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Abstract
Over the past two decades, the domain of Natural Language Processing has under-
gone a remarkable transformation enabling machines to generate text, summarize
content, paraphrase and analyze sentiment. The captivating idea of analyzing and
copying someone’s writing style is no longer impossible. Pushing boundaries further,
we have embarked on a journey to implement such a model for the Bengali language
by utilizing the approach of style transfer through the application of deep learn-
ing using LLM. One’s writing personality can be identified by training the model
by imputing a set of documents (notes, books, etc) authored by the writers only.
The system will be able to extract important information to recreate sentences with
similar structural properties used by the author. Additionally, it will also be able
to detect whether a particular sentence structure synchronizes with that author’s
distinctive style. The outcome of our model aims to fulfill the need of a particular
writing taste of an author, as requested by the user. In essence, our model blends
technology and art to write in a way that is reminiscent of their favorite Bengali
author. Our proposed model not only skillfully excels in authorship classification
and mimicking their style, but also stands resilient against potential adversarial at-
tacks, making it a strong and unyielding system that aligns well with our research
objective.

Keywords: Natural Language Processing; Writing personality; Writing style-LSTM;
Style Transfer; adversarial attacks; LLM; T5 model; mT5; BanglaT5; BanglaBERT.
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Chapter 1

Introduction

In the realm of ever-evolving AI and Machine Learning, this research paper com-
mences on a groundbreaking journey utilizing NLP as a transformative tool for the
advancement of research works in the Bengali language by proposing a model that is
able to detect a piece of fake writing from that of what the original author wrote. To
do this, we have trained our model in such a way that it’ll identify one’s writing per-
sonality and retrieve crucial properties to recreate sentences with similar structures.
To break it down, we started by training our model on a diverse dataset where we’ve
extracted unique patterns that serve as the literary fingerprints of various authors
and later guide the classification of texts in various ways. In the classification phase,
to effectively categorize and differentiate texts, we’ve implemented a multifaceted
approach employing four distinct methods. These approaches are underpinned by
the utilization of bidirectional LSTM and BanglaBERT. First, the model makes
a comparison between texts written by Rabindranath Tagore and those by other
authors, spanning both historical eras (Rabindranath and contemporary era). Sec-
ondly, it distinguishes between the writing of the authors of the Rabindranath era,
such as - Begum Rokeya, Sarat Chandra Chattopaddhay, Bankim Chandra, and
contemporary authors, including- Humayun Ahmed, Zafor Iqbal, and Ahmed Sofa.
Then, the model extends its exploration to a broader spectrum by detecting distinc-
tive writing styles from multiple authors that ensure applicability to a diverse range
of authorship scenarios. The fourth and final approach in classification addresses
preserving adversarial attacks. This crucial aspect makes sure the model’s robust-
ness, where the model can defend itself and preserve itself against potential misuse.
In this classification phase, our model is equipped to separate the authenticated
writing from the generated one. By combining these four approaches, our classifi-
cation phase performs efficiently and precisely in the realm of literature. Moving
on to the text generation part, we’ve fine-tuned two models, BanglaT5 and mT5.
Here, from the patterns obtained by the chosen author, Rabindranath Tagore, we’re
generating his writing style anew. Not to mention, both of the tasks of identifying
an author and generating their style are carried out at the sentence level. The driv-
ing factor behind our decision for this research is from the realization of the fact
of insufficiency of advancements specific to the Bangla language. Existing method-
ologies in this field often lack efficiency and suitability for Bangla, which motivates
us to explore some distinctive approaches which will be explained throughout this
paper.
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Chapter 2

Research

2.1 CHALLENGE OVERVIEW
In the big world of words, the English language has been a wealth of research that fea-
tures extensive scholarly works, comprehensive datasets, models, relevant resources,
and so on. Now many NLP enthusiasts and researchers eagerly dedicate themselves
to match this literary quest. However, it’s ironic that the Bangla language is still
left with a void as it lacks relevant versatile models and essential resources that
have fallen behind the times in the Bengali landscape. This gap presents an un-
fortunate opportunity for deceptive practices. As perpetrators are flooding online
bookstores with fake books, they falsely claim to be written by authentic authors.
They replicate the original writing style so well that it is too hard for Bengali emo-
tional individuals to distinguish between the authentic and the fake version. That’s
where our research comes in handy, which is dedicated to safeguarding the authen-
ticity of original writings and exposing the impostors. To achieve this objective, we
set upon two sequential steps of adventure. Initially, we immerse ourselves in the
extraction of the unique styles of targeted authors, fetching their essence from an
abundance of data. Second, building up this knowledge, we’re venturing into the
text generation step. Incorporating style transfer techniques, we then imitate their
signature patterns to create a distinctive context that sets the real apart from the
fake. In our thesis, our focus extends beyond the mere identification of authorship.
To sum up, we’ll classify authorship by extracting the identifiable attributes and
writing patterns. We’ll bring their styles back to life using the insights we extract.
Ultimately, we’re on a quest to separate the genuine authors from the disguised
ones. Thereby, we try to establish a basis for a defense against adversarial attacks
and the future scope of research in this genre in the Bangla Language.

2.1.1 People affected by this problem
CURRENT BENGALI AUTHORS & RESEARCHERS

Khatun (2022) highlighted the necessity of Bangla-style transfer techniques and au-
thor identification in the lives of current Bengali authors and scholars. In accordance
with that, our proposed model helps to detect and identify the input writing by com-
paring its writing pattern with that of an author’s writing from the dictionary. This
way current Bengali authors can be benefitted as our system is able to protect their
writings from adversarial attacks, and dedicated computational & forensic linguistic
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researchers are able to develop smarter techniques with the help of our model that
can tackle issues such as diacritics and ligatures, resulting in more accurate author
identification.

CONTENT ANALYSTS AND CYBERSECURITY COMPANIES

In the intricate world of Bangla typing style, a hidden challenge awaits content
analysis, cybersecurity companies, and digital forensics firms. The organizations
encounter the obstacle of identifying anonymous or deceitful content authors in
the Bangla language due to the complexity and variability of typing styles, lin-
guistic nuances, and the use of local colloquialisms. The sheer diversity in Bangla
script and writing conventions further complicates the task, making it difficult to
attribute content to specific individuals or groups. Our proposed model can assist in
this regard by providing a context of narrative-style understanding, author-specific
wording, and phraseology in Bangla text, helping organizations identify suspicious
or potentially harmful content.

PLAGIARISM DETECTION PLATFORMS

There are many platforms such as educational institutions, content creators, and
plagiarism detection applications, that can get benefit from the proposed system
to find out cases of plagiarism in the context of Bangla. By detecting the writing
style of an author, it becomes easier to unmask situations of academic dishonesty
or copyright violation.

BANGLA LANGUAGE USER

Bengali writers, bloggers, journalists, and social media users all are impacted by
the issue. By deterring anonymity and assuring responsibility, trustworthy author
identification systems in Bangla can aid in the protection of their intellectual prop-
erty rights, the fight against identity theft, and the promotion of responsible digital
conduct.

MASS COMMUNITY

By encouraging a safer online environment in the Bangla language, the issue has
an indirect effect on the wider public. For Bangla language users, an accurate
author identification system can ensure a more dependable and trustworthy online
experience by discouraging harmful activities like disseminating false information,
hate speech, or counterfeit content

2.1.2 Attempts that have been made to solve the problem
So far, different writing style detection models have been built in English for in-
stance: Detection of changes in literary writing style using N-grams as style markers
and supervised machine learning [24], Writing style change detection on multi-author
documents [20], etc. The closest research work that is relevant to our problem is-
Effective writing style transfer via combinatorial paraphrasing [9]. It can generate
texts for specific authors/personalities but unfortunately, it is also applicable to the
English language only. On the other hand, for Bengali language we were able to find
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a research work for the purpose of author detection in particular named “Authorship
Attribution in Bangla Literature (AABL) via Transfer Learning using ULMFiT” [11]
and some text generation models such as, Context-driven Bengali Text Generation
using Conditional Language Model [19], A Bengali Text Generation Approach in
Context of Abstractive Text Summarization Using RNN [8], Bengali Text genera-
tion Using Bi-directional RNN [7], etc. But there were no relevant research works on
author-specific text generation models and adversarial attack detection for Bangla
even though it is the 7th most spoken language in the world [10], which subsequently
ensued the idea or stipulation of building such a model to ensure proficiency of future
research works.

2.1.3 Complexities that will arise if the problem is not solved
As we have already discussed above, all style transfer techniques that use NLP for
accurate text imitation and authorship attribution are based on the English Lan-
guage, and only a handful of work has been done in Bangla Literature. So, if the
problem is not addressed nor solved, we might never be able to achieve strong style
transfer performance. Also, without accurate content authentication and author-
ship classification, there is a risk of misattributing content, which unfortunately
might lead to confusion about the true origins of literary works. It can risk the
privacy of the original wordsmith [9]. If we are unable to execute our model, we
won’t have an implemented tool to defend against adversarial attacks. Moreover,
where generalized paraphrasing tools are widely available, we won’t have access to
a personalized paraphrasing tool. This model is crucial for legal documentation and
content creation. Without it, we won’t be able to assist authors in distinguishing
between fake and real identifications. Analyzing major changes between the works
of authors from different eras, such as computational analysis won’t be introduced
either. And, thereby, these are the reasons why such a project is invaluable and
must be solved.

2.2 RESEARCH OBJECTIVES
This study aims to use deep learning to detect a specific writing style of different
authors from a given input, and extract symbolic features of their written work, and
further employ those retrieved information to generate documents that skillfully
mimic their signature pattern. On top of that, we’re also on a mission to implement
techniques to distinguish between authentic and fake documents by protecting them
from unwanted adversarial attacks. The main objectives of our research are:

• Building a quality dataset and a model that can classify texts authored by
Rabindranath Tagore and those by other authors (from both the Rabindranath
era and the current era).

• Establish a dataset and a model that includes texts from the Rabindranath
Tagore era and the authors from the current era and distinguish between them.

• Compiling a quality dataset that encompasses writings from multiple authors,
beyond just Rabindranath Tagore. This extends the model’s applicability to
handle a diverse range of authorship scenarios.

5



• Implement mechanisms within the model to resist adversarial attacks.

• Enable the model to extract unique patterns (pattern recognition) from the
writing styles of different authors.

• Generation of texts in Bengali that would be unique for every person based
on their personality in the future.

• Protection from unidentified plagiarism allegations and copyright infringe-
ment. This also helps us to get protection from unwanted adversarial attacks.

• Paving the way for state-of-the-art plagiarism detection models to authenticate
and preserve safe content in literature, preventing plagiarism.

• While generalized paraphrasing tools are widely available on online platforms,
they often come with privacy concerns. Therefore, our mission goes beyond
these general tools as we aim to provide access to a personalized paraphrasing
tool.

• Enhancing scopes of future prospects, including building models with a view
to encouraging more research work on the Bengali language.

6



Chapter 3

LITERATURE REVIEW

As the dependency on online-based work submission and publication has escalated
over the past years, most submissions and published works seek the hand of plagia-
rism. To avoid such illegal activities, we have decided to work on a project called
“Bangladigm” that initially aims to identify similar Bangla writing styles (in our
case, only that of Rabindranath Tagore) by matching the input sentence to an ex-
isting dataset consisting of colossal Bangla words of a specific author and in return,
giving us the name of the original author according to their writing style. And
in the next phase, it is able to generate natural sentences in accordance with the
input sentence based on the trained writing style. This helps us in many ways, as
discussed above.

To have a better understanding of Deep Learning, Natural Language Processing
and State-of-the-art (SOTA) models to design such a style transfer technique, we
had to read quite a bit of literature from the internet related to our topic on a
scholarly search engine, Google Scholar. The topics that we came across that were
concurrent to our project design were combinatorial paraphrasing, authorship at-
tribution, tokenization, POS tagging, lemmatization, spell checking, etc. These
keywords redirected us to papers that examined various techniques to give a better
and more accurate model for style transfer. After searching for many papers, we
have come across only a very few that helped us envision a proper architecture for
our model. So, for further filtration, we decided to use only those peer-reviewed
research papers that had a numerous number of citations on it. There are 15 re-
lated papers that the five of us have analyzed and tried to incorporate with our own
thesis paper. They are reviewed briefly below, along the summary of their aim of
research, methodologies applied, evaluation, and a few limitations that should give
a clear idea of what we are trying to do. The review papers are:

A paper authored by Aisha Khatun, Anisur Rahman, Md Saiful Islam, Hemayet
Ahmed Chowdhury, and Ayesha Tasnim, from the Department of Computer Science
and Engineering, Shahjalal University of Science and Technology [11] suggested to
apply the ULMFiT architecture for authorship attribution on Bangla Literature,
since this field of language in NLP has still been untouched by most researchers.
The definition of Authorship Attribution is to recognize the original author of an
input text by using NLP and computational linguistics to conserve the Bangla Lit-
erary heritage. So, the authors of this paper introduce a kind of state-of-the-art
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transfer learning technique, called the ULMFiT model (Universal Language Model
Fine-tuning) that does fine-tuning on a compact dataset after being trained off of
a macroscaled language model. This allows the model to vigorously learn multiple
representations of the Bangla language and process them accordingly even with in-
adequate, unlabelled data. Similar to our thesis, the authors of this paper create a
dataset from a Bangla literature corpus that is incorporated with a massive amount
of works of multiple authors in different time frames, genres, etc. The dataset is
called BAAD16 (this is the largest dataset in Bangla literature for authorship at-
tribution containing 16 authors and the number of words available per author and
the total number of words, 13.4+ million) [11] and BAAD6 (which is a 6 Author
dataset collected and analyzed by Hemayet et al. [5]. This dataset’s total number of
words and unique words are 2,304,338 and 230,075 respectively). The methodology
of preprocessing the dataset starts by the tokenization of words and sending the
processed data to the UMLFiT architecture for further training by learning the pat-
terns and specific key linguistic features of every data of different authors. This way,
the model is able to successfully predict the different authors of a given input text.
To evaluate the performance of the proposed project of this paper, the authors per-
formed several experiments and comparisons with other baseline methods like Naive
Bayes and Support Vector Machine (SVM) to establish the fact that the ULMFiT
architecture has a higher value for recall, accuracy and precision in case of Bangla
literature. It also talks about some elements such as the size of the training dataset,
the number of authors, the presence of noise in the text, effect of pre-training the
dataset, which all affect the performance of the proposed model. One other method
the authors highlight is called anonymization of data. In this process, the private
and personal information of authors is protected to establish the ethical use of all
authored attribution techniques. The authors also provide a perspicacious analysis
of the limitations and future improvements such as the incompetences created due
to the selection of a specific corpus, the opportunity of transferring the proposed ap-
proach to other languages or multilingual settings, the difficulties in anonymization
of data, and the consequences of the train dataset size and quality to ensure better
accuracy of the model. So finally, after reading this paper we can apply some of its
techniques to create our model.

A research paper authored by Tommi Grondahl and N. Asokan [9] discusses how
writing style transfer using combination can be implemented. Writing style transfer
refers to the task of autonomously transforming a given input text into another text
in accordance with a desired writing style. Paraphrasing refers to the transforma-
tion of a text while keeping the gest of the original text. According to the authors,
all existing methods are unsuccessful in conserving the semantic linguistic elements
of the output text while implementing the style transfer techniques to it, thus, they
proposed a combinatorial model. Just like normal mathematical combinatorial, the
task of this model is to generate multiform text sentences by applying a number of
linguistic rules to a particular input text and selecting that output sentence with
a higher probability of matching the gest of the original one through a double-step
procedure. Initially, the system’s work methodology includes following a rule-based
approach the ”candidate generation step” is carried out by generating multiple para-
phrased sentences and secondly, a trained classifier labels the generated sentences
from step 1 according to their stylistics and fluency to select an appropriate can-
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didate called the ”candidate selection step”. The dataset used for this thesis is a
standard wide-ranged data corpus with various writing styles including 245691 para-
phrase pairs. It also contained four two-class corpora for sentence-based datasets
and has 7899 + 7270 + 6766 additional training sentences for multiclass. It also has
a BrennanGreenstadt corpus (BG) consisting data of 12 authors and the Extended-
BrennanGreenstadt corpus (EBG) consisting data of 45 authors. Furthermore, the
authors evaluate the accuracy of their model through experiments including com-
parisons between the results obtained from their model versus the result of other
existing style transfer models. They also repeat the process for two distinct datasets
to ensure the metrics. Some processes such as content preservation, fluency, and
style accuracy, are taken into account like calculating the performance metric of
this model. The authors also shed light on the limitations and future possibili-
ties/improvements of their proposed system, including the processing issue of longer
sentences that should follow a similar writing style and the incompetence of a rule-
based paraphrasing technique would bring to ensure the quality of a writing. Future
possibilities include the advancement of research in this field with slight variations
such as using neural network-based paraphrasing models to accomplish the task and
also include how it could serve various domains such as NLP, creative writing and
computational linguistics, etc. So, by following these techniques, a style can be
transferred via. a text which is also the main target of our thesis.

Another paper authored by Kevin Lin, Ming-Yu Liu, Ming-Ting Sun, and Jan Kautz
[14], uses style transfer to generate multiple outputs for a single given input text.
The methodology of data processing involves the feeding of data into a Generative
Adversarial Network (GANs) framework that generates multiple outputs through
two main components, a style encoder and a style decoder. The task of a style
encoder is to imprint the desired style onto the input text by mapping the style
onto the data, whereas, the style decoder generates several output sentences with
the captured essence of the desired writing style we want by preserving its semantic
content and linguistics. The process of training the model includes the introduction
of a style diversity loss function that ensures diversity based on style amongst the
output sentences and the integration of a style reconstruction loss to ensure the
fluency of the implementation of the desired style on the input text data. Even
though this is an effective approach, it still has limitations, such as identifying the
fact that multiple and distinct text generation using NLP is quite a tough task to
accomplish. The authors also discuss its future possibilities and improvements, such
as the study of GANs to learn accurate but various representations of the same data
through generative modeling, which would strike an interest in other researchers
for further study on this particular field. The authors have also shed light on the
evaluation process to find its performance metrics, where product review datasets
from Amazon contain 277, 228 positive and 277, 769 negative review sentences for
training and 500 positive and 500 negative review sentences for testing. The length
of a sentence ranges from 8 to 25 words) [14] and Yelp ( contains a training set of
267, 314 positive and 176, 787 negative sentences, and a test set of 76, 392 positive
and 50, 278 negative testing sentences. The length of a sentence ranges from 1 to 15
words.) [14] are used to train and learn their model. The process of experimental
implementation for obtaining a satisfactory performance metric includes the track-
ing of style accuracy, diversity of generated outputs, semantic content conservation,
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etc. and comparison of the results with baseline methods to prove the computa-
tional precision of their suggested model. So, finally, the authors have discussed the
contribution of this paper on the field of NLP. It allows researchers to investigate
different approaches to control the degree of style transfer on an input sentence. It
also allows researchers to try integrating a wider and balanced dataset to improve
the quality and relevance of the output. Finally, this model could be tested on a
larger domain and other languages, such as Bangla (which helps us reach our goal),
etc. So, this research paper has helped us gain appropriate and extensive knowl-
edge about the style transfer technique, which will be needed by us to create a style
transfer approach of our own that is compatible with the Bangla language in our
thesis.

