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Abstract

Despite artificial neural networks being inspired by the functionalities of biologi-
cal neural networks, unlike biological neural networks, conventional artificial neural
networks are often structured hierarchically, which can impede the flow of informa-
tion between neurons as the neurons in the same layer have no connections between
them. Hence, we propose a more robust model of artificial neural networks where
the hidden neurons, residing in the same hidden layer, are interconnected that leads
to rapid convergence. With the experimental study of our proposed model as fully
connected layers in deep networks, we demonstrate that the model results in a
noticeable increase in convergence rate compared to the conventional feed-forward
neural network.

Keywords: Artificial Neural Network, Connected Hidden Neurons, Rapid Conver-
gence.
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Chapter 1

Introduction

1.1 Neural Networks

The biological neural networks process large amounts of data passed by senses from
different parts of the body [5]. A brain can have approximately 100 billion neu-
rons and 100 trillion neural connections, which implies that each neuron can have
connections with 1000 other neurons [17]. Moreover, the neurons in the brain form
complex and dense connections among themselves, which is important for efficient
and flexible information processing [14]. Although the operation of biological neu-
rons served as inspiration for neural networks as they are used in computers, many of
the designs have since gotten very disconnected from biological reality [13]. Artificial
neural networks (ANNs) often follow hierarchical structures with simple neural con-
nections that can impede the flow of information between neurons, as the neurons
in the same layer have no connections between them. In some scenarios, to improve
the generalization power of new and unseen data, it is important to have more con-
nections among the neurons, as a network with more connections can learn more
robust and meaningful features [20]. Moreover, having more connections among the
neurons can potentially speed up the convergence rate, as it helps to learn complex
patterns and relations in the data [18].

1.2 Problem Statement

We hypothesize that designing a neural network model with an increased number
of neural connections will result in a performance gain in terms of learning. In
conventional ANNs, specifically in feed-forward neural networks (FNNs), to increase
the number of connections while keeping the number of layers fixed, the number of
neurons per hidden layer has to be increased [18]. However, increasing the number
of neurons can lead to a slow convergence problem in the model [22]. To achieve
rapid learning, extensive research has been conducted on various aspects of neural
network design, e.g. adaptive gradient methods such as the Adam optimizer [16], and
activation functions such as the rectified linear unit (ReLU) [11]. With a particular
focus on the architectural elements that can be adjusted to achieve rapid learning,
we propose to connect the hidden neurons of the networks in order to increase the
number of neural connections in the network. We propose that the model has the
potential to achieve rapid convergence compared to the conventional FNNs while
applying the same training strategies. However, connecting all the hidden neurons in
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a network is compute-intensive, and thus we design an ANN model where the hidden
neurons, residing in the same hidden layer, are interconnected, which preserves the
parallel computability property of the model as well.

1.3 Research Contribution

The primary contributions of the paper are summarized as follows:

• We introduced a neural network model, namely CHNNet (Connected Hidden
Neurons), in which we created connections among the hidden neurons resid-
ing in the same hidden layer, enabling robust information sharing among the
neurons.

• We formulated mathematical equations to calculate the activations of the hid-
den layers in forward propagation and revised the backpropagation algorithm
to calculate the gradients based on the formulated forward propagation equa-
tions. Moreover, We provided proof of our claim of rapid convergence.

• The proposed model is different from conventional RNNs in calculating the
input from the hidden neurons and is not architecturally equivalent to two
conventional FNN layers connected to the previous layer through skip connec-
tions.

• We tested the proposed model on benchmark datasets and demonstrated that
the model depicted a noticeable increase in convergence rate compared to the
conventional FNN model.

• As our model generates a larger number of parameters compared to the con-
ventional FNN model, we tested the proposed model against the FNN model
with an increased number of parameters and showed that the model outper-
formed the FNN model in the mentioned configuration as well.

