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Abstract

This research introduces a hybrid recommendation system through sentiment analy-
sis for Bangla long textual sentences. Social media, as a vast source of opinions, can
be harnessed through sentiment analysis using deep learning techniques, overcom-
ing language barriers and improving recommendation systems. The paper addresses
challenges in Bangla sentiment analysis, such as the scarcity of datasets and lin-
guistic nuances, proposing a model that combines LSTM, Bi-LSTM, and CNN for
optimized text sequence classification. The study explores six neural network mod-
els (ANN, CNN, LSTM,Bi-LSTM,BERT,RCNN) overcoming obstacles in dataset
quality and distribution. Challenges in data collection, model selection, and com-
putational resources are discussed. The paper concludes with the acknowledgment
of the evolving frontier of sentiment analysis in Bangla text, emphasizing the trans-
formative potential with continued efforts to expand datasets and refine algorithms.

Keywords: ANN, CNN, LSTM, RCNN, BiLSTM, BERT, Tokenization, Vector-
ization, Embedding.
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Chapter 1

Introduction

Imagine a recommendation system surpassing standard suggestions, crafting per-
sonalized user experiences. Achieving this involves a hybrid approach that melds
deep learning and natural language processing (NLP) with existing recommendation
algorithms. At its core, this approach integrates advanced deep learning models like
CNNs and RNNs to analyze extensive user data and multimedia content[14] identi-
fying patterns and learning intricate user-item relationships. NLP techniques, such
as word embeddings and sentiment analysis, delve into the meaning and sentiment of
associated text, providing context-aware recommendations. The system functions
with a recommendation engine generating personalized suggestions, NLP models
understanding text[11], and another deep learning model generating informative
captions. The benefits include increased accuracy in recommendations, enhanced
accessibility through descriptive captions, and improved user engagement, creating
meaningful connections between users and the multimedia world.The use of deep
learning networks to generate captions also provides an alternative way for visually
impaired individuals to understand and access recommended multimedia content.
With captions, users can understand the context of the image and make a better-
informed decision on whether they want to view the multimedia or not. Additionally,
captions can also help to improve the discovery ability of multimedia content, as they
provide more information about the content that can be used by search engines and
other tools to index and organize the content. Implementing such a hybrid system
requires a combination of techniques from the fields of natural language processing,
information retrieval, and deep learning. The traditional recommendation algorithm
can use techniques such as collaborative filtering or content based filtering, while the
deep learning network can be trained on a data set of images and their corresponding
captions using an encoder decoder architecture, such as the long short-term memory
(LSTM) network and a convolutional neural network (CNN)[8]. One of the chal-
lenges in implementing a hybrid recommendation system of this kind is finding a
balance between the accuracy and diversity of the recommendations. It’s possible to
make a recommendation algorithm that is accurate but not diverse, and vice versa.
Finding the ideal mix between accuracy and diversity will guarantee the optimum
user experience. Another challenge is to make sure that the captions generated by
the deep learning network are informative, accurate, and appropriate for the images
they are describing. For that measure sentiment analysis can ensure that the results
are accurate. Sentiment analysis is a method of NLP that identifies the emotional
tone in a piece of text. It is also frequently referred to as opinion mining[3] This is
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a wide-used approach by organizations for identifying and group ideas regarding a
service or a certain good or concept. Text is mined for information that relies on
sentiment and is subjective using data mining, artificial intelligence and machine
learning.sentiment analysis systems aid businesses in extracting information from
unstructured, unorganized language found in online sources like emails, support
tickets, blog posts, forums, web chats, comments and other social media features.

Sentiment analysis can be particularly effective in enhancing the quality of rec-
ommendations when only scanty ratings data are available. The fact is that rec-
ommendation algorithms choose the things to recommend primarily based on user
ratings. These ratings are typically quite low and insufficient. However,The results
of sentiments based ratings, which may be produced from comments and evalua-
tions expressed via blogs, social media, online news, and even the recommendation
algorithms themselves, seem capable of providing consumers with higher-level sug-
gestions.In order to solve the data-sparsity issue which is plagued traditional rec-
ommendation systems and sentiment based approaches have been incorporated into
recommendation systems.So,If recommendation system includes sentiment, then it
may greatly degrade the quality of the recommendation.
Various of industries including e-commerce, media, finance, and utilities use the
applications of recommendation systems.To improve customer pleasure, this type
of technology makes tailored suggestions based on a substantial amount of data.All
the suggestions are very helpful to client for selecting products meanwhile the or-
ganizations can expand the product’s consumption.When it comes to social data,
sentiment analysis may be quite beneficial in order to gain a better knowledge of a
user’s behavioral attributes like emotion and opinion, which is ideal to combine in
recommendation systems in order to achieve higher suggestion dependability. Ad-
ditionally, this data can be utilized to reinforce explicit user ratings for products.
However, it is thought that the sentiment analysis content that can be found in
social media, online news sites, blogs, and the recommendation system itself can
give people better suggestions. In sentimental analysis, the three-level extraction
feature level, document level, and sentence level can be used. With the help of this
procedure, it is possible to learn more about an entity and automatically point out
any of its subjectivities. To ascertain whether text is created by humans and also
expresses their favorable, unfavorable, or neutral sentiments. Both conventional
and deep learning methodologies have been presented as machine learning-based
approaches to be used for sentiment analysis. Techniques pertaining to Lexicon are
combined with machine learning algorithms in hybrid systems. In comparison to
the performance of a single model, the hybrid approaches can improve sentiment
analysis accuracy.
In brief, a hybrid recommendation system of intelligent captioning using deep learn-
ing networks and sentiment analysis is a promising solution to improving the user
experience and accessibility of multimedia content recommendations. Traditional
recommendation algorithms can be combined in the right ways to produce a system
that is precise, varied, and simple to use.It’s an active area of research, and with the
advancements in machine learning, we can expect more developments in this field
in the near future.
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1.1 Problem Statement

When we type something to search for information, we often get suggestions based
on the keywords we use. These suggestions help us find what we’re looking for.
The suggestions are generated using different methods. For English sentences, the
system can even detect our sentiment and provide accurate results when we’re only
halfway through typing. However, when it comes to typing in Bangla, we don’t
get recommendations based on the sentiment of our sentences. And even if we
do get some recommendations, they are not as fast or accurate as the ones for
English. Nowadays, typing in Bangla has become easier and more convenient, and
many people are using it instead of English or Bang-lish. Additionally, with the
increasing availability of smartphones, more people in rural areas of Bangladesh
are using them, relying solely on Bangla for communication. They may not have
a good understanding of or proficiency in English nut their increasing usage of
Bangla language for typing and communication has created a need for an effective
recommendation system that analyzes the sentiment of Bangla text. Therefore, if a
recommendation system could analyze sentiment in Bangla texts, it would benefit
a large number of people. While existing recommendation systems demonstrate
accuracy and speed in the English language, the same level of performance is lacking
for Bangla sentiment analysis.
The main problem in our project was the lack of enough Bangla datasets for re-
search. It was quite easy to find large datasets in English, but for Bangla, it was
much harder. This made it difficult to train and evaluate models and conduct thor-
ough research on sentiment analysis. Another difficulty was the low quality of the
Bangla datasets. Duplicate and contradictory data entries were common, adding
noise and ambiguity to the study. Similarities between classes, such as ”wow” and
”surprised,” made precise differentiation difficult. Furthermore, the disparity in data
distribution across sentiment classes resulted in biased model performance, prevent-
ing the development of a credible recommendation system. Bangla and English have
significant linguistic differences, which create specific challenges. Bangla has its own
phonetics and syntax that require specialized methods for sentiment analysis. Un-
fortunately, previous studies in this field often overlook these linguistic distinctions,
leading to lower accuracy and performance levels. It was difficult to collect Bangla
data via online scraping. Many Bangla blogs and internet sources provided disor-
ganized and insufficient information, making it difficult to collect sufficient data for
specific sentiment categories. Furthermore, manually enhancing data for categories
with very little data proved to be a difficult and time-consuming process. Another
challenge in our project was the choosing of models. While we investigated different
models, such as Artificial Neural Networks (ANN), mBERT, and Long Short-Term
Memory (LSTM), we were unable to identify models that effectively corresponded
with our research goals. Furthermore, the huge computational resources required to
run these models created major limitations on both time and resources, with each
model execution needing at least 8-10 hours of calculation time. In our literature
review, we observed that research on Bangla sentiment analysis primarily focused
on news corpus and larger blogs, with limited attention given to social media and
microblogs. Even within these domains, the existing research lacked the speed and
accuracy achieved by sentiment analysis systems in the English language.

