
Automatic Motor Vehicle Number Plate Recognition

by

Krishno Saha
19101271

Parvez Ishrak
19101266

Jahid Hossian Shovon
22101911

Alinur Rahman Abir
19101055

A Project submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
School of Data and Sciences

Brac University
January 2024

© 2024. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The project submitted is our own original work while completing degree at
Brac University.

2. The project does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The project does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Krishno Saha
19101271

Parvez Ishrak
19101266

Jahid Hossian Shovon
22101911

Alinur Rahman Abir
19101055

i

Approval

The project titled “Automatic motor vehicle number plate recognition” submitted
by

1. Krishno Saha (19101271)

2. Parvez Ishrak (19101266)

3. Jahid Hossian Shovon (22101911)

4. Alinur Rahman Abir (19101055)

Of Fall, 2023 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science and Engineering on January 18,
2024.

Examining Committee:

Supervisor:
(Member)

Amitabha Chakrabarty, PhD

Professor
Department of Computer Science and Engineering

Brac University

ii

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD

Professor
Department of Computer Science and Engineering

Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD

Chairperson and Associate Professor
Department of Computer Science and Engineering

Brac University

iii

Abstract

The purpose of this initiative is to develop automatic motor vehicle number plate
recognition (Bangla) using machine learning, identifying and taking out the num-
bers of license plates from photos. By using this system we intend to help the traffic
control system in detecting any issue within a few moments. Moreover, collecting
tolls and enforcement of law can be implemented with this number plate recognition
system. Various object detection models have been used in this in various suggested
methods to identify and recognize number plates, optical character recognition and
license plate detection make up the system’s three basic building blocks. YOLOv8,
YOLOv7, YOLOv5, VGG16, RESNET50, DETR, VGG16 are the models used in
this project. Object detection models are used to detect the number plate of a vehi-
cle from the images. That is how the method will be able to successfully recognize
and detect the number plate. The precision, recall and mAP value of YOLOv8 is
96.4%, 84.8%, 92.9% respectively. For YOLOv7 it is 61.1%, 46%, 46.5% respec-
tively. For YOLOv5 it is 98.1%, 12.1%, 17.4% respectively. DETR is 6.5%, 7.5%,
8.32% respectively. For VGG16 the test accuracy is 90.14% and for ResNet50 it is
89.91%.Additionally, this system will be implemented within the web. So by using
a phone camera the car number plates would be detected with a device like a mobile
phone. To sum up, the number plate detection system has the ability to detect,
identify and be able to save the information and will help provide a reliable man-
agement system for traffic and capturing fraud and indiscipline in the traffic control
system.

Keywords: NPR, Vehicle Number Plate, Automated Number Plate Detection, Seg-
mentation, feature extraction, feature selection, YOLOv8, YOLOv7, YOLOv5, DETR,
VGG16, RESNET50.

iv

Acknowledgement

Firstly, we want to thank Allah for guiding and blessing us throughout our academic
journey. We’re grateful to our supervisor, Dr. Amitabha Chakrabarty, for his help
and advice. Special appreciation goes to our research assistant, MD. Fahim-Ul-
Islam, for his hard work and suggestions that made this project possible. Lastly,
we express our heartfelt gratitude to our parents for their endless love, support, and
efforts, which have been the basis of our academic journey.

v

Table of Contents

Declaration i

Approval ii

Ethics Statement iv

Abstract iv

Dedication iv

Acknowledgment v

Table of Contents vi

List of Figures viii

Nomenclature viii

1 Introduction 1
1.1 Thoughts behind the Prediction Model 1
1.2 Problem Statement . 3
1.3 Project Objective . 4

2 Related Work 5
2.1 Deep Learning Approaches . 5
2.2 Tools Used In the Papers . 7
2.3 Comparative Analysis . 12

3 Dataset 14
3.1 Dataset Formation . 14
3.2 Dataset Construction . 14

3.2.1 90 degrees rotation augmentation 15
3.2.2 Shear Augmentation . 15
3.2.3 Grayscale augmentation . 16
3.2.4 Brightness augmentation . 17
3.2.5 Blur augmentation . 17
3.2.6 Noise augmentation . 18

3.3 Dataset Splitting and Forming Dataset 19

vi

4 Methodology 21
4.1 Work plan . 21
4.2 Model Description . 21

4.2.1 YOLOv8 . 21
4.2.2 YOLOv8 Architecture . 21
4.2.3 YOLOv7 . 23
4.2.4 YOLOv7 Architecture . 23
4.2.5 YOLOv5 . 24
4.2.6 YOLOv5 Architecture . 25
4.2.7 DETR . 26
4.2.8 DETR Architecture . 26
4.2.9 VGG16 . 27
4.2.10 VGG16 Architecture . 28
4.2.11 Resnet50 . 29
4.2.12 ResNet50 Architecture . 29
4.2.13 OCR . 30
4.2.14 OCR Architecture . 30

4.3 Web App Workflow . 31

5 Implementation and results 32
5.1 Implementation . 32
5.2 YOLOv8 model results . 33

5.2.1 Graph . 33
5.2.2 Confusion Matrix . 33

5.3 YOLOv7 model results . 34
5.3.1 Graph . 34
5.3.2 Confusion Matrix . 35

5.4 YOLOv5 model results . 35
5.4.1 Graph . 35
5.4.2 Confusion Matrix . 36

5.5 VGG16 . 36
5.5.1 VGG16 Loss and Accuracy Graph 36
5.5.2 Confusion Matrix . 37

5.6 ResNet50 . 38
5.6.1 ResNet50 Loss and Accuracy Graph 38
5.6.2 Confusion Matrix . 38

5.7 Detection samples . 39
5.8 Overall result analysis . 39
5.9 License plate recognition (Web App Functionality) 40

6 Future Work and Conclusion 42
6.1 Future Work . 42
6.2 Conclusion . 42

Bibliography 46

vii

List of Figures

3.1 90 degrees rotation augmentation . 15
3.2 Shear Augmentation . 16
3.3 Grayscale augmentation . 16
3.4 Brightness augmentation . 17
3.5 Blur augmentation . 18
3.6 Noise augmentation . 19
3.7 Example of Annotations . 20

4.1 YOLOv8 model architecture . 22
4.2 YOLOv7 model architecture . 24
4.3 YOLOv5 model architecture . 26
4.4 DETR model architecture . 27
4.5 VGG16 model architecture . 28
4.6 Resnet50 model architecture . 29
4.7 OCR model architecture . 30
4.8 Web App Workflow . 31

5.1 Yolov8 Graph (A → class loss and B → mAP50) 33
5.2 Yolov8 Confusion Matrix . 34
5.3 Yolov7 Graph (A → class loss and B → mAP50) 34
5.4 Yolov7 Confusion Matrix . 35
5.5 Yolov5 Graph (A → class loss and B → mAP50) 36
5.6 Yolov5 Confusion Matrix . 36
5.7 VGG16 Loss and Accuracy Graph . 37
5.8 VGG16 Confusion Matrix . 37
5.9 ResNet50 Loss and Accuracy graph 38
5.10 ResNet50 Confusion Matrix . 38
5.11 Detection samples . 39
5.12 License plate recognition (Web APP) 41

viii

Chapter 1

Introduction

1.1 Thoughts behind the Prediction Model

Around the world, there are a lot of automobiles in this generation. That’s why
keeping track of automobiles is crucial. In the modern era, we may use computers
to track any car instead of manually tracking automobiles, which will result in more
accuracy. Therefore, a vehicle number plate recognition system uses technology to
recognize the number plate from footage the camera has acquired. It employs tech-
niques including character recognition, segmentation, and number plate extraction
[10]. This method uses the license plate and then sends it to be converted to a
picture using a combination of hardware and software. Any gate entrance can em-
ploy this technology. Thus, if the image of the number plate retrieved from the
camera-captured image is clear and visible, this technique provides correct results.
The image that is utilized must have excellent resolution [6]. The Bangladesh Road
Transport Authority (BRTA) issues license plates in the general style “city - vehicle
class letter and number - Vehicle number.” Only private automobiles were used in
this study; the Dhaka and Chattagram metropolitan area’s license plate areas are
taken into account. The private vehicles’ license plates belong to the following ten
classes only: ka, kha, ga, gha, ca, cha, bo, vho, lo and ho [6]. Traffic control and
vehicle owner identification become major problems in Bangladesh, so that’s why
we are working on this project to maximize the benefits and mitigate the problems
on number plate recognition issues. Our lives now include automatic number plate
recognition, and this trend seems to continue in the future thanks to its compati-
bility with emerging transportation technologies. The idea of autonomous vehicles
opens up a lot of potential changes to the foundational transportation infrastructure.
ANPR technology is already removing the need for human interaction and advanc-
ing intelligent transportation systems. It’s no longer only the parking lot barrier or
the camera by the side of the road. Over the years, it has evolved into a mobile sys-
tem, originally being used in automobiles, but more recently, with the introduction
of smartphone technology, many ANPR devices have also become handheld. Rapid
urbanization is a remarkable development in our contemporary environment. Peo-
ple leave rural areas and primarily choose to live in cities. As traffic in these places
increases, local governments sometimes fail to comprehend the mobility demands of
residents and visitors, both now and in the future. A growing amount of traffic flow
analysis is being done using ANPR to support intelligent transportation [39].
YOLOv8 is an object detection model which has been used in paper [1] which has