Furthermore, a paper authored by Keith Carlson, Allen Riddell, and Daniel Rock-
more [18] discusses the issues of text style transfer techniques. The methodology
of processing the data begins with an unsupervised approach for the separation of
style and content in the input text by using content embeddings. The process is a
double-step approach, where initially an unsupervised clustering algorithm aims to
detect groups of different styles within the dataset, called the style extraction step.
It is followed by the learning of content embeddings by the utilization of denoising
autoencoders [18]. Finally, a method named style exaggeration tends to change the
content embedding while effectively conserving the style information of the original
text. To ensure the conservation of style information, the authors also formulate
a reconstruction loss function. Just like the previous paper, this paper also con-
tributes to the field of text style transfer, which allows more and more researchers
to work on this comparatively new field of study. This model also contributes to
the robust flexibility of style transfer which can be seen through performance metric
experiments. So, to evaluate the performance metric of this model, again product
review datasets from websites such as Amazon and Yelp are used to train and learn
their model just like the above-mentioned thesis paper, but unfortunately, the de-
tails of the number of data used are vague. This paper also has limitations and
future improvements that are very similar to that of the paper reviewed just before
this. So, by reading this paper we now have a clearer idea of style separation by
using content embeddings which will be helpful for our thesis.

Another paper authored by Jad Kabbara and Jackie Chi Kit Cheung from the
School of Computer Science, McGill University [2], has discussed the efficacy of nat-
ural language generation processes by using style transfer approaches. This is done
by the utilization of recurrent neural networks (RNNs). The methodology suggested
by the authors to make this system work, includes the usage of long short-term mem-
ory (LSTM) network which is a neural network architecture that can conduct style
transfer technique. They do this by capturing the desired writing style attributes
by using a style embedding approach which is integrated into the next step, the
generation phase. The LSTM architecture based on encoder-decoder structure is
trained by using a large data set of text corpus which pushes the model to learn the
semantic and statistical patterns of a writing style. It also learns the style specific
characteristics of various writing styles. The datasets include: the complete works
of Shakespeare, the Wikipedia Kaggle dataset, the Oxford Text Archive (literary
texts), and Twitter data. But no detail of the number of data has been found in
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this paper. To get the desired style transfer, the learned style embeddings are mixed
with the content embeddings of the input text, and this process is called style in-
terpolation, where the model is able to generate one text that expresses a mixture
of desired writing styles by manipulating the interpolation ratio. The opportunities
and contributions of this paper includes study of natural language generation by
using RNN which allows for a fine-grained control on the perseverance of stylistic
elements of a paraphrased text. The evaluation of this model’s performance metric
is done by the execution of both automatic and human experiments, which demon-
strates the robustness of this methodology. Future opportunities discussed by the
authors include the leverage of more studies in this area of statistics transfer. The
integration of additional linguistic attributes and context information, such as con-
textual embeddings and attention mechanisms can be done to enhance the quality of
this model. Another future opportunity of this research would be to build its trans-
ferability to a wider range of domains and languages, for multilingual utility. The
insights provided by this paper is an important factor to proceed in our field of work.

Now, we’ll see a paper authored by Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan
Zhao, Rui Yan [6], researched about the style transfer of text with non-parallel data
and how it is not up to the mark because of insufficient parallel data and good evalua-
tion metrics for evaluating the models. To reduce these problems, the authors of this
paper proposed two models which are: multi-decoder and style-embedding. These
two models are related to the neural sequence-to-sequence model. In this paper,
the authors have analyzed different models but the best outcome comes from multi-
decoder and style-embedding models which are verified by a number of experiments
conducted to figure out its performance metrics. Furthermore, the two evaluation
matrices that have been introduced in this paper for measuring the model efficiency
are transfer strength and content preservation. These two metrics are working bet-
ter than other metrics. Moreover, two datasets have been used for the research
in this paper which is called a non parallel corpora. The name of the dataset are
paper-news title dataset, called the positive-negative review dataset. The amount
of the test data was 2000 sentences and the remaining was for the training data.

In another research paper that was authored by Se Won Jang, Jesik Min, Mark
Kwon titled [4], it proposed two models for style transfer. Those are simple sequence-
to-sequence models with attraction and a Bidirectional sequence-to-sequence model
with fixed embeddings and attention. This paper talks about the writing style con-
version focusing on Shakespearean literature. For the dataset, two sources have been
used. Initially, for the collection of data on Shakespeare, different works of his have
been used. Furthermore, over 4000 songs have been used for the rap lyric dataset
and from the songs they got a total of 300,000 sentences. After that, the data was
preprocessed to create a file of token ID and the rap lyric files transferred into token
ID files. Moreover, after human evaluation and BLEU measurement metrics, the
paper demonstrated that the Bidirectional sequence to sequence model with fixed
embeddings and attention performed better than the previously used models, but
the problem is: that it is changing the original meaning of the sentences. And so,
future improvements include the fixing of such arising problems by incorporating
other models with this to get more accurate outputs.
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Another study authored by Zhijie Zhang, Zhongyuan Han, Leilei Kong, Xiaogang
Miao, Zeyang Peng, Jieming Zeng, Haojie Cao, Jinxi Zhang, Ziwei Xiao and Xuemei
Peng [1] researched about the detection of any style change of a text has occurred and
also does the marking of that part based on the writing style. The data set of this
specific paper is provided by the style change detection (PAN21 Authorship Analy-
sis: Style Change Detection) [22]. In the dataset, 70% are training data (Number of
texts, Number of authors, Number of paragraphs - 11,200, 17,051 77,252) [1], 15%
are validation data (Number of texts, Number of authors, Number of paragraphs:
2,400 4,792 16,495) [1] and 15% are for testing (Number of texts: 2,400) [1]. The
authors of the paper mainly focus on three tasks, which are finding whether there
are many writers, finding the place in the text where multiple writers have been
identified, and labeling of the texts. For the measurement of the similarity, they
are using the BERT model. After that, the effectiveness of the paper was shown by
giving an F1 score for the tasks.

The paper researched by Kalpesh Krishna, John Wieting and Mohit Iyyer intro-
duced a new method called Style Transfer via Paraphrasing(STARP) for transfer-
ring the style of a text without changing its sentiments [12]. This mainly follows
an unsupervised approach and the method has three parts to it. While evaluating
this model with 23 related papers on style transfer, it has been seen that this model
outperformed other SOTA models: state-of-the-art methods. For determining the
performance metrics, some calculations were taken in accountability such as human
error evaluation, transfer accuracy, semantic similarity, and fluency of the given
input text for better and more accurate results. In this paper, the authors mainly
worked with two datasets which include - Shakespeare’s author imitation and the
Formality transfer dataset. Shakespeare author imitation dataset has 37000 training
data, and the formality transfer dataset contains 105,000 sentences. Furthermore,
the author introduced a new dataset, which is called the corpus of diverse style
(CDS).

Likewise, we have come to a paper authored by Shuohua Zhou [16], exploring the us-
age of deep learning for summarizing texts. Through this paper, we get to know that
traditional natural language generation techniques primarily relied on templates, but
deep learning technology breaks away from traditional reliance on templates, where
it enables the autonomous learning of input-to-output mappings, leading to end-to-
end solutions and a reduction in the need for human involvement. It tackles the
challenge of extracting and using information from vast amounts of data. This paper
introduces us to such a method that is very effective in the field of text generation.
It is done by deep learning, to be more specific Recurrent Neural Networks (RNNs),
Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs). The
most appropriate of them all is considered to be RNNs, which use powerful ap-
proaches to generate natural texts due to its potential in handling sequential data.
The authors of this paper suggest such a data processing methodology that includes
four phases for the handling of automatic summarization based on deep learning.
Initially, it begins by text preprocessing, then semantic understanding of the orig-
inal text is done to analyze its stylistic elements, the information reorganization
using attention mechanisms is carried out, and finally, abstract generation is done
by the utilization of RNNs.A summarization model is presented in this paper that
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utilizes a hybrid neural network encoder and a decoder with an attention mechanism
that combines the strengths of CNNs and RNNs. Using convolutional layers, the
encoder can capture contextual interactions between target vocabulary units and
nearby words, upgrading the quality of the original text representation.

In this paper the authors, Martina Toshevska and Sonja Gievska [21], delve into
the realm of text style transfer methodologies employing deep learning techniques.
Language, being influenced by cultural, individual, and social factors, requires the
ability to adapt communication styles to different contexts. This paper explores the
advancements enabled by deep neural networks, which have made text style trans-
fer a vibrant field of research. The authors dive deeply into the groundbreaking
innovations in neural networks with deep layers that have changed natural language
processing and generation. This paper demonstrates text-style transfer’s ability
which facilitates users in many forms of linguistic complexities of several eras and
civilizations. The art of deep learning gives a door into literary time travel from clas-
sic epics to modern style. Personal style, genre, formality, politeness, offensiveness,
and sentiment are important mentions in the research. Studies have shown language
variations depend on demographic groups which include distinctions in language us-
age between genders or different age groups. These findings might widely impact the
human-computer interface and the virtual assistants that might not collide with the
reader’s preferred language. It also discusses specific writing styles, such as Shake-
spearean style, which has been explored for rewriting sentences for edutainment
purposes. The research provides a list of publicly available datasets, categorized
as parallel and non-parallel, each serving different purposes for style transfer tasks.
Parallel datasets include the Shakespeare3 dataset, the GYAFC dataset, the caption
dataset, and Cheng et al.’s email dataset, offering sentence pairs for a style trans-
formation. Non-parallel datasets encompass Yelp, Gender, Amazon, SST, IMDB,
Paper-News Titles, Gigaword, Political slant, Twitter, Reddit, Politeness, and Ex-
pertise datasets, which are used for various style transfer tasks such as sentiment,
formality, politeness, and expertise. The author mentions the use of Amazon Me-
chanical Turk (AMT) for annotating and creating formal or informal versions of sen-
tences. The evaluation of text style transfer involves preserving the semantic content
of the original sentence and ensuring the quality of the transferred style. It aims to
measure how well the original sentence’s meaning is preserved and the quality of the
generated style. Metrics like METEOR, BLEU, BERTScore, ROUGE-L, SARI, and
PINC are used to evaluate content preservation. Pre-trained classifiers and preci-
sion/recall measures assess the quality of the generated style. Popular deep learning
techniques for text generation are: Recurrent Neural Networks (RNNs), Long Short-
Term Memory Networks (LSTMs), Gated Recurrent Units (GRUs), Convolutional
Neural Networks (CNNs), and attention mechanisms are popular deep learning tech-
niques for text generation, capturing sequential patterns and spatial features. At-
tention helps the model to focus on important sections of the input sequence. The
literature review includes all the difficulties and goals of assessing text style trans-
fer. The evaluation focuses on measuring both the keeping of content from the
actual sentence and the standard of the style in the produced output. The review
also presents various deep neural network designs widely used in text generation,
such as Recurrent Neural Networks (RNNs), Long Short-Term Memory Networks
(LSTMs), Gated Recurrent Units (GRUs), Convolutional Neural Networks (CNNs),
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and attention mechanism. These methods have an essential function for displaying
sequential data and preserving associations within the text. Various metrics are uti-
lized for analyzing content preservation, including word overlap-based metrics like
METEOR and BLEU, BERTScore, ROUGE-L, SARI, and PINC. These measures
assess the similarity, accuracy, recall, and commonality between produced and refer-
ence texts.Assessing the efficacy of generating a particular fixed style, experts incor-
porate accuracy computations through pre-trained classifiers, along with precision,
recall, and F1-measure. The attention mechanism involves self-attention and multi-
head self-attention, which makes the network able to focus on the essential parts of
the input sequence during the generation process. The document outlines several
models in each and every category, that subsequently inform their methods and
strategies. The models aid in creating output sentences that either recreate the in-
put material or integrate style-specific properties using style classifiers. In the world
of text generation, there is a pair of significant architectures. First, The encoder-
decoder, and, second, Generative Adversarial Networks (GANs) respectively. The
encoder is used to build a fixed-length vector that acts as an input sentence, whereas
the decoder produces an output sentence utilizing the following representation. Au-
toencoders (AE) and Variational Autoencoders (VAE) are distinct systems, basically
centered on gaining internal representations of input data. Generative Adversarial
Networks (GANs), on the other hand, consist of a generator and a discriminator.
These architectures offer powerful techniques for generating text and have proven
effective in capturing and generating meaningful content. Some models incorporate
a step that detects and removes style cues from input sentences. Style markers are
phrases that significantly reflect a sentence’s style. Various methods, such as n-gram
salience measure, attention weights, importance scores, and monitoring style classi-
fier probabilities, have been proposed to detect style markers. There are other two
baseline models that use simplistic methods for sentiment modification. Addition-
ally, the author explores deep learning models inspired by machine translation and
paraphrasing. These models are categorized into three groups: simple reconstruc-
tion models, models with style classifiers, and adversarial models. The paper also
mentions the use of additional components like back-translation, cycle reconstruc-
tion, private encoders, and decoders to improve style transfer. Finally, it highlights
the importance of content preservation and fluency in generating meaningful and
stylistically accurate sentences. The paper also discusses adversarial models for
text style transfer. These models incorporate style discriminators similar to those
used in GAN architecture. Various models within this category are described, along
with their techniques and approaches. They aim to generate realistic and style-
compatible sentences by using discriminators to determine the authenticity of the
generated sentences. Some models also include additional classifiers to assist in
the generation process. The paper highlights the collaborative feedback between
the generator and the discriminators in these models.It motivates researchers to
utilize deterministic and variational autoencoders and cycle-consistent constraints
in order to unmask content and style in the latent space. To illustrate its view,
the models include many evaluation factors—different loss functions and techniques
to ensure content preservation and style transfer. Furthermore, here, the feature
mover’s distance and style discrepancy are presented as alternative loss functions in
some models. The paper further explores its experiment using adversarial models
for text-style transfer. These models are designed to generate sentences that not
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only sound natural but also match a specific writing style. They do this by in-
corporating style discriminators, acting as ”style police,” to verify the authenticity
of the generated sentences. Another thing is that the models use very insightful
approaches including deterministic and variational autoencoders, to distinguish the
content and style of the text. This separation allows the models to preserve their
authenticity while transferring the desired style. The author’s researcher utilizes
deep learning models, namely Transformers, CAST, and StyIns, incorporating tech-
niques such as adversarial style loss and multi-class discriminators. The Pre-train
and Plug-in Variational Autoencoder (PPVAE) framework addresses the problem
of learning new styles by using two variational autoencoders. One challenge is the
availability and quality of datasets, as creating benchmark datasets covering diverse
style categories is complex. Deep learning techniques are highlighted for their capa-
bilities in automated feature learning and pattern recognition from large data, but
improvements are needed to address overfitting and generalization issues. Future
research priorities include style-content disentanglement, balancing content preser-
vation and style strength, deep learning model interpretability, transfer learning,
ethical considerations, and studying deep reinforcement learning. These develop-
ments have an impact not only on style transmission but also on domains such as
linguistic creation, summarization, question-answering, and speech.

This paper by Bernhard Liebl & Manuel Burghardt [13] presents an approach for
identifying Shakespearean intertextuality in contemporary fiction using computa-
tional methods. The authors of this paper have developed the Vectorian, a unique
framework that utilizes different word embeddings and NLP parameters. The Vec-
torian functions like a powerful search engine that identifies similarities between
sentences and where one can enter a Shakespearean phrase, and the system searches
for passages in the books that likely contain that phrase, either directly or in a
paraphrased form. It preprocesses the data by splitting it into sentences and as-
signing part of speech tags to tokens. Using contemporary word embeddings, it
computes similarity scores between tokens. The system stores the data effectively
and determines alignments based on these ratings. The engine includes customizable
parameters, including options to omit determiners, apply semantic weighting, and
penalize inconsistencies in part of speech tags. The authors conducted an ablation
investigation to evaluate alternative configurations of embeddings and NLP settings,
revealing insights for future studies in this area. Although the technique empha-
sizes evident references rather than nuanced ones, it fills a vacancy in computational
methods to analyzing intertextuality and gives a significant instrument for under-
standing Shakespeare’s effect in Shakespeare literature. In this work, the researchers
evaluate several parameters utilized in the Vectorian search engine for computing
embedding similarity and alignment score. These parameters include Embedding
Interpolation (EMI) for combining different word embeddings, Embedding Simi-
larity Measure (ESM) for determining the strategy to compute similarity scores,
Inverse Frequency Scaling (IFS) to weight similarity scores based on token occur-
rence probabilities, Similarity Falloff (SIF) for rescaling scores, Similarity Threshold
(SIT) to filter out low similarity scores, Mismatch Length Penalty (MLP) to penalize
mismatched tokens, and Submatch Boosting (SBO) for assigning scores to partial
matches. Their inquiry on similarity measurements, frequency scaling, similarity
falloff, and thresholding enhances the accuracy of the search engine. Using a subset
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of quotes from Shakespeare’s Hamlet, they evaluated the system’s performance using
the Discounted Cumulative Gain metric. Using Optuna, the researchers adjusted
the Vectorian search engine’s parameters. For arithmetic mean (A) and harmonic
mean (H) targets, the best configurations produced nDCGs of 77.6% and 75.2%, re-
spectively. Some parameters had minimal impact, while others played a significant
role. The embedding pipeline was not that useful for search results. Easy queries
benefited from embeddings and syntactic markers, while hard queries did not. It
highlights the importance of parameter customization based on query difficulty.