The paper is organized as follows: In Chapter 2, we discussed the state of knowledge
in our subject area as of yet. Subsequently, we described the forward propagation,
backpropagation mechanisms of the proposed model, and proof of rapid convergence
in Chapter 3 and evaluated the performance of the model against the conventional
FNN model in Chapter 4. Finally, we stated our concluding remarks in Chapter 5,
along with a brief discussion and our future research directions.

2



Chapter 2

Literature Review

In the infancy of neural networks, [1] specified significant drawbacks of perceptrons
and suggested the raw idea of Multilayer Perceptron (MLP). The architecture they
proposed is hierarchical in structure and has no mention of connections among hid-
den neurons, residing in the same layer. Further, a few FNN architectures were
analyzed in the literature by [6], none of which featured connections among the
hidden neurons of the same layer.

Thus far, a number of ANNs have been introduced using different approaches to
establish connections among neurons. A Recurrent Neural Network (RNN) has self-
connections among hidden neurons through time; that is, the self-connections work
as information carriers from one time step to another [6]. The Hopfield Neural Net-
work, a single-layered neural network introduced by [3], has neurons symmetrically
connected to all other neurons through bidirectional connections. While Hopfield
use positive feedback to stabilize the network output, [15] proposed using negative
feedback which regulate the inputs during recognition phase. Similar to the Hopfield
Network, the Boltzmann Machine has its neurons connected symmetrically with all
other neurons, with the exception that the neurons are divided into visible units
and hidden units [4]. Neural networks like the Echo State Network (ESN) [7] and
Liquid State Machine (LSM) [8] have featured a pool of neurons, namely a reser-
voir, which consists of numerous randomly connected neurons, providing them with
non-linear modeling ability. However, as the reservoir is randomized, it requires nu-
merous trials and sometimes even luck [9]. Additionally, in Spiking Neural Networks
(SNNs), recurrent connections [26] and self-connections [28] in the hidden layer have
been proposed, which require a spiking version of the actual input data to be im-
plemented. The referred ANNs have recurrent connections among the neurons that
are different from the proposed connections among the hidden neurons of our model.

In the contemporary period, designing new paths for information flow in neural
networks has attained noticeable success. Convolutional Neural Network (CNN)
architectures like DenseNet [23], ResNet [19], and UNet++[25], which use skip con-
nections to directly pass information from a layer to a deeper layer, have reached
state-of-the-art (SOTA) performance. Moreover, [27] have introduced the Group
Neural Network, which, to overcome the blockade at information passing, features a
group of neurons that can connect freely with each other. However, due to its irreg-
ular architecture, the training of the network cannot be accelerated through parallel
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computing. The mentioned ANNs use different approaches to enable information
flow among the hidden neurons than ours.
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Chapter 3

Methodology

The proposed architecture features additional self-connections and interconnections
among the hidden neurons, as shown in figure 3.1.

Input Hidden Output

(a)

Input Hidden Hidden Output

(b)

Figure 3.1: Proposed architecture of CHNNet with (a) one hidden layer and (b) two
hidden layers.

We have formulated mathematical equations for forward propagation and revised
the backpropagation algorithm for hidden layers only, as no new connections have
been introduced in the input and output layers.

3.1 Forward propagation

Rumelhart, Hinton, and Williams [6] note that the process of calculating the activa-
tions of each layer in the forward direction is straightforward and can be done quickly
using matrix operations. Mathematically, forward propagation can be expressed as
follows:
Let f be the activation function. Then, for the lth hidden layer, the input is A[l−1]

and the output A[l] is computed as:

Z [l] = W [l]A[l−1] +B[l]