3



1.2 Research Objectives

In this paper we offer a recommendation system of intelligent captioning by senti-
ment analysis on Bangla long textual sentences. This research paper aims to over-
come the obstacles of Bangla language sentiment analysis and supplement existing
research. We will develop our model by combining various deep learning techniques
such as LSTM, ANN, Bi-LSTM, and CNN to optimize the performance of text se-
quence classification, taking into account the advantages of using deep learning for
text data categorization.
The objective of this research:

1. To take good utilization of social media information, perceive the importance
of this data in today’s world

2. To develop a model that can understand the sentiment of a Bangla textual
sentence

3. To use these results to build a hybrid recommendation system, that can help
in captioning

4. To implement the suggested hybrid models and evaluate their performance

5. To address some of the limitations of previous researches

6. To offer a proposed system with better outcomes

7. To make recommendations for further improvement of other models

4



Chapter 2

Related Work

Text sentiment analysis [5] aims to detect the emotional tone in written messages.
One study by Huanhuan Yuan and colleagues from Zhenjiang Analysis InfoTech
Ltd. proposed a new approach for this task. This method involves converting text
into word vectors using word2vec and then using a LSTM model with attention
mechanism for training. The study found that this approach is more effective than
traditional machine learning techniques. The LSTM model is implemented to ex-
tract features that pertain to the text and the attention technique is employed to
generate feature vectors for classifying emotions.
In a research done by Alam and Rahoman [3] it is shown that Convolution Neural
Network(CNN) was used to train the model which can analyze Bangla texts. At the
time of that particular research, Bangla datasets for analyzing the sentiment were
not publicly available. Therefore, to conduct their research, they had to generate
their own dataset where they fetched 850 comments which were in Bangla from
different platforms. From those comments 500 and 350 comments were positive and
negative respectively. In order to make their dataset size large, they had to copy
and paste those comments more than 140 times and ensure the same amount of
positive and negative comments. Then they applied CNN algorithm on their model
to train their model with those comments after the pre-processing phase. After
conducting their research they were able to get 99.87% accuracy based on their own
dataset. They were able to detect positive and negative sentiment through their
model except neutral sentiment. Although their accuracy was high it leaves a room
for improvement as there are few Bangla datasets available publicly now and we
are not certain how that existing model can work on recent datasets where a small
number of comments were not continuously repeated. Additionally, we can aim for
detecting neutral sentiment as well.
Another comparable study was carried out by Cheng and Tsai[6], who examined
the use of Long Short-Term Memory (LSTM), Bi-directional LSTM, and Gated
Recurrent Units (GRU) for sentiment analysis of social media. They utilized web
scraping techniques and Python to gather data from platforms such as Facebook and
YouTube. The data was then preprocessed and labeled with sentiments to form a
balanced dataset for training. Three deep learning models were created for sentiment
categorization in the study using word embeddings. Metrics like accuracy, precision,
recall, specificity, and F1 score were used to assess the models’ performance. The
results showed that LSTM achieved the highest performance with 80.83% accuracy,
81.03% precision, 80.32% recall, 74.47% specificity and 80.54% F1 score.. In BiL-
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STM the classification performance is 87.17%, 85.80%, 88.89%, 82.88%, 87.29%. In
GRU the classification performance is 64.92%, 64.33%, 65.71%, 63.61% ,64.96%.
The Sentimental analysis [4] of posts, product reviews and tweets has become ex-
tremely popular. It is used in the intelligence of business and applied in recommender
systems. Analyzing through texts on deep learning techniques are becoming better
approach to work with. In order to solve few problems in this thesis, deep neural
net-works on text polarity analysis and text mining represent a vital role. At first,
big sized data sets with properly labeled need to be fed for deep neural networks.
Secondly, uncertainties can occur for using vectors that embed words. These are
produced from similar sets of data which instructs the model and they are very
efficient to route them from popular and big data repositories. Thirdly, it is more
convenient to have generic neural network architectures for simplifying model cre-
ation which are very effective. It can adjust to numerous texts and summarize the
complexity of designs. This thesis provides insights, both practically and method-
ologically for the above problems for using sentiment analysis along with neural
networks of texts and attaining the art results of state. In the initial problem, the
persuasiveness of numerous alternatives of crowdsourcing is sought for. Using so-
cial tags, two medium, emotion-labeled sets of data are generated. For the next
problem, large text collections with a series of experiments of numerous domains
and contents were focused on and testing embedded words of several parameters.
In the later problem, max-pooling and convolution neural layers with a series of
experiments were conducted. Integrating the complexity of bigrams, trigrams and
words alongside region-based max-pooling layers in a pair of stacks proved to display
the most fa-vorable outcome. The derived architecture performs competitively for
business, movie and product reviews when sentiment polarity analysis is performed.
In the paper [6] They have used a varying order of two models, one is CNN and the
other is LSTM, The orders are like Bert, CNN, Lstm or BERT, LSTM, CNN.The
features vector is generated here using a pre-trained BERT model. Data must
ultimately travel via a ReLU activation function after passing through several CNN
and LSTM models. They pre-trained BERT since it has several advantages over
Word2vec when it comes to converting text data to word embedding. As the BERT
generates the features vector for this model, they would feed into the data through
the BERT model first. After the output from the BERT model would be used as in
the input of the hybrid models they have created. The hybrid models perform the
classification. After that they combined CNN and LSTM deep learning models, as
they perform really well on sentiment analysis.
In another paper [2] the authors state about sentiment analysis on bangla text.Since
bangla is spoken by almost 200 million people worldwide,a large number of people
are expressing their opinions and thoughts through social networking websites and
microblogging. Moreover,people are demonstrating opinions and thoughts in com-
ments on online news portals.However they also shares their opinions by doing online
shopping through online marketplaces.It has become very difficult for businesses to
keep track of analyzing the sentiment of comments and reviews from each individ-
ual customers.As a result, application of automated Sentiment analysis had been
used for enhancing efficiency and productivity.In this paper,author collected a set
of Data where there were 10,000 Bangla and Romanized Bangla text samples.Then
author pre-processed the data in such a way that researchers can easily read the
data.Romanized Bangla texts hold on to 28% where Bangla texts takes 72% of
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whole textual data in the dataset.There are 9337 entries in total, Bangla entries is
6698 and Romanized Bangla entries is 2639.They collected 4621 data from Face-
book,2610 data from Twitter,801 data from YouTube,1255 data from online news
portals,50 data from product review pages.Their dataset were categories in Positive,
Negative and Ambiguous.The author used Recurrent Neural Networks more specif-
ically they used LSTM neural network. They obtained the accuracy of 78% with
“Ambiguous removed” and 55% accuracy with “Ambiguous converted to 2” in this
paper.
In the 1970s, psychologist Paul Eckman presented 6 basic emotions like happiness,
disgust, fear, surprise, sadness and anger which claimed to be experienced univer-
sally, basically these are domain emotion or primary emotion that to be experienced
universally[10]. Later he made the list bigger with emotions like pride, shame,
embarrassment, and excitement. A “Wheel of emotions” he called, which can be
blended into different feelings like we mixed color red, blue, yellow to create other
shades. According to him, basic emotions act like building blocks. For example,
basic emotions such as happiness and trust can presented as love together, aston-
ishing and surprise can present as fear, prolonged sadness can turn into depression,
etc. this gave us very insight of our dataset while we were struggling with data
collection, that choosing a domain of various feeling we can find out the root of the
emotion.

Figure 2.1: Six Types of Emotions
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The systematic literature review by Dewi, Ciptayani, and Prayustika[13] delves into
hybrid deep learning smart recommendation systems. They analyzed 50 articles
from digital libraries and found that textual datasets were the most commonly
used, followed by image datasets.These systems were often developed using a Con-
volutional Neural Network (CNN) and a Long Short-Term Memory (LSTM). Python
was the dominant programming language, known for its extensive machine learning
libraries. System performance was evaluated using evaluation criteria like accuracy,
precision, recall, and F1-Score. In summary, this review provides valuable insights
into current trends and practices in hybrid deep learning smart recommendation
systems, empowering researchers and practitioners for future work.
Researchers from the University of Salamanca (2021) under the direction of Cach
Dang[12] detailed the use of these methods in their recommendations for bench-
marking systems for streaming services. In this essay, the usage of regression anal-
ysis systems in sentiment analysis is discussed, and novel hybrid deductive learning
methods are suggested. The strategy takes into account both item qualities and
usage-specific general requirements. Results from experimental studies indicate that
the proposed application significantly improves response under system-performance.
The difficulties of getting clear feedback and the application of data collection strate-
gies are also discussed in the text. Utilizing a variety of criteria, the performance
of the proposed approach is assessed and contrasted with baseline techniques. The
results demonstrate the effectiveness of the approach in producing personalized rec-
ommendations. There were 889176 users in the analysis. The group propose that
the proposed architecture will be tested in other application domains. Aspect senti-
ment analysis will be addressed using graph convolutional networks to improve user
sentiment understanding. The interaction between aspect terms and semantic and
syntactic information will be modeled to enhance performance.

8



Chapter 3

Dataset

3.1 Description of the data

In this paper we are working with long textual Bangla sentences, we will do senti-
ment analysis of Bangla long textual data using various deep learning model. For
this initially we have gathered a dataset of bangla long textual data with 16 classes
like, Like, smiley, HaHa, Sad, Skip, Love, Wow, Blush, Consciousness, Rocking,
Bad, Angry, Fail, Provocating, shocking, Protesting, Evil, Skeptical from a paper
published from SUST on text to speech paper[9]. Going through the data we noticed
a lot of repetition of sentences presented with different emotions, which later can
cause fatal errors when we will apply the models as they can get confused. Also,
as we tried to give the most optimistic model for bangla language sentiment anal-
ysis we thought of increasing the classes. So we added extra 40 classes like Very
Happy, Extremely Happy, Happy, Agreeable, Moderately Happy, Mixed Positive-
Negative, Neutral, Moderately Sad, Sad, Very Sad, Extremely Sad, Love-Hate Mix,
Love Dominant, Hate Dominant, Complete Disgust, Safe,Joyful, Surprised, Satis-
fied, Expected, Alongside Safe, Surprise Dominant, Alongside Happy, Satisfaction
Dominant, Generous, Uncertain, Terrifying, Hopeless, Astonishing, Heartbroken,
Hurt, Abused, Supportive, Doubtful about Expectations, Anxious, Surprised and
Amazed, Alongside Safe with Fear, Disgusted, Not Satisfied, Suspicious. For these
classes we started generating data from news websites, bangla blog, various bangla
website scraping[1], we faced various problems distinguishing the similar sentiment
humanly, it was very tough to do it manually as well, as we did not want any repe-
tition this time. After that we had a dataset of 56k with 56 classes but the problem
with it was we had some classes which we could not give enough data, the percentage
was so low that it would create a biasedness while running the models, so we decided
to eliminate some classes which were almost similar or if we count the domain of
the sentiment they will be same, so we decided to remove them, after that finally
we ended up with a data of 34 classes with 27 thousand long textual Bangla data.
These are, like 3762, sadness 2648, happiness 2358, surprise 1778, safe 1287, mixed
1280, satisfied 1237, supportive 1044, love 990, Smiley 947, agreeable 907, anger
816, expected 784, bad 757, haha 518, hate 493, confused 488, generous 426, fear
424, skip 410, disgust 379, hurt 345, shocking 330, hopeless 316, provocative 308,
fail 306, uncertain 300, heartbroken 294, protestant 285, consciousness 283, rocking
267, shyness 244, skeptical 181, unsatisfied 175.
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Figure 3.1: Dataset Sample