The paper authored by Md. Raisul Kibria & Mohammad Abu Yousuf [19], ad-
dress the field of text generation in Natural Language Processing (NLP) and focuses
specifically on Bengali language text generation. Although there have been nu-
merous proposals for larger language models, the availability of context-driven text
generation models, particularly for Bengali, is still limited. The authors suggest
a bidirectional gated recurrent unit (GRU) based architecture for simulating the
decoder of a sequence-to-sequence (seq2seq) model. Multiple context words are
combined into a fixed-dimensional vector representation extracted from the GloVe
language model. The Bengali Wikipedia dataset is used to train the baseline model,
and beam search optimization is used to produce sentences with the highest cumu-
lative log probability score. The model is compared against unidirectional LSTM
and GRU networks using human scoring-based criteria. The experimental results
show that the suggested model is effective at creating meaningful outputs that cap-
ture the goal context. The study advances the field of natural language processing
(NLP) for the Bengali language and has applications in context-driven text gener-
ation. Like other papers, this research also shows an overview of various research
works related to natural language generation and text generation models. Initially,
Recurrent Neural Networks (RNNs) faced challenges due to vanishing or exploding
gradient issues. To mitigate these problems, the multiplicative RNN (MRNN) model
was proposed, combining RNNs with the Hessian-Free optimizer. LSTM addressed
gradient issues and achieved better computational efficiency by incorporating gating
mechanisms. Chinese poetry generation using RNNs involved the input of keywords
and the use of multiple models to generate different lines of the poem. The encoder-
decoder architecture, similar to the seq2seq model, became popular for text gener-
ation tasks. In the above cases, neural autoencoder models were used to construct
paragraphs and documents while keeping syntax, semantics, and coherence intact.
Another strategy, semantically controlled LSTM (SC-LSTM), was introduced for
dialogue generation, integrating context vector values to control sentence planning.
The paper explores various optimization techniques for language modeling. SGD
is an iterative algorithm that calculates and applies gradient-based optimization
for each training sample. RMSprop incorporates adaptive learning rates with mini
batch gradient descent by keeping an exponentially weighted moving average of
squared gradients. Adagrad is a customized version of SGD with adaptive learning
rates for each parameter, suitable for online settings and sparse gradients. Adam
uses momentum-based optimization in conjunction with RMSprop to achieve fast
convergence and accurate approximation. The proposed framework is based on a
generative conditional language model using word embeddings. Pre-trained GloVe
embeddings are used, and different techniques are evaluated to combine context
vectors. The neural network architecture includes separate networks for training
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and inference. The paper overcomes the limitation of RNNs with arbitrary input
lengths by using fixed-length sequences of 20. Left padding with zeros is applied
to shorter sequences, yielding better results than right padding. Longer sequences
are truncated from the beginning. Beam search is used during inference for bet-
ter prediction by considering multiple probable outputs. Human evaluations are
conducted to assess the generated text’s quality, considering criteria such as sen-
tence effectiveness, context representation, and relevance. Comparatively, LSTM
architecture excels in learning syntax and semantics but struggles with preserving
context, while the bidirectional GRU architecture achieves the highest overall score
by effectively capturing context and formulating accurate sentences.

This paper authored by Ewoenam Kwaku Tokpo and Toon Calders [25], tackles
the issue of bias in textual data, particularly in job advertisements and news pub-
lications, and introduces a text-style transfer model to mitigate bias automatically.
The authors underline the negative impact of biased texts on target demographic
groups, such as how masculine-sounding employment advertisements discourage fe-
male candidates. They highlight instances where automated language systems and
AI tools have inadvertently learned and maintained biased behaviors, underscoring
the need to address bias in textual data.The paper explores different approaches to
style transfer, focusing on two main categories: auto-encoder sequence-to-sequence
models and explicit style keyword replacement methods. It presents a text-style
transfer approach that might automatically eliminate bias in the text through the
combination of hidden information encoding with explicit keyword replacement. But
according to the authors of the paper, since their model was continuously showing
instances of low performance such as failing to withheld meaningfulness of a sen-
tence and information loss, thus, they proposed a system where the methodology
involves the successful transformation of a biased text to a neutral one all while
preserving the semantic content of the text. Token Embedder, Token Decoder, At-
tribute Masker and Latent-content Encoder are the key components of this model,
where the attribute masker helps to identify biased attribute words and replaces
them with an uncommon symbol. Whereas, the token embedder’s task is to pro-
duce embeddings for the masked tokens utilizing the BERT model that has been
pre-trained on neutral texts. The Latent-content Encoder converts the original text
into a latent-content representation, removing it from the influence of biased style.
It employs dual-objective training to remove bias and ensure the generated repre-
sentation is classified as neutral. In order to generate new token embeddings and
forecast the correct tokens, the Token Decoder blends token embeddings and latent
content. The model is evaluated on two datasets, demonstrating its effectiveness in
style transfer accuracy, content preservation, and fluency compared to other mod-
els. In general, the proposed methodology strikes a balance between maintaining
substance and minimizing bias in the text.

Apart from these, we have come across another interesting approach in a paper that
was authored by Sheikh Abujar, Abu Kaisar Mohammad Masum, Md. Sanzidul
Islam, Fahad Faisal and Syed Akhter Hossain where the technique of abstractive
text summarization has been used to generate text in Bengali [8]. There are three
major types of summarization methods- extractive, abstractive and keyword-based
summarization. In extractive summarization, the important words or phrases are
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taken from a given text, measuring their importance in the text and generating a
summary. Similarly, in keyword summarization, only the keywords are taken to
summarize the text which may not always make proper sense to us. However in
the case of abstract summary, the machine tends to understand the structure of
human written text to get an idea of the patterns between texts and phrases. This
does not necessarily require to use of text from the input text for summarization,
instead, it uses words and phrases from the corpus it was trained with to generate
the texts that beholds the same meaning as the input text. Similarly, in the pro-
posed model, the authors showed a process where the model to write a new sentence,
used its previous learning patterns of human written sentences. [8] Here the concept
of RNN has been elaborately analyzed and the author ultimately trained a model
using LSTM, an advanced form of RNN to train their model of text generation. It
is well known that RNN processes the sequence data incredibly well owing to its re-
current structure. The hidden units are updated at every epoch and don’t have any
limitation in sequence length and additional advantage that it provides is that both
forward and backward computation aids the neurons in understanding the sequence.
The authors made their own dataset adding necessary contractions and eventually
building their own corpus. Finally, they were able to build a quite stable model
that was able to generate Bengali text through abstractive summarization of a text
with an accuracy of around 97%. However, they do have certain limitations, as the
model cannot generate random length text [8]. The length had to be predefined.
Also, to predict the next word, pad tokens had to be provided. Nevertheless, the
authors have plans to overcome these limitations and build a better automatic text
generator that will be able to provide a random-length Bengali text without using
any predefined tokens or sequence phrases.
With this, we end our study on numerous scholarly research papers falling under the
same category of work as ours because we successfully able to retrieve the necessary
information to conduct our own research.
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Chapter 4

DATASET

4.1 Collection of Dataset
In this part, we present a full overview of the procedures painstakingly implemented
to assemble our large dataset, which comprises a wide variety of books produced
by a broad range of Bengali authors. The data-collecting procedure evolved via a
number of precisely planned processes, each aimed to capture the essence of Bengali
literature.

Online Scraping for Novels: The data collection method commences with the
selective exploration of online sources to build a proper dataset corpus. Through
this procedure, we traversed the enormous expanse of the internet, methodically
collecting a massive collection of literary masterpieces. As for our research purpose,
the riches consisted of only novels credited to a diversity of Bengali literary heavy-
weights. The online scraping effort was not only massive, but it was also rigorous,
ensuring that we captured a diverse range of genres, styles, and periods in Bengali
literature. We ensured to keep a balance between the text datasets of Rabindranath
Tagore and those of a few other authors.

PDF Acquisition: In addition to online scraping, we stretch our net further by
collecting PDF editions of literary treasures. These PDFs are some crucial docu-
ments as they preserve the literary works in their original structure and formatting.
By collecting the PDFs, we aim to retain the authenticity and integrity of the texts
while permitting an entire investigation of these literary works.

OCR Techniques: The acquired PDFs, despite containing valuable content, posed
the difficulty of being in a non-machine-readable format. To overcome this difficulty,
we incorporated the precise use of Optical Character Recognition (OCR) methods.
So, by utilizing OCR, we converted scanned pages into machine-readable text, ulti-
mately transforming the PDFs into a digital repository of linguistic content.

Categorization of Data: Our dataset, reflecting the broad and varied Bengali
literary environment, was deliberately divided into two basic sections for system-
atic study. The first category contained the works of Rabindranath Tagore, an
iconic figure in Bengali literature whose impact stretches well beyond the confines
of Bengal. The second group, as important, reflected the creative achievements of
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Non-Rabindranath writers, including notable authors like as Sharat Chandra Chat-
tapaddhay, Bankim Chandra Chattopadhyay Chattapaddhay, Kazi Nazrul Islam,
Begum Rokeya, Humayun Ahmed, and Muhammed Zafar Iqbal. This category was
crucial in organizing our later research, enabling us to dive deep into both the canon-
ical and non-canonical components of Bengali literature.

Paraphrasing texts for building style transfer dataset: For carrying out
the text generation task, we have paraphrased the sentence-level tokenized data of
Rabindranath Tagore. Some data were paraphrased manually and some were done
by using paraphrasing tools and we made sure to keep the data credible.

Existing dataset: We have collected some datasets from a former student and
faculty of BRAC University named Asadullah al Galib who is currently working at
BRAC IT. We have collected data of 3 authors from him and three are Rabindranath
Tagore, Sarat Chandra Chattopadhyay and Bankim Chandra Chattopadhyay. We
also cross-checked the validity of those datasets.

4.2 Data Preprocessing
Tokenization and File Organization: To allow an in-depth textual analysis, we
utilized the proficiency of the BLTK tokenizer. This powerful program tactfully
split the textual strings into individual tokenized sentences by separating each line
according to their punctuation, which aided in a more organized and extensive anal-
ysis. Subsequently, these tokenized phrases were meticulously sorted into various
csv files, each retaining the name of an individual author. This file arrangement not
only helps data accessibility but also facilitates future author-specific analysis.

Data Purification: Recognizing the significance of data quality, we conducted
a series of steps on the data with the intention of data purification. These codes
were inclusive of diverse data cleaning methods, such as punctuation balance, cor-
recting uncommon instances, removing incomplete sentences and guaranteeing data
consistency by excluding too long sentences. Through these purification steps, our
purpose was to obtain the apex of accuracy in data representation, creating a firm
basis for our succeeding studies and discoveries.

These numerous data collection methodologies were carefully coordinated to cre-
ate a dataset that not only depicts the breadth and depth of Bengali literature, but
also upholds the highest standards of data integrity and relevancy. This compre-
hensive dataset serves as the foundation for our research, allowing us to delve into
the deep nuances of Bengali literary traditions and their ongoing impact on culture
and society.
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4.3 Dataset Visualization:
1. Sentence Length Analysis:

• HUMAYUN AHMED:

Figure 4.1: Humayun Ahmed Sentence Length

For Humayun Ahmed, the most frequent sentences are in between zero to
10 words, which is 8118 and the second most frequent is from the length
of 10 to 20 words which comes to 1787 frequency and the least frequent
is 20 to 30 words. 40 to 50 words is rare, which occurs only one time in
our data set.

• RABINDRANATH TAGORE:

Figure 4.2: Rabindranath Tagore Sentence Length

For Ravindranath Tagore, the most frequent sentence length is 10 to 20
words, which occurs 93,392 times, and the second most frequent is zero
to 10 words, which is 90,886. In our data set, we can see the least amount
of frequency in the sentence length of 160 to 170 words. Also similar to
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100 to 110 words.

• SHARAT CHANDRA CHATTAPADDHAY:

Figure 4.3: Sharat Chandra Chattapaddhay Sentence Length

For Sharat Chandra Chattapaddhay, the most frequent sentence length
is from around zero to 10 words, which occurs 42,557 times in our data
set. The next one comes at 10 to 20 words in sentence length which
occurs 30,964 times and the least amount of sentence length is 40 to 50
words which occurs only 660 times.

• Bankim Chandra Chattopadhyay:

Figure 4.4: Bankim Chandra Chattopadhyay Sentence Length

For Bankim Chandra Chattopadhyay, he tends to write the most frequent
sentence of zero to 10 words in the data set, it occurred 30,700 times.
The second one is 10 to 20 words, which occurred 11,746 times, and the
least amount of frequency in the sentence length is 60 to 70 words, which
occurred 17 times.
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• ZAFOR IQBAL:

Figure 4.5: Zafor Iqbal Sentence Length

For Zafar Iqbal, the highest frequency of sentence length is zero to 10
words, which occurs 5729 times, and the least amount of sentence length
is 40 to 50 words, which occurs 38 times. And the rare occasion is 70 to
80 words, which occurs only once.

• BEGUM ROKEYA:

Figure 4.6: Begum Rokeya Sentence Length

For Begum Rokeya, she tends to write the highest frequency of sentences
from zero to 10 words, which occurs 3551 times and the least amount is
40 to 50 words per sentence. These occurred only 28 times and the rare
occasion is 50 to 60 words, which only occurred once in our data set.
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• AHMED SOFA:

Figure 4.7: Ahmed Sofa Sentence Length

For Ahmed Sofa, He likes to write zero to 10 words in a sentence, and
that frequency is 3213 times. The second amount is 10 to 20 words per
sentence, which occurs 3101 times in our data set, and the least amount
of words per sentence he likes to write is 60 to 70 times, which occurs
three times in our dataset. Only one occurrence where he wrote 70 to 80
words in a sentence.
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2. Text Exploration Analysis:

• Bankim Chandra Chattopadhyay:
The graph image shows the word frequency analysis of a dataset of texts
written by Bankim Chandra Chattopadhyay. The x-axis denotes the
words, while the y-axis represents the frequency of each word, with the
most frequent words positioned at the graph’s top. Notably, the term
কের stands out with a frequency nearing 8000, whereas the word হয় has
the lowest frequency, falling below 200. It is noteworthy that the most
frequently used word surpasses 4000 occurrences, setting it apart. Fur-
thermore, the graph displays a gradual decrease from the second bar,
steadily covering words from "বলল" to "তার", followed by a relatively stable
trend from "েথেক" to "হয়". The average frequencies of words like "িদেয়", "িক",
"েথেক", আর, "করেত", "কথা", "িনেয়", "েস", "না", "তখন" etc., are relatively uniform,
around 2000.

Figure 4.8: Bankim Chandra Chattopadhyay Word Frequency

• BEGUM ROKEYA:
The graph image showcases the word frequency analysis of a dataset of
texts written by Begum Rokeya. There, the x-axis shows the words, and
the y-axis shows the frequency of each word. Words that occur most
frequently appear prominently at the peak of the graph. Upon initial
inspection, the graph appears consistently steady. The analysis high-
lights that the word "না" holds the highest frequency in Begum Rokeya’s
writings. In contrast, the word "আমার" appears with the lowest frequency,
approximately 318 times. An observation of the entire graph reveals a
steady frequency range for words regularly utilized by the author, span-
ning from 300 to 400. Additionally, the initial section of the graph depicts
a gradual decline among words such as "েয", "হয়", "আিম", "কিরয়া", and "আর"
starting at around 600 and descending to approximately 450.

25



Figure 4.9: Begum Rokeya Word Frequency

• HUMAYUN AHMED:
In the graph, the x-axis shows the words, and the y-axis shows the fre-
quency of each word, where the graph illustrates word count analysis
from a data collection of texts by Humayun Ahmed. Words with the
most recurrence are seen at the uppermost section. In this segment, it
is evident that the most frequently used word by the author, Humayun
Ahmed is "না" occurring 1627 times in our dataset, which markedly dis-
tinguishes it from other words he used. On the other hand, the least used
word is িকছু with a frequency rate of 263. While examining the data, it
becomes evident that the words he used the least have relatively similar
frequencies, such as "বলল", এক, "মেন", "বললাম", "িকছু". Additionally, there is a
noticeable similarity in frequency "হয়", "েস", "সেঙ্গ", "হেয়", "বলল", all ranging
approximately between 300 and 350 occurrences.

Figure 4.10: Humayun Ahmed Word Frequency

• RABINDRANATH TAGORE:
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This chart presents an analysis of the frequency of words in a collec-
tion of texts authored by Rabindranath Tagore. On the horizontal axis,
we can observe the words, while on the vertical axis, it represents the
frequency of each word. Words with the highest occurrence are posi-
tioned at the graph’s uppermost section. The globally renowned author
Rabindranath Tagore employed the word "না" the most, utilizing it a re-
markable 48,647 times. In contrast, the least used word is "মেন" occurring
only 11,692 times. Furthermore, an observation indicates a consistent
frequency among words such as "িকন্তু", "আমােদর", "তার", "আিম", "েসই", "তাহার",
"মেধয্", "হয়" with occurrences ranging from 15,000 to 17,000. There is also
a consistent decline from "েস" to "িকন্তু".

Figure 4.11: Rabindranath Tagore Word Frequency

• SHARAT CHANDRA:
The graph illustrates word count analysis from a data collection of texts
by Sharat Chandra Chattopadhyay. The x-axis represents the words,
whereas, the y-axis indicates their occurrences of them. Words with the
highest occurrence are positioned at the graph’s uppermost section. In
this graph, a prominently utilized word by Sharat Chandra Chattopad-
hyay is "না", which stands out distinctly with a frequency of 25,320. Be-
yond this, there is a general fluctuation in the word frequencies through-
out his writing. For instance, he has employed words like "েস", "কিরয়া",
"িকন্তু", "িক" at a frequency of around 10,000, whereas words like "কের", "কথা",
"এ", "মেন", "একটা" have a frequency closer to 5,000. Additionally, a consis-
tent pattern is observed in the graph with words like "আর", "হইয়া", "এই",
"কিহল", "আিম" maintaining an average frequency of approximately 7,000.
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Figure 4.12: Sharat Chandra Word Frequency

• ZAFOR IQBAL:

The chart shows the word count analysis from a collection of texts by
Zafor Iqbal. The x-axis represents the words, while the y-axis indicates
their frequencies. Words with the most appearances are prominently
displayed at the graph’s top. In contrast to the previously discussed
authors, Zafor Iqbal stands out for his frequent use of the word "কের" in his
writing. This particular word appears with a frequency of 2,247, and the
second most frequently used word is "বলল" which is nearly as prominent. It
is noteworthy that there is a distinct and significant decrease in frequency
from "বলল" to "একটা" with a gap of around 1000. Additionally, his writings
reveal a unique pattern, where the least used words are "এই" and "হয়" with
consecutive occurrences of 515 and 507. The average frequency of words
employed by Zafor Iqbal, such as "আর", "করেত" and "কথা" is approximately
600.

Figure 4.13: Zafor Iqbal Word Frequency
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• Ahmed Sofa:

The graph displays the word frequency analysis of a dataset of texts writ-
ten by Ahmed Sofa. The x-axis is for the words, and the y-axis shows
the frequency of each word. The words that have the highest frequency
are at the highest level of the graph. Analyzing the dataset of Ahmed
Sofa, it’s apparent that he frequently employs words like "কের","আিম", "না"
and "তার" where "কের" being the most prominently utilized. Besides "কের",
other frequently used words fall within a similar frequency range. How-
ever, there is a notable and sudden decrease in frequency from "আমার" to
"করেত", dropping from 1122 to 599. Words like "করেত", "েস" and "একটা" ex-
hibit similar frequencies, closely approaching 600. Notably, the least used
words in his writing are "তা" and "এ". An overall fluctuation is observed
in the graph, ascending and descending throughout the analysis.

Figure 4.14: Ahmed Sofa Word Frequency
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3. Combined Data Analysis:

• Count of texts of different lengths:
For the combined results we get a large amount of 1,84,745 sentences.
And for the medium we get the number to 1,24,556. Finally, for the
small length sentences, the number is 82,735.

Figure 4.15: Sentence length Count

• Text count of different Authors:
For the text count of different authors, the highest count belongs to
Rabindranath Tagore with the number 2 ,25,593. On the other hand,
the lowest number of sentences are from Begum Rokeya with 7067 sen-
tences and in between Sharatchandra and Bankimchandra respectively
have 85,491 and 45,321 sentences.

