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Abstract
Cancer is a complex and highly invasive disease that forms due to the abnormal
growth of cells in any part of the body. A majority of cancers are unraveled and
treated by incorporating advanced technology. However, ovarian cancer remains
a dilemma as it has inaccurate non-invasive detection and a time consuming and
invasive procedure for accurate detection. Medical professionals are constantly ac-
quiring enhanced diagnostic and treatment abilities by implementing deep learning
models to analyze medical data for better clinical decision, disease diagnosis and
drug discovery. Thus, in this research, several Convolutional Neural Networks such
as LeNet-5, ResNet, VGGNet and GoogLeNet/Inception have been utilized to de-
velop a model that accurately detects and identifies ovarian cancer. For effective
model training, the dataset OvarianCancer&SubtypesDatasetHistopathology from
Mendeley has been used. After selecting a base model, we utilized XAI models such
as LIME, Integrated Gradients and SHAP to explain the black box outcome of the
selected model. For evaluating the performance of the base model, Accuracy, Preci-
sion, Recall, F1-Score and ROC Curve/AUC have been used. From the evaluation,
it was seen that the slightly compact InceptionV3 model with ReLu had the overall
best result achieving an average score of 94% across the performance metrics in the
augmented dataset. Lastly for XAI, the three aforementioned XAI have been used
for an overall comparative analysis. It is the aim of this research that the contri-
butions of the study will help in achieving a better detection method for ovarian
cancer.

Keywords: Convolutional Neural Network, Ovarian Cancer, Tumor, Deep Learn-
ing, XAI
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Chapter 1

Introduction

Cancer refers to a condition where some cells within the body grow uncontrollably,
that is, the cells proliferate without any form of instruction from the body [31].
Malignant tumors or neoplasms are oftentimes correlated with cancer. One of the
defining features of cancer is its ability to expand outside of its normal boundaries
[43]. That is, a cancer affected part can create abnormal cells that can spread to
other parts of the body and create cancerous cells there. This process is known as
metastasis [43]. The primary cause of death due to cancer is metastasis. According
to World Cancer Research Fund International [42] or WCRF International in short,
the number of new cancer cases in the year 2020 was 18.1 million globally. A
majority of cancer can be detected in early or middle stages and be treated effectively.
However, there are cancers that cannot be detected until their advanced stage and
thus, makes treatment of said cancers much harder. Ovarian cancer is one such
cancer that is detected at its advanced stage only [49]. This cancer refers to abnormal
growth of tumors in the ovaries. This makes it most lethal to women as it has no
screening tests [51]. Many of the other cancers common among women such as
Breast cancer, Cervical cancer can be detected via specialized tests. Mammograms
and CBEs (Clinical Breast Exam) are commonly performed to detect Breast Cancer,
whereas a Pap test is generally done for Cervical Cancer detection [20]. However,
Ovarian Cancer has no proper prognosis method. Moreover, its status as the 7th
most common cancer globally for women makes it a dangerous disease for half the
population of the world. In recent years, Computer Aided Detection (CAD) for
diseases has become prevalent in the medical sector. From running simple blood tests
to complex disease detection, machine learning has surely aided medical professionals
by providing concise data as well as shortening diagnosis time for a disease or medical
condition. Cancer is the most recent field where the application of machine learning
has been seen [41]. A majority of cancer has early detection or testing methods
with relevant involvement using machine language. However, Ovarian cancer is
more headache inducing when compared to the other forms of cancer disease as it
has no early method of prognosis. Currently, the detection of Ovarian cancer is
done via a transvaginal ultrasound, a pelvic exam as well as CA-125 blood test [50].
However, a definitive result is only found via a lab-run biopsy for ovarian cancer [50].
Hence, researchers worldwide are attempting to find out new detection methods or
improve the accuracy of already implemented machine learning models. In fact, in
a research done in 2022 [44], it is said that the current testing methods utilizing
only transvaginal ultrasound alone or in combination with the serum tumor marker
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CA-125 are not entirely accurate in all cases. This is because of the diversification
in types of non-threatening and threatening cancerous lesions. Hence, the research
agrees [44] that lab-based biopsy has more weight in cancer detection. However,
one problem with lab based detection is that the lab analysis done by a professional
will vary in outcome as it is based on clinical experience. Thus, introduction of
an Artificial Intelligence that can accurately provide the resultant tumor type with
minimal false report is an essential advancement. If we can implement an impeccable
Artificial Intelligence that can accurately detect and determine cancer lesions, then
it will be a blessing as the tedious process of biopsy can be shortened. In our
study, we have utilized deep learning models such as LeNet, ResNet, VGG and
GoogLeNet/Inception. We have selected an appropriate dataset for our base model
testing and aim to utilize XAI to explain the future.

1.1 Problem Statement
According to Ovarian Cancer Research Alliance (OCRA)[39], there were 19,880
newly diagnosed instances and 12,810 fatalities due to ovarian cancer in the year
2022. The American Cancer Society projected that these numbers will increase to
19,710 cases and 13,270 deaths in the year 2023. In fact, they remarked that although
ovarian cancer is only 11th most common in the United States of America, it ranks as
the 5th leading cause of deaths associated with Cancer in women. Even in the United
Kingdoms [15], about 4,100 deaths related to ovarian cancer occur every year. Thus,
the lethality of ovarian cancer is undeniable. Even if Ovarian Cancer is detected, it is
generally done so in the advanced stages [42][51][20]. Therefore, the treatment cost
often reaches 6 digit figures [9]. However, the general detection methods are done
manually via recto-vaginal pelvic exam, trans-vaginal sonogram, CA-125 blood test
and lab biopsy [50]. The former three provide non-uniform results while the later one
is extremely dependent on the experience of the analyst. Hence, an early prognosis
or faster detection methods for ovarian cancer would be groundbreaking. In recent
times, there have been multiple attempts at early prognosis as well as non-invasive
detection methods. By incorporating machine learning models to create an assistant
using artificial intelligence that can aid medical professionals in detecting ovarian
cancer, we will be able to achieve faster detection time while having a similar, if
not better, level of accuracy. Thus, we will be exploring the problem of a compact
system of Machine Learning and XAI that can accurately detect and provide an
early prognosis into the detection and classification of ovarian cancer.