A[l] = f(Z [l])
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where W [l] is the weight matrix connecting (l − 1)th layer to lth layer, B[l] is the
bias matrix of lth layer, and Z [l] and A[l] are the pre-activation and post-activation
of lth layer respectively.
Unlike the conventional FNN architecture, in CHNNet, information from one hidden
neuron is consolidated into other hidden neurons residing in the same hidden layer.
Therefore, for the forward propagation, we have two sets of weight matrices, one
connecting the (l − 1)th layer to lth layer and the other connecting hidden neurons
of the lth layer to other hidden neurons of the layer. Then for layer l, the input is
A[l−1] and the pre-activation Z [l] is proposed to be computed as:

Z [l] = W
[l]
1 A[l−1] +W

[l]
2 H [l] +B[l] (3.1)

where W
[l]
1 is the weight matrix connecting (l − 1)th layer to lth layer, W

[l]
2 is the

weight matrix connecting hidden neurons of lth layer to other hidden neurons of the
layer, B[l] is the bias matrix lth layer, H [l] is the input from the hidden neurons
of lth layer, and Z [l] and A[l] are the pre-activation and post-activation of lth layer
respectively.
The input from the hidden neurons, H [l] in equation 3.1, is the new term introduced
in the conventional forward propagation equation. As yet, there are not many
mechanisms available to calculate the output of the hidden neurons given an input.
In the proposed model, the pre-activation of the lth hidden layer is used to calculate
H [l]. Thereby, for lth layer, the input isA[l−1] and the input from the hidden neurons
H [l] is computed as:

H [l] = W
[l]
1 A[l−1] +B[l] (3.2)

Finally, the post-activation A[l] of lth layer is computed as:

A[l] = f(Z [l])

Though the forward propagation mechanism of the proposed model echoes the for-
ward propagation mechanism of conventional RNNs, in conventional RNNs, the
activations of the hidden neurons, obtained from the prior time step, are used to
calculate the output of the hidden layer, whereas in CHNNet, the current pre-
activations of the hidden neurons are used to calculate the output of the hidden
layer. Moreover, there is an argument to be made that the choice of mechanism to
calculate the input from the hidden neurons, H [l], has conceptually led to generating
two conventional FNN layers connected to the previous layer through skip connec-
tions. However, no non-linear activation function has been used to calculate the
value of H [l]. Thereby, as artificial neurons need to be associated with a non-linear
activation function [1], H [l] cannot be considered as the input from an individual
layer of neurons.

3.2 Backpropagation

As described by Rumelhart, Hinton, and Williams [6], the backpropagation can be
mathematically expressed as follows:
Let Y be the output, f be the activation function, and E be the cost. The upstream
gradient for the output layer D

(L)
u , where L is the number of layers in the network,

is computed as:
D[L]

u = ∇Y E

6



Let ∇Z[l]E = D[l], where, Z [l] be the pre-activation of lth layer. For lth layer, D[l]

is computed as:
D[l] = D[l]

u ∗ f ′(Z [l])

Then, the partial derivatives of the cost with respect to weight matrix W [l] and bias
matrix B[l] are computed as:

∇W [l]E = D[l]A[l−1]T

∇B[l]E = D[l]

where A[l−1] is the input for lth layer. Finally, the weight matrix W [l] and bias
matrix B[l] are updated using the following equations:

W [l] → W [l] − η∇W [l]E (3.3)

B[l] → B[l] − η∇B[l]E (3.4)

where η is the learning rate of the network.
In contrast to conventional FNN architectures, CHNNet has two sets of weight
matrices. The weight matrix W

[l]
1 and bias matrix B[l] are updated using equation

3.3 and equation 3.4 respectively. The partial derivative of the cost with respect to
weight matrix W

[l]
2 is computed as:

∇
W

[l]
2
E = D[l]H [l]T (3.5)

Then, the weight matrix W
[l]
2 is updated using the following equation:

W
[l]
2 → W

[l]
2 − η∇

W
[l]
2
E (3.6)

In the end, for (l − 1)th layer, the upstream gradient D
[l−1]
u is computed as:

D[l−1]
u = D[l]W

[l]
1

T

The process of backpropagation for a hidden layer is summarized in Algorithm 1.