Figure 4.16: Author Text Count
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Chapter 5

MODEL DESCRIPTION

5.1 Models used for classification
In this section, we present a comprehensive overview of the models designed and im-
plemented to address the diverse classification tasks within the scope of our research
paper. Our primary focus revolves around four distinct challenges: discriminating
between Rabindranath Tagore’s literary works and non-Rabindranath texts, distin-
guishing texts from the Rabindranath era and the contemporary era, classifying
texts based on multiple authors, and identifying potential adversarial attacks. The
development of robust models for these tasks involves a careful combination of natu-
ral language processing techniques, feature engineering, and advanced deep learning
architectures. In the following subsections, we delve into the models used in the
classification tasks, elucidating the architecture, training strategies, and evaluation
methodologies employed to achieve meaningful results. In this section, we hereby
explain in detail the methodologies we have incorporated with our model to correctly
complete the task of author identification and text generation.

5.1.1 Models
Bidirectional LSTM Model:

A good model for extensive natural language processing (NLP) tasks such as sen-
tence author identification would utilize Recurrent Neural Network (RNN). This is
because it is quite able to capture sequential associations and maintain contextual
information in a text data. RNN has received considerable attention because of its
enhanced capacity to preserve sequence information as time passes [3]. On the other
hand, a Bidirectional Long Short-Term Memory (Bidirectional LSTM) is a version
of the Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) that
evaluates input sequences in both forward and reverse directions, moreover, this is
an advantage for this type of model because it is able to collect knowledge from both
its past and future contexts which helps it understand the input text better. By
effectively boosting the amount of information accessible to the network, BiLSTMs
enhance the context extraction that the algorithm has access to (for example, by
letting the algorithm know what words immediately follow and precede a word in a
phrase).
To understand the concept more precisely we can show a breakdown of the compo-
nents and operation of a Bidirectional LSTM:
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1. Long Short-Term Memory (LSTM): LSTM is a form of recurrent neural
network (RNN) that is meant to address the vanishing and exploding gradient
issues associated with standard RNNs. It maintains a cell state to store and
transmit information over several time steps, enabling it to retain long-term
dependencies in the incoming data. The LSTM network design comprises of
a few sections- forget gate, input gate, update gate and the output gate, and
each portion performs an independent purpose.

Figure 5.1: LSTM

• Forget Gate: In a cell of the LSTM neural network, the initial step
is to determine whether we should maintain the information from the
previous time step or forget it. It is done in the forget gate. The forget
gate determines what information to discard from the cell state from the
previous time step.

ft = σ(Wif · xt + bif +Whf · h(t−1) + bhf ) (5.1)
xt : Input at time t
h(t−1) : Hiddenstateoftheprevioustimestep.
Wif and Whf : Weight Matrices for the input and hidden state, respectively.
bif and bhf : Bias vector for the input and hidden state, respectviely.
σ : Sigmoid active function.

• Input Gate: The input gate controls how much information should be
stored in the cell state from the current time step.

it = σ(Wii · xt + bii +Whi · h(t−1) + bhi) (5.2)
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C̃t = tanh(Wig · xt + big +Whg · ht−1 + bhg) (5.3)
xt : Input at time t
h(t−1) : Hiddenstateoftheprevioustimestep.
Wig and Whg : Weight Matrices for the input and hidden state, respectively.
big and bhg : Bias vector for the input and hidden state, respectively.
C̃t : Hyperbolic tangent activation function.

• Update Gate: The candidate cell state is the new information to be
added to the cell state, computed using the input gate.

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (5.4)

⊙ : Element-wise multiplication
• Output Gate: The output gate controls how much information from the cell state

is used to compute the output at the current time step.

ot = σ(Wioxt + bio +Whoht−1 + bho) (5.5)

ht = ot ⊙ tanh(Ct) (5.6)

Wio and Who : Weight Matrices for the input and hidden state, respectively.
bio and bho : Bias vector for the input and hidden state, respectively.
Ct : Cell state at time t.

2. Architecture: The architecture of a Bidirectional LSTM typically consists of
two LSTM layers: one processing the input sequence in the forward direction
and the other in the backward direction. Each LSTM layer has its own set of
parameters, including weights and biases.

Figure 5.2: Bi-directional LSTM
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3. Bidirectional Processing: In a Bidirectional LSTM, the input sequence
is processed in two directions: forward and backward. The forward LSTM
processes the sequence from the beginning to the finish, whereas the backward
LSTM processes it in reverse. This dual processing allows the model to learn
dependencies from both past and future contexts.

4. Input and Output:

• Input: Each time step of the input sequence is supplied as input to both
the forward and backward LSTMs.

• Output: For each time step, the outputs from the forward and backward
LSTMs are concatenated, essentially doubling the number of features at
each time step. This concatenated output is used as the input to the
following layers or for generating predictions.

5. Training: During training, the parameters (weights and biases) of both the
forward and backward LSTMs are changed via backpropagation through time
(BPTT). The loss is calculated based on the model’s predictions and the
ground truth labels.

Given the features and context-extracting characteristics of Bidirectional LSTM, we
selected it for our text author classification.

BanglaBERT:

BanglaBERT uses the Transformer architecture, recognized for its effectiveness in
Natural Language Processing (NLP) activities. This design depends on encoders
and decoders with self-attention mechanisms to understand links between words
in a phrase and is highly efficient. BanglaBERT is particularly built for the Ben-
gali language. Its vocabulary and training data are tuned to interpret and create
Bengali text. BanglaBERT is pre-trained on a massive 27.5 GB dataset (called
‘Bangla2B+’) by crawling 110 notable Bangla sites, guaranteeing it learns the pre-
cise qualities and patterns of the language [17]. This pre-trained information may be
utilized to numerous downstream NLP tasks. The pre-trained BanglaBERT may be
fine-tuned for particular tasks like sentiment analysis, text summarization, machine
translation, or question answering. This is known as transfer learning, when the
model’s previous knowledge is applied to a new domain. By evaluating semantic
relationships and extracting relevant features from Bengali text, BanglaBERT may
be used for tasks like named entity identification, topic modeling, or relationship
extraction. BanglaBERT also includes modifications for text production reasons
and operates by gaining an extra decoder component. This decoder, often based
on a Transformer design as well, takes the encoded representation from BERT and
gradually makes text tokens one by one. Then, for specific text generation tasks,
the model (both encoder and decoder) is fine-tuned on relevant datasets to tailor
its output to the desired task [23].
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Architecture Overview of BanglaBERT:

• Transformer-based Encoder:

– Based on the Transformer design, noted for its intense attention mecha-
nism.

– 12 encoder layers, each having self-attention and feed-forward networks.
– Processes the input Bengali text, capturing associations between words

and constructing contextual representations.

• Decoder (for text generation tasks):

– Often added to the base BanglaBERT for producing additional text se-
quences.

– Takes the encoded representation from the encoder as input.
– Sequentially creates words one by one, each conditioned on the preceding

ones.
– May utilize beam search or top-k sampling for diverse and fluent gener-

ation.

Figure 5.3: Transformer Model
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5.1.2 Experimental Setup of the used models
i. Experimental Setup for Rabindranath vs. Non Rabindranath Texts:

Duplicate Sentences Removal:

In our trial arrangement, the main purpose was to detect and delete duplicate terms
from the data collection. This approach was used to reinforce the data’s legitimacy
and remove any possible biases produced by repeated words. By calculating the
overall number of phrases and then determining the number of unique ones, we were
able to uncover instances of duplication. These repetitive words were later deleted,
ensuring that each sentence in the data collection offered separate information for the
model’s learning and assessment stages. The adoption of this basic strategy coincides
with conventional processes in data pretreatment for tasks linked to natural language
processing, hence boosting the quality and dependability of our experimental setup.

Figure 5.4: Duplicate Amount

Author Labeling:

To optimize our categorization effort, we gave a category label to each author in
the dataset. This was accomplished by adding a 'Author_label' column to the
DataFrame. The labels were allocated numerically using a mapping. 'Rabindranath
Tagore' was given a value of 1, while all other writers, such as 'Bankim Chandra',
'Sharat Chandra Chattapaddhay', 'Humayun Ahmed', 'Zafor Iqbal', 'Begum Rokeya',
and 'Ahmad Sofa' were awarded a label of 0. The act of categorizing in this manner
simplifies the following process of classifying, allowing the model to efficiently learn
and distinguish between authors during the training phase.

Undersampling:

1. Train Data: During the undersampling step, we mitigated class imbalance by
generating balanced subsets for each category of authors. Specifically, 109464
instances for category 1, 61188 for category 2, 28113 for category 3, 4438 for
category 4, 5320 for category 5, 4944 for category 6, and 5459 for category 7
were randomly picked or replaced. The final train_data DataFrame combines
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Figure 5.5: Train Data

both subsets, guaranteeing enough representation for each author category
and increasing the model’s generalization during training and assessment.

2. Test Data:
In the undersampling phase of our experimental design, the major goal was to
address the uneven distribution of authors within the dataset. The technique
entailed constructing unique subgroups for each author type, modifying the
size of these subsets to remedy the imbalance. For several categories, ran-
dom selection with replacement was applied to boost the presence of minority
writers. These subsets were then pooled to produce both the training and as-
sessment datasets, guaranteeing a more fair distribution of cases across various
author categories.

Figure 5.6: Test Data

Subsequently, a similar strategy was utilized to build the test dataset. Specif-
ically, 15204 instances from df11, 6622 instances from df12, 4786 instances
from df13, 1046 instances from df14, 1005 instances from df15, 913 instances
from df16, and 832 instances from df17 were utilized to produce the test data
subsets. This ensures a balanced representation for a fair assessment of the
model’s performance. The shuffling of cases across these datasets sought to
create unpredictability, further boosting the model’s capacity to generalize
successfully across distinct authors. This careful undersampling method cre-
ated the groundwork for a more robust and fair assessment of our model.
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Model Configuration (BERT + Bidirectional LSTM):

Incorporating BanglaBERT for Textual Embeddings: Within our experi-
mental framework, we implement BanglaBERT, a transformer model particularly
developed to solve problems in the Bengali language. Leveraging the features of the
Hugging Face Transformers library, we add the BanglaBERT model and tokenizer
for contextual text embeddings. Furthermore, the incorporation of the ’normalizer’
module serves a role in fine-tuning the text document. These selections align with
the latest advances in Natural Language Processing (NLP), ensuring that our model
effectively processes Bengali text. The integration of BanglaBERT strengthens our
experimental context and opens up possibilities for successful implementation in
various NLP applications.

Data Preparation for BanglaBERT Integration: The process of preparing in-
put data is a comprehensive one, covering both phases—training and testing. We use
a BanglaBERT tokenizer to turn sentences into numbers (input IDs), and we create
attention masks, crafted to emphasize the significant parts(tokens). The dataset
is then divided distinctively into training and testing subsets, making arrays with
input data (X_train_input and X_test_input), associated labels (Y_train_label
and Y_test_label), and attention masks (train_mask and test_mask). An impor-
tant train-test split is applied to these arrays for training and testing. Thereby, the
procedures facilitate the effective integration of BanglaBERT into our experimental
context, creating a pathway for the successful execution of natural language pro-
cessing tasks.

Applying Padding to Sequences: In the framework of Bidirectional Long short-
term Memory (LSTM), the process of padding sequences incorporates adding specific
tokens or elements to input sequences to manage a uniform length. This step is
essential for our training, validation, and test texts as LSTMs are sort of designed
with fixed-size inputs, whereas text sequences in natural language processing (NLP)
applications typically vary in length. The implementation of the pad_sequences
function from the pad_sequences package is utilized in padding the sequences for
training neural networks. Once the padding sequences are established, we proceed
to construct our Bidirectional Model.

Model Architecture:

In this part, we train a Bidirectional LSTM model for the goal of author classifi-
cation, associating with the BanglaBERT embeddings. The model architecture is
outlined as follows:

• Input Layer: The model accepts input sequences with a maximum length of
max_len tokens.

• BanglaBERT Layer: Leveraging the BanglaBERT model, input sequences
and attention masks are supplied to record contextual embeddings.

• Bidirectional LSTM Layer: A Bidirectional Long Short-Term Memory
(LSTM) layer is presented, containing 64 units, a dropout rate of 20
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• Output Layer: A dense layer with a softmax activation function generates
probabilities for binary classification, expressing the probability of each author.
The model seeks to categorize input sequences into one of the two author
groups.

Figure 5.7: Model Plot

Model Setup:

We have set up a model in the setup and compilation process, with key markers
that drive the training process. Here’s an explanation of the metrics and other
parameters:

• Loss Function:
Sparse Categorical Crossentropy: This is the selected loss function for multi-
class classification jobs, which includes allocating each instance to a single
class. It calculates the cross-entropy between actual labels and predicted prob-
abilities, allowing effective training by penalizing those who stray from what
reflects the true class.

• Metrics:
Sparse Categorical Accuracy: This statistic evaluates the accuracy of the
model’s predictions. It is appropriate for multi-class categorization and pro-
vides insights into the percentage of accurately classified occurrences.

• Optimizer:
Adam Optimizer: This is an optimization strategy that modifies the learning
rates of each parameter separately. It is a typical approach for deep networks,
providing rapid convergence and adaptability to diverse learning rates.
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Model Fitting:

1. Batch Size:
During training, the data is split into batches, each having 32 samples (batch_size=32).
Employing this batch-wise processing assists in optimizing memory use and
speeds up the training process.

2. Epochs:
The model undergoes several iterations throughout the full training dataset,
referred to as epochs. In this case, the training technique is iterated for 500
epochs (epochs=500), enabling the model to steadily increase its performance
over time.

3. Early Stopping:
The EarlyStopping callback is added to cease training if there is no substantial
improvement in the validation loss after one epoch (patience=3). This pre-
ventative strategy mitigates overfitting and guarantees the model generalizes
efficiently to fresh inputs. The min_delta parameter determines the smallest
change in the monitored measure necessary to qualify as an improvement.

Model Configuration (Bidirectional LSTM):

Train-Evaluation Split:

• Purpose: Preparing the combined dataset for subsequent splitting.

• Operation: Utilizing the train_test_split function to allocate 80% of the
data for training and 20% for evaluation.

Textual Data Preparation for Model Input:
In this phase of our experiment, we employ tokenization and padding techniques to
prepare the textual data for effective model input.

Tokenizer Configuration:

• Purpose: A tokenizer is established to convert words into numerical repre-
sentations.

• Parameters: The maximum number of features is set to 15,000, embedding
dimension to 512, and a maximum sequence length of 512 is defined.

Text Data Processing for Model Training and Evaluation:
In the preprocessing stage of our model training, the train data undergoes tokeniza-
tion and padding operations. The purpose of this operation is to turn words into
sequences of indices, and subsequent padding guarantees that all sequences keep a
constant length of 512. A similar tokenization and padding approach is used to
the evaluation dataset, where words are turned into sequences, and padding assures
consistent sequence lengths. Extending this method to the test dataset, words in
the test data are likewise turned into sequences, and padding is applied to preserve
uniform sequence lengths. This consistent preprocessing strategy across training,
evaluation, and test datasets provides compatibility, supporting successful model
training and assessment.
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Bidirectional LSTM Model Architecture Overview:

In this phase of our experimental design, we develop a neural network architecture
using Keras, concentrating on a Bidirectional Long Short-Term Memory (LSTM)
model. Here’s a quick overview:

Figure 5.8: Model Plot

Embedding Layer:

1. Purpose: Generates dense word embeddings for input sequences.

2. Configuration: Vocabulary size set to 15,000 (max_features), embedding di-
mension set to 512 (embedding_dim), and input length set to 512 (input_length).

Bidirectional LSTM Layer:

1. Purpose: Captures bidirectional contextual information from input sequences.

2. Configuration: 64 LSTM units with a dropout rate of 0.3 for regularization.

Batch Normalization Layer:

1. Purpose: Normalizes the activations of the previous layer, aiding in the opti-
mization process.
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2. Configuration: Batch normalization layer introduced to enhance model stabil-
ity.

Dense Output Layer:

1. Purpose:
A fully connected layer with sigmoid activation for binary classification.

2. Configuration:
Single output unit with sigmoid activation.

Model Compilation and Visualization:
In this stage of our experiment, the Bidirectional LSTM model is compiled, metrics
are defined, and the model architecture is visualized.

Metrics and Other Parameters:

Metrics: BinaryAccuracy, F1, and Recall.
Loss Function: Binary cross-entropy loss.
Optimizer: Adam optimizer.
Epochs: 500
Patience: 3
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ii. Experimental Setups for Rabindranath Era vs. Current Era

Author Labeling:
In order to boost the success of our categorization efforts, a modified categorical
labeling technique has been designed, integrating the addition of an ’Author_label’
column to the DataFrame. This labeling approach includes mapping individual
authors to numerical values, hence improving the model’s capacity to quickly spot
patterns throughout the training phase. In this modified technique, writers such
as Rabindranath Tagore, Bankim Chandra, Sharat Chandra Chattapaddhay, and
Begum Rokeya have been awarded a label of 1, highlighting their similar features.
Conversely, writers like Humayun Ahmed, Zafor Iqbal, and Ahmad Sofa have been
awarded a label of 0, showing their different authorial features. This comprehensive
method of author identification tries to identify and use inherent patterns within the
material, adding to a more nuanced understanding throughout the model training
phase.
Undersampling:

1. Train Data:

• During the undersampling process, the dataset underwent balancing by
establishing subsets for each author type. More exactly, 4589 examples
were picked for category 1, 4589 for category 2, 4589 for category 3, 720
for category 4, 5080 for category 5, 4944 for category 6, and 5140 for
category 7 using random sampling or replacement. The final train_data
DataFrame amalgamates these subsets, guaranteeing appropriate repre-
sentation for each author category. This comprehensive strategy boosts
the model’s generalization throughout both the training and evaluation
stages.

Figure 5.9: Train Data

2. Test Data:

• During the undersampling phase of our experimental design, the ma-
jor goal was to remedy the unequal distribution of authors within the
dataset. This process entailed the construction of unique subgroups for
each author type, changing the size of these subsets to fix the imbalance.
In some categories, random selection with replacement was applied to
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boost the number of minority authors. The merger of these subsets re-
sulted in the construction of both the training and evaluation datasets,
guaranteeing a more fair distribution of cases across different author cat-
egories. Subsequently, a similar strategy was utilized to build the test
dataset. Specifically, 1130 instances from df31, 1131 instances from df32,
1131 instances from df33, 100 instances from df34, 1214 instances from
df35, 1046 instances from df36, and 1232 instances from df37 were uti-
lized to produce the test data subsets.. This thorough selection method
guarantees a balanced representation for an impartial evaluation of the
model’s performance. The shuffling of examples across various datasets
sought to generate unpredictability, boosting the model’s power to gen-
eralize successfully among varied authors. This undersampling strategy
creates the framework for a more strong and unbiased examination of
our model.

Figure 5.10: Test Data

Model Configuration (BERT + Bidirectional LSTM):

In this experimental work, we incorporate BanglaBERT, a transformer model espe-
cially constructed for tackling linguistic problems in the Bengali language. Associ-
ating with the Hugging Face Transformers library, we structure the BanglaBERT
model and tokenizer to support contextual text embeddings. Besides, the inclusion
of the ’normalizer’ module is fine-tuned the text data to ensure its coherence. This
strategy matches with recent developments in Natural Language Processing (NLP),
certifying our model adeptly handles Bengali text. The inclusion of BanglaBERT
fortifies our experimental architecture, offering a stable base for the successful de-
ployment of NLP applications.