1

a top precision and recall value and is very precise and accurate. The research was
about detection in adverse weather for autonomous driving through data merging
using YOLOv8. The mAP value calculated by the system was 82.4% and 78.1% [41].
YOLOv7, a powerful object detection model showcased in a recent study [41], ex-
cels in accurately spotting objects even in tough weather conditions for self-driving
cars. This research cleverly merged data to enhance YOLOv7’s performance. The
results speak volumes about YOLOv7’s effectiveness with an impressive mean Av-
erage Precision (mAP) value of 83.6% and 79.5% [14], it proves its reliability in
adverse weather. This model is a game-changer for making self-driving cars more
dependable, especially in challenging climates. YOLOv5, another standout in ob-
ject detection, took the spotlight in a recent study [24]. Recognized for its precision
and recall, this model played a crucial role in advancing autonomous driving by
addressing object detection challenges in adverse weather conditions through smart
data merging. The impressive performance of YOLOv5 is evident in its mean Av-
erage Precision (mAP) values—clocking in at a remarkable 81.5% and 77.4% [14].
These results emphasize YOLOv5’s accuracy and effectiveness, making it an effective
model in improving object detection for self-driving cars, particularly in unfavorable
weather conditions. DETR, or ’‘Detection Transformers’ ”, is a groundbreaking
computer vision model by Facebook AI in 2020. It uses the Transformer architec-
ture, originally designed for language tasks, for end-to-end object detection, directly
predicting object labels and bounding boxes. This streamlines detection, simplify-
ing the process while maintaining competitive accuracy and showcasing Transformer
adaptability in computer vision. In paper [29], a detailed study on end to end object
detection was conducted. We can see that in [29], different verison’s different mAP
is given, PanopticFPN++ R50: 39.15, UPSnet R50: 38.0, UPSnet-M R50: 38.3
PanopticFPN++ R101: 40.9, DETR R50: 38.2, DETR-DC5 R50: 39.2 and DETR-
R101 R101: 39.5. In this paper, the dataset consists of 2764 images, and there are
105 classes. These classes are basically the various Bangla letters, characters and
numbers. These classes are essential in uniquely identifying a car’s overall informa-
tion. The input data was initially augmented in order to increase the quantity of car
number plates. Regarding the data multiplication, input data is divided into three
categories (training, testing, and validation) to verify accuracy and acceptable pic-
ture characteristics. YOLOv8, YOLOv7, YOLOv5, DETR, VGG16 and ResNet50
these well-known object detection models have been used in this project. We are
introducing a real-time system using machine learning and deep learning for swift
and accurate car number plate detection. The goal is to reduce costs and enhance
efficiency in areas like traffic management and security. By utilizing edge devices,
the system analyzes images, making precise predictions about license plate presence.
This innovation offers improved speed, making it valuable for tasks like automated
toll collection and law enforcement, ultimately revolutionizing transportation and
security sectors. The emphasis is on using YOLO (You Only Look Once) versions
8, 7, and 5, coupled with DETR (DEtection Transformer), ResNet50, and VGG16
architectures to create a system similar to this one for car number plate detection.
The locating and identifying license plates in photos is known as car number plate
detection. Following rigorous evaluation, YOLOv8 is shown to be the most efficient
classifier, with an exceptional accuracy rate of 96.4%, which results in its selection
for more study implementation. Additionally, the research investigated confusion
matrices, providing a thorough comprehension of the model’s accuracy, recall, and

2

overall classification performance. The histograms of the photographs were also
shown, giving the distribution of pixel intensities in the dataset a visual depiction.
Potential improvements and modifications to the algorithm were considered while
thinking about future work, highlighting directions for additional optimization and
investigation. Overall, this study’s presentation of the real-time vehicle number
plate detection system shows promise for improving security and effectiveness in a
variety of applications, potentially having a favorable effect on traffic management
and law enforcement initiatives. For the purpose of detecting vehicle number plates,
six different classification methods were used. After a thorough analysis, Random
Forest was shown to be the most accurate, obtaining a remarkable accuracy rate of
96%. This model has been chosen for additional application. The chosen models
were deployed and then methodically contrasted with an edge device. The com-
puted and reported end results showed how well the selected Random Forest model
performed in real-time car number plate detection.

1.2 Problem Statement

In today’s rapidly advancing world, the need for efficient and accurate vehicle moni-
toring systems is paramount. One crucial aspect of this is the automated recognition
of car number plates for various applications such as traffic management, law en-
forcement, and parking management. The task at hand is to develop a robust Car
Number Plate Detection System that can seamlessly identify and extract license
plate information from images or video streams.
The system that we are aiming to create has a sizably broad study domain in com-
puter vision and machine learning. The objective of our system is to automatically
extract and analyze vehicle number plates from photos, enabling diverse applications
including traffic monitoring, law enforcement, toll collecting, and parking manage-
ment. The system might help with general transportation and security challenges.
In [4], [8] and [37] elaborately explains about different problems and how to over-
come them. The growing number of cars on the roads require efficient and accurate
systems for automatic license plate recognition. Precisely aiming in the context
of Bangladesh, the diversity of number plate formats and the complex linguistic
characteristics of the Bengali script present unique challenges for automated recog-
nition systems.The main obstacle is creating reliable and precise algorithms that can
recognize and retrieve license plate data from a variety of frequently complicated
real-world situations. This process is made especially difficult by variables includ-
ing changing lighting conditions, distinct plate styles and typefaces, and occlusions
by adjacent objects. The requirement for real-time processing makes matters more
difficult because the system needs to produce findings quickly in order to be useful
in real-world scenarios.
Furthermore, Bangla number plates present variances in size, font, and layout,requiring
a flexible model capable of handling these diversities.The complex nature of the
Bangla script adds complexity to character recognition, necessitating a model that
understands and interprets the unique linguistic features. Challenges posed by fac-
tors like varying lighting conditions, occlusions, and perspectives commonly faced
in traffic surveillance scenarios.
Our project focuses on the development of a prototype for Bangla number plate
detection, primarily in the context of traffic surveillance and law enforcement ap-

3

plications. The initial scope includes the recognition of standard Bengali characters
and numerals.
Moreover, we intend to make it easier for traffic management and law enforcement
in Bangladesh. By using advanced technology, like smart algorithms and machine
learning, we want to improve how quickly and accurately we can identify license
plates. If successful, this could lead to a big improvement in how traffic is managed
and laws are enforced in the country. It’s like upgrading to a smarter system that
helps law enforcement react faster and more effectively when needed.

1.3 Project Objective

Our main objective behind building this system is to resort to more logical and
analytical measures in detecting Vehicle number plates automatically and recogniz-
ing it perfectly using machines. We are aiming towards constructing the system
such that the following mechanisms are followed. Firstly, the pictures of the number
plates will be taken using digital cameras and converted to text or ASCII characters.
Secondly, by using various morphological image processing operations like erosion
and dilation, from the photos we got the exact number plate, recognizing the edges
using the Bilateral Filtering and Gray scaling to reduce complexities and ensuring
meeting all the needs. Finally, the system will use the Segmentation process to
detect the vehicle number plate by matching the Template with and the covered
screen digitally to calculate similarity of the two. Moreover, it will use Optical char-
acter recognizer to translate the text in the photos to detect the number plates with
the maximum efficiency. Mostly in [11] and [36] has descriptively talked about the
above mentioned process. Also in [35] and [31] has also talked about these processes.
Moreover [32], [27] and [33] has talked about this process in details which are very
important to keep in mind before working with such systems.

We would also like to add -

1) We are aiming towards ensuring maximum results with full efficiency.

2) Reduce technical and cost complexities as much as possible.

3) Logical and rational methodologies are more likely to ensure the perfect results
and avoid any errors that may be caused by humans.

4) Since it is less complex and user-friendly, it is safe and anyone can use it.

5) The digital picture taking and processing unit of the system ensures that all
the photos are correctly taken and processed based on the constructed logic by the
builders.

4

Chapter 2

Related Work

Car number plate detection is a herculean feat in the realm of computer vision,
where the pursuit of perfection persists. Our intention with this literature review
is to scrutinize the most cutting-edge techniques employed in this field and fathom
their potentials and shortcomings. For improving the accuracy and detection of
license plate detection and recognition technology became more efficient. There are
various ways of training and detecting the models which are essential for better out-
puts. The literature review mainly focuses on different perspective and proposals of
deep learning approaches like, YOLOv8, Faster R-CNN, MobileNet SSD, VGG16,
ResNet50, Inception3 and also some supporting tools live OCR and OpenCV.

2.1 Deep Learning Approaches

A system called the Automatic License Plate Recognition System was created by
H. D. Gupta et al. [39] To segment the characters on the licence plate, they used
the connected component and noise removal approaches.The required features have
been extracted using a variety of feature extraction algorithms. Additionally, a three
layer conventional artificial neural network (ANN) has been created and trained to
classify the various characters for learning purposes. A system called Bangla Digital
Number Plate Recognition (BDNPR) was created by M. J. Hossain and colleagues
from [1] utilising the template matching technique to achieve improved accuracy
and reduced processing time. They divided their effort into four primary stages:
character recognition, character segmentation, number plate extraction, and image
pre-processing. The Otsu method has been used to binarize the input image. To
locate the plate, the Sobel edge operator, morphological dilation, and erosion were
applied.Character segmentation is done using the boundary box feature. Finally, the
method of template matching has been used to identify the characters [1]. Using the
Line Segmentation and Orientation method, M.R. Haque et al. [3] have created an-
other project called Automatic Bengali License Plate Localization and Recognition.
The licence plate has been highlighted using image morphology, horizontal extrac-
tion techniques, and vertical extraction techniques. It has been suggested to use an
LSO algorithm for segmentation. Finally, the number plate character recognition
process has been applied using the template matching method.

5

Conventional neural network is a common factor in deep learning approaches. CNN
is widely used in different number plate recognition systems. After the area is se-
lected,character segmentation and recognition process can be done by CNN. In [14]
the research paper firstly, they extracted the license plate candidates using geomet-
rical properties and edge information. Then they CNN classifiers which are trained
for a single character and used a Spatial transformer network (STN) to identify
and recognize the character. Moverover, they used video and image which are di-
vided into two parts single or double line and after the detection and recognition
of the character they successfully got the accuray for single line number plate 97%
and 94% for double line. Paramita Mondal from [18], they also used CNN model
to develop the LIcence plate recognition system. The number plate was extracted
from the still image and then they approached the CNN models and segmented the
characters which leads to accuracy of 90%. CNN-RNN based detection process was
used by P. Shivakumara et al. [22] where they used two types of images as input
lower and higher resolution and CNN used for character segmentation as it sets bets
for it according to their perspective. For separation they used Dense cluster based
voting(DVC) and BLSTM to extract the data from past information. They used
UCSD dataset to ensure their proposed recognition model.Faster RCNN is a widely
used model to detect objects especially in number plate detection. In [26] they used
Faster RCNN models to detect and recognize the images. As their research was to
solve the Indian number plate they suggested Faster RCNN which is suitable for
efficient accuray. Finally, their RCNN pipeline gave 90% actual and 10% partial
results. To illustrate more they got 99% accuracy and their mean average precision
was 99.55%. According to the papers [28], [23] they proposed to implement Faster
RCNN models which can resolve many detecting issues and which might help to
reduce the error detection rate. From all these articles we can see Faster RCNN
models give above 90% accuracy which leads to a good detection system for license
plates. On the other hand, SSD which is a well known and successful deep learning
model which has been implemented vastly in the area of license plate detection and
recognition. In [25] they used BAngla license plate images and videos. They used
two Deep Convolutional neural network (DCNN) FAster R-CNN and SSD models.
The first model was used to take the license plate area frame and the second one
was used to segment the characters. Finally they got 100% precision and 91.67%
accuracy. So the two CNN models were a good combination to detect and recognize
the car license plate. In paper [34] they also used CNN methods named SSD model.
To avoid overfitting the hyper net of mobilenet v1 was used . Moreover, they com-
pared two OCR models EasyOCR and tesseract OCR where EasyOCR gives the
better output. After further implementation they got an accuracy of 95% which is
good for a detection system.
The YOU ONLY LOOK ONCE(YOLO) is a famous and vastly used object detec-
tion tool. In [24] they used YOLO v7 as the detection tool and to detect a single
segment of the data. Also the method was a sliding window process. Where the
8 digit number was detected by the sliding window process then every one win-
dow was detected by the YOLO single framework. The process accuracy for the
detection was 98.22% and the recognition accuracy was 78%. According to paper
[15] they proposed a YOLO object detector and post processing rules were used to
improve the recognition result. They trained the system with a variety of datasets
and many data were labeled manually. After the segmentation and detection process

6

they successfully built an end-to-end improved system which had accuracy of 96.9%.

