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Abstract

Personalized health monitoring, including Human Activity Recognition (HAR) and
Fall Detection, is crucial for healthcare. Traditionally, most research in this field has
relied on wearable sensors to collect data. The collected data is then typically sent
to high-powered devices or servers for processing and analysis. However, there are
some challenges with this approach. The reliance on high-powered devices can lead
to delays in data processing and might not be suitable for real-time health moni-
toring. Additionally, the continuous transmission of data can raise privacy concerns
and consume significant energy, which is not ideal for wearable devices that are often
battery-powered, hence this study. Arduino UNO, based on the ATmega328P with
2 KiB SRAM, and ESP32 AI Thinker, with a dual-core Xtensa LX6 microprocessor,
320 KiB memory, and 3 MiB Flash Memory, are cost-effective and power-efficient,
ideal for edge computing. In our research, we utilized the UCI HAPT and UMAFall
Detection datasets for Human Activity Recognition and Fall Detection to optimize
machine learning models for deployment on Arduino UNO and ESP32. On HAPT
dataset, we achieved an impressive accuracy of up to 94% with a precision of 87%
while on UMAFall Detection dataset, we achieved an accuracy of 81% with a pre-
cision of 77%. Notably, our trained Logistic Regression model for HAPT dataset
clocked an average execution time of just 462 microseconds on ESP32 and 17634
micro seconds on Arduino UNO. Similarly, for UMAFall Detection dataset, our
trained Decision Tree model clocked an average execution time of just 37 microsec-
onds on ESP32 and 121 micro seconds on Arduino UNO.

Furthermore, we significantly optimized resource usage for both HAPT and UMAFall
datasets using our trained Decision Tree model, with memory usage minimized to
0.508 KB and 0.509 KB and flash size managed efficiently to a minimum of 6.606
KB and 26.518 KB on Arduino UNO, leaving plenty of resources for developers to
add other programs on top of the ML model. It significantly outdid recent studies in
terms of highly resource-constrained MCUs and compute resource usage efficiency.

Keywords: Edge AI, TinyML, Embedded system, Micro-controller, Resource-
constraint.
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Chapter 1

Introduction

There is a rising interest in utilizing wearable devices and machine learning advance-
ments to provide personalized health monitoring in real-time. Wearables, such as
fitness trackers and smartwatches, have proliferated, offering a plethora of physio-
logical data that can be used for health monitoring. However, the development of
precise and effective machine learning models for health monitoring is significantly
hampered by the constrained processing capabilities and power of edge devices. This
study develops edge-optimized ML models for real-time health monitoring in order
to close the gap between wearable technology, machine learning, and customized
healthcare. The outcomes and conclusions of this study have implications for en-
hancing healthcare outcomes and giving people more control over how they actively
manage their well-being.

1.1 Motivation

The potential of wearables to revolutionize healthcare is becoming more and more
apparent, especially in the areas of continuous vital sign and activity tracking. Wear-
ables are useful devices, but their limited processing power, memory, and storage
make it difficult for them to process data efficiently and in real time. Privacy issues
are brought up by cloud connectivity, and edge network latency and response time
are crucial.

It is advantageous to deploy machine learning models for FD and HAR on edge
devices such as ESP32 and Arduino UNO. Because these devices process data in
real time, they can react quickly to situations like falls. They also use less power
when operating, which prolongs the battery life for ongoing monitoring. By reduc-
ing reliance on cloud connectivity, on-device processing addresses privacy concerns.
These small devices have reduced power consumption thanks to optimized machine
learning algorithms, which makes them perfect for wearable applications.

We cannot use Raspberry Pi or similar power hungry board as it produces heat
quickly and cannot be used as wearables because they are placed on crucial parts of
the human body. Thus, this study emphasizes how edge computing affects wearable
health monitoring devices. In order to overcome the challenges related to cloud-
based processing, we hope to minimize latency, improve privacy, and minimize power
consumption by enabling on-device data processing shown in Figure 1.2. With the
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potential to drastically cut expenses and power consumption, wearable edge comput-
ing will become a more practical and useful option for real-time health monitoring.

EDGE NETWORK

NODES

GATEWAYS

CLOUD DATA CENTER

Figure 1.1: Tipical-Edge Network

As of now, these problems have been solved by various methods. Some existing
solution includes collecting data with wearable sensor, the data will be sent to cloud
or fog server. After processing and inferencing the data, the prediction is then sent
back to the user, requiring a few network RRTs. Other solutions include placing
various wifi capable sensors within rooms or zones. Fall and various HAR data will
be collected by these sensors and then it will send it to the designated PC or edge
server within the local network. But the problem here is that those sensors cannot
detect outside of its zone and external noise can cause latency and data corruption.
After data has been collected by sensor, it will be sent to the edge server where the
data will be processed and ADL will be inferred. However, nowadays, there are on
device MCU-based solutions. Here NN based quantized and optimized models are
the common examples, for instance, TFlite [28], Pytorch [25].

The goal of the study is to minimize the drawbacks of wearables and enable real-
time, personalized health monitoring like HAR, FD by optimizing machine learning
models for edge devices. Arduino UNO and ESP32 can be used as they do not
produce heat quickly like Raspberry Pi and these are also cheap, affordable, and
power efficient. In order to create wearable ADL (Activity of Daily Living) technol-
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ogy that is both practical and efficient, the study aims to achieve a balance between
computational power and hardware ease of use.

EDGE COMPUTING

Test Data In Test Data Proceessed Action

Figure 1.2: On Device Data Processing

1.2 Limitations

For real-time personalized HAR and FD using wearables, leveraging the power of
edge devices can be a potent tool. However, this strategy has some drawbacks that
must be taken into account:

• Processing power limitations: Wearables and other edge devices have lim-
ited processing capacity, which can restrict the complexity of machine learning
models that can be used. This limitation may result in longer inference times
or less accurate predictions.

• Limited memory: Edge devices also have memory restrictions, making it
challenging to store and process large datasets locally. This limitation may
restrict the range of analysis that can be performed on the device.

• Data privacy issues: Personal health information must be handled with
care due to its sensitivity. Storing this data on an edge device can increase
the risk of data breaches or unauthorized access to sensitive information.

• Lack of connectivity: Edge devices may not always have a reliable internet
connection, which can limit their ability to update machine learning models or
receive real-time recommendations from nearby edge servers if it follows any
distributed architecture.

• Model interpretability: To transform a normally trained model on large
datasets to an optimized format that is manageable by edge devices, it is essen-
tial to understand the overall architecture of the model. While edge-optimized

3



machine learning models may offer real-time predictions, their interpretabil-
ity may be compromised due to the need for complexity reduction, memory
optimization, and resource limitations.

• Accuracy limitations: Although edge-optimized machine learning mod-
els provide real-time capabilities, their processing power on highly resource-
constrained devices is very limited, typically around 4 GHz in a standard x86
system, often results in lower accuracy compared to standard devices.

In spite of these limitations, the development and deployment of edge-optimized
machine learning models hold great promise, and addressing these challenges can
lead to significant advancements in the field of healthcare technology.

1.3 Our Contribution

In the domain of real-time personalized health monitoring on wearables, our re-
search makes significant strides towards edge-optimized machine learning models,
addressing several critical aspects that enhance efficiency and user experience. Our
primary contributions can be summarized as follows:

• Optimized for Processing Power:

– Designed and implemented machine learning models to reduce processing
power for real-time HAR and FD monitoring on wearables.

– Leveraged advanced algorithms and model architectures tailored for edge
devices.

– Ensured computational load minimization without compromising accu-
racy.

• Reduction of Resource Consumption:

– Exhibited marked reduction in resource consumption for deployment on
resource-constrained devices.

– Carefully optimized model parameters and feature selection.

– Achieved a balance between computational efficiency and predictive ac-
curacy.

• Memory Efficiency:

– Implemented techniques to significantly reduce the memory footprint of
machine learning models.

– Enhanced feasibility of deployment on wearables and integration into
devices with constrained memory and storage capacities.

• Localized Execution on Microcontrollers:

– Enabled the execution of models on microcontrollers.

– Brought real-time personalized ADL and FD closer to the user.
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– Offloaded computation to the edge device itself, reducing reliance on ex-
ternal servers for a more responsive experience.

• Enhanced Data Privacy:

– Operated entirely within the local environment of the wearable device.

– Ensured sensitive user data is not exposed and remains secure with no
transmission to external networks.

• Uninterrupted Operation with No Connectivity Dependency:

– Ran models locally on the edge/wearable device itself, eliminating con-
cerns related to connectivity issues.

In summary, our research not only advances the field of real-time personalized health
monitoring on wearables but also addresses practical challenges by optimizing pro-
cessing power, reducing resource consumption, improving memory efficiency, ensur-
ing data privacy, and offering seamless operation independent of external network
connectivity. These contributions collectively pave the way for a more efficient and
user-centric approach to wearable health monitoring.

1.4 Thesis Organization

The study is divided into eight chapters to fully address the research questions.
Chapter 1 introduces the study, explaining its significance and our objectives. We
also discuss any limitations and our contribution to this topic. Chapter 2 reviews
past studies, highlighting the areas covered previously and the gaps our study ad-
dresses. In Chapter 3, we explore essential background and theories for under-
standing our study. Chapter 4 talks about the data we used, its source, and the
preparation process for analysis. Chapter 5 explains our study methods, including
the design of the study, collected data, and how we analyzed it. Chapter 6 presents
the experiments we conducted and the results. Chapter 7 interprets our results,
compares them to existing studies, addresses the study limitations, and suggests
ideas for future research. Finally, Chapter 8 concludes the study by summarizing
key findings, contributions, and suggesting areas for future study.
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Chapter 2

Related Works

Wearable technology has become popular as a tool for tracking one’s fitness and
health over the past ten years. Wearables give users access to real-time information
on their physical activities and physiological responses thanks to sensors that can
detect everything from heart rate to sleep quality. The interest in using this data
for more sophisticated health monitoring, disease detection, and personalized rec-
ommendations has increased as the usage of wearables has become more popular.
Smartwatches and fitness trackers are examples of wearable technology that collect
data from sensors on the user’s body, including heart rate, blood pressure, and activ-
ity level. The gathered data is sent to a nearby-edge computing device or a machine
learning model running on the device. The model is intended to examine the data
in real-time and spot any trends or anomalies that might point to the existence of
a health issue.

