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Abstract
Online learning is growing in popularity these days. As a result, students typically
contribute millions of course-related responses to discussion forums and exchange
some learning experiences. This study focuses on online courses offered through
MOOC platforms and identifies the variables that affect students’ ability to stay fo-
cused. We suggest a unique method to address this issue by evaluating students’ lev-
els of concentration using the CNN architecture, MobileNetV2, VGG16, ResNet50,
and InceptionV3 models. Our goal is to determine whether the issue is with stu-
dents’ concentration, the course material, or both. Measurement of concentration
levels, evaluation of video data, comparison of model performances, and provision
of class-based concentration levels (attentive, inattentive, and sleepy) are the goals
of our research. The dataset underwent pre-processing, which included resizing for
analysis, frame extraction, and annotation for classification.

Our research offers educators insightful information that will help them to increase
the overall efficacy of online learning. Furthermore, the study advances the area by
offering a methodical technique for assessing and evaluating students’ concentration
on online courses.

Keywords: Concentration levels; CNN; MobileNetV2; VGG16; ResNet50; and
InceptionV3
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Chapter 1

Introduction

1.1 Motivation
We gather knowledge from both online and conventional sources concurrently. We
have become very dependent on these online platforms for a better understanding
of our studies. With this enthusiasm, students join many online courses but do not
continue to the end which impacts their knowledge. Also, in some cases, students
finish the course and achieve the certificate as well but they can not apply it in the
real world which creates an anomaly. As a result, they can not achieve the goal they
wanted from the course. So it is high time to find the cause behind their failure or
poor outcomes.

Many students are enrolling in free online courses, and a common challenge emerges
that a substantial portion tends to drop out and get poor marks. This phenomenon
can be attributed to either subpar course materials or low student concentration lev-
els. Most courses are structured around lectures, videos, PDF articles, and quizzes.
As students engaged with course content, we recorded their behavior and attentive-
ness by capturing video footage. Using these observations, we assess how students
perceive and engage with the courses. Through analyzing these features, we gain
valuable insights into areas that require attention for improvement or updates, be it
in course materials, instructor selection, technical aspects, or content quality. The
duration of the course plays a crucial role in attention span, with research indicating
that the maximum attention span for adults is around 20 minutes. This necessi-
tates a reevaluation of both course duration and teaching methods, emphasizing
interactive and captivating approaches. In our efforts to understand exam failures,
we employ deep learning techniques to delve deeper into the issue. Our approach
involves measuring students’ concentration levels to uncover the genuine reasons
behind their poor outcomes.

1.2 Research Problem
Students still struggle to feel at ease with MOOC platforms, but with time, we
increasingly rely on virtual materials over traditional ones. However, a significant
challenge emerges as many students enroll in courses.

MOOC platforms are actively investigating this issue to understand why students
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can not do good in the exams or fail. Two common reasons come out: either the
course materials or instructors fail to captivate their attention, or students strug-
gle to concentrate on the materials. This lack of engagement leads to poor marks
or even failure. In our research paper, we take a holistic approach, utilizing deep
learning to measure students’ concentration levels. This approach helps us pinpoint
whether the issue lies with the course materials, the student’s concentration, or a
combination of both. By identifying areas where students tend to lose focus, edu-
cators can enhance and update their materials to provide the learners with a better
learning experience.

1.3 Research Objectives
In this study, we introduce a deep learning approach to pinpoint the reasons behind
students’ low performance. Our main goal is to evaluate students’ concentration
levels, analyze the data, and determine whether students themselves are responsible
for their failure, or if there’s room for improvement in the course materials. This
process aims to enhance the interaction between teachers and students. To teach
our system to recognize student images, we utilized cutting-edge methods like De-
sign ConcentrateNet1, Design ConcentrateNet2, Design ConcentrateNet3, VGG16,
ResNet50, MobileNetV2, and InceptionV3. Additionally, this research provides an
opportunity for researchers to gather extensive data and unravel the complexities of
students leaving MOOC platforms. The objective of this research is:

• To measure students’ concentration levels to identify the actual problem and
use of video data to measure the concentration level of students.

• To provide class (attentive, inattentive & sleepy) and introduce a very light
and accurate model to measure the concentration level of students.

• To introduce an effective system in the education sector to improve the learning
experience of online courses.

1.3.1 Thesis Organization
The remaining sections of this paper are structured as follows:

• The literature review is presented in Chapter 2.

• The dataset collection and methodology are outlined in Chapter 3.

• The implementation is described in Chapter 4.

• The results are analyzed and discussed in Chapter 5.

• The conclusion and future work are mentioned in Chapter 6.
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Chapter 2

Literature Review

The analysis of acquiring knowledge tendencies has become more important on mod-
ern online learning platforms. A new study investigates how participants interact
with MOOCs (massively open online courses) and how that impacts their educa-
tional outcomes using an approach that utilizes mixed methods. Because the open
online platform has online review features, participants will utilize electronic word of
mouth, otherwise known as eWOM [8]. To eliminate product uncertainty and gain
product knowledge, consumers are increasingly turning to the online evaluation fea-
ture. Measuring students’ attentiveness is critical to effective learning, continuous
improvement, and feedback. The research [3] classifies participants as ”active” vs
”non-active” depending on their MOOC activities throughout certain times using
mobility logs from the Open EdX digital platform. It highlights some criteria, such
as video widths, watching beginning times, as well as associated periods, and also
acknowledges some limitations, like the difficulty of recording off-task behavior while
playing back videos. The amount of time a learner may spend watching videos can
be utilized in comparing their endurance to that of a mechanical part that fails. This
mechanism is connected to fatigue and stress. Because it significantly compares pro-
grams with short clips to those with lengthy films, it exercises caution when offering
nasty comments. Once more, synthetic measures have been added to enhance the
assessment of MOOCs’ attractiveness by offering a more nuanced picture of student
participation in addition to course recognition, like the general h-index, g-index, and
similar analogs [6].

To analyze the behaviors, two purposes are served here [7]. A survival function,
which indicates the proportion of learners who keep watching a course after a pre-
determined amount of time, is the initial. Secondly, the hazard function describes
these students’ rate of dropout over the period. The hazard function of the em-
pirical evidence is again a concave curve, but it grows thinner in the tails. The
concave portion resembles a bathtub’s curve, whereas the falling tail segment ex-
hibits the Lindy effect. Likewise, it provides significant information regarding the
flexible and varied students’ interactions with the course material. Throughout the
very first minute of watching, an improvement in enrollment rates was seen; this
was explained by the power-law concept and early-reducing dropouts. Although the
strategy may not be common across varied course environments, the implementation
of heterogeneity in features aims to account for specific variances across participants.

4



Another research work [2] focuses on Shenzhen University’s Fundamentals of Com-
puting Technology program and offers a thorough explanation of the format, length,
and bachelor students’ approach to assessments. This study makes use of advanced
analytical methods to understand and analyze human actions in MOOCs, includ-
ing behavioral scenarios, clustering (k-means), and categorization (Support Vector
Systems and AI Neural Networking). With the help of these models, Mumford’s
and Honey’s methods of evaluating methodologies of learning and data are better
understood, allowing participants to be classified as primarily energetic, inactive, or
both simultaneously. Observations as a result of showing connections among active
forum actions and educational styles. Although passive pupils are less engaged in
discussions and show a desire for more difficult assignments, active learners are more
engaged.