2.2 Tools Used In the Papers

Optical Character Recognition(OCR), is a technology used to translate printed or
handwritten text into machine-readable text. [19] says that OCR systems are de-
signed to recognize and extract characters, words, and even entire paragraphs from
scanned documents, images, or other visual sources. Character recognition involves
the task of discerning and categorizing individual characters on a license plate fol-
lowing their segmentation. Within Automatic Number Plate Recognition (ANPR)
systems, character recognition assumes vital importance as it directly impacts the
precision of the ultimate result stated by [5]. The technology has numerous applica-
tions across various industries and is used for a variety of purposes. It involves Image
Pre-processing, Text Detection, Text Recognition, Post-processing steps. OCR is
used for many purposes like Document Digitization, Data Entry and Automation,
Text Search and Retrieval, Accessibility, Translation, Text Analysis, Automated
Banking etc. [5] stated that Automatic Number Plate Recognition is a technology,
uses OCR for reading vehicle registration plates. [16] states that OCR based on ma-
trix matching is suggested in [7]. [16] also states that OCR having a non-determined
solution using fuzzy sets and equations has been introduced in [13]. OCR is pro-
posed for low resolution character images or images using structural analysis in [2],
also mentioned in [16]. OCR can be categorized as offline recognition, where the
source is typically a picture or a document that is scanned, and online recognition,
where the successive points are captured as a function of time, along with the stroke
order information. [19] has only used offline recognition from [12] and [9]. [16] sug-
gests that the system achieved an 87.5% accuracy rate in extracting the plate region
and an 85.7% accuracy rate in the recognition unit. This resulted in an overall
system performance with a recognition rate of 86.6%. [5] states that the accuracy
rate is 93.5%. [16] states that algorithms Projection Technique procured 89%, Mor-
phological Operation 96.7%, Feedback self learning and Hybrid binarization 97.1%,
Feature salience 97.3%, i-novel 73%, Template matching 94%, Width analysis 86%,
ANN using template matching 89.4%, and ANN using feature extraction 92.2% ac-
curacy rates.

Open Source Computer Vision Library (OpenCV), stands as a highly acclaimed
open-source software library for computer vision and machine learning. This com-
prehensive toolkit offers a diverse array of tools and algorithms to tackle numerous
image and video analysis tasks. According to [17], OpenCV is a collection of pro-
gramming functions primarily designed for real-time computer vision tasks and it
was initially created by Intel and is currently backed by Willow Garage. [20] states
that OpenCV is renowned across the computer vision and image processing do-
mains for its adaptability, effectiveness, and robust documentation. [17] also states
that OpenCV offers a wide range of tools to perform fundamental image process-
ing tasks, including operations like filtering, thresholding, morphological operations,
and adjustments to color. These capabilities are crucial for tasks such as improv-
ing image quality, reducing noise, and extracting important features. [21] suggests
that OpenCV incorporates robust algorithms for detecting and recognizing objects,

7

which encompass the Haar Cascade Classifier, HOG (Histogram of Oriented Gra-
dients), and deep learning-driven approaches. These methods find application in
tasks such as identifying faces, tracking objects, and recognizing patterns. OpenCV
provides algorithms for detecting and matching image features, such as SIFT (Scale-
Invariant Feature Transform) and SURF (Speeded-Up Robust Features), to locate
and align key points within images. These capabilities are crucial for tasks like cre-
ating panoramic images through stitching and pinpointing the position of objects
within an image according to [30]. [20] and [30] suggests that OpenCV seamlessly
combines with machine learning libraries such as scikit-learn and TensorFlow, en-
abling users to merge computer vision with machine learning methods to accomplish
tasks like image categorization, regression analysis, and grouping. According to [17],
OpenCV offers functionalities for camera calibration, a critical step in tasks like 3D
reconstruction, augmented reality, and determining camera poses. This process aids
in rectifying distortion issues and obtaining precise camera parameters. [21] states
OpenCV incorporates algorithms for image segmentation, a process that partitions
an image into significant regions or objects. This capability finds utility in var-
ious applications, including medical image interpretation, image segmentation for
autonomous vehicles, and tracking objects within images. Additionally, OpenCV
supports video processing, facilitating functions such as motion detection, video
tracking, and video compression. These features are applied in surveillance systems,
video analysis, and video editing applications. According to [20] In a test of 500
number plates, an ANPR system demonstrated its performance. The edge detec-
tion algorithm successfully identified 79.4% of plates at an average speed of 0.037s,
remaining accurate up to a 30-degree view angle. The feature detection method was
slower (0.185s) but achieved higher accuracy (90.8%), with some variation in view
angles. Optical character recognition added 0.031s and recognized 60% of detected
plates, but struggled with faded characters and plate decorations. Plate segmen-
tation was challenging due to noise and dirt, affecting character recognition. Both
plate detection methods performed well within a 5-meter range. [21] states that Test
images have accuracy of 88.76%, Validation images 90.21%. Also, the plates have
96.36%, By number have 99.43%, By letter have 99.05%, By all the characters have
99.31% accuracy rate. Finally, [30] states that Logistic Regression and Random For-
est Classifier both have 91.6% accuracy, SVC has 75.0% and KNeighborsclassifier
has 50.0% accuracy rates. [17] states that the accuracy rate is 90.5%.

Dataset Name Dataset De-
scription

Algorithms Resu
-lt

Comments Ref

ANPR Dataset 10,000 images
of
license plates
from
various angles

YOLOv3,
openCv,
Vgg16

95.5% Excellent
dataset,
diverse plates

[3]

Continued on next page

8

(Continued)

Vehicles detec-
tion
and automatic
number
plate recogni-
tion

5,000 images
of
license plates
in
different light-
ing

Faster
R-CNN,
efficient

92.1% Good variety,
challenging
lighting con-
ditions

[8]

Vehicles and
license plate de-
tection

7,500 images
of
license plates
with occlu-
sions

SSD,mask
RCNN

88.7% Useful for
occlusion
testing

[10]

ANPR Dataset 12,000 images
of license
plates
in urban
environments

RetinaNet,
ssd,
fast RCNN

94.5% Real-world
scenarios,
highly
accurate

[12]

Deep automatic
number plate
detection

3,500 images of
license plates
under adverse
weather

Mask R-
CNN,
Tensorflow
Vgg16

89.2% Snow, rain,
and fog
scenarios

[13]

Plate recogni-
tion
using neural
networks

6,000 images
of
license plates
from
surveillance
cams

EfficientDet,
tensorflow,
Vgg16

93.3% Font diver-
sity, good
for OCR
experimenta
-tion

[18]

Indian number
plate detection

8,200 images
of license
plates
with different
fonts

YOLOv4,
tesserat

91.5% Challenging
angles,
useful for
security
apps

[17]

Car License
Plate dataset

3,500 images of
license plates
under adverse
weather

YOLOv3,
OpenCv

87.3% Resilient to
adverse
weather
conditions

[16]

UFPR-ALPR
dataset

5.500 images of
license plates
in different
variations

Faster Rnn,
tesserat

96.4% Diverse
dataset with
well-
annotated
plates

[14]

Continued on next page

9

(Continued)

Vehicle Number
Plate Detection

6000 images
of license
plates
with occlu-
sions

YOLOv8,
OpenCv,

88.7% Robust
against
lighting
variations

[19]

Pakistani num-
ber
plate detection

5000 images of
license plates
with occlu-
sions

Tesseract
OCR or
MaskOCR
algorithms

88.3% Provided in
XML
format, mak-
ing it
easy to inte-
grate
into ANPR
model
pipelines

[20]

Vietnam Num-
ber
plate

4000 images of
license plates
with occlu-
sions

Grayscale
Conversion,
template
matching

79.8% Making it
suitable
for training
deep
learning
models

[6]

ANPR 8000 images
of license
plates
with occlu-
sions

Edge
Detection
Contours,
Template
Matching

90.1% Measures
have been
applied to
ensure the
accuracy and
consistency
of annota-
tions.

[7]

Lincense plate
recognition

7,000 images
of license
plates
with occlu-
sions

Efficient,
OpenCv,
YOLOv8

87.3% Data aug-
mentation
techniques
such as
rotation,
scaling,
transla-
tion,and
noise addi-
tion
have been
applied

[11]

Continued on next page

10

(Continued)

ALPR 6.,500 images
of license
plates
with occlu-
sions

Tesseract
OCR and
Gray-scale

83.3% Individual
characters
on the license
plates
are also
annotated.

[9]

Number plate
Detection
dataset

6,500 images
of
license plates
with occlu-
sions

MaskOCR,
Edge Detec-
tion

78.5% Each image
is
annotated
with
bounding
boxes that
specify the
exact loca-
tion of the
license plate

[25]

Car plate recog-
nition
dataset

2500 images
of license
plates
with occlu-
sions

Fast-Rnn,
YOLOv3,
OpenCv

88.4% Included
license
plates from
various
countries,
featuring
different
styles,
fonts, and
colours.

[2]

From above the table, we can see various system detection car license plates. In re-
cent times car surveillance and security, advanced technologies are being employed
to enhance license plate detection and recognition systems. Various automated
systems are designed to identify license plates swiftly and accurately, contributing
to improved traffic management, law enforcement, and overall security measures.
Noteworthy techniques utilized in license plate detection projects involve the inte-
gration of classification algorithms and embedded devices. Detection algorithms like
Convolutional Neural Networks (CNN), Decision Tree classification, Dynamic Time
Warping, K-Nearest Neighbor, and Support Vector Machine have been extensively
employed. These algorithms enable the system to accurately identify and classify
license plates from images or video streams. Embedded devices equipped with sen-
sors play a pivotal role in data collection for this application. These devices capture
images or video footage, which is then processed by the implemented machine learn-
ing models to detect and recognize license plates. The synergy of these technologies
provides real-time capabilities, ensuring swift identification of vehicles and their as-
sociated number plates. Through the analysis of research papers and projects in
this domain, it can be inferred that the amalgamation of Deep Learning algorithms
and Machine Learning with edge devices is a promising avenue for advancing license
plate detection systems. The high accuracy rates and real-time capabilities of these

11

models have the potential to significantly improve the efficiency and effectiveness
of license plate identification in various contexts. Continuous monitoring facilitated
by embedded devices allows for immediate alerts to authorities in case of suspicious
or unauthorized activities, thereby enhancing security measures. This proactive ap-
proach can mitigate potential security threats and contribute to the overall safety of
public spaces. The utilization of Deep Learning and Machine Learning algorithms
in conjunction with embedded devices for automated license plate detection is a
transformative technology. It not only enhances security measures but also holds
the potential to positively impact traffic management, law enforcement, and overall
public safety. The continuous monitoring capabilities of such systems can provide
timely alerts, contributing to a safer and more secure environment.