Data Preparation for BanglaBERT Integration: The distinct preparation
of input data for both the training and testing stages is crucial. Engaging the
BanglaBERT tokenizer, sentences experience encoding, leading to the generation
of input IDs and attention masks to highlight key tokens. The dataset is parti-
tioned into discrete training and testing subsets, giving arrays including input data
(X_train_input and X_test_input), related labels (Y_train_label and Y_test_label),
and attention masks (train_mask and test_mask). The subsequent application
of a train-test split to these arrays is critical for the proper training and testing
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of our model. These preliminary methods accelerate the smooth integration of
BanglaBERT into our experimental pipeline, hence paving the path for competent
execution in natural language processing jobs.

Application of Padding Sequences on Texts: In the context of Bidirectional
Long Short-Term Memory (LSTM), the application of padding sequences entails
the insertion of specific tokens or components to input sequences, assuring uniform
length. This is especially crucial since LSTMs demand fixed-size inputs, but natu-
ral language processing (NLP) applications often involve text sequences of various
lengths. The 'pad_sequences' function, accessible in a selected library, effectively
pads the sequences to ensure consistent length, a critical requirement for the train-
ing of neural networks. Following the construction of pad_sequences for our train,
validation, and test texts, we proceed towards the building of our Bidirectional
Model.

Model Architecture:

In this part, we design a Bidirectional LSTM model for the goal of author classifi-
cation, including BanglaBERT embeddings. The model architecture is outlined as
follows:

Input Layer: The model accepts input sequences with a maximum length of
max_len tokens.

BanglaBERT Layer: Leveraging the BanglaBERT model, input sequences and
attention masks are supplied to record contextual embeddings.

Bidirectional LSTM Layer: A Bidirectional Long Short-Term Memory (LSTM)
layer is presented, containing 64 units, a dropout rate of 20%, and recurrent dropout
of 20%. This layer helps the model to collect bidirectional contextual information
from the BanglaBERT embeddings.

Output Layer: A dense layer with a softmax activation function generates prob-
abilities for binary classification, expressing the probability of each author. The
model seeks to categorize input sequences into one of the two author groups.

Model Setup:

In the model setup and compilation step, we have established particular parameters
that guide the training process. Here’s an explanation of the metrics and other
parameters:

Loss Function: Sparse Categorical Crossentropy. The selected loss function is
designed to do tasks including multi-class classification, where each case is assigned
to a particular class. It computes the cross-entropy by measuring the gap between
true labels and expected probabilities. It benefits effective training by penalizing
departure from the actual class.
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Metrics: Sparse Categorical Accuracy. TIn terms of metrics, it is enrolled to
evaluate the model’s prediction accuracy. It is suitable in multi-class classification
scenarios as the metric provides valuable insights on the percentage of properly cat-
egorized occurrences.

Optimizer: Adam Optimizer. This optimization technique adjusts the learning
rates of individual parameters independently which makes it a widely chosen method
for training deep neural networks. Its efficiency in achieving convergence offers
adaptability to various learning rates.

Figure 5.11: Model Plot

Model Fitting:

1. Batch Size: Each training batch is built of 64 samples (batch_size=64).
Employing this batchwise processing increase is used to optimize memory uti-
lization and accelerate the training process.

2. Epochs: The model undergoes several iterations over the entire training
dataset, named epochs. In this case, the training process is executed for 500
epochs (epochs = 500), which allows the model to progressively enhance its
performance.

3. Early Stopping: The EarlyStopping callback is introduced here to stop train-
ing if there is no significant improvement in the validation loss after one epoch
(patience=3). This mechanism helps to avoid unnecessary training and refine
the model’s efficiency. The min_delta option determines the lowest change in
the measure that is tracked to qualify as an improvement.
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Metrics and Other Parameters:

Metrics: BinaryAccuracy, F1, and Recall.
Loss Function: Binary cross-entropy loss.
Activation Function: Sigmoid.
Optimizer: Adam optimizer.
Epochs: 500.

Model Configuration (Bidirectional LSTM)

Train + Evaluation Split:

• Purpose: Preparing the combined dataset for further splitting.

• Operation: Utilizing the train_test_split function to assign 80% of the
data for training and 20% for assessment.

Textual Data Preparation for Model Input: In this part of our experiment,
we apply tokenization and padding methods to prepare the textual data for effective
model input.
Tokenizer Configuration:

• Purpose: A tokenizer is constructed to translate words into numerical rep-
resentations.

• Parameters: The maximum number of features is set to 15,000, embedding
dimension to 512, and a maximum sequence length of 512 is established.

Train Data Processing:

• Purpose: The training data undergoes tokenization and padding.

• Operations: Words are translated into sequences of indices, and padding
guarantees that all sequences have a constant length of 512.

Evaluation Data Processing:

• Purpose: Similar tokenization and padding are done to the evaluation dataset.

• Operations: Words in the evaluation data are translated into sequences, and
padding guarantees constant sequence lengths.

Test Data Processing:

• Purpose: Extending the tokenization and padding procedure to the test
dataset.

• Operations: Words in the test data are turned into sequences, and padding
guarantees uniform sequence lengths.

Output Dimensions:

• Output: The generated tensors for training, evaluation, and test data are
presented, displaying the uniform dimensions attained using tokenization and
padding.
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Figure 5.12: Model Plot

Bidirectional LSTM Model Architecture Overview: In this phase of our
experimental design, we develop a neural network architecture using Keras, con-
centrating on a Bidirectional Long Short-Term Memory (LSTM) model. Here’s a
concise overview:
Embedding Layer:

• Purpose: Generates dense word embeddings for input sequences.

• Configuration: Vocabulary size set to 15,000 (max_features), embedding
dimension set to 512 (embedding_dim), and input length set to 512 (input_length).

Bidirectional LSTM Layer:

• Purpose: Captures bidirectional contextual information from input sequences.

• Configuration: 64 LSTM units with a dropout rate of 0.3 for regularization.

Batch Normalization Layer:

• Purpose: Normalizes the activations of the previous layer, aiding in the op-
timization process.

• Configuration: Batch normalization layer introduced to enhance model sta-
bility.

Dense Output Layer:
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• Purpose: A fully connected layer with sigmoid activation for binary classifi-
cation.

• Configuration: Single output unit with sigmoid activation.

Model Compilation and Visualization: In this stage of our experiment, the
Bidirectional LSTM model is compiled, metrics are defined, and the model archi-
tecture is visualized.

Metrics: Binary Accuracy, F1 Score, Recall
Loss Function: Binary Cross-Entropy Loss
Optimizer: Adam Optimizer
Activation Function: Leaky ReLU
Epochs: 500
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iii. Experimental Setups for Adversarial Attack Classification Model

Tokenization method for Textual Data: In the earliest phases of our experi-
mental setup, a rigorous tokenization method was performed to turn textual data
into numerical indices, a key procedure in natural language processing. The config-
uration includes specifying crucial parameters:

1. Maximum Number of Words (MAX_NB_WORDS):
Set at 50,000, selecting the most common terms to capture important language
trends.

2. Maximum Sequence Length (MAX_SEQUENCE_LENGTH):
Fixed at 512, maintaining consistency in the length of each text sequence for
successful model processing.

3. Embedding Dimension (EMBEDDING_DIM):
Established at 512, establishing the dimensionality of the created word em-
beddings.

Train + Evaluation Split:
In the essential phase of data preparation for model training and assessment, The
train_test_split’ function was used to accomplish train-test split. The ’X’ and ’Y’
variables, the features and labels respectively in train train and test sets ((X_train
¸ Y_train, Xtest , ytest)). It was set at a split ratio 85% training and 15 % testing,
providing a broad range of data representation. 42 as the ‘random_state’ input as-
sures repeatability of split. The Efficient data partitioning for future model training
and assessment. Textual Data Preparation for Model Input:
In this phase of our experiment, we employ tokenization and padding techniques to
prepare the textual data for effective model input. In this part of our experiment,
we apply tokenization and padding methods to prepare the textual data for effective
model input. Tokenizer Configuration:

1. Purpose:
A tokenizer is developed to transform words into numerical representations.

2. Parameters:
The maximum number of features is set to 15,000, the embedding dimension
to 512, and a maximum sequence length of 512 is established.

Train Data Processing:
1. Purpose:

The training data undergoes tokenization and padding.

2. Operations:
Words are translated into sequences of indices, and padding guarantees that
all sequences have a constant length of 512.
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Evaluation Data Processing:

1. Purpose:
Similar tokenization and padding are done to the evaluation dataset.

2. Operations:
Words in the evaluation data are translated into sequences, and padding guar-
antees constant sequence lengths.

Test Data Processing:

1. Purpose:
Extending the tokenization and padding procedure to the test dataset.

2. Operations:
Words in the test data are turned into sequences, and padding guarantees
uniform sequence lengths.

Output Dimensions:

1. Output:
The generated tensors for training, evaluation, and test data are presented,
displaying the uniform dimensions attained using tokenization and padding.

Bidirectional LSTM Model Architecture Overview: In this section of our
experimental design, we construct a neural network architecture using Keras, focus-
ing on a Bidirectional Long Short-Term Memory (LSTM) model. Here’s a concise
overview: Embedding Layer:

1. Purpose:
Generates dense word embeddings for input sequences.

2. Configuration:
Vocabulary size set to 10,000 (max_features), embedding dimension set to
512 (embedding_dim), and input length set to 512 (input_length).

Bidirectional LSTM Layer:

1. Purpose:
Captures bidirectional contextual information from input sequences.

2. Configuration:
64 LSTM units with a dropout rate of 0.3 for regularization.
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Batch Normalization Layer:

1. Purpose:
Normalizes the activations of the previous layer, aiding in the optimization
process.

2. Configuration:
Batch normalization layer introduced to enhance model stability.

Dense Output Layer:

1. Purpose:
A fully connected layer with sigmoid activation for binary classification.

2. Configuration:
Single output unit with Sigmoid activation.

Model Compilation and Visualization:In this stage of our experiment, the Bidi-
rectional LSTM model is compiled, metrics are defined, and the model architecture
is visualized.

Figure 5.13: Model Plot

Model Training:
The model training process incorporates two essential callback functions, EarlyStop-
ping and ModelCheckpoint, to enhance efficiency and ensure the best possible model
is saved. Key components of the training process include:
Epochs and Batch Size:
The model is trained for 500 epochs with a batch size of 64, specifying the number
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of times the entire training dataset is passed through the neural network.
Early Stopping Criteria:
EarlyStopping is implemented to monitor the validation loss. If the validation loss
does not improve for three consecutive epochs (’patience=3’), training is halted
early. This helps prevent overfitting and accelerates convergence.
Early Stopping Criteria:
EarlyStopping is implemented to monitor the validation loss. If the validation loss
does not improve for three consecutive epochs (’patience=3’), training is halted
early. This helps prevent overfitting and accelerates convergence.
Model Checkpointing:
ModelCheckpoint is utilized to save the weights of the best-performing model during
training. The ’best_model.h5’ file is updated only when a new minimum validation
loss is achieved. This ensures the preservation of the most optimal model configu-
ration.
Training Execution:
The ’fit’ method is employed to train the model using the training data (’X_train’
and ’Y_train’). The validation split is set to 10%, and both EarlyStopping and
ModelCheckpoint callbacks are applied during training.
Metrics and other parameters:
Metrics: Binary Accuracy, F1 and Recall. Loss
function: Binary cross-entropy loss.
Optimizer: Adam optimizer.
Activation Function: Sigmoid
Epochs: 500

Model Configuration (BERT+Bidirectional LSTM)
Model Loading:
We load the total model into our setup from csebuetnlp. The model is compat-
ible with TensorFlow, and it’s using the TFAutoModel class. Additionally, the
autotokenizer class is being used. The normalizer package was also loaded, giving
capabilities for text normalization.
Data Preprocessing for Bangla BERT Model:
In the preprocessing stage of our research, we made many adjustments to the text
data to enable the proper training and assessment of the Bengali BERT model. This
included tokenizing the phrases from the training data using the Bengali BERT to-
kenizer, which included adding special tokens, restricting the sequence length to 40,
and padding sequences as appropriate. As a consequence, we were able to build
input IDs and attention masks for the training set. These were then turned into
NumPy arrays, together with the required labels for training. The test words were
subjected to comparable preprocessing methods, giving test input IDs and atten-
tion masks. Furthermore, the training set was partitioned into independent training
and validation sets, namely ’X_train_input,’ ’Y_train_label,’ ’X_test_input,’ and
’Y_test_label.’ The appropriate attention masks were likewise distributed in the
same way.
Bengali BERT-Based LSTM Model Architecture and Visualization:
In the present stage of our research, we are constructing a network structure us-
ing Keras, with an emphasis on a Bidirectional Long Short-Term Memory (LSTM)
model. This network structure, built for author identification tasks, uses Bengali
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BERT embeddings and merges the properties of Bidirectional LSTM layers. The
model consists of two input layers, ’input_shape’ and ’masks,’ which serve as des-
ignated positions for the input sequences and accompanying attention masks. The
Bengali BERT model, referred to as ’bmodel,’ processes these inputs to produce
embeddings, with the output retrieved from the first member of the resultant tuple.
A Bidirectional LSTM layer follows, receiving bidirectional contextual information
from the Bengali BERT embeddings. This layer has 100 LSTM units and features
a 30% dropout rate to avoid overfitting. A densely linked layer with 2 units with
’leaky_relu’ activation is utilized as the output layer for binary classification tasks.
After specifying the architecture, the model is compiled to configure the loss func-
tion, optimizer, and evaluation metrics, ensuring the network is ready for optimum
training. A representation of the model architecture is also given. The Sparse
Categorical Crossentropy loss function is employed, appropriate for multiclass clas-
sification jobs where the labels are integers. The model’s performance is assessed
using the Sparse Categorical Accuracy measure, offering insight into the accuracy
of predictions. The Adam optimizer with a learning rate of 2e-5 is used to opti-
mize the model’s weights during training. The ’compile’ technique combines the
supplied architecture, loss function, optimizer, and metrics, preparing the model for
the training phase.

Figure 5.14: Model Plot

Metrics and other parameters: Metrics: Binary Accuracy, F1 and Recall.
Loss function: Binary cross-entropy loss.
Optimizer: Adam optimizer.
Activation Function: Softmax
Epochs: 500
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iv. Experimental Setups for Rabindranath vs. Multiple Authors:

Model Configuration (Bidirectional LSTM)
Author-Balanced Data Selection:
In order to counterbalance the imbalance in the dataset to assure balance , a sys-
tematic undersampling strategy is implemented ,depiction of writers. Key steps in
this process include:

Author-particular Data Extraction:
Three particular datas are taken out. Poets like Rabindranath Tagore, and Sharat
Chandra. Separate data frames (df1, df2 and so on.) are established for each author.

Undersampling:
For each author, a random subset is picked in order to establish a balanced dis-
tribution. Each author’s sample size is set at 40,070. replacement is permitted in
order to preserve consistency. The produced data frames Balanced subsets for each
author are (df5, df6, df7).

Tokenization and Padding:
The preprocessing stage consists of a tokenizing and padding network.

Tokenizer Configuration:
‘Tokenizer’ class is specialized using parameters such as numWords ((maximum
number of words to utilize), “filters” (characters to filter) ‘lower’. This configuration
is tailored to the peculiarities of Bengali script.
Tokenization:
The tokenized texts are supplied into the tokenizer ’bangla data’ dataset. It pro-
duces a vocabulary index (“word index”) according to 50, the most prevalent terms;
assigns unique indices to each of them.

Padding Sequences:
The tokenized sequences are then padded to a specified. 250 tokens long sequences
using ‘pad sequences’ method.

Data Tensor form:
The resultant data tensor (’X’) has a form that represents the padded sequences,
making it acceptable for input into the neural network. The print statement vali-
dates the form of the data tensor.

Label Tensor Formation:
The labels (’Author’) are one-hot encoded using ’pd.get_dummies,’ forming a label
tensor (’Y’) with a shape that corresponds to the number of distinct authors.

Train-Test Data Split for Model Evaluation:
An essential step prior to model training and assessment entails splitting the prepro-
cessed dataset into a set for training and another one for testing. The ‘train_test_split’
tool aids this division by putting aside 15% of the data particularly for testing pur-
poses. 42 is chosen as the random seed to guarantee that it may be reused for
various runs. These resultant sets identified as ‘X_train’ , ‘X_test’, ‘Y – train, ’
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and are suggestive of the training and testing data together with label relations.
The print statements validate these sets’ size, therefore offering a glimpse into the
amount and type of data that will be utilized to train This exact split offers an
impartial evaluation of the model’s capacity to generalize on unknown input during
future testing.
Bidirectional LSTM Model Architecture Overview:
The model of the author classification is constructed using a Sequential architecture
in Keras , using core layers to parse text fast. The model is launched with an
Embedding layer, converting discrete words into continuous vectors that capture
semantic relationships. 64 LSTM units with a 30% dropout rate for regularization
are employed on Bidirectional Long Short-Term Memory (LSTM) layer to boost
the model’s capacity to learn context and dependencies in both directions. So, the
output layer contains a Dense Layer with sigmoid activation function for multi-class
classification and ‘adam’ optimizer as well as categorical_crossentropy is utilized
to design this model. The summary printout offers a detailed perspective of the
architecture, illustrating how effectively it could evaluate sequential data and detect
tiny patterns accurately. This matches to what author categorization aspires for.
Model Compilation and Visualization:
In this stage of our experiment, the Bidirectional LSTM model is compiled, metrics
are defined, and the model architecture is visualized.

Figure 5.15: Model Plot
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Training Strategy with Early Stopping:
The training technique for the Bidirectional LSTM author classification model com-
prises two critical callbacks, namely EarlyStopping and ModelCheckpoint. EarlyStop-
ping is designed to monitor the validation loss (’val_loss’) and intervenes if there is
no improvement for three consecutive epochs, with a minimum loss change below a
given threshold. This proactive strategy minimizes overfitting and increases train-
ing efficiency. Simultaneously, the ModelCheckpoint callback guarantees that the
weights of the best-performing model are preserved throughout training. The stored
model, entitled ’best_model.h5,’ is selected by minimizing the validation loss, assur-
ing that the model with optimum generalization on the validation set is kept. This
deliberate mix of callbacks refines the training process, boosting model efficiency
and resilience. The training script runs throughout 500 epochs with a batch size of
64, providing a complete approach to model training and preservation.

Metrics and other parameters:
Metrics: BinaryAccuracy, F1 and Recall.
Loss function: Binary cross-entropy loss.
Activation Function: Sigmoid
Optimizer: Adam optimizer.
Epochs: 500

Model Configuration (BERT + Bidirectional LSTM)

BanglaBERT Integration:
The state of the BanglaBERT model was loaded into our test setup using the TFAu-
toModel method. The AutoTokenized is also used along with the model. This is a
pretrained language model which is trained with complexity of Bangla.