1.2 Research Objective
Several different sources of information [49][51][20][44][38][22][40][36] acknowledge
that ovarian cancer is more deadly when compared to other cancers in women. This
is primarily because an early prognosis of ovarian cancer is not available yet. Even
for detection methods in the advanced stage, a lab biopsy is the only method for
accurate detection of ovarian cancer [51][20]. Hence, we decided to take this field
for our research and build an accurate machine learning model that can be of great
help for acting as an assistant for the medical professionals to analyze and detect
ovarian cancer.
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Chapter 2

Literature Review

2.1 Background Study

2.1.1 Convolutional Neural Network (CNN)
A Convolutional Neural Network or CNN is an artificial neural network that is used
to analyze grid-like data such as images or time series data. It is widely used in
tasks such as image classification, image recognition or segmentation and object
detection. CNN can be of One, Two or Three dimensions [19]. The concept of
Convolutional Neural Network was introduced by imitating the visual cortex in
animals that respond to stimuli via special regions in their visual field [1][2]. The
idea behind CNN is to memorize the features from input after applying several kinds
of convolution filters or kernels to small regions of the output. These filters perform
element-wise multiplications and addition over the entire output, producing feature
maps that can accurately capture different aspects of the data. A Convolutional
Neural Network consists of three primary layers: The Input Layer, the Output
Layer and the Hidden Layer. There are four main components in the Hidden Layer.
They are: Convolution Layer, Pooling Layer, Activation Function and the Fully-
Connected Layer [37][18]. The Convolution Layer operates by applying a set of filters
and convolving them with smaller regions of the input to produce feature maps [37].
It is the first and most important layer of CNN. Contrary to conventional approaches
such as SIFT, the features in a Convolutional Neural Network are not predefined
[18]. They are, in fact, identified and learnt during the training phase. After each
Convolution Layer, comes the Pooling Layer. This layer mainly decreases the input
size, thereby deducting the number of parameters or weights within the network.
This aids in making the model train faster. There exist two forms of Pooling, namely
Max-Pooling and Average-Pooling [37]. The former takes the highest value from a
feature map, while the latter calculates the average of all the values in a pooling
window. Non-linear activation functions, such as ReLU, are applied element-wise
in feature maps. This replaces all negative values received as input with zero [18].
Lastly, the Fully Connected Layer, as its name suggests, connects the neurons or
nodes of a layer with all of its previous ones. It is generally used towards the end of
a neural network to map the learned features towards the desired output.
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2.1.2 Explainable Artificial Intelligence
Models built using generic deep learning techniques will follow the norm of standard-
ized artificial intelligence behavior. That is, a normal AI model will provide us with
a black box answer. Often times it comes to light that the output of the AI model is
not easily understandable and the process of generating the output is needed to fully
understand the corresponding produced output, which is prevented by the black box
nature of AI models. Thus, to solve this issue, Explainable Artificial Intelligence
or XAI came into being. XAI follows the principles of explainability, transparency,
and interpretability [23][17][13]. Thus, it is an extremely useful method of deriving
the reasoning behind any result of an AI model. The architecture of XAI can be
distinguished in two manners [55]. One is Direct XAI, which is built as a white box
structure. That is, the model is designed to be easily interpretable from the start.
On the other hand, post-hoc models are not interpretable from the outset. However,
they can be explained using external techniques to derive the explanation from the
post-hoc model. Generally, the method of derivation is categorized into two types,
Global XAI and Local XAI [47]. Global XAI models offer a comprehensive insight
into the decision-making process of an AI model [55]. These models generally en-
capsulate the associations between input features and predictions at a broad and
abstract level. On the other hand, Local models deliver precise, instance-level ex-
planations for singular predictions [55]. They evaluate the precise impact of each
feature in relation to a specific prediction. Examples of Local XAI include LIME,
Anchors and SHAP (local) while examples of global XAI are SHAP(global), PDP
and Global Surrogate Models.

2.2 Related Works
A research article by Zhou et al. [44] contained a review of the recent trends in
the application of Artificial Intelligence in the field of diagnostic and prognostic
prediction of ovarian cancer. The researchers had systematically searched through
PubMed and IEEE/IET Electronic Library for studies in between the timeframe of
January 2000 to March 2020 that utilizes Artificial Intelligence in Ovarian Cancer.
The keywords that they looked for include multiple machine learning and computer
aided terminologies combined with ovarian cancer. They ended up with 39 studies
that discussed the utilization of Artificial Intelligence in Ovarian Cancer. Of them, 7
studies used radiomics and pathological images, 19 studies utilized high-throughput
omics data and 13 studies utilized high-serum markers and clinical data. They pro-
vided reasoning behind the larger number of high-throughput omic data that is the
research trend on genomics and transcriptomes. They gave sound reasoning and
reached the conclusion that the utilization of high-throughput data will increase not
only in the field of cancer research but also in other medical sectors.

Another article by Hema et al. [38] presented a novel image classification model
for ovarian cancer utilizing FaRe-ConvNN, which is a rapid region-based Convo-
lutional neural network. In this model, the input image was segmented and then
pre-processed. Afterwards, they applied FaRe-ConvNN to perform the annotation
procedure. The classification is done using a combination of SVC and Gaussian
Naive Bayes classifiers after the region based training is completed. For testing
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the model, they utilized data from the Cancer Imaging Archive database where the
suggested classifier was used on single-cell blood smear samples. The researchers
used epithelial cells, germ cells, and stromal cells samples separately, which were
readily available in the utilized database. For the results, a confusion matrix was
created for both the SVC and Gaussian Naive Bayes. After comparing with existing
models, the Gaussian Naive Bayes showed an accuracy score of 97%, with sensitivity
and specificity of 97.7% and 98.69% respectively. Based on the results, it can be
concluded that the proposed model for ovarian cancer is an important contribution
in the medical sector.

In a research article by Wang et al. [22], the researchers developed a deep learning
algorithm that can differentiate benign lesions from malignant lesions using mag-
netic resonance imaging in terms of ovarian cancer. They had tested a total 545
lesions from 451 patients, of which, 379 were benign and 166 were malignant. The
model performance was then compared with 4 junior radiologists and 3 senior radiol-
ogists on the same test set. The results showed that the model had higher accuracy
and specificity against both the juniors (0.87 vs 0.64, 0.92 vs 0.64) and the seniors
(0.87 vs 0.74, 0.92 vs 0.70). With the assistance of the model, the juniors showed a
huge improvement in their accuracy (0.77 vs 0.64) and specificity (0.81 vs 0.64). In
fact, the juniors showed higher specificity (0.81 vs 0.70) but similar accuracy (0.77
vs 0.74) while utilizing the proposed model when compared with the senior radiolo-
gists. In conclusion, the researchers said that the utilization of Artificial Intelligence
can assist radiologists in assessing the nature of ovarian lesions while also improving
their performance.

Another research article by Schwartz et al. [40] proposed an automated framework
that detects ovarian cancer from transgenic mice using optical coherence tomogra-
phy (OCTT) recording. The basis of this proposal is the clear lack of non-invasive
and viable source of early ovarian cancer prognosis. Hence, optical coherence to-
mography or OCT has been used as the sample input. The researchers utilized three
neural networks namely, a VGG-supported feed-forward network, a 3D CNN, and a
convolutional Long Short-Term Memory (LSTM). Their experiments showed favor-
able results while LSTM showed the best AUC of 0.81 with a standard deviation of
0.037. The authors of this research acknowledged that despite the absolute potential
of this research, the experimental results can be made better by using a much larger
dataset. However, they believe that the significance of this research lies in the fact
that the usage of OCT can be a viable early prognosis for ovarian cancer.