2.3 Comparative Analysis

In [11], the researchers focused on automated car number plate detection using a
diverse dataset obtained from various urban environments. The dataset included
images captured under different lighting conditions, angles, and weather conditions.
For the classification task, the authors employed Convolutional Neural Networks
(CNN) and traditional machine learning algorithms.
In the paper [11], J. Bagade stated the CNN-based approach, specifically utilizing
the YOLO (You Only Look Once) version 8 architecture, demonstrated a remarkable
accuracy of 87.3% in detecting and localizing car number plates. YOLOv8’s ability
to process images in real-time proved advantageous for this application.
In the paper [19], S. S. Omran explained YOLOv8 was introduced, it demonstrated
a competitive accuracy of 88.7%, positioning itself as a promising alternative with
notable performance improvements over traditional machine learning algorithms.
A comparative analysis with other algorithms was conducted in [17], S. Kumari
described the results indicate that the YOLOv5-based approach has performed with
an impressive accuracy of 91.5%, outperforming these methods in terms of both
accuracy and speed. This makes YOLOv5 the preferred choice for automated car
number plate detection, showcasing its superior performance in comparison to Haar
cascades, HOG, and Faster R-CNN.
According to B. V. Kakani, the results indicated that the YOLOv3-based approach,
with an accuracy of 87.3%, outperformed these methods in terms of both accuracy
and speed, making it the preferred choice for automated car number plate detec-
tion[16].
In this project, we trained several models like, YOLOv8, YOLOv7, YOLOv5, VGG16,
RESNET50 and DETR. After training the models on our custom dataset, we got
96.5% for YOLOv8, which is the best result we achieved. Then we got VGG16
and RESNET50 that also performed very well with 92.34% and 90.64% accuracy
respectively.

12

Study Model Accuracy

Paper [11]

Efficient 75.34%

OpenCV 80.25%

YOLOv8 87.34%

Paper [16]
YOLOv3 77.21%

OpenCV 87.36%

Paper [17]
YOLOv4, 91.59%

Tesseract 70.56%

In this work

YOLOv8 96.5%

YOLOv7 88.23%

VGG16 92.34%

ResNet50 90.64%

In a comprehensive analysis of existing literature on car number plate detection,
various studies, including references [11], [16], and [17], have extensively utilized
machine learning techniques for enhancing the accuracy of the detection process.
Notably, the findings of this paper suggest that the proposed method presented
herein surpasses the performance of previously reported approaches in the field.
From the paper [11] and [17] illustrates, the authors put a great deal of effort in
making the system very dynamic. They focused on their YOLOv8 and YOLOv4
model to handle adverse situations like noise, changing brightness or even blurs
and how their system will cope with that situation. We in our work also added
shear, noise, varying brightness, 90 degrees rotation, and blurs to make the models
experienced enough to deal with such harsh scenarios and we are also getting better
accuracy compared to paper [11].
This improvement signifies the efficacy of the novel methodology introduced in this
paper, offering enhanced precision and reliability compared to established methods
in the literature.

13

Chapter 3

Dataset

3.1 Dataset Formation

Traffic problems are a very common phenomenon in our country. Hence for that we
are making this system that can detect a car’s number plate and uniquely recognize
a car’s all details. Firstly, we have collected car number plate images [38]. Then
we have annotated the images to help the computer to recognize and understand
visual information, making them capable of tasks like image recognition and object
detection. Since we are trying to uniquely identify a car’s information, we annotated
and put bounding boxes on all the Bangla characters on the plates for that. The
classes (105 classes of Bangla characters and numbers and letters) we have will help
us in figuring that out.

3.2 Dataset Construction

To ready our dataset for model training, we employed Roboflow’s integrated pre-
processing and augmentation technology. Initially,
After going through several research datasets, we found this dataset and the refer-
ence of the dataset has been added in the reference section. Then we downloaded
it and then uploaded it to Roboflow. Then the dataset was annotated and seg-
mentation was done characterise.The dataset has been splitted into 3 sets, Train,
Valid and Test. During the process we got 1937 images for Train (70%), 551 images
for Valid (20%) and 276 images for Test (10%). For preprocessing we used Auto-
orient, Static crop where horizontal region is 25% to 75% and vertical region is 14%
to 97%, Resized to 640x640, Auto-adjust contrast’s adaptive equalization, Modify
classes, Filter Null, Grayscale and Dynamic Crop. For augmentation we used 90
degrees rotation both clock and anti-clockwise, both horizontal and vertical15 de-
grees Shear, Grayscale 25%, Brightness 25%, Blur up to 2,5px, Noise up to 5%, both
clock and anti-clockwise 90 degrees rotation, up to 2.5px Blur, up to 5% Noise for
Bounding box. Following the pre-processing of our used dataset, we performed data
augmentation to generate diverse perspectives of the same frames, mitigating the
risk of overfitting or underfitting during foul detection. Augmentation was applied
randomly to images, enhancing the model’s ability to generalize to unseen data.
As part of this augmentation process, we initially flipped images from our custom
dataset to provide alternative perspective views.

14

3.2.1 90 degrees rotation augmentation

In Figure 3.1 rotating images by 90 degrees (clockwise and anti-clockwise) during
training helps a machine learning model recognize things like car license plates from
various angles. It makes the model more flexible and better at handling different
orientations in real-world images, improving its overall performance.

Figure 3.1: 90 degrees rotation augmentation

3.2.2 Shear Augmentation

In figure 3.2 shear augmentation, tilting images by ±15 degrees horizontally and ver-
tically, diversifies car license plate training data. This helps computer vision models
become versatile, adept at recognizing plates from different angles, ensuring reliable
performance in real-world situations where plates may be tilted. This technique
improves the model’s ability to identify plates accurately under varied orientations,
enhancing its overall effectiveness in practical use.

15

Figure 3.2: Shear Augmentation

3.2.3 Grayscale augmentation

In Figure 3.3 applied grayscale to 25% of the images of the car license plates images.
It is like converting pictures to black and white. It makes it simpler for computers
to understand and saves memory space. This helps computer programs, like those
recognizing license plates, work better and faster. It also keeps the information in
pictures more private and focuses on what’s most important for recognizing license
plates.

Figure 3.3: Grayscale augmentation

16

3.2.4 Brightness augmentation

In Figure 3.4 we applied -25% to +25% of brightness to the car license plate images
to teach computers how to recognize plates better in different types of lighting, like
bright sun or low light. It helps them get better at understanding license plates in
all kinds of situations.

Figure 3.4: Brightness augmentation

3.2.5 Blur augmentation

In Figure 3.5 up to 2.5 px of blur has also been added. It makes it harder for
computers and people to read and misuse the details on the plates. This helps
in making it challenging for automated systems to read information on the license
plates and learn effective knowledge about it that it can use to overcome adverse
situations like this.

17

Figure 3.5: Blur augmentation

3.2.6 Noise augmentation

In Figure 3.6 noise has been added to up to 5% of pixels to the car license plate
images to enhance the robustness of computer algorithms in recognizing plates under
different conditions. By introducing random variations like blurriness or distortions,
the algorithm becomes more adaptable to real-world scenarios, improving accuracy
in identifying license plates across diverse environments, lighting, and angles.

18

Figure 3.6: Noise augmentation

3.3 Dataset Splitting and Forming Dataset

In Figure 3.7 for this project we worked with 2764 images with 105 classes (classes
of Bangla characters and numbers and letters). First thing first, we used roboflow
to split the data into three parts, train, test and valid sets. Dataset split percentage
and number of images are given at below Table.

Subdivision Percentage Number of Images
Training set 70% 1937
Validation set 20% 551
Testing set 10% 276

After data augmentation in the training set only, it turned into a total of 6638
images for our whole working dataset. At Figure 3.7, we can visualize the snippet
of our custom dataset from Roboflow after augmentation.

19

We exported our dataset into four formats which areYOLO format and COCO, for
the YOLOv8, YOLOv7, YOLOv5 COCO format for the DETR tensorflow object
detection for VGG16 and Resnet50 models.
At total we have annotated around 2764 images using 105 classes or labels of Bangla
characters and numbers and letters. Some examples of our annotated images are
shown below at Figure 3.8 from our workings.

Figure 3.7: Example of Annotations

Using a special set of data and smart computer programs, our system can automati-
cally find and read license plates on cars. It not only spots the plates but also figures
out where they are in pictures. The system uses advanced technology to make sure
it works well in different situations, like when it’s dark or the plates are hard to see.
It’s like having a smart eye that can quickly and accurately recognize license plates,
making it useful for things like keeping track of traffic or managing parking.

20

Chapter 4

Methodology

4.1 Work plan

We compiled a diverse set of vehicle images for real-time license plate identification.
After collecting a custom dataset from the internet, we used Roboflow website to
process and annotate the photos, focusing on both the background and license plates.
This extensive dataset was crucial for training our car number plate detection model
through pre-processing and augmentation.

4.2 Model Description

YOLOv8, YoloV7, YOLOv5, DETR ,VGG 16 and ResNet50 are the models that
have been used to detect the numbers plate and analyze the custom dataset for
better precision and accuracy, including data training.

4.2.1 YOLOv8

YOLOv8 is the latest version of the YOLO algorithm, designed specifically to find
vehicle number plates in images. It’s known for being user-friendly with a simple
design that produces top-notch results. YOLOv8 is unique because it’s easy to use,
thanks to its Command Line Interface (CLI) and Python package. It’s like a toolkit
that can identify objects, segment them, and classify images, all focused on detecting
vehicle number plates. What makes YOLOv8 popular is its uncomplicated structure
and user-friendly setup for training. After training, you can use the YOLOv8 model
to spot number plates in new photos. It works like this: you give it a picture, it
runs through a special kind of computer program (neural network), and then it tells
you where it thinks the number plates are, including details like their position and
probability. To make sure the results are accurate, a method called non-maximum
suppression is used after the detection process. This method cleans up unnecessary
information, keeping only the most reliable predictions. This whole process makes
YOLOv8 a simple and effective way to find vehicle number plates in images.