Machine learning models that are edge-optimized are created to operate well on the
constrained memory and processing resources of wearable technology or edge com-
puting devices. This makes it possible to process health data in real-time without
using a lot of computational power. Recent studies have been quite active on the
topic of HAR and FD. The following are some important works in this field:

Several promising approaches exploit RISC-V microcontrollers for accurate and ef-
ficient on-device activity recognition in resource-constrained settings. Among them,
Daghero et al.’s study proposes a collection of optimized 1D CNNs using hyper-
parameter optimization, sub-byte quantization, and mixed-precision quantization
for general-purpose microcontrollers. Their work also introduces adaptive infer-
ence, dynamically adjusting the neural network complexity based on the input,
enabling a broader range of operating modes with efficient memory usage. They
achieve real-time HAR with under 16ms latency on an ultra-low-power RISC-V
MCU, surpassing previous deep learning methods in terms of memory footprint and
performance [29]. This study showcase the potential of RISC-V microcontrollers
for accurate and resource-efficient activity recognition on wearables and embedded
devices, paving the way for new advancements in on-device intelligence for real-time
applications.

Classification of anomalous gait using Machine Learning techniques and embedded
sensors by Sa et al. suggests a way to classify various types of unusual walking pat-
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terns using a wearable gadget with built-in sensors like accelerometer, gyroscope,
and machine learning methods. The writers established a dataset comprising four
different and equally distributed groups of unusual gaits and employed machine
learning algorithms, including Principal Component Analysis, Support Vector Ma-
chines, and a Feedforward Neural Network. They attained accuracies of 94% and
96%, respectively. Additionally, the paper compares the computational efficiency of
the models they used [26].

A unique approach to wearable sensor-based human activity identification (HAR) is
presented in the study HiHAR: A Hierarchical Hybrid Deep Learning Architecture
for Wearable Sensor-Based Human Activity identification. The paper tackles the
problem of feature extraction from sensor signals, which in temporal and geograph-
ical contexts hold valuable information. Two robust deep neural network architec-
tures—a convolutional neural network (CNN) and a bidirectional long short-term
memory network (BiLSTM) with two stages, local and global—are the foundation
of the authors’ proposed hierarchical deep learning-based HAR model (HiHAR). In
comparison to existing cutting-edge HAR models, the suggested hybrid model per-
forms competitively, averaging 97.98% and 96.16% accuracy on two public datasets
(UCI HAPT and MobiAct scenario), respectively. As there are 4,484,905 parame-
ters and 1,186,235 FLOPs which is really high, it is relatively intensive for micro-
controller [24].

A hybrid deep residual model for identifying transitional activities using wearable
sensor data is presented in the paper A Hybrid Deep Residual Network for Efficient
Transitional Activity Recognition Based on Wearable Sensors by Mekruksavanich et
al. The authors contend that although a large number of learning-based methods for
identifying human behavior have been developed, they frequently concentrate pri-
marily on basic human activities and ignore transitional activities because of their
brief duration and rarity. Postural transitions, however, are essential to the imple-
mentation of a HAR system and should not be disregarded. The suggested approach
combines a Bidirectional Gated Recurrent Unit (BiGRU) with hybrid Squeeze-and-
Excitation (SE) residual blocks to improve the ResNet model and hierarchically
extract deep spatio-temporal information, as well as effectively discriminate tran-
sitional activities. The suggested hybrid technique achieved 98.03% and 98.92%
classification accuracies for the HAPT and MobiAct v2.0 datasets, respectively, ac-
cording to the results of experiments conducted on two available benchmark datasets
(HAPT and MobiAct v2.0). Furthermore, the results demonstrate that, in terms
of overall accuracy, the suggested strategy outperforms the cutting-edge techniques
like HiHAR. The results show that transitional activity recognition can be enhanced
more effectively with the SE module. This work advances the field of Human Activ-
ity Recognition (HAR) and its potential applications in home automation systems,
geriatric Fall Detection, sports performance, medical rehabilitation, and misbehav-
ior identification, among other disciplines [34].

An innovative method for Human Activity Recognition (HAR) on ultra-low power
devices, such as smartwatches, is presented in the publication Two-stage Human Ac-
tivity Recognition on Microcontrollers with Decision Trees and CNNs by Daghero
et al. This work is the continuation of the author’s previous work on MCUs. The
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authors address the high energy consumption problem associated with Deep Learn-
ing (DL), which is a serious barrier for battery-operated and resource-constrained
devices, by proposing a hierarchical architecture that integrates traditional Machine
Learning (ML) models with DL. Two distinct subtasks are served by the architec-
ture’s cascading decision tree (DT) and one-dimensional convolutional neural net-
work (1D CNN). While the CNN handles more complicated actions, the DT simply
categorizes the simplest ones. Using studies on a cutting-edge dataset and a single-
core RISC-V MCU, the authors show that this technique can save up to 67.7% of
the energy used in comparison to a standalone DL architecture at iso-accuracy. Ad-
ditionally, the two-stage approach lowers the overall memory usage or adds a minor
memory burden (up to 200 B) [30].

AUTO-HAR: An adaptive human activity recognition framework using an auto-
mated CNN architecture design by Ismail et al. presents the AUTO-HAR frame-
work, which uses an automated Convolutional Neural Network (CNN) architectural
design, is a significant improvement in Human Activity Recognition (HAR). Con-
ventional techniques for creating CNN structures can be laborious and error-prone.
Neural Architecture Search (NAS), which enables the autonomous design and opti-
mization of network topologies, helps AUTO-HAR overcome these problems by get-
ting around the constraints imposed by human experience and traditional thought
patterns. To enhance the NAS procedure, the framework uses evolutionary tech-
niques, more especially Genetic techniques (GA). These algorithms can perform
well on black-box optimization tasks without requiring gradient knowledge or ex-
plicit mathematical formulations. By introducing a new encoding schema structure
and a large search space with a variety of operations, AUTO-HAR makes it pos-
sible to find the best designs for HAR tasks efficiently. Because AUTO-HAR does
not impose restrictions on the maximum length of the task architecture, its search
space also permits a respectable level of depth. We have evaluated the framework’s
performance on three datasets: Opportunity, DAPHNET, and UCI-HAR. The out-
comes show that AUTO-HAR is capable of effectively identifying human actions
with 98.5% (±1.1), 98.3%, and 98.7% average accuracy, respectively. The auto-
mated CNN architectural design used in this framework’s HAR approach shows
potential for the creation of more accurate and efficient recognition systems across
a range of applications [40].

The use of deep learning (DL) algorithms in the field of human activity recogni-
tion (HAR) is examined in the study A Study on the Application of TensorFlow
Compression Techniques to Human Activity Recognition by Contoli et al. The au-
thors examine how convolutional neural networks (CNNs), long short-term memory
(LSTM) networks, and a hybrid CNN and LSTM can be compressed using Tensor-
Flow Lite basic conversion, dynamic, and complete integer quantization approaches.
Two use case scenarios are examined in the study: standalone compression mode
and cascade compression. The viability of implementing deep networks on an ESP32
device is discussed in the study, along with the effects of TensorFlow compression
techniques on inference latency, classification accuracy, and energy consumption. It
was not able to do the performance characterization in the cascade instance. Dy-
namic quantization is advised in the standalone scenario due to its little accuracy
loss. Both dynamic and full integer quantization offer significant energy savings
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over the uncompressed versions in terms of power efficiency: 31% to 37% for CNN
networks and up to 45% for LSTM networks. Both dynamic and complete integer
quantization perform comparably about inference latency [36].

Moving forward with FD, the study titled XAI-Fall: Explainable AI for Fall Detec-
tion on Wearable Devices Using Sequence Models and XAI Techniques presents a
novel approach to FD, which is crucial for the safety of older people. TConventional
FD techniques, like installing sensors on a room’s walls or utilizing a single triaxial
accelerometer, have a number of disadvantages. They are either mounted on a wall
that is unable to detect a person falling outside its range, or they rely on a single
sensor, which is inadequate for detecting falls. The authors suggest a reliable tech-
nique for identifying falls utilizing three separate sensors positioned at five different
points on the subject’s body in order to get around these drawbacks. In order to
train the models for FD, sensor readings are obtained using the UMAFall dataset.
The authors added the XAI method known as LIME to the system in order to en-
hance the interpretability of the model. This method aids in the explanation of the
model’s results. The models achieved an accuracy of 93.5%, 93.5%, 97.2%, 94.6%,
and 93.1% on each of the five sensor models, and 92.54% is the overall accuracy
achieved by the majority voting classifier. To improve the model’s interpretability,
the authors incorporated the XAI technique called LIME into the system. This
technique helps explain the model’s outputs [32].

The study titled Fall Detection in the Elderly With Android Mobile IoT Devices
Using Nodemcu And Accelerometer Sensors by Sudirman et al. focuses on the de-
velopment of an IoT-based Fall Detection system using NodeMCU ESP8266 and
an Accelerometer MPU6050. Because it can alert a family member or concerned
party, whenever it notices a fall, the system is especially helpful for senior citizens,
as it lowers the possibility that they won’t receive emergency care right away. The
MPU6050 sensor module, which has an accelerometer and gyroscope, is used by
the Fall Detection device. The accelerometer gives information about the angular
parameter, such as the three-axis data, and the gyroscope is used to determine ori-
entation. The system compares the acceleration magnitude with a threshold value
in order to identify a fall. The device notifies the concerned party via SMS if it
detects a fall. To send the SMS, the NodeMCU is utilized as a microcontroller and
Wi-Fi module to establish a connection with the web-based IFTTT (If This Then
That) service. The system can monitor thousands of senior citizens, detect falls, and
alert caregivers. It is made to be scalable. The requirements to enable large-scale
system operations are revealed by the scalability tests [27].

Using a wearable sensor, a novel energy-efficient algorithm for categorizing various
fall types is presented in the study An Energy-Efficient Algorithm for Classification
of Fall Types Using a Wearable Sensor by Kwon et al. The study tackles the problem
of promptly delivering medical care to minimize fall-related injuries. The authors
suggest Temporal Signal Angle Measurement (TSAM), a cutting-edge approach that
can distinguish between the five most typical fall types. The first wearable system to
be designed had an inertial measurement unit sensor. Next, the various fall kinds at
different sample frequencies were classified using the TSAM. Three distinct machine
learning algorithms were compared with the results. Both the machine learning al-
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gorithms and the TSAM’s overall performance were comparable. Nevertheless, at
frequencies between 10 and 20 Hz, the TSAM performed better than the machine
learning methods. The accuracy of the TSAM varied from 93.3% to 91.8%12 as
the sample frequency decreased from 200 to 10Hz. For the same frequency range,
the sensitivity and specificity range from 93.3% to 91.8% and 98.3% to 97.9%, re-
spectively. The researchers came to the conclusion that their algorithm can be used
to categorize various fall types at low sample rates using energy-efficient wearable
devices. By giving the required information, this technology helps speed up medical
assistance in emergency circumstances brought on by falls [16].