In recent decades, there has been a rapid growth in AI techniques to anticipate
rates of abandonment. The most widely utilized statistic in MOOC failures is the
data from the clickstream. Through the application of clickstream information as
well as educational analytics to comprehend dropout habits, especially during brief
periods. [14] The split of the information gathered was unbalanced, with 75.75% of
learners receiving qualification and 24.25% not receiving it. The selected algorithms
were determined by their effectiveness in predicting future outcomes in the context
of educational data mining (EDM) and learning analytics (LA) [12]. Furthermore,
a particular data set generated by the ”XuetangX” online course platform is used in
some research, and it is not made clear whether the suggested model can be applied
to other online course platforms as a variety of student groups. Resolving this issue
would improve the model’s generalizability outside of the particular dataset that was
utilized [10]. Here, the fast CNN strategy’s ability to convert low-dimensional, depth
characteristics into large-dimensional, sophisticated characteristics is a strength. For
academic predictive programs, there is a strong link connecting the final success of
students and their education-related behavior traits. Using strong techniques for
prediction is essential to tackling the problem of discovering students who are in
danger of skipping out and increasing overall curriculum performance. Another re-
search work [5], suggested the approach involves tensoring online course data to
get over these obstacles. Local tensors are used to record course-specific behav-
iors, and a global tensor is used to describe the entire dataset. Furthermore, the
analysis of immense digital program data has gotten significantly easier with the
use of leveraged natural language processing and has shown effectiveness in context
assessment. the Research has examined grammatical features, such as viewpoint, to
quantify language adaptability and evaluate psychological presence in conversations.
NLP techniques have also been used to examine involvement sentiments and feelings
in course platforms. So, the learning outcomes results (LOR) and adaptation results
(AR) are both of the primary portions of the results.

In another study [3], a semi-organized approach was used to collect qualitative in-
formation with an emphasis on adoption and experiences in education. Several 771
students make up the participants, consisting of 752 students. Here, statistical pro-
cedures such as t-tests, welch t-tests, Chi-square testing, and matching of propensity
scores are used in the analysis. NVivo 11 software is used to analyze qualitative data
in addition to the statistical evaluation. Again in paper[12], various metrics were
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used to evaluate the results in a different study, such as the Matthews Correlation
Coefficient (MCC), efficiency, Area Under Curve (AUC), accuracy, recall, F1-score,
and Kappa Sigma. But three models behaved better than the others: LR (logical
regression), light, and GB (gradient strengthening). When it comes to identifying
students who may struggle in a wide digital course, prediction models in partic-
ular—LightGBM, GB, and LR—serve as an invaluable early warning system. By
Week 0, for instance, accuracy was over 83%; by Week 1, it was 93.4%; and by
Week 2, it was even higher at 94.41% (excluding LDA). In each of Week 1 as well as
Week 2, the F1-score, which is the harmonic median of recall and precision, showed
87.05% and 88.91% of possible points. As a result, the developed models had a
significant amount of class independence, as evidenced by the AUC values, which
varied from 0.9376 to 0.9863 [12].

Every learner course pair’s performance status is represented by a characteristic
matrix, which is fed into the CNN. A logistical approach categorized by binary
(absenteeism or persistence) is included in the architectural sixth layer, which also
consists of convolutional and fully linked layers. During training [13], the corrected
linear unit (Relu) activation function and root mean square as a way of prop (RM-
Sprop) optimization are used. So, the outcomes of the experiment show that the
suggested CNN model can accurately forecast dropout rates in MOOCs. The ac-
curacy, recall, F measure, and preciseness are all higher with the model than with
baseline techniques. Precision, recall, and F-measure metrics highlight the model’s
ability to identify true dropout cases, with precision being approximately 10% bet-
ter than the average precision of baseline methods. The research [15] highlights
how crucial it is to keep the habits of learning in the features matrix in the correct
temporal sequence because tampering with the sequence of events has a substan-
tial impact on prediction accuracy. Again, the issue of kids’ short attention spans
has been addressed with the ALIVE Minds program. A circuit board known as the
ALIVE Minds Controllers (AMC) was created to track neural activity. According to
preliminary data, students’ focus improved on average by 18.77% when computing
and 39.45% when snoozing [4].

The relative importance of discrete behavioral data cannot be determined by CNN’s
algorithms’ automatic methods for removing features. It employ the FWTS-CNN
prediction method, which performed better than comparable models using the same
data set, owing to a comparison investigation [10]. To overcome the drawbacks
of current models, the FWTS-CNN forecasting system is presented as a solution
that combines feature engineering with time series. The shortcomings in handling
the fluctuating and non linear relationships found in online instructional data by
typical automated learning methods. Next, it emphasizes how networks using long-
short-term memory (LSTM) and recurrent neural networks, or RNN, can be used
to increase accuracy in predictions, but it also underlines how these networks have
limitations when it comes to capturing long-term relationships [9]. The findings
indicate that the FWTS-CNN method performs better than the baseline models,
proving how well it can handle the difficulties associated with MOOC dropout pre-
diction. The models’ effectiveness is emphasized using visual aids. For the models
to successfully forecast online course disengagement patterns, layers of convolutional
neural networks are essential for feature extraction. It allows instructors to see pat-
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terns of students’ temporal interaction in online courses neatly and cleanly, so they
can make informed decisions to support students in their next steps of acquisition
[20].

Furthermore, it employs both facial tracking data and facial emotion detection re-
sults to figure out blend design weights for blend-style and end-style face modeling.
Simple overseas pre-processing and face labels are not needed for this technology,
which makes it easy to employ for regular users. In real-time expression, videos
are produced via an algorithm called the First Order Action Model (FOMM). It
is confirmed by experimental results that the suggested method produces natural
face movies with a range of controlled attitudes [15]. Another paper [1], the video
dataset and a newly created database created expressly for this study were used in
the experiments, which demonstrated a high attitude categorization rate of 99.2%.
In a nutshell, there are several benefits to tracking students’ levels of concentration
when learning online, such as warning the instructor when a significant portion of
the class is unable to concentrate or providing suggestions for refocusing diverted
participants.

2.1 Existing Research Gaps
It is important to disclose the selection procedure and any biases because the pub-
lication [3] lacks comprehensive information regarding the selection method used
for the 771 participants, raising concerns about possible sampling bias. Also, while
unstructured telephone conversations were used to collect qualitative findings, the se-
curity of the subjective findings was diminished by the lack of information regarding
interview methodology and assessment techniques. Furthermore, the publications’
lack of clarity in identifying elements, control procedures, and statistical analysis
modifications reduces the trustworthiness and clarity of quantitative results. Re-
search work [7] has a flaw in that data from logs (icourses) cannot be utilized to
identify viewing while students are offline and a video is playing. Additionally, a
few frequently used video features, such as pause, advance or reverse, and speed
adjustment, are not covered in this article. In a study [15], there is not a thorough
examination of the suggested frameworks’ complexity. It’s critical to address over-
fitting related problems, particularly when using models based on deep learning.
The paper also talks about how different architectures work, but it doesn’t address
how the models can be understood. A practical use of these sophisticated models
of dropout prediction requires an understanding of their workings. It will be easier
to understand this crucial component of the model if intricate mathematical proce-
dures are made simpler and given a more natural explanation. Another paper [13],
is severely limited. It employs a predetermined set of five questions, which might
leave out certain student issues. Here, automated techniques can increase objec-
tivity, while manual sentiment classification creates bias. It’s possible that textual
sentiment doesn’t always match up with user ratings when quantifying comments.
Furthermore, the report does not investigate if the conclusions can be applied to
other platforms or cultural contexts. As a result, we can say that there is no such
paper that directly worked on students’ concentration levels to analyze the problem
of their poor outcomes. So we tried to fill the gap by doing our research in this area.
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Chapter 3

Methodology

3.1 Proposed Methodology
Figure 3.1 illustrates the overall system for measuring students’ concentration level

Figure 3.1: Top level overview of the method
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of several phases. Raw images that we collected from the videos were first passed
through the pre-processing phase. Also, data augmentation (horizontal flip, zoom
(0.5)) was done in the pre-processing phase as well. The pre-processed data set was
then divided into a training set, a validation set and a testing set. We trained the
selected models in phase 2 using the training data. The performance of our models
were measured with the following evaluation metrics: confusion matrix, precision,
accuracy, recall, and F1-score.