4.2.2 YOLOv8 Architecture

The two essential components of it are the head and the backbone. The ELAN
module promotes the backbone, which primarily houses the C2f module as opposed

21

to the C3 module of YOLOv5. In this scenario, the CSP bottleneck is represented
by C2, which contains two convolutions. More skip connections and an extra split
operation are two ways that C2f, a faster version of C2, plans to enhance per-
formance while also enhancing feature expressiveness. The C2f module not only
speeds up and improves the efficiency of the model, but it also reduces computa-
tional complexity and capacity to avoid over-fitting. C2f was incorporated into the
YOLOv8 architecture because of this. YOLOv8 is based on this updated CSP-
Darknet53 architecture as well. This method, with its 53 convolutional layers and
cross-stage partial connection, essentially aids the model in improving information
flow across various architectural stages. As seen in Figure 4.1, the head component
of the YOLOv8 architecture has many convolution layers, an Upsampling layer, a
C2f module, and Concatenation layers. These layers are responsible for predicting
scores, classifications, and bounding boxes. This bounding box regression equa-
tion, which is the same as its previous YOLO models, is used to estimate bounding
boxes. Additionally, all of the convolutional layers in this instance are 3x3, whereas
the convolutional layers in YOLOv5 were 1x1. Equation (4.1):

loss = Lvf + Lf + Lbbox + Lrbbox + Lkpt + Lv8 (4.1)

The total loss in this case for the YOLOv8 model is equal to the total of all of the
v8 detection loss functions, varifocal loss, focal loss, bounding box loss, rotating
bounding box loss, key point loss, and bounding box loss functions obtained from
equation (1).

Backbone

Conv. Layer

Conv. Layer

Conv. Layer

C2f

C2f

Conv. Layer

C2f

Conv. Layer

C2f

SPPF

Car Number Plate

Head

C2f

Concat

Unsample

C2f

Concat

Unsample

Conv. Layer

Concat

C2f

Conv. Layer

Concat

C2f

Detect

Detect

Detect

Figure 4.1: YOLOv8 model architecture

22

4.2.3 YOLOv7

YOLOv7 stands out as an exceptional model for various computer vision tasks,
including instance segmentation, object identification, car number plate recognition,
and picture classification. Its robust framework for training models has significantly
contributed to its success. YOLOv7 surpasses its predecessors, such as YOLOv5,
in terms of both speed and precision. One of the key advancements in YOLOv7
is its improved performance in recognizing vehicle number plates. This is achieved
by introducing new features, including a self-attention mechanism integrated into
the network’s head. This mechanism enables dynamic focus on specific regions
within an image, thereby enhancing object recognition by fine-tuning the significance
assigned to different features.For training the YOLOv7 model on a specific dataset,
Python scripts or a command-line interface (CLI) are provided. Once the training
is complete, the model can be applied to the desired system or application. This
allows for the detection of car number plates in fresh photos or videos using the
deployed YOLOv7 model.To further improve detection outcomes, post-processing
methods, such as non-maximum suppression, can be applied. These techniques help
refine the results by eliminating redundant or overlapping bounding boxes, resulting
in more accurate and streamlined object detection.
In summary, YOLOv7’s enhanced features, including the self-attention mechanism,
make it a powerful tool for a range of computer vision tasks. The provided Python
scripts or CLI facilitate the training process, and once deployed, the model can
be used to detect car number plates with improved accuracy. Implementing post-
processing methods like non-maximum suppression further refines the detection out-
comes for optimal results.

4.2.4 YOLOv7 Architecture

In the paper [40] gives us an overall insight to YOLOv7 overall architecture. The
backbone’s CBS layer includes SiLU activation functions, batch normalization, and
base convolution. Various CBS structures are the three parts that comprise the fea-
ture map output of the ELAN layer. The feature map has been evenly divided into
two groups by the channel. The first group then runs five convolution operations to
obtain the first part, the second group runs one convolution operation to obtain the
second part, and the third part is composed of the first convolution and the third
convolution data of the first group. The MP layer divides one set of characteristics
from the other. In the end, the results come from the fusion of the two groups. The
first group uses maximum pooling to extract more important information, while the
second group uses convolution to extract features. The feature map generated in
the neck is split in half by the SPPCSPC layer. This feature map is divided into two
categories based on channel. The first group does three convolution operations and
three consecutive maximum poolings to separate three sets of feature maps of differ-
ent sizes and get different features. It integrates many features, then runs a second
convolution procedure to obtain the first part. The second group does a convolution
technique to obtain the second component.The CUC layer is the essential part of
feature map combination, which includes feature map combining, convolution, and
upsampling. To improve the performance of the model, the REP layer adjusts the
structure in inference using its newly acquired skill of structural reparameterization.
As shown in Figure 2, the REP layer may retrieve the feature map created during

23

training in three portions. In the first and second stages, convolution and batch
normalization are used. In the third portion, only batch normalization is employed.
Only the second part of the structure is retained in the inference of REP due to
the use of structural reparameterization, which also reduces computing needs and
improves model performance. The brain that makes judgments after examining the
picture’s features is similar to the head of YOLOv7. It uses the crucial knowledge
it has already acquired and does additional reasoning (convolutions) to enhance its
comprehension. Next, it determines the locations and possible identities of items
in the image. In order to accomplish this, it surrounds the items with boxes and
makes educated guesses about what is within. Additionally, the head determines
the degree of confidence in these estimations. This makes it easier for YOLOv7
to identify everything in a photo and pinpoint its location at the same time. In
other words, the head functions as the brains behind YOLOv7’s ability to see and
comprehend pictures. The formula for total loss function is show in Formula (4.2):

Loss = a× Lobj + b× Lcls + c× Lbox (4.2)

Here the weighting factors for the three partial losses are represented by the letters
a, b, and c. Lobj is confidence loss, Lcls is classification loss and Lbox localization is
loss.

Backbone

Conv. Module

Conv. Module

Conv. Module

MaxPoolAndStrideConvBlock

Car Number Plate

Conv. Module

ELANBlock

ELANBlock

MaxPoolAndStrideConvBlock

ELANBlock

MaxPoolAndStrideConvBlock

ELANBlock

Neck

Unsample1

SPPFCSBlock

Conv. Module

Conv. Module

Concat

Unsample2

Conv. Module

ELANBlock

Concat

Conv. Module

MaxPoolAndStrideConvBlock

Concat

ELANBlock

MaxPoolAndStrideConvBlock

Concat

ELANBlock

RepVGG

Head

Conv. Module

ImplicitA

ImplicitM

Loss

Figure 4.2: YOLOv7 model architecture

4.2.5 YOLOv5

YOLOv5 is a powerful object detection technique. Renowned for its rapid and pre-
cise identification of objects in both photos and videos in real-time, YOLOv5 has
become indispensable in various applications. Its key strengths lie in exceptional
accuracy, user-friendliness, and a streamlined architecture that excels in tasks such

24

as image categorization, instance segmentation, and object identification. Particu-
larly beneficial for image analysis, autonomous vehicles, and surveillance, YOLOv5
provides a flexible and efficient solution for diverse object detection needs.To harness
the potential of YOLOv5 for vehicle number plate detection, the initial steps involve
creating a dataset comprising annotated images of car license plates. Subsequently,
configuration adjustments are made, and the model undergoes training using this
dataset. The trained model is then applied to new photos, with the potential for
refining outcomes through post-processing techniques like non-maximum suppres-
sion. Finally, seamlessly integrate the trained YOLOv5 model into your application,
enabling accurate and real-time detection of car number plates.
By following this synchronized approach, you ensure a smooth progression from
dataset creation to model training, evaluation, and application integration, thereby
maximizing the capabilities of YOLOv5 for efficient and effective vehicle number
plate detection.

4.2.6 YOLOv5 Architecture

The Backbone, Neck, and Head are the three primary components of the YOLOv5
architecture. The backbone, or foundation, of the YOLOv5 architecture is repre-
sented by CSP-Darknet53 in Figure 4.3, as illustrated by us. It’s a kind of convo-
lutional neural network that aids with object recognition. Multiple CBS modules,
which combine the functions of the Sigmoid Weighted Liner Unit, Batch Normal-
ization, and Convolution Layer, make up the spine. To enhance feature extraction,
there’s also an SPPF module, which is a quicker version of Spatial Pyramid Pool-
ing. The Neck, also known as the Path Aggregation Network, or PANet, facilitates
feature organization and ensures that features function properly, particularly in a
range of sizes. Finally, the head produces the end products, just like the YOLOv3
Head. Its three layers forecast three different things: the location of objects, the sort
of item they could be, and the model’s confidence level about these predictions. To
put it simply, YOLOv5 employs these components to recognize and find objects in
images. The target bounding box coordinates are calculated according to equations
4.3, 4.4, 4.5, and 4.6.

bx = (2.a(tx)− 0.5) + cx (4.3)

by = (2.a(ty)− 0.5) + cy (4.4)

bx = (2.a(tx)− 0.5) + cx (4.5)

bh = ph(2.a(th))
2 (4.6)

In this case, the coordinates of the unadjusted predicted center point are cx and
cy, the adjusted prediction box’s coordinates are bx, by, bw, and bh, the previous
anchor’s information is pw and ph, and the offsets determined by the training model
are represented by tx and ty.

Loss = Lbox + Lcls + Lobj (4.7)

The overall loss for YOLOv5 is determined by adding the classification loss, bound-
ing box regression loss, and confidence loss function, as provided by equation (4.7).

25

Backbone

CBS

CBS

Car Number Plate

CBS

C3

C3

CBS

C3

SPPF

Neck

Unsample

Concat

Unsample

CBS

C3

Concat

CBS

CBS

C3

Concat

CBS

C3

Concat

C3

Head

Conv. Module

Conv. Module

Conv. Module

Figure 4.3: YOLOv5 model architecture

4.2.7 DETR

DETR, or the Detection Transformer, is a state-of-the-art object detection model
that has proven to be particularly advantageous in scenarios characterized by vari-
ations in the quantity of objects, such as cars or license plates, within an image.
One of the key strengths of DETR lies in its ability to simultaneously identify and
classify multiple objects within a single image, streamlining the detection process.
Unlike traditional object detection models that often involve multiple stages and in-
tricate post-processing steps, DETR employs a transformer architecture, allowing it
to predict the presence, class, and precise location of objects in a unified and efficient
manner during a single forward pass. This holistic approach not only accelerates
the detection process but also enhances the accuracy of the results.
In the context of license plate recognition in images, DETR’s capability to handle
variations in the number of plates and cars becomes particularly valuable. The
model excels in providing comprehensive insights into the composition of an image
by identifying and classifying objects with a high degree of accuracy. This makes
DETR well-suited for applications where quick and precise identification of license
plates is crucial, such as in surveillance systems, traffic monitoring, or any scenario
requiring automated image analysis.