A creative method for FD with wearable technology is presented in the paper Fall
detection on a wearable microcontroller using machine learning algorithms by Oden
et al. The Bosnai machine learning algorithm is suggested by the authors as a way
for embedded-edge devices to identify falls. The Arduino-based prototype can be
incorporated into materials for belts, clothing, and other accessories. On the gadget,
the FD is done offline. The researchers trained a tree-based machine learning model
using information from publicly available datasets of movement and fall occurrences.
They assessed various iterations of preprocessed parameter combinations as learning
algorithm input characteristics. The microcontroller receives the learnt model and
uses it to identify sensor data offline in real time. Due to the microcontroller’s se-
vere memory and processing capability limitations, learning features are restricted
to a small set of features. Preprocessing the raw acceleration data and choosing
the appropriate features for training and inference is crucial because of this. The
authors discovered that using absolute acceleration and variance as characteristics,
along with a sampling rate of 20 Hz and a recording window of 3s1, yields the best
results (about 94.2% accuracy). The strongest system against outside interference
is this one [18].

Anita Ramachandran et al.’s paper, Machine Learning-Based Techniques for Fall
Detection in Geriatric Healthcare Systems, describes a machine learning and In-
ternet of Things (IoT)-based FD system for senior healthcare. The system is a
component of a larger class of systems known as Ambient Assisted Living Systems
(AALS), which has seen a lot of recent academic activity. The suggested method
makes use of the subject’s biological and physiological profile as well as a variety of
wearable sensor node parameter data. The subject’s fall risk category is established
based on their profile. The wearable sensor node readings from public datasets for
FD were used by the authors in their machine-learning experiments. The subject’s
risk categorization was then fed back into the algorithms for retraining, and the
analysis’s outcomes were shown. The studies aimed to determine how a subject’s
risk classification affected the precision of FD. The system is a component of an
all-encompassing, still-under-development geriatric healthcare system that includes
cloud-hosted application servers, coordinator nodes, wearable sensor nodes, and an
indoor localization framework. The goal of this research is to enhance the safety
and quality of life for the aged population, making a valuable contribution to the
expanding field of geriatric healthcare systems [14].

An automatic Fall Detection System (FDS) named CareFall is presented in the
publication CareFall: Automatic Fall Detection through Wearable Devices and AI
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Methods by Garcia et al. The system is intended to tackle the increasing problem
of falls in the elderly population, which is a major worldwide public health issue.
CareFall makes use of artificial intelligence (AI) techniques and wearable technol-
ogy, particularly smartwatches. For FD, it takes into account the time signals from
the accelerometer and gyroscope that were taken from the smartwatch. The re-
search investigates threshold-based and machine-learning-based methods for feature
extraction and categorization. The machine learning-based strategy, which inte-
grates accelerometer and gyroscope data, performs better than the threshold-based
approach in terms of accuracy, sensitivity, and specificity, according to experimental
results on two public datasets. This study aids in the development of clever and prac-
tical strategies to lessen the detrimental effects of falls on the elderly population [43].

Artificial Intelligence (AI)-based algorithms for the recognition of Activities of Daily
Living (ADL) are covered in the study Inertial Data-Based AI Approaches for ADL
and Fall Recognition by Martins et al. The authors point out that data from wear-
able sensors, especially those at the lower trunk, can be processed to achieve ADL
recognition. They do point out that these algorithms only identify a small num-
ber of ADL, seldom concentrating on transitional activities and failing to address
falls. In order to improve the resilience of several ADL recognition methods and
get over these restrictions, the authors combined nine public and private datasets.
In order to compare several ADL Machine Learning (ML)-based classifiers, they
created an AI-based framework. The investigation indicated that the best perfor-
mance was obtained using the K-NN classifier with the first 85 features rated by
Relief-F (98.22% accuracy). However, the Ensemble Learning classifier with the
first 65 features ranked by Principal Component Analysis (PCA) provided 96.53%
total accuracy while keeping a reduced classification time per window (0.039 ms),
demonstrating a better potential for its implementation in real-time applications in
the future. Although the results of testing Deep Learning algorithms were not as
good as those of the previous procedure, they did show potential (overall accuracy
of 92.55% for Bidirectional Long Short-Term Memory (LSTM) Neural Network),
suggesting that they might be a viable option in the future. Compared to previ-
ous analyses, this paper addresses a greater number of ADL, identifying 20 classes,
including falls (16 ADL and four types of falls) and transitional activities (such as
sit-to-stand, stand-to-stand, lying-to-stand, pick objects from the ground, and bend
and turn) [33].

With an emphasis on senior fall prevention, the study FallNeXt: A Deep Resid-
ual Model based on Multi-Branch Aggregation for Sensor-based Fall Detection by
Mekruksavanich et al. introduces a unique deep learning network for fall detection.
The authors draw attention to the growing demand for FD and prevention tech-
nology brought on by an aging population. Adults and the elderly are particularly
vulnerable to falls’ serious health risks and injuries. Early detection and intervention
can stop additional damage. FallNeXt, the suggested remedy, is a sensor-based sys-
tem made to protect people’s privacy while improving FD capabilities. The system
improves FD capability by utilizing a deep residual network that uses multi-branch
aggregation. Three benchmark datasets for sensor-based FD—UpFall, SisFall, and
UMAFall were used to assess FallNeXt’s efficacy. Based on the experimental results,
FallNeXt performed better on these datasets than benchmark deep learning models,
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with the greatest overall accuracy and F1-score of 96.16% and 98.12%, respectively.
The FallNeXt model’s prediction capability is one of its main advantages since it
makes it appropriate for real-world applications. This study makes a substantial
contribution to the advancement of technologies meant to enhance senior citizens’
quality of life [35].
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Chapter 3

Background

The creation and refinement of machine learning models specifically designed for
wearables’ real-time personalized health (HAR and FD) monitoring forms the basis
of this study. The work focuses on compilation and optimization of ML models
to train and implement these models on microcontrollers with limited resources,
namely the Arduino UNO and ESP32. The main goal is to demonstrate the real-
world application of edge-optimized models, with a focus on Fall Detection (FD) and
Human Activity Recognition (HAR). It is critical to grasp the fundamentals of Neu-
ral Networks, Embedded Systems, Hardware Acceleration, Decision Tree algorithms,
and Logistic Regression in order to comprehend what we’re doing. By illustrating
how these models can be effectively deployed on microcontrollers and overcoming
the difficulties brought on by resource constraints in the context of real-time health
monitoring on wearable devices, this work advances the field.

3.1 Logistic Regression

When a dependent variable is binary or dichotomous—that is, only conceivable
values, such as Yes/No, True/False, Success/Failure, etc.—we employ the statis-
tical technique of logistic regression [2]. It is an effective statistical method ap-
plied in many different domains, such as the social sciences, marketing, finance,
and medicine. It facilitates the modeling of the link between one or more indepen-
dent factors (such as patient demographics, economic indicators, and advertising
techniques) and a binary dependent variable (such as the existence or absence of a
disease, customer retention).

Based on the independent variables, logistic regression calculates the likelihood of
a particular event occurring (such as the likelihood of contracting a disease). This
crucial component makes the likelihood linear on a log scale by converting it into
a logit score. This makes it possible for us to estimate the correlation between the
logit score and the independent variables using linear regression techniques. The
model determines the coefficients that best fit the data using maximum likelihood
estimation, showing how each independent variable affects the logit score and, in
turn, the event probability [3].

The logistic regression equation models the probability of a binary outcome and is
commonly used in statistics and machine learning. The logistic regression equation
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is expressed as follows:

P (Y = 1) =
1

1 + e−(β0+β1X1+β2X2+...+βkXk)
(3.1)

Here:
P (Y = 1) is the probability of the event Y occurring (where Y is the dependent
variable with two possible outcomes, often coded as 0 and 1).
e is the base of the natural logarithm.
β0 is the intercept term.

β1, β2, . . . , βk are the coefficients associated with the independent variables

X1, X2, . . . , Xk, respectively.

The logistic function, 1
1+e−z , transforms the linear combination of the coefficients and

independent variables into a value between 0 and 1, representing probabilities [9].

3.1.1 One-vs-Rest for Multi-Class Classification

Multi-class classification is not supported by the Logistic Regression model by de-
fault. Since they were created for binary classification, algorithms like the Percep-
tron, Logistic Regression, and Support Vector Machines are not naturally capable
of handling classification jobs involving more than two classes. Dividing the multi-
class classification dataset into several binary classification datasets and fitting a
binary classification model on each is one method of applying binary classification
algorithms for multi-classification problems.

The One-vs-Rest and One-vs-One tactics are two distinct instances of this method.
Binary classification methods are used in the One-vs-Rest (OvR) also referred to as
One-vs-All (OvA) strategies for multi-class classification. The multi-class dataset is
divided into several binary classification issues. On the contrary, One-vs-One (OvO)
is an additional multi-class classification technique [7].

For multi-class classification issues, the One-vs-Rest (sometimes called One-vs-All
or OvA) technique is applied as follows:

• Multi-Class Classification Problem: This type of classification involves
more than two classes. For instance, categorizing fruits as banana, orange, or
apple.

• Strategy One-vs-Rest (OvR): The OvR approach divides the multi-class
classification issue into several binary classification issues. The next step in
each binary classification problem is to differentiate between one class and the
others. For example, the issues with the fruit classification example would be:

Issue 1: Banana vs [Apple, Orange]
Issue 2: Orange vs [Apple, Banana]
Issue 3: Apple vs [Orange, Banana]
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The above discussed method is the default multiclass classification approach in SK
Learn Logistic Regression model [54].

This method is a heuristic method, which means it is a workable solution that may
not be ideal or flawless but is nonetheless adequate to accomplish a task right now.
Its primary drawback is that, in datasets with many classes, it may be computa-
tionally costly to train a single classifier for each class [22].