3.2 Dataset
To understand the reason behind the dropout of students in online courses, we
meticulously crafted a custom dataset for our research. We realized it was crucial
to have our very own image dataset to delve deep into the matter of measuring
students’ concentration levels.

3.2.1 Data requirements:
Our research focuses on measuring students’ concentration levels to understand the
shortcomings of course materials and dropouts, but there is no specific dataset that
we could use for this purpose. For this absence in the existing dataset, we needed
to create a new dataset to conduct our research. This dataset includes a range of
concentration levels that helped to conduct the research and contribute to advancing
the fields of deep learning and image processing.

3.3 Data collection methodology

3.3.1 Recording videos
We selected a course on DataCamp and recorded ourselves while going through the
course videos. Nine individuals contributed to creating a total of nine videos. Each
video spanning 30 minutes. We used various devices including phones, laptops, and
web cameras to create the videos.

3.3.2 Video annotation
After creating the videos we rewatched the videos and did annotations and selected
3 classes by voting. The three classes we selected were “Attentive”, “Inattentive”,
and “Sleepy”. For example, we observed that person X appeared sleepy during 5
to 7 minutes of their videos. Then we cross-checked our classification by asking X
whether they were indeed sleepy or not at that time. After confirming, we filtered
out the videos based on these three classifications. If they denied the classification
we repeated the process from annotation again.

9



Symptoms Time-duration Class
Watch Lecture 0:00-0:40 Attentive
Didn’t watch lecture 0:41-0:47 Inattentive
Watch Lecture 0:48-1:49 Attentive
Eyes closed 1:50-2:23 Sleepy
Watch Lecture 2:24-3:49 Attentive
Talking over phone 3:50-3:59 Inattentive
Watch Lecture 4:00-5:46 Attentive

Table 3.1: Preliminary video data annotation

3.3.3 Splitting and classification of the videos
After finalizing the annotation process and subsequent cross-verification, we split
the videos based on the defined classifications which are “Attentive”, “Inattentive”,
and “Sleepy”. Consequently, we obtained many sub-videos belonging to the three
different classes. Next, we organized and segregated these videos into three separate
files following the three classes. On average, each class comprised 10 videos. Thus
we completed our classification.

Figure 3.2: Attentive

Figure 3.3: Sleepy

Figure 3.4: Inattentive
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3.4 Data pre-processing
Data pre-processing is very essential in the context of Data analysis. It improves
the quality of data and transforms the data in such a way that the models can
be easily read or trained with accurate data. Pre-processing also handles missing
data which makes the dataset suitable for analysis. Moreover, different models have
different requirements for dataset characteristics, and pre-processing meets those
specifications. It ensures that the data is tailored to the different needs of each
model, allowing for optimal performance of different modeling approaches.

3.4.1 Converting to frames
During this phase, we converted the videos into frames using OpenCV. OpenCV is
a Python library. It helps in object detection, face recognition, image processing,
etc. Typically, the videos we watch are recorded at 60 frames per second (FPS).
However, for our research purposes, we specifically chose 3 frames per second(FPS).
If we captured 60 frames per second it could result in redundant frames within one
second. To mitigate this redundancy, we captured only the first, middle, and last
frames.

Figure 3.5: Frames in 1 second (Attentive)
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Figure 3.6: First, middle and last frames

3.4.2 Frame Annotation
To avoid anomalies in the dataset we repeated the annotation process. Suppose we
are converting an attentive video of person Y into frames. While doing so there is
a possibility that one frame captures an image where person Y’s eyes are closed. If
the machine is trained using this frame, it might incorrectly conclude that person
Y was sleeping during that time which will lead to inaccurate results. Therefore,
conducting the annotation again in this step is essential to ensure the accuracy of
the dataset.

Figure 3.7: Dataset Image classification Samples

3.4.3 Resizing images
Resizing is very significant in data preprocessing as different models have distinct
requirements for image input. This is pivotal for achieving optimal results. We
used VGG16, MobileNetV2, ResNet50, and InceptionV3 as our pre-trained model.
In VGG16, ResNet50, and MobileNetV2 image size requirement is 224*224, and in
InceptionV3 229*229. To meet these criteria, we resized our images to 100*00 to
make sure they fit the specifications of all the models.
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Figure 3.8: Before and after resize

3.4.4 Data Augmentation
Data augmentation is a machine learning technique. It expands a dataset by ap-
plying various transformations. Thus, it increases the diversity and variability of
the data. There are some common techniques for data augmentation: rotations,
flips, zooms, and brightness changes. It prevents overfitting, increases accuracy, and
reduces the operational cost of the models. In image processing, it increases per-
formance and resilience to handle real-life scenarios. For our dataset, we used the
horizontal flip and zooming technique. The zoom range is 0.5. As our dataset com-
prises images of people, we didn’t apply rotation, stretching, or cropping techniques
because these wouldn’t be meaningful in this context.

Figure 3.9: Before and after augmentation
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3.4.5 Rescaling
Scaling is a fundamental operation in image processing. Input values within a spe-
cific range enhance the stability of Neural network performance. A common way to
normalize a picture is to divide the pixel values by 255 which will scale down the
picture to the range [0,1]. Normalizing images ensures that all images in the dataset
are on a consistent scale. It helps in handling computational resources efficiently.
Moreover, small images reduce computational load and this makes the process faster.

We have images in the size of RGB in the color model, where the pixel values
range from 0 to 255. For normalizing the data, we divided the pixel values by 255
and scaled down the images to a new range of [0,1]. This normalization technique
was employed to maintain a consistent scale for all pixel values and enhance the
model performance.

Figure 3.10: Image array before rescaling

Figure 3.11: Image array after rescaling
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3.4.6 Pre-processed data
After implementing all the above techniques on the raw inputs, we successfully
pre-processed our data, preparing it for effective model training and reliable per-
formance. We used 80% of our data for validation, 10% for test and 10% for train
data.

Figure 3.12: Data representation

3.5 Model Specification

3.5.1 Convolutional Neural Network(CNN)
Convolutional Neural Networks (CNNs) are a class of deep neural networks that
are particularly effective for image recognition and computer vision tasks.CNN ar-
chitecture typically has three layers: convolutional layer, pooling layer, and fully
connected layer.

Figure 3.13: Architecture of our proposed CNN model

In convolution layer first layer is the input layer. It accepts the raw images. A
digital image contains a series of pixels where each pixel has a value that represents
the color or brightness of that pixel[16].

Convolution layer:
The convolution layer is the building block of CNN architecture. This is the main
layer for extracting features from raw input images. This layer performs a dot prod-
uct between the input image and a kernel or filter of a particular size. The kernel
size is spatially smaller than the input image. To identify patterns such as edges,
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textures, and more intricate structures, these filters glide across the input. The
kernel’s sliding size is called a stride.
Suppose a black-and-white image size is n ∗ n ∗ 1 and the filter size is f ∗ f ∗ c then
the formula:

(n− f + 1) ∗ (n− f + 1) ∗ c................(1)

For color image (RGB), the image size is n ∗ n ∗ 3 and the kernel size is f ∗ f ∗ 3
then the formula:

(n− f + 1) ∗ (n− f + 1) ∗ 1..................(2)

Here,n = image size, f =filters, c = number of filters.
The output of this layer is the featured map. It contains information about the
input image such as the corners and the edges. Then this map is given to the next
layer to extract more features and information of the image.

Pooling layer
Following a Convolutional Layer, a Pooling Layer is added to diminish computa-
tional costs by reducing the dimensions of the convolved feature map. Three kinds
of pooling are there: max pooling, average pooling, and sum pooling. In max pool-
ing the largest value is taken from the feature map for further operation. In average
pooling average value of the feature map is taken. In sum-pooling sum of all the
feature map values is taken.

Figure 3.14: Example pooling

The pooling layer generalizes the features that are extracted from the convolution
layer or the feature map and also diminishes computations within the network. Thus
it works like a bridge between the convolution layer and FC layer.