A research paper by Hsu et al. [36] utilized ten convolutional neural network models
that are popular in recent times for the detection and classification of ovarian can-
cer. To ensure robustness of the model, the researchers used random sampling of the
training and validation data multiple times. This also ensured that they have ten
readily available test results as the final assessment data. After completing the train-
ing, they selected three models with the highest ratio of accuracy to time and utilized
them for ensemble learning. Finally, they used the interpretation of the ensemble
classifiers as the result and visualized the decision making process using gradient-
weighted class activation mapping (Grad-CAM) technology. For the database, they
collected data from 587 patients from Taiwan following legal procedures. In their
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testing, they selected ResNet-18, ResNet-50, and Xception for ensemble learning.
They also used three different types of ensemble learning methods and suggested
the one that involves decision-making with multiple models based on their confi-
dence score for clinical application. In their final discussion, they suggested that the
confidence threshold be set at 80%-100% for the best possible outcome when using
their model.

A research article by Wang et al. [34] developed a predictive model that utilizes deep
learning algorithms. This weakly supervised approach predicts the effectiveness of
drug-based treatment from histopathology images. One of the defining features of
this model is that the inputted histopathological slide images do not contain any
form of regional annotations by pathologists. Their reasoning behind the creation of
this model is that any form of histopathological analysis is normally dependent on
the judgement ability of the examiner as well as the ability to integrate medical data
and perceived data. Thus, they believe that this time consuming and difficult task
can be made easier with the inclusion of deep learning algorithms. For their model,
they utilized tissue sample slides from TSGH bank. After inputting the slides, they
generate a tile based pyramid data structure, which generates a cascading network
of data. Then, they ran the data through three models. The Cascade DL frame-
work identifies the points of interests in the sample data. Afterwards, the points of
interest are separated using the Classifier DL model and finally, the decision model
for treatment effectiveness outputs whether the treatment was effective or not. As
very little research has been done in this field, they benchmarked their results with
two other top papers as the goal values. Finally, they remarked that their developed
model was better than the benchmarked models as it had higher statistics in the
five-fold verification method.

Another research paper by Ghoniem et al. [28] discussed an evolutionary deep learn-
ing model that is hybrid in nature. This model aims to diagnose Ovarian Cancer
stages. To do this, it utilizes multi-modal data and combines gene and histopatho-
logical image modality. The researchers put up a deep feature extraction network
based on the many states and forms of each modality. To analyze gene longitu-
dinal data, it also incorporated a predictive antlion-optimized Long-Short-Memory
Model. To process photos of histopathology, another predictive antlion-optimized
CNN model is added into the hybrid model. The antlion optimization technique
automatically sets the topology of each customized feature network to improve per-
formance. Next, utilizing weighted linear aggregation, the output from the two
enhanced networks is combined. Finally, the Ovarian Cancer stage is predicted us-
ing the deep fused characteristics. They conducted tests by comparing the model
with 9 other evolutionary models that are distinct and utilizes multi-modal data.
After using benchmarks for ovarian, breast and lung cancers, they concluded that
their proposed model has greater precision and accuracy over the 9 other models.

In another research work by Binas et al. [45], an automated categorization system
has been proposed that enables medical professionals to rapidly recognize intratu-
moral regions with various cellular compositions that are suggestive of tumor hetero-
geneity. They deemed their approach as novel due to its ability to rapidly construct
medical image segmentation, visualize tumor fused in the T2W sequence, pipelines
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including data I/O, pre-processing, metrics, a library with a state of the art feature
extraction model, and model utilization such as training, tumor area classification,
and fully automatic evaluation. They believe that this model will be beneficial as it
can not only act as a form of guidance software for biomedical researchers in training
their prediction abilities, but also aid medical professionals by creating individual
medicine groups for varying risk groups via classification.

Another research paper by Kasture et al. [30] is the first to identify, predict, and
categorize ovarian cancer subtypes from histopathological images using VGG16. Ini-
tially, they trained the model with 500 images, 100 for each class, and obtained an
accuracy of 50%. They then multiplied the dataset of 500 images by doing several
types of image augmentations to produce 24742 images. Then, they utilized this
augmented image dataset to produce an accuracy of 84.64%. Their core contribu-
tions are actually a wonderfully segmented image dataset that accurately classifies
the various categories of ovarian cancer. Moreover, they displayed a series of accu-
rate statistics that solidified their contribution of combining the prediction of ovarian
cancer & sub-type classification.
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Chapter 3

Methodology

3.1 General Outline
In our research, we decided to use multiple Convolutional Neural Network (CNN)
models such as LeNet, ResNet, VGGNet and GoogLeNet or Inception. Some of
these models were chosen due to their simplicity and others due to their effectiveness.
For our database, we will be using a publicly available dataset from Mendeley Data
that contains 4 subtypes of Ovarian cancer and also non cancerous histopathological
images. Our general workflow diagram of the proposed system is given in Figure-3.1:

Data Balancing

Augmentation

Data Formatting 
and

Class Encoding

Preprocessing

Tensor Conversion

Start

Train-Test Split

Test Set

Feature Extraction

Classification

CNN Model

Trained Model

Train Set Overall Accuracy

Performance
Analysis

End

NO

YES

Learned Features

Interpretation

XAI Model

Result Analysis

Choose CNN Model

Select
Model

Figure 3.1: Workflow Diagram

8



3.2 Gathering the Dataset
Before the construction of a model for our work, we need to find an appropri-
ate dataset that can be utilized to bring our future model to its full potential.
As such, we selected the dataset “OvarianCancer&SubtypesDatasetHistopathology”
from Mendeley[29] to be the basis of our research. We picked this dataset since it
not only has mulitiple different types off malignant tumor classes, it also has samples
of benign and non-tumor classes as well.

3.3 The Base Models
To select an appropriate model for accurate detection of different tumors from im-
ages, we aim to select an appropriate CNN model among the several variations of
LeNet, ResNet, VGGNet and Inception. The base models are provided below and
the variant models will be explained in the Implementation portion. One thing we
have utilized throughout most of our models and variants is the usage of ’Softmax’
activation function in the output layer.[54]. The equation for ’Softmax’ function is:

softmax(z)i =
ezi∑N
j=1 e

zj

Our reasoning for this is that ’Sigmoid’ and ’Argmax’ were utilized in multiclass
classification problem and both of these turned out inappropriate for the classifi-
cation under most circumstances. In a multiclass classification problem, where the
classes are mutually exclusive, the entries of the ’Softmax’ output sums up to 1. As
such, we opted for ’Softmax’ function for the activation function in our output layer.