This method’s primary drawback is the sheer number of models that must be made.
The creation of n models is required for a multi-class problem with n classes, which
could cause the process to lag. That is, nevertheless, highly helpful when dealing
with datasets that have few classes, and we wish to apply a model such as SVM or
Logistic Regression.

We would train K distinct binary Logistic Regression models using the One-vs-
Rest (OvR) technique in a multi-class classification issue with K classes. We treat
class k as the positive class and all other classes as the negative class for each
model k (where k is from 1 to K ). In 3.1, for one-vs-all logistic regression in a
multi-class scenario, we train k models (where k is the number of classes). The
generalized equation for each model is the same as binary logistic regression:

P (Y = i) =
1

1 + e−(β
(i)
0 +β

(i)
1 X1+β

(i)
2 X2+...+β

(i)
n Xn)

(3.2)

where:

P (Y = i) is the probability that the instance belongs to class i.

β
(i)
0 , β

(i)
1 , . . . , β(i)

n are the coefficients for class i.

During prediction, compute the probability for each class using the corresponding set
of coefficients, and the class with the highest probability is the predicted class [7].

3.2 Decision Tree

The decision tree is a non-parametric supervised learning technique used in both
regression and classification applications. Its tree structure is hierarchical, with in-
ternal, leaf, branch, and root nodes [1]. Decision trees are strong and adaptable
instruments utilized in many domains, including finance, healthcare, data mining,
machine learning, and more.

A decision tree is a model that resembles a tree and asks a series of questions to
simulate the decision-making process. A question concerning a feature (attribute)
of the data is represented by each internal node in the tree, and the potential so-
lutions are represented by each branch. The ultimate classifications or predictions
are represented by the leaf nodes (terminal nodes) at the end of the branches.

Numerous algorithms have been devised to build decision trees, the most prominent
ones being. ID3 (Iterative Dichotomiser 3) which was developed by Ross Quinlan,
aims to maximize information gain while creating trees. ID3 was extended with
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C4.5, which brought additional features such as the ability to handle missing data
and handle both continuous and categorical characteristics. Leo Breiman created
the CART (Classification and Regression Trees) algorithm, a flexible method that
may be used for both classification and regression applications. It uses mean squared
error for regression and the Gini impurity for classification. Scalable Parallelizable
Induction of Decision Trees, or SPRINT, is a decision tree algorithm that was cre-
ated to overcome the memory and scalability issues of previous techniques such as
SLIQ. The Quest Supervised Learning method (SLIQ) is a decision tree method that
is optimized for handling huge datasets with efficiency. Its forerunner, the SPRINT
algorithm, substantially enhances memory consumption and scalability [10].

Each node in a decision tree makes a series of binary decisions as part of the decision-
making process. Based on the feature tests, it moves through the tree from the root
to a leaf given an input instance until it reaches a final conclusion. A splitting
criterion, usually geared at maximizing information gain or decreasing impurity, de-
termines the decision at each node. Whereas impurity reflects the disorder present
in a dataset, information gain quantifies the decrease in uncertainty regarding the
output labels following a split.

The mathematical equation for decision trees is used to calculate the entropy of
a dataset. Entropy is a measure of the amount of uncertainty in a dataset. The
equation calculates the entropy of a dataset by summing over all the data points in
the dataset and calculating the difference between the actual label and the predicted
label for each data point. The equation is :

m∑
i=1

[−yilog2(ŷi)− (1− yi)log2(1− ŷi)] (3.3)

where yi is the actual label of the i-th data point, ŷi is the predicted label of the
i-th data point, and m is the total number of data points in the dataset [20]. The
equation is used to calculate the entropy of the dataset, which is then used to con-
struct the decision tree.

Decision trees are a great option for this study because of their high interpretabil-
ity, which makes it simple to comprehend and describe the model’s decision-making
process. Decision trees do not require intricate mathematical computations because
they work by branching and comparing values. Because of this, they are ideal for
edge devices with constrained processing capabilities, such as wearables. Moreover,
decision trees are simple to understand and offer a clear picture of the reasoning
behind a given choice. In health monitoring applications, where comprehending the
logic underlying a forecast might be just as significant as the prediction itself, this
transparency is essential.

3.3 Neural Network

An extensive definition of a neural network is given by Goodfellow et al. in their
book Deep Learning. As per the book, a neural network is a computational model
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that draws inspiration from the functioning of biological neural networks found in
the human brain. The artificial neuron, which is intended to resemble a biological
neuron in activity, is the fundamental unit of a neural network [11].

The different architectures of neural networks—Feedforward Neural Network (FNN),
Radial Basis Function Neural Network, Kohonen Self-Organizing Neural Network,
Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN), Long Short-Term Memory (LSTM), and Modular Neu-
ral Network—are each intended to handle particular types of tasks [17].

A neural network or NN is made up of several layers. Raw data is received by the
input layer. Compute using weighted connections between nodes in hidden layers.
Output Layer: Produces the data that has been processed. Both the Forward
Propagation and Backpropagation (Training) layers carry information. The first
hidden layer’s nodes are activated by input data. Every node determines its output
by computing the weighted sum of its inputs and applying an activation function.
Until the output layer is reached, the procedure is repeated using this output as the
input for the subsequent layer. An error signal is computed if the output deviates
from the intended result. The weights of the connections between nodes are then
modified to reduce further mistakes as a result of this error being backpropagated
throughout the network. An equation for a neural network is:

ŷ = f(Wx+ b) (3.4)

where ŷ is the predicted output, x is the input, W is the weight matrix, b is the bias
vector, and f is the activation function. The activation function is used to introduce
non-linearity into the neural network and is typically a sigmoid or ReLU function.
The weight matrix and bias vector are learned during the training process and are
used to transform the input into the output [21].

The main reason for not using neural networks in this study is their computational
complexity. Multiplication of multidimensional vectors/matrices is a step that neu-
ral networks, and deep learning models in particular, need a lot of computing time
and effort to do. They are therefore inappropriate for real-time applications due to
the potential for increased latency. Furthermore, implementing large neural network
models is challenging due to wearable devices’ resource limitations, which include
low processor and memory speeds. Therefore, less computationally expensive alter-
native machine learning models are favored to achieve faster execution and real-time
answers on wearables. The objective of optimizing machine learning models for edge
devices is in line with this strategy.

3.4 Embedded System

Embedded system is a small computer system that is integrated into a larger de-
vice or machine to perform a specific function [4]. An embedded system is a type
of specialized computer system that is integrated into a larger machine or product
to carry out a particular set of tasks. Embedded systems, in contrast to general-
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purpose computers, are designed primarily for non-user interaction and usually have
constrained memory, processing, and storage capacities.

In the world of devices, embedded systems are often overlooked, but they are just
as powerful as their PC cousins. Embedded systems are pervasive in our every-
day lives, controlling everything from the simple thermostats in our homes to the
complex avionics in modern aircraft [5]. They are made for specialized jobs like oper-
ating a washing machine or sensing a phone touch, where they must respond quickly
despite having little memory and brainpower. These real-time experts balance en-
ergy consumption, particularly in battery-operated devices, with the precision and
dependability of medical equipment on small budgets.

A microcontroller or microprocessor, memory (RAM and ROM), input/output inter-
faces, and a variety of peripherals are often found in embedded system architectures.
Program instructions and data are stored in memory, and the microcontroller serves
as the processing unit. Peripherals offer extra functionality like timers and com-
munication interfaces, while input/output interfaces facilitate communication with
external devices. This architecture is made to be small, effective, and customized
to meet the unique needs of embedded system architecture.Wearables that provide
real-time, individualized health monitoring depend on embedded systems. These
specialized systems, created for particular tasks, are excellent at responding in-
stantly, which is essential for quickly analyzing health data. Embedded systems are
well-suited to the limited resources and compact architecture of battery-operated
wearables, guaranteeing peak performance and effective edge-optimized machine
learning model implementation.

The development of edge-optimized machine learning models for wearable device-
based real-time personalized health monitoring is the focus of this study. The plat-
form of choice for implementing these models is an embedded system based on mi-
crocontrollers. The selection process is based on the characteristics of the microcon-
troller, which include its small size, low resource consumption, high power efficiency,
and affordability. Because of these qualities, microcontrollers are the perfect choice
for wearable technology, where small size and extended operation without regular
recharging are critical requirements. By reducing dependency on external servers
for processing, the embedded system method further improves power efficiency and
increases user convenience and operating lifespans. The study essentially investi-
gates creative ways to overcome the intrinsic constraints of microcontroller-based
embedded systems and maximize their potential to progress the field of wearable
real-time individualized health monitoring.

3.5 Hardware Acceleration

Hardware acceleration is the process of using specialized hardware to carry out par-
ticular tasks faster than CPU-based general-purpose software. This can lead to
enhanced efficiency, decreased power usage, and quicker execution of specific tasks,
like machine learning algorithms, graphics processing, and cryptography. Hardware
acceleration is commonly used in applications where speed and efficiency are critical,
such as in gaming, scientific computing, and artificial intelligence [23]. In machine
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learning, hardware acceleration refers to the use of specialized hardware to accel-
erate the execution of machine learning algorithms [13]. Examples of this type of
hardware include dedicated AI accelerators and GPUs (Graphics Processing Units).

Hardware acceleration is used to increase task-specific performance beyond what a
CPU’s general-purpose software can accomplish. This approach not only reduces
power consumption but also significantly improves task performance by utilizing
specialized hardware such as AI accelerators or GPUs. This is especially helpful
in applications where efficiency and speed are crucial, like in artificial intelligence,
scientific computing, gaming, and machine learning for tasks like inference and train-
ing. Hardware acceleration ensures quicker function execution and maximizes energy
consumption, both of which improve system performance overall.

The goal of this study is to create machine learning models that are optimized
for edge devices without using hardware acceleration. When compared to existing
approaches that employ expensive and parallel hardware-dependent matrix multi-
plication, our strategy leverages edge optimization to enable wearables for real-time
individualized health monitoring. By avoiding the constraints imposed by hardware
acceleration, our suggested models aim to offer effective and user-friendly solutions
that work with a variety of boards. In the context of wearable health monitoring,
this study tackles the need for scalable and affordable machine-learning algorithms
that guarantee greater accessibility and enhanced performance.
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Chapter 4

Dataset

We have decided to use the Updated version of Human Activity Recognition Using
Smartphones Data Set [8] called HAPT and UMAFall: Fall Detection Dataset [12]
for our research. The HAPT dataset (Human Activities and Postural Transitions)
is a great option for investigating how resource-constrained edge devices can process
and classify a wide range of sensor data efficiently using edge-optimized models.
Furthermore, we can look into how FD systems on edge devices with constrained
resources can be made more accurate and efficient thanks to the FD specific UMAFall
dataset. We chose these datasets in order to address issues related to real-time
processing on edge devices and to provide insights into the design and optimization
of machine learning models for edge deployment.

