

4.1.2 Hashing and Integrity Verification

Cryptographic hash functions have various applications in the security domain, in-
cluding message authentication, integrity verification, and digital signatures [28]. As
such, these hash functions must have the following properties: collision resistance,
pre-image resistance, and second pre-image resistance. SHA-256 is a cryptographic
function that satisfies all requirements and is widely used in security systems.

We have used SHA-256 in the modified MTNS algorithm for integrity validation.
We have hashed each share, appended the first and last 16 bits (32 bits in total) to
each share, and then sent the shares through network steganographic channels to
validate the shares on the receiver end. The choice to use only 32 bits instead of
the whole hash value is to make a compromise between transmission efficiency and
security. The data to be transmitted becomes too big if the whole hash is added,
which makes the model inefficient. Relying on the collision resistance property and
the avalanche effect of SHA256, we use only 32 bits.

SHA-256 produces a 256-bit hash value, which means 2256 possible hash outputs.
This is a huge number, making the possibility of two matching hashes of two inputs
scarce. Considering the 32 bits of the hash, the probability for a specific bit of two
hashes is 0.5 or ½. The probability that 32 bits of two hashes will match is

(
1
2

)32 or
2.328306437 × 10−10. This is an astronomically small number, sufficient to reason
the use of 32 bits from the 256-bit hash.

4.1.3 Modified MTNS

A probabilistic analysis of the MTNS algorithm on the possible combinations for
evaluation bit size and of the attacker figuring out the correct permutation of each
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packet has been provided in [22]. The permutation array is of length n, consisting of
n integers in random order in the range of 0 to 255, including. Possible combinations
are calculated using:

P (n, r) =
n!

(n− r)!
(4.1)

Bits to match Number of possible combinations

4 4,195,023,360

5 1,057,145,886,720

8 16,517,640,193,528,320,000

9 4,096,374,767,995,023,360,000

16 210,875,602,102,456,269,086,537,616,669,081,600,000

Table 4.2: Number of possible combinations for number of bits to match

Even if the attacker is entirely knowledgeable about the implementation and algo-
rithm, they will still be unable to recreate the exact permutation that was used to
evaluate n + 1 bits of secret data without the shared secret key because the per-
mutations are generated using a random number generator that is seeded with the
shared secret key. Furthermore, because the permutation changes every n bits of
data, the attacker has limited time to predict and generate the permutation array
before it changes.

When the PSH flag is activated, the attacker can identify which packet contains
data in the original algorithm. Our model covertly hides the marking by the hash-
ing technique to match the data. Hence, there is no existing pattern for the attacker
to realize that data could be covertly transmitted here.

The algorithm’s security critically lies on the shared secret key and the structure
of the permutation array generator. The covert channel will also be compromised
if the key is not secure. The permutation generator should produce pseudorandom
values with no specific pattern; otherwise, the attacker may be able to guess the
indexes where the data lies, making the algorithm less secure.

4.1.4 Modified ARPNetSteg

The original ARPNetSteg algorithm has a significant weakness. Anyone monitoring
the network can see a pattern in each reply packet’s sender MAC address field, shown
in Table 4.3, because of the ‘quad control’ bit, which indicates the continuation or the
end of transmission. Assuming that the attacker knows about the applied algorithm,
he can readily get the covert data by extracting the MAC address bits from the field.

The first three reply packets have ‘0’ in the last quad bit, indicating the continua-
tion of transmission, and the last packet has ‘a’, informing the receiver that the last
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ARPNetSteg Modified ARPNetSteg