Fully connected layers:
In fully connected layers, every neuron is connected with every neuron of the next
layer. In this step, the input image we’ve been working with gets flattened and fed
to the Fully Connected (FC) layer[17]. The flattened layer goes through a few more
FC layers and the classification process begins to take place. Connecting two layers
is better because two FC layers work better than just one.
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3.5.2 MobileNet V2
MobileNetV2 model has 53 convolution layers. It is a type of convolutional neural
network architecture designed specifically for mobile and edge devices. It has one
AvgPool with nearly 350 GFLOP. MobileNetV2 uses depthwise separable convo-
lutions to factorize the ordinary convolution into depthwise and pointwise convo-
lutions[11]. Because each input channel has its spatial filter applied individually,
this architecture lowers computing loads. For real-time image processing jobs and
on-device machine learning applications, its careful trade-off between computing ef-
ficiency and model performance makes it a very valuable architecture. There are
two blocks:

• Inverted Residual block with stride 1.

• Bottleneck Residual Block with stride 2.

Internal components of stride 1 and 2 blocks:

Figure 3.15: Fully connected layer

There are three different layers for each block:

• 1x1 Convolution with Relu6

• Depthwise Convolution

• 1x1 Convolution without any non-linearity
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3.5.3 VGG 16
VGG16 is a deep convolutional neural network architecture that is considered to be
one of the best computer vision models to date. It is one of the popular algorithms
for image classification. VGG16 architecture has 16 weight layers, 13 convolutional
layers, and 3 fully connected layers[19]. The 16 in VGG16 denotes 16 layers that
have weights. It uses small 3x3 convolutional filters with stride 1 and the same
padding and max pool layer of the 2*2 filter of stride 2 for finer spatial details. As
a result, it showed a significant improvement on the prior-art configurations. Later
this architecture uses max pooling to reduce spatial dimension. VGG16 consists of
three fully connected layers with 4096 neurons, followed by a final output layer with
the number of neurons needed for the classification task. VGG16 was created to
handle 224 by 224-pixel input pictures with three RGB color channels.

Figure 3.16: VGG16 architecture

3.5.4 ResNet50
ResNet50 is a powerful classification model. The ResNet50 architecture can be di-
vided into four main parts. They are the convolutional layers, the identity block,
the convolutional block, and the fully connected layers. The convolution layer ex-
tracts features from the input image, identity, and convolution block process and
transforms these features and a fully connected layer makes the final classification.
The convolution layers of ResNet50 consist of several convolution layers[21]. These
layers extract the features such as edges, textures, and shapes from the input im-
age. After these convolution layers, there are max pooling layers that decrease the
spatial dimension of the feature maps. The identity block helps the network learn
residual functions that map the input to the desired output. In the convolutional
block, the 1*1 convolutional layer is used to reduce the number of filters before the
3 ∗ 3 convolutional layer. Fully connected layers indicate the final classification and
the output is given to softmax activation function.
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Figure 3.17: ResNet50 model architecture

3.5.5 InceptionV3
InceptionV3 was developed by Google. It is a very powerful architecture for image
processing and classification. It uses 1 ∗ 1 convolutions to improve computational
efficiency. It accelerates training and enhances robustness of the model by batch
normalization. It also has auxiliary classifiers. Overall, InceptionV3 marks a mile-
stone in the convolutional neural networks world. It demonstrates a brilliant design
that balances among complexity, efficiency and high-performance in various visual
recognition tasks[18].

Figure 3.18: InceptionV3 architecture
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Chapter 4

Implementation

4.1 Workflow
Our research journey started with the creation of a unique dataset. Given the The
below figure Figure 4.1 illustrates how our research plan developed over time. ab-
sence of an available dataset, we recorded 30-minute videos from 9 individuals to
evaluate concentration levels as a key factor in understanding student dropouts. As
a result, we followed a long process to pre-process our dataset which also involved
dividing the dataset into three segments: 80% for validation, 10% for training, and
another 10% for testing.

Moving forward, the model selection process began, where we identified effective
models for training in concentration level measurement. Our chosen models fell into
two categories: 1) Design models, including ConcentrateNet1 and ConcentrateNet2,
and ConcentrateNet3) Pre-trained models such as VGG16, MobileNetV2, Incep-
tionV3, and ResNet50.

With the models selected, we proceeded to set them up, execute them, and fine-tune
hyperparameters. The implementation phase encompassed both design models and
pre-trained models.
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Figure 4.1: Workflow details for implementation.

4.2 Setup for Experiment

4.2.1 Training Hardware and Software
Experiments have been carried out on a device with the hardware characteristics
demonstrated below.
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Table 4.1: Summary of hardware characteristics

CPU Core i7 8th Gen
GPU NVIDIA GeForce GTX 1050 Ti
RAM 12GB
ROM 1TB
OS Windows 11

On this device we used Google Colab for running the code.

4.2.2 Library List

Table 4.2: Summary of Python library list

Serial No Library Version
1 OpenCV 4.8.0
2 Numpy 1.23.5
3 Matplotlib 3.7.1
4 Pandas 1.5.3
5 SKLearn 1.2.2
6 PIL 9.4.0
7 Keras 2.15.0
8 Tensorflow 2.15.0
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4.2.3 Structural view of the code skeleton

Figure 4.2: Structural view of the code skeleton

4.3 Pre-processing & Augmentation

4.3.1 Pre-processing
Image data is generated from the classified videos. The image data is converted by
generating frames from video using the OpenCV library. Usually, there are 40-60
frames in 1 second video. But we took only 3 frames from every one second. If we
think about 1 second then we take the first, middle, and last frame. Because, in
1 second video there are multiple same frames. Which creates redundancy in the
dataset. Next, we check every frame whether the frame is in the correct class or
not. The classes are showing in Figure 4.3 Our next goal is to reduce the size of the
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dataset. Since we have almost 15 thousand images so if we do not reduce the size
of the images then the dataset will be huge. Moreover, it will be very difficult to
work with this large sized dataset. That is why we resize every image to 100x100.
It will also help to ensure consistency in the dataset. The images are both in PNG
and JPG format.

Figure 4.3: Image classification

4.3.2 Augmentation
The augmentation techniques help to increase the diversity of the dataset. There are
different types of augmentation techniques such as flip, rotation, shearing, zooming,
etc. We augment the dataset with ImageDataGenerator by giving two arguments.
The arguments we are giving in the parameter are shown in the Table 4.3. The
first argument is horizontal flip. That means we wanted to create a mirror image of
the original image then zoom the image. The zoom range was 0.5. That means we
take an image and augment the image by horizontal flipping and zooming Figure 4.4
Then we rescale the image. That means we normalize the pixel value by dividing

Figure 4.4: Before and after augmentation

255. As a result, the range of pixel value of any image should be in between 0 and
1. This helps the model converge faster during training.
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Table 4.3: Parameters used in data augmentation

Generator Type Facility
Horizontal Flip True
Zoom 0.5 (range)

Table 4.4: Number of samples before & after augmentation

Classes Samples before augmentation Samples after augmentation
Attentive 2797 5252
Inattentive 2634 4961
Sleepy 2768 5157

4.4 Model selection
To train the image dataset for measuring the concentration we try to select lightweight
models to classify the images. To classify the images we use CNN architecture. We
design 3 models based on CNN architecture. These are ConcentrateNet1(CNN1),
ConcentrateNet2(CNN2) and ConcentrateNet3(CNN3). These models are very lightweight
with high accuracy. Moreover, we also select 4 pre-trained models which are compar-
atively lighter than other pre-trained models. When it came to model selection, we

Figure 4.5: Diagram of model selection

gave a strong emphasis on both robustness and uniqueness. We carefully handle the
transfer learning layer. Because these models have never seen these data previously.