4.1 HAPT Dataset

In the HAPT dataset recordings of 30 participants wearing smartphone strapped
to their waist that have internal sensors were used to create the database. Sorting
activities into one of the 12 done activities is the goal. The updated version dis-
regarded the preprocessed signal that is present in the earlier version rather gives
access to sensors with raw inertial signals. Moreover, postural transitions were not
present in the previous datasets. But the newer version has it by updating the
activity levels. For using the dataset independently, the database is split into two
pieces.

• Inertial sensor data:
-All participant-involved trials’ raw triaxial signals from the accelerometer and
gyroscope.
-The initials of each activity that was performed.

• Window activity records. Each one is made up of:
-A 561-feature vector containing time- and frequency-dependent variables.
-A description regarding the associated action.
-A unique identifier for the experimenter’s subject.

For the trial, a total of 30 individuals between the ages of 19 and 48 took part. Six
main tasks were done by them that included (lying, sitting, standing) that are static
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postures and (walking downstairs, walking upstairs, walking). During the test, each
volunteer had a smartphone around their waists. The integrated accelerometer and
gyroscope of the devices helped to record 3-axial angular velocity that has a con-
stant rate of 50Hz [42]. For this study, when using this dataset, we kept the original
train and test split provided by the authors of the dataset [42]. Besides, in the later
section 4.1.1 we balanced the training dataset and left the test dataset unchanged
for comparison with other studies. The below Figure 4.1 shows the initial class dis-
tribution of labels against their samples for the training dataset.

Figure 4.1: Bar Diagram of HAPT Training Dataset
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Figure 4.2: Principal Component Analysis

From the above PCA (Figure 4.2) of the dataset, it can be observed that the
dataset is mostly linearly separable. On linearly separable datasets, linear models
and perceptrons can provide competitive performance with reduced computational
demands.

4.1.1 HAPT Training Dataset Balancing

From the Figure 4.1 it is clear that the training dataset is not entirely balanced
as some activities have very low sample counts. This can negatively affect the
model performance and make certain models bias towards the first six labels [31].
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To address this issue, we have scaled sample associated with label 7 to 12 which
are stand to lie, sit to lie, lie to sit, lie to stand, stand to sit, and st to stand. These
activities were chosen for targeted oversampling due to their initially lower repre-
sentation in the dataset. The decision to focus on these activities was driven by the
goal of rectifying the imbalance in label frequencies to create a more balanced and
representative dataset. In the below Figure 4.3, we can see the scaled features and
their corresponding sample count.

The selected features consist of distinct human movements and transitions. By
strategically duplicating rows associated with these specific features based on calcu-
lated oversampling factors, the scaling process ensures a more even distribution of
these activities in the dataset. The oversampling factor for each label is calculated
as follows:

• If the current count of a label is less than the minimum desired count:

factor = ⌈min count

label count
⌉ (4.1)

• If the current count of a label is more than the maximum desired count:

factor = ⌊max count

label count
⌋ (4.2)

The number of rows to be duplicated for each label is determined by the oversampling
factor:

Number of duplicates = factor× Number of existing rows for the label (4.3)

Figure 4.3: Bar Diagram of Scaled HAPT Dataset After Scaling
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This approach helped us to make our dataset suitable for training. Besides, this
strategy improved the accuracy of Decision Tree and LSTM which is given in the
below Table 4.1 and 4.2.

Model Accuracy Precision (macro) F1 Score (macro)

Decision Tree 81% 73% 73%

LSTM (TensorFlow) 83% 71% 63%

Table 4.1: Before of Data Duplication

Model Accuracy Precision (macro) F1 Score (macro)

Decision Tree 85% 72% 72%

LSTM (TensorFlow) 86%± 1 73% 72%

Table 4.2: After Data Duplication

The details about the models and experimental setup are discussed in Chapter 6.

4.1.2 Feature Reduction

The HAPT dataset has a total of 561 features of which all are floating point numbers.
For most modern edge devices, 561 features are not a huge amount of data to process.
However, as we are targeting highly resource constraint devices, we had to reduce the
number of features individually for targeted ML models. Effect of feature reduction
on the ML models can be seen in Chapter 6 section 6.2.4 and 6.2.5.

Feature Reduction For Decision Tree

At first to get an idea about the features and their impact on the output, we did
L1 and L2 regularization. This helped us to reduce 151 features. After a number of
experiments, we employed the Recursive Feature Elimination (RFE) [53] technique
in conjunction with a Decision Tree Classifier, which we found to provide the best
results. The Decision Tree was configured with specific hyperparameters, which
is discussed in Chapter 6 section 6.2.4 in conjunction with RFE to select the top
80 features considered most valuable for the predictive task. The iterative process
involved training the Decision Tree and eliminating the least important features
until the desired number was achieved. The resulting reduced feature set was then
applied to both the training and testing datasets. The top 5 features (0 based
indexing) from the selected 80 are 0, 58, 57, 159, and 55. The below Figure 4.4
shows the correlation between reduced features and Labels for Decision Tree.
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Figure 4.4: Correlation of the Feature-Reduced HAPT Dataset for Decision Tree

Feature Reduction For Logistic Regression

Similarly, here also we reduced the number of features for Logistic Regression to 80.
Here we changed the max iter parameter to 300 to speed up the process. The top
five features (zero-based indexing) from the selected 80 are 56, 433, 166, 70, and 69.
The below Figure 4.5 shows the correlation between reduced features and labels for
Logistic Regression Model.
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Figure 4.5: Correlation of the Feature-Reduced HAPT Dataset for Logistic Regres-
sion

4.2 UMAFall Dataset

The second dataset we used for FD is UMAFall dataset. UMAFall dataset includes
data from 19 participants who were wearing sensors on five different body locations
while conducting different Activities of Daily Living (ADLs) and simulating falls. In
contrast to other datasets that only use one or two sensors, UMAFall provides more
information to investigate how sensor location affects the accuracy of FD. Because
of this, it is especially helpful for evaluating and contrasting various FD algorithms,
which will ultimately improve safety for the elderly and other vulnerable people who
are more likely to fall.

It is significant to note that risk categorization is not a specific focus of our investiga-
tion. Rather, we focus on the effectiveness, precision, and instantaneous performance
of edge-optimized models in applications that are relevant to people. In preparing
the UMAFall dataset for analysis, a Python implementation was employed to dis-
till pertinent information from the raw CSV files. The dataset encompasses sensor
data capturing diverse activities, including backward falls, forward falls, lateral falls,
and non-fall activities. Each activity was assigned a corresponding label through a
predefined mapping, facilitating the classification task. The implemented method
selectively processed wrist sensor data (identified as sensor ID 3) because the wrist
sensor data gave more accuracy [15] and extracted acceleration values along the X,
Y, and Z axes.

Throughout the data extraction process, our main attention was devoted to han-
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dling irregularities and errors to ensure dataset integrity. Extraneous lines with ir-
relevant information were skipped, and robust exception handling was implemented
to address potential parsing errors. The resulting dataset was structured to include
acceleration values and their corresponding activity labels.

Figure 4.6: Histogram of UMAFall Dataset

The processed dataset was then transformed into a NumPy array, which provides
a versatile framework for subsequent manipulation and analysis. To assess machine
learning model performance, the dataset was stratifiedly split into training and
testing subsets. The training subset, having 80% of the data, served as the basis for
model training, while the remaining 20% formed an independent test set for model
evaluation.
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Chapter 5

Research Methodology

Our research methodology encompasses a systematic approach that involves taking
a dataset, processing it through various stages, optimizing it, and ultimately de-
ploying it to the target Microcontroller Unit (MCU) or Edge device. The below
Flow Chart 5.1 shows the high-level overview of the entire process. This process
includes training and optimizing the model, and ultimately converting the trained
model into a CPP header file format. This format is compatible and deployable
with the firmware of Microcontroller Units (MCUs).
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Figure 5.1: Overview Of Research Methodology
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5.1 Dataset Selection and Preprocessing

The journey towards developing a successful machine learning model begins with
the careful selection of the proper datasets. Once these datasets have been chosen,
the dataset must undergo a process of preprocessing to ensure that the best possible
results can be obtained. This involves the use of various techniques such as fea-
ture engineering, normalization, and data profiling. Furthermore, depending on the
dataset and the task at hand, we may have to perform Adversarial training, Data
Augmentation etc. This can help some machine learning algorithms perform better,
reduce complexity by ensuring that all characteristics in a dataset are on the same
scale.

5.2 Model Selection

The process of selecting the ideal machine learning model for a particular task is
known as model selection. It involves fitting and evaluating a range of models
on a given dataset and selecting the one that performs the best. However, model
performance is not the only factor to consider. Other factors such as complexity,
maintainability, and available resources also play a role in the selection process.
Model selection is applicable to models of various types as well as to models of the
same type with various hyperparameter configurations. The models are chosen based
on a thorough evaluation of various metrics, including precision, recall, F1-score,
support, accuracy, macro average, and weighted average. These metrics guide our
decision to ensure the selected model aligns with the desired performance criteria.
However, the most important factor to consider is to check if the model complexity
is low enough to be deployable in MCU.

5.3 Testing

Testing is a crucial aspect in our methodology as it determines the credibility and
runtime behavior of the selected model. By assessing a fully trained model on a
distinct testing set, we can glean significant insights into the model’s capacity to
generalize to new data and make precise predictions.

Our testing set is meticulously curated to be separate from both the training and
validation sets, yet it follows the same probability distribution as the training set.
This approach ensures an unbiased and fair evaluation of the model’s performance.

5.4 Model Performance Comparison

The phase of model comparison, which follows the critical stage of model testing,
is integral to the development of robust and reliable machine learning models. This
phase allows us to understand the strengths and weaknesses of the trained model
by comparing its performance against other models that have undergone similar or
more advanced training processes.
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In the context of our research methodology, this comparison is not just a one-time
process. It’s an iterative cycle that feeds back into the ‘Data Preprocessing’ and
‘Model Testing Using Validation Data’ stages. This iterative approach ensures that
our model is continually refined and improved, enhancing its performance metrics.