12:90:5f:65:ea:60 e5:76:8d:26:cb:50

6b:7f:ff:42:4d:e0 e4:02:49:3c:e9:2b

45:13:df:81:0f:f0 84:ff:19:c5:ed:da

f0:00:00:00:00:0a 73:05:ee:c9:a9:81

Table 4.3: Sender MAC address in original and modified ARPNetSteg

11 quad bits are empty and there is no more data to send. This pattern is easily
noticeable to the naked eye. Our modified algorithm creates a 48-bit key with the
shared secret key (also used in the modified MTNS algorithm) and is used to XOR
the data to be sent, including the control quad bit. Table 4.3 shows what the MAC
address looks like after the modification. The mechanism acts like one-time pad
encryption, where the ciphertext is sent as the MAC address of the sender. There
are (281474976710656− 1) possible combinations for the key for the attacker to go
through to get the key by brute force. We are ignoring the key “000000000000”. The
key is randomly generated using the shared key as a seed, which is different for every
packet. Now, the pattern given by the quad control bit is dissolved, and the data
cannot be retrieved efficiently even if the attacker knows the algorithm without the
shared secret key.

The ARPNetSteg algorithm provides an advantage with its high bit transfer, with 44
bits per packet at maximum, significantly higher than most network steganographic
algorithms we have studied. However, this algorithm has some disadvantages, espe-
cially when the size of covert data (combined shares) is large. The number of ARP
request/reply packets will increase significantly and can be flagged as unusual by
network monitoring mechanisms for ARP spoofing. Moreover, it must be ensured
that the device with the IP address in the unallocated list is not active during trans-
mission, resulting in multiple replies for one ARP request, flagging the transmission
as suspicious and losing the channel’s covertness. Another issue with this algorithm
is that the number of unallocated IPs should be significant for covert data transfer.
Otherwise, multiple ARP requests will be made for the same IP, and the replies will
contain different MAC addresses, which can be detected easily.

In the scenario where ARPNetSteg is unsuitable for network use, other network
steganographic solutions, such as RSTEG, PadSteg, StegTorrent and others [29],
can be considered. Exploration of further covert channels with dynamic mechanisms
is left for further research.

4.1.5 Further possible algorithm vulnerabilities

Vulnerabilities that might arise that are not addressed by the algorithm have been
mentioned below:
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1. Random data manipulation

MTNS relies on generating random bytes of data in the data payload to change
the hash value per iteration and attempt to match the packet. If the attacker
manages to change this data, it would lead to the receiver getting false posi-
tives in marking packets, compromising the integrity of the covert data.

This problem can be solved by implementing a secure channel using SSL/TSL
encryption protocols or an integrity check mechanism using hashing to validate
the data payload.

2. Insufficient encryption for the covert data

Our model does not use conventional encryption schemes to encrypt/decrypt
data. The model will compromise confidentiality if the covert channel is not
secure or the shared secret key is compromised. However, in our model, each
covert data chunk is encrypted and decrypted with a key generated using the
secret shared key in modified ARPNetSteg. No data is inserted in the packets
using modified MTNS.

3. Single point of failure

Both the modified network steganography algorithms use the same secret
shared key to introduce randomness in key generation and generate permu-
tation array. Thus, if this key is compromised, the model will be insecure,
and the attacker can extract all the shares to reconstruct the data. Thus, the
shared secret key should be protected since its compromise becomes the single
point of failure.

4.2 Environment
The implementation of our proposed model required two virtual machines. Both
machines are Ubuntu 20.04, allocated 4GB RAM and 15GB ROM. The host machine
has 16GB RAM and Ryzen 5600G. Both the VMs were deployed using Oracle VM
VirtualBox. They had two network interfaces enabled, one interface named ‘enp0s3’,
which is used as NAT (Network Address Translation) and does not require any
configuration on the host network or guest system. This is required to access the
internet to download files and packages. The second interface, ‘enp0s9’, is used as
an internal network, which creates a virtual LAN (Local Area Network) between
the two machines. Within this network, the virtual machines communicate with
each other in a separate environment and are used to carry out our steganographic
algorithm. We have to manually set the IP addresses for this interface on both the
sender and receiver machines. In our implementation, we have set the IP for the
sender machine to 192.168.100.3 and the receiver machine to 192.168.100.6.