3.3.1 LeNet
LeNet-5 or LeNet, which is a specific CNN structure, was primarily introduced in
1998 by Yann LeCun, Yoshua Bengio , Leon Bottou, and Patrick Haffner [3]. As
a revolutionary architecture of that time, LeNet possesses the basic qualities of a
normal CNN such as a convolutional layer, pooling layer as well as a fully connected
layer. LeNet-5 employs seven layers in total as seen in Figure-3.2. Although not
part of the seven layers, LeNet takes a 32x32 image in the Input Layer [24]. The
first convolution layer (C1) employs 6 filters of size 5x5 on the input image and to
obtain 6 feature maps of size 28. The size calculation here is:

32− 5 (Size) + 1 (Stride) = 28

The general model for LeNet is quite simple in comparison to the other models we
will be using [24]. There are three convolution layers, each utilizing 5x5 kernels
with the filters being 6, 16, 120 for respectively. The output feature map from these
convolution layers are 28x28x6, 10x10x16 and 120. After the first two convolution
layers, a 2x2 max-pool is performed. After the final convolution layer, the nodes
are flattened to ensure an easier time in constructing the output layer. The over-
all structure is given in Table-3.1. The variable aspects will be explained in the
corresponding implementation section.
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Connected
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Figure 3.2: LeNet

Layer Name Kernel Size Filters Activation
Function

Output Size

Rescale - 1 - 32x32x3
Convolution 5x5 6 ReLu 28x28x6
MaxPool 2x2 - - 14x14x6
Convolution 5x5 16 ReLu 10x10x16
MaxPool 2x2 - - 5x5x6
Convolution 5x5 120 ReLu 1x1x120
Dense - 84 ReLu 84
Output - 5 Softmax 5

Table 3.1: LeNet Base Model

3.3.2 ResNet

3 X 3 Convolution

Batch Normailzation

ReLU

3 X 3 Convolution

Batch Normailzation

ReLU

+

x

F(x) + x

F(x)

Figure 3.3: ResNet

Residual Neural Network (ResNet) is a deep
learning architecture that was initially devel-
oped by Kaiming He, Shaoqing Ren, Xiangyu
Zhang, and Jian Sun in 2015 [5]. ResNet was
the solution to the problem of vanishing gradient
and degradation of network performance with in-
creasing depth of neural network. The primary
innovation of ResNet is the introduction of resid-
ual connections as seen in Figure-3.3, which en-
ables the network to learn residual mapping [52].
This effectively allows the connections to bypass
one or more layers and propagate information
directly to subsequent layers [52][33]. The build-
ing blocks of ResNet are called Residual Blocks.
These Residual Blocks are used to perform the
connection skipping operations. The output of
the Residual Neural Network is determined by
the following equation.

y = F (x) + x

The skipping operations are done via two methods of signal propagation, namely,
Forward Propagation and Backward Propagation.
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xn+1 = F (xn) + xn

Applying this recursively, we have for Forward Propagation:

xL = xl +
L=1∑
i=l

F (xl)

where, L is index of the last residual block and l is that of any earlier block. This
suggests that a signal is passed from a block l to a deeper block L.

For Backward propagation, let us take the derivative of Forward Propagation with
respect to xl:

δε

δxl

=
δε

δxL

× δxL

δxl

=
δε

δxL

(
1 +

δ

δxl

×
L=1∑
i=l

F (xl)

)

=
δε

δxL

+
δε

δxL

× δ

δxl

×
L=1∑
i=l

F (xl)

Here, is the function where degradation has to be minimized. This suggests that a
shallow signal δε

δxl
has a term δε

δxL
always added to it. Hence, the signal δε

δxl
never

disappears no matter how small the gradient of F (xl) becomes [7].

The basic building blocks of ResNet across its variations are quite similar [5]. We
simply add residual connections every few ’blocks’ or combinations of convolutional
and maxpool layers. We will be primarily focusing on building ResNet-34 with two
variable inputs of 32x32 and 224x224, ResNet-50 and ResNet-101 with 224x224 size
image inputs. We optimized theses variants with some hyper-parameters that suits
our needs such as utilizing learning rate and node dropouts for optimization con-
trol and avoiding overfitting. The various models each require a different ratio of
learning rate and dropout rate. We cannot manually test each and every possible
outcome as that would take an extremely long time. Thus, we took a randomized
approach for every ResNet model. That is, we did the following for each variation
of ResNet models: We initially set the range for Learning Rate to be from 0.0001 to
0.1 and that of Dropout Rate from 0.0 to 0.9. We then took random sets of learning
rate and dropout rate over 10 iterations and inserted the random hyperparameters
in the model and ran over 3 epochs. At last, we selected the best learning rate
and dropout rate based on the best testing accuracy. Now, the only variable thing
in between the different ResNet models is the input image size and the number of
convolution layers. The specific details are explained in the implementation portion.
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3.3.3 VGGNet
VGGNet is a deep convolutional neural network introduced by Karen Simonyan and
Andrew Zisserman from the University of Oxford in 2014 [6]. The reason it is called
a deep CNN is because it has multiple layers with VGG-19 consisting of 19 convolu-
tional layers and VGG-16 having 16 convolutional layers as seen in Figure-3.4. The
difference between the several variants is in the number of layers mostly. VGGNet
is mostly used for object recognition and large scale image recognition. It does so
by classifying images in predefined categories with high accuracy. As it is a very
effective learning model, VGGNet is oftentimes used as a pre-trained model [37].

Convolution + ReLU

Max Pooling

Fully Connected + ReLU

Softmax
224 X 224 X 3

224 X 224 X 64

112 X 112 X 128

56 X 56 X 256

28 X 28 X 512

14 X 14 X 512 7 X 7 X 512

1 X 1 X 4096 1 X 1 X 1000

Figure 3.4: VGGNet

All variants of VGGNet work in similar manners. For the Input, VGGNet takes
an input of 224x224 size image. In the convolution layer, VGG utilizes minimal re-
ceptive fields i.e. 3x3 kernels or convolution filters that can still capture directional
features [7]. Furthermore, 1x1 convolution filters are utilized for linear transforma-
tion of the input. Like AlexNet, VGGNet also utilizes ReLU to have positive output
for positive inputs and zero for non-positive inputs. In fact, LRN is not used by
VGG due to the increase in memory consumption. After each convolution layer,
a max-pooling is done to downsample the size of feature maps while retaining the
core features. After the final convolution and pooling layer, comes the fully con-
nected layer. The predictions are done via the interconnection created by the fully
connected layer. The last fully connected layer is linked to the output layer, with
neurons or nodes corresponding to the target classes. This layer utilizes softmax
activation function [26][25][14].

We will be testing both VGG16 and VGG19 for the base model requirement. The
variations in VGGNet will not matter much as we will be utilizing transfer learning.
Compared to the other models, the heavy combination of consecutive convolution
layers will result in extremely long training time that is also intensive in the aspect
of resource usage [53]. Thus, we will opt to use transfer learning in this case and
use a pretrained base model with only the fully connected layer customized to our
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needs as seen in Figure-3.5.
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Figure 3.5: VGG Transfer learning process

3.3.4 GoogLeNet/Inception
GoogLeNet, previously known as InceptionNet, is a deep convolutional neural net-
work architecture that was developed by researchers at Google, specifically Christian
Szegedy et al., in 2014 [4]. GoogLeNet has a total of 22 parameterized layers and
27 in total if including the non-parameterized layers such as the Max-Pooling layer
[46][35]. GoogLeNet has the ability to learn complex features and patterns due to
its high number of layers. It has high computational efficiency due to the use of
multiple parallel convolutional operations of differing kernels as seen in Figure-3.6.
Moreover, it can absorb auxiliary classifiers at intermediate layers, aiding in dealing
with vanishing gradient problems while training the model.