3.3 Proof of rapid convergence

For the purpose of proving the claim of rapid convergence, let, at time step t,
CC(w

t
1, w

t
2) be the cost of a hidden layer of CHNNet with weights wt

1 and wt
2 and

FC(w
t
1) be the cost of a hidden layer of the conventional FNN with weight wt

1.
Mathematically, the cost function CC(w

t
1, w

t
2) and FC(w

t
1) can be written as:

CC(w
t
1, w

t
2) = ||O∗ − f(CF (w

t
1, w

t
2))||

FC(w
t
1) = ||O∗ − f(FF (w

t
1))||

where, CF (w
t
1, w

t
2) is the pre-activation of the hidden layer of CHNNet with weights

wt
1 and wt

2 at time step t, FF (w
t
1) is the pre-activation of the hidden layer of the

conventional FNN with weight wt
1 at time step t, f is the activation function and

O∗ is the optimal output of the hidden layer.
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Algorithm 1 Backpropagation algorithm for a single hidden layer in CHNNet

Computing Delta:
D[l] = D[l]

u ∗ f ′(Z [l])

Computing Gradients:

∇
W

[l]
1
E = D[l]A[l−1]T

∇
W

[l]
2
E = D[l]H [l]T

∇B[l]E = D[l]

Updating Weights:
W

[l]
1 → W

[l]
1 − η∇

W
[l]
1
E

W
[l]
2 → W

[l]
2 − η∇

W
[l]
2
E

B[l] → B[l] − η∇B[l]E

Computing Downstream Gradient:

D[l−1]
u = D[l]W

[l]
1

T

Let at time step t, mt = FF (w
t
1) = wt

1a
t
l−1 + bt and ct = wt

2h
t
l where, a

t
l−1 is the

activation of the (l − 1)th layer and ht
l is the input from the hidden neurons of the

lth hidden layer. Thus, CF (w
t
1, w

t
2) can be written as:

CF (w
t
1, w

t
2) = mt + ct (3.7)

Here, ht
l = mt, and thus we get from equation 3.7,

CF (w
t
1, w

t
2) = mt + wt

2m
t

⇒ CF (w
t
1, w

t
2) = (1 + wt

2)FF (w
t
1) (3.8)

When wt−1
2 = 0 at time step t− 1, we get using equation 3.8,

||O∗ − f(CF (w
t−1
1 , wt−1

2 ))|| = ||O∗ − f(FF (w
t−1
1 ))|| ⇒ CC(w

t−1
1 , wt−1

2 ) = FC(w
t−1
1 )
(3.9)

Then, as gradient descend is guaranteed to converge according to the convergence
theorem of gradient descend, w2 is updated such that f(CF ) → O∗. Therefore, at
time step t we get,

||O∗ − f(CF (w
t
1, w

t
2))|| ≤ ||O∗ − f(FF (w

t
1))|| ⇒ CC(w

t
1, w

t
2) ≤ FC(w

t
1) (3.10)

Using equation 3.9 and inequality 3.10, we get,

CC(w
t−1
1 , wt−1

2 )− CC(w
t
1, w

t
2) ≥ FC(w

t−1
1 )− FC(w

t
1) (3.11)

Equation 3.11 implies that the difference between the cost of CHNNet, generated
at two sequential time steps, is greater than that of the conventional FNN; that is,
CHNNet converges faster than the conventional FNN.
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Chapter 4

Performance Evaluation

To evaluate the performance of the proposed model, we used the software library
TensorFlow. Using the library, we constructed a layer, namely the CHN Layer, im-
plementing the forward propagation and backpropagation mechanisms described in
Chapter 3. Using the layer, along with other layers provided by the TensorFlow li-
brary, we performed all our experiments. Our goal was not to get SOTA performance
on the benchmark datasets. Rather, it was to achieve a better convergence rate than
the conventional FNN. We compared the performance of the CHN layers with that
of the Dense layers provided by the TensorFlow library, which implement conven-
tional forward propagation and backpropagation mechanisms of FNN. In our initial
experiments, CHNNet generated a larger number of trainable parameters compared
to the conventional FNN, and thus we conducted some additional experiments with
CHNNet and FNN having nearly equal numbers of trainable parameters.