3.2 Dataset analysis And Preprocessing

Preprocessing is a crucial phase in readying raw data for analysis or model training.
It involves a series of techniques and operations to clean, transform, and organize
data into a format suitable for deep learning algorithms or analysis. Here’s a break-
down of the various stages encompassed in the provided preprocessing workflow
figure:

Figure 3.2: Data Pre-processing steps

3.2.1 Data Cleaning

1. Explanation: Data cleaning involves handling missing values, inconsistencies,
or errors within the dataset to ensure its quality and integrity. Removing
missing data ensures that the subsequent analysis or modeling isn’t affected
by incomplete records.

2. Code Implementation: In the code provided, data.dropna() is used to re-
move rows with missing values, ensuring the dataset’s completeness. data.text.isnull().values.any()
checks if there are any null values in the ’text’ column.
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3.2.2 Data Exploration

1. Explanation: It involves getting a basic understanding of the dataset, such
as its size, distribution of classes, or features. This helps in understanding the
data’s characteristics before proceeding with further analysis or modeling.

2. Code Implementation: data.shape provides the size of the dataset, and
data.sentiment.value counts() gives the count of each sentiment category in
the 'sentiment'column.

3.2.3 Basic Data Operations

1. Explanation: These are fundamental operations performed on data struc-
tures, like dictionaries or lists, to organize, manipulate, or retrieve specific
information.

2. Code Implementation: The code initializes a dictionary x = ”a”: 1 and
extracts the list of keys using list(x.keys()).

3.2.4 Text Preprocessing (Tokenization)

1. Explanation: Tokenization is the process of splitting text into smaller units
called tokens, typically words or phrases, to facilitate further analysis. It helps
in converting unstructured text data into a format suitable for deep learning
models.

2. Code Implementation: The ’text’ data is tokenized by splitting it into
words using value.split(” ”) in a loop through the ’text’ column. The tokens
(words) are collected into the ’corpus’ list.

3.2.5 Word Frequency Analysis

1. Explanation: This step involves counting the frequency of each unique word
in the text corpus, providing insights into the most commonly occurring terms.

2. Code Implementation: Utilizing np.unique(corpus, return counts=True),
the code computes the unique words and their respective counts.

3.2.6 Data Filtering

1. Explanation: Filtering data based on specific criteria, in this case, retaining
words with counts exceeding a threshold, to focus on the most relevant or
frequent terms.

2. Code Implementation: The code filters words with counts above 90 and
stores them in a list y.

11



3.2.7 Text Vectorization and Padding

1. Explanation: Vectorization involves converting text into numerical repre-
sentations (sequences of numbers), while padding ensures uniform sequence
lengths, crucial for feeding data into neural networks.

2. Code Implementation: The Keras Tokenizer is used to tokenize text (to-
kenizer.fit on texts(text)), generate word indices (tokenizer.word index), con-
vert text to sequences (tokenizer.texts to sequences(text)), and pad sequences
(pad sequences(sequences, padding=’post’)).

3.2.8 Train-Test Split

1. Explanation: Splitting the dataset into training and testing subsets to train
a model on one set and validate it on another, ensuring the model’s generaliz-
ability.

2. Code Implementation: Train Test Split is used to split the preprocessed
data into training and testing sets with an 80-20 ratio.

This comprehensive process transforms raw textual data into a structured format
suitable for deep learning algorithms, ensuring cleanliness, uniformity, and readiness
for model training or analysis.

3.3 Data Analysis and Visualization

Analyzing the dataset is crucial as we are working with a substantial dataset for our
research. We have a dataset of 37287k long Bangla textual sentences. We have 34
classes, These are, like 3762, sadness 2648, happiness 2358, surprise 1778, safe 1287,
mixed 1280, satisfied 1237, supportive 1044, love 990, Smiley 947, agreeable 907,
anger 816, expected 784, bad 757, haha 518, hate 493, confused 488, generous 426,
fear 424, skip 410, disgust 379, hurt 345, shocking 330, hopeless 316, provocative
308, fail 306, uncertain 300, heartbroken 294, protestant 285, consciousness 283,
rocking 267, shyness 244, skeptical 181, unsatisfied 175. The dataset comprises an
extensive collection of 37,287k long Bangla textual sentences distributed across 34
distinct classes. These classes encompass a variety of emotions and sentiments, with
varying counts in each category. The largest categories include 3762 instances of
sadness, followed by 2648 instances of happiness, 2358 instances of surprise, 1778
instances of safety, and 1287 instances of mixed emotions. Some categories have
relatively fewer instances, such as 181 instances of skepticism and 175 instances of
dissatisfaction. This diverse range of emotions provides a comprehensive landscape
for analysis and understanding.
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Figure 3.3: Total Data in Descending Order of Each Class

Figure 3.4: Percentage of Data in Each Class

The imbalance in the dataset can significantly impact the training of the model.
When a dataset is imbalanced, meaning certain classes have significantly more sam-
ples than others, the model tends to be biased towards the majority classes. This
imbalance can lead to several issues:

1. Bias towards majority classes:The model becomes more inclined to predict
the majority classes accurately while neglecting the minority classes. This
results in poorer performance on less represented classes.

2. Reduced generalization: Models trained on imbalanced data might not gen-
eralize well to new, unseen data, particularly for the underrepresented classes.
It might fail to recognize or misclassify instances from minority classes.

3. Misleading evaluation: Accuracy, the most common metric, might not be
a reliable measure for the model’s performance, especially in highly imbal-
anced datasets. A model may achieve high accuracy by merely predicting the
majority class.

4. Loss of valuable information: The model might not learn enough about the
underrepresented classes due to their limited presence in the dataset, leading
to a loss of valuable information.
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Chapter 4

Model Description

4.1 ANN

Artificial Neural Network (ANN) can be compared to a human brain. It processes
information in the similar manner as the biological neural networks in the human
brain. Like the human brain ANN also has neurons. Neurons consist of a large
number of interconnected processing elements.
Key elements of an ANN:

1. Neurons: These are the foundational parts of an ANN. They take in inputs
and perform basic operations on the data

2. Weights:These are the connection strength parameters between neurons. These
weights are given with the inputs in the learning phase to find patterns in in-
puts.

3. Activation Function: An activation function is used to determine the neu-
ron to be activated or not. It is applied on the weighted sum of the inputs.
Commonly used activation functions are tanh function and ReLU function. In
case of smooth transition activation function is very important because a little
change in the input creates a huge impact on the output.

4. Learning Algorithm: Learning algorithm works to adjust the weights during
the learning phase. It is important to reduce the difference between the actual
output and the predicted output.

Figure 4.1: ANN Structure
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For a basic model of ANN, the total input can be calculated as follows:

yin = x1.w1 + x2.w2 + x3.w3xm.wm (4.1)

where x i are inputs and w i are weights.

4.2 Convolutional Neural Network(CNN):

Convolution Neural Network(CNN) is multi-layered artificial neural networks with
the ability to detect complex features in data specially extracting features in text
data.It is a subset of machine learning.A Convolutional Neural Network on textual
data,also known as a 1D CNN, is a specialized type of neural network architecture
adapted for processing one-dimensional sequences,such as sentences or documents.
While CNNs were originally designed for images but they can be applied to text by
treating the input as a one-dimensional grid of word embeddings.A CNN model for
text processing applies 1D convolutions over word embeddings to capture local pat-
terns and features. One-dimensional convolution (1D convolution) works on textual
data by sliding a filter over the input sequence to detect local patterns and features.

Figure 4.2: CNN Architecture

4.2.1 Input Layer

The input layer takes a sequence of word embeddings as input. The shape of the in-
put tensor would be [sequenceLength, embeddingDimension], where sequenceLength
is the length of the input text and embeddingDimension is the dimension of the word
embeddings

4.2.2 Word Embeddings

The first layer of the CNN model is typically a Word Embedding layer. This layer
converts each word in the input sequence into a high-dimensional vector represen-
tation. These vectors are pre-trained (Word2Vec, GloVe) or learned as part of the
model training.Text data needs to be converted into numerical form before feeding
it to a CNN[7].
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4.2.3 Convolutional Layers

We use 1D filters that scan across the input sequence (which can be thought of
as a 1D grid). These filters detect specific features or patterns in the text, like
n-grams.The convolutional layers apply filters to the input sequence to detect local
patterns.A feature map is the output of each convolutional layer. Output Length =
(Input Length - Filter Size + 2 * Padding) / Stride + 1.

4.2.4 Feature Maps

The convolutional operation produces feature maps, which are essentially activation
maps showing the presence of specific features at different positions in the input
sequence. Each feature map is produced by a different filter and represents different
learned patterns.

4.2.5 Activation Function

Activation functions play a crucial role in introducing non-linearity into the model.
Typically, an activation function, such as ReLU, is applied after the convolution
operation to introduce non-linearity. ReLU is commonly used as the activation
function in both convolutional and fully connected layers.