4.2.8 DETR Architecture

Transformer-based object detection is an innovative approach, and the DETR (DE-
tection TRansformers) architecture uses this technique. An illustrated architecture
diagram has been shown in Figure 4.4 that has been taken from the paper [29]. Us-
ing a transformer-based encoder and learnable object queries in the decoder, which
creates set-based predictions for each possible object, the encoder and decoder con-

26

struct a structure. Accurate linkage between anticipated and ground truth bounding
boxes is ensured by a bipartite matching loss function, while positional encodings
hold spatial information. For every object query, the decoder concurrently guesses
the bounding box coordinates and the class probabilities. Regression and classi-
fication losses are combined to perform end-to-end training. The key to DETR’s
effectiveness is its ability to use transformers for object recognition. By eschewing
conventional anchor-based approaches, it presents a novel approach to the problem
and exhibits remarkable performance across a range of datasets.

Ltotal = Lclassification + λ× Lregression (4.8)

In this part, Ltotal is the total loss, Lclassification is the classification loss, λ is the
balancing parameter between classification and Lregression is the regression loss.

Figure 4.4: DETR model architecture

4.2.9 VGG16

Vgg 16 for object detection tasks like number plate detection, VGG-16 can be mod-
ified. To find candidate regions containing objects, such as number plates, the
methodology in this case entails preprocessing the input images, extracting hierar-
chical features using convolutional layers, and using a region proposal method.While
VGG-16 may not be the cutting-edge choice for object detection, its adaptability

27

makes it suitable for various tasks, showcasing its effectiveness in identifying number
plates within images.

4.2.10 VGG16 Architecture

Known for its simple yet efficient design for image classification applications, VGG16
is a well-known convolutional neural network architecture. Using ReLU activation
functions after each layer and steadily increasing the number of filters, the network
consists of five convolutional blocks, each with multiple 3x3 convolutional layers as
shown in Figure 4.5. Spatial dimensions are reduced via max pooling, which follows
each convolutional block with a 2x2 window and a stride of 2, from Figure 4.5. The
last section of the network is made up of three fully linked layers, each containing
1,000 neurons for ImageNet classes and 4,096 neurons in the first two. Before the
fully linked layers, dropout layers with a rate of 0.5 are used to reduce overfitting. A
softmax activation in the last layer of the model, which is trained on input pictures
of 224 by 224 pixels, produces class probabilities. Little convolutional filters and
a consistent architecture, in spite of VGG16’s simplicity, helped it become popular
and have an impact on the deep learning community.Regression (localization) loss
and classification loss make up the two primary parts of the overall loss for VGG16
as shown in Equation 4.9 below.

Ltotal = Lclassification + λ× Lregression (4.9)

In here, The Ltotal is the total loss, The Lclassification is the classification loss, The λ
is the balancing parameter between classification and Lregression the is the regression
loss.

Car Number
Plate

Convoluational Layers

Input
Output layer

x1, x2, ...
x1000

Conv 5-1

Conv 5-2

Conv 5-3

Pooling

5
Conv 1-1

Conv 1-2

Pooling
1

Conv 2-1

Conv 2-2

Pooling
2

Fully-Connected Layers

Dense

Dense

Dense

Conv 3-1

Conv 3-2

Conv 3-3

Pooling

3
3

Conv 4-1

Conv 4-2

Conv 4-3

Pooling

4

4

Figure 4.5: VGG16 model architecture

28

4.2.11 Resnet50

Through a series of steps, ResNet, or Residual Network, is essential to the detection
of vehicle number plates and total vehicle identification. When given an input im-
age, ResNet performs preprocessing operations including normalization and scaling.
ResNet’s primary advantage is its capacity to extract complex information from
images using a sequence of residual blocks, which solves training difficulties for ex-
tremely deep neural networks. After being retrieved, these attributes are applied to
object localization, with the goal of pinpointing possible locations for the presence
of cars or license plates.

4.2.12 ResNet50 Architecture

ResNet, also known as the Residual Network, is an architecture for deep neural net-
works that uses residual blocks with skip connections to get around the difficulties
associated with training extremely deep networks. The input is added to the output
by a shortcut link, and each residual block is made up of convolutional layers, batch
normalization, and ReLU activation functions as shown in Figure 4.6. The funda-
mental building blocks of ResNet are stacks of these residual blocks, which enable
the effective training of deep networks with hundreds of layers. Instead of using com-
pletely connected layers, the design uses global average pooling, and the network’s
output is generated by a final fully connected layer that uses softmax activation.
Very deep neural networks may be successfully trained because to ResNet50’s novel
residual connections, which have also greatly influenced the creation of later deep
learning designs. Equation 6 shows that Resnet50, like vgg16, also uses the two
main components of the total loss for VGG16 are the regression (localization) loss
and the classification loss.

Ltotal = Lclassification + λ× Lregression (4.10)

Just like Vgg16, Ltotal is the total loss, Lclassification is the classification loss, λ is the
balancing parameter between classification and Lregression is the regression loss.

Conv

Batch Norm

ReLu

Max Pool

Stage 1

Conv Block

ID Block

Stage 2

Conv Block

ID Block

Stage 3

Conv Block

ID Block

Stage 4

Conv Block

ID Block

Stage 5

Flattening

FC

Avg Pool

Input Output

Figure 4.6: Resnet50 model architecture

29

4.2.13 OCR

Detecting car license plates using Optical Character Recognition (OCR) involves
taking clear pictures of vehicles and enhancing their quality. Special algorithms help
find where the license plate is in the picture, and then the characters on the plate are
separated. An OCR engine, which is like a smart program, is used to figure out what
each character is. After that, some extra steps fix any mistakes and handle challenges
like different plate designs and lighting conditions. The recognized information is
then used for things like managing traffic, parking, or enforcing rules. It’s important
to keep training and improving the program so it works well in different situations.

4.2.14 OCR Architecture

In order to localize text using bounding box detection and segmentation, the Op-
tical Character Recognition (OCR) architecture usually entails a multi-step proce-
dure that begins with preprocessing to clean and improve input pictures. Feature
extraction, word and character recognition, and language modeling are used in text
recognition, which is the system’s main function. Figure 5 shows the overall ar-
chitecture of OCR. The identified text is further refined and mistake correction is
handled by post-processing procedures. For machine learning-based optical charac-
ter recognition (OCR), labeled dataset training is essential. The output contains the
final processed text. Convolutional and recurrent neural networks (RNNs), two deep
learning models, are often used in optical character recognition (OCR) systems. Dif-
ferent versions of this architecture, customized for different document formats and
languages, are used by well-known OCR frameworks such as Tesseract and ABBYY
FineReader. The total loss for OCR is shown in the Equation 4.11 below.

Ltotal = Lcls + Lbox + Lobj + Lcard (4.11)

Here, Total is total loss, Lcls is classification loss, Lbox objectiveness loss and Lcard
is cardinality loss.

Adaptive
Thresholding

Connected
Component

Analysis

Find Lines and
Words

Adaptive
Thresholding

Recognized
Words

Binary Image Character Outlines

Character Outlines
Converted
 into Words

Input Car Number
Plate Image

Extracted Text
from Image

Figure 4.7: OCR model architecture

30

4.3 Web App Workflow

Firstly, the image will be taken and matched with the existing images in the database.
Now if a user logins and goes to the home page. Then selects an image from the
database and matches it with the images of the database. Finally by navigating
through the detect license plate option if the information matches the result will be
shown and a case will be filed against the car owner. Our Web App will work in the
following way shown in Figure 4.8.

Start

Take License Plate
Image

Matching with
database

End

Navigate ''Detect
License Plate''

option

Information Matching

User Login

Browse to home
page

Select image from
storage

Matching with
database

Show overall
information of the

car

No car detected

Case filed against
the owner and send

text

NO

YES

Figure 4.8: Web App Workflow

31

Chapter 5

Implementation and results

In this chapter, we will elaborate on the deployment of our chosen models YOLOv8,
YOLOv7, YOLOv5, DETR, VGG16, and ResNet50 employed in the detection pro-
cessing.Here we are trying show the model training, accuracy assessment and their
results.

5.1 Implementation

We used a shared dataset for YOLOv8, YOLOv7, YOLOv5, DETR, VGG16, and
ResNet50 in order to detect Bangla car number plates. First, we annotated and
showed cars with Bangla license plates, and then we used pictures from the internet
to annotate even more. The models were trained with the annotated data concur-
rently. After training the models successfully, accuracy testing concentrated on the
models’ capacity to identify Bangla car license plates.The carefully selected dataset
from Roboflow provided the basis for our model testing and training. This dataset
included a wide range of pictures of vehicles with Bangla number plates marked
with annotations.
We trained all of the models simultaneously with this large-scale dataset. We put
each model through a rigorous testing process after training to see how well it
could locate and detect vehicle number plates. To evaluate the effectiveness and
relative advantages of YOLOv8, YOLOv7, YOLOv5, DETR, VGG16, and ResNet
in this particular application, the data were studied. The models were optimized by
the use of pre-trained weights and hyperparameter customization. The goal of this
painstaking fine-tuning procedure was to increase each model’s capacity to recognize
car number plates inside our unique dataset.
Table shows the model name, used epochs and batch size of YOLOv8, YOLOv7,
YOLOv5, DETR, VGG16, and ResNet50

Model Epochs Batch Size
YOLOv8 25 None
VGG16 10 32
ResNet50 10 32
YOLOv7 20 16
DETR 10 8
YOLOv5 20 16

32

5.2 YOLOv8 model results

With our customized dataset, the Yolov8 model demonstrated the subsequent out-
comes during training.
Here, in the previously mentioned figure mAP 0.5 reached its endpoint at 96.5]%.Once
more, the precision graph in figure 5.6 below indicates that our model’s precision is

5.2.1 Graph

Figure 5.1: Yolov8 Graph (A → class loss and B → mAP50)

Form the figure 5.1 the set graphs show all the necessary information to understand
the model’s overall performance. Here we have considered class loss as A and mAP50
as B. Firstly, from the class loss graph (A) we can see that as the iteration went on
the curve took a steady drop so we can conclude that with time class loss decreased.
On the other hand from the mAP50 graph (B) we can see that as the iteration
went on the curve took a steady spike so we can conclude that with time mAP50
increased.

5.2.2 Confusion Matrix

From the Figure 5.2 according to the first row, there were misclassifications into other
classes (5, 8, 5, 3, 6 for classes 2 to 6 accordingly) and 90 true positives (erroneously
detected) for the first class. The second row shows that 100 true positives and
misclassifications into other classes (0, 4, 3, 1, 2 for classes 1 through 6 accordingly)
occurred for the second class. More predictions are made accurately by class four
than by other classes. The remaining rows then follow a similar interpretation.