4.5 Hyperparameter Tuning
Hyperparameters are the parameters that we pass when a function or class being
called. The parameter value is very important when it comes to the performance of
an algorithm. Perfect parameter value boost the performance of an algorithm. The
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same goes for a model. It has a direct impact on the model’s performance. Choosing
the proper hyperparameter values is a crucial part when it comes to the effectiveness
of any machine learning algorithm. In our scenario, when we trained our inception
v3 model we used Adam as the optimizer and learning rate=0.001. As a result, we
got very low validation accuracy. Then we changed the learning rate from 0.001 to
0.0001 which spiked up the validation accuracy from 35% to almost 90%. In another
scenario when we were trying to train the model we set the step_per_epoc value
randomly. As a result, our model was unable to fully train because this stage our
model could only learn from the (step_per_epoc∗ batch_size) images. However, we
had to train the model with all of our images so we set the step_per_epoc = number
of images in train dataset/batch_size. After that, we got our expected validation
accuracy.

4.6 Design & Compile the Models

4.6.1 ConcentrateNet1
The model consists of three convolutional layers, along with a max-pooling layer
with a 2x2 pool size in each convolutional layer. Max-pooling layer used for down-
sampling. It reduce the image information. As a result, the computational cost
get reduced. The first layer has 16 filters, the second has 32 filters, and the third
has 64 filters. We used ReLU as activation function in every convolutional layer.
Then we implement flatten layer. The flattened output is passed through a densely
connected layer with 512 neurons and a ReLU activation function. After that, we
used a dropout layer with a dropout rate of 0.2. This layer helps to allay from
overfitting. Finally, we implement the output layer that consists three neurons with
a softmax activation function. The softmax function is suitable for multiclass. The
aim of this model is to learn hierarchical features through convolution and pooling
operations, dense layers for classification, while dropout helps enhance generaliza-
tion by preventing overfitting during training.

Then we compile the model using the Adam optimizer with a learning rate of 0.001.
We choose categorical cross-entropy as loss function, which is suitable for multi-
class classification. Additionally, the accuracy metric is specified for monitoring the
model’s performance during training and evaluation.

4.6.2 ConcentrateNet2
The model consists of three convolutional layers, along with a max-pooling layer
with a 2x2 pool size and a batch-normalization layer in each convulutional layer.
Max-pooling layer used for down-sampling. It reduce the image information. As a
result, the computational cost get reduced. The first layer has 16 filters, the second
has 32 filters, and the third has 64 filters. We used ReLU as activation function in
every convolutional layer. Then we implemente flatten layer. The flattened output
is passed through a densely connected layer with 128 neurons and a ReLU activation
function. After that, we used a dropout layer with a dropout rate of 0.2. This layer
helps to allay from overfitting. Finally, we implement the output layer that consists
three neurons with a softmax activation function. The softmax function is suitable
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for multiclass. The aim of this model is to learn hierarchical features through con-
volution and pooling operations, dense layers for classification, while dropout helps
enhance generalization by preventing overfitting during training.

Then we compile the model using the RMSprop optimizer with a learning rate
of 0.001. We choose categorical cross-entropy as loss function, which is suitable for
multi-class classification. Additionally, the accuracy metric is specified for monitor-
ing the model’s performance during training and evaluation.

4.6.3 ConcentrateNet3
The model consists of three convolutional layers, along with a batch-normalization
layer and a avg-pooling layer with a 2x2 pool size in each convulutional layers.
Avg-pooling layer used for down-sampling. It reduce the image information. As a
result, the computational cost get reduced. The first layer has 16 filters, the second
has 32 filters, and the third has 64 filters. We used ReLU as activation function in
every convolutional layer. Then we implement flatten layer. The flattened output is
passed through a densely connected layer with 512 neurons and a ReLU activation
function. After that, we used a dropout layer with a dropout rate of 0.2. This layer
helps to allay from overfitting. Finally, we implement the output layer that consists
three neurons with a softmax activation function. The softmax function is suitable
for multiclass. The aim of this model is to learn hierarchical features through con-
volution and pooling operations, dense layers for classification, while dropout helps
enhance generalization by preventing overfitting during training.

Then we compile the model using the Adam optimizer with a learning rate of 0.001.
We choose categorical cross-entropy as loss function, which is suitable for multi-
class classification. Additionally, the accuracy metric is specified for monitoring the
model’s performance during training and evaluation.

4.6.4 VGG16
The VGG16 is a pre-trained model which is trained on the large dataset. First, we
load the model. Then, we exclude the original fully connected layers of VGG16.
After that, we modify the model by adding a global average pooling layer to the
output of the VGG16 base model. Howevert, we implement a densely connected
layer with 512 neurons and use ReLU as an activation function. The final output
layer is a dense layer with three neurons. We used softmax activation function in
output layer. Which is suitable for a multi-class classification. The resulting model
takes advantage of the pre-trained VGG16 features for effective feature extraction
from images.

Then we compile the model using the Adam optimizer with a learning rate of 0.001.
We choose categorical cross-entropy as a loss function during compilation. which
is suitable for multi-class classification. Lastly, the accuracy metric is specified for
monitoring the model’s performance during training and evaluation.
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4.6.5 ResNet50
The ResNet50 is a pre-trained model which is trained on the large dataset. First, we
load the model. Then, we exclude the original fully connected layers of ResNet50.
After that, we modify the model by adding a global average pooling layer to the
output of the ResNet50 base model. Howevert, we implement a densely connected
layer with 128 neurons and use ReLU as an activation function. The final output
layer is a dense layer with three neurons. We used softmax activation function in
output layer. Which is suitable for a multi-class classification. The resulting model
takes advantage of the pre-trained ResNet50 features for effective feature extraction
from images.

Then we compile the model using the Adam optimizer with a learning rate of 0.001.
We choose categorical cross-entropy as a loss function during compilation. which
is suitable for multi-class classification. Lastly, the accuracy metric is specified for
monitoring the model’s performance during training and evaluation.

4.6.6 InceptionV3
The InceptionV3 is a pre-trained model which is trained on the large dataset. First,
we load the model. Then, we exclude the original fully connected layers of Incep-
tionV3. After that, we modify the model by adding a global average pooling layer
to the output of the InceptionV3 base model. However, we implement a densely
connected layer with 128 neurons and use ReLU as an activation function. The final
output layer is a dense layer with three neurons. We used the softmax activation
function in the output layer. Which is suitable for a multi-class classification. The
resulting model takes advantage of the pre-trained InceptionV3 features for effective
feature extraction from images.

Then we compile the model using the Adam optimizer with a learning rate of 0.0001.
We choose categorical cross-entropy as a loss function during compilation. Which
is suitable for multi-class classification. Lastly, the accuracy metric is specified for
monitoring the model’s performance during training and evaluation.

4.6.7 MobileNestV2
The MobileNetV2 is a pre-trained model which is trained on the large dataset.
First, we load the model. Then, we exclude the original fully connected layers of
MobileNetV2. After that, we modify the model by adding a global average pool-
ing layer to the output of the MobileNetV2 base model. However, we implement a
densely connected layer with 128 neurons and use ReLU as an activation function.
The final output layer is a dense layer with three neurons. We used the softmax
activation function in the output layer. Which is suitable for a multi-class classifica-
tion. The resulting model takes advantage of the pre-trained InceptionV3 features
for effective feature extraction from images.

Then we compile the model using the Adam optimizer with a learning rate of 0.001.
We choose categorical cross-entropy as a loss function during compilation. which
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is suitable for multi-class classification. Lastly, the accuracy metric is specified for
monitoring the model’s performance during training and evaluation.