4.2.6 Flattening and Fully Connected Layers

After several convolutional layers, the output is typically flattened and passed
through one or more fully connected layers for higher-level feature learning. In
the context of applying CNN models to text, the data undergoes processing through
convolutional and pooling layers, resulting in a multi-dimensional tensor. Flattening
is then employed to convert this tensor into a one-dimensional vector.Fully connected
layers represent densely connected neural layers, where every neuron in the previous
layer is linked to every neuron in the current layer. Consequently, each input from
the flattened vector connects to every neuron in the fully connected layer. In the
realm of textual data, post flattening the feature map, the one-dimensional array
is fed into one or more fully connected layers. These layers are designed to discern
complex relationships and higher-level features within the input data.The weights of
the connections between neurons in the fully connected layers are learned through
the training process. These weights undergo adjustment during backpropagation to
minimize the loss function, enabling the network to make accurate predictions or
classifications.The output from the fully connected layers is subsequently employed
for the final prediction or classification task.

4.2.7 Output Layer

Depending on the task (sentiment analysis, text classification) the output layer
could have one or more units with an appropriate activation function (softmax for
classification).
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4.2.8 Backpropagation and Training

The model undergoes training using backpropagation, wherein the weights are ad-
justed to minimize a loss function.

4.2.9 Regularization and Optimization

Techniques such as dropout, L2 regularization, and batch normalization can be
employed to prevent overfitting. Additionally, various optimization algorithms are
used to adjust the weights during training.

4.2.10 Loss Function

The model undergoes training through backpropagation, adjusting the weights to
minimize a chosen loss function. The selection of the loss function depends on the
specific task at hand.

4.2.11 Transfer Learning

1D CNN can leverage pre-trained models or embeddings for improved performance,
especially when the available training data is limited.

However,1D CNN have proven to be highly effective for tasks involving sequential
data.Their ability to automatically learn features from input sequences makes them
a powerful tool in fields where understanding temporal or sequential patterns is
crucial.

4.3 LSTM

The Long Short-Term Memory (LSTM) is a specialised RNN type created to solve
the vanishing gradient problem and efficiently describe sequential data. Different
from conventional feedforward neural networks. Unlike traditional feedforward neu-
ral networks, Tasks involving sequences, time series, and natural language processing
are ideally suited for LSTM networks. It has several key elements:

4.3.1 Gates:

The input gate, forget gate, and outout gate are the three different types of gates
found in LSTM cells. These gates, in turn, regulate how information enters the cell
state, whether it is kept or removed from the cell state, and how information is sent
to the output.
Input gate equation:

it =σ ( W i ∗ [h(t− 1), xt] + bi) (4.2)

Denoted by i t, has an activation function I t that is the result of a sigmoid function
σ. The formula for i t is calculated by multiplying the weight matrix for the input
gate, W i, with the concatenation of the previous state, h (t-1), and current input,
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Figure 4.3: LSTM Architecture

x t. Additional bias, b i, is included in the equation for the input gate. The input
gate controls new input (xt) for the cell state. It uses sigmoid activation (0-1) to
decide how much information to incorporate. 0 means no new info, 1 means all info
is retained. Forget gate equation:

ft =σ (W f ∗ [h(t− 1), xt] + bf ) (4.3)

Denoted by f t, has an activation function f t that is also the result of a sigmoid
function, σ. The formula for f t is calculated by multiplying the weight matrix for
the forget gate, W f, with the concatenation of the previous hidden state, h (t-1),
and current input, x t. The forget gate also includes an additional bias, b f, in its
equation.
The forget gate plays a crucial role in determining which information from the
previous cell state (C (t-1)) should be let go. Employing a sigmoid function, it
produces values on a scale of 0 to 1, with 0 representing the information being
forgotten and 1 representing it being retained.
Output gate equation:

ot =σ ( W o ∗ [h(t− 1), xt] + bo) (4.4)

The output gate (o t) updates the output gate activation through the use of a
sigmoid activation function σ. This is achieved by multiplying the weight matrix for
the output gate (W o) with a concatenation of the previous hidden state (h (t-1))
and the current input (x t), and adding a bias term (b o).
The output gate serves as a critical component in managing the representation of
updated cell state, which is then presented as the hidden state. In order to precisely
regulate the flow of information, the gate applies a sigmoid function with a range
from 0 to 1. A value of 0 indicates no transmission of information to the output,
while a value of 1 allows for complete disclosure.

4.3.2 LSTM Cells

At the core of an LSTM network lies LSTM cells, specialized units designed to cap-
ture important long-term relationships within sequential data. These cells process
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input sequences piece by piece, all while maintaining an internal state referred to as
the cell state or memory cell. In order to tackle the challenge of vanishing gradients,
LSTM cells are equipped with gates to control the flow of information.
Cell state equation:

Ctildet = tanh(Wc ∗ [h(t− 1), xt] + bc) (4.5)

The cell state, denoted as ’C’ and responsible for storing and carrying information
across time steps, can be updated through the use of different gates within the LSTM
cell. One such gate is the candidate cell state (Cn t), which is updated through
the use of a hyperbolic tangent activation function (tanh). This is achieved by
multiplying the weight matrix for the candidate cell state (W c) with a concatenation
of the previous hidden state (h (t-1)) and the current input (x t), and adding a bias
term (b c). The candidate cell state (Cn t) captures new information for the cell
state. The hyperbolic tangent activation function limits values from -1 to 1, making
it ideal for modeling potential new cell state values. Cell State Update (C t):

Ct = ft ∗ C(t− 1) + it ∗ Cnt (4.6)

When updating the cell state (C t), we use a combination of the previous state (C (t-
1)) and a candidate state (Cn t). This is achieved through the forget activation (f t)
and input gate activation (i t), determining which elements should be kept from
the previous state and which new information should be integrated. Essentially, the
equation acts as a decision maker, determining the content of the updated cell state.
Hidden State (h t): The hidden state, often denoted as ’h,’ is the output of the
LSTEM cell at a particular time step. It contains information that the LSTM cell
has deemed relevant for making predictions or encoding the input sequence.

ht = ot ∗ tanh(Ct) (4.7)

The hidden state H t is modified by multiplying it with the output gate activation
o t and running it through the hyperbolic tangent function, denoted by tanh. This
results in an updated hidden state that is affected by the updated cell state C t.
LSTM Weight Parameters: Like traditional neural networks, LSTM models have
weight parameters. These weights are learned during training and decide the im-
pact of input data on the cell state and hidden state. Activation Functions:Gates,
cell state, and hidden state updates all make use of sigmoid and hyperbolic tangent
(tanh) functions. They bring non-linearity into the equation, allowing the model
to recognise intricate patterns in sequential data. Learning Process: LSTM models
are trained using optimization algorithms like using gradient descent to reduce the
gap between expected and actual results.Calculations for updating cell state, hid-
den state, and gates involve intricate math, considering input data, previous cell
state, and weight parameters. These operations are performed at each time step for
sequential data processing.

4.4 Bi-LSTM

Bidirectional recurrent neural networks (RNNs) can be thought of as combining two
separate RNNs. This unique structure allows for the networks to gather informa-
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tion from both forward and backward sequence at each time step, enhancing their
understanding of the data.

Figure 4.4: Bi-LSTM Architecture

The main functionality of BiLSTM is the additional LSTM layer that works in
the reversed direction, allowing for easier backtracking and integration of other
algorithms for alternative solutions. It is increasingly popular for solving real-world
problems due to its ability to be authenticated and integrated within a shorter time
frame, reducing the overall complexity of a machine learning model.

Figure 4.5: Forward RNN(LSTM or GRU) Network

BiLSTM also considers past inputs for classification and analysis of problems. In
contrast, standard or unidirectional LSTM only analyzes present inputs, while BiL-
STM improves predictions over time as the model is trained with pre-existing values
and new inputs provide a better stage for validation according to the model’s stan-
dards. This results in a more meaningful output for users.
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Figure 4.6: Adding Another Cell for Other Direction

BiLSTM also considers past inputs for classification and analysis of problems. In
contrast, standard or unidirectional LSTM only analyzes present inputs, while BiL-
STM improves predictions over time as the model is trained with pre-existing values
and new inputs provide a better stage for validation according to the model’s stan-
dards. This results in a more meaningful output for users.

Figure 4.7: Connecting the Backward Cells

Two forward propagations are executed, one for the forward cells and one for the
backward cells. This means that both activations, for the forward and backward
cells, are taken into consideration when calculating the output y∧ at time t.

Figure 4.8: Bi-LSTM Backward Concatenation Equation.

Learning Process: Utilizing the bidirectional approach will allow your inputs to
be processed in two directions: from past to future and vice versa. What sets
this method apart from unidirectional is that, by incorporating a backward-running
LSTM, information from the future can be retained. When the two hidden states are
merged, information from both past and future can be retained at any given time.
Determining their specific strengths is a complex matter, but it is worth noting that
BiLSTMs demonstrate impressive performance as they have a heightened ability to
grasp the context.
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4.5 BERT

BERT (Bidirectional Encoder Representations from Transformers) model has gained
significant acclaim for its exceptional capabilities in natural language processing
(NLP). Developed by Google, this pre-trained NLP model is built on the trans-
former architecture, allowing it to effectively understand the contextual meaning
of words within a sentence by incorporating both left and right context. BERT is
considered a transformer-based model, which leverages self-attention mechanisms
and is a type of neural network architecture.BERT was thoughtfully crafted for the
sole purpose of tackling natural language processing (NLP) tasks with prowess. It
achieves this through its exceptional ability to capture both forward and backward
context, resulting in contextualized embeddings for words within sentences. By
combining these contextual embeddings with powerful transfer learning capabilities,
BERT excels in hybrid recommendation and sentiment analysis on textual data.
This is thanks to its advanced understanding of context, allowing it to effectively
comprehend textual data and produce superior results in both recommendation and
sentiment analysis. BERT’s foundation is built upon the cutting-edge Transformer
architecture, a deep learning model where each output element is intricately linked
to every input element. These links are dynamically determined based on their
connections, strengthening BERT’s capacity to accurately process and analyze text.