5.5 Optimization And Model Conversation

At this stage, the trained model is optimized and then converted to the CPP format
for further processes depending on the edge device of interest. Conversion may
or may not be simple, which vastly depends on the model that we have trained
and tested. To achieve this conversion, we can use libraries such as micromlgen
that can automatically generate CPP header file based on Scikit Learn [37] models.
However, not all models are supported. In such cases, manual conversion to an
equivalent C/CPP code is necessary.

Yes

NoPass

MicroMLgen
(Converter)

Model Tester Debug

Further Micro
Optimization

(Platform
Independent)

Refined Model

Convert

Trained Model

Exported Model In

CPP Header

Results

Model Model

Includes CPP Model Header

D
one D

ebugging

Done

Figure 5.2: Model Conversion, Testing and Debug

After Model conversion, it is necessary to test the model and validate its input
and output as well as other metrics. It is common that generated codes are not
always correct and contain bugs or even performance issues. In such cases, using a
debug tool such as GDB [49] and a profiling tool is imperative. A generic Python
Model to CPP conversion, testing, and Debug process is illustrated using Figure 5.2.

5.6 Profiling Converted Model on Emulated Rasp-

berry Pi

Running and Profiling the model on Emulated Raspberry Pis provides insight into
the model performance in a resource constraint environment. The below Figure 5.3
illustrates the emulation process.

31



Record
Matrices

Header File

Refined
Optimized 

.elf

Analyze Model

Docker

11

Compile Outputs

Emulate 

Export

Done

Figure 5.3: Steps to Run the Model on Emulated Raspberry Pi

Although a Pi is not as resource constraint as a generic MCU, but it is helpful to
run models on them for a few reasons:

• Raspberry Pi supports Linux Operating, and it comes with gnu core utilities.

• This makes it easy to use tools such as GDB [49], perf [51], and time [50]
which makes performance measurements relatively easy where on an MCU
one needs to have debugging hardware to be able to measure, and the process
is also quite complicated.

• The metrics that need to be collected are memory consumption by the ML
models, execution time, max execution time, samples for which it takes max
time to execute, samples for which is takes max memory and binary or exe-
cutable size [19]. For the initial phase, collecting these metrics from Pi is fairly
straightforward and does not require any complicated steps.

Before moving forward to deploying to a physical MCU, running and testing models
on Raspberry Pi helps set the expectations and further helps to curate selected
models even further.

5.7 Optimized Model Deployment on MCUs

Going forward, the CPP model needs to be cross-compiled for the target MCU
board. If the compilation process is successful, then flash the generated executable
or elf to the MCU.
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Figure 5.4: Steps to Cross Compile and Deploy

The above Figure 5.4 shows a visual illustration of the steps to deploy to a target
board, compile using the appropriate tool chain, flash, and then finally record results.
As we deployed to multiple MCUs, we followed the hierarchy of more capable board
to less capable board. This was to track the progress and pinpoint the exact issue,
if any.

5.8 Result Recording and Comparison

After deploying the model to the MCU, it is necessary to record its performance
metrics. These include execution time, memory usage, and model accuracy. Based
on performance metrics, we can then infer the effectiveness of the applied optimiza-
tions. However, in case the results are not satisfactory, it is imperative that we trace
back to a previous stage and improve further up on this iteration.
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Chapter 6

Experimental Evaluation

This chapter presents a detailed examination of our research’s experimental compo-
nent, which is centered around the development and optimization of Machine Learn-
ing (ML) models tailored for resource-constrained Microcontroller Units (MCUs).
The entire life cycle of an ML model optimization, including dataset selection to
finally deploying the model in the target board is discussed in Chapter 5. The
subsequent sections will provide an in-depth look at our experimental setup, the
metrics employed for evaluation, and the results garnered, thereby underscoring the
practical applicability and success of our methodology.

6.1 Experimental Setup

Our personal computer, equipped with a Ryzen 9–5900X CPU, RTX 3070 (8 GB)
GPU, and 32GB of memory, served as the backbone of our computational infrastruc-
ture. Furthermore, the operating system was Pop! OS 22.04 LTS with Linux kernel
6.6.6 that had LLVM toolchain preinstalled. We opted for Python version 3.9 over
3.11 due to its maturity and stability, and utilized the Scikit Learn [37] library and
TensorFlow framework [38] for our machine learning tasks as discussed in Chapter 5
in details. To generate C++ header file for trained models, we used the micromlgen
version 1.1.28 library [39] and used the generated code as our starting point. To
emulate Raspberry Pis and validate our hypothesis, we used a dockerized QEMU
environment called docker-qemu-rpi-os [41] and it allowed us to easily spin up iso-
lated containers for Raspberry Pis. To easily create firmware, manage dependencies,
and target different frameworks and architectures, we used PlatformIO core version
6.1.12a6 with Clion which includes PlatformIO [46] plugin essential for integrating
PlatformIO with Clion [44]. Finally, the MCU units that we used for this study were
the Arduino UNO and ESP32 AI Thinker. Arduino UNO is a robust open-source
microcontroller board based on the ATmega328P microcontroller. It operates on
an 8-bit AVR RISC-based architecture, with a clock speed of 16 MHz, and includes
32KiB of Flash memory, 2KiB of SRAM, and 1KiB of EEPROM. On the other
hand, The ESP32 AI Thinker is a comprehensive wireless MCU module known for
its advanced capabilities. It runs on a 32-bit, dual-core Tensilica Xtensa LX6 micro-
processor, boasting clock speeds up to 240MHz and featuring 320KiB(DRAM) [45]
of SRAM.

For our research, we used UCI HAPT dataset and UMAFall Detection dataset,
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discussed in Chapter 4. For simplicity and ease of reading, we are going to discuss
the experimental results in their own separate sections. Besides, for calculation
memory consumption and flash size, we first calculated them in bytes and then
converted them to KB by dividing by a 1000.

6.2 UCI HAPT

Our analysis revealed linear relationships within the data as we learned from Chap-
ter 4, prompting us to employ a Logistic Regression model with default parameters
using the SK Learn Python library. On top of that, we trained a list of models
including Neural Networks to check and validate the performance of those on this
dataset without any scaling or feature engineering. The below Table 6.1 shows the
vanilla models and their performance on this dataset.

Model Accuracy Precision (macro) F1 Score (macro)

Logistic Regression 95% 88% 87%

SVM 95% 90% 88%

KNN 90% 83% 79%

Decision Tree 81% 73% 73%

XGBoost 92% 83% 83%

MLP (TensorFlow) 92% 86% 84%

LSTM (TensorFlow) 83% 71% 63%

RNN (TensorFlow) 57% 36% 29%

CNN (TensorFlow) 94% 87% 79%

Table 6.1: Vanilla Trained ML Models and Neural Networks

As per previous assumption, the logistic regression model yielded high accuracy
with good precision and F1 score. SVM was very closely comparable with logistic
regression and has better precision and f1 score but is computationally more inten-
sive and expensive. CNN, on the other hand, is trained in TensorFlow format and
achieved 94% accuracy with 87% precision and 79% F1 Score. We could push it
further by increasing the number of epochs and layers, but doing so would make
it more computationally intensive and would require more memory to allocate for
tensors. Despite achieving good accuracy, moving forward we will only continue
with the ML models as this is the focus of the study.

Based on the approach and metrics discussed in Chapter 5, as a result, we selected
the Logistic Regression, SVM, Decision Tree, and XGBoost models for further anal-
ysis. These models were chosen due to their simplicity and efficiency in terms of
architecture, time, and space complexity. We decided to exclude the KNN model
from our selection. Despite its decent performance, KNN suffers from high compu-
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tational cost as the size of the dataset increases. This is due to the fact that KNN
needs to compute the distance of a given test point to all training points, which can
be computationally expensive for large datasets.

The selected models were then converted to C++ header files using the MicroML
Gen tool. To verify the correctness of the converted models, we created a C++
project with CMake using Ninja and ran the codes in CLion. We encountered some
bugs during this process.

One of the issues identified was with the label encoding in the generated C++ header
file. In our code and dataset, there are 12 labels ranging from 1 to 12. However,
in the generated code, the labels start from 0 to 11. This discrepancy needed to be
addressed to ensure the correct functioning of the models.

Furthermore, we found opportunities for optimization in certain areas of the code.
After debugging and micro optimizing the code, the converted models achieved the
same level of accuracy and efficiency as the original models.

6.2.1 Simulating inside Dockerized QEMU Pi Environment

Moving ahead, we cross-compiled the models for Raspberry Pi1 & Pi2 and ran them
using the docker-qemu-rpi-os project. For optimization reasons, we used the -O3 or
Optimization level 3 flag while compiling. The below Table 6.2 and 6.3 contains the
collected results from Raspberry Pi 1 and Raspberry Pi 2B. The metrics were used
to shorten the selected model list even further.

Model Accuracy
Precision
(macro)

Execution
Time

AVG (µs)

Max
Execution
Time (µs)

Memory
Used
(MB)

Binary
Size
(KB)

Logistic
Regres-
sion

95% 92% 196.453 525.5 1.968 84

Decision
Tree

81% 73% 13.677 100.4 1.896 11

XGBoost 92% 83% 209.200 636 1.844 11

SVM
Out of
Memory

Out of
Memory

Out of
Memory

Out of
Memory

Out of
Memory

Out of
Memory

Table 6.2: Performance on Raspberry Pi 1
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Model Accuracy
Precision
(macro)

Execution
Time

AVG (µs)

Max
Execution
Time (µs)

Memory
Used
(MB)

Binary
Size
(KB)

Logistic
Regres-
sion

95% 92% 177.056 405.6 1.908 84

Decision
Tree

81% 73% 0.98279 64.3 1.820 11

XGBoost 92% 83% 159.026 557.7 1.820 11

SVM
Out of
Memory

Out of
Memory

Out of
Memory

Out of
Memory

Out of
Memory

Out of
Memory

Table 6.3: Performance on Raspberry Pi 2 B

The SVM model was excluded from our selection due to its high memory usage.
During the compilation phase, the SVM model ran out of memory even when Rasp-
berry Pi 2 B was used, which includes 1GB of memory. This is a common issue with
SVMs as they require a significant amount of memory, especially for large datasets
with more features. Given our aim to deploy the models on resource-constrained
devices, SVMs were deemed unsuitable for our use case.