Inception Module

Multi-scale Convolution

Filter Concatination

Convolution
(1 X 1)

Output
Input

Figure 3.6: GoogLeNet
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Figure 3.7: Inception Module (left) & Auxiliary Classifier (Right)

GoogLeNet introduced Inception modules. These modules have kernels of sizes 1x1,
3x3 and 5x5 as seen in Figure-3.7. All the outputs from the kernels are stacked
towards the end of the inception model. The larger kernels will cover greater area
while the smaller ones will cover the smaller but finer details in an image [35]. A
total of 9 inception modules are used in GoogLeNet.

The Auxiliary Classifier is something that is added twice in the middle of GoogLeNet.
In each auxiliary classifier of the network, there is a 5x5 average pooling layer fol-
lowed by a 1x1 convolutional layer. Lastly, 2 fully connected layers with 1024 neurons
and a softmax output layer with 1000 neurons is present.

For GoogLeNet or Inception, we will be looking into Inception V1 and Inception V3
as these two versions are readily accessible. Like most of our other approaches, this
model will be built from scratch. The core mechanism of Inception is the usage of
Inception modules. These modules utilize a series of 1x1, 2x2, 3x3, 5x5 convolution
and maxpool layers to create a branching method such that the larger kernels cover
the major details and the smaller ones will cover the smaller details [32]. In both
Inception V1 and V3, we will be using only two inception modules as that will be
more than enough to tackle our chosen dataset. If we were to work with larger,
complex datasets then we can opt to add in more inception modules according to
our needs.
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3.4 Selecting the base AI model
To choose the better AI model, we need to check and analyze the overall generated
outputs from the models. To facilitate an easier approach to this, we will check a
few parameters such as [21][16][16]:

• Accuracy: Accuracy is utilized to determine the ratio of correct predictions
versus the total number of items in a dataset.

Accuracy =
TruePositives+ TrueNegatives

AllResults

• Precision: Precision will inform us the number of true positives i.e. correct
positive predictions made.It can be summarized as the ratio of true positives
to sum off all positive outcomes.

Precision =
TruePositives

TruePositives+ FalsePositives

• Recall: Recall, also known as Sensitivity, is a ratio of the correct true predic-
tions made over all the true predictions.

Recall =
TruePositives

TruePositives+ FalseNegatives

• F1-Score: The Harmonic mean of Precision and Recall. A higher F1-Score is
dependent on both the Precision and Recall Score. As such, a higher F1-Score
will mean a better result.

F1Score = 2× Precision×Recall

Precision+Recall

• ROC Curve: The Receiver Operating Characteristic (ROC) curve shows the
performance of all a model for all the designated classes. It utilizes True
Positive Rate and False Positive Rate to build a curve that can evaluate the
model easily.

• AUC: Area Under the Curve or AUC is a method to easily find out the two
dimensional area under a ROC curve using a generalized classification. We will
be performing OvR (One Versus Rest) for each classifier to better understand
the generic score and figure out if we need to further improve our dataset or
model in any way.
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3.5 The XAI Models
In contrast to the CNN models, the measure of performance for XAI requires a va-
riety of on site information such as human-AI trust, measure of practicality, clarity
etc. Unfortunately, this information can only be authenticated via expert opinion
of lab analysts or medical professionals and thus, we are unable to properly select
an XAI model. However, we will be preparing 2 local post-hoc XAI and 1 local
variation of a global post-hoc XAI for an overview of our model.

3.5.1 LIME (Local)
Local Interpretable Model Agnostic Explanations or simply LIME was featured first
on a paper by Marco Ribeiro et al [8] in February of 2016. As the full name shows,
the model is a local model that explains only a short form of a black box or in-
terprets only desired inputs by the user. The model agnostic portion of the name
comes from LIME’s ability to be used in most machine learning models.

For images, LIME utilizes the lime_image module for classification problem [27]. We
will be utilizing the LimeImageExplainer() class, which will generate the coefficients
referring to the features of an instance contributions, both positive and negative,
to the prediction. Initially, an explainer object needs to be created from LimeIm-
ageExplainer(), then we will generate an explanation for using the explain_instance
method, whose parameters are.

• image: The input image

• segments: The predictions of the sample image and the perturbed images.
Defined with the same model as the black-box model.

• top_labels: Total number of unique classes.

• hide_color: Whether the explanation will have the color same as the original
image(0) or just grayscale(1). Set to 0.

• num_samples: Number of perturbed samples(random default transforma-
tions) to be generated for the sample image. Set to 1000.

Next, the perturbed models are trained into a linear model via linear regression when
utilizing explain_instance. while training, weights are assigned to the perturbed
samples too. After that, coefficients are calculated weights: the more the perturbed
sample is closer to the original sample, the higher the weight. When the code
execution is done, the coefficients are stored in the explanation which refers to the
image’s every feature’s contribution to the prediction. After this, we derive the
image with feature contribution as well as the mask from get_image_and_mask.

• label: The input label to explain.

• positive_only: To select only the superpixels that contribute positively to-
wards the prediction. Set to True.
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• num_features: Since the image has every feature’s contribution, this parame-
ter selects the number of features with the highest contribution. Default value
= 10. So, only 10 features will be shown in mask/area of interest.

• hide_rest: Hides non-explanation parts of the image. Set to True.

Next, we will use mark_boundaries from SK image segmentation for displaying the
LIME explanation for enhanced visualization with boundaries being highlighted for
the area of interest.

3.5.2 Integrated Gradients (Local)
Integrated Gradients was introduced by Mukund Sundarajan in March of 2017 [11].
Integrated Gradients is another Local XAI that we will be testing. Unlike LIME, In-
tegrated Gradients is starting to become popular due to its ease of implementations
as well as computational efficiency. Integrated Gradients creates a baseline image
that utilizes the unique Attribution Mask to provide insights into which parts of the
image are influential in the prediction. The main idea behind Integrated Gradients
is to compute the integral of the gradients of the model’s output with respect to the
input image along a straight path from a baseline to the actual input image. This
integral represents the accumulated effect of each pixel’s contribution along the path
[48].

We will be utilizing TensorFlow’s GradientTape for automatic differentiation fol-
lowed by calculating the integrated gradients by interpolating between a baseline
and input image. Afterwards, numerical integration is done to approximate the
integral of the gradients. Adjustable parameters in this include the interpolation
steps and the batch size. We will be visualizing Integrated Gradients through three
subplots. They are:

• Original Image.

• Attribution Mask (absolute sum of integrated gradients).

• Overlay of Attribution Mask on the Original Image.

Overlay plot combines the original image with the attribution mask for better in-
terpretation. We will be utilizing the ’viridis’ color map to represent the magnitude
of the Integrated Gradients. These subplots will provide us with insights into pixel
contributions for the target class prediction.