BanglaBERT Tokenization:
The initial stage in authorship attribution preparation is tokenizing the Bengali
text data by using BanglaBERTtokenizer. Setting max_len to 40, the training data
phrases are processed in order to create IDs for inputs and masks connected with
attention. Using the encode_plus function from BanglaBERT tokenizer phrases are
encoded, special tokens added, making sure that it does not exceed 40 and adding
attention masks. Generate input IDs, attention masks, and matching author labels
are grouped in training. This is similarly done to the test data which creates input
IDs, attention masks and also test. The training and test datasets are then sepa-
rated into input data, labels and attention mask so as to allow continued training
of the authorship attribution model. This tokenization stage guarantees that the
Bengali text is appropriately prepared up for integration into BanglaBERT in the
machine learning pipeline.

BanglaBERT Model Architecture:
In this approach, LSTM neural network is combined with BanglaBERT embed-
dings to produce a good model for authorship attribution. create_model function
describes the structure of a neural network. 64 units across Bidirectional LSTM
layer and dropout rates of 0.2 are used to capture bidirectional relations among
input sequences. The final completely dense layer, with softmax activation function
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creates probability scores of each class involved for multi-class authorship attribu-
tion. The final completely dense layer, with softmax activation function creates
probability scores of each class involved for multi-class authorship attribution. The
final dense layer with a softmax Activation function is responsible for the output
of probability probabilities per class so that multi-label authorship attribution may
be carried out. Multi-class Mortality Attribution The final Link concludes with the
dense layer which is filled and employs softmax activation for scoring probabilities
to each class. This architecture utilizes the contextual representations supplied by
BanglaBERT and sequential learning of Bidirectional LSTM to boost the model’s
capabilities in recognizing authorial styles. In general, the core of this model’s sum-
mary gives insight about the configurations of layers and overall structure.

Figure 5.16: Model Plot

Metrics and other parameters:
Metrics: BinaryAccuracy, F1 and Recall.
Loss function: Binary cross-entropy loss.
Activation Function: Softmax
Optimizer: Adam optimizer.
Epochs: 500
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5.2 Text generation in Rabindranath’s Style
Methodologies that create text in the style of Rabindranath Tagore is a challenging
task as it tries to write in a specific manner that captures the essence and theme of
the Bengali-renowned author’s writing. We’re using a T5 transformer model to help
us do this. Rabindranath Tagore was a well-known writer and Nobel Prize winner
known for his beautiful and profound writing. He had a special way of using words
that were poetic and deeply connected to the culture and spirituality of Bengal. In
this study, we’re going to see if we can make a machine-learning model write like
he did. Our goal is to create text that sounds like it could have come from Tagore
himself, and in doing so, we hope to better understand his literary style and con-
tribute to the field of text generation.

5.2.1 Models
T5 (Text-to-Text Transfer Transformer) stands out for its ability to perform a wide
range of NLP tasks through a unified framework. As we transition into the next
research phase, focusing on replicating an author’s writing style, our thesis incorpo-
rates headfirst the Transformer-based T5 model for text generation to capitalize on
its capabilities in advanced NLP. We utilize T5’s pre-trained weights, fine-tuned to
capture the unique intricacies of the author’s typing style, in our implementation. Its
unique ”text-to-text” approach allows it to handle diverse tasks by converting them
into a unified text generation problem. This methodology aligns with our objective
of generating text that mirrors the author’s unique writing patterns. During the
fine-tuning process, the T5 model learns to understand the context to recognize and
mimic specific patterns such as sentence structures, word choices, and even idiosyn-
crasies in the punctuation usage of the author’s writing. In the fine-tuning phase, we
let the model learn from a selective dataset, allowing it to refine its grasp of unique
signature patterns (characteristics) in the author’s written work. As a result, the
T5 model stands out in generating text that effectively imitates the author’s style
as well as exhibits a noteworthy degree of context awareness.

Figure 5.17: T5 Model

BanglaT5

BanglaT5 is a model that aligns with our project objective to classify by generating
a specific author’s unmatched writing style. Just like other T5 models, this is
also another version of the base T5 model. This is a powerful T5 tool specially
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designed for the Bengali language. We utilize the maximum potential of BanglaT5
to generate a piece of writing that is able to exactly imitate the style of an author
by preserving the distinctive pattern of their writing, that too with high accuracy.
As mentioned before, banglaT5 promises to increase the precision of our research
via understanding and implementation of Bengali language to new heights, similar
to the way T5 efficiently carries out NLP tasks such as authorship attribution. The
particular approach of BanglaT5 matches effortlessly with our aims, helping us dive
deeper into the core of how Bengali writers present themselves. This transition
is not just about technology, it reflects our commitment to precision and cultural
sensitivity that resonates beyond the confines of traditional English-centric methods.
Through this advanced fusion of technology and language, we anticipate a more
refined and contextually nuanced emulation of the author’s writing style, showcasing
how transformer models can keep getting better at figuring out who wrote what in
the world of authorship attribution.

mT5

We have used the mT5 Model for Rabindranath-style text generation. The mT5 lan-
guage model, otherwise known as the multilingual Translation Transformer model
was developed by Google and mentioned in the ”Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer” paper in 2019, for multilingual
translation tasks. It is also a variant of the T5 model or Text-to-Text Transfer
Transformer Model. Since it is able to deal with various languages, thence the util-
ity of mT5 spans over a large domain of linguistic contexts in NLP. mT5 is an
enhanced version of the T5 model, hence, it is able to work with an increased num-
ber of parameters which tends to promote retrieval effectiveness. mT5 is a renowned
adaptable tool which can efficiently carry out translation, language perception, and
summarization.

Background of mT5: As we already know, T5 is a pre-trained language model
characterized by its application of a single ”text-to-text” format for all text-based
NLP challenges. The most widespread usage of the T5 model is to perform gener-
ative tasks where the model generates text conditioned on some specific input [15].
T5 uses a basic encoder-decoder Transformer architecture. T5 is pre-trained on a
”span-corruption” goal in masked language modeling, in which successive spans of
input tokens are substituted with a mask token or is corrupted and the model is
trained to reconstruct the masked-out words. This way, it learns to understand the
contextual relationships and dependencies within the text. Now, we shall discuss a
little about mT5 here. Unlike that of the T5 model, mT5 requires adequate fine-
tuning before it can be used for any task. Furthermore, Google’s mT5 was simply
pre-trained on mC4 - a new Common Crawl-based dataset [15], with no supervised
training covering 101 languages.

mT5-small

Multilingual T5 Small (mT5 Small) is a compressed variant of the T5 language
model, and similar to mT5 this model is also used for multilingual natural lan-
guage processing tasks. mT5 small is also able to work with and generate multiple
languages as a result of being trained on a wide range of language corpuses. The
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objective of building a small model such as this one is to implement it on applica-
tions with resource constraints without hampering its quality of performance and
delivering valid output across multilingual contexts. However, despite its smaller
size when compared to bigger alternatives, the mT5-Small has the ability of per-
forming a variety of language-related tasks such as translation, summarization, and
language interpretation.
Background of mT5-Small: T5 is a transformer-based paradigm that defines
all NLP tasks as text-to-text problems, bringing together activities such as transla-
tion, summarization, and question-answering into a unified framework. The ideology
of this compact variant of T5, named “mT5-Small”, is quite well-known amongst
transformer-based models. These more compact models balance computing demands
and performance by being trained on a smaller amount of data or with fewer param-
eters. And the objective of researchers behind building such compact toned-down
variants of the original model is to facilitate accessibility for such tasks that have
resource constraints or to improve efficiency in specific applications.

Architecture Overview of mT5 Model:

Just like the original T5 Language model, the mT5 model and mT5-small model
have similarities in their architecture. The main features of the architecture are
described below:

1. Encoder-Decoder Architecture: Just like T5, mT5 has an encoder-decoder
design. The encoder generates the output text from the input text, while the
decoder reverses the process. Transformer designs are used in both the encoder
and the decoder.

2. Positional Embeddings: To deal with the text’s sequential structure, mT5
uses positional embeddings, which offer information about the position of each
token in the sequence.

3. Multi-Head Self-Attention: Both the encoder and decoder transformer
blocks are made up of multi-head self-attention mechanisms. This allows the
model to focus on multiple sections of the input sequence at the same time,
capturing dependencies at different points.

4. Feedforward Neural Networks: Following the self-attention layers, feed-
forward neural networks are used to process input independently at each point.

5. Layer Normalization and Residual Connections: Every sub-layer (such
as attention and feedforward) is preceded by layer normalization and is linked
by a residual connection, which aids in training stability and convergence.

6. Vocabulary and Tokenization: To turn input text into tokens, mT5, like
similar transformer-based models, adopts a tokenization approach. Usually,
the model is trained upon a fixed-size vocabulary that encompasses a broad
spectrum of languages.
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5.2.2 Experimental Setup of the used models
Setup for BanglaT5 and mT5-small

As mentioned earlier, text generation that imitates the style of Rabindranath Tagore
is one of the focal tasks that completes our project. Below are the steps that were
needed to successfully carry out the text generation part.

1. Dataset Processing:
Our dataset contains two columns: ‘Input_text’ and ‘Rabindranath_text’.
Our main objective here is to provide a simple input text which shall be read
and then converted into a writing that properly copies the writing personal-
ity/style of Rabindranath Tagore. Then, by using ‘df.shape’ we have found the
exact number of data, which was 22899 texts. This data was then split into 3
parts: train_data, test_data, and eval_data. After symmetrical division, we
created a csv file for each of the datasets for various purposes. The number
of data are mentioned here: training data: 17000 sentences, test data: 3000
sentences and eval data: 2899 sentences.

2. Loading Tokenizer Model:
The model that we are about to fine-tune, at first we will load its subsequent
tokenizer from Hugging Face transformers library.

3. Tokenization for Text Generation:
Next, specific columns of the DataFrame are extracted for the goal of tokeniz-
ing input and target texts using the Tokenizer. As a consequence, input and
target tensors are made to represent the tokenized sequences of the input and
target.
This tokenization involves a specific process -

inputs = tokenizer(input_texts, return_tensors='pt',
padding=True,
truncation=True,
max_length=128)

This line of code tokenizes the input_texts using the Tokenizer of the model
being fine-tuned. The resulting tokens are converted to PyTorch tensors. It
also includes padding, truncation, and limits the maximum sequence length to
128. Then we stored the tokenized input_texts in the variable inputs. Then,

targets = tokenizer(target_texts, return_tensors='pt',
padding=True,
truncation=True,
max_length=128)

Similar to the previous line, it tokenizes the target_texts using the same to-
kenizer and parameters. Then we stored the tokenized target_texts in the
variable targets.
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4. Declaration of Custom Dataset Loading Class:
The purpose of this specific class is to promote sequence-to-sequence training
of neural networks. The intended application of CustomDataset is in relation
to transformer-based models. The dataset is initialized using tokenized se-
quences as inputs and targets. It provides methods for determining the length
of the dataset (__len__) and extracting individual items (__getitem__).
The dataset returns a dictionary that includes ′input_ids′, ′attention_mask′,
′decoder_input_ids′, ′decoder_attention_mask′, and ′labels′ for each item.
Then, a custom dataset called Custom_Dataset is created using the earlier to-
kenized inputs and targets. Finally, a PyTorch DataLoader is created, which
batches and shifts the data with a batch size of 8, making it great for train-
ing transformer models with mini-batch optimization. The DataLoader may
be utilized in training loops for iterating over batches of data while training
models.
The __getitem__ method returns a dictionary containing the necessary data
for a single training sample. This includes:
i. ’input_ids’: Input sequence token IDs.
ii. ’attention_mask’: Attention mask for the input sequence.
iii. ’decoder_input_ids’: Target (decoder) sequence token IDs.
iv. ’decoder_attention_mask’: Attention mask for the target (decoder) se-
quence.
v. ’labels’: Target labels, which are the same as the decoder input IDs.

5. Tokenization for Evaluation:
By using all the similar steps mentioned above we repeat this whole procedure
for evaluation data. Initially, we read the dataset and separate the input text
from the Rabindranath-style target text and tokenized the dataset. Then we
create a class for the Evaluation Dataset where we sort all the data and finally
store it in the Evaluation_Dataset.

6. Model Loading and Training:
The model, loaded using the ”csebuetnlp/banglat5” for banglaT5, and for
mT5 small, google/mt5− small pre-trained weights are used for sequence-to-
sequence tasks. The model is set to training mode using model.train(). This
step is important if we want to fine-tune the model on a specific job using our
own dataset. By running train(), we enable the model to adjust its parameters
during the training phase.

7. Training of Model: (Metrics & Parameters)

(a) We have passed the tokenizer and previous model in the data_collater.
The data collator is used to pre-process batches of data before they are
fed into the model during training. It takes a batch of samples and
tokenizes and adds paddings to them to make sure that all sequences in
the batch are the same length, which is required for effective training
with mini-batches. It also handles different arguments according to the
Model.
Some code parameters include:
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per_device_train_batch_size=8:
per_device_eval_batch_size=8:
num_train_epochs=200:
evaluation_strategy='steps':
eval_steps=500:
save_total_limit=2:
load_best_model_at_end=True:

(b) Create a Trainer Instance:
The Trainer is configured with the pre-trained model (model), train-
ing arguments (training_args), a data collator for sequence-to-sequence
tasks (data_collator), and training and evaluation datasets (custom_dataset
and evaluation_dataset, respectively) to configure various aspects of the
training process, such as batch size, epochs, output directory, etc. Addi-
tionally, it contains callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
an EarlyStoppingCallback as a callback with patience of 3, allowing for
early stopping during training if the evaluation measure does not im-
prove for subsequent epochs. The trainer. train() function is then used
to commence the training process, fine-tuning the model on the given
datasets according to the defined training parameters and stopping con-
ditions.
We required only 12 epochs to train the BanglaT5 model even though
we had declared 200 epochs earlier due to early stopping. Similarly, for
mT5-small, the number of epochs required was 32 only.

8. Saving the Model:
The model.save_pretrained('fine_tuned_model') stores the fine-tuned
model parameters, settings, and any other files connected with the model
in a directory named 'fine_tuned_model'.
Similarly, the tokenizer.save_pretrained('fine_tuned_model') stores the
tokenizer’s vocabulary and configuration in the same directory. This enables
for easy recovery and reuse of the fine-tuned model and tokenizer for future
tasks or deployment without having to retrain or tokenize from start.
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Chapter 6

RESULT AND ANALYSIS

6.1 Classification
6.1.1 Experimental findings from Rabindranath vs. Non

Rabindranath Text Classification
Bidirectional LSTM: From our Bidirectional LSTM model for the classification
of Rabindranath and non- Rabindranath texts, we obtained a sufficiently good ac-
curacy of 91

Classification Report
Precision Recall F1-Score Support

0 0.91 0.92 0.92 15204
1 0.92 0.91 0.92 15204

Accuracy – – 0.92 30408
Macro Avg 0.92 0.92 0.92 30408

Weighted Avg 0.92 0.92 0.92 30408

Table 6.1: Accuracy Report of Bidirectional LSTM for Rab vs. Non Rab data

The image shows a table of precision, recall, F1 score, support, accuracy, macro
average, and weighted average of the Bidirectional LSTM Model used to evaluate
the Rabindranath vs. non Rabindranath data. Here,Rabindranath Tagore means 1
and rest of the authors means 0.
According to the table, we can see that the model performs quite well overall with
an accuracy of 0.92. Moreover, we also see that the macro average f1 score is also
0.92, which is significantly good. One advantage of this model is that there is no
class imbalance present, as both the classes ‘0’ and ‘1’ have the same support value,
which is 15204. Their f1-scores and recall values are also the exact same which
proves the ’no class imbalance’ point. Anf finally, the weighted average F1 score is
0.92, which is found by considering both classes together, indicating that the model
is performing well on both classes. Overall, the image shows that the model has
good performance on the classification task. Thus, it will be easier to interpret the
results accordingly.
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Evaluation of Bidirectional LSTM Model:

Figure 6.1: Epoch vs Accuracy

Here we can see that the accuracy of the model increases over time, reaching a peak
of nearly 92% at epoch 5.0. This suggests that the performance of the model during
evaluation was quite good. This graph also displays that the model is learning and
improving over time. The initial increase in accuracy is likely due to the model
finding patterns in the data. After epoch 1.0, the increase in accuracy decreases as
we can see a less slanted gradient. This may be due to the model overfitting to the
training data. Overall, the graph shows that the model is performing well and is
able to achieve high accuracy on the test data.
It is important to note that the model accuracy on the held-out test set is a more
accurate measure of the model’s generalization performance than the model accu-
racy on the training set. This is because the test set contains data that the model
has never seen before, so it is not able to overfit to the training data.

The graph shows that the loss of the model decreases over time. This graph shows
that the model is learning and improving over time. The initial decrease in loss is
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Figure 6.2: Epoch vs Loss

likely due to the model finding patterns in the data and the subsequent increase in
loss may be due to the model overfitting to the training dataset.
Overall, the graph shows that the model is performing well and is able to achieve
low loss on the test data.

Figure 6.3: Confusion Matrix

Here, the confusion matrix helps us understand how well the model is actually work-
ing. As we gave 2 classes in our classification, we have a 2x2 matrix with the support
values given in the matrix. We can calculate the False Positive (FP), False Nega-
tive (FN), True Positive (TP), True Negative (TN) values from this graph. After
analyzing the graph, It has the following values - True Positives (TP): 13941, False
Positives (FP): 1263, False Negatives (FN): 1307 and True Negatives (TN): 13897.

From the above graph we can get a good idea of the overall performance of our
model. Here, the y-axis represents the True Positive value rate of our model and
the x-axis shows the False Positive rate.
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Figure 6.4: ROC Graph

The ROC curve is close to the top-left corner of the graph, which is an indication of
good performance. The curve starts off rising steeply, which means that the model
is very good at correctly identifying true positives when the threshold is low. As
the threshold increases, the curve rises less steeply, but it remains well above the
diagonal line. This means that the model is still able to perform well even when it is
more cautious about classifying cases as positive. Then, the AUC (Area Under the
Curve) value for this ROC curve is 0.91, which is a very good score. This indicates
that the model is very good at distinguishing between positive and negative cases.
BanglaBERT + Bidirectional LSTM:

Classification Report
Precision Recall F1-Score Support

0 0.95 0.96 0.95 15204
1 0.96 0.95 0.95 15204

Accuracy – – 0.95 30408
Macro Avg 0.95 0.95 0.95 30408

Weighted Avg 0.95 0.95 0.95 30408

Table 6.2: Accuracy Report of Bidirectional LSTM for Rab vs. Non Rab data

The report summarizes the model’s performance on a test dataset, breaking down
its predictions for each class into several metrics such as - precision, recall, F1 score,
support, accuracy, macro average, and weighted average for the BanglaBERT +
Bidirectional LSTM Model used to evaluate the Rabindranath vs. non Rabindranath
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data. Here,Rabindranath Tagore means 1 and rest of the authors means 0.
The bottom part of the table shows that the model has an overall good performance.
The table’s bottom displays an accuracy score of 0.95, reflecting the model’s ability
to correctly predict outcomes across both classes. Additionally, it stands on macro
average F1 score of 0.95. Notably, there is no class imbalance as both ’0’ and ’1’
classes have an identical support value of 15204, signifying an even distribution of
samples. Class 1 exhibits impressive precision, recall, and F1-score, all hovering
around 0.96, indicating the model’s strong capability in correctly identifying in-
stances belonging to this class. Meanwhile, class 0 also demonstrates commendable
performance, with precision, recall, and F1-score approximately at 0.94.
This classification report suggests that the model is performing well overall on this
dataset. It is able to accurately identify both positive and negative cases with high
precision and recall.