4.7 Train & Evaluate the Models

4.7.1 ConcentrateNet1
We train this model by providing the train and validation dataset. The batch
size is 4. So, steps per epoch = number of training samples / batch size. Which
means that the training process will iterate a number of steps that is equal to one-
fourth of the total number of samples in the training dataset during each epoch.
The training will be executed for 10 epochs as we set epochs = 10. We also use
callbacks. Which will monitor the validation accuracy and save the model which is
responsible for maximum validation accuracy. We also store the training history in
a variable and visualize it on a graph Figure 4.6. The figure represents two graphs
one is training_accuracy Vs validation_accuracy and the other one is training_loss
Vs validation_loss.

Figure 4.6: Training_accuracy Vs Validation_accuracy & Training_loss Vs Valida-
tion_loss

Then we evaluate the model with the test dataset. The performance matrices of
evaluation are given below Table 4.5.

Table 4.5: Summary of performance matrices of evaluation

Metric Value
Accuracy 0.9309
Loss 0.8629
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4.7.2 ConcentrateNet2
We train this model by providing the train and validation dataset. The batch
size is 32. So, steps per epoch = number of training samples / 32. which means
that the training process will iterate a number of steps that is equal to one-thirty
seconds of the total number of samples in the training dataset during each epoch.
The training will be executed for 20 epochs as we set epochs = 20. We also use
callbacks. Which will monitor the validation accuracy and save the model which is
responsible for maximum validation accuracy. We also store the training history in
a variable and visualize it on a graph Figure 4.7. The figure represents two graphs
one is training_accuracy Vs validation_accuracy and the other one is training_loss
Vs validation_loss.

Figure 4.7: Training_accuracy Vs Validation_accuracy & Training_loss Vs Valida-
tion_loss

Then we evaluate the model with the test dataset. The performance metrics of
evaluation are given below Table 4.6

Table 4.6: Summary of performance matrices of evaluation

Metric Value
Accuracy 0.9270
Loss 1.4355
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4.7.3 ConcentrateNet3
We train this model by providing the train and validation dataset. The batch size
is 4. So, steps per epoch = number of training samples / batch size. which means
that the training process will iterate several steps that are equal to one-fourth of
the total number of samples in the training dataset during each epoch. The train-
ing will be executed for 15 epochs as we set epochs = 15. We also use callbacks.
Which will monitor the validation accuracy and save the model which is responsible
for maximum validation accuracy. We also store the training history in a variable
and visualize it on a graph Figure 4.8. The figure represents two graphs one is
training_accuracy Vs validation_accuracy and the other one is training_loss Vs
validation_loss.

Figure 4.8: Training_accuracy Vs Validation_accuracy & Training_loss Vs Valida-
tion_loss

Then we evaluate the model with the test dataset. The performance metrics of
evaluation are given below Table 4.7

Table 4.7: Summary of performance matrix of evaluation

Metric Value
Accuracy 0.9218
Loss 2.9780
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4.7.4 VGG16
We train this model by providing the train and validation dataset. The batch size
is 4. So, steps per epoch = number of training samples / batch size. Which means
that the training process will iterate several steps that is equal to one-third of the
total number of samples in the training dataset during each epoch. The training
will be executed for 10 epochs as we set epochs = 10. We also use callbacks. Which
will monitor the validation accuracy and save the model which is responsible for
maximum validation accuracy. We also store the training history in a variable
and visualize it on a graph Figure 4.9. The figure represents two graphs one is
training_accuracy Vs validation_accuracy and the other one is training_loss Vs
validation_loss.

Figure 4.9: Training_accuracy Vs Validation_accuracy & Training_loss Vs Valida-
tion_loss

Then we evaluate the model with the test dataset. The performance metrics of
evaluation are given below Table 4.8

Table 4.8: Summary of performance matrices of evaluation

Metric Value
Accuracy 0.8951
Loss 1.2891
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4.7.5 MobileNetV2
We train this model by providing the train and validation dataset. The batch size
is 4. So, steps per epoch = number of training samples / batch size. Which means
that the training process will iterate several steps that is equal to one-fourth of the
total number of samples in the training dataset during each epoch. The training
will be executed for 5 epochs as we set epochs = 5. We also use callbacks. Which
will monitor the validation accuracy and save the model which is responsible for
maximum validation accuracy. We also store the training history in a variable
and visualize it on a graph Figure 4.10. The figure represents two graphs one is
training_accuracy Vs validation_accuracy and the other one is training_loss Vs
validation_loss.

Figure 4.10: Training_accuracy Vs Validation_accuracy & Training_loss Vs Vali-
dation_loss

Then we evaluate the model with the test dataset. The performance matrices of
evaluation is given below Figure 4.10.

Table 4.9: Summary of performance matrices of evaluation

Metric Value
Accuracy 0.8579
Loss 0.6057
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4.7.6 ResNet50
We train this model by providing the train and validation dataset. The batch size
is 4. So, steps per epoch = number of training samples / batch size. Which means
that the training process will iterate several steps that is equal to one-fourth of the
total number of samples in the training dataset during each epoch. The training
will be executed for 10 epochs as we set epochs = 10. We also use callbacks. Which
will monitor the validation accuracy and save the model which is responsible for
maximum validation accuracy. We also store the training history in a variable
and visualize it on a graph Figure 4.11. The figure represents two graphs one is
training_accuracy Vs validation_accuracy and the other one is training_loss Vs
validation_loss.

Figure 4.11: Training_accuracy Vs Validation_accuracy & Training_loss Vs Vali-
dation_loss

Then we evaluate the model with the test dataset. The performance metrics of
evaluation are given below Table 4.10.

Table 4.10: Summary of performance matrices of evaluation

Metric Value
Accuracy 0.9o92
Loss 1.6781
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4.7.7 InceptionV3
We train this model by providing the train and validation dataset. The batch size
is 4. So, steps per epoch = number of training samples / batch size. Which means
that the training process will iterate a number of steps that is equal to one-fourth
of the total number of samples in the training dataset during each epoch. The
training will be executed for 5 epochs as we set epochs = 5. We also use callbacks.
Which will monitor the validation accuracy and save the model which is responsible
for maximum validation accuracy. We also store the training history in a variable
and visualize it on a graph Figure 4.12. The figure represents two graphs one is
training_accuracy Vs validation_accuracy and the other one is training_loss Vs
validation_loss.

Figure 4.12: Training_accuracy Vs Validation_accuracy & Training_loss Vs Vali-
dation_loss

Then we evaluate the model with the test dataset. The performance metrics of
evaluation are given below Table 4.11.

Table 4.11: Summary of performance matrices of evaluation

Metric Value
Accuracy 0.8970
Loss 1.2697
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Chapter 5

Result Analysis

5.1 Comparison between our design model (con-
centrateNet1,2,3)and the pre-trained model

Using precision, accuracy, recall, and f1-score, we evaluate ConcentrateNet1, con-
centrateNet2, ConcentrateNet3, and the pre-trained model named VGG16, Incep-
tionV3, ResNet50, MobileNetV2. The results are shown in Table 5.1 Table 5.2

Table 5.1: Shows the comparison between our design models

Mod-
els

Ac-
cu-
racy

Precision Recall F1-score Specificity

At-
ten-
tive

Inat-
ten-
tive

Sle
epy

At-
ten-
tive

Inat-
ten-
tive

Sle
epy

At-
ten-
tive

Inat-
ten-
tive

Sle
epy

At-
ten-
tive

Inat-
ten-
tive

Sle-
epy

Con-
cen-
trate
Net1

93.1 95.2 90.1 94.1 90.3 95.9 93.2 92.7 92.9 93.7 97.6 95 97.1

Con-
cen-
trate
Net2

92.7 94.6 91.6 91.9 90.7 92.9 94.6 92.6 92.3 93.2 97.3 95.9 95.8

Con-
cen-
trate
Net3

92.2 96.3 91.5 89.2 88.8 91.7 96.1 92.4 91.6 92.5 98.2 95.9 94.1
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Table 5.2: Shows the comparison between pre-trained models