Python was used to code the entire model, which used cryptography and scapy li-
braries. Cryptography library is used to hash the shares. Scapy is used to craft
packets like ARP requests, ARP replies, and TCP/IP packets. Wireshark is used
to monitor network traffic and check the contents of the packets.
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4.3 Implementation
First, the secret data ‘Attack at dawn’ is taken as input from the sender side in
Fig 4.1. The secret data is converted into shares using the secret sharing scheme in
the sender-side algorithm. The scheme produces different shares for the same input
whenever used.

Figure 4.1: Sending the secret message

Next, for each share, a hash value is generated. With each share, their corresponding
hash value is concatenated. The first 4 hexadecimal digits and the last four digits
of the hash are concatenated to every share. For example:

Share: 1-1c34c41ac45
Hash: 3e11ac9f2ef9f2f5d4cbc9dc74efb4ef57e4ac4f88d65de3421e8846ec6deb93
Hashed share: 1-1c34c41ac453e11deb93

With the hashed shares generated, they are split into a ratio where x shares are
sent through ARP and y shares are sent through IP, where x<y<k. The shares are
combined into a single string with a separator string ‘fff’ to distinguish where one
share ends and another begins. Now, they are ready to be sent parallelly through
the steganography methods.

Figure 4.2: Contents of an ARP reply packet

Using the revised ARPNetSteg method, a broadcast request is sent continuously
from the receiver side until the sender receives it and sends a reply. Fig 4.2 of
ARP reply packet content shows that the sender’s MAC address and IP address
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can be seen. Unallocated IP is the sender’s IP address, and encrypted covert data
are passed through the MAC address. The MAC address looks similar to an actual
MAC address.

Figure 4.3: Contents of a marked TCP/IP packet

Using the modified MTNS method, we send 4 bits of data per marked packet. We
are using 1 bit to mark the packet anonymously. So, 5 bits of data are being used
for sending data per packet. On the receiver side, it is checked whether the FIN flag
is active. If active, the last packet has been sent, and the covert data transmission
is terminated. The contents of an unmarked and marked TCP/IP packet captured
using Wireshark are shown in Fig 4.4 and 4.3.
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Figure 4.4: Contents of an unmarked TCP/IP packet

In the IP packets, the payload carries random data, where the data does not have
any special meaning. A flag is not used in our proposed way of marking an IP
packet. Instead, marking is done by matching the marking bit, which enables us to
create marked packets that are not distinguishable from the unmarked packets, as
seen in Fig 4.3 and 4.4 of the contents of a market and an unmarked packet.

The two groups of combined shares from the two steganography methods are re-
ceived on the receiver side. Then the shares are separated from the combined shares
using the ‘fff’ separator string. To validate the shares, appended hash bits of each
share are separated into shares and their corresponding hashes, matched with the
hash generated on the receiver side.
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Figure 4.5: Message received Successful

After validating the shares, Shamir’s secret sharing reconstruction scheme regener-
ates our secret data, shown in Fig 4.5.

Figure 4.6: Capturing packets in wireshark

4.4 Practical Analysis

4.4.1 Modified MTNS Analysis to find Optimal Evaluation
Bits

We have analyzed the modified MTNS algorithm to find the average execution time
by varying the length of the data bits from 64 to 512 and using 4 and 8 as evalua-
tion bits to find the optimal evaluation bit to use in our model. We calculated the
execution time 20 times per case and determined the average execution time.

Our observations indicate that when the evaluation bit is 4, the execution time is
significantly lower than when the evaluation bit is 8, as shown in Table 4.4. In
the case of varying lengths of covert data, we see that for 4 evaluation bits, the
differences in execution time do not vary significantly.
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Number of data bits Average Execution Time in seconds
Eval bits = 4 Eval bits = 8

64 0.8286901951 4.262881517

96 1.045309973 5.693948579

128 1.291510653 7.218351531

160 1.613841462 8.106755567

256 2.251874804 13.56775496

384 2.750419021 22.08677053

512 3.695364404 27.83321488

Table 4.4: Average Execution Time based on Evaluation and Data bits

On the contrary, for 8 evaluation bits, the differences in execution time make an
impact. Analyzing the data from Table 4.4 and Fig 4.7 shows that the line for 4
evaluation bits is almost flat with a slight ascend. On the other hand, the line for
8 evaluation bits is increasing linearly. Thus, we can conclude from this experiment
that the optimal number of evaluation bits is 4.