3.5.3 SHAP (Local)
SHAP (SHapley Additive exPlanations) is a versatile and theoretically grounded
framework for explaining the output of machine learning models that was intro-
duced by Scott Lundberg in 2017 [10]. It is based on the cooperative game theory
and assigns a value to each feature, indicating its contribution to the model’s predic-
tion. For images, SHAP values can be used to explain the prediction of a model by
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attributing contributions to individual pixels or groups of pixels. One of the advan-
tages of SHAP is that it satisfies several desirable properties from cooperative game
theory, such as efficiency, symmetry, and linearity. This makes it a theoretically
sound approach for attributing contributions to individual features in a cooperative
manner. As our work is a multi-class classification issue at its core, we will not be
generalizing the features in a singular format. Instead, we will highlight an input
image’s features that will be of positive and negative weights with respect to all
of the unique classes. This way, we will be able to identify both the positive and
negative correlation of features and unique classes.

To create our explainer, we will use DeepExplainer from the SHAP package. Deep-
Explainer is an improved version of the DeepLIFT algorithm that functions similarly
to Kernel SHAP[12]. DeepExplainer is used to estimate the conditional expectations
of SHAP values using a set of background samples. The explainer estimates approx-
imate SHAP values by integrating across numerous background samples so that
they amount to the difference between the predicted model output on the passed
background samples and the present model output.

For plotting the result, we will be utilizing image_plot to visualize the generated
SHAP values. The plot displays five sets of SHAP values corresponding to each
class for each input image, offering a comprehensive understanding of the model’s
decision-making process. The visual plot will show the generated output and feature
correlation with the unique classes. The plot will be done in a manner such that
the first column of images will refer to the classes Clear Cell, Endometri, Mucinous,
Non Cancerous and Serous respectively. Additionally, rest of the columns will refer
to the SHAP interpretation of each image across the unique classes. Here, the red
pixels will indicate positive features that actively contribute to the likelihood of an
image native to a specific class, whereas the blue pixels will signify negative features
that weaken its probability for the target class.
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Chapter 4

Implementation

4.1 Platform and Language
We opted to use Python as it is an easier approach to machine learning in general.
For our platform, we decided to use Google Colaboratory as it is very easily accessible
from anywhere and also has relatively decent capabilities for research purposes.

4.2 Data Preprocessing
We uploaded the dataset to github to facilitate an easier approach to data prepro-
cessing and for parallel research across various potential model combinations. To
determine the features of the dataset, we ran a few tests and determined that the
dataset we selected was balanced in nature as in the dataset, there were 99-100
images per class to a total of 498 images in 5 classes. The data balancing is seen in
Figure-4.1 for pre-augmented images.

Figure 4.1: Data balancing bar chart featuring pre-augmented images

For pre-processing, the only significant change that we brought was image augmen-
tation. We applied composite augmentation on the images using several types of
transformations. These include: image rotation by up to 180 degrees, complete hor-
izontal and/or vertical flipping, changes in brightness, contrast, saturation and hue
to get 4 augmented images from each of the original images. To complete image
augmentation, we used the Albumentations library and utilized the modules such
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as Compose(), Rotate(), Oneof(), HorizontalFlip(), VerticalFlip() and ColorJitter().
The main reason for using the Albumentations library is because it has a variable
probability in its transformations, indicating a higher level of randomness when
augmenting any form of images. Furthermore, we ensured that the images follow
the JPG image file format and that the color encoding of the images follow RGB.
While performing the augmentation, we added the augmented and original images
to a new sub-directory under our augmented dataset dictionary. Ultimately, our
augmented dataset contained 5 subclasses with 2490 images in total which satisfied
our requirements. The post-augmented data balance is seen in Figure-4.2.

Figure 4.2: Data balancing bar chart featuring augmented images

4.3 Tensor Conversion
Next, we converted the augmented images to tensor data using the image_dataset
_from_directory() method of the TensorFlow library. As we are performing a su-
pervised learning approach for our model where the dataset directory we are passing
in the method has subdirectories referring to the class names, we set the parame-
ter “labels” to be “inferred”. Furthermore, we decided that one-hot encoding will
become complicated if we decide to introduce more future subclasses. Hence, our
“label_mode” parameter was set to “int”. Table-4.1 explains the label and integer
correlation.

Sub-Class Output Label
Clear Cell 0
Endometri 1
Mucinous 2
Non Cancerous 3
Serous 4

Table 4.1: Output Classification
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The color mode and batch size of the tensor data are set to RGB and 32 respectively.
Our image size is variable in our initial testing, switching in between 32x32 and
224x224 per model requirements. Also, we initially split the dataset into a 80-20
ratio for training and testing. The 80-20 split was done randomly thanks to “seed”,
“subset” and “shuffle” parameters. As a result, our tensor training dataset includes
1992 images while the tensor testing dataset contains 498 images.

Figure 4.3: Data Sample (32x32 image)

Figure 4.4: Data Sample (224x224 image)

After completing the tensor conversion, we decided to normalize the image dataset
for a much smoother running experience with the various Convolutional Neural Net-
work Models. Before doing that, the image portion of the tensor dataset has been
converted from uint8 to float32 format using the convert_image_dtype() method
of the tensorflow library. This is done so that the resultant scaling can be done
much more easily. Only after doing so, we normalized the RGB values from a 0-255
range to a 0-1 range. We had tested this using some basic CNN structure and found
that the later range provides a smoother convolution setup for the model. Lastly,
we split the datasets, both training and testing into X and Y representing inputs
and outputs. As our tensor conversion was done in batches, we used the concat()
from tensorflow library method to create an input feature list and output label list
for both training and testing datasets. Sample image data with data is shown in
Figure-4.3 and Figure-4.4.
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4.4 Preliminary model building
In this section, we will explain what significant changes we brought to the base
model and highlight a few things we found significant during the model training.

4.4.1 LeNet
For LeNet, we tested 8 variations and concluded that the following 3 were the better
variants in terms of overall performance. All of the following models are evaluated
over 100 epochs.

1. LeNet-A: The first LeNet is actually just the base model with a customized
learning rate. Here, the learning rate was set to 0.001. From the below graph
in Figure-4.5, we can see that our training and testing results are far from
what we desire which may occur due to overfitting:

Figure 4.5: LeNet-A Training Vs Testing Loss and Accuracy

2. LeNet-B: This variant of LeNet takes the LeNet-A variant and adds in a
dropout function to combat overfitting. From the below graph in Figure-4.6,
we can see that our training and testing results are still extremely far apart
and thus is not ideal nature:

Figure 4.6: LeNet-B Training Vs Testing Loss and Accuracy
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3. LeNet-C: This variant of LeNet takes the LeNet-B variant and introduces step
decay. With Step-decay, we c. From the below graph in Figure-4.7, we can see
that our training and testing results are finally similar to each other. However,
our training/Testing accuracy rarely crossed the 55% mark:

Figure 4.7: LeNet-C Training Vs Testing Loss and Accuracy

4.4.2 ResNet
As said in the methodology portion, the only major changes among the variants will
be: Input Size, Number of Convolution Layer, learning rate and dropout. We are
only changing these as any other significant changes are either revealing a signifi-
cant drop in efficiency or is taking too much resource to compile. Our core vari-
ants are ResNet34 with 32x32x3 input, ResNet34 with 224x224x3 input, ResNet50
with 224x224x3 input and ResNet101 with 224x224x3 input. Our learning rate and
dropout rate for all 4 of the variants are given in Figure-4.8.