4.5.1 Input Layer

The input layer, complete with token embeddings, positional encodings, and segment
embeddings, is passed through the transformer architecture of the BERT model.
Comprised of multiple layers, the model utilizes attention mechanisms to capture
the contextual relationships and bi-directional dependencies between words as it
processes the input in parallel.

4.5.2 Pre-Training

During pre-training, BERT is exposed to vast amounts of text data and achieves flu-
ency through practicing with a technique called the masked language model (MLM).
This method involves randomly masking certain words in a sentence and challenging
the model to accurately fill in the blanks based on the context provided by the words
around them.

4.5.3 Bidirectional Context

BERT differs from traditional language models as it takes into consideration context
from both directions, allowing for a more thorough understanding of the intricate
relationships between words and their surroundings.

4.5.4 Tokenization

Tokenization in the BERT model involves breaking down input text into smaller
units, typically subwords or word pieces, to create a vocabulary that the model can
process. WordPiece Tokenization:BERT uses a tokenization method called Word-
Piece, where words are broken down into smaller subword units. This allows BERT
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Figure 4.9: Pre-Training(BERT)

to handle a vast and diverse vocabulary efficiently. For example, the word ”running”
might be tokenized into [”run”, ”##ning”].

1. Vocabulary Creation: BERT has a pre-defined vocabulary that includes
both complete words and subword units. The vocabulary is created during pre-
training on a large corpus of text. Subword units help capture morphological
variations and handle out-of-vocabulary words.

2. Token IDs: Each token in the input text is mapped to a unique token ID
based on the BERT vocabulary. These token IDs serve as input to the model.

3. Special Tokens:Special tokens are added to the tokenized input to convey
additional information to the model:

(a) [CLS] (Classification): Added at the beginning of the input to repre-
sent the start of the sequence. It is used when the model is tasked with
sequence classification.

(b) [SEP] (Separator): Added between pairs of sentences or at the end of
a single sentence. It indicates the separation between different segments
of text.

4. Segment IDs (for Sentence Pairs): If the input consists of pairs of sen-
tences, segment IDs are assigned to each token to indicate to which sentence it
belongs. This helps the model distinguish between different segments of text.

5. Masking for MLM (Masked Language Model):During pre-training, cer-
tain tokens in the input sequence are randomly chosen and masked. The
model is subsequently trained to predict the masked tokens based on the con-
text provided by the surrounding tokens. This process encourages the model
to comprehend bidirectional context.
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Figure 4.10: BERT Using WordPiece Tokenizer

Figure 4.11: BERT Input Representation

4.5.5 Transformer Architecture

BERT uses a transformer architecture, which allows it to efficiently process and ana-
lyze sequences of tokens in parallel. The transformer’s attention mechanism enables
the model to focus on different parts of the input sequence, capturing dependencies
between words.

4.5.6 Attention Mechanism

BERT utilizes self-attention mechanisms to assess the importance of different words
in a sequence when processing each token. This attention mechanism aids the model
in comprehending the relationships between words in a sentence.

4.5.7 Layers and Stacking

BERT consists of multiple layers and each layer refines the representation of the
input text. The model’s depth allows it to capture complex hierarchical patterns in
language.

4.5.8 Fine-Tuning for Specific Tasks

Once the pre-training phase is complete, BERT can be fine-tuned for various down-
stream tasks, such as text classification, named entity recognition, and question
answering. This involves adding task-specific layers and training the model on a
smaller dataset tailored to the specific task.
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Figure 4.12: MLM and TLM

4.5.9 Contextualized Embeddings

BERT generates contextualized embeddings for each token in a sequence, capturing
the nuances of meaning based on its context within the entire sentence.

4.5.10 Pooling Operation

To obtain a fixed-size representation for the entire sequence, a pooling operation
is applied to the contextualized embeddings. Common pooling methods include
max pooling, average pooling, or a combination of both. For instance, max pooling
involves selecting the maximum value along each dimension across all tokens.

4.5.11 Fixed-Size Representation

The outcome of the pooling operation is a fixed-size representation that effectively
summarizes the information from the entire sequence. This representation is de-
signed to capture the most salient features of the input for downstream tasks.

4.5.12 Task-Specific Prediction Layers

The fixed-size representation obtained from the pooling operation is then fed into
task-specific prediction layers. These layers are typically composed of fully connected
(dense) layers that transform the representation to make predictions for the specific
task.

4.5.13 Transfer Learning

BERT is pre-trained on a large corpus, allowing it to capture general language
patterns. Fine-tuning tailors the model to specific recommendation or sentiment
analysis tasks.
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4.5.14 Versatility

BERT’s architecture is versatile and it can be fine-tuned for various NLP appli-
cations, including text classification, named entity recognition, sentiment analysis,
question answering, and more. This adaptability makes it a go-to choice for diverse
language understanding tasks.

4.5.15 Multilingual Support

BERT models exist for multiple languages, making it applicable to a diverse range
of linguistic contexts.

4.5.16 Community and Adoption

BERT has gained widespread adoption in both academia and industry. Its success
has spurred research and developments in the field of pre-trained language repre-
sentations, leading to the creation of various BERT-based models.

BERT has the ability to capture bidirectional context and contextualized word em-
beddings has led to its widespread adoption and success in various natural language
processing tasks.BERT excels in hybrid recommendation and sentiment analysis
for textual data through its utilization of contextualized embeddings and transfer
learning. Its capability to capture context-rich embeddings significantly enhances
the model’s understanding of textual data, leading to improved results in both rec-
ommendations and sentiment analysis.While BERT has demonstrated remarkable
performance, it is worth noting that the model’s large size and computational re-
quirements can be challenging for deployment in resource-constrained environments.
As a result, there have been efforts to create smaller, more efficient variants of BERT
while maintaining its effectiveness for certain applications.

4.6 RCNN

The RCNN (Recurrent Convolutional Neural Network) is a hybrid deep learning
architecture that merges the capabilities of Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs). It’s primarily designed to handle sequential
data effectively while leveraging the spatial understanding of CNNs.The model starts
with a convolutional layer, commonly used in CNNs, to extract spatial features from
the input data. These layers can capture patterns, edges, and spatial relationships
within the data.Unlike standard CNNs, RCNNs incorporate RNN components like
LSTMs (Long Short-Term Memory) or GRUs (Gated Recurrent Units) to process
sequential data. These RNN layers help capture temporal dependencies and patterns
within sequences. One of the unique aspects of the RCNN architecture is its ability
to merge spatial features from CNNs and sequential understanding from RNNs.
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This integration enables the model to learn from both local features and long-term
dependencies in the data. By combining the strengths of CNNs in understanding
spatial features and RNNs in understanding sequential data, RCNNs become adept
at tasks that require understanding both spatial and temporal contexts, such as
object recognition in videos, sentiment analysis in texts, and action recognition
in sequences. RCNNs are particularly effective in Natural Language Processing
tasks where understanding context and sequential patterns in text data is crucial.
They’re used in sentiment analysis, named entity recognition, text classification,
and machine translation. The advantage of RCNN lies in its ability to effectively
capture spatial features through the CNN layers while also preserving sequential
dependencies using LSTM units. By combining these capabilities, RCNN models are
particularly suitable for tasks involving sequential data, where understanding both
local features and long-term dependencies in the input text is crucial for accurate
predictions or classifications.

Figure 4.13: Hybrid model RCNN

Input Layers: Two separate input layers (input cnn and input lstm) are defined
for the CNN and LSTM branches, respectively.

4.6.1 Convolutional Layers (CNN)

1. Feature Extraction:The initial part of the RCNN model comprises Convolu-
tional Neural Network (CNN) layers, which are excellent at capturing spatial
information in data.

2. Embedding: The input text data is transformed into fixed-sized dense vectors
using an Embedding layer.

3. Convolution and Pooling: Sequential Conv1D layers with ReLU activation
apply filters across the embedded sequences to extract important features.
MaxPooling1D layers reduce the dimensionality, retaining the most relevant
features.

4.6.2 Recurrent Layers (LSTM)

1. Sequential Learning: The RCNN incorporates Recurrent Neural Network (RNN)
layers, specifically LSTM units, to process sequential information present in
the data.
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2. Embedding: Similar to the CNN branch, the input data is embedded for the
LSTM branch.

3. Sequential Learning: LSTM layers capture the long-range dependencies and
sequential patterns within the data. The first LSTM layer returns sequences,
while the second LSTM layer captures overall patterns.

4.6.3 Concatenation

Combining Spatial and Sequential Information: The outputs from the CNN (after
pooling) and LSTM branches are concatenated. This step merges the spatially
extracted features (from CNN) with the learned sequential patterns (from LSTM).

4.6.4 Dense Layers

Further Feature Learning: Additional Dense layers are added after concatenation to
learn complex representations from the combined features.

4.6.5 Output Layer

Classification: The final Dense layer with a softmax activation function generates
the output probabilities for the different classes in the dataset.

4.6.6 Advantages

1. Long-term Dependencies: RCNNs address the vanishing gradient problem bet-
ter than traditional RNNs, enabling them to capture long-term dependencies
effectively.