4.1 Datasets

We evaluated the performance of the CHNNet on four benchmark datasets of differ-
ent sizes and diverse features, namely the Boston Housing [2], MNIST [12], Fashion
MNIST [24], and Extended MNIST [21] datasets. The Boston Housing dataset,
used for linear regression experiments, contains information concerning housing in
the Boston, MA area, with 506 instances and 14 attributes in total. The MNIST
dataset, consisting of 60,000 training samples and 10,000 testing samples, holds
28x28 images of handwritten digits divided into 10 classes. The Fashion MNIST
(FMNIST) dataset has the same features as the MNIST dataset, with the exception
that the dataset contains 10 classes of fashion accessories instead of handwritten
digits. The FMNIST dataset is more complex compared to the MNIST dataset.
The Extended MNIST (EMNIST) dataset, consisting of 697,932 training samples
and 116,323 testing samples, contains 28x28 images of handwritten digits and let-
ters divided into 62 classes. The EMNIST dataset is profoundly more complex than
both the MNIST and FMNIST datasets.
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4.2 Hyperparameters

We chose three different architectures that vary in terms of the number of hidden
neurons each and the total number of layers for each of the datasets, and conducted
each experiment with three seeds. The loss functions for the experiments were
chosen depending on the type of dataset and the desired output format. We used
mean square error in linear regression problems [10] and categorical cross entropy
in multi-class classification problems [18]. The optimizers and learning rates are
selected based on the improvement they could bring to the performance of the
models.

4.3 Experiments on Deep Networks

4.3.1 Training Parameters

For the Boston Housing dataset, we used networks consisting of 6 hidden layers with
64 neurons each, 5 hidden layers with 128 neurons each, and a network as ”160-128-
96-64-1”. We used the RMSprop optimizer with a learning rate of 0.0003, 0.0001,
0.0002 respectively, mean square error as the loss function, and batches of size 128
for training the models. While training on the MNIST dataset, we used networks
consisting of 4 hidden layers with 96 neurons each, 6 hidden layers with 256 neu-
rons each, and a network as ”288-256-224-192-160-128-96-64-10”. Additionally, We
used the RMSprop optimizer with a learning rate of 0.0001, sparse categorical cross
entropy as the loss function and batches of size 512. We used networks consisting
of 3 hidden layers with 512 neurons each, 6 hidden layers with 256 neurons each,
and a network as ”928-800-672-544-416-288-160-32-10” for training on the FMNIST
dataset. Moreover, we used the SGD optimizer with a learning rate of 0.001, sparse
categorical cross entropy as the loss function and batches of size 32 for the training.
For the EMNIST dataset, we used networks consisting of 3 hidden layers with 768
neurons each, 6 hidden layers with 320 neurons each, and a network as ”1024-896-
768-640-512-348-256-128-62”. We used the SGD optimizer with a learning rate of
0.001, sparse categorical cross entropy as the loss function and batches of size 32
for training the models. The networks had ReLU activation in the hidden layers,
linear activation in the output layer of the Boston dataset, and softmax activation
in the output layer of the MNIST, FMNIST, and EMNIST datasets. Further, we
performed t-tests on the sets of accuracies achieved by the conventional FNN and
CHNNet through the networks and obtained the p-values and t-statistics. A small
p-value indicates that the mean accuracies of FNN and CHNNet are not identical.
Furthermore, smaller p-values are associated with larger t-statistics.