Mod-
els

Ac-
cu-
racy

Precision Recall F1-score Specificity

At-
ten-
tive

Inat-
ten-
tive

Sle
epy

At-
ten-
tive

Inat-
ten-
tive

Sle
epy

At-
ten-
tive

Inat-
ten-
tive

Sle
epy

At-
ten-
tive

Inat-
ten-
tive

Sle-
epy

VGG
16 89.5 92.7 86.3 89.7 86.66 89.1 92.8 89.6 87.7 91.2 96.4 93.3 94.6

Mo-
bile
NetV2

85.8 78.6 96.2 87.9 97.7 66.5 92.2 87.1 78.6 90.0 86.1 98.8 93.6

Res
Net
50

90.4 94.80 93.2 84.7 86.8 86.3 98.1 90.7 89.6 90.9 97.5 97.0 91.1

In-
cep-
tion
V3

89.7 89.9 90.7 88.8 91.4 81.4 95.9 90.7 85.7 92.2 94.7 95.9 93.9

5.2 Class-wise study for the Confusion matrix
Confusion matrix predicts the measures of the performance of a machine learning
model on test data. It shows the number of accurate and inaccurate instances from
the model’s prediction. It is commonly used in classification models. The confusion
matrix can be broken down into four outcomes:

• TP (True Positive): The model correctly predicted as positive instances as
positive. For example, it is predicting a Dog when it is a Dog.

• TN (True Negative): The model correctly predicted negative instances as
negative. For example, it is predicting Not Dog when it is Not Dog

• FP (False Positive): The model incorrectly predicted negative instances as
positive. Suppose, the model is predicting a Dog while it is a Not Dog.

• FN (False Negative):The model incorrectly predicted positive instances as neg-
ative. Suppose, the model is predicting a Not Dog while it is a Dog.

For our research scenario, we categorize the confusion matrix outcomes into two:
True and False Values. let’s delve into understanding the confusion matrices below:
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ConcentrateNet1:

Figure 5.1: ConcentrateNet1 confusion matrix

Let’s explain the first value of the matrix. In the vertical direction, we set ’Actual
Class’ and in the horizontal direction, we set ’Predicted Class’. From the matrix
demonstrates (Figure 5.1) that in the attentive row, the total actual attentive frames
are 474+28+23 = 525 . In the first column, the model predicted 474 attentive frames
among 525 attentive frames, 13 inattentive frames as attentive frames, and 11 sleepy
frames as attentive frames.
The second row illustrates that the total actual inattentive frames are 13+475+7 =
495. In the second column, the model predicted 28 attentive frames as inattentive
frames, 475 inattentive frames as inattentive frames, and 24 sleepy frames as inat-
tentive frames.
The third row depicts that the total actual sleepy frames are 11+24+480 = 415.
In the third column, the model predicted 23 attentive frame as a sleepy frame, 7
inattentive frame as a sleepy frame, and 480 sleepy frames as sleepy frames.

Now we can also summarize by saying that in this confusion matrix, all the diagonal
values are true predictions and others are false predictions.

ConcentrateNet2:

Likewise, in this confusion matrix (Figure 5.2), all the diagonal values are True
predictions and others are False predictions of the model.

• True predictions: 476,460,487(Diagonal light blue boxes)

• False predictions: 21,28,20,15,7,21 (row-wise-All the bottle green boxes)
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Figure 5.2: ConcentrateNet2 confusion matrix

ConcentrateNet3:

Figure 5.3: ConcentrateNet3 confusion matrix

Similarly to the other confusion matrices, the diagonal values of this matrix (Fig-
ure 5.3) are the true predictions and others are False predictions of the model.

• True predictions: 466,454,495(Diagonal light blue boxes)

• False predictions: 28,31,12,29,6,14 (row wise-All the bottle green boxes)
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VGG16:

Figure 5.4: VGG16 confusion matrix

In (Figure 5.4) matrix, all the diagonal values of this matrix are the true predictions
and others are the False predictions of the model.

• True predictions: 455,441,478(Diagonal light blue boxes)

• False predictions: 47,23,22,32,14,23 (All the bottle green boxes)

InceptionV3:

Figure 5.5: InceptionV3 confusion matrix

Here again, all the diagonal values of this matrix (Figure 5.5) are the true predictions
and others are False predictions of the model.

• True predictions: 480,403,494(Diagonal light blue boxes)

• False predictions: 27,18,48,44,6,15 (All the bottle green boxes)
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ResNet50:

Figure 5.6: ResNet50 confusion matrix

In the same way, all the diagonal values of this matrix (Figure 5.6) are the true
predictions and others are False predictions of the model.

• True predictions: 456,427,505(Diagonal light blue boxes)

• False predictions: 26,43,20,48,5,5 (All the bottle green boxes)
MobileNetV2:

Figure 5.7: MobileNetV2 confusion matrix

In the same way, all the diagonal values of this matrix are the true predictions and
others are False predictions of the model.

• True predictions: 513, 329, 475(Diagonal light blue boxes)

• False predictions: 1,11,112,54,28,12 (All the bottle green boxes)
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5.3 Output

5.3.1 Analysing our Design model (Concentrate1, Concem-
trate2, Concentrate3) and the pre-trained model

Pre-trained models:
In this research paper, we used VGG16, InceptionV3, ResNet50, and MobileNetV2
as pre-trained models. These models have low accuracy comparing with our models.
Moreover, the Precision, Recall, F1 score, and Specificity values of these models are
decent. However, the computational costs are also high. This is because of the huge
number of neurons and dense layers. The formulas we have used to find these values
are given below:

1. accuracy = TP/(TP+FP+FN+TN)

2. precision = T/(TP + FP)

3. recall = TP / (TP + FN)

4. f1_score = 2 x ( precision x recall ) /(precision + recall)

5. specificity = TN / ( TN + FP )

Here,TP = True positive, TN = True negative, FN = False negative, FP = False
positive.
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5.3.2 Our Design models:
We used 3 designed models for our research purpose. These models are very lightweight
and the computational costs are also very low. Because it has fewer neurons and
less number of dense layers. Our three models: ConcentrateNet1, ConcentrateNet2,
and ConcentrateNet3 have higher accuracy then pre-trained models. It indicates
that our models’ performance is very good. So these models are very preferable.

Table 5.3: shows the summary of the ConcentrateNet1 model

Layer Output Shape Parameters
conv2d (Conv2D) (None,100,100,16) 448
max_pooling2d (MaxPool-
ing2D) (None,50,50,16) 0

conv2d_1 (Conv2D) (None,50,50,32) 4640
max_pooling2d_1 (MaxPool-
ing2D) (None,25,25,32) 0

conv2d_2 (Conv2D) (None,25,25,64) 18496
max_pooling2d_2 (MaxPool-
ing2D) (None,12,12,64) 0

flatten (Flatten) (None,9216) 0
dense (Dense) (None,512) 4719104
dropout (Dropout) (None,512) 0
dense_1 (Dense) (None,3) 1539
Total parameters 4744227
Trainable Parameters 4744227
Non-trainable parameters 0
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Table 5.4: Shows the summary of the ConcentrateNet2 model

Layer Output Shape Parameters
conv2d (Conv2D) (None,98,98,16) 448
max_pooling2d (MaxPool-
ing2D) (None,49,49,16) 0

batch_normalization (Batch-
Normalization) (None,49,49,16) 64

conv2d_1 (Conv2D) (None,47,47,32) 4640
max_pooling2d_1 (MaxPool-
ing2D) (None,23,23,32) 0

batch_normalization_1
(BatchNormalization) (None,23,23,32) 128

conv2d_2 (Conv2D) (None,21,21,64) 18496
max_pooling2d_2 (MaxPool-
ing2D) (None,10,10,64) 0

batch_normalization_2
(BatchNormalization) (None,10,10,64) 256

flatten (Flatten) (None,6400) 0
dense (Dense) (None,128) 819328
dropout (Dropout) (None,128) 0
dense_1 (Dense) (None,3) 387
Total parameters 843747
Trainable Parameters 843523
Non-trainable parameters 224
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Table 5.5: Shows the summary of the ConcentrateNet3 model