2. Feature Learning: The model learns hierarchical features from both spatial
and sequential domains, improving the representation of complex patterns in
the data.

4.6.7 Limitations

Complexity: Combining CNNs and RNNs can make the model complex and compu-
tationally intensive, which might lead to longer training times and increased resource
requirements.
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Chapter 5

Result Analysis and Discussion

Precision, F1, and Recall:
Outputs of the models can be displayed in a variety of ways. Among them classi-
fication model’s F1 score, precision, and recall are crucial. They help in assessing
the model’s performance in particular scenarios and offer insightful information on
a variety of aspects of the model’s success. Incase of finding precision, recall and F1
score we need to know TP,TN,FP and FN.

True Positives (TP):Number of occurrences which are correctly classified as pos-
itive. These circumstances include instances where the model correctly categorizes
outcomes as positive.

True Negatives (TN):Number of occurrences which are correctly classified as neg-
ative. These circumstances include instances where the model correctly categorizes
outcomes as negative.

False Positives (FP): Instances that the model incorrectly interprets as positive.

False Negatives (FN): Instances that the model incorrectly interprets as positive.

Precision: A model’s ability to identify the positive occurrences is measured by
precision. To determine the precision we take True Positives and divide it by True
Positives and False Positives combined. Higher precision means our model’s possi-
bility of categorizing negative occurrences as positive is very low. Precision formula:

Precision =
True Positives

True Positives + False Positives
(5.1)

Recall:Through recall rate we can determine how well our model has been trained
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to detect the thing that we are actually looking for. To measure recall we take True
Positives and divide it by True Positives and False Negatives combined. Higher
recall rate means our model is very accurate to identify our goal. Recall formula:

Recall =
True Positives

True Positives + False Negatives
(5.2)

F1 Score: Comparable to a grade, the F1 Score indicates the effectiveness of a
machine learning software. To determine the F1 score we have to take both precision
and recall in account. Models with high precision and good recall get recognized
by the F1 score, which does not prefer one over another.Therefore, a high F1 Score
indicates that a software is performing well in terms of both accuracy and object
detection. F1 score formula:

F1 = 2 · Precision · Recall
Precision + Recall

(5.3)

5.1 ANN Result

In the embedded layer we have converted integer-encoded words into 16 sized dense
vectors. We set 500 as the size of the vocabulary so the words that are converted
into dense vectors will be represented as integers 1 to 499. Then we used an average
pooling layer to reduce the model complexity and to reduce the spatial complexity.
After that three fully connected dense layers have been used. There are 32, 64 and
34 neurons respectively where for the first two layers we used ReLU function and for
the last layer we used softmax activation because of its ability to handle multi-class
classification. In the model architecture an embedding dimension of 380 is used in
the first layer. The embedding layer’s weights are determined by the pre-trained
embedding matrix. The largest input sequences have a maximum length of 380
tokens. To train the model we took 100 epochs and set the batch size to 64. We
kept 20% of the data to validate the performance. In order to enhance the model’s
predictive performance on the training set of data, the weights are updated during
the training phase using the computed loss and gradients. After performing model
evaluation we get the test data accuracy and the loss of our model.
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Figure 5.1: ANN Model Layer Architecture

Test Accuracy 0.6036
Test Loss 1.4842
Precision 0.4562
Recall 0.4246
F1 Score 0.4939

Table 5.1: ANN classification accuracy table

After testing the model we get an accuracy of 0.6036. With an accuracy of 0.6036,
the model was able to correctly predict around 60.36% of all observations.However,
we also have other parameters to determine the accuracy of our selected model. We
got our precision 0.4562 which indicates that when the model predicts a class with
an accuracy of roughly 45.62% for that particular class. Our ANN model achieved
a recall score of 0.4246, indicating that it correctly identified around 42.46% of
all actual positive instances. Lastly, our F1 Score for this model is 0.4939 which
suggests the overall balance between precision and recall for this model.

31



Figure 5.2: ANN Confusion Matrix

In this heatmap, in the x-axis we have the predicted values, and in the y axis we
have our test data. We can see in our 2nd class(Sadness) we made about 380 right
predictions. In our 18th(generous ) class we have 350 right predictions, also in
29th(Protetstant )class we have 250 right predictions. The diagonal of the heatmap
shows the true positive result and as 15/16 of the classes are showing the true
positive result. So, we can assume the model diagonal shows the accuracy of 57%.
Also, we have a highest right prediction in 9th class(Love). It raises some doubts as
in the 9th class(Love) we are also seeing a straight line. This is occurring because
9th class(Love) is falsely predicted as various emotions as an anomaly.

Figure 5.3: Training and Validation Accuracy for ANN

32



Figure 5.4: Training and Validation Loss for ANN

5.2 CNN result

In text data, CNNs process word embeddings as a 2D matrix, treating word se-
quences like image rows. Convolutional layers slide filters over these matrices, cap-
turing local patterns. Pooling layers downsample the output, retaining essential
information. Flattening and dense layers transform the representation for classifi-
cation tasks.CNNs are primarily designed for image-related tasks. However, they
can be used for sequence data as well. The accuracy we have achieved might be
due to factors such as network architecture, hyperparameters or the nature of our
dataset.If our dataset contains images or data with a spatial structure, CNNs are
a better choice than ANNs.However,we want to improve performance,so we might
need to fine-tune the CNN architecture and hyperparameters to better suit your
specific data. Accuracy is slightly below ANN.
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Figure 5.5: CNN Model Layer Architecture

CNNs are designed for images but can be adapted for sequences. The accuracy may
depend on factors like architecture and hyperparameters. CNNs perform well when
spatial features are important.In CNN,we have the accuracy of 59.68%.Accuracy
alone may not offer a comprehensive understanding, particularly when dealing with
an imbalanced dataset.

Test Accuracy 0.5968
Test Loss 2.2018
Precision 0.505164
Recall 0.4761695
F1 Score 0.48567

Table 5.2: CNN classification accuracy table

Our precision is 50.516%.Precision measures the accuracy of positive predictions
made by the model. It is defined as the ratio of true positive predictions to the
sum of true positives and false positives. Our recall is 47.617%. Recall is known as
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sensitivity or the true positive rate, gauges the model’s ability to correctly identify
all relevant instances of a particular class. It is defined as the ratio of true positives
to the sum of true positives and false negatives. Our F1 score is 48.567%.The F1
score is a metric that combines precision and recall into a single value, offering a
balanced measure of a model’s performance. In the context of Convolutional Neural
Networks (CNNs) applied to textual data, the F1 score is particularly useful when
seeking a balance between precision and recall.

Figure 5.6: CNN Confusion Matrix

In this heatmap, in the x-axis we have the predicted values, and in the y axis we
have our test data. As we can see, almost 11/12 classes have right predictions in
the range from 200-400. In the 25th class(hopeless) we have almost 400+ right
predictions. Also, the 8th class, 14th class, 15th class and 23th class have shown a
good number of right predictions. Although, 26th class predicted 100% correctly,
but, it also falsely predicted various emotions as an anomaly, so we are getting a
straight line in the 26th class(fail ). This confusion matrix shows the 59% accuracy
through the diagonal.
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Figure 5.7: Training and Validation Accuracy for CNN

Figure 5.8: Training and Validation Loss for CNN

5.3 LSTM Result

LSTMs (Long Short-Term Memory) are recurrent neural networks designed to cap-
ture long-range dependencies in sequential data, making them well-suited for sen-
timent analysis tasks.They excel at understanding context and the relationships
between words within a text, which is crucial for accurately classifying sentiment.
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Figure 5.9: LSTM Model Layer Architecture

The model’s sentiment prediction accuracy is 13.79%, highlighting the need for
further evaluation, particularly for imbalanced datasets. During testing, a loss of
3.1801 was recorded, indicating the model’s deviation from actual values. A lower
loss value is desired. The precision score of 0.405% reflects the model’s ability to
accurately predict positive sentiments, which is currently low. This could be due to
a high number of false positives in the model’s predictions.

Test Accuracy 0.1379
Test Loss 3.1801
Precision 0.00405
Recall 0.02941
F1 Score 0.00713

Table 5.3: LSTM classification accuracy table

Let’s talk about Recall (2.941%), an important metric in evaluating a model’s abil-
ity to accurately identify relevant sentiments. Also known as sensitivity or true
positive rate, this measure signifies the model’s capability to correctly identify all
relevant instances of a specific sentiment class. The low recall rate highlights a signif-
icant number of false negatives in the predictions, indicating room for improvement.
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Along with Recall, the F-1 score (0.713%) also plays a crucial role in assessing a
model’s performance. It combines both precision and recall to provide a balanced
measure of its overall performance. In this case, the low F-1 score suggests a need
for improvement and draws attention to the model’s potential to do better.

Figure 5.10: LSTM Confusion Matrix

Both matrices, with 34 rows and 34 columns each, correspond to the number of senti-
ment classes. Upon examining them, we have observed a noticeable concentration of
accurate classifications along the diagonals. However, there is also a significant num-
ber of off-diagonal elements, indicative of misclassifications. This suggests that the
performance of the model falls short of our expectations. Without sufficient data,
it is challenging to identify specific patterns. However, we have noticed a higher
misclassification rate for certain classes, such as ”sadness,” ”angry,” ”happy,” and
”surprise.” These classes seem to be frequently mistaken for each other. Overall,
based on the confusion matrices, it is clear that the LSTM model requires improve-
ment.

Figure 5.11: Training and Validation Accuracy for LSTM
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Figure 5.12: Training and Validation Loss for LSTM

5.4 Bi-LSTM Result

With its strong ability to capture long-range dependencies and context in text se-
quences, Bi-LSTM networks prove to be an ideal choice for sentiment analysis tasks.
By processing text bidirectionally, these networks can effectively leverage both past
and future information, resulting in more accurate predictions.