Figure 4.8: ResNet Best Learning Rate and Dropout rate tested over 30 iterations
each
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1. ResNet34_32: Training & Testing Accuracy/Loss Curve is given below in
Figure-4.9:

Figure 4.9: ResNet34_32 Training Vs Testing Loss and Accuracy

2. ResNet34_224: Training & Testing Accuracy/Loss Curve is given below in
Figure-4.10:

Figure 4.10: ResNet34_224 Training Vs Testing Loss and Accuracy

3. ResNet50: Training & Testing Accuracy/Loss Curve is given below in Figure-4.11:

Figure 4.11: ResNet50 Training Vs Testing Loss and Accuracy
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4. ResNet101: Training & Testing Accuracy/Loss Curve is given below in Figure-4.12:

Figure 4.12: ResNet101 Training Vs Testing Loss and Accuracy

4.4.3 VGGNet
As mentioned before, we are utilizing transfer learning for VGG16 and VGG19 with
custom top layers to avoid the extensive computational usage that it has. We do
so by utilizing the pre-trained convolution layers and only customizing the fully
connected layer. For VGG16, we utilize the ’vgg16’ from applications module under
Keras, TensorFlow. For VGG19, we utilize the ’vgg19’ from applications module
under Keras, TensorFlow. Our configuration for the Fully Connected Layer across
the variants are:

1. VGG16-A: Here, we introduce a two dimensional global average pooling at the
start of the fully connected layer. Next, we add three consecutive dense layers
with ReLu activation functions with 1024, 1024 and 512 nodes respectively.
Our output layer consists of 5 nodes and utilizes the softmax function.

2. VGG16-B: The variant B is similar to variant A but it uses tanh activation
function in the dense layers instead.

3. VGG16-C: The variant C is similar to variant A but it adds learning rate of
0.03% and dropout rate of 20%.

4. VGG19: Like the VGG16-A base model, we introduce a two dimensional global
average pooling at the start of the fully connected layer. Next, we add three
consecutive dense layers with ReLu activation functions with 1024, 1024 and
512 nodes respectively. Our output layer consists of 5 nodes and utilizes the
softmax function.
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4.4.4 GoogLeNet/Inception
Our iteration of each Inception model was different compared to the generic Incep-
tion V1 and Inception V3. Each variants are:

1. InceptionV1-A: We utilized a 2x2 average pooling before the final convolution
and layer flattening. We also removed the auxiliary classifier. Furthermore, a
generic single output layer is utilized instead of three. Lastly, the activation
functions used were purely ReLu excluding the output layer. The Training vs
Testing Graph is given below in Figure-4.13:

Figure 4.13: InceptionV1-A Training Vs Testing Loss and Accuracy

2. InceptionV1-B: InceptionV1-A’s base is used here as well. The only difference
here is that we utilized tanh activation function instead of ReLu. The Training
vs Testing Graph is given below in Figure-4.14:

Figure 4.14: InceptionV1-B Training Vs Testing Loss and Accuracy
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3. InceptionV3-A: We introduced batch normalization to the InceptionV1-A model.
Here, 3 convolution layers have been utilized where the 1st layer is 3X3 instead
of 7X7. Additionally, the filters of the inception modules have been modified
where the 1st inception module has filters: 64, 128, 128, 32, 32, 32 and the
2nd inception module has filters: 128, 192, 96, 64, 64, 64. The Training vs
Testing Graph is given below in Figure-4.15:

Figure 4.15: InceptionV3-A Training Vs Testing Loss and Accuracy

4. InceptionV3-B: InceptionV3-A’s base is used here as well. The only difference
here is that we utilized tanh activation function instead of ReLu. The Training
vs Testing Graph is given below in Figure-4.16:

Figure 4.16: InceptionV3-B Training Vs Testing Loss and Accuracy

4.5 Implementation of XAI
Unlike the base models, we have not made any significant changes to the XAI models
other than the visual representations. Most of the implementations or procedure of
the XAI models that we wanted to use have already been explained in Section 3.5.
One additional thing that we did for all three of the models is that we deliberately
tested the same one image from each class to compare the feature correlation among
the various XAI models.
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Chapter 5

Result and Analysis

5.1 Result

5.1.1 Base Model
We tested several variants of the core 4 models on our selected dataset and believe
that 15 models among them are worth mentioning. The Accuracy, Precision, Recall,
F1-Score, ROC Curve and AUC of said models are given in Table-5.1. The ROC
curves of the models are shown in images 5.1, 5.2 and 5.3.

Model Name Accuracy Precision Recall F1-Score
LeNet-A 61.85% 62.20% 61.85% 61.96%
LeNet-B 55.02% 54.51% 55.02% 53.94%
LeNet-C 53.21% 55.28% 53.21% 49.53%
ResNet34_32 43.78% 36.67% 43.78% 38.30%
ResNet34_224 57.03% 59.39% 57.03% 57.70%
ResNet50 34.14% 47.75% 34.14% 33.47%
ResNet101 43.17% 47.17% 43.17% 40.64%
VGG16-A 96.99% 96.98% 96.99% 96.97%
VGG16-B 96.18% 96.27% 96.18% 96.20%
VGG16-C 96.18% 96.32% 96.18% 96.18%
VGG19 97.19% 97.31% 97.19% 97.20%
InceptionV1-A 78.92% 81.58% 78.92% 79.33%
InceptionV1-B 85.74% 86.26% 85.74% 85.42%
InceptionV3-A 94.58% 94.75% 94.58% 94.62%
InceptionV3-B 82.13% 85.11% 82.13% 82.70%

Table 5.1: Overall result
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ROC curve: InceptionV1-A ROC curve: InceptionV1-B

ROC curve: InceptionV3-A ROC curve: InceptionV3-B

ROC curve: ResNet-34 (32x32) ROC curve: ResNet-34 (224x224)

Figure 5.1: ROC Curve (Inception & ResNet)
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ROC curve: ResNet-50 ROC curve: ResNet-101

ROC curve: VGG16-A ROC curve: VGG16-B

ROC curve: VGG16-C ROC curve: VGG19

Figure 5.2: ROC Curve (ResNet & VGG)
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ROC curve: LeNet-A ROC curve: LeNet-B

ROC curve: LeNet-C

Figure 5.3: ROC Curve (LeNet)

5.1.2 XAI
The following image subplots from Figure-5.4 through Figure-5.14 are the generated
outputs from XAI models.

LIME:

Figure 5.4: LIME (Class: Clear Cell)
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Figure 5.5: LIME (Class: Endometri)

Figure 5.6: LIME (Class: Mucinous)

Figure 5.7: LIME (Class: Non Cancerous)

Figure 5.8: LIME (Class: Serous)
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Integrated Gradients:

Figure 5.9: Integrated Gradients (Class: Clear Cell)

Figure 5.10: Integrated Gradients (Class: Endometri)

Figure 5.11: Integrated Gradients (Class: Mucinous)

Figure 5.12: Integrated Gradients (Class: Non Cancerous)
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Figure 5.13: Integrated Gradients (Class: Serous)