4.3.2 Test Results

The CHNNet showed a considerable performance gain in terms of convergence com-
pared to the conventional FNN with all the architectures, as portrayed in figure 4.1.
In addition, CHNNet showed a better performance, on average, than the conven-
tional FNN in terms of mean loss and mean accuracy, as shown in table 4.1 and table
4.2. Especially with all the architectures on the Boston dataset, CHNNet depicted a
noteworthy decrease in mean loss. Moreover, in terms of accuracy, the experiments
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depicted negative t-statistics with all the architectures, which suggests that CHNNet
had a higher mean accuracy than the conventional FNN in the experiments.
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Figure 4.1: Loss curves of three different architectures of CHNNet and FNN on
the (a)-(c) Boston Housing, (d)-(f) MNIST, (g)-(i) FMNIST, and (j)-(l) EMNIST
datasets.

4.4 Experiments with Equal Parameters

In the experiments conducted previously, the CHNNet generated more trainable
parameters compared to the conventional FNN. Hence, we conducted additional
experiments with an increased number of hidden neurons in the Dense layers to
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Table 4.1: Loss measurement of CHNNet and FNN in deep networks.

FNN CHNNet

Datasets Model Trainable Mean Loss Trainable Mean Loss
Params (±std) Params (±std)

Boston Arch-1 21,761 47.65(±3.49) 46,337 27.13(±1.72)
Arch-2 67,969 102.57(±5.25) 149,889 26.71(±0.12)
Arch-3 41,505 69.10(±2.19) 96,801 24.97(±1.54)

MNIST Arch-1 104,266 0.187(±0.004) 141,130 0.142 (±0.003)
Arch-2 532,490 0.125(±0.013) 925,706 0.110(±0.010)
Arch-3 471,562 0.153(±0.008) 762,378 0.138(±0.027)

FMNIST Arch-1 932,362 0.351(±0.004) 1,718,794 0.319(±0.003)
Arch-2 532,490 0.339(±0.004) 925,706 0.336(±0.014)
Arch-3 2,774,602 0.334(±0.004) 5,305,930 0.342(±0.013)

EMNIST Arch-1 1,831,742 0.429(±0.001) 3,601,214 0.411(±0.004)
Arch-2 784,702 0.429(±0.001) 1,193,982 0.426(±0.001)
Arch-3 3,567,934 0.422(±0.005) 6,910,270 0.419(±0.004)

Table 4.2: Accuracy measurement of CHNNet and FNN in deep networks.

Datasets Model FNN CHNNet p-value t-statistics
Mean Accuracy Mean Accuracy

(±std) (±std)

MNIST Arch-1 94.47(±0.17) 95.62(±0.13) 0.03 -6.20
Arch-2 96.13(±0.46) 96.71 (±0.30) 0.13 -2.47
Arch-3 95.41(±0.28) 96.16(±0.75) 0.41 -1.02

FMNIST Arch-1 87.35(±0.24) 88.68 (±0.11) 0.03 -5.51
Arch-2 87.71(±0.10) 88.11(±0.20) 0.10 -2.93
Arch-3 88.13(±0.32) 88.56(±0.30) 0.29 -1.42

EMNIST Arch-1 84.76(±0.02) 85.25(±0.05) 0.004 -14.97
Arch-2 84.67(±0.07) 84.73(±0.02) 0.46 -0.91
Arch-3 84.89 (±0.21) 85.16(±0.09) 0.15 -2.29
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evaluate the performance of CHNNet compared to FNN with a nearly equal number
of trainable parameters.