Figure 5.13: BiLSTM Model Layer Architecture
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With a precision rate of 56.61%, the model demonstrates a considerable number of
precise positive predictions among the total predictions made. The model showcases
a considerable recall rate of 53.88%, displaying its ability to accurately identify sen-
timents within the dataset.Our F-1 score, which takes into account both precision
and recall, stands at 54.78%. This metric is crucial in achieving a balance between
accurately identifying positive cases while capturing all relevant instances.The re-
sults for test accuracy and loss exhibit promise for the model’s ability to predict
sentiment, with a solid 64.60% accuracy. However, the accompanying loss score
of 1.8430 suggests potential for improvement and highlights the potential benefit
of fine-tuning or refining our data set. Upon analyzing the overall performance of
the Bi-LSTM model, we see well-balanced precision, recall, and F-1 scores. Upon
closer inspection, we note specific instances where the model excels and others that
require attention. For instance, its accuracy in identifying sentiments classified as
”fail” (class 26) is notably high, but it also erroneously predicts anomalies, causing
some confusion.

Test Accuracy 0.64609
Test Loss 1.8430
Precision 0.5661
Recall 0.5388
F1 Score 0.5498

Table 5.4: BiLSTM classification accuracy table

Figure 5.14: BiLSTM Confusion Matrix

In the heatmap, in the x-axis we have the predicted values, and in the y axis we
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have our test data. In this heat map we can see 2nd class, 18th class, 24th to 29
class have shown good predictions especially the 2nd and the 18th class. Though
the 8th class has a 100% right prediction but it also has falsely predicted various
emotions as an anomaly. Here, in our dataset almost all models have predicted a
class falsely positive, that something we noticed and trying to remove. After doing
so we are confident to have a better accuracy than 64% in Bi-LSTM, as it has shown
a better performance as we can see from heat map than CNN and LSTM.

Figure 5.15: Training and Validation Accuracy for BiLSTM

Figure 5.16: Training and Validation Loss for BiLSTM

The Bi-LSTM sentiment analysis model exhibits promising performance, yet there’s
room for enhancement. Focusing on hyperparameter tuning, dataset analysis, and
potential model refinements could lead to substantial improvements in accuracy and
overall performance.

41



5.5 Bert

5.5.1 Data Preparation:

1. Label Encoding: The sentiment labels in your dataset are converted into nu-
merical labels.

2. Parameters Setup: Some settings such as the maximum sequence length, num-
ber of classes, learning rate, epochs, batch size, and the BERT model used.

5.5.2 Dataset Setup:

1. A custom dataset is created (TextClassificationDataset) to process text data
for the BERT model. This dataset handles the tokenization (splitting text
into words or tokens) using the BERT tokenizer.

5.5.3 BERT Classifier

1. A model called BERTClassifier is defined. This model is based on the BERT
architecture and incorporates a neural network for text classification. It uses
BERT’s pre-trained layers and adds a layer for classification.

5.5.4 Training the Model

1. The train function trains the BERT Classifier model using the training dataset
(train dataloader). It updates the model’s parameters by adjusting them based
on the error it makes in its predictions.

5.5.5 Model Evaluation:

1. The evaluate function assesses how well the trained model performs on data.
It computes metrics like accuracy, precision, recall, and generates a confusion
matrix to show the model’s performance.

5.5.6 Making Predictions:

1. The predict sentiment function uses the trained model to predict the sentiment
of a given piece of text.

5.5.7 Data Preparation and Splitting:

1. The available data is divided into two parts: a training set and a validation
set using train test split.

2. Tokenization is performed to convert text inputs into numerical tokens that
the BERT model can understand.

3. Data loaders (train dataloader and val dataloader) are prepared to feed the
data into the model during training and evaluation.
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5.5.8 Training Loop:

1. The model is trained over multiple cycles or epochs, with each cycle or epoch
consisting of a complete run of the training data set. During each epoch,
the model learns from the training data and adjusts parameters to improve
predictions.

Test Accuracy 0.7324
Precision 0.64
Recall 0.64
F1 Score 0.63

Table 5.5: BERT classification accuracy table

We have got an accuracy of 73% in our dataset. So far it is the highest accuracy
we have. An accuracy score of 0.7324 indicates that approximately 73.24% of the
model’s predictions were correct across all classes. We have got a precision value
of 0.64. With a value of 0.64, on average, around 64% of the samples predicted as
positive by the model are indeed correct across all classes.With a F1 Score of 0.63,
our model shows impressive overall performance in accurately identifying positive
cases while keeping false positives low across all classes.

Figure 5.17: BERT Confusion Matrix

These represent the correctly classified instances for each class. Higher values
along this diagonal indicate better performance in correctly predicting those specific
classes. Higher values outside the diagonal represent instances where the model
predicted a different class than the true class.Usually, a color gradient is used to
visualize the intensity of the values in the confusion matrix. Higher values might
be represented by darker shades or different colors, helping to identify areas where
the model is making more mistakes. For instance, the number 178 in the second
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row and second column shows that 178 instances of the second class were correctly
classified as the second class. On the other hand, the number 3 in the first row and
third column means that three instances of the first class were predicted as the third
class. Looking at the counts in each row, it appears that some classes have very
few predictions for instance, the first class has only 4 predictions, while others, like
the second class (178), have significantly more. An imbalance in the distribution of
classes might impact the model’s performance. Classes with fewer instances might
have lower prediction accuracy due to limited training data.

5.6 RCNN Result

The RNN model analyzes text in a sequential manner, processing data token by
token and capturing text-based details in its hidden layers. However, its limitations
lie in its focus on only the most frequently used words in a sentence, often leading to
sentiment misinterpretation. To address this, a CNN model was introduced with a
max-pooling layer, culminating in the development of the RCNN model, combining
RNN and CNN. CNN’s pooling layer serves as a selector, identifying crucial words
within text or sentences. Nevertheless, CNN’s reliance on a fixed-sized search win-
dow impacts its learning speed. Unlike CNN, which mainly focuses on local features,
RCNN integrates contextual information through its recurrent layers. This allows
it to capture not just individual patterns but also the sequence-based dependen-
cies within the data.The CNN component of RCNN excels in feature extraction.
The combination of convolutional layers and max-pooling aids in identifying signif-
icant patterns or features within the input data. RNNs often encounter vanishing
or exploding gradient problems, which can hinder learning in deeper networks. By
merging CNN’s ability for feature extraction with RNN’s sequence modeling, RCNN
mitigates these issues to some extent. RCNN generates more informative representa-
tions of input data by integrating both spatial and sequential information, resulting
in richer feature representations compared to standalone CNN or RNN models.It’s
noteworthy that RCNN, while efficient, demands higher computational resources for
both training and testing the data.

In our model the embedding layer Maps integer indices (representing words) to dense
vectors. It transforms each index into a fixed-size dense representation. After the
two conv 1D layer we have a max pooling layer which Reduces the dimensionality
of the CNN output while retaining important information.Fully connected dense
layers applying nonlinear transformations to the flattened CNN output.We have also
Stacked LSTM layers that capture sequential information in the input data.Then
finally we have merged the output from CNN and LSTM model. Additional fully
connected layers applied to the concatenated output, enabling the model to learn
high-level features. At last the output layer Produces the final output predictions
with a softmax activation function for multiclass classification (34 classes).
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Figure 5.18: RCNN(CNN+LSTM) Model Layer Architecture

Test Accuracy 0.5797
Test Loss 2.6519
Precision 0.4878
Recall 0.4923
F1 Score 0.4839

Table 5.6: RCNN(CNN+LSTM) classification accuracy table

We have got an accuracy of 57.96%. In our case, the accuracy of 0.5797 indicates that
around 57.97% of all predictions made by the model were correct. However, accuracy

45



alone might not provide the full picture, especially in an imbalanced dataset. Our
precision is 0.4878. A precision score of 0.4878 suggests that when the model predicts
a class, it is correct about 48.78% of the time for that specific class. Our RCNN
model achieved a recall score of 0.4923, indicating that it correctly identified around
49.23% of all actual positive instances. F1 Score is 0.4839. The F1 score is the
harmonic mean of precision and recall. It considers both false positives and false
negatives. The obtained F1 score of 0.4839 suggests the overall balance between
precision and recall for this model.

Figure 5.19: RCNN(CNN+LSTM) Confusion Matrix

In this heatmap, in the x-axis we have the predicted values, and in the y axis we
have our test data. We can see in our 1st class(Like) we made 244 right predictions.
In our 25th(provocative ) class we have 364 right predictions, also in 13th(expected
)class we have 209 right predictions. The diagonal of the heatmap shows the true
positive result and as 10/11 of the classes are showing the true positive results. So,
we can assume the model diagonal shows the accuracy of 57%. Also, we have a
highest right prediction in class 19th(fear ), which is a little questionable as in the
19th class(fear) we are also seeing a straight line, however 19th class(Fear) is falsely
predicted as various emotions as an anomaly.
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Figure 5.20: Training and Validation Accuracy and Loss for RCNN(CNN+LSTM)

Interpretation:

1. The accuracy of 57.97% indicates that the model is performing better than
random guessing but might not be sufficiently high for certain applications.

2. The precision, recall, and F1 score values, around 0.48-0.49, suggest that the
model’s performance is moderate, but it may struggle to handle certain classes
effectively.

3. Considering the presence of 34 classes, imbalanced classes might influence these
metrics. For instance, classes with fewer instances might have a lower impact
on overall metrics.

4. Further investigation into class-wise metrics or strategies to address class im-
balance could enhance the model’s performance, especially for minority classes.