SHAP:

Image Clear Cell (0) Endometri (1) Mucinous (2) Non Cancerous (3) Serous (4)

Figure 5.14: SHAP
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5.2 Analysis

5.2.1 Base Model Selection
From the aforementioned result section, it can be observed that the highest results
are in fact seen in VGG16’s three variants, VGG19 and Inception V3’s two variants.
VGG16’s three variants sported on average 96%+ on all the scores of accuracy, pre-
cision, recall and F1-Score while VGG19 sported 97%+ across the same fields. For
VGG16-A, the lowest AUC score is for the Mucinous classifier at 0.95 and the high-
est for Serous classifier at 1.0. For VGG16-B, the lowest AUC score is for the Clear
Cell classifier at 0.96 and the highest for Non-Cancerous and Endometri classifier at
0.99. For VGG16-C, the lowest AUC score is for the Clear Cell and Serous classifier
at 0.96 and the highest for Endometri classifier at 1.0. Next, for VGG19, the AUC
score is 0.99 for Endometri and Mucinous while the AUC score for the rest of the
classifiers is 0.98. Next, the variant InceptionV3-A had 94.58%, 94.75%, 94.58% and
94.62% for scores of accuracy, precision, recall and F1-Score respectively. For AUC
score, InceptionV3-A’s lowest and highest are 0.91 for Mucinous classifier and 0.99
for Endometri classifier. Thus, it can be seen that utilizing transfer learning allowed
us to achieve high scores across all the relevant fields for VGG while among the
models that are built from scratch, Inception V3 performed the best. We ultimately
decided to use InceptionV3-A variant of Inception V3 model.

There is a reason why InceptionV3-A has been selected and not the other models
that were better performing. Let us first come to terms with the problems that will
occur if VGG models were to be used. After the selection of a base model, we needed
to work with explainable artificial intelligence or XAI to comprehend the black box
answer that is produced via our selected model. The core of transfer learning makes
it so that the utilization of XAI on models made via transfer learning is tremen-
dously difficult when compared to that of a model that is built from scratch. Hence,
the VGG models were rejected despite their high scores. Now, the model with the
next highest score across all fields is InceptionV3-A. Thus, ultimately, our choice of
model is the custom Inception V3 with ReLu activation function.

Model VGG16-O[30] VGG16-A InceptionV3-A
Original
Dataset

50% 77.78% 20.20%

Augmented
Dataset

84.64% (20 epoch,
24742 images)

96.99% (80 epoch,
2490 images)

94.58% (80 epoch,
2490 images)

Table 5.2: Comparison of Average Model Accuracy between two of our models and
one predecessor model.

Another thing that has been tested was our model score with the model of another
paper by Kasture et al. that utilized the same dataset[30] (Henceforth, referred
to as VGG16-O). According to Table-5.2, VGG16-O achieved a score of 50% with
the non-augmented dataset. We also ran a minor test with our models VGG16-A
and InceptionV3-A by running them for 20 epoch under our original conditions.
The average accuracy achieved was 27.78% higher than that of VGG16-O. This can
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be attributed to the fact that Tensor Conversion had been performed after image
augmentation. By converting the images to Tensor Data and further normalizing
the values in a range of 0 to 1, enabled for further computational efficiency and easier
training for the base models. As for InceptionV3-A, the reason that it is performing
much worse than VGG16-O and VGG16-A for the original dataset is because it is
not pre-trained like the other models.

5.2.2 XAI
From Figure-5.14, it has been observed that the first image belonging to “clear cell”
class and find that it has more positive correlation associated with the “clear cell”
category in comparison to other classes. Similarly, upon examining the remaining
images, a consistent dominance of positive features aligned with their respective
actual target classes can be noticed, providing a solid and precise rationale for its
specific classification.

INTREGRATED GRADIENT SHAP LIMECLASS: SEROUS

Figure 5.15: Comparative Analysis of Generated XAI outputs

In Figure-5.15, local visualized interpretation from LIME, SHAP and Integrated
Gradients indicate that all three interpretations have similar highlighted features
that contribute to the prediction of Serous Class. However, the reason why some
highlighted features from SHAP and Integrated Gradients do not exist in LIME is
that, LIME interpretation has been capped to showing only 10 important features
to reduce complexity in analysis.
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Chapter 6

Conclusion

Cancer is a highly invasive disease that forms due to the abnormal growth of cells in
any part of the body. Ovarian cancers are considered to be more deadly than other
common cancers among women because of its late-stage prognosis. A late stage prog-
nosis often means a high risk of the cancer cells spreading to other organs and thus
increasing the chance of mortality. In the United States of America, ovarian cancer
is deemed as the deadliest gynecologic cancer. Due to its high lethality, researchers
all over the world are attempting to find either a faster and accurate detection
method or a non-invasive detection method. In this paper, an automated detec-
tion system has been created that utilizes Convolutional Neural Networks (CNN)
to detect ovarian cancer fast and accurately. For building such a system, different
CNN models such as LeNet-5/LeNet, Residual Neural Network (ResNet), VGGNet
and GoogLeNet/Inception have been utilized. After testing various iterations of the
CNN models, Inception V3 has been used as the base AI for this endeavour. Explain-
able Artificial Intelligence (XAI) models such as Local Interpretable Model-agnostic
Explanations (LIME), SHapley Additive exPlanations (SHAP) and Integrated Gra-
dients has also been implemented for this system so that the outcome of the system
can be interpreted and judged accordingly. Ultimately, a great initial success has
been achieved by building a sandbox InceptionV3 model with the selected model
that achieved an average score of 94.5% to 94.75% in the performance metrics such
as Accuracy, Precision, Recall and F1-Score. Moreover, the model also had one of
the better ROC Curves and AUC scores when compared to the other 14 variations
of the different CNN models that were experimented with. Next, a Comparative
Analysis has been performed on the generated output of three different XAI models
namingly LIME (Local Interpretable Model Agnostic Explanations), SHAP (SHap-
ley Additive exPlanations) and Integrated Gradients with the results indicating that
the generated outputs had some highlighted features that were common across the 3
models. This signifies that the black-box interpretation occurred successfully. Thus,
it can be noted that an initial step was taken towards completing a system that can
provide either an accurate, faster detection model or an early prognosis model. In
the future, we aim to streamline the system and pivot towards early prognosis and
faster detection by using non-invasive data as our image dataset.
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Chapter 7

Future Works

We have taken an initial step towards our goal of achieving an early prognosis or
faster detection method. However, there remains several areas where we can bring
improvements. Such as:

• Utilize a larger, more comprehensive dataset with much variations in image
classification. We will also utilize tissue samples and convert them to images
to create a more distinct dataset.

• Streamline the current DCNN and XAI models into a singular structure. We
will also work towards a mobile system that displays the XAI reports.

• Pivot towards an efficient, optimized DCNN model structure to achieve even
faster detection process.

• Incorporate non-invasive image data from lab test mechanism to ensure a
stable method of achieving early prognosis.

There are several more works that can be done in the future in this field. However, we
will prioritize on the aforementioned objectives unless circumstances say otherwise.
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