Evaluation of BanglaBERT+Bidirectional LSTM Model:

Figure 6.5: Epoch vs Accuracy

Here we can see that the accuracy of the model increases over time, reaching a peak
of about 0.94 at epoch 1.0 and then plateaus. Still the value is near 0.95. This
suggests that the performance of the model during evaluation was quite good.
This graph also displays that the model is learning and improving over time. Ini-
tially, the increase in accuracy can be explained to the model identifying patterns in
the data. A flatter or steep gradient indicates that the pace of accuracy, which was
increasing, slows down after the first epoch. This may be a sign of overfitting, which
occurs when a model adapts to the training set too much. To sum up, the visual
illustration indicates that the model operates well and achieves notable accuracy
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levels on the test dataset. However, the plateau we see in the graph suggests that
the model is unable to significantly improve performance after a certain point.

Figure 6.6: Epoch vs Loss

The graph shows that the loss of the model decreases over time, reaching a minimum
of about 0.15 at epoch 1.0. After that point, the loss starts to increase up to 0.20.
This graph indicates that the model is learning and improving as time progresses.
The initial drop in loss can probably be attributed to the model recognizing pat-
terns in the data, and the subsequent rise in loss might occur because the model is
becoming too specialized in fitting the training dataset.
Overall, the graph shows that the model is performing well and is able to achieve
low loss on the test data.
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Figure 6.7: Confusion Matrix

Here, the confusion matrix helps us understand how well the model is actually
working overall. Here, we can calculate the False Positive (FP), False Negative(FN)
, True Positive (TP) and True Negative (TN) values from this graph. After analyzing
the graph, It has the following values - True Positives (TP): 14526, False Positives
(FP): 678, False Negatives (FN): 736 and True Negatives (TN): 14468.

Figure 6.8: ROC Curve

From the above graph we can get a good idea of the overall performance of our
model. Here, the y-axis represents the True Positive value rate of our model and
the x-axis shows the False Positive rate.
The ROC curve is close to the top-left corner of the graph, which is an indication of
good performance. The curve starts off rising steeply, which means that the model
is very good at correctly identifying true positives when the threshold is low. As
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the threshold increases, the curve rises less steeply, but it remains well above the
diagonal line. This means that the model is still able to perform well even when it is
more cautious about classifying cases as positive. Then, the AUC (Area Under the
Curve) value for this ROC curve is 0.99, which is a very good score. This indicates
that the model is very good at distinguishing between positive and negative cases.
Furthermore, at the point on the curve where the sensitivity is 0.8, the specificity is
about 0.95. This means that the model is able to correctly identify 80% of the true
positive cases and 95% of the true negative cases. This is a good balance between
the two metrics.

6.1.2 Experimental findings from Rabindranath Era vs. Cur-
rent Era text classification:

Bidirectional LSTM:

Classification Report
Precision Recall F1-Score Support

0 0.91 0.95 0.93 3492
1 0.95 0.91 0.93 3492

Accuracy – – 0.93 6984
Macro Avg 0.93 0.93 0.93 6984

Weighted Avg 0.93 0.93 0.93 6984

Table 6.3: Accuracy Report of Bidirectional LSTM for Rab vs. Non Rab data

The image depicts a table containing the Bidirectional LSTM Model’s precision, re-
call, F1 score, support, accuracy, macro average, and weighted average as they
pertain to the comparison of data from the Rabindranath era and the present
era.Here,Rabindranath Tagore era means 1 and current era means 0. The table
presents the model’s macro average F1 score of 0.93 and accuracy of 0.93, indicat-
ing a satisfactory overall performance. Furthermore, it is important to note that no
class imbalance is visible as classes ’0’ and ’1’ hold an equivalent number of sam-
ples (support value) of 3492. The weighted average F1-score provides an accurate
evaluation of the model’s performance across all classes by considering the perfor-
mance of both classes. The weighted average F1 score is 0.93 in this instance as
well, suggesting that the model is operating effectively across both divisions. The
precision, recall, and f1-score for class 1 are all exceptionally high (approximately
0.93), suggesting that the model demonstrates a high level of accuracy in classify-
ing instances. The performance is also solid for class 0, with precision, recall, and
f1-score all hovering around 0.93.
In general, the image demonstrates that the model performs admirably in the clas-
sification assignment. Consequently, accurately interpreting the results will be sim-
plified.

Evaluation of Bidirectional LSTM Model:

72



Figure 6.9: Epoch vs Accuracy

Here we can see that the accuracy of the model increases over time, reaching a peak
of about 0.92 at epoch 6 and then fluctuates and finally steadily increases to almost
about 0.95. This suggests that the performance of the model during evaluation was
quite good. This graph also displays that the model is learning and improving over
time. The initial increase in accuracy is likely due to the model finding patterns in
the data. The blue line shows the accuracy of the model on the validation dataset.
It follows a similar trend to the training accuracy, but it is consistently lower. This
suggests that the model is overfitting to the training data to some extent. The gap
between the blue and green lines is a measure of the model’s overfitting. A larger
gap indicates that the model is memorizing the training data rather than learning
generalizable rules. In this case, the gap is relatively small, which suggests that the
model is not overfitting too badly. Overall, this graph suggests that the model is
learning well from the training data and is achieving good accuracy on both the
training and validation datasets. However, there is some evidence of overfitting, so
it might be helpful to try to reduce the gap between the training and validation
accuracy.

The below graph is an illustration of model loss over time. The x-axis of the graph
represents the number of epochs. The y-axis of the graph represents the model loss,
which is a measure of how well the model is able to fit the training data. The graph
shows that the model loss for the training dataset decreases sharply up to 2 epochs,
and then increases at epoch 3 again and fluctuates until all other epochs are carried
out with an overall decrease. This suggests that the model is learning effectively
from the training data and reducing its error. The validation dataset follows a sim-
ilar trend to the training loss, but it is consistently higher. This suggests that the
model is starting to overfit to the training data. So, the fluctuation in the graph
happened because the model is able to fit the training data perfectly at this point,
but it is not able to generalize to new data. Overall, the graph shows that the model
is able to learn the training data effectively and reduce its error rate. However, the
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graph indicates that the model is not able to improve its performance significantly
beyond that point.

Figure 6.10: Epoch vs Loss

Figure 6.11: Confusion matrix

Here, the confusion matrix helps us understand how well the model is actually
working. It has the following values - True Positives (TP): 3313, True Negatives
(TN): 3163, False Positives (FP): 179, False Negatives (FN): 329. Based on these
values, we can see that the model is overall a good model. It has a high number
of true positives and true negatives, which means it is correctly identifying both
positive and negative values most of the time. These metrics all suggest that the
model is performing well, but there is still room for improvement. In particular,
the model could be improved by reducing the number of false positives and false
negatives.
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Figure 6.12: ROC Curve

From the above graph we can get a good idea of the overall performance of our
model. Here, the y-axis represents the True Positive value rate of our model and the
x-axis shows the False Positive rate. Good performance is indicated by the ROC
curve positioned in the upper-left corner of the graph, where the True Positive Rate
(TPR) is significant and the False Positive Rate (FPR) is minimal. The curve begins
off rising steeply, which means that the model is very good at accurately identifying
true positives when the threshold is low. As the threshold increases, the curve rises
less precipitously, but it remains well above the diagonal line. This means that the
model is still able to perform well even when it is more cautious about classifying
cases as positive. A uniform curve suggests that the model is making consistent
predictions. Then, the AUC (Area Under the Curve) value for this ROC curve is
0.93, which is a very high score. This indicates that the model is very effective at
distinguishing between positive and negative cases.

BanglaBERT + Bidirectional LSTM:

Classification Report
Precision Recall F1-Score Support

0 0.95 0.99 0.97 3492
1 0.99 0.95 0.97 3492

Accuracy – – 0.97 6984
Macro Avg 0.97 0.97 0.97 6984

Weighted Avg 0.97 0.97 0.97 6984

Table 6.4: Classification report of BanglaBERT+LSTM Model (Rob Era vs Current
Era)
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The table shows the precision, recall, F1 score, support, accuracy, macro average,
and weighted average of the Bidirectional LSTM+BanglaBERT Model used to eval-
uate the Rabindranath era vs. current era data. Here, Rabindranath Tagore era
means 1 and the current era means 0.
This is the overall accuracy of the model, calculated as the fraction of all predictions
that were correct. In this case, the accuracy is 97%, which is very good. This is the
average of the precision, recall, and f1-score across both classes. It gives an overall
sense of how well the model is performing on both classes combined. In this case,
the macro average is also 97%, which is again very good. This is the average of the
precision, recall, and f1-score, weighted by the support of each class. It gives more
weight to the performance of the larger class. In this case, the weighted average is
also 97%. Furthermore, there is no class imbalance present, as both the classes ‘0’
and ‘1’ have the same support value (number of samples) which is 3492.
Overall, the classification report shows that the model is performing very well on
this binary classification task. It has high accuracy, precision, recall, and f1-score
on both classes.
Evaluation of BanglaBERT + Bidirectional LSTM Model:

Figure 6.13: Accuracy vs. Epoch

The graph shows both the training accuracy (blue line) and the validation accuracy
(orange line). The training accuracy is generally higher than the validation accuracy,
which is expected.
Both training and evaluation accuracy start relatively low and increase rapidly dur-
ing the first few epochs. Furthermore, the lines converge around epoch 0.7, indicat-
ing that the model’s performance on both training and evaluation data is stabilizing.
And then, after epoch 1.0, the training accuracy continues to increase slightly, while
the evaluation accuracy plateaus or even decreases slightly. This suggests potential
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overfitting, where the model is becoming too specialized to the training data and
not generalizing well to unseen data. Overall, the model performs well.

Figure 6.14: Loss vs Epoch (2)

The training loss typically decreases as the model is trained, as it learns to better
fit the training data. However, the evaluation loss may not always decrease as the
model is trained.
In the graph above, the training loss appears to decrease steadily over time, while
the evaluation loss remains relatively constant. This suggests that the model is
learning to fit the training data well without overfitting. This is a good sign, as it
means that the model is likely to perform well on new data. Overall, the graph you
sent me suggests that the model is training well and is not overfitting the training
data.

The confusion matrix of the next page shows the number of data points that were
correctly and incorrectly classified by the model. In this specific confusion matrix,
the rows represent the actual labels of the data points, while the columns represent
the predicted labels. The diagonal cells show the number of data points that were
correctly classified. For example, in the top left cell, we can see that 3455 data
points were the True Positive values. The off-diagonal cells show the number of
data points that were incorrectly classified. For example, in the cell in the second
row and first column, we can see that 186 data points were false negative values.
We can see the overall performance of the model from the confusion matrix and also
calculate its accuracy, precision, recall and f1 score from it.
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Figure 6.15: Confusion Matrix

Figure 6.16: ROC Curve

The ROC curve above is a perfect ROC curve. This means that the model is able to
perfectly discriminate between positive and negative cases. This is often not the case
in real-world applications, where models typically have to make trade-offs between
TPR and FPR.
The ROC curve is very close to the top-left corner of the graph, which is an indica-
tion of good performance. The curve starts off rising steeply, which means that the
model is very good at correctly identifying true positives. A smooth curve suggests
that the model is making consistent predictions. Then, the AUC (Area Under the
Curve) value for this ROC curve is 1.00, which is an unrealistically good score.
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6.1.3 Experimental findings from Rabindranath Era vs. Multi
Author Era data

Bidirectional LSTM:

Classification Report
Precision Recall F1-Score Support

0 0.92 0.91 0.92 5987
1 0.90 0.86 0.88 6097
2 0.86 0.90 0.88 5948

Accuracy – – 0.89 18032
Macro Avg 0.89 0.89 0.89 18032

Weighted Avg 0.89 0.89 0.89 18032

Table 6.5: Classification Report of Bidirectional LSTM for Rabindranath vs Multi
Author data

In the above table, we can the precision, recall, f1 score, accuracy, macro average and
weighted average of the Bidirectional LSTM Model report. Here, it has been used
to evaluate the Rabindranath vs Multi Author data. Here, Rabindranath Tagore
means 1, Sarat Chandra Chattopadhyay means 2 and Bankim Chandra means 0.

After critically analyzing the data of the report, it is visible that the model has a
decent accuracy rate. The accuracy of the entire model is 0.89. Additionally, there
is a visible class imbalance present in this report, as the classes ‘0’ , ‘1’ & ‘2’ have
different support values. For class 0, it’s 5987, for class 1, it’s 6097, and for class
2, it’s 5948. The recall is 0.91 for class 0, 0.88 for class 1, and 0.88 for class 2.
Also, the F1-scores are 0.92 for class 0, 0.88 for class 1, and 0.88 for class 2. This
also shows the variance in values of the balance between precision and recall. The
weighted average F1-score takes into account the performance of both classes and
gives an accurate assessment of the model’s performance on all classes. In this case,
the weighted average F1 score is also 0.89, indicating that the model is performing
well on both classes. As for an overview of the report, the values of precision, recall
& F1-score of all 3 classes are above 0.89, which are very high. It indicates that the
model is good at correctly identifying cases that belong to this class.

Overall, we can see that the image reflects the model as a good performer as it
can accurately do the classification task. Thus, it will be easier for it to interpret
the results accordingly.
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Evaluation of Bidirectional LSTM Model:

Figure 6.17: Epoch vs Accuracy of Bidirectional LSTM for Rabindranath vs Multi
Author data

In the given graph, we can see the accuracy of the model remains relatively flat and
does not improve much as the training progresses. With a slight increase from over
88% at Epoch 0.0, we can see a peak of about 89% at Epoch 2.0. This reflects that
the performance of the model during the evaluation period was relatively stable.
This graph also shows that the model is having a slight improvement and learning
more by time. The slight increase in accuracy till Epoch 2.0 shows that the model
is performing well, steadily improving, and is able to achieve high accuracy on the
test data.
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Figure 6.18: Epoch vs Loss of Bidirectional LSTM for Rabindranath vs Multi data

The first graph on the next page shows that the loss of the model initially decreases
slightly, and right after 0.31 at Epoch 1.0, the graph starts to slightly improve to
nearly 0.34 at Epoch 2.0, suggesting that the model’s performance on the test data
is not improving gradually as training continues.

This graph shows that the model is developing itself and learning. The improvement
is visible from the graph. The first decline in loss is likely due to the model finding
patterns in the data and the subsequent increase in loss may be due to the model
overfitting to the table dataset.
Therefore, it is visible that the model will be able to achieve low loss on the test
data and the model is performing well.
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Figure 6.19: Confusion Matrix of Bidirectional LSTM for Rabindranath vs Multi
Author data.

The image shows the confusion matrix, which helps us understand how well the
model is actually working. As we have 3 classes, the matrix is a 3x3 grid, indicating
it evaluates a model classifying instances into 3 distinct classes (labeled 0, 1, and 2).
For example, the cell in the second row and third column shows the value ”5241”.
This means that there were 5241 instances where the model actually belonged to
class 2, but the model predicted it as class 1. Each cell contains the support values
for each class. It shows that the model is performing well overall. BanglaBERT
+ Bidirectional LSTM:

Classification Report
Precision Recall F1-Score Support

0.0 0.92 0.94 0.93 3996
1.0 0.91 0.90 0.91 3993
2.0 0.91 0.91 0.91 3993

Accuracy – – 0.92 11982
Macro Avg 0.92 0.92 0.92 11982

Weighted Avg 0.92 0.92 0.92 11982

Table 6.6: Accuracy Report of Bidirectional LSTM for Rabindranath vs Multi Au-
thor data

The table given above is the report which summarizes the model’s execution level on
a test dataset, breaking down it’s prediction for each class into several metrics such
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as - precision, recall, F1 score, support, accuracy, macro average and weighted aver-
age for BanglaBERT + Bidirectional LSTM Model. It will be used to evaluate the
given Rabindranath vs. Multi Author data in the report.Here, Rabindranath Tagore
means 1, Sarat Chandra Chattopadhyay means 2 and Bankim Chandra means 0.

From the table, we can see after evaluating the values and results that the model
has an overall good performance. The overall accuracy of the model is 0.92. This
means that the model correctly classified 92% of the examples in the test data. This
indicates the overall proportion of the correct predictions made by the model across
all the 3 classes. It also shows that the macro average value is 0.92. And if we can
see, there is a bare minimum difference in support values between class 0 and class
1 & 2, whereas the support value of both class 1 & 2 is the same. The support
for class 0 is 3996, the support for class 1 is 3993, and the support for class 2 is
3993. Now evaluating the precision, recall and F1-score values of class 1, 2 & 3, we
can see all of them have pretty high values. The precision value for class 0 is 0.92,
the precision value for class 1 is 0.91, and the precision value for class 2 is 0.91.
Similarly, the recall and f1-scores of these 3 classes are pretty high.

This classification report suggests that the model is performing well overall on this
dataset. It is able to accurately identify both positive and negative cases with high
precision and recall.
Evaluation of BanglaBERT vs Bidirectional LSTM:

Figure 6.20: Epoch vs Accuracy BanglaBERT vs Bidirectional LSTM.

In the image given below is the accuracy graph of the model which, according to
the lines, is increasing over time. The model achieves its highest accuracy around
epoch 1.0, with a test accuracy of approximately 0.90. After epoch 1.0, the accuracy
curves start to plateau. But then the accuracy value stands at 0.91 (approx.) at
Epoc 2.0.
Additionally, this graph shows how the model is developing and learning over time.
The model’s ability to identify patterns in the data is probably what led to the
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initial accuracy boost. The accuracy increase reduces after epoch 1.0 as the gradi-
ent becomes less inclined. The model might have overfitted to the training set as
a result of this. Overall, the graph indicates that the model is operating effectively
and achieving high accuracy on the test data.

Figure 6.21: Epoch vs Loss of BanglaBERT vs Bidirectional LSTM.

In the image given above is the epoch vs loss graph of the model which, according
to the lines, is decreasing over time. The graph shows that the model loss decreases
up to 0.26 at Epoch 1.0 for test data, and then plateaus up to Epoch 2.0. It stays
at 0.27 on Epoch 2.0. This indicates that the model is able to learn the training
data effectively and reduce its error rate.
The plateau in the graph indicates that the model has reached its maximum ability
to learn from the training data. The reason behind this is, the lack in ability to
generalize to new data even though the model can fit the training data.