4.4.1 Training Parameters

The training parameters were the same as in previous experiments, except that
we increased the number of hidden neurons in the Dense layers. Hence, for the
conventional FNN, we used an architecture featuring 6 hidden layers, each containing
95 neurons, 5 hidden layers with 190 neurons each, and 4 hidden layers with ”220-
198-198-124” neurons in the respective hidden layers for the Boston Housing Dataset.
For the MNIST dataset, architectures featured 4 hidden layers, each containing 126
neurons, 6 hidden layers with 360 neurons each, and 8 hidden layers with ”360-334-
304-268-238-208-176-142” neurons in the respective hidden layers. For the FMNIST
dataset, we used architectures with 3 hidden layers with 749 neurons each, 6 hidden
layers with 358 neurons each, 8 hidden layers with ”1184-1056-928-800-704-604-448-
352” neurons in the respective hidden layers. For the EMNIST dataset, architectures
featured 3 hidden layers with 1152 neurons each, 6 hidden layers with 412 neurons
each, and 8 hidden layers with ”1272-1144-1016-978-760-632-504-376” neurons in
the respective hidden layers.

4.4.2 Test Results

Despite increasing the number of neurons in the hidden layers of the conventional
FNN, CHNNet showed a considerably faster convergence rate with all the architec-
ture, as depicted in figure 4.2. Moreover, the CHNNet commonly performed better
in terms of mean loss and mean accuracy compared to the conventional FNN, as illus-
trated in tables 4.3 and 4.4. The experiments depicted negative t-statistics with the
architectures except for one architecture on both the MNIST and FMNIST datasets
and two architectures on the EMNIST dataset, which is interpreted as CHNNet
commonly outperforming FNN in terms of mean loss and mean accuracy. Further,
it can be concluded that the larger number of parameters generated by CHNNet is
not a matter of concern, as even with a nearly equal number of parameters in both
CHNNet and the conventional FNN model, CHNNet outperformed the FNN model
in terms of convergence.
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Figure 4.2: Loss curves of three different architectures of CHNNet and FNN on
the (a)-(c) Boston Housing, (d)-(f) MNIST, (g)-(i) FMNIST, and (j)-(l) EMNIST
datasets with nearly equal numbers of parameters.
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Table 4.3: Loss measurement of CHNNet and FNN with nearly equal number of
parameters.

FNN CHNNet

Datasets Model Trainable Mean Loss Trainable Mean Loss
Params (±std) Params (±std)

Boston Arch-4 46,337 30.13(±1.01) 47,026 28.02(±1.21)
Arch-5 148,001 60.63(±5.80) 149,889 24.23(±0.23)
Arch-6 97,475 39.54(±3.57) 96,801 23.73(±1.19)

MNIST Arch-4 148,186 0.164(±0.002) 141,130 0.151(±0.004)
Arch-5 936,010 0.115(±0.015) 925,706 0.111(±0.006)
Arch-6 763,836 0.146(±0.035) 762,378 0.228(±0.085)

FMNIST Arch-4 1,718,965 0.345(±0.004) 1,718,794 0.320(±0.003)
Arch-5 927,230 0.339(±0.006) 925,706 0.336(±0.008)
Arch-6 5,327,238 0.327(±0.006) 5,305,930 0.341(±0.015)

EMNIST Arch-4 3,632,318 0.426(±0.004) 3,601,214 0.411(±0.001)
Arch-5 1,199,806 0.425(±0.004) 1,193,982 0.430(±0.002)
Arch-6 6,370,056 0.411(±0.003) 6,369,086 0.418(±0.001)

Table 4.4: Accuracy measurement of CHNNet and FNN with nearly equal numbers
of parameters.

Datasets Model FNN CHNNet p-value t-statistics
Mean Accuracy Mean Accuracy

(±std) (±std)

MNIST Arch-4 95.12(±0.08) 95.39(±0.18) 0.10 -2.92
Arch-5 96.59(±0.35) 96.80(±0.13) 0.46 –0.92
Arch-6 95.57(±1.04) 94.02(±2.16) 0.21 1.83

FMNIST Arch-4 87.52(±0.19) 88.64(±0.23) 0.004 -15.83
Arch-5 87.78(±0.02) 88.37(±0.10) 0.02 -7.37
Arch-6 88.45(±0.27) 88.43(±0.31) 0.96 0.05