We also decided to avoid the XGBoost model despite its good performance in terms
of accuracy and precision. XGBoost uses gradient boosting, a technique that builds
many Decision Trees and combines them to make a final prediction. While this ap-
proach is powerful, it also requires a significant amount of computational resources.
Given our end goal of deploying the models on resource-constrained Microcontroller
Units (MCUs), using XGBoost was not feasible simply because of its high number
of floating point arithmetic operations. Furthermore, XGBoost models are more
complex and harder to interpret compared to simpler models like Decision Trees
and Logistic Regression.

Our final selection focused on the Decision Tree and Logistic Regression models.
These models were chosen for several reasons. Firstly, both models showed good
performance in terms of accuracy and precision. While Decision Tree’s performance
was lower than XGBoost, the difference was not significant enough to outweigh
the benefits of its simplicity and efficiency. Secondly, Decision Trees and Logistic
Regression models are computationally efficient. They require less memory and have
faster execution times compared to more complex models like XGBoost and SVM.

6.2.2 Deployment on ESP32 and Initial Observation

Using Clion we created two PlatformIO (Decision Tree and Logistic Regression)
projects choosing ESP32 AI Thinker board with the Arduino framework, which is a
wrapper around underlying ESP-IDF. Imported the CPP header file in the project
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and did the necessary adjustments and configurations. Finally, compiled and flashed
it on ESP32 using the PlatformIO toolchain. Below Table 6.4 contains the results.

Model Accuracy
Precision
(macro)

Execution
Time

AVG (µs)

Memory
Used
(KB)

Flash
Size
(KB)

Logistic
Regression

95% 92% 10325
23.7

(7.81%)
400.60
(13%)

Decision
Tree

81% 73% 5
23.7

(7.81%)
285.381
(9%)

Table 6.4: Initial performance on ESP32

It is evident from Table 6.4 that Decision Tree is both faster and consumes less stor-
age. The only downside is the accuracy where Logistic Regression shines. Despite
achieving good accuracy, Logistic Regression is orders of magnitudes slower than
Decision Tree. The primary reason for Logistic Regression being slower is the fact
that it involves floating point arithmetic, and MCUs particularly are not fast doing
it due to its resource constraints nature. Decision Tree, on the other hand, does not
have any floating point calculations. Contains only branching (if else) statements
which in assembly just register comparison and jumping to the appropriate labels,
which is the reason behind its execution speed and less resource consumption.

6.2.3 Deployment on Arduino UNO and Initial Observation

Deploying to Arduino UNO is very similar to the steps mentioned in the previous
section 6.2.2. The difference here is that instead of targeting ESP32, here we are
targeting Arduino UNO. The below Table 6.5 contains the collected metrics for
Arduino UNO.

Model Accuracy
Precision
(macro)

Execution
Time

AVG (µs)

Memory
Used
(KB)

Flash
Size
(KB)

Logistic
Regression

Compilation Failed, Executable Size Exceeded max specified Size

Decision
Tree

81% 73% 84.578
2.432

(121.5%)
14.132
(43.8%)

Table 6.5: Initial performance on Arduino UNO

The Table 6.5 provides an insightful comparison of the execution of two machine
learning models, Logistic Regression and Decision Tree, on the Arduino UNO plat-
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form. Interestingly, the Logistic Regression model could not be compiled for de-
ployment on the Arduino UNO. This suggests that the converted CPP header file
contains too many instructions for Arduino UNO to hold indicating a need for model
optimization.

In contrast, the Decision Tree model was successfully deployed and demonstrated
promising results. It achieved an accuracy rate of 81% and a macro precision of 73%,
indicating a good predictive performance on the test dataset. However, the memory
usage of the Decision Tree model was 121.5% of the available memory, which is a
concern as it exceeds the Arduino UNO’s default capacity. During the inference, we
observed no issues with the Arduino UNO. The average execution time was quite
low at 84.578 microseconds, suggesting a rapid response time. However, this could
potentially lead to issues in a real-world deployment scenario and demands memory
optimization. The flash size used was less than half of the available size, which is a
positive aspect.

6.2.4 Optimization of Decision Tree

We aimed to enhance the performance of the Decision Tree model, which initially
had an accuracy of 81%, significantly lower than the 95% accuracy of the Logistic
Regression model.

As discussed in Chapter 4, we scaled features with low frequency and balanced the
dataset. This preprocessing step led to a significant improvement in the performance
of both the Decision Tree and LSTM models. The Decision Tree model’s accuracy
increased from 81% to 85% after scaling and parameter fine tuning. The below
Table 6.6 contains the parameters that performed best in our experiments.

max depth min samples leaf min samples split max leaf nodes

20 10 10 600

Table 6.6: Best Performing Parameter for Decision Tree in Scaled HAPT Dataset

The LSTM model also saw an improvement, with accuracy increasing from 82% to
87%. However, our focus remained on non-neural network models, and thus, we did
not further consider the LSTM model.

Following previously mentioned steps, we converted the models to CPP header files
and deployed them on Raspberry PI, ESP32, and Arduino UNO. The results were
consistent across all platforms, with the accuracy now at 85%. However, the memory
issue on Arduino UNO persisted, as we had not yet optimized for memory usage.
The below Table 6.7 shows the behaviour of the scaled model on Raspberry Pi 1,
ESP32 and Arduino UNO.
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Board Accuracy
Precision
(macro)

Execution
Time

AVG (µs)

Memory
Used
(KB)

Flash
Size
(KB)

Raspberry
Pi 1

85% 70% 13.256 2.412 15

ESP32 85% 70% 37 23.720 280.597

Arduino
UNO

85% 70% 110.98 2.432 8.538

Table 6.7: Performance of Scaled Decision Tree on Different Boards

To address the memory issue and further optimize the model, we turned our at-
tention to feature reduction. UCI HAPT dataset has a total of 561 features, a
substantial number for low-powered, resource-constrained MCUs. Moreover, not
all features were correlated, and can be reduced, which we discussed in Chapter 4.
In short, we applied L1 and L2 regularization techniques to determine the number
of features we could exclude from the dataset while maintaining the same level of
accuracy and precision for Decision Tree. Our analysis revealed that a significant
number of features could be excluded. We then used Feature Elimination with
Cross-Validation (REF) from sklearn for and fine-tuned specifically for the Decision
Tree model. This trial and error process led us to reduce the number of features from
561 to 80, with little to no difference in the precision and accuracy of the model.

Board Accuracy
Precision
(macro)

Execution
Time

AVG (µs)

Memory
Used
(KB)

Flash
Size
(KB)

ESP32 85% 70% 38 21.8 278.641

Arduino
UNO

85% 70% 114.50 0.508 6.606

Table 6.8: Optimized Decision Tree Performance on Arduino UNO & ESP32

Table 6.8 presents the performance metrics of the optimized Decision Tree model
on two different MCU boards: ESP32 and Arduino UNO. The model achieved an
accuracy of 85% and a macro precision of 70% on both boards, proving the ef-
fectiveness of our feature reduction and model optimization strategies. This is a
significant improvement from the initial accuracy of 81%, bringing it closer to the
95% accuracy of the Logistic Regression model. The average execution time was
38 microseconds on ESP32 and 114.50 microseconds on Arduino UNO. Despite the
higher execution time on Arduino UNO, it is still within an acceptable range for
real-time applications.

40



In terms of memory usage, the optimized model used 21.8 KB on ESP32 and only
0.508 KB on Arduino UNO. This is a significant reduction from the initial memory
usage of 121.5% on Arduino UNO, demonstrating the effectiveness of our memory
optimization strategies. The flash size used was 278.641 KB on ESP32 and 6.606 KB
on Arduino UNO, both of which are within the capacity of the respective boards.
This leaves plenty of options for the developer to add extra functionalities on top of
the HAR.

6.2.5 Optimization of Logistic Regression

Moving forward, we turned attention to the Logistic Regression model, which ini-
tially had an impressive accuracy of 95% and a precision score of 92%. However,
we faced challenges in deploying this model on Arduino UNO due to its flash size
exceeding the maximum allowed limit and high memory usage. This necessitated
optimization for both flash size and memory.

We followed a similar process as with the Decision Tree model discussed in the
previous section 6.2.4, applying L1 and L2 regularization and Recursive Feature
Elimination (RFE) to reduce the number of features. This approach was based on
our previous findings that feature reduction could effectively reduce both memory
and flash size.

Before reducing the features, we applied L1 regularization to the Logistic Regression
model and observed its impact. The results were promising: the execution time for
ESP32 halved, as shown in the Table 6.9 below:

Model Accuracy
Precision
(macro)

Execution
Time

AVG (µs)

Memory
Used
(KB)

Flash
Size
(KB)

Logistic
Regression

95% 92% 10325 23.7 400.60

Logistic
Regression
(Regular-
ized)

94% 92% 5162.5175 23.7 333.645

Table 6.9: Impact of L1 Regularization on Logistic Regression

Encouraged by these results, we proceeded with feature reduction, reducing the
number of features from 561 to 80. We also applied L1 regularization to make
the computation faster by setting the weights of less important features to zero.
However, to maintain original accuracy, we did parameter fine-tuning on Logistic
Regression After these optimizations, we were able to deploy the Logistic Regression
model on both Arduino UNO and ESP32. The performance metrics of the optimized
model on these platforms are as follows:
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Board Accuracy
Precision
(macro)

Execution
Time

AVG (µs)

Memory
Used
(KB)

Flash
Size
(KB)

ESP32 94% 87% 462 21.808 294.813

Arduino
UNO

94% 87% 17634 0.509 16.64

Table 6.10: Impact of Feature Reduction on Logistic Regression

As evident from the Tables 6.10, the optimized Logistic Regression model achieved
excellent results, with an accuracy of 94% and a precision score of 87% on both
platforms. The execution time was significantly reduced, and the memory and flash
sizes were within the limits of the respective boards.

6.3 UMAFall Detection

In addition to the UCI HAPT dataset, we applied our optimization strategies to an-
other dataset, the UMAFall Detection dataset. For this dataset, we focused solely
on optimizing the Decision Tree model as we learned in the previous section 6.2 that
DT is both faster and extremely memory efficient.

Following the methodology of a previous study [15] on this dataset, we used only
samples from sensor id 3 for our analysis. This sensor, located on the wrist, was
found to yield the best results in the previous study. We did not consider any risk
factors in this process. The below Table 6.11 shows different models’ performance
on wrist sensor data.