This graph illustrates how the model is developing and learning over time. The
initial decrease in loss is likely due to the model finding patterns in the data and
the subsequent increase in loss may be due to the model overfitting to the training
dataset. In general, the graph indicates that the model is operating effectively and
achieving little loss on the test data.
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Figure 6.22: Confusion Matrix of BanglaBERT vs Bidirectional LSTM

Above image is the confusion matrix, which helps us understand how well the model
is actually working. In this case, there are three classes (0, 1, and 2), which suggests
that the algorithm was solving a three-class classification problem. That is why it
is seen as a 3x3 matrix. The values in these cells are the support values which are
3754 for class 0, 3606 for class 1, and 3617 for class 2, indicating that the classifier
most accurately predicted class 2 and least accurately predicted class 0. So, the
overall performance of the model is quite good according to this confusion matrix.

6.1.4 Experimental findings from Adversarial Data:

Classification Report
Precision Recall F1-Score Support

0 0.86 0.84 0.85 3271
1 0.84 0.86 0.85 3271

Accuracy – – 0.85 6542
Macro Avg 0.85 0.85 0.85 6542

Weighted Avg 0.85 0.85 0.85 6542

Table 6.7: Classification Report of Bidirectional LSTM for Adversarial Data.

The table is a classification report for Adversarial Data which contains some met-
rics that allows us to determine the overall performance of our Bidirectional LSTM
model. It has two rows, representing the two classes in the classification task. In this
case, the classes are labeled ”0” and ”1”.Here, Rabindranth Tagore texts denotes 1
and model generated texts denotes 0.

Overall, the image shows that the model has good performance on the classification
task. Thus, it will be easier to interpret the results accordingly.
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Evaluation of Bidirectional LSTM:

Figure 6.23: Accuracy vs Epoch of Bidirectional LSTM

This graph represents epoch in its x-axis and accuracy of the model in its y-axis.
Furthermore, blue line is training dataset accuracy and green line is test dataset
accuracy.

As it is evident, the accuracy of the test dataset is lower than that of the train-
ing dataset. This happens because overfitting might have occured. This actually
means that the training dataset learned the pattern of the data too well and cannot
generalize to new data, or in other words, test data anymore. This phenomenon of
overfitting might have happened because there is not enough training data. If there
is not enough training data, then the model will not be able to learn the underlying
patterns in the data.

In the first image of next page, we can see the Epoch vs loss graph where it is visible
that the accuracy of the test data in the graph slightly increased to its peak value
of almost 0.4 at Epoch 3.0. The training process, in blue, starts at an average loss
of around 0.36 and appears to steadily decrease to a little under 0.15. The eval
process, in orange, starts at a higher average loss, near 0.3, and increases then. By
the end of the graph, the test process has an average loss around 0.4.
Overall, the graph suggests that the training process is performing better than the
test process. This could be due to overfitting, where the model is too closely fitted
to the training data and doesn’t generalize well to new data.
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Figure 6.24: Epoch vs Loss of Bidirectional LSTM

Figure 6.25: Confusion matrix of Bidirectional LSTM
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The rows of the matrix represent the actual labels of the data, and the columns
represent the predicted labels of the model.
Here, the cell in the first row and first column shows that there were 2754 data
points that were actually labeled as class 0 and were also predicted as class 0 by the
model. And the cell in the second row and first column shows that there were 463
data points that were actually labeled as class 1 but were predicted as class 0 by
the model. The model seems to be performing well on class 1, with a high number
of correct predictions 2808. The model is less accurate on class 0, with a higher
number of incorrect predictions 517.
These metrics all suggest that the model is performing well, but there is still room
for improvement. In particular, the model could be improved by reducing the num-
ber of false positives and false negatives.

Figure 6.26: ROC Curve for Bidirectional LSTM

This is a ROC curve and we can see that the curve is close to the top-left corner of
the graph. This is a good sign. Moreover, the AUC (Area Under the Curve) is 0.86
which is also very good. This means that the model is able to distinguish between
the two classes very well, even at low levels of certainty and the overall performance
of the model is very good. Furthermore, the curve is smooth and does not have any
sharp drops, Which ultimately means that the curve is not much sensitive to minor
changes and is much stable. Interpretations of the data is made upon this and all
predictions are rather consistent to each other.
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BanglaBERT + Bidirectional LSTM:

Classification Report
Precision Recall F1-Score Support

0 0.91 0.94 0.92 3285
1 0.94 0.90 0.92 3285

Accuracy – – 0.92 6543
Macro Avg 0.92 0.92 0.92 6543

Weighted Avg 0.92 0.92 0.92 6543

Table 6.8: Classification Report

The image shows a table of precision, recall, F1 score, support, accuracy, macro av-
erage, and weighted average of the Bidirectional LSTM+BanglaBERT Model used
to evaluate the Adversarial data.

In the above table, we can the precision, recall, f1 score, accuracy, macro average
and weighted average of the Bidirectional LSTM Model report. Here, it has been
used to evaluate the Rabindranath vs Multi Author data.Here, Rabindranth Tagore
texts denotes 1 and model generated texts denotes 0.

After critically analyzing the data of the report, it is visible that the model has
a decent accuracy rate. The accuracy of the entire model is 0.92. Additionally,
there is a visible class imbalance present in this report, as the classes ‘0’ & ‘1’ have
different support values. For class 0, it’s 3285, for class 1, it’s 3285. Furthermore we
can see that the weighted average F1 score is also 0.92, indicating that the model
is performing well on both classes. Overall, we can see that the image reflects the
model as a good performer as it can accurately do the classification task. Thus, it
will be easier for it to interpret the results accordingly.
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Evaluation of BanglaBERT + Bidirectional LSTM:

Figure 6.27: Accuracy vs Epoch

The graph shows the accuracy of a language model over time. The training accuracy
starts out at around 0.96 and increases to about 0.99 over the course of training.
This suggests that the model is learning to fit the training data well. However, the
validation accuracy starts out at around 0.94 and then decreases to about 0.92 over
the course of training. This suggests that the model is overfitting the training data.
Overfitting occurs when a model memorizes the training data too well and is unable
to generalize to new data.

The graph of the next page shows that the training loss (blue line) is decreasing
over time, which means that the model is getting better at fitting the training data.
However, the validation loss (red line) is increasing over time, which means that
the model is not generalizing well to unseen data. This is a sign that the model is
overfitting. Overfitting occurs when a machine learning model learns the training
data too well, but is unable to perform well on new data.
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Figure 6.28: Loss vs Epoch

Figure 6.29: Confusion Matrix
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The rows represent the actual classes, and the columns represent the predicted
classes. The numbers in the cells represent the number of data points that were
classified into each combination of actual and predicted class.
The model correctly classified 3098 Non-Rabindranath texts datas and incorrectly
classified 187. Overall, the model is performing well with an accuracy of over 92%.
However, the model classified 2939 Rabindranath texts correctly but 319 texts in-
correctly.

Figure 6.30: ROC Curve

The curve is close to the top-left corner of the graph, which is a good sign, and the
AUC (Area Under the Curve) is .97, which is also very good. This means that the
model is able to distinguish between the two classes very well, even at low levels
of certainty and the overall performance of the model is very good. But this is
not realistically possible. The curve is smooth and does not have any sharp drops,
Which ultimately means that the curve is not much sensitive to minor changes, and
is much stable. Interpretations of the data is made upon this and all predictions are
rather consistent to each other.
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6.2 Text Generation
After analyzing the writing style of Rabindranath, we devoted ourselves to the task of
generating texts in Rabindranath’s style. For the purpose we finetuned Csebuetnlp’s
Bangla T5 and google’s mt5-small. And from the training vs validation loss curve
from Figure 6.31 and Figure 6.32 that we got while finetuning BanglaT5 and
mt5 small respectively. In both the graphs we can see that initially the training loss
decreases rapidly and similarly the validation loss too drops but not as rapidly as
the training curve. Later both the training and validation losses decrease steadily
throughout the training. This shows that the models are effectively learning from
the training data and generalizing well to new, unseen data.

Figure 6.31: Training Vs Validation loss (BanglaT5)

Figure 6.32: Training Vs Validation loss (mT5-small)

We used the BLEU(Bilingual Evaluation Understudy) score to evaluate the quality
of our generated texts and below we can find the distribution of the BLEU score of
different ranges for our test dataset of 3000 sentences.

Here in the Table 6.9 we can see that for both the models, the maximum of the
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Table 6.9: Translation Quality Evaluation

BLEU
Score

Translation Quality Text Amount
(BanglaT5)

Text
Amount
(mT5)

< 10 Almost useless 0.83% 0.53%
10− 20 Hard to get the gist 3.1% 4.33%
20− 30 Clear but significant grammatical

errors
6.43% 9.80%

30− 40 Understandable to good transla-
tions

12.9% 18.8%

40− 50 High-quality translations 21.7% 24.9%
50− 60 Very high quality, and fluent

translations
21.53% 22.53%

60 > Quality often better than human 33.5% 19.1%

Table 6.10: Model Performance Comparison

Models Avg BLEU
Score (Train)

Avg BLEU
Score (Test)

Avg BLEU
Score (Valida-
tion)

Time to Train

BanglaT5 50.54 52.49 54.48 ∼4.5 hours
mT5-small 52.19 46.88 44.57 ∼6 hours

generated texts scored above 40 but the BanglaT5 model performed substantially
better than the mT5-small model as it has more than 76.73% of the generated texts
scoring more than 40 whereas for mT5-small it was 66.53%. However, the sentences
that scored pretty less i.e. less than 30 were actually too large input sentences for
which the model couldn’t properly transfer the style of Rabindranath.
Overall Comparison: In the Table 6.10, if we compare, it becomes quite visible
that BanglaT5 performed better in terms of better BLEU Score and consumption
of computational resources and time.
A demonstration of our model generated texts using finetuned BanglaT5 and mT5-
small has been shown in Table 6.11.
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Table 6.11: Translation Comparison

Input Text Reference Text (Ra-
bindranath)

BanglaT5 Generated
Text

mT5-small Generated
Text

েগারার েকান আইনজীবী িছল
না।

েগারার উিকল েকহ িছল না। েগারার উিকল িছল না। েগারার েকান আইনজীবী িছল
না।

হারান েয-উেদ্দেশয্ এই গল্প
বেলিছল, তা পুেরাপুির বয্থর্ হেয়
িগেয়িছল।

হারান েয উেদ্দেশয্ এই গল্পটা
বিলেলন তাহা সমূ্পণর্ বয্থর্ হইয়া
েগল।

হারান েয-উিদ্দেষ্ট এই গল্প
বিলয়ািছল, তাহা এেকবাের বয্থর্
হইয়া েগল।

হারান েয-উেদ্দেশয্ এই গল্পটা
কিহল, তাহা সমূ্পণর্ বয্থর্ হইয়া
েগল।

সূযর্ যখন মাথার ওপর েথেক
পিশ্চেম েহেল যায়, তখন একটা
গািড় তার সামেন এেস থােম।

সূযর্ মাথার উপর হইেত পিশ্চেমর
িদেক যখন েহিলয়ােছ তখন
একটা গািড় িঠক তাহার সমু্মেখ
আিসয়া থািমল।

সূযর্ যখন মাথার উপর েথেক
পিশ্চেম ঝুঁকেছ, এমন সময়
একটা গািড় তার সামেন এেস
দাঁড়াল।

সূযর্ যখন মাথার উপর হইেত
পিশ্চেম েহিলয়া েগল, তখন
একটা গািড় তাহার সামেন
আিসয়া থািময়া উিঠল।

েস দৰ্ুত গািড়েত উেঠ পেড়। েস তাড়াতািড় গািড়েত উিঠয়া
পিড়ল।

েস তাড়াতািড় গািড়েত উেঠ
পড়ল।

তাড়াতািড় গািড়েত উিঠয়া
পিড়ল।

আিম আর পছন্দ কির না, সয্ার,
এক সময় আিম আমার গলায়
দিড় িদেয় মরেত চাই!

আর ভােলা লােগ না মশায়, এক-
এক সময় ইচ্ছা হয় গলায় দিড়
িদেয় মির!

আমার আর ভােলা লােগ না
মশায়, এক সময় গলায় দিড়
িদেয় মরেত ইেচ্ছ কের!

আর ভােলা লােগ না সয্ার, এক
সমেয় গলায় দিড় িদেয় মরেত
চাই!

95



Chapter 7

Limitations, future research and
synthesis of Our Research

Limitations of Our Research

Here are some constraints that we encountered when developing an authorship de-
tection and imitation of writing personality in Bangla. First of all, an accurate
authorship detection system is dependent on a wide-ranging and diverse dataset
existing in Bangla. However, due to a lack of publicly accessible and structured
datasets of Bangla text, it was complicated to compile a sufficiently large and diverse
collection of Bangla text from numerous authors. Likewise, identifying distinctive
features that capture an author’s typing pattern in Bangla was challenging. While
there are well-known methods for feature extraction in English, the same tactics can
not be directly applicable to Bangla. Also, analyzing and processing vast amounts
of Bangla text data can be computationally taxing, especially when working with
intricate machine-learning techniques and vast feature sets. One notable issue is the
need for a large-scale dataset to defend against adversarial attacks, which wasn’t
available in abundance in our research. Secondly, in the realm of poetry, it lacks
significantly, as our focus is predominantly centered on prose, leading to a notable
lack of attention and exploration within poems. Third, our model has further lim-
itations as it focuses on only the Bengali language and is not designed to handle
multiple languages, making it less versatile. Even though Bangladesh is well-versed
in multilingual culture and language, we could have incorporated traditional Bangla
in our methodologies but failed to implement approaches for regional, local, and eth-
nic languages. Further to this, we’ve essentially built our model based on renowned
authors, but it falls short when it comes to lesser-known or local writers in Bangla lit-
erature. Besides that, we currently operate our system at the sentence level, and we
haven’t explored paragraph- or composition-level tasks, which might impact feasi-
bility and adaptability for broader applications in literature. Again, during the style
transfer phase, we’ve worked with Rabindranath’s novels, but haven’t ventured into
other genres of his written work. Furthermore, during the building of datasets from
scratch, we faced difficulties in obtaining accurate results. For instance, websites
offering PDF-to-text conversion through online OCR (Optical Character Recogni-
tion) tools had limitations in terms of accuracy. Consequently, we had to do manual
correction, which is again a less effective process, consuming time and energy. In ad-
dition to this, dataset creation posed challenges not only in the current era but also
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in the old/historical era due to limited reliable online sources. For example, Begum
Rokeya’s writing from the old era is a notable one but has a shortage. Again, our
evaluation reveals some sort of gap, such as the fact that we’ve predominantly used
BLEU scores and loss curves in style transfer evaluation, lacking exploration with
other metrics. Despite numerous attempts at parameter adjustments, our model
often faces overfitting during training, presenting a persistent challenge. Lastly, we
also faced hardware limitations, such as not having a high-spec GPU that posed
challenges and resulted in substantial time consumption.

Future research and synthesis

There are some noteworthy future research benefits of this paper. First of all, there
could be multi-dimensional opportunities for the improvement of privacy protection
techniques and streamlining content verification processes. For instance, our author-
ship mimicry tool can be aligned with laws to tackle plagiarism and preserve original
content. Further research could involve collaboration with legal experts to estab-
lish guidelines and policies to rectify fake content in the literary space. Moreover,
bookstores and online platforms or publishers can use these models as a distinctive
feature and might offer readers a tool to verify the authenticity of creative con-
tent. Secondly, the researcher can also explore the application of this model for
cross-lingual authorship identification and imitation across different languages and
cultural contexts. Thirdly, developing user-friendly interfaces may contribute to
a more engaging online experience. This may allow interaction with chatbots or
websites that replicate the writing style of their chosen authors. Furthermore, our
model can extend its capabilities by collaborating with writing communities to gen-
erate longer and more coherent content, such as articles, essays, chapters, or even an
entire book. This can broaden the utility of the model in various writing scenarios.
Lastly, future researchers will be inspired by this thesis paper and continue their
extended study on multilingual style transfer techniques, especially those of Bangla
literature, plagiarism detection, content verification, author attribution, etc., based
on the model we are using. As our study provides a handsome probability of future
research opportunities, thus, it has intrigued us to continue.
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Chapter 8

CONCLUSION

To put it concisely, the world of Computer Science has seen incredible progress
lately, with exciting developments showcasing a wide range of capabilities. While
current methodologies show proficiency in English, they lag when it comes to Bangla,
particularly with complex multilingual datasets. However, the wave of progress has
not left Bangla untouched, as NLP enthusiasts are dedicating themselves to closing
deficiencies. Enthusiastic computer researchers are actively working to address any
gaps or limitations present in the Bangla language domain. Their dedication is ev-
ident as they strive to establish new benchmarks and parameters, especially in the
NLP field. Inspired by the dedication of others, our team has been motivated to
bring forth unique ideas and contribute to this field of Natural Language and Pro-
cessing. This commitment has led us to actively participate in shaping the trajectory
of development for Bengali. Due to plagiarism, many legal issues have risen over the
years which have become unsolvable in the context of Bangla since we were unable to
do a proper authorship attribution. However, our thesis tends to serve as a solution
for such predicaments by accessing a wide range of fine-tuned datasets that help to
identify, learn, and generate full sentences from an original input text by preserving
its semantic elements through various processes. Simply put, our distinctive model
stands out by its ability to identify and understand users’ writing patterns, extract
them, and subsequently generate new content that replicates their individual styles.
We have incorporated techniques to handle adversarial attacks, ensuring that our
system remains resilient against any attempts to deceive or manipulate it. This in-
cludes distinguishing between false and authentic content, preventing any alteration
that might compromise the integrity of the information. But to ensure the quality
of our model, we shall also conduct comparison experiments to evaluate the perfor-
mance metrics of our system. While conducting experiments, we have worked with
the 4 types of classification - Rabindranath vs Non Rabindranath, Rabindranath
era vs Current Era, Rabindranath vs Multi Author & finally Adversarial data. For
all these categories of classification we obtained a classification report, a confusion
matrix, a model accuracy vs epoch graph, a model loss vs epoch graph and finally an
ROC graph by running 2 models simultaneously. One model was the Bidirectional
LSTM and the other was BanglaBERT+LSTM. From the analysis of our results
section, we can observe that the overall performance for both the models were quite
good with an approximate average accuracy, recall, f1-score and precision of over
0.90 for all classifications. In most of the cases, there were also no signs of class
imbalance which leads us to a more accurate comparison. The model was also able
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to identify patterns in the data successfully during model training, but on the other
hand, both the models start to overfit to the training data, thus, showing inclination
in some of the training loss graphs. This happens when the model is able to fit the
data perfectly but it is not able to generalize to new data anymore. Furthermore,
we can also see that while text generation, by using the mT5 model and BangtaT5
model, we achieved quite a high average (around 50% and above) BLEU score for
both models. This suggests that our model is able to translate and generate texts
with high accuracy, less grammatical errors and even in some cases, almost bet-
ter than humans. So to conclude, after taking into account all of the factors, it
is safe to say that this thesis paper is expected to serve as inspiration for future
researchers, motivating them to undertake further extensive studies on techniques
for multilingual style transfer.
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