EMNIST Arch-4 84.84(±0.14) 85.20(±0.06) 0.03 -5.83
Arch-5 84.71(±0.11) 84.66(±0.09) 0.10 2.90
Arch-6 85.18(±0.10) 85.07(±0.07) 0.15 2.33
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Chapter 5

Conclusion

5.1 Conclusion

We designed an ANN, namely CHNNet, that is different from the existing feed-
forward networks in connecting the hidden neurons of the same layer. In addition,
we described the forward propagation and backpropagation mechanisms of the pro-
posed model and provided proof of the claim of rapid convergence. In the exper-
iments we conducted, CHNNet showed a noticeable increase in convergence rate
compared to the conventional FNN model without compromising loss or accuracy.
However, the proposed model generated a larger number of parameters compared
to the conventional FNN model. Thus, we conducted additional experiments and
concluded that the larger number of trainable parameters generated by CHNNet is
not a matter of concern, as even with a nearly equal number of trainable parameters
in both CHNNet and the conventional FNN model, CHNNet outperformed the FNN
model in terms of convergence with no compromises with loss and accuracy.

5.2 Future Work

As CHNNet generates a large number of parameters, some algorithms can be pro-
posed to reduce the number of connections among the neuron systematically. More-
over, the model has not been tested as a fully connected layer in CNN architectures,
which also has the potential to generate compelling outcomes. It would be interest-
ing to see if more efficient CNN architectures can be developed utilizing the features
of CHNNet. Further, there is the opportunity for research on implementing RNN
models based on the architecture of CHNNet.
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Appendix A

CHNNet Supplements

Dataset

All the datasets is automatically imported from TensorFlow library while executing
the code.

Environment Setup

All the experiments accompanying the paper have been conducted using Tensor-
Flow 2.10. A detailed guideline for installing TensorFlow with pip can be found at
tensorflow.org.

Requirements

The experiments are carried out in a Python 3.8 environment. The following addi-
tional packages are required to run the tests:

• tensorflow-datasets (version 1.2.0)

• matplotlib (version 3.7.1)

• pandas (version 1.5.3)

• scikit-learn (version 1.2.1)

• scipy (version 1.6.2)

The dependencies can be installed manually or by using the following command:

pip install -r ./requirements.txt

It is recommended to use a virtual environment for installing all the modules.

Potential Errors

While using tensorflow-dataset, you can encounter the following error:

importError: cannot import ’builder’ from google.protobuf.internal

To fix this error, you can install protobuf version 3.20 using the following command:

pip install protobuf==3.20
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Code Explanation

All the required files for executing the tests can be found at
github.com/ThesisG/CHNNet

CHN Layer

The CHN layer is coded in the CHNLayer.py file using Layer superclass of Keras.
The variables named kernel Input Units and kernel Hidden Units inside the build
function represent the two sets of weights mentioned in the paper.

The call method defines the forward pass of the layer and can handle different types
of inputs, while the backpropagation of the layer is handled by tensorflow itself.
TensorFlow’s automatic differentiation mechanism has been used to calculate the
gradients during backpropagation.

Test Files

The py files named {dataset name}Test.py holds the codes for the tests on that
respective dataset. By executing the codes in these files, the test results for the
respective dataset can be generated.

Parameters

The following adjustable parameters allow for customization of the model’s archi-
tecture, training duration, and optimization strategy based on the specific task and
dataset:

• epochs: represents the number of epochs for training.

• batchSize: represents the size of each batch for training.

• CHN hn: represents the number of hidden neurons in the nth hidden layer of
the CHNLayer.

• MLP hn: represents the number of hidden neurons in the nth hidden layer of
the Dense layer.

• loss: determines the objective function used to measure the model’s perfor-
mance and guide its learning during training.

• optimizer: determines the algorithm used to optimize the neural network
model during training.

Results

• When the training is complete, the model summary and statistical test results
are displayed on the terminal.

• The loss graphs for each seed are displayed in separate windows afterward.
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