Layer Output Shape Parameters
conv2d (Conv2D) (None,100,100,16) 448
batch_normalization (Batch-
Normalization) (None,100,100,16) 64

average_pooling2d (Average-
Pooling2D) (None,50,50,16) 0

conv2d_1 (Conv2D) (None,50,50,32) 4640
batch_normalization_1
(Batch Normalization) (None,50,50,32) 128

average_pooling2d (Average-
Pooling2D) (None,25,25,32) 0

conv2d_2 (Conv2D) (None,25,25,64) 18496
batch_normalization_2
(BatchNormalization) (None,25,25,64) 256

average_pooling2d (Average-
Pooling2D) (None,12,12,64) 0

flatten (Flatten) (None,9216) 0
dense (Dense) (None,512) 4719104
dropout (Dropout) (None,512) 0
dense_1 (Dense) (None,3) 1539
Total parameters 4719104
Trainable Parameters 4719104
Non-trainable parameters 224
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5.3.3 Visual Representation and Analysis of the Result Im-
plementation

We divided our dataset into three categories. They are Attentive, Inattentive and
Sleepy. We used 10% of our total dataset as a test dataset. In the test dataset, the
count of attentive frames = 525, inattentive frames = 495, and sleepy = 515. Per-
centage values are 34.20%, 32.24%, and 33.55% respectively. Analyzing each model
against these values through the bar chart and pie chart provided below.

ConcentrateNet1:

Figure 5.8: Graphical representation of ConcentrateNet1 model result

Table 5.6: summary of the ConcentrateNet1 model result

Actual Test Dataset Values ConcentrateNet1 predicted value
Atten-
tive

inatten-
tive Sleepy Atten-

tive
inatten-
tive Sleepy

Frames in
number 525 495 515 498 527 510

Percentage 34.20% 32.25% 33.55% 32.44% 34.33% 33.22%

In elaboration, the actual attentive test dataset value was 525. However, the model
predicted 498 frames as attentive. It accurately predicted 474 frames as attentive
(as depicted in Figure 5.1) and predicted the rest of the 24 frames incorrectly. So
we can easily say that our model ConcentrateNet1’s prediction and performance are
very good and accurate.
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ConcentrateNet2:

Figure 5.9: Graphical representation of ConcentrateNet2 model result

Table 5.7: Shows the summary of the ConcentrateNet2 model result

Actual Test Dataset Values ConcentrateNet2 predicted value
Atten-
tive

inatten-
tive Sleepy Atten-

tive
inatten-
tive Sleepy

Frames in
number 525 495 515 503 502 530

Percentage 34.20% 32.25% 33.55% 32.77% 32.70% 34.53%

In elaboration, the actual attentive test dataset value was 525. However, the model
predicted 503 frames as attentive. It accurately predicted 476 frames as attentive
(as depicted in Figure 5.2) and predicted one frame incorrectly. So we can easily
say that 27 model ConcentrateNet2’s prediction and performance are very good and
accurate.
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ConcentrateNet3:

Figure 5.10: Graphical representation of ConcentrateNet3 model result

Table 5.8: Shows the summary of the ConcentrateNet3 model result

Actual Test Dataset Values ConcentrateNet2 predicted value
Atten-
tive

inatten-
tive Sleepy Atten-

tive
inatten-
tive Sleepy

Frames in
number 525 495 515 484 496 555

Percentage 34.20% 32.25% 33.55% 31.53% 32.31% 36.16%

In elaboration, the actual attentive test dataset value was 525. However, the model
predicted 484 frames as attentive. It accurately predicted 466 frames as attentive
(as depicted in Figure 5.3) and predicted the rest of the 18 frames incorrectly. So
we can easily say that our model ConcentrateNet3’s prediction and performance are
very good and accurate.
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VGG16:

Figure 5.11: Graphical representation of VGG16 model result

Table 5.9: Shows the summary of the VGG16 model result

Actual Test Dataset Values VGG16 predicted value
Atten-
tive

inatten-
tive Sleepy Atten-

tive
inatten-
tive Sleepy

Frames in
number 525 495 515 491 511 533

Percentage 34.20% 32.25% 33.55% 31.99% 33.29% 34.72%

In elaboration, the actual attentive test dataset value was 525. However, the model
predicted 491 frames as attentive. It accurately predicted 455 frames as attentive
(as depicted in Figure 5.4) and predicted the rest of the 36 frames incorrectly. So we
can easily say that our model VGG16’s prediction and performance are very good
and accurate.
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InceptionV3:

Figure 5.12: Graphical representation of InceptionV3 model result

Table 5.10: Shows the summary of the InceptionV3 model result

Actual Test Dataset Values InceptionV3 predicted value
Atten-
tive

inatten-
tive Sleepy Atten-

tive
inatten-
tive Sleepy

Frames in
number 525 495 515 534 445 556

Percentage 34.20% 32.25% 34.79% 31.27% 28.99% 36.22

In elaboration, the actual attentive test dataset value was 525. However, the model
predicted 534 frames as attentive. It accurately predicted 480 frames as attentive
(as depicted in Figure 5.5) and predicted 54 frames incorrectly. So we can easily
say that our model InceptionV3’s prediction and performance are very good and
accurate.
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ResNet50:

Figure 5.13: Graphical representation of ResNet50 model result

Table 5.11: Shows the summary of the ResNet50 model result

Actual Test Dataset Values RetNet50 predicted value
Atten-
tive

inatten-
tive Sleepy Atten-

tive
inatten-
tive Sleepy

Frames in
number 525 495 515 481 458 596

Percentage 34.20% 32.25% 33.55% 31.34% 29.84% 38.83%

In elaboration, the actual attentive test dataset value was 525. However, the model
predicted 481 frames as attentive. It accurately predicted 456 frames as attentive
(as depicted in Figure 5.6) and predicted 25 frames incorrectly. So we can easily say
that our model RetNet50’s prediction and performance are very good and accurate.
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MobileNetV2:

Figure 5.14: Graphical representation of MobileNetV2 model result

Table 5.12: Shows the summary of the MobileNetV2 model result

Actual Test Dataset Values MobileNetV2 predicted value
Atten-
tive

inatten-
tive Sleepy Atten-

tive
inatten-
tive Sleepy

Frames in
number 525 495 515 653 342 540

Percentage 34.20% 32.25% 33.55% 42.54% 22.28% 35.18%

In elaboration, the actual attentive test dataset value was 525. However, the model
predicted 653 frames as attentive. It accurately predicted 513 frames as attentive
(as depicted in Figure 5.7) and predicted the rest of the 140 frames incorrectly. So
we can easily say that our model MobileNetV2’s prediction and performance are
very good and accurate.
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Chapter 6

Conclusion

This paper is focused on measuring the concentration levels of the students at online
platforms for a better understanding of their course outcome. To do so we used our
design model(concentrateNet1, ConcentrateNet2, ConcentrateNet3) and pre-trained
model (VGG16, InceptionV3, ResNet50, MobileNetV2). We selected these models
based on their lightweight and low computational cost. During the process of data
pre-processing we categorized our classes into three: “Attentive”, “Inattentive”, and
“Sleepy”.By evaluating these things we provide the two work areas of this research
which are how good the courses of online platforms are and whether the concentra-
tion of the students’ affects their results and dropouts.

6.1 Future work
The research work we are proposing is to measure students’ concentration levels
to analyze their poor outcomes in online courses. As nobody worked on this area
based on students’ concentration level we had to create our dataset and progress the
process. Subsequently, it also creates new areas for the researchers to work further.
Future works that we can work on:

• Collect students’ reviews on course materials and compare them with their
concentration to perfectly analyze the problem.

• We can update the dataset with more variants. Also, we will use videos instead
of frames.

• We can add more sub-categorized classes.
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