In summary, while the RCNN (CNN+LSTM) model exhibits moderate performance
across multiple evaluation metrics, class imbalance or specific class difficulties could
benefit from additional model tuning or data preprocessing techniques to improve
overall effectiveness.

BiLSTM (Bidirectional Long Short-TermMemory networks) often outperform LSTM
in certain tasks due to their enhanced ability to capture context. BiLSTMs process
data in both forward and backward directions, allowing them to capture context
from both past and future sequences. This bidirectional approach enables the model
to understand dependencies more comprehensively, especially when the information
available in both directions is crucial for accurate predictions. BiLSTMs offer a
more nuanced understanding of the context within sequences. They can better
capture long-term dependencies and relationships between words or tokens in both
directions, improving the model’s ability to understand and interpret sequences ef-
fectively. In RCNN, where a comprehensive understanding of both local features
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and long-term dependencies within sequential data is crucial, the bidirectional as-
pect of BiLSTMs can offer a more robust and detailed comprehension of the text,
leading to higher accuracy compared to unidirectional LSTM models.

Figure 5.21: RCNN(CNN+BiLSTM) Model Layer Architecture

So, considering the strengths of Bi-LSTM we considered modifying our hybrid model,
we replaced the LSTM model with Bi Lstm, as it has shown good accuracy in our
dataset. We have separate input layers for both CNN and Bi Lstm. Then in CNN
model we have a embedding layer which has vectorized the input layer, following
than we have 2 conv 1D layers, than a pooling layer, in the Bi lstm model we have an
embedding layer following that one Bi Lstm layer than lastly we have concatenated
these two layers for a better output.

Test Accuracy 0.5891
Test Loss 3.0679
Precision 0.5077
Recall 0.5143
F1 Score 0.5088

Table 5.7: RCNN(CNN+BiLSTM) classification accuracy table
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With an accuracy of 58.91%, the model correctly predicts approximately 58.91% of
the instances in our dataset. The precision of 50.77% suggests that when it predicts
an instance as positive, it’s correct around 50.77% of the time. The recall of 51.43%
indicates that it captures about 51.43% of all positive instances. The F1 Score of
50.88% considers both precision and recall.

Figure 5.22: RCNN(CNN+BiLSTM) Confusion Matrix

From this heat map we can see that some classes have better true positive predictions
than we did with Lstm. Some classes like 10th class, 12th class, 33th class, 22th
class have better right predictions, though the problem with the 19th class seems
to be remaining.This model seems to perform reasonably well but may benefit from
further improvements in precision, recall, and the F1 score for a more balanced and
accurate prediction across all classes. So, since it has better accuracy, we hope to
work with this model when we overcome the limitations of our Dataset.

The range of models used to process the dataset revealed varying degrees of per-
formance. The Artificial Neural Network (ANN) model and Convolutional Neural
Network (CNN) exhibited moderately competitive accuracy of 60% and 59%, sig-
nifying their capability to capture certain patterns within the data. ANN might
be capturing some patterns but might not handle complexities or sequence data as
effectively as other models.. Though CNN is Good at capturing spatial features;
useful for image data. However, for sequential data like text, it might not capture
dependencies well.
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Model Name Test Accuracy Precision Recall F1 Score
ANN 0.6036 0.4551 0.4046 0.4058
CNN 0.5968 0.5052 0.4761 0.48567
LSTM 0.1379 0.00405 0.02941 0.00713

Bi-LSTM 0.64609 0.5661 0.5388 0.5498
BERT 0.7324 0.64 0.64 0.63

RCNN with Lstm 0.5797 0.4878 0.4923 0.4839
RCNN with Bi-Lstm 0.5891 0.5077 0.5143 0.5088

Table 5.8: Accuracy Comparison Between Our Applied Models

However, the LSTM model surprisingly yielded notably low accuracy of 13%, sug-
gesting potential issues in training, data preparation, or the model’s ability to com-
prehend sequential patterns effectively. This could indicate issues with model train-
ing, data preprocessing, or the model architecture not effectively capturing sequence
patterns. Conversely, the Bi-LSTM model showed improved accuracy of 64%, bene-
fitting from its bidirectional nature. Better performance than the traditional LSTM,
as bidirectional LSTM captures patterns from both past and future contexts, which
might be helpful in understanding the sequence.

The BERT model, known for its context-awareness, emerged as the top performer,
showcasing a high accuracy level. It has an accuracy of 73%. High accuracy, in-
dicating strong performance. BERT, being a transformer-based model, is excellent
at understanding context in sequential data. The RCNN architectures, combining
convolutional and recurrent networks, displayed moderate accuracy rates of 57%,
with the RCNN featuring Bi-LSTM slightly surpassing its LSTM counterpart. The
combination of CNN for spatial features and LSTM for sequence understanding
might not have synergized well in this particular architecture or dataset. Whereas
RCNN with Bi-lstm as an accuracy slightly improved as 58%. Slightly improved
from RCNN with LSTM, indicating that bidirectional LSTM might capture more
complex patterns than a unidirectional LSTM within the RCNN architecture.

Overall, models capable of comprehending contextual information, like BERT and
Bi-LSTM, exhibited superior performance, highlighting the importance of context
understanding in sequential data analysis, while emphasizing the need for further
exploration and optimization in the RCNN architectures.

5.7 Discussion

Our primary objective is to build a recommendation system for intelligent caption-
ing using sentiment analysis.To accomplish this goal, we initiated our efforts by
thoroughly reviewing relevant research papers that could provide insights for our
ongoing research.This comprehensive review has granted us a clear understanding
of the challenges and intricacies associated with the topic. We delved into 15 papers
that presented diverse approaches to addressing the problem.Our focus extended
to the exploration of sentiment analysis in social networks, encompassing platforms
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such as Twitter, Facebook and review sentiments with an emphasis on integrating
them into a recommendation system through textual inspection. During this explo-
ration, we encountered the latest technologies employed in recent works for analysis,
as well as less efficient methods previously applied to the same problem.Our inves-
tigation unearthed various techniques for data preprocessing and shed light on the
diverse methodologies people have employed to tackle this particular problem. Our

initial target was to obtain reliable data to train our model.Due to the scarcity of
available datasets in Bangla, we generated 27,368 data manually.We conducted data
preprocessing and developed ANN,CNN,LSTM,Bi-LSTM,RCNN and BERT models
to address our specific problem. Our efforts included mitigating challenges such as
overfitting and underfitting, aiming to train and test for effectively resolving our
problem.Moreover,We have started by amalgamating the data and models we have
created. Following a training session conducted here,we proceed to test our data,
assessing the accuracy of the results. Subsequently, we have calculated the error or
loss functions. Our evaluation process encompasses examining the training results,
testing outcomes, and overall model performance.We encountered numerous chal-
lenges during the development of the model, particularly in achieving satisfactory
accuracy due to the presence of an imbalanced dataset. Furthermore, we intend
to compare our model outputs with the findings from prior research conducted by
others.

5.8 Future Work

Due to the imbalanced dataset, we are unable to achieve the expected level of accu-
racy. In our future work, we plan to address the imbalance in the dataset, aiming
to enhance it. This improvement is anticipated to lead to higher accuracies across
all models.However,we will try to create models that can adapt and perform well in
different domains without extensive retraining. This involves techniques that can
generalize sentiments across various industries or specific topics.Additionally, we will
improve the ability of sentiment analysis models to interpret colloquial language, ab-
breviations, slang, and emojis, which are common in informal communication.We
will build systems that can interact with users to refine sentiment analysis results
based on user feedback, thus improving accuracy and user satisfaction.Lastly,in our
upcoming work, we intend to employ additional hybrid models with the aim of
achieving improved accuracy.
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Chapter 6

Conclusion

The widespread access to social media is leading to a vast amount of opinions, which
can be analyzed through sentiment analysis.This method of deep learning is used
to determine the emotional tone of text and can be used to improve recommen-
dation systems. Sentiment analysis proves particularly valuable in scenarios where
only sparse ratings data are available.This approach can also help to overcome lan-
guage barriers.For instance,many people who use Bangla as their first language may
encounter challenges in comprehending and composing English text.A recommen-
dation system that analyzes sentiment in Bangla writings could prove beneficial for
our population.However,there is room for improvement, given the current limitations
in publicly available Bangla datasets.This thesis aims to use sentiment analysis in
conjunction with neural networks to improve text analysis.Different crowdsourcing
options will be investigated and two medium-sized and emotion-labeled song data
sets will be constructed using social tagging. Additionally, various text collections
will be used in studies with different contents and domains, as well as word embed-
dings.Therefore, we tried our best to generate dataset manually due to the absence
of sufficient Bangla dataset.In this paper, we explored six distinct neural network
models(ANN,LSTM,CNN,Bi-LSTM,RCNN,BERT) and successfully navigated nu-
merous challenges with our dataset.Thus far,we have diligently undertaken data
preprocessing efforts to achieve an optimistic level of accuracy, aspiring to attain a
noteworthy accuracy level with this dataset.Sentiment analysis applied to Bangla
text represents a burgeoning frontier with immense potential. The exploration of
emotions embedded in Bangla writings, facilitated by sophisticated algorithms, not
only enriches our understanding of linguistic nuances but also opens avenues for
tailored applications. Despite the current challenges posed by limited publicly avail-
able Bangla datasets, the significance of sentiment analysis in bridging language
barriers and enhancing user experiences cannot be overstated. Continued efforts to
expand datasets, refine algorithms, and adapt methodologies to the intricacies of
the Bangla language will undoubtedly propel sentiment analysis into a transforma-
tive tool, offering profound insights and applications across various domains for the
Bangla-speaking population.
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