Model Accuracy Precision (macro) F1 Score (macro)

KNN 82% 71% 67%

Decision Tree 82% 76% 66%

MLP (TensorFlow) 72% 23% 21%

Table 6.11: Trained Models on UMA Fall Dataset

As detailed in the previous section 6.2.4, we optimized the Decision Tree model using
the same approach. The below Table 6.12 contains the best performing parameters
for the model.
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max depth min samples leaf min samples split max leaf nodes

15 20 20 900

Table 6.12: Best Performing Parameter for Decision Tree in UMAFall Dataset

After trail and error, we then deployed the model on ESP32 and Arduino UNO.
Table 6.13 contains the final results we obtained from the experiments.

Board Accuracy
Precision
(macro)

Execution
Time

AVG (µs)

Memory
Used
(KB)

Flash
Size
(KB)

ESP32 81% 77% 37 21.504 296.685

Arduino
UNO

81% 77% 121 0.2 26.518

Table 6.13: Decision Tree Performance on ESP32 and Arduino UNO

These results demonstrate that our optimization strategies are effective across differ-
ent datasets and hardware platforms. The optimized Decision Tree model delivers
high accuracy and precision, making it a viable solution for edge computing appli-
cations.
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Chapter 7

Discussion

In this study, we demonstrated how to optimize ML models in Human Activity
Recognition (HAR) and Fall Detection for resource constraint MCUs. For HAR our
optimized Logistic Regression model running on MCUs achieved 94% accuracy and
Decision Tree which achieved 85% accuracy. Although Logistic Regression is more
accurate, but orders of magnitude more time-consuming than Decision Tree. Simi-
larly, for FD we achieved 81% accuracy with consuming less 10% of the total memory
on ESP32 and Arduino UNO. It’s not an overstatement to say that these micro-
controllers could potentially sustain their operations for years on a single battery,
depending on the specific use case and power management strategies employed. We
found The Decision Tree model to be both memory and time efficient; however, we
only worked with two datasets, so we cannot certainly say that this will be the case
when working with other datasets. More studies should be conducted on optimizing
Random Forest since they tend to provide better accuracy compared to Decision
Tree [6]. In the below sections 7.1.1 and 7.1.2 we discuss some of the shortcomings
and future scope in this field.

7.1 Limitations

Our study, while promising, has several limitations that should be acknowledged.
These limitations, detailed in the following subsections 7.1.1 and 7.1.2 provide valu-
able insights into the challenges faced during our study and highlight areas for
potential improvement.

7.1.1 HAPT Dataset

• Decision Tree Accuracy: Although we improved the accuracy of the Deci-
sion Tree model to 85%, it still falls short of the desired performance. Better
feature engineering methods should be researched to further improve this ac-
curacy.

• Unexplored Models: We did not explore the Random Forest model due
to its increased memory and flash size requirements. However, Random For-
est often performs better than Decision Tree in terms of accuracy. Future
research should explore better data engineering, feature extraction, and pa-
rameter/hyperparameter fine-tuning for this model.
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• Logistic Regression Performance: The performance of the Logistic Re-
gression model is satisfactory but could be improved by further feature reduc-
tion and floating-point arithmetic optimizations.

• Unoptimized Models: We did not optimize other machine learning mod-
els like SVM and XGBoost, which had good accuracy. These models could
potentially yield better results with optimization.

• Branch Miss Ratio: The performance of the Decision Tree model can be
further optimized by reducing the branch miss ratio, which involves reducing
the number of if-else conditions.

7.1.2 UMAFall Dataset

• Unexplored Models: We only optimized the Decision Tree model and did
not explore other algorithms. Other models could potentially yield better
results with optimization.

• Risk Factor: We did not consider the Risk factor, which was suggested by
another study [15]. Incorporating this factor could potentially improve the
model’s performance.

7.2 Future Work

Despite these limitations, our research opens up several exciting avenues for future
work. The lessons learned from our study can guide future research efforts and help
overcome the challenges identified. The potential areas for future work, discussed in
the following sections, represent promising directions for advancing the field of edge
computing with machine learning.

7.2.1 HAPT Dataset

• Feature Engineering: Future research should explore better feature engi-
neering methods to improve the accuracy of the Decision Tree model.

• Random Forest: Future research should explore the optimization of the
Random Forest model, which often performs better than the Decision Tree
model.

• Logistic Regression Optimization: Further feature reduction and floating-
point arithmetic optimizations could improve the performance of the Logistic
Regression model.

• Other Models: Future research should explore and optimize other machine
learning models like SVM and XGBoost in terms of memory, storage, and
floating point calculations.

• Branch Miss Ratio: Future research should explore ways to reduce the
branch miss ratio in the Decision Tree model considering low-powered MCUs
with very limited cache/sram size.
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7.2.2 UMAFall Dataset

• Other Models: Future research should explore and optimize other machine
learning models for the UMAFall dataset.

• Risk Factor: Future research should consider the Risk factor suggested by
the original study.

• Improved Accuracy: Since the Decision Tree model has good accuracy on
this dataset, future research could explore using RandomForest or XGBoost
or other algorithms to further improve the accuracy.

It is clear that while our study has its limitations, it provides a solid foundation for
future research in this area. The strategies and insights gained from this study could
guide the development of more efficient and effective machine learning solutions for
edge computing. Future work could explore other optimization strategies, machine
learning models, and hardware platforms and floating point arithmetic units to
further advance this field.

7.3 Comparative Analysis

This section presents a comparative study of the topics at hand. The objective is
to analyze and understand the similarities and differences between the two subjects
under consideration. This comparative study is divided into two main sections, HAR
and FD.

7.3.1 Used Edge Devices

The below table shows the key differences between the Edge devices that we used.

Specification Raspberry Pi
1 A [52]

ESP32 AI
Thinker [47]

Arduino UNO
[48]

Compute 700 MHz 240 MHz 16 MHz
RAM 256 MiB 320 KiB 2 KiB
Power consump-
tion

200 mW 240 mW 95 mW

Price 24.95 USD 23 USD 24 USD

Table 7.1: Comparison of Raspberry Pi 1 A, ESP32 AI Thinker and Arduino UNO

7.3.2 Comparative Study

In Table 7.2 and Table 7.3, we mainly focused on 4 metrics: Model, Compute, Ac-
curacy, and F1 Score. The machine learning model and the hardware (Board) used
are crucial for assessing computational efficiency. Performance is typically evaluated
using Accuracy, which measures the proportion of correct predictions, and F1 score,
which balances precision and recall. These metrics provide a comprehensive view of
a model’s performance, especially in cases of imbalanced data.
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HAR or Human Activity Recognition

We have compiled metrics from previous works on Human Activity Recognition
(HAR) on HAPT dataset from multiple sources in the below Table 7.2.

Author Model Board (compute) Accuracy F1 score
Daghero et
al.,2022 [29]

CNN
Single-core
PULPissimo

86%
Not

specified

Mekruk-
savanich et
al.,2022 [34]

ResNet,
ResNetSE,
ResNetSE
& SERes-
NetBi-
GRU

Google Colab Pro+
platform

97.87%,
97.89%,
97.43% &
98.03%

93.89%,
93.81%,
93.33% &
94.09%

Daghero et
al.,2022 [30]

DT &
CNN

Single-core RISC-V
MCU

87%
Above
85%

Thu et
al.,2021 [24]

HiHAR Not specified 97.98%
Not

specified

This study
LR &
DT

ESP32 (240 MHz)
& Arduino UNO

(16 MHz)

94% &
85%

87% &
70%

Table 7.2: Comparative Study of HAPT Dataset

We utilized Logistic Regression (LR) and Decision Tree (DT) models for Human
Activity Recognition (HAR), achieving accuracies of 94% and 85%, and F1 scores
of 87% and 70%, respectively. While comparing with other studies, it is important
to note that each study may have used different hardware platforms. However, Our
models provide a balance between good accuracy, F1 score, precision, computational,
and memory efficiency, which is crucial for real-time HAR applications.

FD or Fall Detection

Similar to subsection 7.3.2, we have compiled metrics from previous works on Fall
Detection on UMAFall dataset from multiple sources in the below Table 7.3.
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Author Model Board (compute) Accuracy F1 score
Garcia et

al.,2023 [43]
SVM Not specified 95.5%

Not
specified

Mekruk-
savanich et
al.,2022 [35]

FallNeXt
model

Google Colab Pro+
platform

99.12% 98.87%

Rama-
chandran et
al.,2018 [15]

KNN,
Naive
Bayes,
SVM &
ANN

Not specified

82.2%,
57.26%,
63.27% &
67.1%

Not
specified

This study DT
ESP32 (240 MHz)
& Arduino UNO

(16 MHz)
81% 66%

Table 7.3: Comparative Study of UMAFall Dataset

For FD, we employed a Decision Tree (DT) model, achieving an accuracy of 81%
and an F1 score of 66% on the UMAFall dataset. It is important to note that
direct comparisons with other studies may not be entirely fair due to the use of
different hardware platforms. However, our DT model offers several advantages
that make it stand out. Firstly, our model is highly compute, power, and cost effi-
cient demonstrated by its successful implementation on both ESP32 (240 MHz) and
Arduino UNO (16 MHz) where the execution times are 37 and 121 micro seconds
respectively. This hardware compatibility is a significant advantage in real-world ap-
plications where latency, compactness, and resource efficiency are of interest. Lastly,
the DT model is known for its simplicity and interpretability. Unlike more complex
models such as SVM or Neural Networks, DTs are easier to understand, visualize,
and fine-tune, making them more accessible for further improvement.
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Chapter 8

Conclusion

In conclusion, our research represents a significant stride in the field of edge comput-
ing with machine learning. We have demonstrated that it is not only feasible but
also efficient to deploy complex machine learning models on low-powered devices
such as ESP32 and Arduino UNO.

Our optimization strategies have proven effective in maintaining high accuracy and
precision while significantly reducing memory consumption, flash size and increasing
power efficiency. This achievement opens up the possibility of integrating additional
programs and functionalities alongside the deployed machine learning model, thereby
expanding the scope of applications.

Moreover, our research underscores the importance of careful feature selection,
model optimization, and hardware consideration in deploying machine learning mod-
els on microcontroller units. The strategies and insights gained from our work can
guide future research in this area, contributing to the advancement of edge com-
puting applications. The ultimate goal is to push the boundaries of what’s possible
in edge computing with machine learning, paving the way for real-time, on-device
machine learning applications that are efficient, effective, and accessible.
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