Figure 4.7: Graphical Comparison of Execution Time
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4.4.2 Analysis on Model’s Execution Time

To analyze how the execution time of the model increases per string length, the
length of the secret message is varied from 1 to 28 and kept the following variables
constant:

Threshold = 6
Total shares = 9

Shares sent through modified ARPNetSteg = 2
Shares sent through modified MTNS = 4

We have shown the results of ten successful attempts in Fig 4.8 to send the 6 shares
and the corresponding execution time. The results indicate that the average exe-
cution time fluctuates but increases in general as the length of the secret message
string is increased. This implies that transmitting a longer message takes longer
to send and receive. However, since there are fluctuations, the relationship is not
strictly linear.

Figure 4.8: Detailed Comparison of Execution Time of the model

The fluctuations may arise due to two reasons:

1. The probabilistic nature of data bit matching and the marking bit. This means
the total number of packets to send the same data varies. An analysis of the
average number of packets transmitted to send the data in 100 iterations is
shown in Fig 4.9

2. The receiver algorithm did not receive an ARP reply packet and had to broad-
cast the request to receive the packet again. This is a limitation of the envi-
ronment of our implementation.
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Figure 4.9: Average number of packets sent per message length

The graph in Fig 4.10 represents the time taken to transmit data of various lengths.
The x-axis of the graph is the length of the covert data string, and the y-axis of
the graph is the time taken in seconds. The values for ARP and IP shares being
transferred are changed for each line.

Figure 4.10: Comparison of the distribution of 6 to 9 shares
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If we compare the red and blue lines, we can see that even though the number of IP
packets is different, the lines are close together, which means a change in the num-
ber of IP shares passed has not significantly increased the execution time. Thus,
increasing the shares passed through modified MTNS does not significantly affect
the time cost.

However, if we compare the red and yellow lines or the green and blue lines where
the number of IP shares was kept constant and ARP shares were increased, we can
see a notable increase in the time taken to transfer data. This shows us the modified
ARPNetSteg algorithm is time-consuming in our test environment and decreases the
data transfer rate. Overall, the execution time increases when the number of shares
sent through the covert channels increases or the secret message length is increased.
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Chapter 5

Conclusion

5.1 Conclusion
This paper focuses on the covert transmission of data. The research problem im-
plicates the need for a secure and robust method of data transmission through the
network, where covert data transfer is the key. The main goal of our research is to
build such a model that can transfer confidential data through a public network in
a hidden manner with the help of network steganography and secret sharing. Our
research has produced an improved version of ARPNetSteg where the covert data
transmitted in each ARP reply packet is encrypted by generating a key with the
shared secret key. We have also worked on a more hidden method to mark the
packets instead of using the PSH flag. Practical implementation and analysis of
the covert model for secure data transmission, combining Shamir’s secret sharing
scheme with modified MTNS and ARPNetSteg have been shown. The model is used
to send the secret message split into multiple covert channels and can endure data
loss in transmission. A detailed security analysis of the algorithm, addressing advan-
tages and drawbacks, and practical analysis to find the optimal number of data bits
and average execution times have been provided. This work not only contributes
to the field of covert communication but also provides a new, robust approach to
implementing hidden data transmission.

5.2 Future research work
Our current work has the potential for further research in the future. We can
research more steganographic algorithms to add to our system that provides better
performance than ARP. Other algorithms with much better reliability, a higher bit
rate, or more indiscernibility would work better for our system. Moreover, the ratio
of shares distributed between ARPNetSteg and modified MNTS is currently static.
Making that ratio dynamic will bring more reliability to our model. Furthermore,
the value of the threshold and the number of shares are static. Introducing those
variables to be dynamic based on network traffic and network reliability would make
the system more efficient. Another essential part would be to deploy and test the
model on a real network and document its usability.
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