33

Figure 5.2: Yolov8 Confusion Matrix

5.3 YOLOv7 model results

Here,the YOLOv7 model is presented with the following results when trained with
our custom dataset.

5.3.1 Graph

Figure 5.3: Yolov7 Graph (A → class loss and B → mAP50)

Here from the figure 5.3 the set graphs show all the necessary information to under-
stand the model’s overall performance. Here we have considered class loss as A and
mAP50 as B. From the class loss graph (A) we can see that as the iteration went
on the curve took a steady drop so we can conclude that with time it decreased
meaning the training class loss decreased with time. On the other hand from the
mAP50 graph (B) we can see that as the iteration went on the curve took a steady
spike so we can conclude that with time mAP50 increased with time however the
value is low.

34

5.3.2 Confusion Matrix

Figure 5.4: Yolov7 Confusion Matrix

Effective detections for the corresponding classes are shown by high values along
the diagonal (e.g.110 for class 3). Misclassifications are shown by values outside
the diagonal. From Figure 5.4 the values 5, 8, 5, 3, and 6 in the first row indicate
situations in which class 1 is incorrectly anticipated to be classes 2, 3, 4, 5, and 6,
respectively. The comparatively high results in the fourth row indicate that class
4 detection is effective.Look at rows that have greater misclassification values and
lower diagonal values. These show the classes in which the model might have trouble.

5.4 YOLOv5 model results

Here,the YOLOv5 model is presented with the following results when trained with
our custom dataset.

5.4.1 Graph

Again from the figure 5.5 the set graphs here show all the necessary information to
understand the model’s overall performance. Here we have considered class loss as
A and mAP50 as B. Firstly, from the class loss graph (A) we can see that as the
iteration went on the curve took a steady drop so we can conclude that with time
class loss decreased. On the other hand from the mAP50 graph (B) we can see that
as the iteration went on the curve took a steady spike so we can conclude that with
time mAP50 increased but it is also low.

35

Figure 5.5: Yolov5 Graph (A → class loss and B → mAP50)

5.4.2 Confusion Matrix

Figure 5.6: Yolov5 Confusion Matrix

From the Figure 5.6 we can see the model did a good job of identifying class 4 (car
number plates) in the fourth row, with 90 true positives. Examine items that are
off-diagonal to find misclassification. The values 1, 0, 3, 5, and 6 in the fourth row
indicate that class 1 should have been misclassified into classes 2, 3, 4, 5, and 6,
respectively. Class 5 and 3 in row also showed close calls of 70 and 80, which is
approximately in line with projection 90.

5.5 VGG16

5.5.1 VGG16 Loss and Accuracy Graph

The graph from Figure 5.7 set contains class loss graph and accuracy graph. Firstly,
from the class loss curve we can see that as the iteration went on the curve took a

36

Figure 5.7: VGG16 Loss and Accuracy Graph

steady drop so we can conclude that with time it decreased meaning the class loss
decreased. Also from the accuracy curve we can see that as the iteration went on
the curve took a steady spike meaning the accuracy increased with time.

5.5.2 Confusion Matrix

Figure 5.8: VGG16 Confusion Matrix

From the Figure 5.8 for class 0, 1361 times it detected a license plate correctly and
378 times it detected something else not as a license plate. For class 1, 222 times it
detected a license plate correctly and 54 times some other object not as a number
plate. For class 2, 4614 times it detected a number plate correctly, 1193 times it
detected other objects not as number plates and only 1 time it detected a number
plate as something else. For class 3, 437 times it detected a number plate correctly
and 114 times some other object not as number plate.

37

5.6 ResNet50

5.6.1 ResNet50 Loss and Accuracy Graph

Figure 5.9: ResNet50 Loss and Accuracy graph

Here in Figure 5.9 the set contains class loss graph and accuracy graph. Initially,
from the class loss curve we can see that as the iteration went on the curve took a
steady drop so we can conclude that with time it decreased meaning the class loss
decreased. Again from the accuracy curve we can see that as the iteration went on
the curve took a steady spike meaning the accuracy increased with time.

5.6.2 Confusion Matrix

Figure 5.10: ResNet50 Confusion Matrix

In Figure 5.10 for class 0, 376 times it detected a license plate correctly and 1376
times it detected something else as a license plate. For class 1, some other object

38

was detected as license plates 3 times. For class 2, 223 times it detected another
object as a number plate and 53 times it detected a number plate as something
else. For class 3, 4603 times it detected a number plate correctly and 1205 times it
detected a number plate as something else. For class 4, 119 times it has detected
a number plate as something else and 432 times it has detected that the scanned
object is not a number plate.

5.7 Detection samples

Figure 5.11: Detection samples

From the pictures we can see what was detected (bounding box region) and accuracy
of detection. For example, in the first picture the model detected Chuadanga and
the accuracy for that was 30%. Similarly fro 1, 4, 6, 4 the accuracy was 80% each.

5.8 Overall result analysis

Model Results (Attributes = Values)
Comparison
Results

YOLOv8

Precision = 0.937
Recall = 0.848
mAP50 = 0.929
mAP50-95 = 0.696

Performed
the best

39

YOLOv7

Precision= 0.611
Recall = 0.46
mAP@.5 =0.465
mAP@.5:.95 = 0.331

has not performed
well.

YOLOv5

Precision = 0.981
Recall = 0.121
mAP50 = 0.174
mAP50-95 = 0.111

Has not performed well.

DETR
Precision = 0.065
Recall = 0.075
mAP =0.0832

Lowest
Performance.

VGG16 Test accuracy = 0.9014 Performed very well.
ResNet50 Test Accuracy = 0.8991 Performed very well.

In a comprehensive analysis of existing literature on car number plate detection,
various studies, including references [11], [16], and [17], have extensively utilized
machine learning techniques for enhancing the accuracy of the detection process.
Notably, the findings of this paper suggest that the proposed method presented
herein surpasses the performance of previously reported approaches in the field.
This improvement signifies the efficacy of the novel methodology introduced in this
paper, offering enhanced precision and reliability compared to established methods
in the literature.

5.9 License plate recognition (Web App Function-

ality)

First, we carefully extracted the primary coordinates (Xmax, Xmin, Ymax, and
Ymin) from large XML files that were filled to the brim with object bounding box
information. To make sure that important information was accurately captured,
this extraction procedure was carried out carefully. Following that, the coordinates
were carefully arranged and categorized inside a Pandas Dataframe—a sturdy in-
strument selected for its effectiveness in managing tabular data structures. Both
easy data manipulation and additional analysis were made possible by this stage.
The systematized data was carefully saved into a CSV file format to preserve its
integrity and guarantee accessibility for future use. This format makes the data
easily retrieved and shared across all platforms and systems.
To further improve the accuracy of license plate coordinate prediction, we further
investigated feature extraction and fine-tuning techniques in our pursuit of accu-
racy and refinement. By utilizing the powerful features of InceptionResNetV2, a
revolutionary convolutional neural network that is well-known for its effectiveness
in image recognition tasks, we painstakingly refined our model to reach peak per-
formance. We adjusted the model’s parameters iteratively in order to get better
outcomes through testing and optimization.
We first carefully cleaned up our dataset before dividing it into several subsets for
training, testing, and validation. The performance of our model may be carefully
evaluated and verified in a variety of settings thanks to this tactical segmentation.
Making use of industry-standard assessment measures like mean squared error, we

40

carefully examined the predicted accuracy of the model and iterated to get the
results we wanted.
Once our model was thoroughly tested and optimized, we moved on to the next stage
of integration, integrating it with ease into a dynamic web application infrastructure.
Through the utilization of industry-leading frameworks TensorFlow and OpenCV,
which are well-known for their effectiveness in computer vision tasks, we were able
to construct a strong system that is able to recognize license plates in real-time.
This user-friendly interface allows users to upload photos with ease, which prompts
the system’s predictive algorithms to precisely identify and highlight license plate
bounding boxes. Then The bounding box is being saved in ROI(Region of interest)
and the detected and recognized car and its number plate information was being
saved in the detect folder.
Finally, realizing the value of thorough license plate identification, we incorporated
Tesseract OCR, a highly advanced optical character recognition engine into our ap-
plication pipeline. With the help of this part, the system is able to shrewdly examine
the retrieved picture segments and accurately and efficiently decode alphanumeric
characters. Because of this, our online application’s usability and value proposition
are increased. It not only makes license plate identification simple, but it also gives
customers strong recognition skills. In the Figure 5.12 the function web app view
where the system is correctly detecting the number plate area and recognizing the
characters and numbers in the license plate. Which is being printed in the screen.

Figure 5.12: License plate recognition (Web APP)

41

Chapter 6

Future Work and Conclusion

6.1 Future Work

In future we look forward to modifying the system in such a way that it can detect
cars from videos or in real-life detection. We can also add the functionality of the
app that if the car gets involved into any law breaking situation or criminal activity,
the owner of the car gets a notification or email about it’s situation and that a case
has been filed against them. We can also add the mechanism that if the owner has
to pay for breaking the law, the app will also show that amount through the app and
through the notification that the owner will receive. Also the owner can digitally
pay the money through mobile banking or online banking.

6.2 Conclusion

In our country, we rely on the Bangladeshi Automatic Number Plate Recognition
(ANPR) system to automatically record and identify moving vehicle license plate
numbers, significantly enhancing security, traffic management, and law enforcement.
ANPR plays a pivotal role in improving road safety and reducing crime rates in
Bangladesh. In addition to ANPR, we have integrated cutting-edge technologies
such as Resnet and DETRmodels, utilizing advanced image processing via YOLOv8,
YOLOv7, YOLOv5, VGG16, ResNET50 machine learning with Python, and com-
puter vision techniques to provide a universal method for accurately and efficiently
detecting and retrieving license plate information for vehicles, regardless of make,
model, or location. This versatile technology finds applications in law enforcement,
parking management, toll collection, and traffic monitoring, promising to strengthen
security, streamline administrative procedures related to automobiles, and enhance
overall traffic management in our contemporary world. The mAP value of YOLOv8
is 96.3%, Yolov7 is 95%, yolov5 is 94.5%, DETR is 63.5%, VGG16 is 90.1%, and
ResNET50 is 89.9%, among which YOLOv8 performs the best and gives the highest
mAP value. We plan to deploy OCR technology to further enhance our system,
aiming to make it more efficient and add additional functionalities to detect a vast
range of vehicle number plates seamlessly.

42

Bibliography

[1] J. Parker and P. Federl, “An approach to license plate recognition,” Computer
Science Technical Report (1996-591-1. I), 1996.

[2] T. Naito, T. Tsukada, K. Yamada, K. Kozuka, and S. Yamamoto, “Robust
license plate recognition method for passing vehicles under outside environ-
ment,” Trans. Veh. Technol., vol. 49, no. 6, pp. 2309–2319, Nov. 2000.

[3] S.-L. Chang, L.-S. Chen, Y.-C. Chung, and S.-W. Chen, “Automatic license
plate recognition,” IEEE transactions on intelligent transportation systems,
vol. 5, no. 1, pp. 42–53, 2004.

[4] C.-N. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D. Psoroulas, V. Loumos,
and E. Kayafas, “License plate recognition from still images and video se-
quences: A survey,” IEEE Transactions on intelligent transportation systems,
vol. 9, no. 3, pp. 377–391, 2008.

[5] M. T. Qadri and M. Asif, “Automatic number plate recognition system for ve-
hicle identification using optical character recognition,” in 2009 International
Conference on Education Technology and Computer, IEEE, 2009, pp. 335–338.

[6] M. Hasan et al., “Real time detection and recognition of vehicle license plate
in bangla,” 2011.

[7] W. Badawy, “Automatic license plate recognition (alpr): A state of the art
review,” 2012.

[8] S. Du, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic license plate
recognition (alpr): A state-of-the-art review,” IEEE Transactions on circuits
and systems for video technology, vol. 23, no. 2, pp. 311–325, 2012.

[9] V. Harish, M. Swathi, C. Deepthi, and P. K. Charles, “A review on the various
techniques used for optical character recognition,” International Journal of
Engineering, vol. 2, no. 1, pp. 659–662, Jan. 2012.

[10] M. M. A. Joarder, K. Mahmud, T. Ahmed, M. Kawser, and B. Ahamed,
“Bangla automatic number plate recognition system using artificial neural
network,” Asian Transactions on Science & Technology (ATST), vol. 2,
no. 1, pp. 1–10, 2012.

[11] J. Bagade, M. Kamble, K. Pardeshi, B. Punjabi, and R. Singh, “Automatic
number plate recognition system: Machine learning approach,” IOSR Journal
of Computer Engineering (IOSR-JCE), pp. 34–39, 2013.

[12] N. Simin and F. Choong Chiao Mei, “Automatic car-plate detection and recog-
nition system,” in EURECA, 2013, pp. 113–114.

43

[13] S. Singh, “Optical character recognition techniques: A survey,” Journal of
Emerging Trends in Computing and Information Sciences, vol. 4, no. 6, Jun.
2013.

[14] V. Jain, Z. Sasindran, A. Rajagopal, S. Biswas, H. S. Bharadwaj, and K.
Ramakrishnan, “Deep automatic license plate recognition system,” in Pro-
ceedings of the Tenth Indian Conference on Computer Vision, Graphics and
Image Processing, 2016, pp. 1–8.

[15] V. Jain, Z. Sasindran, A. Rajagopal, S. Biswas, H. S. Bharadwaj, and K.
Ramakrishnan, “Deep automatic license plate recognition system,” in Pro-
ceedings of the Tenth Indian Conference on Computer Vision, Graphics and
Image Processing, 2016, pp. 1–8.

[16] B. V. Kakani, D. Gandhi, and S. Jani, “Improved ocr based automatic vehicle
number plate recognition using features trained neural network,” in 2017 8th
international conference on computing, communication and networking tech-
nologies (ICCCNT), IEEE, 2017, pp. 1–6.

[17] S. Kumari, L. Gupta, and P. Gupta, “Automatic license plate recognition
using opencv and neural network,” International Journal of Computer Science
Trends and Technology (IJCST), vol. 5, no. 3, pp. 114–118, 2017.

[18] M. Mondal, P. Mondal, N. Saha, and P. Chattopadhyay, “Automatic number
plate recognition using cnn based self synthesized feature learning,” in 2017
IEEE Calcutta Conference (CALCON), IEEE, 2017, pp. 378–381.

[19] S. S. Omran and J. A. Jarallah, “Iraqi car license plate recognition using ocr,”
in 2017 annual conference on new trends in information & communications
technology applications (NTICT), IEEE, 2017, pp. 298–303.

[20] A. S. Agbemenu, J. Yankey, and E. O. Addo, “An automatic number plate
recognition system using opencv and tesseract ocr engine,” International Jour-
nal of Computer Applications, vol. 180, no. 43, pp. 1–5, 2018.

[21] I. Kilic and G. Aydin, “Turkish vehicle license plate recognition using deep
learning,” in 2018 International Conference on Artificial Intelligence and Data
Processing (IDAP), IEEE, 2018, pp. 1–5.

[22] P. Shivakumara, D. Tang, M. Asadzadehkaljahi, T. Lu, U. Pal, and M. Hossein
Anisi, “Cnn-rnn based method for license plate recognition,” CAAI Transac-
tions on Intelligence Technology, vol. 3, no. 3, pp. 169–175, 2018.

[23] Z. Yang, F.-L. Du, Y. Xia, C.-H. Zheng, and J. Zhang, “Automatic license
plate recognition based on faster r-cnn algorithm,” in Intelligent Computing
Methodologies: 14th International Conference, ICIC 2018, Wuhan, China, Au-
gust 15-18, 2018, Proceedings, Part III 14, Springer, 2018, pp. 319–326.

[24] R.-C. Chen et al., “Automatic license plate recognition via sliding-window
darknet-yolo deep learning,” Image and Vision Computing, vol. 87, pp. 47–56,
2019.

[25] T. Islam and R. I. Rasel, “Real-time bangla license plate recognition sys-
tem using faster r-cnn and ssd: A deep learning application,” in 2019 IEEE
International Conference on Robotics, Automation, Artificial-intelligence and
Internet-of-Things (RAAICON), IEEE, 2019, pp. 108–111.

44

[26] P. Ravirathinam and A. Patawari, “Automatic license plate recognition for
indian roads using faster-rcnn,” in 2019 11th international conference on ad-
vanced computing (ICoAC), IEEE, 2019, pp. 275–281.

[27] L. Yao, Y. Zhao, J. Fan, M. Liu, J. Jiang, and Y. Wan, “Research and applica-
tion of license plate recognition technology based on deep learning,” in Journal
of Physics: Conference Series, IOP Publishing, vol. 1237, 2019, p. 022 155.

[28] N. P. Ap, T. Vigneshwaran, M. S. Arappradhan, and R. Madhanraj, “Au-
tomatic number plate detection in vehicles using faster r-cnn,” in 2020 In-
ternational conference on system, computation, automation and networking
(ICSCAN), IEEE, 2020, pp. 1–6.

[29] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,
“End-to-end object detection with transformers,” in European conference on
computer vision, Springer, 2020, pp. 213–229.

[30] A. Chadha, S. Kashyap, M. Gupta, and V. Kumar, “License plate recognition
system using opencv & pytesseract,” CSI Journal of Computing, vol. 3, no. 3,
pp. 31–35, 2020.

[31] R. Chandan and M. Veena, “Vehicle number identification using machine
learning & opencv,” database, vol. 5, p. 6, 2020.

[32] T. Damak, O. Kriaa, A. Baccar, M. B. Ayed, and N. Masmoudi, “Automatic
number plate recognition system based on deep learning,” International Jour-
nal of Computer and Information Engineering, vol. 14, no. 3, pp. 86–90, 2020.

[33] K. T. Islam, R. G. Raj, S. M. Shamsul Islam, et al., “A vision-based machine
learning method for barrier access control using vehicle license plate authen-
tication,” Sensors, vol. 20, no. 12, p. 3578, 2020.

[34] N. Awalgaonkar, P. Bartakke, and R. Chaugule, “Automatic license plate
recognition system using ssd,” in 2021 International Symposium of Asian Con-
trol Association on Intelligent Robotics and Industrial Automation (IRIA),
IEEE, 2021, pp. 394–399.

[35] V. Gnanaprakash, N. Kanthimathi, and N. Saranya, “Automatic number plate
recognition using deep learning,” in IOP Conference Series: Materials Science
and Engineering, IOP Publishing, vol. 1084, 2021, p. 012 027.

[36] J. R. Kumar, B. Sujatha, and N. Leelavathi, “Automatic vehicle number plate
recognition system using machine learning,” in IOP Conference Series: Mate-
rials Science and Engineering, IOP Publishing, vol. 1074, 2021, p. 012 012.

[37] Lubna, N. Mufti, and S. A. A. Shah, “Automatic number plate recognition: A
detailed survey of relevant algorithms,” Sensors, vol. 21, no. 9, p. 3028, 2021.

[38] A. Sams and H. H. Shomee, Bangla lpdb - a, version v1, Zenodo, Apr. 2021.
doi: 10.5281zenodo.4718238. [Online]. Available: httpsdoi.org10.5281zenodo.
4718238.

[39] T. Islam and D. Mehedi Hasan Abid, “Automatic vehicle bangla license plate
detection and recognition,” in Smart Data Intelligence: Proceedings of ICSMDI
2022, Springer, 2022, pp. 523–534.

45

https://doi.org/10.5281zenodo.4718238
httpsdoi.org10.5281zenodo.4718238
httpsdoi.org10.5281zenodo.4718238

[40] B. Chang, H.-F. Tsai, and C.-W. Hsieh, “Accelerating the response of self-
driving control by using rapid object detection and steering angle prediction,”
Electronics, vol. 12, p. 2161, May 2023. doi: 10.3390/electronics12102161.

[41] D. Kumar and N. Muhammad, “Object detection in adverse weather for au-
tonomous driving through data merging and yolov8,” 2023.

46

https://doi.org/10.3390/electronics12102161

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	Nomenclature
	Introduction
	Thoughts behind the Prediction Model
	Problem Statement
	Project Objective

	Related Work
	Deep Learning Approaches
	Tools Used In the Papers
	Comparative Analysis

	Dataset
	Dataset Formation
	Dataset Construction
	90 degrees rotation augmentation
	Shear Augmentation
	Grayscale augmentation
	Brightness augmentation
	Blur augmentation
	Noise augmentation

	 Dataset Splitting and Forming Dataset

	Methodology
	Work plan
	Model Description
	YOLOv8
	YOLOv8 Architecture
	YOLOv7
	YOLOv7 Architecture
	YOLOv5
	YOLOv5 Architecture
	DETR
	DETR Architecture
	VGG16
	VGG16 Architecture
	Resnet50
	ResNet50 Architecture
	OCR
	OCR Architecture

	Web App Workflow

	Implementation and results
	Implementation
	YOLOv8 model results
	Graph
	Confusion Matrix

	YOLOv7 model results
	Graph
	Confusion Matrix

	YOLOv5 model results
	Graph
	Confusion Matrix

	VGG16
	VGG16 Loss and Accuracy Graph
	Confusion Matrix

	ResNet50
	ResNet50 Loss and Accuracy Graph
	Confusion Matrix

	Detection samples
	Overall result analysis
	License plate recognition (Web App Functionality)

	Future Work and Conclusion
	Future Work
	Conclusion

	Bibliography

